
Scholarly Research Exchange
SRX Physics • Volume 2010 • Article ID 592051 • doi:10.3814/2010/592051

Research Article

Ion Plasma Responses to External Electromagnetic Fields

H. W. L. Naus

TNO Defence, Security and Safety, BU Observation Systems, P. O. Box 96864, 2509 JG The Hague, The Netherlands

Correspondence should be addressed to H. W. L. Naus, rik.naus@tno.nl

Received 20 August 2009; Accepted 30 September 2009

Copyright © 2010 H. W. L. Naus. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The response of ion plasmas to external radiation fields is investigated in a quantum mechanical formalism. We focus on the total
electric field within the plasma. For general bandpass signals three frequency regions can be distinguished in terms of the plasma
frequency. For low frequencies, the external field is shielded. For high frequencies, the field is not modified. Resonant behavior of
the plasma appears for frequencies near the plasma frequency: large internal electric fields and induced currents are present. These
effects may be relevant for biological systems. The model is therefore extended to a two-species plasma and additional interactions
are studied. The response is not essentially altered. To make the models more realistic, a so-called bath is included. In the weak
coupling approximation the resonance frequency is shifted and some damping occurs. Finite temperature effects on the electric
field are absent. The energy of the system, however, depends on temperature.

1. Introduction

Ion plasmas subject to external electromagnetic fields are
studied in this paper within the theoretical framework of [1].
The latter work focusses on the global residual symmetry
of electrodynamics, the displacement symmetry, which has
been shown to be realized in the Wigner-Weyl mode in the
electron plasma. The so-called zero-modes of the gauge field,
that is, zero-momentum “photons”, play a crucial role. These
dynamical quantum mechanical variables describe spatially
constant, time-dependent electric fields with three polar-
ization states. The concomitant symmetry is spontaneously
broken for free or weakly interacting electromagnetic fields;
this explains the vanishing mass of photons, in the sense that
they can be interpreted as Goldstone bosons.

In a plasma, however, the interactions between center of
mass and zero-modes causes the symmetry to be realized in
the Wigner-Weyl mode. This is explicitly demonstrated for a
plasma of nonrelativistic electrons using periodic boundary
conditions and assuming some uniformly distributed back-
ground charge. Its response to an external homogeneous
electric field is also addressed in [1].

Here we will apply this formalism to an ion plasma
and extend it to the two-species plasma. Such a plasma
serves as a model for the “free” ions, for example, sodium,
pottassium, calcium, and chloride, present in the intra-

and extracellular fluids of the human body. In particular,
we want to investigate the plasma response to external
electromagnetic fields with various waveforms. If such a
response is nontrivial, it may indicate a mechanism for a
possible biological effect of radio frequency fields used in,
for example, communication. Such mechanisms are hardly
known up to now. Since the plasma frequency is crucial for
the response, we estimate these frequencies for the ions in the
intra- and extracellular fluids.

Further theoretical developments concern additional
interactions. To this end, we use the Heisenberg picture
of quantum mechanics. In realistic systems, damping and
fluctuations are of course expected. In order to include such
effects, we extend the plasma with a surrounding medium—
the bath. It is shown that temperature does not affect the
induced electric field in this extended model whereas it
changes the energy.

The possibility of effects of electromagnetic fields in
biological systems has been addressed from a theoretical
physics perspective in [2]. The following remarks elucidate
the connection between this seminal study and our present
work. We have found a long-range effect, in the sense that
zero-mode oscillations are constant in space, and a collective
effect, in the sense that the CM motion of the ions plays
a crucial role. The screening of charges by ions is already
mentioned in [2]. It is also noted that plasma modes of
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unattached electrons can be a source of electric vibrations.
The paper [2] discusses the interaction of polarization waves
with unattached ions as well. There is, of course, a vast
amount of literature on biological effects of electromagnetic
radiation. Some more recent examples are [3–7]. It is not the
purpose of this study to discuss these papers; a recent review,
including many references, is given in [8].

The outline of this paper is as follows. First we introduce
the theoretical description of the periodic ion plasma and
the coupling of an external electromagnetic field, that
is, essentially the formalism of [1]. Secondly, the plasma
response is calculated for linearly polarized electromagnetic
fields with a number of relevant waveforms. In Section 4, the
results are extended to general bandpass signals. Estimates
for realistic ion plasma frequencies within intra- and extra-
cellular fluids are given next. Section 6 deals with the two-
species plasma. Additional interactions are introduced in
Section 7. The time-dependent energy of the plasma coupled
to an external field is calculated as well. Then a surrounding
medium, the bath, is included in the plasma model; Section 8
also considers temperature effects. Finally, we present some
conclusions, further discussion, and an outlook.

2. Ion Plasma

For the complete description of the periodic plasma we refer
to [1]. Note that the original derivation deals with electrons,
implying that we need to change the relevant physical
parameters like mass, charge and density. To neutralize the
charge of the ions, a uniformly distributed background
charge is assumed—in our application corresponding to
other ions.

2.1. Formalism and Plasma Oscillations. In the following we
restrict ourselves to the essential part of the dynamics needed
to demonstrate the typical effects. The relevant Hamiltonian
is given by

H0 = 1
2Nm

(
�P −Ne�A0

)2
+

1
2V

(
�Π0

)2
. (1)

It describes the center of mass �X of N ions, conjugate

momentum �P, in interaction with the zero-mode of the
gauge field �A0. The conjugate momentum of this zero-

mode �Π0 is proportional to a spatially constant electric field
�E0 = −�Π0/V . The ion mass is denoted by m, its charge
by e and V = L3 is the quantization volume; recall that
periodic boundary conditions are imposed. Relative motion,
the complete radiation field and their couplings are described
by their respective Hamiltonians.

The displacement symmetry, a relic of the original gauge
symmetry, is characterized by the operators

�D0 = Ne�X − �Π0, Ω
(
�n
) = exp

(
−i2π
eL
�D0 · �n

)
, (2)

where �n is integer, thereby respecting the boundary con-
ditions. The transformations Ω shift the zero-mode and

accordingly the center of mass momentum. They leave the
Hamiltonians invariant, in particular,

Ω
(
�n
)
H0Ω

†(�n) = H0. (3)

This residual symmetry is extensively discussed in [1].
Here we proceed to the known eigenfunctions of (1):

H0Ψ�n,�m

(
�X , �A0

)
= E�mΨ�n,�m

(
�X , �A0

)
(4)

which are given by

Ψ�n,�m

(
�X , �A0

)
= 1√

V
ei(2π/L)�n·�Xψ�m

(
�A0 − 2π

NeL
�n
)
. (5)

The nonstandard notation for the energy E is chosen in order
to avoid confusion with electric fields. The functions ψ�m are
harmonic oscillator wave functions; the ground state reads

ψ�0
(
�a
) =

(
Vωp

π

)3/4

exp
(
−1

2
Vωp�a2

)
, (6)

with plasma frequency

ω2
p =

Ne2

Vm
. (7)

The energy eigenvalues depend on the principal quantum
number mp but are independent of center of mass motion,
that is, infinitely degenerated:

E�m = ωp

(
3
2

+mp

)
; (8)

we have taken � = 1. The equilibrium position of the
harmonic oscillator, however, is determined by the center
of mass momentum. The eigenfunctions Ψ�n,�m are center of
mass momentum eigenstates as well. They are no eigenfunc-

tions of the displacement operator �D0. These are obtained by
the linear combinations

Ψ�X0,�n,�m

(
�X , �A0

)
=

∑

�k

1
V
ei(2π/L)

(
�n+N�k

)
·(�X−�X0)

× ψ�m
(
�A0 − 2π

NeL

(
�n +N�k

))
,

(9)

which are also eigenfunctions of the Hamiltonian, degen-
erated with (5). Once more, we refer to [1] for further
discussion. It is only noted that the expectation value of the

current operator �J = (1/2Nm){�P−Ne�A0, δ(�x− �X)} vanishes
for center of momentum eigenstates as well as for the gauge
invariant states:

�J�n,�m
(
�x
) =

〈
Ψ�n,�m

∣∣∣�J
∣∣∣Ψ�n,�m

〉
= 0,

�J�X′0,�X0,�n,�m
(
�x
) =

〈
Ψ�X′0,�n,�m

∣∣∣�J
∣∣∣Ψ�X0,�n,�m

〉
= 0.

(10)
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2.2. Plasma in Homogeneous Electric Field. In order to assess
the effects of pulsed electromagnetic fields in biological
systems, we extend the work of [1] on a plasma in an
external field. It is assumed that the electric field is spatially
constant—this appears to be a good approximation as long
as the involved wavelengths are not too small. An arbitrary

time dependence �E(t) is allowed. Such a field couples to the
center of mass of ions and the Hamiltonian becomes time
dependent:

H0(t) = 1
2Nm

(
�P −Ne

(
�A0 + �A(t)

))2
+

1
2V

(
�Π0

)2
, (11)

where the electric field follows from the vector potential:

�E(t) = − d

dt
�A(t). (12)

The time-dependent Schrödinger equation is supplemented
with the initial condition:

Ψ�n,�m

(
�X , �A0, t = 0

)
= Ψ�n,�m

(
�X , �A0

)
; (13)

compare (5). Therefore it is solved with the ansatz

Ψ�n,�m

(
�X , �A0, t

)
= 1√

V
e−iϕ(t)ei

�k�n·�Xei�A
0·�d(t)

× ψ�m
(
�A0 − 1

Ne
�k�n − �a(t)

) (14)

with �k�n = (2π/L)�n. Matching the various �A0 dependences
yields the explicit solution for �a [1]. This is sufficient to
calculate the expectation values of the total electric field in
the plasma and the current density. Modifying the notation
of [1], we explicitly obtain

�Etot(t) = �E(t)− 1
V

〈
�Π0

〉
= �E(t) + ωp Im �Z

[
�E
]

, (15)

�J(t) = e

Vm
Re �Z

[
�E
]

, (16)

where

�Z
[
�E
]
=

∫ t

0
dτeiωp(τ−t)�E(τ). (17)

The external field thus induces a current in the plasma; note

that the electromagnetic current density follows as �Jem =
eN�J . Concomitantly, the external electric field gets modified.
In Section 3, this will be studied in more detail for various
wave forms. The initial condition may be altered to the
gauge invariant wave function (6). It can be checked that the
obtained expectation values do not change.

The obtained expectation values satisfy �Jem = −d�E0/dt,
consistent with the remaining nontrivial Maxwell equation
in the zero-mode sector. Finally, we mention a simple
classical model for electron plasma oscillations [9]. If an
external electric field is coupled to the electron gas, the model
yields similar results for the classical field and current.

3. Fields and Current in Ion Plasma

In this section, we take a linearly polarized external electric

field �E = E(t)�e. The results are then obviously proportional

to the constant unit vector �e, �Etot = Etot(t)�e, �J = J(t)�e, and
will therefore be expressed in the amplitudes Etot(t) and J(t).

3.1. Constant and Harmonic Fields. As in [1] we first consider
two simple cases, which enable an analytical calculation
of electric field and current in the ion plasma. A time-
independent electric field E(t) = E0 yields a harmonic total
field:

Etot(t) = E0 cosωpt. (18)

The expectation value of current density is given by

J(t) = eE0

Vm

sinωpt

ωp
. (19)

Pure harmonic time dependencies with plasma frequency are
obtained. On the average, the external field is shielded.

For a periodic external field E(t) = E0 cosωt one obtains
the total field:

Etot(t) = E0

(
ω2
p

ω2
p − ω2

cosωpt − ω2

ω2
p − ω2

cosωt

)
, (20)

and the current

J(t) = E0e

Vm

(
ωp

ω2
p − ω2

sinωpt − ω

ω2
p − ω2

sinωt

)
. (21)

For low frequencies, ω � ωp, the external field is shielded.
The total field is harmonic with frequency ωp. This is not
the case for high frequencies, ω � ωp: the external field
is not modified and the induced current is very small. An
interesting resonance mechanism appears in the region ω �
ωp. This is shown in Figure 1, where external and total field
as well as the current are depicted. Note that the total field
appears to be amplitude modulated. For small frequency
difference δω = |ωp − ω| this can indeed be analytically
verified. The modulation frequency is given by (1/2)δω and
an amplitude amplification factor (ωp + ω)/2δω is obtained.

3.2. Pulsed Fields. For the study of possible bioelectromag-
netic effects, a number of specific waveforms are selected.
Pulsed signals are of particular interest; typical values for the
parameters are used. We present results for total field and
current density in the plasma for the various pulsed signals.
The integrations cf. (17) have been computed numerically.
Figure 2 shows the response to the Gaussian pulse:

E(t) = E0 exp

(
−π

(
t

T

)2
)

(22)

with T = 166 ps, for a plasma frequency fp = 3 GHz.
The result is equivalent to exciting a harmonic oscillator—
in our case the zero-mode gauge field. Next, in Figure 3(a),
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Plasma: harmonic external field
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Plasma: harmonic external field
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Figure 1: (a) External and total fields. (b) Current density, f = 0.95 MHz, fp = 1.0 MHz.

Plasma: gaussian pulse
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Plasma: gaussian pulse
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Figure 2: (a) External and total fields, fp = 3 GHz. (b) Current density.

the effects of pulse repetition are shown. The results for the
modulated Gaussian pulse

E(t) = E0 sinωt exp

(
−π

(
t

T

)2
)

, (23)

with T = 332 ps, ω = 4π GHz, are not essentially different
(cf. Figure 4). On the other hand, if the plasma frequency is
not in the frequency band of such a pulse one obtains no
effects for small ωp and shielding for large ωp; see Figure 5.
For completeness, we also include amplitude modulation
with modulation frequency 0.1 MHz. Shielding and the
absence of effects appear in the respective frequency regions.
Here we depict the resonance effects for field and current in

Figure 6. Figure 7 shows a resonant plasma response for ultra
wideband (wideband high-power microwaves) signals:

E(t) = E0t exp

(
−π

(
t

T

)2
)

(24)

with T = 0.2 ns. Another example of a broadband signal is
the nuclear electromagnetic pulse (NEMP)

E(t) = E0

(
e−αt − e−βt

)
: (25)

with α = 4.0 · 106 s−1 and β = 4.76 · 108 s−1. The resonant
plasma response is shown in Figure 8. Note the relatively low
plasma frequency used in this NEMP calculation. The results
for narrow band high-power microwaves, GSM and chirp
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Plasma: gaussian pulse
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Plasma: harmonic pulses
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Figure 3: External and total fields: (a) Gaussian pulse, repetition; fp = 3 GHz; (b) on/off switching, fp = 1.0 MHz.

Plasma: modulated gaussian pulse

E
fi

el
d

(V
/m

)

−250

−200

−150

−100

−50

0

50

100

150

200

250

t (s)

0 20 40 60 80 100 120 140 160 180
×10−11

External E field
Total E field

(a)

Plasma: modulated gaussian pulse
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Figure 4: (a) External and total fields, fp = 3 GHz. (b) Current density.

signals resemble those of a continuous harmonic wave which
is switched on and off. The concomitant plasma response, in
particular the electric field, is shown in Figure 3(b).

4. General Bandpass Signals

The results obtained so far suggest that there are three
regions in the frequency domain, governing the response to
general bandpass signals. In order to confirm this, the cosine
transform of a real electric field is used [10]:

Ec(ω) =
√

2
π

∫∞
0
dtE(t) cosωt. (26)

The inverse transformation is given by

E(t) =
√

2
π

∫∞
0
dωEc(ω) cosωt. (27)

Straightforward integration leads to the following expression
for Z:

Z(t) = −1
2
i

√
2
π

∫∞
0
dωEc(ω)

×
{

1
ωp + ω

(
eiωt−e−iωpt

)
+

1
ωp − ω

(
e−iωt−e−iωpt

)}
.

(28)
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Plasma: modulated gaussian pulse; low plasma frequency
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Plasma: modulated gaussian pulse; shielding
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Figure 5: (a) No effects, fp � 3 GHz. (b) Shielding fp � 3 GHz.

Plasma: amplitude modulation
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Plasma: amplitude modulation
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Figure 6: (a) External and total fields, fp ≈ fc = 1 MHz. (b) current.

For the total field we obtain

Etot(t) = E(t)−
√

2
π

∫∞
0
dωEc(ω)

ω2
p

ω2
p − ω2

×
{

cosωt − cosωpt
}
.

(29)

This result is generally valid. Let us now consider band-
pass signals. This means that the nonvanishing frequency
components of the electric field are prominently centered
around a carrier frequency ωc with bandwidth B. It implies
that we can approximate the frequency integrals:

∫∞
0
dωEc(ω){· · · } ≈

∫ ωc+B/2

ωc−B/2
dωEc(ω){· · · }. (30)

Now the division into three frequency regions can be made.
For ωp � ωc it follows from (29) that the external field is
shielded. On the other hand, we see that for ωc � ωp the
electric field is almost not influenced by the plasma Etot(t) ≈
E(t). Most interesting is the region ωp ≈ ωc, where resonance
effects appear

Etot(t) ≈ E(t)−
√

2
π

∫ ωc+B/2

ωc−B/2
dωEc(ω)

ω2
p

ω2
p − ω2

×
{

cosωt − cosωpt
}
.

(31)

Equivalent results can be derived by employing the sine-
transform which is also defined in [10].
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Plasma: UWB-HPM pulse
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Plasma: UWB UWB-HPM pulse
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Figure 7: (a) External and total fields, fp = 3 GHz. (b) Current density.

Plasma: NEMP signal
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Plasma: NEMP signal
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Figure 8: (a) External and total fields, fp = 20 MHz. (b) Current density

5. Estimates of Plasma Frequencies

As mentioned in the introduction, a possible application
of this framework is the effect of electromagnetic fields on
biological systems. It is known that intracellular as well
as extracellular fluid contains ions, in particular sodium,
potassium, calcium, and cloride. Here we estimate the
concomitant plasma frequencies for realistic concentrations.
The latter is usually given as molar concentration or molarity
denoting the number of moles per liter; the symbol for
mole/liter is M. In Table 1 typical concentrations are listed.
The corresponding plasma frequencies can be computed
with (7); a convenient approximate expression is ω2

p ≈ 1.0 ·
1027 × q2(MC/A), with (atomic) mass number A, molar

concentration MC , and the integer charge q in terms of the
elementary charge. Thus q = 2 for calcium; for the other
ions q = 1. This leads to the estimated plasma frequencies
fp = ωp/2π shown in Table 2.

6. Two-Species Plasma

In this section we extend the theory to a plasma with two
species of ions. Their charges are eq1 and −eq2, where e
now denotes the elementary charge and q1, q2 are positive
integers. The respective numbers of particles are denoted
by N1, N2; we furthermore introduce the charges Q1 =
eN1q1 and Q2 = eN2q2. If Q1 = Q2, no additional
background charge needs to be assumed. Otherwise we still
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Table 1: Ion densities.

Ion Symbol Atomic and mass number Intracellular Extracellular

Sodium Na+ Z = 11, A = 23 10 mM 140 mM

Potassium K+ Z = 19, A = 39 160 mM 4 mM

Calcium Ca2+ Z = 20, A = 40 0.1 μM 2 mM

Chloride Cl− Z = 17, A = 35 5 mM 110 mM

Table 2: Plasma frequencies.

Ion Symbol Atomic and mass number Intracellular Extracellular

Sodium Na+ Z = 11, A = 23 100 GHz 370 GHz

Potassium K+ Z = 19, A = 39 320 GHz 50 GHz

Calcium Ca2+ Z = 20, A = 40 0.5 GHz 70 GHz

Chloride Cl− Z = 17, A = 35 60 GHz 280 GHz

have to neutralize the net charge by a uniform background
distribution [1].

6.1. Hamiltonian and Eigenfunctions. The zero-mode Hamil-
tonian (cf. (1)) is now given by

H0 = 1
2V

(
�Π0

)2
+

1
2N1m1

(
�P1 −Q1 �A0

)2

+
1

2N2m2

(
�P2 +Q2 �A0

)2
(32)

with particle CM coordinates �X1, �X2, conjugate momenta
�P1, �P2, and masses m1 and m2. The displacement operator is
modified as

�D0 = Q1 �X1 −Q2 �X2 − �Π0. (33)

It generates the symmetry transformation

Ω
(
�n
) = exp

(
−i2π
eL
�D0 · �n

)
, (34)

which leaves the Hamiltonian invariant. The time-
independent Schrödinger equation is solved with the
translationally invariant ansatz:

Ψ
(
�X1, �X2, �A0

)
= 1√

V
ei�p1·�X1

1√
V
ei�p2·�X2ψ

(
�A0
)

(35)

with �p1 = (2π/L)�n1 and �p2 = (2π/L)�n2. Again we obtain
harmonic oscillator wave functions ψ�l:

ψ
(
�A0
)
= ψ�l

(
�A0 − Q1M2�p1 −Q2M1�p2

M2Q
2
1 +M1Q

2
2

)
, (36)

and plasma frequency

ω2
p =

M2Q
2
1 +M1Q

2
2

M1M2V
. (37)

We have introduced the massesM1 = N1m1 andM2 = N2m2.
The energy eigenvalues follow as

E�l,�n1,�n2
= ωp

(
3
2

+ lp

)
+

(
Q2�p1 +Q1�p2

)2

2
(
M2Q

2
1 +M1Q

2
2

) . (38)

In contrast to the one-ion plasma, there are nonvanishing
contributions of the center of mass momenta. Concomi-
tantly, the eigenstates support nonvanishing expectation

values of the current density �J�n1,�n2,�l(�x)

〈
Ψ�n1,�n2,�l

∣∣∣∣
1

2N1m1

{
�P1 −Q1 �A0, δ

(
�x − �X1

)}

+
1

2N2m2

{
�P2 +Q2 �A0, δ

(
�x − �X2

)}∣∣∣∣Ψ�n1,�n2,�l

�

= 1
V

Q1 +Q2

M2Q
2
1 +M1Q

2
2

(
Q2�p1 +Q1�p2

)
.

(39)

The constructed eigenfunctions transform under displace-
ments as

Ω
(
�k
)
Ψ�n1,�n2,�l = Ψ�n1−Q1

�k,�n2+Q2
�k,�l . (40)

Just like in the one-component plasma there is an infinite
degeneracy:

H0Ψ�n1+Q1
�k,�n2−Q2

�k,�l

(
�X1 − �X01, �X2 − �X02, �A0

)

= E�l,�n1+Q1
�k,�n2−Q2

�k Ψ�n1+Q1
�k,�n2−Q2

�k,�l

(
�X1 − �X01, �X2 − �X02, �A0

)

= E�l,�n1,�n2
Ψ�n1+Q1

�k,�n2−Q2
�k,�l

(
�X1 − �X01, �X2 − �X02, �A0

)
.

(41)

This enables the construction of gauge invariant eigenstates:

ΨG
�X01,�X02,�n1,�n2,�l

=
∑

�k

Ψ�n1+Q1
�k,�n2−Q2

�k,�l

(
�X1 − �X01, �X2 − �X02, �A0

)
.

(42)

Indeed one can verify that

Ω
(
�j
)
ΨG
�X01,�X02,�n1,�n2,�l

= e−i(2π/L)�j·(Q1 �X01−Q2 �X02)

×ΨG
�X01,�X02,�n1,�n2,�l

.
(43)
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6.2. External Homogeneous Field. Again we study the cou-
pling of a spatially constant electric field with arbitrary time
dependence (12). The time-dependent Hamiltonian follows
as

H0(t) = 1
2V

(
�Π0

)2
+

1
2M1

(
�P1 −Q1(�A0 + �A(t))

)2

+
1

2M2

(
�P2 +Q2(�A0 + �A(t))

)2
.

(44)

The initial condition is taken as

Ψ�n1,�n2,�l

(
�X1, �X2, �A0, t = 0

)
= Ψ�n1,�n2,�l

(
�X1, �X2, �A0

)
. (45)

The time-dependent Schrödinger equation can be solved
with an ansatz analogous to (14):

Ψ�n1,�n1,�l

(
�X1, �X2, �A0, t

)

= 1
V
e−iϕ(t)ei�p1(�n1)·�X1

× ei�p2(�n2)·�X2ei
�A0·�d(t)ψ�l

(
�A0 − �q�n1,�n2

− �a(t)
)

,

(46)

where �q�n1,�n2
= (M2Q

2
1 + M1Q

2
2)−1(Q1M2�p1 − Q2M1�p2).

After some algebra, one verifies that the previous differential
equation for �a(t) is not modified in the two-species case. The
differential equation for the phase ϕ(t), however, is changed.
For the evaluation of the expectation values of electric field
and current one does need the explicit solution of the phase.
The resulting current can be written as

�J(t) = 1
V

Q1 +Q2

M2Q
2
1 +M1Q

2
2

(
Q2�p1 +Q1�p2

)

+
M1Q2 −M2Q1

VM1M2

(
�a(t) + �A(t)

)
,

(47)

and total field is given by

�Etot(t) = �E(t)− d�a(t)
dt

, (48)

with (cf. (17) and [1])

�a(t) = ωp

∫ t

0
dτ �A(τ) sinωp(τ − t). (49)

Thus we obtain that the response of the two-species plasma
is not essentially different from the one-ion case. The plasma
frequency is changed according to (37) and the induced
additional current has a different prefactor. It is finally
mentioned that one may also impose the initial condition
analogous to (45) in terms of gauge invariant states (42)
without changing these results.

7. Plasma: Additional Interactions

7.1. Heisenberg Picture. Thus far we have studied the ion
plasma using the Schrödinger picture of quantum mechan-
ics. From now on, we exploit the Heisenberg picture since it

has turned out to be more convenient for our calculations.
Earlier results for the plasma are readily reproduced and
extended by a calculation of the energy. Then we reinvestigate
the two-species plasma within this framework. The plasma
model extended with an additional interacting degree of
freedom is studied as well; it can be seen as the prelude to
include a bath [11]—as will be done in Section 8.

In the Heisenberg picture states in the Hilbert space
are time-independent whereas operators O(t) all depend
on time. Their equation of motion is governed by the
Hamiltonian:

dO(t)
dt

= i[H ,O(t)] +
∂O(t)
∂t

. (50)

Expectation values follow as

〈O(t)〉 = 〈Ψ0 | O(t) | Ψ0〉, (51)

where Ψ0 denotes the time-independent state. For the
Hamiltonian one of course obtains

dH

dt
= ∂H

∂t
. (52)

Below we focus on solving the equation of motion for the
electric field operator.

7.2. Plasma

7.2.1. Formalism. We start by analyzing the one-component
plasma in the Heisenberg picture. The Hamiltonian (cf. (1))
can be rewritten as

H0 = 1
2
Vω2

p

(
�A0 − 1

Ne
�P
)2

+
1

2V

(
�Π0

)2
. (53)

Next we define the creation and annihilation operators for
k = 1, 2, 3 (x, y, z) as

a†k =
1√

2Vωp

(
Π0
k + iVωpA

0
k

)
,

ak = 1√
2Vωp

(
Π0
k − iVωpA

0
k

)
.

(54)

By means of [Π0
k,A0

l ] = −iδkl one readily verifies the basic
commutation rule [ak, a†l ] = δkl. Expressing the zero-mode
vector potential and electric field in the a-operators

Π0
k =

√
1
2
Vωp

(
ak + a†k

)
,

A0
k =

i√
2Vωp

(
ak − a†k

) (55)

yields for the Hamiltonian

H0 = ωp

(
a†kak +

3
2

)
− iωp

Ne

√
1
2
Vωp

(
ak − a†k

)
Pk +

1
2Nm

�P2.

(56)
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Note that we use the summation convention. For the CM
momentum one gets

d�P
dt
= i

[
H0, �P

]
= 0. (57)

Consequently, the momentum is conserved and we can

replace the operator by its eigenvalue �P = �k�n. We again
impose periodic boundary conditions. At this point one
can derive the equations of motion for the creation and
annihilation operators and solve them. We proceed, however,
by defining the “shifted” operators:

b†k = a†k − iαk,

bk = ak + iαk
(58)

with �α = (1/Ne)
√

(Vωp/2)�k�n. Note that we omit the

n-dependence of �α in our notation. The new operators
obviously fulfill [bk, b†l ] = δkl. The electric field is given by

Π0
k =

√
1
2
Vωp

(
bk + b†k

)
. (59)

In terms of the shifted operators the Hamiltonian reads

H0 = ωp

(
b†k bk +

3
2

)
. (60)

One recognizes the Hamiltonian of a three-dimensional
harmonic oscillator. The equation of motion for bk follows
as

dbk
dt

= i[H0, bk] = −iωpbk (61)

with solution

bk(t) = bk(0)e−iωpt. (62)

For the adjoint operator one obtains

b†k (t) = b†k (0)eiωpt. (63)

If we choose as state Ψ0 one of the eigenstates of H0, of

course with the above specified CM momentum �k�n, then the
expectation value of the electric field vanishes.

7.2.2. Plasma in External Electric Field. Once again we couple
an external homogeneous electric field (12). The Hamilton
operator is modified as

H0(t) = 1
2
Vω2

p

(
�A0 + �A(t)− 1

Ne
�P
)2

+
1

2V

(
�Π0

)2
. (64)

The CM momentum remains a conserved quantity; thus

we insert �P = �k�n. Next we introduce the creation and
annihilation operators a†k , ak and, subsequently, the shifted
operators b†k and bk. Then we arrive at

H0(t) = ωp

(
b†k bk +

3
2

)
+ iωp

√
1
2
Vωp

(
bk − b†k

)
Ak(t)

+
1
2
Vω2

p
�A2(t).

(65)

Thus we get for the time development:

dbk
dt

= i[H0, bk] = −iωpbk − ωp

√
1
2
VωpAk(t), (66)

which can be solved using the method of “variation of
constants.” In the solution of the homogeneous equation
bk(t) = bk(0) exp(−iωpt), we replace bk(0) by a function of
time βk(t). This yields

dβk
dt

= −ωp

√
1
2
Vωpe

iωptAk(t), (67)

which can be readily integrated. In this way we obtain

bk(t) = e−iωpt

⎛
⎝bk(0)− ωp

√
1
2
Vωp

∫ t

0
dτeiωpτAk(τ)

⎞
⎠,

b†k (t) = eiωpt

⎛
⎝b†k (0)− ωp

√
1
2
Vωp

∫ t

0
dτe−iωpτAk(τ)

⎞
⎠,

(68)

which immediately gives

Π0
k =

√
1
2
Vωp

(
bk(0)e−iωpt + b†k (0)eiωpt

)

−Vω2
p

∫ t

0
dτ cosωp(t − τ)Ak(τ).

(69)

Let us choose the state Ψ0 as eigenstate of H0. It implies for
the expectation value of the total electric field:

�Etot(t) = �E(t)− 1
V

〈
�Π0

〉

= �E(t) + ω2
p

∫ t

0
dτ cosωp(t − τ)�A(τ).

(70)

This result is equivalent to (15) and (17) as can be verified by
means of integration by parts.

7.2.3. Energy Considerations. The expectation value of the
time-dependent Hamiltonian (65) can be conveniently cal-
culated in the Heisenberg picture. The initial state Ψ0 is
taken as above with harmonic oscillator quantum numbers
m1,m2,m3. Omitting this calculation redundant CM-label �n,
we thus compute the energy E(t), as

E(t) = 〈H0(t)〉 = 〈Ψ0 | H0(t) | Ψ0〉 =
〈
ψ�m | H0(t) | ψ�m

〉
.

(71)

Using the time-developments (68), we obtain

E(t) = ωp

(
mp +

3
2

)
+

1
2
Vω2

p

×
(
ω2
p
�Z ∗

[
�A
]
· �Z

[
�A
]

+ 2ωp �A(t) · Im �Z
[
�A
]

+ �A(t) · �A(t)
)

(72)
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(cf. (17)). Integration by parts yields

ωp �Z
[
�A
]
= −i

(
�A(t) + �Z

[
�E
])
. (73)

With this relation we can write the energy in terms of the
external field as

E(t) = ωp

(
mp +

3
2

)
+

1
2
Vω2

p
�Z ∗

[
�E
]
· �Z

[
�E
]
. (74)

This result can also be expressed in the expectation values of
electric field (15) and (electromagnetic) current (16) as

E(t) = ωp

(
mp+

3
2

)
+

1
2
V 2Nm�J 2(t)+

1
2
V
(
�Etot(t)−�E(t)

)2

= ωp

(
mp +

3
2

)
+

V

2ω2
p

�J 2
em(t) +

1
2
V �E0(t)2.

(75)

The time-dependent terms can be interpreted as the classical
energy, expressed in classical current and field, induced by
the external field. Note that this additional energy, just as
current and field, does not depend on the quantum numbers
of the initial state.

7.3. Two-Species Plasma. Using the Heisenberg picture, the
two-species plasma is reanalyzed. The Hamiltonian (32) is
rewritten as

H0 = 1
2V

(
�Π0

)2
+

1
2
ω2
p

(
�A0
)2 − Q1

M1

�P1 · �A0

+
Q2

M2

�P2 · �A0 +
1

2M1

�P2
1 +

1
2M2

�P2
2 ,

(76)

where the plasma frequency ωp is given by (37). In terms of
the creation and annihilation operators defined in (54), we
get

H0 = ωp

(
a†kak +

3
2

)
+

1
2M1

�P2
1 +

1
2M2

�P2
2

− i√
2Vωp

(
Q1

M1

(
�P1

)
k
− Q2

M2

(
�P2

)
k

)(
ak − a†k

)
.

(77)

Both CM operators commute with the Hamiltonian. There-
fore, we can replace the operators by their respective
eigenvalues, that is, �p1 and �p2:

H0 = ωp

(
a†kak +

3
2

)
− iβk

(
ak − a†k

)
+

1
2M1

�p 2
1 +

1
2M2

�p 2
2

(78)

with �β = (1/
√

2Vωp)((Q1/M1)�p1 − (Q2/M2)�p2). Introducing

the shifted operators

bk = ak + iγk,

b†k = a†k − iγk,
(79)

where �γ = �β/ωp =
√

(1/2)Vωp((Q1M2�p1 − Q2M1�p2)/

(M2Q
2
1 +M1Q

2
2)), diagonalizes the Hamiltonian

H0 = ωp

(
b†k bk +

3
2

)
+

(
Q2�p1 +Q1�p2

)2

2
(
M2Q

2
1 +M1Q

2
2

) . (80)

Its energy eigenvalues obviously agree with those calculated
in the Schrödinger picture (38).

The inclusion of a homogeneous external electric field
yields additional terms in the Hamiltonian:

H0(t) = H0 +
1
2
Vω2

p
�A(t)2 +Vω2

p
�A(t) · �A0

− Q1

M1

�P1 · �A(t) +
Q2

M2

�P2 · �A(t).

(81)

The CM momenta also commute with the modified Hamil-
tonian and therefore we replace them by their eigenvalues
�p1 and �p2. Next we introduce the creation and annihilation
operators ak , a†k and, eventually, bk and b†k . Straightforward
algebra then leads to

H0(t) = ωp

(
b†k bk +

3
2

)
+ iωp

√
1
2
Vωp

(
bk − b†k

)
Ak(t)

+
1
2
Vω2

p
�A2(t),

(82)

which is formally identical to (65)—except for the fact
that the plasma frequency is altered. Note that the plasma
frequency appears also in the definition of the creation and
annihilation operators. Herewith our previous results for the
two-species plasma are confirmed.

7.4. Plasma: Additional Interaction and External Field. In this
section, we include an additional degree of freedom which
interacts with the zero-mode in the one-component plasma
model. The interaction is in principle taken from [11] where
a bath is coupled to a system, as will be studied below as
well. Since we want to respect the displacement symmetry,
however, a modification is necessary. We also couple the
external homogeneous electric field from the onset. The
complete Hamiltonian is thus taken as

H(t) = H0(t) +Hb +HI(t), (83)

where H0(t) is given by (64) and Hb represents a simple
harmonic oscillator:

Hb = 1
2
�p 2 +

1
2
ω2

1�q 2. (84)

The original interaction term [11] reads

H0
I =

g√
ωpω1V

(
�p · �Π0 +Vωpω1�q · �A0

)
(85)

with coupling constant g. It has been actually been intro-
duced as a simpler expression in terms of creation and
annihilation operators. This term, however, explicitly breaks
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the displacement symmetry. The corresponding symmetric
(gauge invariant) interaction is given by

HI =
g√

ωpω1V

(
�p · �Π0 +Vωpω1�q ·

(
�A0 − 1

Ne
�P
))
. (86)

Thus the additional degree of freedom couples not only to
the zero-mode but also to the CM of the ions. Coupling the
external electric fields finally yields

HI(t) =
g√

ωpω1V

×
(
�p · �Π0 +Vωpω1�q ·

(
�A0 + �A(t)− 1

Ne
�P
))
.

(87)

We proceed as above, that is we introduce creation and
annihilation operators for the zero-mode, substitute for the

CM momentum its eigenvalue �k�n and replace the ak, a†k
by their shifted operators bk and b†k . Moreover, for the
additional degree of freedom we define

ck = 1√
2ω1

(
pk − iω1qk

)
,

c†k =
1√
2ω1

(
pk + iω1qk

)
,

(88)

which obey [ck, c†l ] = δkl. After some computations one
obtains for the Hamiltonian

H(t) = ωp

(
b†k bk +

3
2

)
+ iωp

√
1
2
Vωp

(
bk − b†k

)
Ak(t)

+
1
2
Vω2

p
�A(t)2 + ω1

(
c†k ck +

3
2

)
+ g

(
bkc

†
k + b†k ck

)

+ ig

√
1
2
Vωp

(
ck − c†k

)
Ak(t),

(89)

where the original interaction term [11] is recognized.
The Heisenberg equations of motion follow as

dbk(t)
dt

= i[H , bk] = −iωpbk − igck − ωp

√
1
2
VωpAk(t),

dck(t)
dt

= i[H , ck] = −iω1ck − igbk − g
√

1
2
VωpAk(t).

(90)

Note that different Cartesian components do not couple. In
matrix form we have

d

dt

⎛
⎝bk
ck

⎞
⎠ = −i

⎛
⎝ωp g

g ω1

⎞
⎠
⎛
⎝bk
ck

⎞
⎠− Ak(t)

√
1
2
Vωp

⎛
⎝ωp

g

⎞
⎠.

(91)

The evolution operator exp Ut, where U denotes the appear-
ing 2 × 2 matrix, which does not depend on the Cartesian

index k, of the homogeneous differential equations can be
explicitly calculated. First, one obtains for the frequency
eigenvalues

ω± = 1
2

(
ωp + ω1

)
± 1

2

√(
ωp − ω1

)2
+ 4g2. (92)

The corresponding eigenvectors read

1
N

⎛
⎝ g

ω+ − ωp

⎞
⎠,

1
N

⎛
⎝ω− − ω1

g

⎞
⎠, (93)

with normalization N =
√

(ω+ − ωp)2 + g2 =√
(ω− − ω1)2 + g2; note that one has ωp − ω+ = ω− − ω1.

Herewith the evolution operator is constructed as

exp Ut

= 1
N2

⎛
⎝ g2e−iω+t + ω̃2e−iω−t gω̂e−iω+t + gω̃e−iω−t

gω̂e−iω+t + gω̃e−iω−t ω̂2e−iω+t + g2e−iω−t

⎞
⎠

(94)

where ω̃ denotes ω− − ω1 and ω̂ denotes ω+ − ωp. The
solutions of the inhomogeneous differential equations are
given by

⎛
⎝bk(t)

ck(t)

⎞
⎠ = exp Ut

⎛
⎝bk(0)

ck(0)

⎞
⎠

−
√

1
2
Vωp

∫ t

0
dt′ exp[U(t − t′)]Ak(t′)

⎛
⎝ωp

g

⎞
⎠.

(95)

The expression for �Π0(t) trivially follows.
Finally, we specify the time-independent state as a

product of eigenstates of the uncoupled Hamiltonians of
the zero-modes and the additional degree of freedom
respectively. Calculating the corresponding expectation value
of the electric field operator yields after integrating by parts

�Etot(t) = �E(t) +
ωp

N2

(
g2�I(ω+) + (ω− − ω1)2�I(ω−)

)
, (96)

where we have defined

�I(ξ) =
∫ t

0
dt′ sin ξ(t′ − t)�E(t′). (97)

In comparison with the plasma response without additional
interaction, there appear two relevant frequencies which are
determined by the original plasma frequency, the oscillator
frequency and the coupling constant. The response at such a
frequency is similar to the original one. Thus two resonances
appear. This is explicitly seen by considering a harmonic
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external field �E(t) = �E0 cosωt. Performing the integrals
analytically gives for this case

�Etot(t) = �E0

[
g2

N2

ω+ωp

ω2
+ − ω2

cosω+t

+
(ω− − ω1)2

N2

ωpω−
ω2− − ω2

cosω−t

+

(
1− g2

N2

ω+ωp

ω2
+−ω2

− (ω−−ω1)2

N2

ω−ωp

ω2−−ω2

)

× cosωt
]
.

(98)

8. Plasma, Bath and External Field

Finally, we extend our plasma model in order to describe
the expected damping and fluctuations in realistic systems.
To this end, we explicitly include the surrounding medium,
or bath, as part of the system. In other words, additional
interactions are taken into account; in principle we follow
the approach of van Kampen [11]. In order not to overload
the notation we consider only one Cartesian component of
the complete model. It is assumed that the bath degrees
of freedom as well as the external electric field couple to
this component. The two other components then trivially
decouple. Therefore the Cartesian index is omitted from now
on. The essential physics evidently is captured in this way.
Alternatively, one may consider the total Hamiltonian of [1]
completely describing the plasma in interaction with the
dynamical electromagnetic fields. This is, however, beyond
the scope of our study.

8.1. Plasma and Bath. The Hamilton operator consists of
three parts:

H = 1
2
Vω2

0

(
A0 − 1

Ne
P
)2

+
1

2V

(
Π0)2

+HB +HI , (99)

where the first terms describe again the zero-modes of the
internal electromagnetic field coupled to the CM momen-
tum of the ions. Here we denote the plasma frequency by ω0.
The free bath Hamiltonian is taken as the sum of a number
of harmonic oscillators with frequencies ωn, that is,

HB = 1
2

∑
n

(
p2
n + ωnq

2
n

) =
∑
n

ωn

(
a†nan +

1
2

)
(100)

with coordinates qn and momenta pn, [pn, qm] = −iδnm. The
annihilation and creation operators are defined as

an = 1√
2ωn

(
pn − iωnqn

)
,

a†n =
1√
2ωn

(
pn + iωnqn

)
.

(101)

It follows that [an, a†m] = δnm. We also define such operators
for the zero-mode:

a0 = 1√
2Vω0

(
Π0 − iVω0A

0),

a†0 =
1√

2Vω0

(
Π0 + iVω0A

0).
(102)

Van Kampen defines the interaction as [11]

H0
I =

∑
n

gn
(
ana

†
0 + a†na0

)

= 1√
Vω0

∑
n

gn√
ωn

(
pnΠ

0 +Vω0ωnqnA
0)

(103)

with coupling strengths gn. This interaction Hamiltonian is
not invariant under displacements. Just as in the previous
section, we therefore insert the symmetric “minimal substi-
tution” term and use the interaction

HI = 1√
Vω0

∑
n

gn√
ωn

(
pnΠ

0 +Vω0ωnqn

(
A0 − 1

Ne
P
))

=
∑
n

gn
(
ana

†
0 + a†na0

)
− i

Ne

√
1
2
Vω0

∑
n

gn
(
an − a†n

)
P.

(104)

Thus the bath interacts with the CM degree of freedom as
well. The Hamiltonian can now be now written as

H = ω0

(
a†0a0 +

1
2

)
− iω0

Ne

√
1
2
Vω0

(
a0 − a†0

)
P

+
∑
n

ωn

(
a†nan +

1
2

)
+
∑
n

gn
(
ana

†
0 + a†na0

)

− i

Ne

√
1
2
Vω0

∑
n

gn
(
an − a†n

)
P +

1
2Nm

P2

(105)

and can be analyzed analogous to the procedure of [11].

8.2. Inclusion of an External Electric Field. We proceed by
including a homogeneous external field (12); the Hamilto-
nian becomes explicitly time-dependent:

H(t) = ω0

(
a†0a0 +

1
2

)
− iω0

Ne

√
1
2
Vω0

(
a0 − a†0

)
P

+ iω0

√
1
2
Vω0

(
a0 − a†0

)
A(t)

− Vω2
0

Ne
PA(t) +

1
2
Vω2

0A
2(t) +

∑
n

ωn

(
a†nan +

1
2

)

+
∑
n

gn
(
ana

†
0 + a†na0

)

− i

Ne

√
1
2
Vω0

∑
n

gn
(
an − a†n

)
P +

1
2Nm

P2

+ i

√
1
2
Vω0

∑
n

gn
(
an − a†n

)
A(t).

(106)
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Since the CM coordinate is cyclic, [H ,P] = 0, the conjugate
momentum P is a constant of motion P → kj = 2n j/L. After
inserting this in the Hamiltonian, we define the “shifted”
operators b0 and b†0 :

a0 = b0 − iα,

a†0 = b†0 + iα,
(107)

with α = α( j) = (kj/Ne)
√

(1/2)Vω0. Some algebra leads to

H(t) = ω0

(
b†0b0 +

1
2

)
+ iω0

√
1
2
Vω0

(
b0 − b†0

)
A(t)

+
1
2
Vω2

0A
2(t) +

∑
n

ωn

(
a†nan +

1
2

)

+
∑
n

gn
(
anb

†
0 + a†nb0

)

+ i

√
1
2
Vω0

∑
n

gn
(
an − a†n

)
A(t).

(108)

The equations of motion for the Heisenberg operators follow
as

db0(t)
dt

= i[H , b0] = −iω0b0 − i
∑
m

gmam − ω0

√
1
2
Vω0A(t),

dan(t)
dt

= i[H , an] = −iωnan − ignb0 − gn
√

1
2
Vω0A(t).

(109)

The homogeneous differential equations are implicitly solved
in [11]:

b0(t) = U(t)b0(0) +
∑
m

Vm(t)am(0),

an(t) =Wn(t)b0(0) +
∑
m

Snm(t)am(0).
(110)

The corresponding evolution operator is given by

exp Mt =
⎛
⎝U(t) �V tr(t)

�W(t) S(t)

⎞
⎠. (111)

The matrix M is implicitly defined in (109). For b0(t)
we consequently get as solution of the inhomogeneous
differential equation:

b0(t) = U(t)b0(0) +
∑
m

Vm(t)am(0)−
√

1
2
Vω0η(t),

(112)

where we have defined

η(t) = ω0

∫ t

0
U(t − t′)A(t′)dt′ +

∑
m

gm

∫ t

0
Vm(t − t′)A(t′)dt′.

(113)

The zero-mode electric field operator follows as

Π0 =
√

1
2
Vω0

(
b0 + b†0

)
. (114)

We take as time-independent state Ψ = Ψ0 · ψB, with Ψ0

being an eigenstate of the plasma Hamiltonian and ψB being
an eigenstate of the bath Hamiltonian, that is, the product
of the shifted zero-mode oscillator, the plane wave and bath
harmonic oscillator wave functions. Then we get for the
expectation value of the total electric field:

Etot = − 1
V

〈
Π0〉 + E(t) = 1

2
ω0

(
η(t) + η∗(t)

)
+ E(t).

(115)

8.3. Evolution Operator. Let us address the solution of the
equations of motion (cf. (109)) in some more detail and
explicitly construct the evolution operator. In principle we
follow the approach of van Kampen [11].

8.3.1. Exact Developments. The set of (109) is a solved with
the ansatz e−iλt for the time dependence of all modes. This
leads to the eigenvalue equation:

λ− ω0 =
∑
n

g2
n

λ− ωn (116)

with a sequence of solutions λν. Given the number of bath
oscillators, their frequencies, and the coupling constants,
they can be determined numerically. The corresponding

eigenvectors are denoted by �Xν = (X0ν,Xnν) and fulfill

Xnν =
gn

λν − ωn
X0ν. (117)

The first component X0ν follows from the imposed normal-
ization condition; it explicitly reads

1 = X2
0ν +

∑
n

X2
nν = X2

0ν

{
1 +

∑
n

g2
n

(λν − ωn)2

}
. (118)

The eigenvectors become orthonormal:

�Xν · �Xμ = X0νX0μ +
∑
n

XnνXnμ = δμν, (119)

and the closure relations
∑

ν

X2
0ν = 1,

∑
ν

XnνXmν = δmn,
∑

ν

X0νXnν = 0

(120)

can be shown to hold true.
The operators b0 and an are linear combinations of the

normal modes:

b0(t) =
∑

ν

cνX0νe
−iλνt , an(t) =

∑
ν

cνXnνe
−iλνt

(121)

with superposition constants cν. Using orthonormality
(119), they follow from the initial values as

cν = X0νb0(0) +
∑
n

Xnνan(0). (122)
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This indeed yields the solution (110) with the explicit
expressions:

U(t) =
∑

ν

X2
0νe

−iλνt , Vn(t) =
∑

ν

X0νXnνe
−iλνt,

Wm(t) = Vm(t), Smn(t) =
∑

ν

XnνXmνe
−iλνt .

(123)

Thus, we have constructed the evolution operator (111).
Note that closure (120) guarantuees the necessary property
exp[M(t = 0)] = I. These exact results can be used in
order to calculate the expectation value of the electric field
as outlined above. Note that the bath degrees of freedom
are eventually eliminated by our choice of the state. Since
a realistic number of bath oscillators is huge, the numerical
computations are expected to be time/memory consuming
and therefore challenging. We have not yet attempted to
perform this task.

8.3.2. Approximate Evolution Operator. In [11] further devel-
opments on the operator level preclude the elimination of the
bath degrees of freedom in the way we have done. In order
to proceed, an approximate, simpler form of the evolution
operator is derived. The appearing summation over many
bath modes is effectively done. This approximation may be
also be interesting for our purposes because the numerical
work mentioned above is considerably reduced. We therefore
present a slightly modified derivation of the results in [11];
here we do not explicitly need the concept of a “strength
function.” It starts by defining the function

G(z) = z − ω0 −
∑
n

g2
n

z − ωn
. (124)

Its zeros are the eigenfrequencies λν of the total system (cf.
(116)). At such a zero one gets for the derivative

G′(λν) = 1 +
∑
n

g2
n

(λν − ωn)2 =
1
X2

0ν

, (125)

where the normalization condition (118) has been used.
Using complex function theory yields for t > 0

U(t) = − 1
2πi

∫∞
−∞

e−ixt+εt

G(x + iε)
dx, (126)

where, as usual, ε is small and positive. This is still exact. At
this point additional assumptions are made. First, ε is small
compared to the scale over which the coupling constants
vary. This can be formulated in terms of the abovementioned
strength function [11]. Secondly, ε is large compared to
the distance between the bath frequencies ωn. Finally, and
“more seriously,” it is assumed that the interaction is weak,
meaning small couplings gn (and, concomitantly, small
strength function). This implies that G(x + iε) can be
approximated by replacing x by ω0 in the summation term
of (124). The result can be written as

G(x + iε) ≈ x − ω′0 + iΓ (127)

with shifted frequency ω′0

ω′0 = ω0 +
∑
n

g2
n(ω0 − ωn)

(ω0 − ωn)2 + ε2
, (128)

and damping Γ

Γ = ε
(

1 +
∑
n

g2
n

(ω0 − ωn)2 + ε2

)
. (129)

Hence one obtains

U(t) ≈ e−iω
′
0t−Γt, (130)

and the same approximations yield

Vn(t) =Wn(t) ≈ gn
ω′0 − ωn − iΓ

{
e−iω

′
0t−Γt − e−iωnt

}
.

(131)

8.4. Finite Temperature Considerations

8.4.1. Initial State—Occupation Number. Instead of selecting
the initial state as product of the respective eigenstates of the
plasma and bath Hamiltonians, one may assume the bath at
t = 0 to be in thermal equilibrium with the temperature T
[11]. The plasma initial state is supposed to be unaltered.
The corresponding expectation values of an operator O are
generally found as

〈O〉 =
Tr
(
Oe−βH

)

Tr
(
e−βH

) (132)

with inverse temperature β−1 = kT . Recall that the trace of an
operator can be computed using any complete orthonormal
set of states |α〉:

Tr(O) =
∑
α

〈α|O|α〉. (133)

The denominator of (132) is the well-known partition
function of the canonical ensemble. For the chosen bath, a
collection of harmonic oscillators, it can readily be calculated
using the harmonic oscillators states:

Tr
(
e−βHB

)
=

∏
n

e−(1/2)βωn

1− e−βωn . (134)

The average occupation number of the bath degrees of
freedom follows as

〈
a†n(0)am(0)

〉
= δmn

1
eβωn − 1

. (135)

With this result and (110) van Kampen computes the
expectation value of a†0 (t)a0(t) (corresponding to the degree
of freedom in the system, in our case the zero-mode with
operators b†0 (t), b0(t)) and obtains a nontrivial temperature
dependence [11].
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8.4.2. Electric Field. We are concerned with the expectation
value of the electric field operator, which is proportional
to a0(t) + a†0 (t). In principle, the field may get temperature
dependent contributions due to the bath—as in the previous
example. These possibly contributing terms, however, are
linear in the operators a†n(0) and an(0) (cf. (107) and (110)).
The thermal equilibrium expectation values of the bath
annihilation operators vanish:

〈an〉 =
Tr
(
ane−βHB

)

Tr
(
e−βHB

) = 0. (136)

This can be understood by once more inserting the eigen-
states of the bath Hamiltonian HB and formally expanding
it. Each individual term in the trace contains an odd number
of annihilation operators because of the additional operator
an. Consequently, each expectation value in all eigenstates
is zero and this yields a vanishing trace. Analogously, we
find that 〈a†n〉 = 0. Therefore, no temperature dependence
in the expectation value of the electric field is present in
this model. The results are equal to those obtained with
an eigenstate of the bath Hamiltonian as initial state. This
result is almost trivial for zero external electric field. It is
also valid, however, for nonzero, spatially constant, time-
dependent external electric fields. In particular, the induced
electric field—stemming from the inhomogeneous terms in
the equations of motion and in principle determined by
(113)—is not modified.

8.4.3. Energy. Finally, we derive the expression for the expec-
tation value of the Hamilton operator (109), interpretable as
the time-dependent energy E(t). The initial state is chosen
as above, meaning that the bath is in thermal equilibrium
at t = 0. The harmonic oscillator state is labelled here with
quantum number n0. In addition to the time-development
of b0 given by (112) and (113), we also need

an(t) =Wn(t)b0(0) +
∑
m

Snm(t)am(0)−
√

1
2
Vω0ζn(t)

(137)

with the definition

ζn(t) = ω0

∫ t

0
Wn(t − t′)A(t′)dt′

+
∑
m

gm

∫ t

0
Snm(t − t′)A(t′)dt′.

(138)

For the occupation number one then gets

〈
b†0 (t)b0(t)

〉
= n0U

∗(t)U(t) +
∑
m

V∗
m(t)Vm(t)

(
eβωm − 1

)−1

+
1
2
Vω0η

∗(t)η(t).

(139)

If we omit the contribution due to the external field, that
is taking η = 0, we indeed reproduce the abovementioned

result of [11]. The expectation value of the complete
Hamiltonian 〈H(t)〉 follows as

E(t) = ω0

{
n0U

∗(t)U(t) +
∑
m

V∗
m(t)Vm(t)

(
eβωm − 1

)−1

+
1
2
Vω0η

∗(t)η(t) +
1
2

}

+
1
2
Vω2

0

{
i
(
η∗(t)− η(t)

)
A(t) + A2(t)

}

+
1
2
Vω0A(t)

∑
n

gni
(
ζ∗n (t)− ζn(t)

)

+
∑
n

ωn

{
n0W

∗
n (t)Wn(t) +

1
2
Vω0ζ

∗
n (t)ζn(t) +

1
2

}

+
∑
n

gn

{
n0
(
W∗

n (t)U(t) +Wn(t)U∗(t)
)

+
1
2
Vω0

(
ζ∗n (t)η(t) + ζn(t)η∗(t)

)}

+
∑
nm

{
gn
(
S∗nm(t)Vm(t) + Snm(t)V∗

m(t)
)

+ ωnS
∗
nm(t)Snm(t)

}(
eβωm − 1

)−1
.

(140)

This result is exact and can be implemented in an algorithm.
Alternatively, one may use the approximations given above
(cf. (130) and (131)) supplemented with the analogous
expression for S. The corresponding approximation for the
occupation number is explicitly given in [11].

9. Epilogue

The possible effects of electromagnetic fields on biological
systems, for example, human beings, are a topical sub-
ject. Although possibly relevant physics has already been
addressed some time ago [2], there are hardly biophysical
mechanisms known and accepted to date. This paper may
describe a coupling phenomenon with consequences, in the
sense that the internal electric field can be much larger than
the external one. It is based on the fact that there are “free”
ions in intracellular and extracellular fluid. Consequently,
one may describe these ions as a low-density plasma.

The response of an ion plasma to external electromag-
netic fields has therefore been investigated in this study. To
this end, the theory developed in [1] for electron plasmas
has been applied. It focusses on the zero-momentum pho-
tons, center of mass motion and spatially constant electric
fields in periodic structures. Typical plasma oscillations
show up. Since the length scale of our problem is much
smaller than the wavelengths of typical external fields, this
approach is appropriate. The basic quantum mechanical
resonance mechanism of [1], demonstrated for harmonic
fields, remains essentially the same. We have shown that
resonances appear for several selected waveforms, as well as
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for general bandpass signals. The appearing resonance and
plasma frequencies, however, are quite different because the
pertinent physical parameters, density and mass, of the ions
differ from those of electrons. We have explicitly estimated
these frequencies for the relevant ions and found them to be
in the region 0.5 GHz–400 GHz.

The chosen formulation of the plasma is translationally
invariant [1] and, concomitantly, a homogeneously dis-
tributed background charge is assumed. Oppositely charged
ions in the intra- and extracelluar fluids are supposed to be
related to this background. In our study, we have extended
this framework to a two-species plasma because it appears
to be more appropriate for our biophysical application. Such
a plasma actually may or may not be electrically neutral; in
the first case a background charge distribution is absent. The
effects of coupling an external electric field to the two-species
plasma are found to be essentially the same as in the simple
plasma.

Further investigations of the effects of electromagnetic
fields are done by switching to the Heisenberg picture of
quantum mechanics, which has turned out to be more
convenient for our purposes. Earlier results are readily
reproduced. The time-dependent energy of the plasma is also
calculated and expressed in induced field and current. The
plasma is extended with an additional degree of freedom,
interacting with the zero-mode photon. The relic of the
original gauge symmetry, that is the displacement symmetry
[1], dictates an additional interaction involving the CM
motion of the ions. The calculations yield two resonance
frequencies instead of one.

The chosen plasma model is certainly not completely
realistic in the sense that damping and fluctuations, expected
in real systems, are not present. This is also evident from the
underlying complete theory [1]: we have restricted ourselves
to the zero-mode Hamiltonian and ignored the other
Hamiltonians describing relative motion, finite momentum
photons and additional couplings. It is beyond the purpose
of this research to study the effects of these extra degrees
of freedoms; such investigations are actually initiated in
[1]. Instead we choose the approach of [11] to include a
surrounding medium or bath. An exact expression for the
internal electric field is derived in terms of an evolution
operator. In order to generate numerical results, however,
further algorithmic implementation is necessary. This is
planned for the nearby future. In the present study, an
approximate weak coupling form [11] of the response is
constructed. The resonance frequency is shifted and damping
indeed appears. Finally, it is shown that assuming thermal
equilibrium, the expectation value of the electric field is not
changed. The energy of the complete system is found to
depend on the temperature.

The conclusion of this work is that in the chosen plasma
model and its extensions resonance effects appear, which
induce currents and generate large internal electric fields.
The energy of the plasma is increased as well. Quantum
mechanical plasma oscillations are responsible for this
physical amplifying mechanism. Note that the response is
linear and no demodulation of the external field takes place.
On the other hand, a resonant harmonic field becomes

amplitude modulated within the plasma. Whether such a
large electric field has consequences in biological systems
is, of course, an open question. It is furthermore not
clear that the plasma model indeed grasps the essential
physics of ions in intra- and extracellular fluids responding
to external electromagnetic fields. Nevertheless we believe
that we have found an interesting possibility of unexpected
electromagnetic effects in biophysics.
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