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This study reviews a decade of research progress in legacy well integrity and risk management for geologic
carbon storage (GCS) to commemorate the 20" anniversary of the Intergovernmental Panel on Climate Change’s
2005 Special Report on Carbon Capture and Storage. In the past ten years, legacy well research has benefited
from global efforts to constrain emissions from abandoned oil and gas wells, a continued focus on well materials
performance in the presence of COa-rich fluids, and practical experience gained through GCS implementation.
Field measurements of abandoned well emissions show that leakage is not universal or catastrophic but forms a
continuum of low-to-moderate fluxes that depend on isolation integrity and environmental attenuation. Mate-
rials research has constrained the conditions under which Portland cements exhibit self-sealing and non-sealing
behaviors, and has identified the impact of geomechanical properties, non-uniform pathway apertures, multi-
phase flow, and impurities in the CO, stream, on leakage pathways as important new areas for investigation.
GCS projects at brownfield sites have inspired the creation of new workflows that integrate various tools and
technologies to manage legacy well leakage risks. GCS implementation has also motivated a push towards
scenario-based well modeling that directly informs permit applications. These advances inspire new research
questions for the coming decade, particularly around the level of legacy well leakage risk that is environmentally
acceptable and tolerable to stakeholders when sequestering millions of tonnes of CO3 annually.

1. Introduction acid gas injection operations, which provided a technical base of un-

derstanding for the development of GCS (Bachu and Gunter, 2004;

Legacy wells are any active, suspended, or abandoned wells drilled
prior to geologic carbon storage (GCS) operations for hydrocarbon
production, waste disposal, geothermal projects, or another purpose.
The 2005 Intergovernmental Panel on Climate Change’s (IPCC) Special
Report on Carbon Capture and Storage (SRCCS) identified legacy wells
as one of the greatest challenges for GCS (IPCC, 2005). At the time, the
carbon capture and storage (CCS) industry was nascent with only four
active projects dedicated to CO; injection (Gale et al., 2001; IPCC,
2005). However, there were many CO, enhanced oil recovery (EOR) and

White et al., 2004). The legacy well discussion in the SRCCS is broad and
outlines the basic elements of legacy well management: locating wells,
characterizing their integrity, evaluating leakage risks, and mitigating
risks through plugging or remedial action. The key legacy well research
gaps identified in the SRCCS were: (i) understanding well integrity and
well leakage, especially well material degradation from exposure to
supercritical CO5 and acidified brine, and (ii) the development of risk
assessment methodologies capable of predicting the long-term perfor-
mance and containment risk of legacy wells at GCS sites (IPCC, 2005).
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GCS expanded globally over the following decade (Finley, 2014;
Flett et al., 2009; Tanaka et al., 2014; Torp and Gale, 2004; Xie et al.,
2014). Between 2005 and 2015, many countries developed regulations
for underground CO; injection, and significant technical experience was
gained through international GCS field projects which cumulatively
injected 50 million tonnes of COy (Jenkins et al., 2015). Pawar et al.
(2015) reviewed advances made in GCS risk assessment over this period
for the International Journal of Greenhouse Gas Control’s special issue
commemorating the 10-year anniversary of the SRCCS and in the pro-
cess highlighted progress relating to legacy well research. Researchers
pursued efforts that addressed the well integrity and risk assessment
knowledge gaps identified in the SRCCS report. Field and experimental
studies showed that, while supercritical CO5 and acidified brine react
with well materials, exposure to these fluids does not always degrade the
integrity of a well as both Portland cement and low-carbon steel casings
are resistant to degradation in environments where the degree of fluid
exposure is limited (Carey, 2013; Carroll et al., 2016; Crow et al., 2010;
Duguid et al., 2011; Han et al., 2012). New qualitative (e.g., bow tie, risk
register), semi-quantitative, and quantitative risk assessment methods
(e.g., evidence supported logic and GCS system performance models)
that use expert elicitation, leakage incident frequency from analogous
operations (e.g., gas storage, oil and gas production), and well leakage
modeling were also developed (Bourne et al., 2014; Hnottavange--
Telleen, 2014; Oldenburg et al., 2009; Pawar et al., 2014). Key research
gaps identified in 2015 were the range of conditions over which well
materials experience self-healing behavior and the need for case studies
that help validate and reduce the uncertainty associated with quanti-
tative risk assessment methods (Pawar et al., 2015).

Another decade has elapsed since the publication of the SRCCS.
Today, hundreds of GCS projects are in various phases of development
across the globe and 384.6 million tonnes of CO3 have been sequestered
in the subsurface (Gao and Krevor, 2025; Global CCS Institute, 2025). A
substantial number of active and planned projects are operating in res-
ervoirs penetrated by legacy wells. For example, at least 534 legacy
wells are in the proposed areas of 63 GCS projects in the United States
(U.S.) alone (Table 1). Legacy well integrity and risk management
research has progressed alongside this implementation of GCS. In this
study, we review the past decade (2015-2025) of legacy well research to
build on the reviews contained in the SRCCS and Pawar et al. (2015).
After providing background on legacy well integrity and leakage
(Section 2), our review considers three major areas: field observations of
well integrity and well leakage (Section 3), processes affecting leakage
pathways (Section 4), and legacy well risk management (Section 5). We
conclude by highlighting current knowledge gaps and future research
needs to help shape the next decade of legacy well research.

Table 1

Count of legacy wells that penetrate the caprock of active or proposed GCS reservoirs
as described in U.S. Class VI permit applications organized by basin. Legacy well
information was only available for 63 of the 116 active permit applications. Permit
applications were accessed through CCUS Map (“CCUS Map,” 2025).

Basin Permit Applications Legacy Well Count
Anadarko 1 4
Appalachian 2 0
Arches 3 0
Denver 4 1
Gulf Coast 23 392
Illinois 9 0
Permian 2 3
Powder River 1 17
Sacramento 5 76
San Joaquin 1 15
Williston 8 16
Greater Green River 2 10
San Juan 1 0
Palo Duro 1 0
Total 63 534
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2. Well integrity and leakage

Leakage is the primary concern associated with legacy wells at GCS
sites. Pre-existing wells that penetrate CO; injection reservoirs or their
caprocks can provide a direct pathway for reservoir fluids to escape the
permitted storage zone (Gasda et al., 2004; Iyer et al., 2022). However,
there is no universally accepted regulatory definition of a well leak
across jurisdictions. In this review, we use the following definitions for
terms related to well leakage:

e The permitted storage zone is a three-dimensional volume within a
geologic formation(s) that is approved in a CO; injection permit,
outside of which the movement of reservoir fluids would be a permit
violation. In the U.S., the permitted storage zone is the injection
zone, which is defined as a “geologic formation, group of formations,
or part of a formation that is of sufficient areal extent, thickness,
porosity, and permeability to receive COy through a well or wells
associated with a geologic sequestration project.” In Europe, the
permitted storage zone aligns with the storage complex, which is
defined a as a volume area within a geologic formation used for
geological storage of CO, (i.e., the storage site) and the surrounding
geologic domain that can impact storage integrity and security
including secondary containment formations (European Commis-
sion, 2009; U.S. EPA, 2018).
Well leakage is the uncontrolled flow of fluids such as injected CO»,
brine, or hydrocarbons through a wellbore and into the surrounding
environment (i.e., subsurface, atmosphere, or ocean) above the
boundary of the permitted storage zone (adapted from Oldenburg
et al. 2009). If COy leakage enters the linked ocean-atmosphere
system it is considered an emission.

e Fluid migration is the upward movement of fluids through a
pathway (e.g., uncemented annulus, microannulus) within a well-
bore. Fluid migration becomes leakage if the migrating fluids escape
the well system above the permitted storage zone.

Another useful set of terms to define are related to well integrity:

e Well integrity is defined as the “application of technical, opera-
tional and organizational solutions to reduce risk of uncontrolled
release of formation fluids throughout the life cycle of a well”
(NORSOK, 2013).

e Well integrity issues describe fluid migration through a well that is
contained within a well system.

e Well integrity loss occurs when migrating fluids escape the well
system and enter the surrounding environment. Well integrity loss is
synonymous with well leakage if fluids escape the well system above
the permitted storage zone.

Well leaks require a (i) driving force, (ii) a pathway for fluids, and
(iii) an outlet or mechanism for the release of fluids from the well sys-
tem. CO; injection creates the driving force for legacy well leaks as
increasing reservoir pressure above hydrostatic can drive the flow of
COy, brine, and other reservoir fluids upward along a wellbore. Super-
critical CO, is also less dense than brine and will naturally migrate up-
ward through pathways along a well due to buoyancy. The degree to
which CO; injection drives leakage is impacted by the characteristics of
the reservoir and the injection schedule (Torszter et al., 2024). The
presence of fluid migration pathways in legacy wells depends on their
construction and abandonment design, and the integrity of the well
materials, both of which vary widely (Fig. 1). Improper installation or
breakdown of well materials during the operational lifetime of the well
can also create leakage pathways along wellbores. Additionally, GCS
creates unique chemical stresses in the subsurface, which have been
shown not to impact well materials in restricted flow environments but
must be considered when evaluating leakage pathways (Zhang and
Bachu, 2011). Common outlets for fluids from the well are subsurface
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Fig. 1. An example well schematic for a modern legacy well showing (left) CO, entry points into a well system from multiple potential CO, storage zones, and (right)
seven fluid migration pathways and various formation mechanisms. The storage scenarios shown (A, B, and C) represent decreasing degrees of leakage risk from A to
C. In A, injected CO; and reservoir brine can migrate upward through an uncemented well annulus unimpeded by well materials. In B and C, reservoir fluids must
migrate through increasing lengths of annular cement and an increasing number of well plugs.

pathways (e.g., faults, fractures networks, high permeability zones) that
intersect the well where integrity has been lost and vents. Release
mechanisms include over-pressuring the outermost annulus of the well
through high sustained casing pressure or, in extreme circumstances,
well material failure and blowout (Lackey and Rajaram, 2019). Esti-
mated legacy well leakage rates vary widely based on GCS site operating
conditions and leakage pathway characteristics. For example, CO5
leakage rate estimates vary between 0.003 and 1.4 tonnes per day for
microannular flow and >3000 tonnes per day for well blowouts
(Moghadam and Amiri, 2025; Oldenburg and Pan, 2020).

3. Field observations of well integrity

Large-scale GCS projects are only now emerging. Consequently,
there are almost no direct observations of CO: leakage along legacy wells
that intersect or lie within candidate GCS sites outside controlled ex-
periments. This absence of real-world evidence presents a persistent
challenge for assessing containment integrity: while numerical and
geomechanical models can simulate potential leakage, their parame-
terization and validation remain largely unconstrained (Vielstadte et al.,
2019). However, a subset of this well population, which now intersects
many prospective storage domains, has been widely observed across

multiple regions to emit methane (CH.) and other hydrocarbons under
post-abandonment conditions, although reported leakage rates span a
wide range. In this context, methane leakage from legacy petroleum
wells, particularly when associated with deeper hydrocarbon sources
rather than shallow biogenic production, offers an instructive analogue.

Mechanistically, the pathways documented in methane-emitting
wells are largely the same as those that govern CO2 migration through
equivalent infrastructure under storage conditions. Debonded
cement-casing interfaces, corroded tubulars, and degraded plugs
constitute mutual leakage routes (Bai et al., 2016; Kiran et al., 2017;
Vralstad et al., 2019). Field investigations of CHa-emitting wells also
illustrate how leakage manifests at the surface and the practical chal-
lenges of detection. Consequently, the methane-leakage record con-
strains the likely frequency, geometry, and progression of integrity
failure in legacy wells that may later become exposed to stored CO-.
What differs are the fluid properties and near-surface behavior: CO: is
denser and significantly more soluble in water than CHa, it is reactive
with cement and formation water, and, unlike methane, lacks a micro-
bial oxidative sink in soils (though dissolution and plant uptake can
modulate near-surface persistence) (Celia et al., 2009; Le Mer and Roger,
2001). These physical and chemical differences influence the style and
driving forces of leakage, for example, the greater density of COz reduces
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buoyancy and may slow upward migration, but they do not substantially
alter the underlying probability of barrier failure or leakage initiation.
Recognizing these distinctions allows lessons from methane leakage to
be applied judiciously, rather than directly, to define a realistic envelope
for leakage frequency and magnitude against which GCS containment
models can be benchmarked.

Over the past decade, increasing well integrity testing requirements
and a global push to constrain sources of greenhouse gas emissions has
progressed the collective understanding of petroleum well integrity.
Researchers have analyzed large regulatory datasets of operator per-
formed integrity testing results to diagnose sustained casing pressure
(SCP) and surface-casing-vent flow (SCVF) in wells—two widely used
indicators of integrity issue occurrence. Researchers have also used a
variety of field methods to measure methane emissions from abandoned
oil and gas wells. Together, these studies provide insight into the fre-
quency and magnitude of well integrity loss and associated leakage,
although direct linkage to reservoir-scale flow is not established in all
cases.

3.1. Frequency and detection of leakage

Understanding how often legacy wells leak is central to evaluating
CO5 containment risks at GCS sites. In this context, incidence refers to
the baseline probability that a given legacy petroleum well could act as a
pathway for fluid migration once intersected by a CO: plume. Recent
studies have begun to quantify this empirically, revealing that integrity
loss is not exceptional and that observed frequencies depend strongly on
the methods used to evaluate integrity and the well populations
examined.

Direct ground campaigns that measured methane emissions from
fully or partially plugged and abandoned wells provide a dataset that is
most relevant to GCS (Schout et al., 2019). In one study, detailed
site-level investigations reported indications of leakage in roughly half
of the nine surveyed wells when using sensitive ground methods (Cahill
etal., 2025, A.G. 2023). A broader regional study in northeastern British
Columbia combined aerial detection with targeted ground verification
(Pozzobon et al., 2023). Methane plumes were detected from a few
percent of > 400 non-producing wells in the aerial survey, and roughly
one-third of those detections were confirmed by ground-based flux
measurements (i.e. ~1-2% of the full scanned set under the survey
conditions). The low apparent incidence primarily reflects higher
detection thresholds and sampling logistics of aerial methods (instru-
ment sensitivity, altitude, plume-stability criteria, revisit rate, etc.), not
necessarily an absence of leakage. Ground-based techniques with
detection limits near ~1 g CHa m~ d! (often lower, method-dependent)
reveal that measurable gas release is common when investigations are
sufficiently sensitive. Therefore, the pattern is clear: the more sensitively
we look, the more we find.

Large regulatory databases that record operator-performed well
integrity tests for SCVF or SCP across mixed active, suspended, and
abandoned wells show integrity issues in roughly 0.5-15% of cases,
depending on jurisdiction and reporting threshold (Davies et al., 2014;
Ingraffea et al., 2014; Lackey et al., 2025, 2021; Sandl et al., 2021;
Watson and Bachu, 2009; Wisen et al., 2020). It should be noted,
however, that SCP and SCVF do not always indicate a total loss of
containment and are permitted in producing wells within specified
limits in some jurisdictions. SCVF may also be managed as a regulatory
risk-mitigation measure to protect shallow groundwater resources.
Tested well populations predominantly include active wells, which
provide insight into the integrity of modern wells at GCS sites, with
interpretation and regulatory response to indicators such as SCVF
varying by jurisdiction. Reported figures likely represent conservative
lower bounds for integrity issue frequency, influenced by self-reporting
and minimum-flow criteria. Nevertheless, they demonstrate that integ-
rity impairment is widespread in mature well populations and that
detectable flow or pressure anomalies are a routine feature of well
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infrastructure. Field investigations of smaller subsets typically fall
within or above this range, confirming that regulatory data undercount
low-rate and intermittent emissions in some jurisdictions (Boothroyd
et al., 2016; Kang et al., 2014; Lebel et al., 2020).

Across both evidence classes, leakage frequency is conditional on
context. Older wells, those drilled with deviated geometries, or those
abandoned before modern cementing and verification standards tend to
show higher probabilities of detectable leakage (Gonzalez Samano et al.,
2023; Pullen et al., 2025; Sandl et al., 2021). In contrast, contemporary
abandonment programs reduce, but do not eliminate, risk. Incidence
should therefore be treated as a context-dependent distribution, not a
fixed value. Comparable European studies report similar orders of
magnitude, emphasizing the generality of this behavior (Blumenberg
et al., 2025; Boothroyd et al., 2016; Vralstad et al., 2019). From a CCS
perspective, the analogue message is straightforward: within any stor-
age domain containing legacy wells, measurable gas release from a
subset of wells is likely if investigations are sufficiently sensitive.
Leakage frequency is thus an inherent property of mature well pop-
ulations rather than an anomaly. However, the majority of observed
indicators (e.g. SCVF) reflect shallow annular or near-surface leakage,
whereas CCS relevance arises primarily from the subset of cases
involving deeper, reservoir-connected pathways.

3.2. Magnitude, variability, and consequence of leakage

The magnitude of leakage determines consequence. For legacy wells
intersecting prospective storage domains, the rate and persistence of any
flux, determine its environmental and operational significance. Unless
otherwise stated, fluxes cited here are expressed as total per-well
emission rates (kg CHa d'); where per-area fluxes (g m=2 d') are
referenced, they represent local surface maxima and are not directly
comparable without spatial integration.

Field investigations across several mature petroleum regions show
that where leakage occurs, emissions are typically small and often
attenuated in the near-surface zone. Detailed site measurements docu-
ment both minor CHs—CO:2 co-emission and elevated CO: flux without
detectable CHa, consistent with near-complete oxidation of fugitive gas
in shallow soils (Cahill et al., 2025, 2023; Le Mer and Roger, 2001).
Reported per-well totals are generally modest, i.e. commonly tens to a
few hundreds of kilograms per year, though distributions are strongly
right-skewed with infrequent high emitters (Lebel et al., 2020; Riddick
etal., 2019; Townsend-Small et al., 2016). Broader regional surveys that
combine ground and aerial detection reach similar conclusions, with
central-tendency per-well rates on the order of 0.1 kg d' (site- and
method-dependent) and only a small fraction producing higher emis-
sions detectable from the air (Pozzobon et al., 2023). Fluxes at indi-
vidual wells are temporally variable, often modulated by barometric
pressure and season, underscoring the need for repeated measurements
(Cahill et al., 2025; Forde et al., 2022, O.N. 2019) .

It should be noted that methane detected at the surface in legacy-well
studies may originate from both thermogenic (deep, hydrocarbon-
associated) sources and shallow biogenic production, and in many
cases represents a mixture of the two. Where source attribution has been
investigated, higher-magnitude and more persistent emissions are more
commonly associated with well-connected, thermogenic leakage path-
ways, whereas low-level or transient fluxes may reflect shallow biogenic
methane or near-surface attenuation of deeper gas (Gianoutsos et al.,
2024). From a CCS perspective, the analogue relevance therefore lies
primarily in the subset of emissions linked to wellbore-connected
leakage, which share governing flow pathways and pressure controls
with potential COz migration.

When interpreted collectively, the contemporary record delineates
an empirical spectrum of leakage magnitudes rather than discrete cat-
egories. Measured fluxes are strongly right-skewed, consistent with an
approximately log-normal distribution spanning more than five orders
of magnitude, from near-zero to ~10° g CHs m=2 d™! at localized hotspots
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(i.e., site-specific extremes), indicating that persistent, low-rate seepage
dominates over acute failures (Lebel et al., 2020; Riddick et al., 2019;
Townsend-Small et al., 2016) (Fig. 2). Most measured fluxes fall within a
low-flux domain (< ~0.5 kg CHa d™!), representing subtle, even unde-
tectable seepage. A smaller number extend into a moderate range
(~0.5-10 kg d "), detectable at the surface with standard flux methods,
and infrequent outliers exceed 10-100 kg d™' or more, reflecting more
severe integrity impairment (DiGiulio et al., 2023; Lebel et al., 2020;
Townsend-Small et al., 2016). These intervals are indicative, not pre-
scriptive, and illustrate the scale over which observed fluxes vary rather
than their likelihood of occurrence.

For GCS containment, this evidence suggests that leakage, if it oc-
curs, will most often manifest as low-rate, localized seepage, challenging
to detect but of limited immediate impact. A minority of wells produce
higher fluxes that dominate cumulative emissions and warrant targeted
monitoring or remediation. Although near-surface microbial oxidation
can reduce measured CHa. fluxes, this does not diminish the analogue’s
relevance: the same structural pathways and pressure gradients govern
CH.4 and CO: migration, even if surface expression differs (Bai et al.,
2016; Kiran et al., 2017; Vralstad et al., 2019). Taken together, these
observations indicate that magnitude, not occurrence alone, determines
whether a leak is consequential.

Analogue studies of methane leakage from legacy wells thus define a
coherent picture of well integrity behavior relevant to GCS. They show
that integrity loss is distributed across well populations rather than
confined to rare, discrete failures; that leakage magnitudes span several
orders of magnitude but are most often small; and that both incidence
and flux are controlled by the geometry and continuity of leakage
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pathways and by near-surface modulation. The same physical archi-
tecture, i.e. micro-annular flow, partial plug degradation, or compro-
mised cement bonds, governs whether leakage manifests as very low-
rate, diffusion-dominated transport or as measurable, advective flow.
These controls explain the wide dynamic range observed in analogue
data: most leakage pathways impose strong resistance and therefore
produce low fluxes, while only a small subset of wells provide suffi-
ciently continuous pathways to sustain higher leakage magnitudes,
which are consequently rarer in well populations surveyed with
adequate sensitivity. Viewed collectively, the analogue record provides
a realistic empirical envelope for the behavior of legacy wells within
future GCS projects: leakage is not universal or catastrophic but forms a
continuum of low- to moderate-flux behavior shaped by pathway
integrity, environmental attenuation, and the sensitivity of monitoring
systems.

4. Processes affecting leakage pathways

A wide variety of factors can result in the presence or creation of
leakage pathways along wellbores. The most notable leakage pathways
in legacy wells are often created through inappropriate well isolation
design. Commercial oil and gas drilling began in the mid-1800s and
millions of wells have been drilled since (Carter and Flaherty, 2011; Lei
etal., 2025). Well drilling and abandonment practices have evolved over
the past two centuries alongside changing regulations and advances in
drilling technologies, metallurgy, and cement chemistry (King and King,
2013; King and Valencia, 2014). Older wells installed prior to the
development of oil and gas regulations may be completely open conduits
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Fig. 2. Empirical and conceptual relationship between methane leakage incidence and magnitude for legacy petroleum wells. Verified methane-emission data from
six field studies (Cahill et al., 2023; Kang et al., 2016, 2014; Lebel et al., 2020; Pozzobon et al., 2023; Townsend-Small et al., 2016) illustrate the tendency for higher
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as well cementing was not standard until the early 1900s, and early
plugging practices consisted of filling wells with readily available debris
(King and King 2013).

Modern wells are multi-barrier systems that consist of nested strings
of steel casings sealed against each other and the surrounding rock with
cement to create hydraulic barriers (Fig. 1). Modern plugging practices
are designed to render the well impermeable to unwanted fluid migra-
tion by establishing long-term zonal isolation through the installation of
multiple mechanical and cement plugs interspersed with sections of
drilling mud (King and King, 2013; King and Valencia, 2014). While
these advances in well design and plugging substantially improve their
sealing ability, fluid migration pathways may still exist along modern
wells as they are often not designed or abandoned with future use of the
subsurface for GCS in mind. Uncemented annular sections through the
storage zone are common where GCS target reservoirs are shallower
than hydrocarbon producing zones. The lack of a rock-to-rock barrier in
line with the GCS reservoir seal is also common, as plugs are often placed
above or below shallower GCS targets (Arbad et al., 2022; Jordan and
Wagoner, 2017; Lackey et al., 2024). These practices either leave direct
migration pathways for reservoir fluids or make the well more suscep-
tible to their development (Fig. 1).

The existence of well barriers across storage intervals does not
guarantee the prevention of well leaks; their ability to isolate fluids can
be impaired by incorrect installation, material limitations, and ther-
momechanical stresses (Barclay et al., 2001; de Lemos, 2024; van Riet
et al., 2023; Vralstad et al., 2019). During cementing, ineffective well-
bore fluid displacement may lead to cement contamination, which
changes its final properties and impacts bond quality at the
cement-formation interface (Agbasimalo and Radonjic, 2014; Katende
et al., 2020; Ladva et al., 2005; Opedal et al., 2018, 2014). Cement
placement can be further complicated by slumping or flipping of annular
fluids (Eslami et al., 2022), potentially leading to channels and incom-
plete cement coverage (Beltran-Jiménez et al., 2025; Haut and Crook,
1979; Kolchanov et al., 2018). Intersecting gauge cables or control lines,
e.g., if placed on the exterior of the casing, can affect annular cement
placement and provide additional pathways. Even under ideal place-
ment conditions, conventional Portland cement may exhibit autogenous
shrinkage (Acker, 2004; Brouwers, 2011; Geiker and Knudsen, 1982;
Jandhyala et al., 2018; Lura et al., 2003; Wolterbeek et al., 2021a; Ye
and Radlinska, 2016), which may result in micro-annulus formation
(Corina and Moghadam, 2025; Dusseault et al., 2000; Meng et al., 2021;
Moghadam and Loizzo, 2024; Roijmans et al., 2023). Pressure cycling
from production, injection, or completion operations, formation move-
ment (i.e., creep), and heating or cooling of the near well region, due to
fluid injection or cement cooling, all change the stress state of well
cement, which can create radial cracks, flat horizontal cracks (i.e.,
disking), and microannuli due to debonding (Albawi, 2013; Kuanhai
et al., 2020; Lei et al., 2025; Moradi et al., 2020; Roy et al., 2016;
Wolterbeek and Hangx, 2023).

Alteration of well materials upon interaction with chemicals
encountered in subsurface formations and pore fluids, whether native or
introduced during GCS activities, can also result in damage to legacy
wells and thereby affect leakage potential. Corrosion of legacy well
casings, which typically consist of mild steel, is a major concern for GCS
and has recently been reviewed by Choi et al. (2013), Cui et al. (2019),
and Wang et al. (2024). Carbonic acid reacts with steel casings to form
mixed iron-calcium-carbonates or ferrous iron hydroxides (pH depen-
dent), which can manifest either uniformly across the casing or locally
through pitting corrosion (Dalla Vecchia et al., 2020; Wolterbeek et al.,
2013). The impact of steel corrosion depends strongly on hydrody-
namical conditions. In the case of unprotected steel, e.g., free pipe or
otherwise directly exposed casing sections along wellbores, corrosion
rates can reach up to several millimeters per year (Han et al., 2011;
Seiersten and Kongshaug, 2005; Zhang et al., 2013). Accumulation of
mineral scale on the steel surface through corrosion reactions (Supple-
mental Information (SI) Section S1), can slow down corrosion rates by
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several orders of magnitude if a sufficiently dense and impermeable
layer is formed (Azuma et al., 2013; Choi et al., 2013; Dugstad, 1998;
Han et al., 2012; Nesi¢, 2007). On steel exposed to aqueous fluid, the
morphology and porosity of the corrosion scale layer will depend on the
relative reaction kinetics of scale formation and iron dissolution. If the
rate of the latter outstrips the former, and if there is sufficient free space,
scale can become highly porous and less protective (Anwar et al., 2019;
Nesi¢, 2007).

Portland cement is also susceptible to a variety of chemical processes
in the subsurface that include: mass-loss due to leaching by percolating
water, metal cation-induced cement alteration, sulphate-induced re-
actions, and carbonation from exposure to COa-rich fluids—detailed
descriptions of which are provided in SI Section S1 (Bao et al., 2022;
Carey, 2013; Taylor, 1997; Warren, 1997). Reactions between Portland
cement and CO»-rich fluids and the process of cement carbonation in the
context of GCS have been subject of extensive study (Barlet-Gouedard
et al., 2006; Barlet-Gouédard et al., 2009; Bjgrge et al., 2019; Carey,
2013; Carroll et al., 2016; Kutchko et al., 2008, 2007; Rimmelé et al.,
2008; van Noort et al., 2025a; Zhang and Bachu, 2011). These studies
show that carbonation creates a sequence of distinct alteration zones
that tend to become wider as reaction advances further into the cement
matrix. This alteration has been confirmed in the field through the re-
covery of COq-exposed cement samples at CO,-EOR sites (Carey et al.,
2007; Duguid et al., 2014). Cement carbonation involves (incongruent)
dissolution of certain solid phases in the cement and precipitation of
others, with carbonates being the main reaction products. While calcium
carbonate solubility increases significantly with increasing CO» partial
pressure (Segnit et al., 1962; Weyl, 1959), dissolution reactions only
proceed until carbonates reach chemical equilibrium with COz-rich
aqueous fluids (Baines and Worden, 2004; Rohmer et al., 2016).
Consequently, the balance between dissolution and precipitation during
chemical alteration, particularly for the carbonate products, is to a large
extent determined by the volume of fluid that can interact with the
wellbore materials (Bachu and Bennion, 2009; Liteanu and Spiers,
2011). Here, it is worth noting that dissolution of ionic species requires
water, i.e., does not scale directly with the volume of CO; injected.
Along legacy wells, the “degree of exposure” to aqueous fluids depends
strongly on hydrodynamical conditions, including interactions with
pore fluids and mineralogy in the reservoir, and ultimately along the
cement-steel isolations located within the caprock once carbonated
waters reach a legacy well.

In the last decade, researchers studying the ability of legacy well
materials to withstand the subsurface conditions created by GCS focused
predominantly on the material breakdown of Portland cement. Many
efforts considered the interplay between chemical reaction and hydro-
dynamical factors such as advective transport along discrete pathways in
flawed cement. The impact of chemical reactions on the geomechanical
properties of well materials and the reactions associated with other
chemicals commonly found in CO5 streams have also been major topics.

4.1. Hydrodynamical factors

The matrix permeability of Portland cement with respect to brine is
generally very low, typically below 10 pD (107 m? (Nelson and
Guillot, 2006; Taylor, 1997), and the high capillary pressures required
to enter its small-sized porosity tend to inhibit displacement of pore-
water from the cement matrix under downhole conditions (Carey and
Lichtner, 2011; Wolterbeek et al., 2024). Good quality cement that
forms a tight interface seal with surrounding casings and rock forma-
tions can thereby provide an effective barrier to fluid flow, with residual
flowrates reduced to the point where transport of chemical species is
effectively diffusion-like in character. This severely restricts the fluid
renewal rate, as recently demonstrated in core flooding tests imposing
very high differential pressures over short cement samples (Lende et al.,
2024). Under such diffusion-dominated conditions, the influence of
chemical reactions will be limited to the extent over which CO5-induced
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alteration (SI Section S1) can advance through the cement matrix
(Duguid, 2009; Yuan et al., 2022). While carbonation depth as a func-
tion of exposure time varies in lab experiments with pressure, temper-
ature, fluid composition, pH, fluid-to-cement ratio and cement
formulation, projected chemical alteration depths typically reach less
than one meter in 1000 years (Fig. 3). This is sufficient to potentially
affect cement sheaths within reservoir intervals, where radial attack by
COq-rich fluids is possible. However, the extent is considerably less than
the along-hole length of cement sheaths and plugs, which typically cover
tens to hundreds of meters. For this reason, chemical alteration pro-
gression through the cement matrix is widely viewed as insufficient to
pose a threat to system-scale integrity of well isolations along caprock
(Carey, 2013; Carroll et al., 2016; Duguid, 2009; Wolterbeek et al.,
2016Db). Recent lab studies expanded our understanding by investigating
combined effects from concurrent sulphate attack, ion-exchange re-
actions, and reactions with impurities (see Section 4.3; SI Section S1) but
none of these factors fundamentally change the reactive-diffusive pro-
cesses that govern reaction front progression in good cement.

Not all cement isolations form tight interfaces, as evidenced by field
studies where chemical alteration has been observed to concentrate
along casing-cement-rock interfaces and has reached up to 60 m above
the reservoir (Carey et al., 2007; Crow et al., 2010). Indeed, a decade
ago, it had become clear that extensive leaching or chemical alteration
could become a concern if the low-permeability cement matrix is
bypassed via defects (Carey, 2013; Carroll et al., 2017). Wellbore iso-
lations can suffer from preexisting defects such as fractures in the
cement, or debonding along interfaces with the casings or surrounding
rock formations. If sufficiently interconnected, defects may provide
pathways for larger volumes of COo-rich fluid to penetrate and interact
chemically with wellbore materials. Under advective flow conditions,
there is potential for a continuous supply of fresh reactants (e.g., car-
bonic acid; Reaction SR1 in SI) while calcium ions and other species
liberated via (incongruent) dissolution of cement phases (e.g., Reactions
SR3-SR4 in SI) may be transported downstream or even removed
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entirely with the flowing fluid. Precipitated carbonates (Reaction SR5 in
SI) might eventually redissolve (reverse Reaction SR5 in SI) if the
cement is exposed to continued inflow of large volumes of
carbonate-undersaturated brine.

Numerous experimental studies have investigated how flowing CO»-
rich brine impacts the permeability evolution of open fractures in
cement (Abdoulghafour et al., 2016, 2013; Cao et al., 2015; Chavez
Panduro et al., 2020; Huerta et al., 2016; Luquot et al., 2013; Miao et al.,
2022; Nguyen et al., 2020; Rod et al., 2020). In many samples, fracture
permeability was found to decrease due to clogging via carbonate pre-
cipitation, while others showed stable or even increasing flow over time.
Parallel advances in coupled numerical modelling of the underlying
dissolution-precipitation reactions and diffusive-advective transport
processes have shown that the conditions for “self-sealing” versus
“non-sealing” reactive flow of CO5-rich fluids in cement fractures can be
captured aptly in terms of the initial a) aperture of the defect and b)
residence time of the fluid (Brunet et al., 2016; Cao et al., 2015; Guthrie
et al., 2018; Iyer et al., 2017). Qualitatively, narrower defects are easier
to seal and increasing the interaction time allows for buildup of higher
solute concentrations, enabling precipitation, whereas short residence
times do not, maintaining carbonate-undersaturated conditions in the
fluid.

Carey et al. (2010) were some of the first to examine CO, reactive
flow through debonded cement-steel interfaces. Inserting a freshly pol-
ished low-carbon steel rod into a pre-slotted cement sample, they found
the steel was far more reactive than the cement, observing extensive
corrosion and precipitation of iron carbonates. By contrast, corrosion
scale formation played a subsidiary role compared to calcium carbonate
precipitation in more recent experiments of Wolterbeek et al. (2016b,
2019). Wolterbeek et al. (2016b) used samples consisting of 1-6 m-long
cemented steel tubes, in which the cement was cured together with the
steel for over one year, preconditioning the steel surface, likely reducing
its reactivity (Choi et al., 2013). Despite less prominent corrosion re-
actions, permeability of the cemented steel tubes was found to decrease
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Fig. 3. Plot of CO-induced reaction front progression in Portland cement matrix [mm] as a function of exposure time [years] as observed in lab experiments (see
legend for cement type and test conditions). Highlighted studies are selected to showcase longer-duration tests and to cover the investigated range in conditions.
Black crosses represent data from additional studies, but these have not been separated to maintain legibility of the graph (Barlet-Gouedard et al., 2006; Barlet--
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et al., 2008; Satoh et al., 2013; Shen and Pye, 1989; Takla et al., 2010; van Noort et al., 2025b; van Noort et al., 2025a; Wolterbeek et al., 2016b). Experimental data
are extrapolated to longer exposure times using least-squares best fits assuming Fickian diffusion (solid and dashed lines) and Elovich-type adsorption models

(dotted lines).
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by up to four orders of magnitude upon exposure to COo-rich brine.
Microstructural observations revealed extensive calcium carbonate
precipitation in the debonded interfaces. In general, the lab measure-
ments made on debonded cement-steel interfaces can be explained fairly
well using the critical residence time concepts originally developed for
fractured cement (Wolterbeek et al., 2024).

Cement-rock interfaces are studied less extensively, possibly because
this type of contact is variable in nature and comparatively difficult to
simulate accurately in lab experiments. The initial condition of the
interface is highly dependent on factors like surface roughness of the
borehole or residual mud contamination (Agbasimalo and Radonjic,
2014; Opedal et al., 2019, 2014). Significant differences in how reactive
transport manifests can also be expected between cement-caprock in-
terfaces, where the rock side has a very low permeability, limiting
ingress of fluids to pathways provided by defects, and cement-reservoir
rock interfaces, where high permeability of the rock-side enables direct
exposure to COy-rich fluids (Duguid et al., 2011; Jahanbakhsh et al.,
2021; Shi et al., 2025; Tremosa et al., 2017). An example of the latter
category includes Cao et al. (2013), who performed CO; flow-through
tests on a composite cement-Berea sandstone core with a continuous,
large initial gap in the cement. They found permeability increased due to
extensive leaching.

Focusing on cement-caprock interfaces, which will be more critical
to zonal isolation integrity along legacy wells, Newell and Carey (2012)
performed core-flooding experiments using COy-brine at 10 MPa and
60°C on a cement-siltstone composite core containing a simulated
high-permeability damage zone. While post-test microscopy revealed
leaching, erosion, and the development of defect-parallel alteration
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zones within the cement half, the effective permeability of the composite
core was found to have reduced from 200 mD to 35 mD. The authors
attributed this to migration and reprecipitation of alteration products
derived from the cement within the simulated damage zone. Jung et al.
(2014) exposed cement-basalt caprock cores with fractures to CO,-brine
at 10 MPa and 50°C, albeit under static fluid conditions. Based on X-ray
microtomography of the fracture network before and after exposure,
combined with computational fluid dynamics modelling, Jung et al.
(2014) inferred that reactions resulted in precipitation and disconnec-
tion of fractures. More recently, Fernandez-Rojo et al. (2021) performed
flow-through tests on composite cement-limestone, cement-marl, and
cement-sandstone cores containing interfacial defects. Their results
showed marked alteration and increased porosity. Based on the reported
initial defect aperture (>300 um) and short residence time (<300 s),
these findings are consistent with model predictions based on fractured
cement systems (Fig. 4).

Various findings from lab experiments involving exposure of frac-
tured cement (Abdoulghafour et al., 2016, 2013; Cao et al., 2015; Huerta
et al., 2016; Luquot et al., 2013; Miao et al., 2022; Nguyen et al., 2020),
cement-steel interfaces (Wolterbeek et al.,, 2016b, 2019), and
cement-rock interfaces (Fernandez-Rojo et al., 2021; Mason et al., 2013;
Walsh et al., 2014) to flowing COo-rich brine can be captured in terms of
initial defect aperture and fluid residence time (Brunet et al., 2016; Iyer
et al., 2017)(Fig. 4). Experiments that showed a continuing decrease in
permeability down to impermeable values (shown in green) are located
inside the self-sealing domain delineated by the Brunet et al. (2016)
model, while lab samples which displayed no tendency for permeability
reduction (orange) plot largely below the critical residence time
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Fig. 4. Self-sealing and non-sealing regimes for reactive transport of CO,-rich brines in cement defects, plotted in residence time versus hydraulic aperture space
(modified after Wolterbeek et al., 2024). Graph shows experimental data for cement fractures, cement-casing interfaces and cement-rock interfaces, together with
numerical model predictions of Brunet et al., 2016 and lIyer et al., 2017. Circles, diamonds, and squares represent lab tests conducted under pressure-controlled,
flowrate-controlled, and intermittent flow conditions, respectively. Labels include codes per study, appended by experiment names as in the original publica-
tions: A2016, A2013 = Abdoulghafour et al. (2016, 2013); C2015 = Cao et al. (2015); F2021 = Fernandez-Rojo et al. (2021); H2016 = Huerta et al. (2016); L2013 =
Luquot et al. (2013); Ma2013 = Mason et al. (2013); M2022 = Miao et al. (2022); N2020 = Nguyen et al. (2020); Wa2014 = Walsh et al. (2014); W2019, W2016 =

Wolterbeek et al. (2019, 2016b); Y2011 = Yalcinkaya et al. (2011).
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obtained by Iyer et al. (2017). Experiments marked as “limited sealing”
(grey) generally showed some level of permeability reduction (e.g., 1-2
orders of magnitude) but did not become fully impermeable on the
timescale of the lab tests. Combined, the experimental and modelling
data provide confidence that small defects (e.g., apertures of 1-100 pm
wide) possess some definite capacity to self-seal against ingress of
COy-rich brine, provided that the wellbore isolation has sufficient length
for residence times to exceed critical values. Note the residence time will
also depend on the driving force for flow, which may initially be very
limited in the case of storage in depleted hydrocarbon reservoirs, in
particular. Larger-scale defects such as free-water channels or mud
channels (e.g., apertures of >500 pm wide) are much less likely to
self-seal through carbonate precipitation. However, it is worth noting
that, given the potential magnitude of seepage fluxes associated with
defects of this size, taking some form of remedial action to fix the well
will likely be warranted, regardless of chemical alteration effects.

While the “critical residence time”-concept has proven a useful
metric in predicting whether reactive flow of COs-rich fluids along
cement defects in lab experiments will be self-sealing or non-sealing
(Brunet et al., 2016; Iyer et al., 2017; Nguyen et al., 2020), applica-
tion of this concept in numerical models and translation to field condi-
tions is far from trivial (Guthrie et al., 2018; Wolterbeek et al., 2019).
Residence time is an extensive property, defined at the system scale (e.
g., sample size in lab experiments). While one could also define resi-
dence times for individual “cells” in a discretized numerical model, the
composition of the influent fluid phase will then be different for sub-
sequent cells, rendering what would be the “critical residence time” at
the scale of such individual cells undefined. Clearly, how to effectively
upscale the detailed reactive transport models to wellbore dimensions
remains one of the outstanding research questions for the coming
decade.

The geometry of the leakage pathway is another factor that poten-
tially impacts the self-sealing behavior of cements, which is relevant
considering the non-uniform character of microannuli (Moghadam
et al., 2021). Flow in rough defects will include inertial effects and
system-scale residence time concepts may become challenging to apply
if most of the fluid flow occurs via a limited number of preferential
pathways. In a numerical modelling study of meter-scale cement-casing
sections, Wolterbeek and Raoof (2018) investigated different defect
geometries with equivalent system scale-averaged transport properties.
They found that initial defect nonuniformity has a profound impact on
self-sealing and permeability evolution. Where Wolterbeek and Raoof
(2018) only considered non-uniformity in the along-flow direction,
Tafen et al. (2023) examined a two-dimensional fracture geometry with
surface roughness. Their simulations show that narrower initial aperture
domains self-seal rapidly, while wider domains can remain open
considerably longer. The authors emphasize they only investigated a
constant injection rate scenario, which by definition prevents fully
self-sealing flow conditions from occurring (Tafen et al., 2023). Hence,
applicability of the critical residence time concept to non-uniform
aperture defects remains to be confirmed and is an area of active
research (Iyer and Smith, 2024).

Nearly all reactive transport experiments performed to date involved
exposure of cement samples to flowing COa-rich aqueous fluids (i.e.,
water or brine with dissolved CO3). While water-based flows may be
representative for specific cases, due to buoyancy forces it is likely that
seepage along many legacy wells will rather involve flow of predomi-
nantly humid CO; (i.e., CO; in its gaseous, liquid or supercritical state
with dissolved water) or possibly multiphase flow conditions
(Emami-Meybodi et al., 2015; Feng et al., 2017; Kjgller et al., 2016).
Such scenarios involve capillary effects, buoyancy-driven flows, tran-
sient flow paths, and multiphase flow effects (Anwar et al., 2024;
Beltran-Jiménez et al., 2025; Lima et al., 2025), which can profoundly
impact reactive transport processes. Humid CO, and CO»-rich brine have
drastically different properties, e.g., in terms of mineral solubility, and
are known to produce distinct alterations in cement batch reaction tests
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(Kutchko et al., 2011; Wolterbeek et al., 2013). Nearly all mineral
dissolution-precipitation reactions occur in aqueous fluid. Flow of a
non-aqueous, COy-dominated fluid instead of carbonated brine will
significantly reduce the mobility of water-soluble species, which in turn
will impact the distribution and extent of dissolution-precipitation re-
actions in both defects and the cement matrix. This may be beneficial
because, if there is limited water in which carbonates can dissolve, then
excessive leaching becomes much less of a concern. Conversely, reduced
reactivity can also lessen the effectiveness of self-sealing mechanisms
(Wolterbeek and Hangx, 2021). Modelling by Iyer et al. (2018) found
that reduction in the reactive surface area associated with lower
water-saturation could cause self-sealing processes to slow down or even
fail to achieve an impermeable state. Recently, Wolterbeek et al. (2024)
reported the first reactive flow-through experiments using humid CO; as
flowing medium. Their samples consisted of cemented steel pipes con-
taining 2-20 pm-wide interfacial microannuli. While exposure to humid
CO, produced substantial reductions in effective permeability, the
overall extent of reaction and amount of carbonate precipitation were
limited compared to earlier experiments using COy-rich brine. These
findings underscore the need for more realistic simulation of real CO5
phases and multiphase flow dynamics in laboratory experiments (Abid
et al., 2024).

4.2. Geomechanical factors

Geomechanical factors play a major role in the creation of defects
that may provide pathways for flow. In legacy wells, pre-existing defects
can be sustained from temperature changes (Albawi, 2013; Li et al.,
2025; Moradi et al., 2020; Roy et al., 2018; Wolterbeek and Hangx,
2023) or pressure loads experienced during well operations (Kuanhai
et al., 2020; Lecampion et al., 2013; Meng et al., 2021; Nygaard et al.,
2014). Once the COs-plume reaches a legacy well, interplay with
chemical alteration can induce changes in the mechanical properties of
wellbore materials (Hangx et al., 2016; Kuo et al., 2017). This may affect
the wellbore response to thermo-geomechanical loads in two ways: (i)
mechanical weakening of intact seals may change their susceptibility to
damage development and (ii) mechanical deformation can impact the
permeability evolution of existing defects. Both could, in turn, change
the hydrodynamical conditions prevailing along the wellbore (Section
4.10).

Uniaxial and triaxial compression tests on cement reacted with CO»-
rich fluids show variable results. Most studies report mechanical
weakening (Barria et al., 2022; Condor and Asghari, 2009; Kuo et al.,
2017; Neves et al., 2024), while some observe increased strength in
carbonated samples (Liteanu et al., 2009; Omosebi et al., 2017; Takla
et al., 2010). The diverging results may partly be due to differences in
the volume of fluid used in exposure tests, with weakening occurring
preferentially in experiments on extensively leached samples, while
samples reacted with humid CO; or limited CO,-brine sometimes show
strengthening. Variability is also related to development of zonation.
Upon reaction with CO,, cement can transform from an homogeneous,
isotropic material into a highly heterogeneous and anisotropic one,
which complicates mechanical characterization by conventional
compressive strength testing methods (Chang and Chen, 2005). Several
studies therefore adopted methods that can be applied to individual
alteration zones in the COy-reacted cement, such as scratch tests (Hangx
et al., 2016) or micro-indentation tests (Kutchko et al., 2009; Li et al.,
2015; Mason et al., 2013; Walsh et al., 2014). Such measurements show
reaction can locally plug pores and can even create a stiff crust in
carbonate-enriched zones (see zones Z2 and Z3 in SI), but zones domi-
nated by loss of portlandite and decalcification of calcium silicate hy-
drate phases (see zones Z1 and Z4 in SI) have lower stiffness and
hardness than unaltered cement. Extensive dissolution can cause cement
to lose cohesion and strength, especially just behind the carbonated rim,
i.e., at the contact between the carbonated and portlandite-depleted
zone (see Z3 and Z4 in SI) (Barria et al., 2022; Kuo et al., 2017; Li
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et al., 2025).

Mechanical strength values obtained from scratch and hardness tests
vary widely, even within a single reaction zone of a single sample
(Hangx et al., 2016; Huet et al., 2010; Kutchko et al., 2009; Mason et al.,
2013). Most studies show, despite carbonate precipitation, a significant
overall reduction in stiffness (Young’s Modulus) and Unconfined
Compressive Strength (UCS) of cement when exposed to COy-rich fluids
(Barria et al., 2022; Kuo et al., 2017; Li et al., 2015; Neves et al., 2024).
Key factors that influence the severity include temperature, fluid type
(humid CO2 vs. COz-rich brine), exposure duration, and cement formu-
lation. Barria et al. (2022) noted that, although outer layers densify,
overall bulk strength did not improve in their COz-reacted samples,
because the precipitated carbonates were poorly bonded and the cal-
cium silicate hydrate (CSH) “backbone” was degraded. An interesting
chemical-mechanical lab study is presented by Gu et al. (2017), who
investigated the impact of tensile stress on cement alteration. They
subjected Class G cement samples to simultaneous CO2 exposure and
tensile loading (25-75% of tensile strength) to simulate cement under
hoop stress in a wellbore. The results showed that samples under higher
tension (50-75%) developed more microcracks, which let CO: penetrate
much faster than in unstressed cement samples. Consequently, the
stressed samples failed (lost integrity) much earlier than ones without
external load. Exposure to COz-saturated brine caused failure sooner
than humid CO, likely because the aqueous phase facilitates dissolution
and transport out of the cracks more effectively. These findings indicate
that the combination of chemical and tensile stress may cause acceler-
ated weakening in wellbore isolations.

While lab experiments demonstrate chemical reaction can signifi-
cantly alter the mechanical properties of cement, it is not trivial to
evaluate the impact of these changes on integrity at the well isolation
scale. Whether defects lead to zonal isolation loss and integrity failure
depends on their extent and interconnectedness. There is a lack of
standardization in reporting the changes in mechanical properties of
cement. Hardness and UCS measurements are the most reported pa-
rameters. These measurements are relatively cheap and fast. However,
UCS and hardness are of limited usefulness in geomechanical models.
Typically, downhole cement is under confined conditions (Lima et al.,
2022; Liteanu et al., 2009; Neves et al., 2024; Wolterbeek et al., 2016a).
Parameters such as the Young’s Modulus, Poisson’s ratio, tensile
strength, and plasticity parameters (such as the modified cam-clay
model) are more representative of actual cement behavior downhole
(Bois et al., 2012; Thiercelin et al., 1998). Shear failure in cement under
confinement is typically a ductile response which may not cause frac-
tures (Bois et al., 2011; Lima et al., 2022; Moghadam and Loizzo, 2024;
Wolterbeek et al., 2016a). Disking cracks do not lead to vertical fluid
migration due to their geometry. Therefore, it is unclear whether a
reduction in UCS due to chemical reactions leads to detrimental effects
in the cement under downhole conditions if the confined strength holds.
Recent near-well mechanical modelling studies conclude that a cement
sheath with lower Young’s modulus (softer, more compliant) forms
smaller micro-annuli when pressure or temperature drops, compared to
a stiff cement (Bai et al., 2015; Moghadam and Loizzo, 2024). In essence,
a ductile cement can deform with the steel casing, maintaining contact,
whereas a brittle cement tends to debond to form a microannulus. A
reduction in UCS and Young’s Modulus may increase cement’s ductility,
which may improve its performance against microannuli (Lavrov,
2018). By contrast, a reduction in tensile strength may cause issues if
tensile loads are expected in the cement sheath. Tensile cracking of
cement has been shown to lead to flow in smaller lab-scale samples
(Boukhelifa et al., 2005). However, in large-scale tests (one to two meter
length-scale), the tensile cracks do not appear to form a continuous
leakage pathway (Corina and Moghadam, 2024; Therond et al., 2017).
Therefore, the interplay between chemical reactions and geomechanical
factors remains complex and unclear. Additional exposure experiments
on samples with representative geometry, under a realistic stress state,
temperature, and CO, concentration would be beneficial to improve our
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understanding of the interplay between geomechanics and chemistry,
particularly with respect to changes in susceptibility to defect formation.
As discussed in Section 4.1, defects can drastically change hydrody-
namic conditions along the well. These intimately coupled
reaction-transport-mechanical (RTM) processes have attracted
increasing research interest over the last decade and will undoubtedly
continue to do so in the next.

The impact of mechanical processes on COs-reactive transport in
existing defects has also been studied in the last decade. Chemical
alteration is generally accompanied by a change in porosity, which can
increase if dissolution dominates, or decrease due to precipitation of
solids. Without any mechanical deformation, dissolution-controlled re-
action (i.e., “non-sealing” regime in Fig. 4) and associated increases in
porosity or fracture volume will likely contribute to elevated perme-
ability (e.g., Cao et al., 2013). Under confining pressure, however,
reaction-induced weakening of the solid asperities that maintain contact
and support the open fracture, can result in lowered transmissivity via
mechanical defect aperture closure, potentially even if residence times
would be too short to facilitate defect clogging via carbonate precipi-
tation (Rhino et al., 2021; Walsh et al., 2014). Wolterbeek et al. (2016a)
considered reaction-induced changes in the strength of already fractured
cement, specifically to evaluate whether mechanical weakening could
facilitate dynamic reactivation, growth and (re)opening of pathways.
They performed triaxial compression tests on cement. Samples that
failed on localized shear fractures were subsequently reacted with
COq-saturated water and then subjected to a second triaxial test to assess
changes in mechanical properties. They found that, once shear-fractures
formed, subsequent reaction with CO, did not produce further me-
chanical weakening. Instead, after six weeks of reaction, they observed
up to 83% cohesion recovery and 15-40% higher frictional strength in
the post-failure regime, which Wolterbeek et al. (2016a) attributed to
carbonate precipitation within the fractures.

4.3. COg source stream impurities

Removal of low-level concentrations of impurities such as hydrogen
sulfide (H»S), sulfur oxides (SOy), nitrogen oxides (NOy), or hydrogen
(Hy) from the CO5 stream is technically complex and operationally
expensive, potentially affecting GCS project economics. Even if the
concentrations of impurities in the source stream are kept low, once
injected into a geological reservoir, higher local concentrations may still
develop due to preferential partitioning of impurities like HaS, SOx and
NOy into the formation water (van Noort et al., 2025a). Researchers thus
began investigating the impact of CO2 stream impurities on cement
alteration, among which the effect of H,S is probably the best studied.
Compared to pure CO5-brine, exposure of cement to brine saturated with
CO2 and HjS introduces a number of additional reactions, mainly
involving oxidation-reduction and sulfidation of minor cement phases
(Kutchko et al., 2011; SI Section S1). One of the additional products is
secondary ettringite (Kutchko et al., 2011; Zhang et al., 2014). Ettringite
formation involves a net increase in solid volume, which could poten-
tially reduce porosity, but the process can also generate crystallization
stress in the cement matrix (Flatt and Scherer, 2008). Excessive ettrin-
gite formation can lead to cracking, hence the moniker “sulphate attack”
in concrete engineering contexts (Yin et al., 2023; Zhang et al., 2024).
On the other hand, limited ettringite-formation can be beneficial to
wellbore cement, as evidenced by its use as an expansion additive to
mitigate autogenous shrinkage (Beirute, 1976; Bour et al., 1988; Klein,
1958; Souza et al., 2023). Further research is needed to better under-
stand how ettringite formation manifests under the confined conditions
typically presented by downhole wellbore environments. Lab tests to
date involved cement samples submerged in sulphate-bearing aqueous
solutions, which were unconstrained and free to expand (Gu et al., 2019;
Jabbour et al., 2022; Pavoine et al., 2012). Under these circumstances,
cracking damage can initiate as soon as crystallization stresses exceed
the (generally low) tensile strength of the cement (Gu et al., 2022; Sarkar
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et al., 2010). By contrast, such free expansion is strongly inhibited in
well isolations, where the cement will be restricted by the casing and
surrounding rock formations. For other crystallization stress-generating
reactions, like magnesium oxide (MgO) hydration, lab experiments
showed potential for overexpansion and cracking reduces markedly
under confinement (Wolterbeek et al., 2021a).

Concerning the impact on cement carbonation processes, Omosobi
et al. (2017) found presence of HsS reduces carbonation front propa-
gation and helps maintain mechanical integrity, while enhancing
permeability. Peng et al. (2022) reported a reduction in mechanical
strength in the carbonated rim. More recently, van Noort et al., 2025a
found presence of H,S during exposure to COg-saturated water enhanced
alteration depths by up to one and a half times, while reducing car-
bonate precipitation. Neves et al. (2024) report lower mechanical
strength and reduced stiffness (decrease in elastic moduli). In general,
however, the additional reactions in the presence of HyS seem to have a
relatively minor impact compared to the overall carbonation process
(Jacquemet et al., 2012; Kutchko et al., 2011; Um et al., 2017).

To the authors’ knowledge, the influence of NOy impurities on
cement carbonation has received little attention to date. Pearce et al.
(2018) studied interactions with rock forming minerals and concluded
that NOy and SOy concentrations below 100 parts per million do not
significantly impact pH, with reaction still controlled by carbonate
buffering. While still to be confirmed in experiments on cement, this
suggests limited impact on carbonates, i.e., the main reaction products
of CO5-induced cement alteration.

5. Leakage risk management

Legacy well leakage is typically interpreted and managed through
the lens of risk (Dean and Tucker, 2017; International Association of Oil
& Gas Producers, 2023; IPCC, 2005; Thomas et al., 2022). Risk consists
of three parts: (i) a scenario of concern such as leakage, (ii) the proba-
bility of the scenario occurring, and (iii) the consequence of the occur-
rence (Kaplan and Garrick, 1981). At the highest level, leakage of
injected CO», brine, or hydrocarbons is the primary scenario of concern
associated with legacy wells. Leaking reservoir fluids can potentially
have negative impacts on human health and safety, the environment,
permit approvals, company public perception, and project finances
(Bielicki et al., 2015, J.M. 2014; Boyd, 2016; Carroll et al., 2014; Deng

Table 2

International Journal of Greenhouse Gas Control 151 (2026) 104604

et al., 2017). When broken down, there are multiple leakage scenarios
that range from the slow seepage of reservoir fluids through a cement
defect to a rapid release of fluids through a failed well. These leakage
scenarios each have their own associated probability and impact and are
typically treated separately in risk assessments.

Managing the risks associated with legacy wells is essential to the
safety and success of GCS. Risk management is a comprehensive process
that includes identifying, assessing, and mitigating risks (Aven, 2016).
The SRCCS outlined the basic elements of legacy well risk management:
locating wells, characterizing well integrity, assessing leakage risks, and
mitigating risks through well intervention, re-use, and monitoring
(IPCC, 2005). Active and approved GCS projects with legacy wells have
implemented a variety of different risk management strategies (Table 2).
Recent studies have proposed workflows that align combinations of the
risk management elements identified in the SRCCS with GCS project
development phases and integrate risk assessment with economic and
regulatory constraints to determine the need and feasibility of mitigative
actions (Patil et al. 2025; 2024; Torseeter et al. 2024). As a project
progresses through a legacy well risk management workflow, the total
well population considered narrows, and more effort is put into risk
assessment. Once the risks associated with individual wells are con-
strained, they are weighed against the cost and risk of mitigative actions.
This decision space is informed by local regulations, which set the
threshold for acceptable leakage risk, as well as project economics and
operator risk tolerance, which determines the threshold for the cost and
risk mitigative actions (Fig. 5). Ultimately, a decision must be made to
avoid, intervene, leave, or reuse each well (Fig. 6). Measurement,
monitoring, and verification plans collect data that provide feedback on
these decisions during project operation, which is valuable for deter-
mining the need of future mitigative actions. While commonalities can
be found in legacy well risk management processes across projects, their
implementation varies due to site-specific considerations, operator
preferences, and local regulations. We review the research progress
made in the past decade on leakage risk management for legacy wells.
The review is organized by the major elements of risk management
(Fig. 5).

5.1. Regulatory requirements

Requirements for legacy well risk assessment and risk management

Summary of legacy well risk management practices implemented at the Moomba CCS project (Santos, 2024) and proposed for the Porthos (Neele et al., 2020) and Brown Pelican

(CCUS Map, 2025) projects.

Moomba CCS, Australia

Porthos, The Netherlands

Brown Pelican, U.S.

Operator

Onshore or
Offshore

Location

Reservoir Type

Project Start

Injection Wells

Injection Rate,
Mtpa

Legacy Wells

Risk Assessment
Method

Risks Identified

Risk Mitigation

Well Monitoring
Plan

Well Monitoring
Methods

Santos, Beach Energy
Onshore

Strzelecki and Marabooka Fields;
Cooper Basin, South Australia
Depleted Gas Field

2024

5

1.7

37+
Semi-quantitative (Santos Management System)

Poor cement, cement degradation, casing
corrosion, tubing or packer failure

Re-use (11 for monitoring), abandonment (number
unclear), monitoring

Well integrity assessment through annular, cement,
and casing/tubing monitoring. Above zone
monitoring.

Ongoing: acoustic and ultrasonic cement bond logs;
mechanical caliper logs

TAQA
Offshore

P-18 gas field (4 and 2); North Sea, South Holland

Depleted Gas Field
2026 (plan)

4

2.5

4
Qualitative and Quantitative

Surface casing corrosion; Production packer
corrosion; Joule-Thomson & evaporative cooling
creating microannuli

Workover and re-use (4 for injection)

Well integrity monitoring; seabed monitoring

Annular pressure monitoring; logging; annular liquid
analysis

Oxy Low Carbon Ventures
Onshore

Lower San Andreas, Midland Basin, Texas

Saline Aquifer
T.B.D.

3

0.7

3
Qualitative and Quantitative

Lack of proper isolation; cement degradation by
carbonic acid; mechanical barrier failure;
microannuli

Re-enter and re-plug (3); brine extraction to
manage injection zone pressure

Above zone monitoring; geophysical monitoring

Nothing specific to the re-plugged legacy wells

" Estimated from maps and permitting documents; total number may be higher.
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Fig. 5. Example legacy well risk management workflow based on proposed workflows in Patil et al. (2025) and Torszter et al. (2024) (top). The well population and
risk assessment confidence throughout the project development timeline are also shown (bottom).

vary by jurisdiction. In Europe, the European Union’s (EU) CCS Direc-
tive (2009/31/EC) and the United Kingdom’s (UK) Energy Act (SI 2010/
2221) provide foundational regulatory frameworks for GCS, which are
supported by international standards (ISO 27,914:2017 Clause 6 and
DNV-RP-J203 Section 6). North American GCS regulations are a mixture
of federal and state or provincial laws. In the U.S., the Environmental
Protection Agency (US EPA) regulates GCS through the Underground
Injection Control Program’s Class VI Rule, a mandate of the Safe
Drinking Water Act (U.S. EPA, 1974). U.S. states with primacy (North
Dakota, Wyoming, Louisiana, and West Virginia) regulate GCS in their
own jurisdictions in a manner that meets the federal Class VI re-
quirements. In Canada, Alberta has established comprehensive GCS
regulations through the Mines and Minerals Act (CST 56/2016) detailed
in Directive 065 (Alberta Energy Regulator, 2024). Australian regula-
tions for offshore GCS are established by the Offshore Petroleum and
Greenhouse Gas Storage Act, the Environment Protection (Sea Dump-
ing) Act, and the Environment Protection and Biodiversity Conservation
Act and onshore regulations are established by state or territory legis-
lation (Commonwealth of Australia, 2023).

The EU, UK, Australia, and Alberta, take similar but legally distinct
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approaches to legacy well risk regulation. All four jurisdictions require
formal risk assessments but use different methodologies for risk man-
agement. The EU and Australia require the mitigation of legacy well
risks until they are as low as reasonably practicable (ALARP)
(Commonwealth of Australia, 2023; European Commission, 2024).
ALARP is a risk reduction principle commonly applied in health and
safety law and industrial operational standards that requires the
reduction of risks to a level where further mitigation would involve
costs, time, or effort that are grossly disproportionate to the benefits
gained.

In Alberta, Directive 065 (D65) adopts a risk-based framework for
legacy wells that emphasizes risk tolerability and acceptability rather
than explicitly invoking the ALARP principle (Alberta Energy Regulator,
2024). Appendix P of D65 addresses the monitoring, measurement, and
verification (MMV) requirements that mandate a comprehensive risk
assessment process. These include: i) systematic identification of all risk
scenarios capable of posing significant consequences; ii) quantitative or
qualitative analysis of the likelihood and severity of each scenario,
grounded in the best available scientific evidence; and iii) formal eval-
uation of whether the resulting risk level is tolerable or acceptable.
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Fig. 6. Example decision space for legacy wells at GCS sites considering both the containment risk posed by a well and the risk or cost of intervention. Points
represent legacy wells and bars represent the uncertainty associated with containment risk and risk or cost of intervention.

The Alberta approach aligns with the Canadian Standards Associa-
tion standard CSA Z741, as referenced in D65, which requires that sig-
nificant risks be reduced to and maintained at a tolerable or acceptable
level through appropriate treatment strategies (Section 6.6.4). While the
outcome is functionally comparable to the ALARP approach used in the
EU and Australia, Alberta’s regulatory language and methodology are
distinctly framed around risk tolerability criteria rather than ALARP
terminology.

The UK differs from the EU, Australia, and Alberta, in that operators
must ensure that legacy wells pose no significant risk (NSR) of leakage or
of harm to the environment or human health (North Sea Transition
Authority, 2025). Unlike ALARP, NSR focuses on absolute assurance in
permitting storage and demands evidence that risks are effectively
negligible under the proposed conditions, without cost-benefit
balancing (Stuart-Smith et al., 2025) (Table 3). The U.S. Class VI rule
is unique in that it does not require a formal risk assessment for GCS sites
or legacy wells. Rather, operators are required to evaluate wells using
available well information or field characterization and perform reme-
dial (i.e., corrective) actions as necessary to prevent fluid migration into
shallow groundwater aquifers through wells (U.S. EPA, 2013).

In the petroleum industry, legacy well regulations historically apply
ALARP for operational safety but shift to NSR for environmental
containment, especially if wells are repurposed or assessed for long-term
integrity. An argument against ALARP is that a cost-benefit analysis can
be framed to exaggerate implementation costs while downplaying
quantified benefits, justifying a lower safety threshold and rejection of
further actions. This is particularly relevant to CO, storage, where a well
intervention could be deferred by arguing that long-term risks are
negligible in present-value terms. ALARP baseline assessments may also
selectively overlook rare but high-consequence events to keep evalua-
tions in the "tolerable if ALARP" zone by avoiding costly holistic as-
sessments. These practices stem from ALARP's inherent subjectivity in
harm quantification and cost evaluation. Regulators aim to counter this
through careful oversight and requirements for transparent documen-
tation. NSR addresses this directly by requiring an objective assessment

Table 3

Comparison of regulatory methods for legacy well risk management.

Approach: ALARP — As Low as Reasonably NSR - No Significant Risk
Practicable

Definition Requires risk to be reduced to a Focuses on absolute assurance
level where that risks are effectively
further mitigation involves costs,  negligible under proposed
time, or effort grossly conditions, without cost
disproportionate to the benefits consideration. Risk
gained. Balances risk based on elimination.
cost-benefit analysis.

Origin/Usage ~ Common in health and safety Used in UK regulations (North
law and industrial standards; Sea Transit Authority, 2025);
applied in the EU CCS Directive defers to CCS Directive
and Guidance Documents (EC, definitions of ‘significant risk’
2024). and ‘leakage’.

Assessment Allows some risks to be deemed Requires objective assessment;

Criteria acceptable or tolerable if costs risks must be reduced to the
are disproportionate; may satisfaction of the regulator on
overlook rare high-consequence a well-by-well and site-specific
events; subjective harm and cost ~ basis. No explicit
evaluations consideration of cost.

Risk Higher residual risk tolerance: Lower overall tolerance: aims

Tolerance allows measure to stop at "good for near-elimination of risk e.g.
practice" e.g. standard industry multiple safety barriers and
measures, if regulator approves. redundancy if required.

Application In the petroleum industry, Environmental containment

in applies to operational safety; emphasis; robust measures for

Legacy may defer high-cost long-term integrity of all wells

Wells interventions if with potential exposure.
long-term risks have a negligible
present-value.

Arguments Subjectivity can lead to Costs can be prohibitive,

Against exaggerating costs and limiting CO, storage

downplayed benefits, justifying
lower safety thresholds and
overlooking risk events.

development and displacing
harm from emissions to
atmosphere.

that does not prioritize a cost-focused interpretation. NSR requires risks
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to be reduced to a level where the consequences of harm are so low that
they are effectively negligible. This implies a near-elimination of risk. In
practice, this may mean implementing safety measures regardless of
cost. The argument against NSR is that the resultant cost is potentially so
prohibitive that storage becomes limited, resulting in the displaced
harm from emissions to the atmosphere. U.S. Class VI regulations are
more closely aligned with NSR in that they do not allow for the
consideration of a cost-benefit analysis; however, the lack of a formal
risk assessment requirement may result in relevant risks being
overlooked.

5.2. Locating wells

Surveying project areas to confirm the locations of documented
legacy wells, or to identify undocumented legacy wells is an essential
step for GCS projects (IPCC, 2005). While regulatory agencies and pri-
vate companies maintain well databases that include location informa-
tion in most regions, these databases often contain inaccurate or
incomplete information (Dilmore et al., 2015; Jahan et al.,, 2025;
Saint-Vincent et al., 2020). This is a major challenge in North America,
where oil and gas drilling began prior to the establishment of regulatory
agencies and modern record keeping practices (Interstate Oil and Gas
Compact Commission (IOGCC), 2021). Consequently, hundreds of
thousands of oil and gas wells drilled in the U.S. are currently undocu-
mented or “lost” with unknown locations (Boutot et al., 2022; Kang
et al., 2023; Merrill et al., 2023). Undocumented wells are often referred
to as orphaned wells as they have no owner and the plugging re-
sponsibility has defaulted to the state. Documented wells with known
locations can also be orphaned if their owner is no longer solvent. In the
past decade, methods for identifying and characterizing lost or undoc-
umented wells have advanced substantially through federally funded
efforts to locate and plug orphaned oil and gas wells in the U.S.
(O’Malley et al., 2024).

Magnetometers are widely used to identify legacy wells as they
pinpoint well locations by detecting the magnetic signature of steel
casings and can be flown over large areas (Frischknecht et al., 1983;
Hammack et al., 2016; Saint-Vincent et al., 2020). Since 2015, advances
in unmanned aircraft systems (UAS) technology and miniaturization of
field magnetometers have provided an alternative to piloted magnetic
surveys (Hammack et al., 2023, 2020; Nikulin and de Smet, 2023, 2019;
Sams et al., 2017; Zheng et al., 2021). UAS can be flown closer to the
ground with denser flight paths than piloted surveys, which allows for
the detection of wells that would have previously required a terrestrial
survey (Nikulin and de Smet, 2019; Sams et al., 2017). Applications of
UAS-based aeromagnetic surveys at field sites in the Appalachian Basin
have demonstrated they are faster, safer, and more efficient than piloted
or terrestrial alternatives (De Smet et al., 2021; Hammack et al., 2023).
Rotary UAS are primarily used for magnetic surveys as they have large
carrying capacities and precisely follow survey lines. Researchers are
exploring the use of fixed wing UAS for well finding surveys, which can
cover larger areas more rapidly than rotary counterparts (O’Malley
et al., 2024).

Recent work has emphasized the limited ability of magnetic surveys
to detect legacy wells with pulled or wooden casings (Hammack et al.,
2023; Reeder et al., 2023). High-resolution light detection and ranging
(LiDAR) surveys are helpful for identifying these older legacy wells as
images of bare-earth topography identify leveled well pads and signs of
other well infrastructure such as old storage tanks, pipelines, and access
roads that may now be covered with vegetation. Additionally, the soil
surrounding older legacy wells also tends to subside when casings are
removed or deteriorate, which creates a circular subsidence feature
detectable with LiDAR (Hammack et al., 2023). Methane surveys can
also help identify legacy wells; but are confounded by other sources of
methane and are limited in that they can only detect leaking wells
(O’Malley et al., 2024).

Deep learning is another rapidly advancing research area that has the
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potential to aid legacy well finding efforts. The resolution of remote
sensing data is important when attempting to locate legacy wells
(Saint-Vincent et al., 2020). Various multilayered neural network
modeling approaches have shown promise when applied to sparse data
reconstruction problems. Successful application of these models to
low-resolution remote sensing datasets could increase their utility for
well finding (Fukami et al., 2021; Santos et al., 2023). Multiple recent
studies have also applied deep learning models to automate the detec-
tion of wells and their associated infrastructure in satellite imagery
(Kadeethum and Downs, 2024; Kim et al., 2024; Ramachandran et al.,
2024; Seth et al., 2025; Wu et al., 2023; Zhang et al., 2023), historical
maps (Ciulla et al., 2024), and magnetic surveys (Bernstein et al., 2024).
The ability of these models to identify legacy wells improves when
multiple sources of information (e.g., magnetic and methane survey
data) are provided (O’Malley et al., 2024). Automating well identifica-
tion using deep learning methods reduces the manual input needed to
digitize well locations from historic maps, aerial photos, and satellite
images and speeds the preparation of well finding field campaigns,
which are more successful when well location information from multiple
sources is combined beforehand (Ciulla et al., 2024; Reeder et al., 2023).
Preparation for field campaigns could be further reduced through real
time identification of legacy wells in the field with UAS, which would
allow for well detection and location verification in a single trip.
Research efforts related to legacy well finding are pushing towards
region-scale applications to help improve regulatory well inventories
(O’Malley et al., 2024). GCS project areas are relatively small when
compared to the size and scale of regional well finding efforts. While
existing technologies are sufficient to locate legacy wells at GCS sites,
experience gained through the upscaling of well finding efforts will be
valuable for GCS operators, and further advancements in UAV
surveying, deep learning, and data integration have the potential to
increase efficiency and reduce costs. Ultimately, improvement of regu-
latory well inventories will also benefit GCS operators and may reduce
or remove the need to perform well finding surveys in some regions.

5.3. Integrity characterization

Characterization of legacy well integrity informs well screening and
risk assessment and occurs at different scales during GCS project
development. For example, a review of available well records early in
the site selection phase could be sufficient to identify wells that should
be avoided because they require complicated remedial actions. As a
project develops, field verification of active or suspended wells may
become essential to determine the feasibility of their re-use for moni-
toring or injection. In the past decade, researchers have advanced
technologies that facilitate well record review, progress existing inva-
sive techniques, and enable non-invasive well integrity assessments,
which aid the integrity characterization of inaccessible wells.

5.3.1. Record review

The availability of information describing legacy well construction
varies widely. In some regions, regulatory and proprietary well data-
bases contain detailed well construction information in a structured
format, which facilitates rapid well evaluations. If databases are un-
available, well regulatory records such as drilling, completion, and
plugging reports are often the only source of well information (Patil
et al., 2025). Well information is typically spread across multiple re-
cords, the format of which could be digital or non-digital depending on
the age of the well (O'Malley et al., 2024). Most jurisdictions have
scanned well regulatory records that are available online or through
request or purchase, but this process is ongoing as some jurisdictions still
rely on the submission of paper forms and have large backlogs of his-
torical records to scan. Scanning records produces a digital image of the
file but does not digitize the text contained in the form, which must be
manually read to understand well construction. The manual review of
well documents becomes impractical as the number of legacy wells
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considered increases. For example, a recent construction analysis of 156
offshore wells along the Texas Gulf Coast necessitated the review of
1200 regulatory records (Lackey et al. 2024).

Advances in artificial intelligence and machine learning over the past
decade have created the field of Intelligent Document Processing (IDP).
IDP tools address multiple issues relevant for digitizing scanned images
of records including: (i) splitting files that include multiple documents,
(ii) sorting documents by type and format, (iii) cleaning and rectifying
documents, (iv) digitizing and cleaning document text, and (v) facili-
tating human review for error correction (Baviskar et al., 2021). Re-
searchers have leveraged commercially available IDP tools to create
custom software designed to digitize well records (Chen et al., 2021;
Dong et al., 2022; O’Malley et al., 2024). One such tool was designed for
GCS and automates the drawing of well diagrams to identify leakage
pathways (Chen et al., 2021; Dong et al., 2022). Researchers are also
exploring the application of large language models for data extraction
from well records, which could reduce the need to label documents and
fields—a manually-intensive process required by many commercial IDP
tools (Colman et al., 2025; Ma et al., 2024). The maturation of custom
IDP tools for well record digitization has the potential to reduce the
effort required to evaluate legacy well construction at GCS sites and
increase the availability of well information in regulatory and pro-
prietary databases.

5.3.2. Invasive methods

Integrity characterization methods for accessible wells are estab-
lished and widely used in the oil and gas industry. A variety of wireline
logging tools are available that provide insight into the status of well
materials (Taleghani and Santos, 2023). Technologies used for well
evaluation include, among others, acoustic tools (sonic and ultrasonic),
passive noise logs, temperature logs, resistivity logs, gamma ray logs,
neutron logs, oxygen activation logs, X-ray logs and various fiber optic
measurements (e.g., Ghosh, 2022; Khalifeh et al., 2017). Most conven-
tional logging techniques allow evaluation of cement quality behind a
single steel pipe, which means that the production tubing typically
needs to be pulled out to log the casing cement. Recent technology de-
velopments aim to extend this reach and enable “through-tubing” or
“dual-string” logging, i.e. to allow simultaneous evaluation of two
annuli without having to remove the inner pipe (Alimuddin et al., 2025;
Singh et al., 2024). Methods such as pressure surveys are also widely
used to test and monitor the integrity of well barriers. However, char-
acterizing the integrity of plugged and abandoned wells is more chal-
lenging. Upon abandonment, wellheads are typically removed, and
casings are cut and capped below surface. Re-entry of a plugged and
abandoned well is expensive (especially offshore) and may be techni-
cally infeasible for older wells that lack casings, have degraded mate-
rials, or were plugged with debris.

5.3.3. Non-invasive methods

Electromagnetic methods have been proposed as low-cost, non-
invasive alternatives for characterizing well integrity (Beskardes et al.,
2021; MacLennan et al., 2018; Romdhane et al., 2022a; Wilt et al., 2019,
2020). Wilt et al. (2019) demonstrated a proof-of-concept for the
top-casing method—a well integrity characterization approach that in-
volves applying a low-frequency electromagnetic current to a well cas-
ing at the surface. Electric field data are collected from a distant return
electrode and a numerical model is used to identify casing depths and
areas of damage. Beskardes et al. (2021) progressed the top-casing
method by considering the impact of various well designs and damage
types on electromagnetic signals. Romdhane et al., 2022a and Zonetti
et al. (2023) numerically modeled the application of the top-casing
method to detect corrosion in a legacy well at the Frigg Field in the
North Sea. While initial results show promise that electromagnetic
inversion can detect and predict well failures, further work is needed to
understand how noise and uncertainty in the conductivity field impact
the detectability of well damage. Development of other non-invasive
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methods for well integrity would also be valuable.
5.4. Screening

In mature basins, hundreds to thousands of legacy wells may lie
within a GCS project area or areas considered (Gasda et al., 2004). One
problematic well can substantially impact the cost and, ultimately, the
viability of a GCS project (Torszter et al., 2024). While a full integrity
evaluation of each well, through detailed records checks, construction
diagrams, barrier evaluations, and risk assessments, remains the gold
standard, it is far too resource-intensive to conduct at the early site
appraisal stage of a project. This mismatch between regulatory re-
quirements and the realities of time and cost has driven the development
of legacy well screening approaches, which occupy the front end of
legacy well risk management workflows.

Legacy well screening approaches are typically paper exercises that
rely on the evaluation of well construction information (e.g., depth,
casing design, cement design) and basic geologic details of the permitted
storage zone (e.g., depth of reservoir(s) and caprock(s)) to separate wells
into categories (Anwar et al., 2025; Arbad et al., 2022; Emmel and
Dupuy, 2021; Lackey et al., 2024; Pullen et al., 2025). More involved
approaches that include non-invasive methods for well integrity evalu-
ation have also been proposed (Romdhane et al., 2022a; Zonetti et al.,
2023). Legacy well screening approaches are underpinned by the con-
cepts of risk assessment; however, they are generally less involved than a
full risk assessment, and often only identify potential hazards. Screening
approaches differ mainly in the level of data required and the resolution
of the outputs. At one end are coarse assessments that rely on the
simplest regulatory records; at the other are more data-rich frameworks
that consider all available well information. Most legacy well screening
approaches have been developed in the past decade alongside the
expansion of GCS to brownfield sites.

5.4.1. Risk scoring

The calculation of well leakage potential or “risk” scores is one
widely applied approach for legacy well screening (Azzolina et al., 2015;
Buxton et al., 2015; Cahill and Samano, 2022; Duguid et al., 2019;
Emmel and Dupuy, 2021; Glazewski et al., 2014; Lackey et al., 2019;
Patil et al., 2022; Pullen et al., 2025; Romdhane et al., 2022a). While
some risk scoring approaches use well construction details (e.g., casing
depths, cement locations) (Duguid et al., 2019; Emmel and Dupuy,
2021; Romdhane et al., 2022b), most rely on location, status, key dates,
depth and other high-level information that is readily available in well
databases (Azzolina et al., 2015; Buxton et al., 2015; Cahill and Samano,
2022; Lackey et al., 2019; Pullen et al., 2025). Proposed well risk scoring
approaches assign individual scores to a set of well attributes relevant to
well integrity, with higher scores given for factors that are either asso-
ciated with the increased potential for integrity loss through heuristic,
statistical (Duguid et al., 2019; Lackey et al., 2019), or expert elicitation
methods (Pullen et al., 2025). Attribute scores are then aggregated for
each well to determine a final risk score using different methodologies
that range from simple, such as addition or multiplication (Duguid et al.,
2019; Glazewski et al., 2014; Lackey et al., 2019), to more complex, such
as weighted-sum multi-criteria models (Pullen et al., 2025). Wells with
higher scores are considered greater risks to containment than wells
with lower scores.

Most well risk scoring approaches developed for screening were
inspired by the observations of Watson and Bachu (2009). Watson and
Bachu (2009) analyzed well integrity testing records from over 300,000
wells in Alberta to show that broad well attributes such as construction
era, deviation, abandonment quality, and geology could be used to
triage well populations with a higher risk of experiencing integrity is-
sues. Since 2009, efforts have been made to link well attributes to
integrity issues recorded in regulatory databases with rigorous statistical
and machine learning methods (Lackey et al., 2025; Li et al., 2018, 2025;
Montague et al., 2018; Sandl et al., 2021; Zheng et al., 2024). While
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predictive modeling efforts have shown promise, the best performing
models make correct predictions for only 60-80% of wells considered
(Montague et al., 2018; Sandl et al., 2021). Many well attributes used as
explanatory variables in well integrity prediction models are collinear
and/or spatially autocorrelated, which complicates the identification of
independent relationships between well attributes and integrity loss
(Lackey et al., 2025; Sandl et al., 2021). Additionally, well integrity is-
sues are often spatially clustered. As a result, well location is the most
important feature in multiple well integrity prediction models suggest-
ing that model performance is unlikely to generalize to regions without
training data (Lackey et al., 2025; Li et al., 2025; Sandl et al., 2021).

When considered in aggregate, recent analyses of regulatory well
integrity testing data highlight the limitations of well risk scoring
methods. The value of well risk scoring depends on the ability of the
scoring scheme to predict integrity issues or the presence of leakage
pathways. Proposed risk scoring methods are unlikely to be accurate
predictors of integrity issues as they do not use rigorous well integrity
prediction models and, if they did, the performance of the best well
integrity prediction model is not sufficient to reliably inform risk miti-
gation decisions. Additionally, the implicit assumption that well integ-
rity prediction models would apply to legacy wells at GCS sites is
questionable as these models are trained with integrity testing data
collected from active oil and gas wells, which may be in a different
condition than older legacy wells and are not exposed to the unique
subsurface conditions created by GCS. The focus of most well risk
scoring methods on well integrity issues also ignores leakage pathways
that may already be present along wells such as uncemented annuli or
improperly placed plugs. Thus, applications of well risk scoring methods
for GCS site permitting are limited; however, these methods are one
option for characterizing the condition of legacy wells across large re-
gions when data availability is a challenge. In this context, these efforts
may be valuable to researchers, regulators, and other stakeholders
seeking to understand the feasibility of GCS in a region prior to project
planning if they are applied correctly and validated with existing data.
Otherwise, simple screening methods that use basic information such as
well depth may be the only viable option.

5.4.2. Construction evaluation
Detailed evaluations of legacy well construction are another widely
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applied well screening method (Anwar et al., 2025; Arbad et al., 2024b,
2024a, 2022; Haagsma et al., 2015; Lackey et al., 2024; Patil et al., 2025,
2024; Sminchak et al., 2014). At the highest level, depth is used to
screen wells that penetrate the permitted storage zone or its caprock.
The availability of well construction records enables forensic assess-
ments of construction, which focus on identifying leakage pathways that
pose a risk to COz containment as well as determining the feasibility of
performing corrective action. Leakage pathways are identified by
comparing well construction details with geologic information to
determine if well features such as uncemented annuli, open holes, or
improperly placed plugs will permit injected or native fluids to leak
upward along the well (Anwar et al., 2025; Arbad et al., 2022; Lackey
et al., 2024; Patil et al., 2025). The feasibility of corrective action de-
pends on the accessibility of the wellhead (which could be societally
inaccessible if the well is located under a building or near a sensitive
location such as a school) and the presence of complicating downhole
factors such as stuck equipment (i.e., fish), sidetracks, or open holes
(Anwar et al., 2025; Arbad et al., 2022; Lackey et al., 2024; Patil et al.,
2025). Well construction evaluations also directly inform risk assess-
ments (International Association of Oil & Gas Producers, 2023).
Studies that have developed screening methods based on well con-
struction evaluation rely on categorization schemes that are either
granular in that there is one category for every well type (Arbad et al.,
2024a, 2024b, 2022) or modular in that they separately categorize
relevant aspects of well design and aggregate them (Anwar et al., 2025;
Lackey et al., 2024) (Fig. 7). Well construction categories are used either
directly to screen wells (Anwar et al., 2025; Arbad et al., 2022) or feed
into a separate screening system (Lackey et al., 2024). Well categories in
the approach proposed by Arbad et al. (2022) are qualitatively aligned
with a risk matrix, which screens wells as higher risk if they have leakage
pathways and are difficult to access or lower risk if they can be accessed
and have fewer pathways. Similar to Arbad et al. (2022), the screening
approach proposed by Patil et al. (2024) (used by Lackey et al. (2024))
also screens wells by the presence of leakage pathways and accessibility
of the well. Anwar et al. (2025) proposed a separate approach that
screens wells using well construction categories combined with qual-
tiative risk scores aggregated for each individual leakage pathway.
Only a subset of well construction evaluation studies consider
cement quality along the depth of a well (Haagsma et al., 2017, 2015;
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Fig. 7. Well categorization system developed by Arbad et al. (2022) for legacy wells in the Illinois Basin. Nine variations of legacy well construction are shown with
respect to the target reservoir and primary seal. A well that meets U.S. EPA Class VI construction requirements is also shown for comparison. This figure was used
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Sminchak et al., 2014). Haagsma et al. (2015) proposed a method that
scores legacy wells using cement bond index— a normalized interpre-
tation of cement bond log data calculated using maximum and minimum
recorded amplitudes. While cement bond logs offer additional insight
into the location and quality of cement in a legacy well, their availability
is limited among older legacy wells and field validations of the relevance
of the cement bond index to gas wells are needed as cement bond logs do
not reliably detect gas-filled microannuli (Brown et al., 1971; Wang
et al., 2016).

Screening methods based on well construction evaluation have more
applications for GCS site permitting than well risk scoring approaches.
While it is difficult to perform well construction evaluations in juris-
dictions where well construction details are not available in structured
digital databases, detailing the construction of legacy wells with respect
to the permitted storage zone is generally a requirement for injection
permits. Analyses of legacy well construction details may also be suffi-
cient to justify risk mitigation decisions in jurisdictions where formal
risk assessments are not required (e.g., U.S. EPA Class VI). However,
additional analyses that determine the likelihood and consequence of
leakage along legacy wells are needed where formal risk assessments are
required.

5.5. Risk assessment

Formal risk assessments that characterize the probability and
consequence of negative scenarios such as the occurrence of legacy well
leakage are required for GCS site permitting in most jurisdictions. Risk
assessments also inform risk mitigation decisions. After screening, de-
cisions for a subset of wells may be unclear without deeper analysis.
These unresolved wells could have records that suggest the presence of
sufficient well barriers, be located on the periphery of the project area,
or be subject to subsurface processes that close off well leakage path-
ways. Risk assessments create a structured method for weighing leakage
risks against other trade-offs to determine the best course of action. In
jurisdictions where risk assessments are not required, it may not be
necessary to perform a full risk assessment to justify well management
decisions. However, a thorough characterization of legacy well condi-
tions using invasive techniques (e.g., wireline logging tools) if entry or
re-entry is possible, non-invasive techniques, or modeling may still be
needed after screening to meet permit requirements.

Risk assessment has been a major focus of GCS research for over two
decades. Many qualitative, semi-quantitative, and quantitative risk
assessment approaches have been developed and applied at different
projects, most of which were adapted from analogous industries and
were in use by 2015. A summary of GCS risk assessment approaches is
provided in Pawar et al. (2015) and also in more recent reviews
(Gholami et al., 2021; Hajiyev et al., 2025; Su et al., 2023; Xiao et al.,
2024). In the past decade, multiple organizations such as the Interna-
tional Association of Oil and Gas Producers (IOGP) and the U.S.
Department of Energy have published recommended practices that
illustrate the use of various risk assessment methods at GCS sites (IOGP,
2023; Thomas et al., 2022). Qualitative and semi-quantitative risk
assessment approaches such as the bowtie method have also become
well established through their use in the development of measurement,
monitoring, and verification plans for GCS operations (e.g., Dean and
Tucker, 2017). Consequently, most risk assessment research progress in
the past decade has focused on the development of quantitative
methods, which use numerical or analytical models to quantify fluid
leakage rates and/or the degree of their impact on sensitive receptors
through the simulation of the physical and chemical processes associ-
ated with GCS in the subsurface. Quantitative approaches are often
designed to be probabilistic to capture the inherent uncertainty associ-
ated with subsurface systems. The two major categories of quantitative
risk assessment approaches that have been the subject of research over
the past decade are (i) site performance assessment modeling and (ii)
scenario-based modeling.
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5.5.1. Site performance assessment models

Many early well leakage modeling studies focused on site-level
predictions of legacy well leakage over the course of a CO2-EOR or
GCS project. These models used probabilistic methods to estimate the
percentage of injected CO5 contained in the permitted storage zone over
long time periods. The primary goal of these early efforts was to un-
derstand the feasibility of GCS as an enterprise (Metcalfe et al., 2013;
Walton et al., 2005). Concepts from early studies progressed into per-
formance assessment models, that use a system modeling approach to
dynamically simulate leakage risks over the lifetime of specific projects
(LeNeveu, 2008; Oldenburg et al., 2009). Most performance assessment
models were developed prior to 2015 and are summarized in Pawar
et al. (2015).

One performance assessment model that has been continuously
developed over the past decade is the U.S. Department of Energy’s Na-
tional Risk Assessment Partnership (NRAP) Open-Source Integrated
Assessment Model (NRAP Open-IAM) (Vasylkivska et al., 2021). NRAP
Open-IAM builds on previous versions of the tool (NRAP IAM-CS,
CO2-PENS) that were designed to facilitate probabilistic risk assess-
ment (Pawar et al., 2016; Stauffer et al., 2009). Rapid simulation in
NRAP Open-IAM is achieved through a system of coupled reduced order
models that simulate the physical processes in reservoirs, leakage
pathways, and receptors. In the past decade, the capabilities of NRAP
Open-IAM expanded, and the tool has been applied by many case
studies. Researchers developed three well models for NRAP Open-IAM
that simulate COy and brine flow through: (i) a fully cemented well-
bore (Harp et al., 2016), (ii) a wellbore with multiple sections of cement
that have varying permeability (Baek et al., 2025, 2023; Nordbotten
et al., 2009, 2005), and (iii) a completely open wellbore with no plugs
(Bacon et al., 2021; Pan et al., 2011). Reduced order models of
groundwater aquifers (Bacon et al., 2016; Keating et al., 2016) and at-
mospheric dispersion (Zhang et al., 2016) have also been developed that
receive outputs from well leakage models to quantify leakage impacts.
Dynamic risk simulation capabilities were also developed for NRAP
Open-IAM that assimilate monitoring data as it becomes available from
aproject (Chen et al., 2023, 2020). To the authors knowledge, at least 16
case studies have applied NRAP Open-IAM to prospective and opera-
tional GCS projects in the Appalachian, Illinois, Paradox, Permian, San
Juan, Raton, and San Joaquin basins in the U.S., the Taishi basin in
Taiwan, and the Ordos basin in China (Bacon et al., 2020; Chu et al.,
2024, 2023; Cumming et al., 2019; Doherty et al., 2017; Gan et al., 2021;
Kim et al., 2025; Mitchell et al., 2023; Ning et al., 2025; Onishi et al.,
2019; Skopec et al., 2022; Xiao et al., 2025, 2019; Yang et al., 2024; Yu
et al., 2024; Zulgarnain et al., 2017). These studies applied NRAP
Open-IAM to calculate the mass of CO, retained in the reservoir over the
project lifetime, determine risk-based project areas, estimate the
detectability of CO2 and brine leakage in aquifers, justify risk-based
post-injection site care periods, and explore the efficacy of risk mitiga-
tion measures such as brine extraction.

Another site performance assessment model that progressed in the
past decade is the Analytical Solution for Leakage in Multilayered
Aquifers tool (ASLMA) (Cihan et al., 2013, 2011). ASLMA contains a
multiple analytical and semi-analytical methods that calculate CO5 and
brine flow through wellbores. Oldenburg et al. (2016) proposed a
computational framework for estimating project areas using the ASLMA
approach. The approach proposed by Oldenburg et al. (2016) was pro-
gressed and formalized into a risk mapping approach by Siir-
ila-Woodburn et al. (2017). Burton-Kelly et al. (2021) applied ASLMA to
determine the project area of a GCS site operating in an overpressure
reservoir in North Dakota and showed that the tool can satisfy U.S. Class
VI permitting requirements.

NRAP Open-IAM, ASLMA, and other GCS site performance assess-
ment models have consistently estimated relatively low volumes of CO»
and brine leakage through legacy wells at GCS sites in case study ap-
plications. For example, Zhou et al. (2005), one of the earliest applica-
tions of the site performance modeling approach, used a reservoir
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simulator to estimate that CO, leakage through abandoned wells at the
Weyburn CO,-EOR field will likely remain below 0.001% of the injected
volume over a 5000-year period. More recently, Lackey et al. (2019)
used NRAP Open-IAM to estimate a maximum of 2.4 t of brine and 10,
200 t (4.1 x 107°%) of CO, leakage over a 100-year period from a hy-
pothetical 250 Mt injection in the vicinity of 1000 legacy wells. These
studies assumed effective well permeabilities between 1 D and 10 pD
(102 and 107" mz), which are at the higher end of the range estimated
(1 D-10nD; 1071210720 mz) for abandoned wells (Carey, 2018). The low
probability of leakage from GCS sites has also been supported by GCS
industry-level modeling efforts, which estimated a 50% probability that
the yearly leakage of CO, from GCS will remain below 0.0008% (Alcalde
et al., 2018).

The progress made with GCS site performance assessment modeling
addresses some of the research goals outlined by Pawar et al. (2015) on
the 10 anniversary of the SRCCS report. The capabilities and applica-
tions of flagship tools like NRAP Open-IAM and ASLMA have grown
substantially over the past decade. While model results remain uncertain
and difficult to validate with real data, model outputs continue to be
useful for understanding site level containment risks over the lifetime of
projects. However, gaps remain in the functionality of these tools,
especially for site permitting. Gupta et al. (2024) reviewed the appli-
cability of the NRAP Open-IAM for U.S. Class VI permits and found that
many permit applicants had not used the tool because of limited input
parameter ranges, questions that could not be addressed by the tool, a
lack of sufficient information to generate site-specific results, and a
hesitancy to use non-industry standard software. This highlights the
need to continue developing GCS site performance assessment models
with a focus on implementing new functionality useful for site permit-
ting if these tools are to be useful outside the context of research.

5.5.2. Scenario-based modeling

The implementation of GCS at sites with legacy wells has created a
need for scenario-based well leakage models. Scenario-based models
focus on simulating specific leakage mechanisms in wells to support site
permitting. An example of a scenario-based well leakage model is pro-
vided by Neele et al. (2019), which developed a finite-element numer-
ical model to determine if cold CO2 injection in wells at the Porthos
project would create a cement microannulus at casing and/or caprock
interfaces. Simulation results demonstrated the potential for micro-
annulus formation but estimated negligible leakage (<0.00001% of CO,
injected annually) under storage conditions. The model developed by
Neele et al. (2019) directly informed site permitting by quantifying a
specific leakage scenario identified in the project risk assessment.

Over the past two decades, the GCS research community has pri-
marily pursued the probabilistic approach for well leakage modeling
used by GCS site performance assessment models (Jenkins, 2023). The
probabilistic approach treats wells as a continuous porous medium with
an effective permeability representative of well conditions that are
highly uncertain. A range of leakage rates is estimated through sto-
chastic simulation and sampling of well permeabilities from a distribu-
tion (Celia et al., 2011; Cihan et al., 2013, 2011; Nordbotten et al., 2009;
Vasylkivska et al., 2021). This approach is valuable for estimating
site-level leakage risks, which has applications for site permitting (e.g.,
creating risk-based justifications for the project area); however, it in-
forms only one well leakage scenario—CO; or brine flow through a
compromised cement sheath. Researchers have developed modeling
approaches for other leakage scenarios such as blowouts (Bhuvankar
and Cihan, 2025), gaps between casings and bridge plugs (Pan and
Oldenburg, 2020), and microannuli (Lavrov and Torsater, 2018; Mog-
hadam and Amiri, 2025). These studies have primarily illustrated their
approaches on hypothetical wells to understand factors that influence
leakage. Jenkins (2023) highlighted the need for increased sharing of
legacy well case study information. Increased sharing of scenario-based
well leakage models developed for real GCS projects would also be
valuable to progress quantitative risk assessment research.
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5.6. Risk mitigation

Traditional risk mitigation strategies for legacy wells include
avoidance, plugging and abandonment (P&A), remediation, and re-use.
These measures are typically combined with long term monitoring in-
tegrated into the measurement, monitoring, and verification plan for the
project. The mitigation strategy chosen depends on the condition of the
well, the characteristics of the site, and other factors such as project
economics. In the past decade, technologies and methodologies for
legacy well remediation and re-use have progressed. Researchers have
also begun exploring non-traditional methods for legacy well risk miti-
gation, such as confirming or enhancing the natural sealing of wellbores.
Additionally, we review well intervention costs, which are slowly
becoming available with the implementation of GCS. We chose not to
review legacy well plugging and abandonment technologies and ad-
vances in monitoring methods. Industry guidelines and regulatory re-
quirements for well plugging and abandonment (P&A) are established
and innovation with P&A technology has been limited (NOGEPA, 2021;
NORSOK, 2013; OEUK, 2022a, 2022b, 2022c). While recent work by
Bakhshian et al. (2025) focused on a low-cost monitoring method for
legacy wells at GCS sites, many widely used leakage monitoring tech-
nologies for GCS are suitable for monitoring legacy wells and have been
the subject extensive reviews (Jenkins, 2020; Jenkins et al., 2015).

5.6.1. Remediation

Conventional methods for remediation of annular fluid migration
along wells include perforate-and-squeeze cementing as well as section-
milling and recementing. Perforate-and-squeeze cementing involves
high-pressure injection of cement slurry through perforations made in
the casing pipe (Cowan, 2007; Slater, 2010; Winarga and Dewanto,
2010). Section-milling and recementing describes the mechanical
removal of the existing casing and cement over a specified interval,
which subsequently enables the placement of a new cement plug that
spans the full bore of the milled window (Joppe et al., 2017; Nelson
et al., 2018; Obodozie et al., 2016).

Several advances in remediation technology have been made in the
last decade, with the development of new sealant materials and opti-
mized placement techniques (Bothamley et al., 2020; Lucas et al., 2018).
Given the relatively low success rate of conventional squeeze cementing
operations (typically below 60%; Cowan, 2007), alternatives for
squeezing cement explored in recent years include the injection of
different low-viscosity epoxies and resins (Beharie et al., 2015;
Beltran-Jiménez et al., 2025; Genedy et al., 2014; Leng et al., 2024;
Todorovic et al., 2016; Vicente et al., 2017) and several types of
mineral-precipitation based solutions (Hangx et al., 2025; Kirkland
et al., 2020; Taheri et al., 2025; Wasch and Koenen, 2019; Wolterbeek
and Hangx, 2021). Recent developments in plugging materials include
geopolymers (Erguler and Taleghani, 2025; Hajiabadi et al., 2023) and
metal alloys (Carpenter et al., 2001; Hmadeh et al., 2024; Lucas et al.,
2023). Thermite has also been explored as potential alternative to
section-milling and recementing (Carragher and Fulks, 2018; da Silva
et al., 2023; Rosnes et al., 2024). Thermite is a metal-metal oxide
powder mixture that, upon ignition, releases large amounts of energy via
an exothermic oxidation-reduction reaction. This released energy can
melt the casing pipe and thermally decompose the cement, where the
resulting reaction products are expected to create an impermeable plug
after the materials cool down and solidify (Rosnes et al., 2024).

A novel method for annular cement repair is Localized Casing
Expansion (LCE). In this technique, the casing pipe is mechanically
deformed to permanently enlarge its diameter. This compresses the
volume of the surrounding cemented annulus, closing off leakage
pathways like microannuli or fractures, and densifying the cement ma-
trix (Kupresan et al., 2014, 2013; Radonjic and Kupresan, 2014). In
recent years, two field tools have been developed to impose the required
casing expansions in real wells. Experimental work has shown that
LCE-treatment using these tools is highly effective in the repair of
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casing-cement microannuli (Wolterbeek et al., 2021b) and free-water
channels up to several millimeters wide (Beltran-Jiménez et al., 2022).
LCE-technologies have been successfully deployed to remediate fluid
migration along wells in Canada (Wolterbeek et al., 2021b), the United
States (Foerstner et al., 2025; Green et al., 2021), Kazakhstan
(Mendybayev et al., 2024), and Romania (Cirstian and Preda, 2025).
It should be noted that the choice of techniques and equipment
available for remediation depend on well status, specifically on acces-
sibility of the borehole. Despite the advances made in the last decade,
most of the technologies discussed require wellbore entry. Many legacy
wells, especially if plugged and abandoned a long time ago, no longer
have a wellhead or associated surface infrastructure. While for land
wells it may be possible to excavate the cut-off casing stump and
(depending on its corrosion status) reinstall a temporary wellhead, one
of the key challenges for remediation operations of minor leaks may in
fact become regaining access to the wellbore. Conventional options for
well re-entry, up to and including the drilling of a relief well, are highly
complex operations that will likely require a drilling rig or other sig-
nificant material equipment to carry out (Torsater et al., 2024). The
environmental footprint of such operations should be taken into
consideration, because the short-term emissions associated with the
intervention operation could outstrip those associated with legacy well
leakage. Advances in drilling rig electrification aim to reduce these
emissions (Al Hadidy et al., 2024; Landry et al., 2024). Drilling into an
existing CO5 plume will also bring technical challenges, as CO, is more
soluble in drilling fluids than natural gas (Feneuil et al., 2025). Recent
research aims to develop software tools to confidently model CO,-dril-
ling fluid behavior and facilitate timely kick-detection (Skogestad et al.,
2024). Efforts to reduce the risk and cost associated with the interven-
tion of inaccessible legacy wells, especially offshore, would be valuable.

5.6.2. Re-use

Re-use of legacy wells for GCS as injection, monitoring or production
wells is a potentially viable strategy for GCS projects that can reduce
project costs. Multiple GCS projects are either being developed or
explored around the world in depleted oil and gas fields, including
Porthos (Netherlands), Greensand (Denmark), Acorn (UK), Prinos
(Greece), Ravenna (Italy), Sarawak (Malaysia) and Gundih (Indonesia).
Past pilot projects such as Lacq (France) & Cortemaggiore (Italy) suc-
cessfully converted wells in depleted natural gas reservoirs for CO5
storage field testing and demonstration (Global CCS Institute, 2025).
GCS regulatory frameworks, such as the U.S. EPA’s Class-VI regulations,
allow for conversion of existing oil and gas wells into CO; storage wells
if it can be demonstrated that the wells will maintain their integrity over
the expected subsurface conditions over lifetime (U.S. EPA, 2013).

Marbun et al. (2019) and Marbun et al. (2023) detail a well re-use
assessment performed on an existing well in the Gundih depleted gas
field in Indonesia that is being converted to a CO2 injector. Similarly,
Neele et al. (2019) report results of the assessment performed to convert
existing wells in the Porthos field, a depleted gas field, near offshore
Netherlands. These studies emphasize the need for careful well integrity
evaluation when reusing existing wells for GCS. Thorough well integrity
assessments are important because oil and gas wells are designed for
specific operational conditions that are different from CO, storage
conditions. Workovers may be needed if CO, storage conditions lie
outside safe operational envelopes for well equipment. Integrity as-
sessments include characterization of all wellbore components using
applicable technologies such as cement bond logs, caliper logs, and
other specialized tools. Considering the effect of historic and expected
wellbore operations (including the degree of casing wear that has or will
occur) and operating conditions on well materials through numerical
modeling can also provide valuable insight into the performance of well
materials under GCS conditions (Marbun et al., 2023, 2019; Neele et al.,
2019). Critical considerations include exposure of well materials to
COg-rich fluids and potential cooling near the injectors in depleted
reservoirs (Neele et al., 2019).
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A screening tool was developed by the REX-CO: project to help
determine the suitability and feasibility of reusing existing wells for CO»
storage operations (Pawar et al., 2021). This tool and its associated
workflow filled gaps in standardized methods for well re-use. The
REX-CO, workflow uses a decision tree approach to guide a stakeholder
through the multiple steps of a qualitative, technical assessment that
compares the construction and condition of an existing well to the
functional and integrity-related requirements of a CO5 storage well. The
objective of the REX-CO, workflow is to ensure that a reused well can
maintain its integrity under expected operational and environmental
conditions over its lifetime. Sub-assessments of the REX-CO, workflow
include well integrity, out of zone injection risk, well structural integrity
and well material compatibility. The REX-CO; tool was designed for
pre-feasibility assessments to screen candidate wells at a potential GCS
sites (Pawar et al., 2021).

5.6.3. Natural or stimulated well sealing

Formation creep is a natural factor that has been demonstrated to
seal pathways in wellbores. Shales and salt formations have unique
properties that cause them to deform under large stresses through creep
and plastic processes (Holt et al., 2020; Pluymakers et al., 2014). The
propensity for shale and salt to move inward toward the center of the
wellbore during and after drilling is a well-known phenomenon. Re-
searchers have traditionally studied the deformation and failure of rocks
along wellbores in the context of borehole stability to design mud pro-
grams that avoid borehole collapse and stuck pipe (Hawkes et al., 2000;
Holt et al., 2015). However, interest in the ability of creeping shale and
salt formations to form natural seals (i.e., self-sealing) along wells for the
purpose of simplifying plugging and abandonment operations has grown
substantially over the past decade (Buijze et al., 2022; Fjeer et al., 2023).

Most research on natural well sealing has focused on shales from the
North Sea (Fjer et al., 2023; van Oort et al., 2022a, van Oort et al.,
2024). Studies have developed experimental methods that use modified
triaxial cells to test the capacity of shales to form a seal at reservoir
conditions (Fjeer and Larsen, 2018; Thombare et al., 2020). The sealing
ability of shales has also been demonstrated using finite-element nu-
merical models populated with rock properties measured during labo-
ratory testing (Enayatpour et al., 2019; Fjer et al., 2016) and pressure
tests performed in the field (Williams et al., 2009). Sealing of well
leakage pathways with rock salt (i.e., halite) formations in the North Sea
have also been explored through field (Loizzo et al., 2024) and numer-
ical studies (Orlic et al., 2019) but have been less of a research focus.

Shales that form barriers exhibit ductile behavior and have low shear
stiffness, Young’s modulus, cohesion, unconfined compressive strength,
and friction angle. In general, these shales are high porosity with low
permeability and have a high clay content (in particular smectite) and
low quartz and carbonate content (low matrix cementation) (Fjer et al.,
2023). Shale barriers can be facilitated (i.e., “activated™) by heating the
wellbore (Bauer et al., 2017; Xie et al., 2020), dropping the annular
pressure (Kristiansen et al., 2021, 2018), or changing the annular fluid
chemistry (Gawel et al., 2021; van Oort et al., 2022a). Sonic and ul-
trasonic logging tools can detect shale barriers if they are calibrated on
seals confirmed through pressure testing (Diez et al., 2022; Holt et al.,
2017; van Oort et al., 2022b; Williams et al., 2009).

Shale has been accepted as a barrier for the purposes of well plugging
and abandonment by the Norwegian Petroleum Safety Authority (PSA)
for nearly two decades. The Norwegian PSA accepts shale barriers
because they can form impermeable, long term, non-shrinking, and
ductile seals that meet the requirements of NORSOK D-010 (Williams
et al., 2009). Shales with sealing properties have also been documented
in the U.S. Gulf Coast (Clark et al., 2005; Davis, 1986; Johnston and
Knape, 1986; Nicot, 2009; Warner et al., 1997). However, most reports
of sealing shale in the U.S. Gulf Coast are qualitative. Only Clark et al.
(1987) has quantified the sealing ability of Gulf Coast shales to
demonstrate that natural well closure can reduce the long-term risks
associated with hazardous waste injection. The authors drilled a test
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well near Orangefield, Texas and measured the ability of Miocene-age
shale to close a 27.9 cm (11 inch) open hole. The authors found that
shale closed the hole within one week and pressure tested the seal to
0.97 MPa (140 psi).

Natural sealing of legacy well leakage pathways is an important
future research area for GCS. Shale or salt sealing of microannuli,
partially cemented or uncemented well annuli, or uncased open holes,
has the potential to substantially reduce the need for well plugging and
corrective action. Relying on natural sealing processes may also be the
only technically viable option for some wells that are inaccessible due to
borehole collapse or a previous plugging and abandonment operation.
While many studies have considered the impact of CO, on shale swelling
in the context of caprocks (Busch et al., 2016), studies of natural sealing
under conditions relevant to GCS are limited to shale sealing of COy
injection well annuli (van Oort et al., 2024). More work is needed to
understand the performance of natural shale and salt seals for all po-
tential legacy well leakage pathways under reservoir conditions ex-
pected at GCS sites with exposure to relevant reservoir fluids (e.g., brine,
CO, saturated brine, or supercritical CO3) (Fig. 1). Methodologies for
validating natural well barriers without direct access to a well would be
particularly valuable. Regulatory acceptance of shale annular barriers
for well plugging and abandonment require field demonstrations, lab-
oratory testing, and numerical modeling efforts. Thus, it is reasonable to
expect that field, laboratory, and modeling studies will be needed to gain
confidence in natural well sealing for GCS.

5.6.4. Cost

The problem of costing legacy well interventions has been central to
GCS project development for decades, from early risk assessment to
operational site management and decommissioning (Torszter et al.,
2024). However, given the small number of projects that have under-
taken interventions, and sparse data on related costs and outcomes, it
remains challenging to identify representative and meaningful costs.
The very small amount of data available suggests that costs per legacy
well potentially run to millions of dollars onshore and tens of millions of
dollars offshore. However, there is barely sufficient data to estimate the
mean cost for either setting, or to establish the statistical likelihood of a
successful intervention. The challenging lack of data in the public
domain on known interventions prompted us to canvas domain experts
with many decades of combined experience, and, in some cases, direct
experience of the storage demonstrations and pilots with known well
interventions outlined below (Table 4).

Table 4
Eleven GCS projects with known well interventions and availability of cost data.

Project Country  Year Intervention Required Costs

Sleipner NOR 1996  Injection well intervention to improve No
flow circa 1996

Weyburn CAN 2000  Many routine well interventions to No
manage EOR flood

In Salah DZA 2004  All CO, wells permanently suspended No
from 2011

Ketzin DEU 2008  Monitoring well intervention to observe ~ No
casing in 2015

Otway AUS 2008  Monitoring well interventions in 2017 Yes
and 2024

Snghvit NOR 2008  Injection well intervention to change No
injection interval 2011

Decatur USA 2011  Legacy well and monitoring well Yes
interventions 2024

Goldeneye  GBR N/A Legacy well review and interventions No
costed 2012 to 2015

Quest CAN 2015  Well program for identified legacy wells ~ No
2012 to 2015

Gorgon AUS 2019  Water abstraction well interventions No
planned for 2025

Ruby DNK 2030  Rgdby-2 (1953) successfully re-entered No

and inspected 2025
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In addition to the eleven projects listed above, six European projects
have recently passed a final investment decision (FID): Aurora, Endur-
ance, Greensand, Hamilton, Porthos, and Ravenna. These offshore pro-
jects will have submitted detailed and costed plans for legacy well
intervention programs. Presumably, the legacy well counts for the
depleted hydrocarbon fields — Greensand, Hamilton, Porthos, and Rav-
enna - are much higher than their saline aquifer counterparts. The cost
estimates for the six projects are not in the public domain.

The USA has also recently seen thirteen onshore Class VI wells
permitted circa 2024 — EPA (11) and North Dakota (2) — with over one
hundred more permits under review. Many, if not all of these, will have
submitted costed legacy well intervention programs for their areas of
review (AoR). The costs are redacted in the public documentation.

The dearth of cost data in the public domain partly reflects a lack of
experience but also an unwillingness to share the little data availa-
ble—legacy well costs are a sensitive issue for operators. However,
recent studies on hydrocarbon legacy well remediation shed some light.
For legacy wells in general, the average cost for simply plugging an
onshore well in the USA has been reported as $20k (Raimi et al., 2021).
The same study, based on 19,500 wells across four US states, found that
the average cost for plugging and surface reclamation was $76,000; the
P10 for the study was $160,000 per well in 2019. Costs more than $1 M
were rare, with outliers reported at $1.6 M and $2.2 M in Texas. Haden
Chomphosy et al. (2021) estimated a similar average cost of $49,000 per
legacy well for the USA. For known GCS project data — Decatur, USA and
Otway, Australia — onshore costs were consistently $1M-$2 M, sug-
gesting that, on the little evidence available, CO5 legacy well in-
terventions tend to be at the upper end of the cost curve. Taking $50,000
as a low value and $1.5 M as a high value, a logarithmic mean for
onshore wells might be around $275k. This is purely speculative.

Offshore costs are much higher. The highest cost for a legacy well
intervention in the North Sea was estimated to be around $50 million,
with an expectation of several million dollars per well. This reflects rig
hire rates that can exceed $250k per day and is supported by cost data
from Offshore Energies UK for recent decommissioning on the UK
Continental Shelf (Offshore Energies UK, 2022) (Fig. 8).

Some further North Sea context is provided by the Norwegian Gyda
oil field which was studied as a potential GCS site by Albrigtsen (2015).
The thirty-year old field was decommissioned from 2020 to 2025 at an
estimated cost of $624 M, including the permanent abandonment of 32
wells. However, discrete costs for the well abandonment operations are
not available. Offshore Energies UK estimated that wells account for 48%
of North Sea decommissioning costs, followed by topside and subsea
infrastructure removal (Offshore Energies UK, 2022). Applying that
metric to Gyda, the average decommissioning cost would be $9 M per
well.

Assuming an order of magnitude distribution and slightly higher cost
profile for GCS wells, the costs for offshore interventions might be $5 M
to $50 M, with a logarithmic mean of around $15 M per well. These
estimates are again purely speculative. Furthermore, there are planned
interventions and crisis response interventions, routine and ongoing
monitoring interventions, and site closure interventions, all with distinct
cost profiles. There is no single indicative price for a legacy well inter-
vention, with costs being specific to the site and the well. Generaliza-
tions are unlikely to be helpful.

It is tempting, in the absence of data, to borrow assumptions from the
much larger domain of oil and gas field operations, especially CO2-EOR
operations with their long history of legacy well management
(Chukwuemeka et al., 2023; Hannis et al., 2017; Whittaker et al., 2011).
Studied onshore EOR legacy well populations date back to the
1940s—for example, the SACROC site with over 1000 legacy wells in an
80 square mile area had no evidence of leakage. SACROC is known to
have been actively managed for legacy well workovers and maintenance
as needed, however these costs are not known.

Offshore, hydrocarbon well interventions are a common aspect of
field management and decommissioning, as illustrated by the Gyda field
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Fig. 8. Offshore well decommissioning costs for the United Kingdom. (Adapted from: Offshore Energies UK 2022).

example. However, discrete costs for well abandonment operations are
not routinely available. A known issue when attempting to draw par-
allels between common practice for oil and gas operations, such as well
abandonment, and CO,, storage, is that the cost of legacy well manage-
ment and abandonment is frequently obscured by various financial in-
struments including internalized cost offsetting and tax exemptions
relating to the various stages of field development, management, and
decommissioning of hydrocarbon fields (Ho et al., 2016). The estimation
of costs for CO»-EOR legacy well interventions is not straightforward nor
necessarily indicative of intervention costs for GCS sites. At present, the
general indication is that legacy well remediation costs are expensive
and uncertain (Fig. 9). Given this, even a small number of legacy wells
are likely to exclude prospective storage areas from serious consider-
ation unless the wells are thoroughly documented and in good
condition.

6. Future direction and research needs
Over the past ten years, the collective understanding of legacy well

integrity, risks, and effective methods for managing those risks at
geologic carbon storage (GCS) sites have advanced substantially. This

$300k? ONSHORE

Oil and Gas P&A
@ CO,Storage
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Number of wells, N
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\
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progress came through growing efforts to characterize emissions from
abandoned oil and gas wells, a continued focus of the research com-
munity on the performance of well materials under CO, storage condi-
tions, and the practical experiences gained from the implementation of
GCS at brownfield sites.

Field observations of well integrity and leakage show that oil and gas
wells develop integrity issues over a wider range than previously re-
ported due to several factors including well condition and local geology.
Emissions from abandoned wells are probabilistic in nature, span several
orders of magnitude, and are controlled by the characteristics of leakage
pathways and near-surface modulation. Future research should focus on
directly testing and refining the analogue relationship between methane
and CO: leakage from legacy wells. While methane emissions provide a
valuable empirical basis for assessing containment behavior, key un-
certainties remain about how faithfully they represent CO- migration.
Comparative field experiments that expose identical wellbore and near-
surface systems to both gases are needed to quantify differences in
transmissivity, phase behavior, and reactive alteration. Sustained multi-
seasonal monitoring would also clarify the persistence and intermittency
of leakage and its modulation by environmental drivers. Further work is
required to quantify detection thresholds, reconcile surface-flux and
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Fig. 9. The approximate cost of legacy well interventions for onshore and offshore projects based on scant data.
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downhole indicators, and build harmonized statistical datasets that link
well attributes with leakage probability and magnitude. Targeted
offshore investigations and benchmarking of analogue predictions
against emerging GCS-monitoring results will ultimately determine how
transferable these methane-based analogues are to CO: containment
scenarios and will strengthen the empirical foundation for future risk
assessment.

Well materials research has constrained the conditions under which
Portland cement exhibits self-sealing and non-sealing behavior in the
presence of COy-rich fluids. However, characteristics of the leakage
pathway and CO» phase in contact with the wellbore will impact the rate
and extent of reaction. Initial experiments with humid CO; show a
reduction in reactivity, which reduces leaching and associated degra-
dation effects but simultaneously may reduce self-sealing potential. The
presence of impurities such as HsS can also alter cement carbonation.
Chemical alteration has been shown to significantly impact the me-
chanical properties of cement, which can influence both the develop-
ment of defects and their subsequent evolution as potential leakage
pathways. Collectively, well material research findings continue to
emphasize that focusing on chemical reactivity alone without consid-
ering the full hydrodynamical, mechanical and geometrical context can
lead one to draw incorrect conclusions, which has been previously noted
by Zhang and Bachu (2011), Carroll et al. (2016), and especially Carey
(2013) in their reviews on the subject. Despite this, studies continue to
refer to COy-induced reactions as “degradation” or “attack” without
defining these terms or thoroughly addressing the impact or significance
of observed reaction effects on zonal isolation integrity at the well scale.
Future research should continue exploring the interplay between
chemical reactions and hydrodynamical and geomechanical factors. Lab
studies should expose well cement in representative geometries, under a
realistic stress state and temperature, to a variety of CO»-rich fluids that
capture the range of compositions (including impurities) expected in the
field. Numerical studies should evaluate the significance of observed
reaction effects by modelling their impact on mechanical and hydraulic
integrity at the well-isolation scale. These intimately coupled
reaction-transport-mechanical processes ultimately impact cement sus-
ceptibility to defect formation, which can drastically change the hy-
drodynamic conditions along the well. Further work on methods for
upscaling reactive transport models that simulate chemical reactions
observed in the laboratory to wellbore dimensions is also needed.

New legacy well risk management workflows have been proposed
that integrate many elements of legacy well risk assessment research
with economic and regulatory constraints to determine the need and
feasibility of mitigative actions. These workflows include the location,
integrity characterization, screening, risk assessment, and risk mitiga-
tion of legacy wells. Technological advances in unmanned aircraft sys-
tems, machine learning, and artificial intelligence have reduced the
costs of legacy well finding and well record digitization to facilitate well
location and characterization; however, the inaccessibility (i.e., non-
public) or lack of historic well records remains a major barrier in
some regions. Researchers have begun developing non-invasive methods
for legacy well integrity assessment, but more work is needed to make
non-invasive tools valuable in the field. Multiple systems have been
developed to evaluate and rank wells based on their construction, which
are valuable for well screening. Screening methods based on scores
predicted with high-level well attributes remain speculative but may be
useful for regional evaluations where detailed well data are unavailable.
Legacy well risk assessment research has predominantly focused on GCS
site performance models—a quantitative method. Wide application of
the NRAP Open-IAM, a flagship GCS risk assessment tool developed by
the U.S. Department of Energy, has enhanced its capabilities for legacy
well simulation but gaps remain in the software for site permitting ap-
plications. The probabilistic approach used by most GCS site perfor-
mance models also does not quantify the risks of leakage through
multiple relevant well leakage mechanisms. Case studies that include
detailed scenario-based modeling of well leakage mechanisms relevant
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to specific GCS projects would be valuable. Risk mitigation research has
focused on advancing annular cement remediation technologies that
have the potential to increase the success rate of cement squeeze jobs
and other operations that may be needed to ensure zonal isolation along
legacy wells. However, deployment of these technologies requires well
access, which remains challenging and expensive for abandoned wells,
particularly offshore. Natural risk mitigation factors such as shale creep
have the potential to close leakage pathways along legacy wells and
reduce the need for well intervention—the timeline over which the
creep behavior of different shales occur and their ability to seal wells
under CO, storage conditions are not well understood and would be
valuable subjects of future research.

Larger questions also remain about acceptable tolerances for legacy
well leakage risk and leakage rates in regulated settings. Intervention is
expensive and may be impossible for some legacy wells. The risk
reduction gained through well remediation may be negligible when
weighed against intervention costs. Additionally, as observed by
Torsaeter et al. (2024), the leakage risks associated with legacy wells can
never be fully eliminated. Thus, regulatory tolerances for legacy well
leakage risk will determine the feasibility of many GCS projects. While
risk frameworks such as ALARP allow for cost-benefit analysis, NSR and
the non-risk approach used in the U.S. Class VI rule do not permit such
comparisons. Regulations are also not prescriptive when it comes to
acceptable leakage rates. The Northern Lights and Sleipner projects use
50 kg m? day! of CO, as leakage thresholds to trigger investigation.
Assuming a single point source occurrence at a legacy well, the leakage
rate sums to just under 20 tonnes per year. For a commercial project like
Northern Lights, storing hundreds of millions of tonnes of COg, this
effectively implies that the containment expectation is 99.99%.
Compare this to the quite common expectation of 90% capture for in-
dustrial carbon management projects. Further cooperation between
regulators, operators, and researchers is needed to define acceptable
tolerances for legacy well leakage to ensure the societal benefit of GCS.
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