

A decade of progress in understanding and managing legacy well integrity for geologic carbon storage

Greg Lackey ^{a,*} , Timotheus K.T. Wolterbeek ^b , Aaron Cahill ^{c,d} , Andrew Cavanagh ^e , Al Moghadam ^f , Jaisree Iyer ^g , Preston Jordan ^h , Rajesh Pawar ⁱ

^a Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, CO 80309, USA

^b Shell International Exploration and Production B.V., Grasweg 31, 1031 HW, Amsterdam, NL

^c The Lyell Center, Heriot-Watt University, Edinburgh EH14 4BA, UK

^d Institute of Geoenergy Engineering, Heriot-Watt University, Edinburgh EH14 4AS, UK

^e Edinburgh Climate Change Institute, University of Edinburgh, Edinburgh EH1 1LZ, UK

^f TNO Energy and Materials Transition, Utrecht, NL

^g Lawrence Livermore National Laboratory, Livermore, CA, USA

^h Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

ⁱ Earth and Environmental Sciences Division, Los Alamos National Laboratory, NM, 87545, USA

ARTICLE INFO

Keywords:

Carbon capture and storage
Geologic carbon storage
Legacy wells
Well integrity
Well leakage
Risk management

ABSTRACT

This study reviews a decade of research progress in legacy well integrity and risk management for geologic carbon storage (GCS) to commemorate the 20th anniversary of the Intergovernmental Panel on Climate Change's 2005 Special Report on Carbon Capture and Storage. In the past ten years, legacy well research has benefited from global efforts to constrain emissions from abandoned oil and gas wells, a continued focus on well materials performance in the presence of CO₂-rich fluids, and practical experience gained through GCS implementation. Field measurements of abandoned well emissions show that leakage is not universal or catastrophic but forms a continuum of low-to-moderate fluxes that depend on isolation integrity and environmental attenuation. Materials research has constrained the conditions under which Portland cements exhibit self-sealing and non-sealing behaviors, and has identified the impact of geomechanical properties, non-uniform pathway apertures, multi-phase flow, and impurities in the CO₂ stream, on leakage pathways as important new areas for investigation. GCS projects at brownfield sites have inspired the creation of new workflows that integrate various tools and technologies to manage legacy well leakage risks. GCS implementation has also motivated a push towards scenario-based well modeling that directly informs permit applications. These advances inspire new research questions for the coming decade, particularly around the level of legacy well leakage risk that is environmentally acceptable and tolerable to stakeholders when sequestering millions of tonnes of CO₂ annually.

1. Introduction

Legacy wells are any active, suspended, or abandoned wells drilled prior to geologic carbon storage (GCS) operations for hydrocarbon production, waste disposal, geothermal projects, or another purpose. The 2005 Intergovernmental Panel on Climate Change's (IPCC) Special Report on Carbon Capture and Storage (SRCCS) identified legacy wells as one of the greatest challenges for GCS (IPCC, 2005). At the time, the carbon capture and storage (CCS) industry was nascent with only four active projects dedicated to CO₂ injection (Gale et al., 2001; IPCC, 2005). However, there were many CO₂ enhanced oil recovery (EOR) and

acid gas injection operations, which provided a technical base of understanding for the development of GCS (Bachu and Gunter, 2004; White et al., 2004). The legacy well discussion in the SRCCS is broad and outlines the basic elements of legacy well management: locating wells, characterizing their integrity, evaluating leakage risks, and mitigating risks through plugging or remedial action. The key legacy well research gaps identified in the SRCCS were: (i) understanding well integrity and well leakage, especially well material degradation from exposure to supercritical CO₂ and acidified brine, and (ii) the development of risk assessment methodologies capable of predicting the long-term performance and containment risk of legacy wells at GCS sites (IPCC, 2005).

* Corresponding author at: Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, Colorado 80309, USA.
E-mail address: Gregory.Lackey@colorado.edu (G. Lackey).

GCS expanded globally over the following decade (Finley, 2014; Flett et al., 2009; Tanaka et al., 2014; Torp and Gale, 2004; Xie et al., 2014). Between 2005 and 2015, many countries developed regulations for underground CO₂ injection, and significant technical experience was gained through international GCS field projects which cumulatively injected 50 million tonnes of CO₂ (Jenkins et al., 2015). Pawar et al. (2015) reviewed advances made in GCS risk assessment over this period for the *International Journal of Greenhouse Gas Control's* special issue commemorating the 10-year anniversary of the SRCCS and in the process highlighted progress relating to legacy well research. Researchers pursued efforts that addressed the well integrity and risk assessment knowledge gaps identified in the SRCCS report. Field and experimental studies showed that, while supercritical CO₂ and acidified brine react with well materials, exposure to these fluids does not always degrade the integrity of a well as both Portland cement and low-carbon steel casings are resistant to degradation in environments where the degree of fluid exposure is limited (Carey, 2013; Carroll et al., 2016; Crow et al., 2010; Duguid et al., 2011; Han et al., 2012). New qualitative (e.g., bow tie, risk register), semi-quantitative, and quantitative risk assessment methods (e.g., evidence supported logic and GCS system performance models) that use expert elicitation, leakage incident frequency from analogous operations (e.g., gas storage, oil and gas production), and well leakage modeling were also developed (Bourne et al., 2014; Hnottavange-Telleen, 2014; Oldenburg et al., 2009; Pawar et al., 2014). Key research gaps identified in 2015 were the range of conditions over which well materials experience self-healing behavior and the need for case studies that help validate and reduce the uncertainty associated with quantitative risk assessment methods (Pawar et al., 2015).

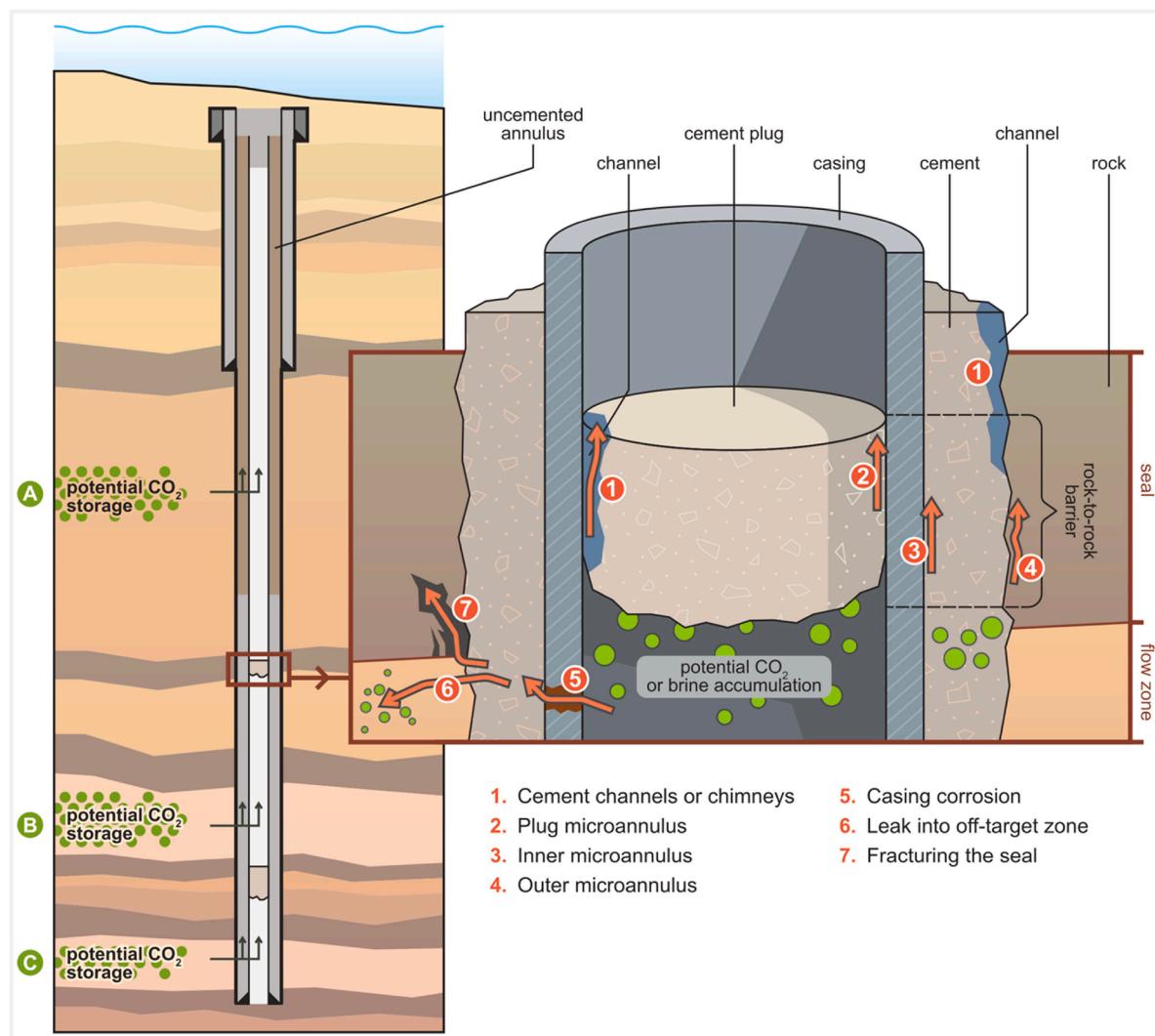
Another decade has elapsed since the publication of the SRCCS. Today, hundreds of GCS projects are in various phases of development across the globe and 384.6 million tonnes of CO₂ have been sequestered in the subsurface (Gao and Krevor, 2025; Global CCS Institute, 2025). A substantial number of active and planned projects are operating in reservoirs penetrated by legacy wells. For example, at least 534 legacy wells are in the proposed areas of 63 GCS projects in the United States (U.S.) alone (Table 1). Legacy well integrity and risk management research has progressed alongside this implementation of GCS. In this study, we review the past decade (2015–2025) of legacy well research to build on the reviews contained in the SRCCS and Pawar et al. (2015). After providing background on legacy well integrity and leakage (Section 2), our review considers three major areas: field observations of well integrity and well leakage (Section 3), processes affecting leakage pathways (Section 4), and legacy well risk management (Section 5). We conclude by highlighting current knowledge gaps and future research needs to help shape the next decade of legacy well research.

Table 1

Count of legacy wells that penetrate the caprock of active or proposed GCS reservoirs as described in U.S. Class VI permit applications organized by basin. Legacy well information was only available for 63 of the 116 active permit applications. Permit applications were accessed through CCUS Map ("CCUS Map," 2025).

Basin	Permit Applications	Legacy Well Count
Anadarko	1	4
Appalachian	2	0
Arches	3	0
Denver	4	1
Gulf Coast	23	392
Illinois	9	0
Permian	2	3
Powder River	1	17
Sacramento	5	76
San Joaquin	1	15
Williston	8	16
Greater Green River	2	10
San Juan	1	0
Palo Duro	1	0
Total	63	534

2. Well integrity and leakage


Leakage is the primary concern associated with legacy wells at GCS sites. Pre-existing wells that penetrate CO₂ injection reservoirs or their caprocks can provide a direct pathway for reservoir fluids to escape the permitted storage zone (Gasda et al., 2004; Iyer et al., 2022). However, there is no universally accepted regulatory definition of a well leak across jurisdictions. In this review, we use the following definitions for terms related to well leakage:

- The **permitted storage zone** is a three-dimensional volume within a geologic formation(s) that is approved in a CO₂ injection permit, outside of which the movement of reservoir fluids would be a permit violation. In the U.S., the permitted storage zone is the injection zone, which is defined as a "geologic formation, group of formations, or part of a formation that is of sufficient areal extent, thickness, porosity, and permeability to receive CO₂ through a well or wells associated with a geologic sequestration project." In Europe, the permitted storage zone aligns with the storage complex, which is defined as a volume area within a geologic formation used for geological storage of CO₂ (i.e., the storage site) and the surrounding geologic domain that can impact storage integrity and security including secondary containment formations (European Commission, 2009; U.S. EPA, 2018).
- **Well leakage** is the uncontrolled flow of fluids such as injected CO₂, brine, or hydrocarbons through a wellbore and into the surrounding environment (i.e., subsurface, atmosphere, or ocean) above the boundary of the permitted storage zone (adapted from Oldenburg et al. 2009). If CO₂ leakage enters the linked ocean-atmosphere system it is considered an emission.
- **Fluid migration** is the upward movement of fluids through a pathway (e.g., uncemented annulus, microannulus) within a wellbore. Fluid migration becomes leakage if the migrating fluids escape the well system above the permitted storage zone.

Another useful set of terms to define are related to well integrity:

- **Well integrity** is defined as the "application of technical, operational and organizational solutions to reduce risk of uncontrolled release of formation fluids throughout the life cycle of a well" (NORSOK, 2013).
- **Well integrity issues** describe fluid migration through a well that is contained within a well system.
- **Well integrity loss** occurs when migrating fluids escape the well system and enter the surrounding environment. Well integrity loss is synonymous with well leakage if fluids escape the well system above the permitted storage zone.

Well leaks require a (i) driving force, (ii) a pathway for fluids, and (iii) an outlet or mechanism for the release of fluids from the well system. CO₂ injection creates the driving force for legacy well leaks as increasing reservoir pressure above hydrostatic can drive the flow of CO₂, brine, and other reservoir fluids upward along a wellbore. Supercritical CO₂ is also less dense than brine and will naturally migrate upward through pathways along a well due to buoyancy. The degree to which CO₂ injection drives leakage is impacted by the characteristics of the reservoir and the injection schedule (Torsæter et al., 2024). The presence of fluid migration pathways in legacy wells depends on their construction and abandonment design, and the integrity of the well materials, both of which vary widely (Fig. 1). Improper installation or breakdown of well materials during the operational lifetime of the well can also create leakage pathways along wellbores. Additionally, GCS creates unique chemical stresses in the subsurface, which have been shown not to impact well materials in restricted flow environments but must be considered when evaluating leakage pathways (Zhang and Bachu, 2011). Common outlets for fluids from the well are subsurface

Fig. 1. An example well schematic for a modern legacy well showing (left) CO₂ entry points into a well system from multiple potential CO₂ storage zones, and (right) seven fluid migration pathways and various formation mechanisms. The storage scenarios shown (A, B, and C) represent decreasing degrees of leakage risk from A to C. In A, injected CO₂ and reservoir brine can migrate upward through an uncemented well annulus unimpeded by well materials. In B and C, reservoir fluids must migrate through increasing lengths of annular cement and an increasing number of well plugs.

pathways (e.g., faults, fractures networks, high permeability zones) that intersect the well where integrity has been lost and vents. Release mechanisms include over-pressuring the outermost annulus of the well through high sustained casing pressure or, in extreme circumstances, well material failure and blowout (Lackey and Rajaram, 2019). Estimated legacy well leakage rates vary widely based on GCS site operating conditions and leakage pathway characteristics. For example, CO₂ leakage rate estimates vary between 0.003 and 1.4 tonnes per day for microannular flow and >3000 tonnes per day for well blowouts (Moghadam and Amiri, 2025; Oldenburg and Pan, 2020).

3. Field observations of well integrity

Large-scale GCS projects are only now emerging. Consequently, there are almost no direct observations of CO₂ leakage along legacy wells that intersect or lie within candidate GCS sites outside controlled experiments. This absence of real-world evidence presents a persistent challenge for assessing containment integrity: while numerical and geomechanical models can simulate potential leakage, their parameterization and validation remain largely unconstrained (Vielstädt et al., 2019). However, a subset of this well population, which now intersects many prospective storage domains, has been widely observed across

multiple regions to emit methane (CH₄) and other hydrocarbons under post-abandonment conditions, although reported leakage rates span a wide range. In this context, methane leakage from legacy petroleum wells, particularly when associated with deeper hydrocarbon sources rather than shallow biogenic production, offers an instructive analogue.

Mechanistically, the pathways documented in methane-emitting wells are largely the same as those that govern CO₂ migration through equivalent infrastructure under storage conditions. Debonded cement-casing interfaces, corroded tubulars, and degraded plugs constitute mutual leakage routes (Bai et al., 2016; Kiran et al., 2017; Vrålstad et al., 2019). Field investigations of CH₄-emitting wells also illustrate how leakage manifests at the surface and the practical challenges of detection. Consequently, the methane-leakage record constrains the likely frequency, geometry, and progression of integrity failure in legacy wells that may later become exposed to stored CO₂. What differs are the fluid properties and near-surface behavior: CO₂ is denser and significantly more soluble in water than CH₄, it is reactive with cement and formation water, and, unlike methane, lacks a microbial oxidative sink in soils (though dissolution and plant uptake can modulate near-surface persistence) (Celia et al., 2009; Le Mer and Roger, 2001). These physical and chemical differences influence the style and driving forces of leakage, for example, the greater density of CO₂ reduces

buoyancy and may slow upward migration, but they do not substantially alter the underlying probability of barrier failure or leakage initiation. Recognizing these distinctions allows lessons from methane leakage to be applied judiciously, rather than directly, to define a realistic envelope for leakage frequency and magnitude against which GCS containment models can be benchmarked.

Over the past decade, increasing well integrity testing requirements and a global push to constrain sources of greenhouse gas emissions has progressed the collective understanding of petroleum well integrity. Researchers have analyzed large regulatory datasets of operator performed integrity testing results to diagnose sustained casing pressure (SCP) and surface-casing-vent flow (SCVF) in wells—two widely used indicators of integrity issue occurrence. Researchers have also used a variety of field methods to measure methane emissions from abandoned oil and gas wells. Together, these studies provide insight into the frequency and magnitude of well integrity loss and associated leakage, although direct linkage to reservoir-scale flow is not established in all cases.

3.1. Frequency and detection of leakage

Understanding how often legacy wells leak is central to evaluating CO₂ containment risks at GCS sites. In this context, incidence refers to the baseline probability that a given legacy petroleum well could act as a pathway for fluid migration once intersected by a CO₂ plume. Recent studies have begun to quantify this empirically, revealing that integrity loss is not exceptional and that observed frequencies depend strongly on the methods used to evaluate integrity and the well populations examined.

Direct ground campaigns that measured methane emissions from fully or partially plugged and abandoned wells provide a dataset that is most relevant to GCS (Schout et al., 2019). In one study, detailed site-level investigations reported indications of leakage in roughly half of the nine surveyed wells when using sensitive ground methods (Cahill et al., 2025, A.G. 2023). A broader regional study in northeastern British Columbia combined aerial detection with targeted ground verification (Pozzobon et al., 2023). Methane plumes were detected from a few percent of > 400 non-producing wells in the aerial survey, and roughly one-third of those detections were confirmed by ground-based flux measurements (i.e. ~1–2% of the full scanned set under the survey conditions). The low apparent incidence primarily reflects higher detection thresholds and sampling logistics of aerial methods (instrument sensitivity, altitude, plume-stability criteria, revisit rate, etc.), not necessarily an absence of leakage. Ground-based techniques with detection limits near ~1 g CH₄ m⁻² d⁻¹ (often lower, method-dependent) reveal that measurable gas release is common when investigations are sufficiently sensitive. Therefore, the pattern is clear: the more sensitively we look, the more we find.

Large regulatory databases that record operator-performed well integrity tests for SCVF or SCP across mixed active, suspended, and abandoned wells show integrity issues in roughly 0.5–15% of cases, depending on jurisdiction and reporting threshold (Davies et al., 2014; Ingraffea et al., 2014; Lackey et al., 2025, 2021; Sandl et al., 2021; Watson and Bachu, 2009; Wisen et al., 2020). It should be noted, however, that SCP and SCVF do not always indicate a total loss of containment and are permitted in producing wells within specified limits in some jurisdictions. SCVF may also be managed as a regulatory risk-mitigation measure to protect shallow groundwater resources. Tested well populations predominantly include active wells, which provide insight into the integrity of modern wells at GCS sites, with interpretation and regulatory response to indicators such as SCVF varying by jurisdiction. Reported figures likely represent conservative lower bounds for integrity issue frequency, influenced by self-reporting and minimum-flow criteria. Nevertheless, they demonstrate that integrity impairment is widespread in mature well populations and that detectable flow or pressure anomalies are a routine feature of well

infrastructure. Field investigations of smaller subsets typically fall within or above this range, confirming that regulatory data undercount low-rate and intermittent emissions in some jurisdictions (Boothroyd et al., 2016; Kang et al., 2014; Lebel et al., 2020).

Across both evidence classes, leakage frequency is conditional on context. Older wells, those drilled with deviated geometries, or those abandoned before modern cementing and verification standards tend to show higher probabilities of detectable leakage (Gonzalez Samano et al., 2023; Pullen et al., 2025; Sandl et al., 2021). In contrast, contemporary abandonment programs reduce, but do not eliminate, risk. Incidence should therefore be treated as a context-dependent distribution, not a fixed value. Comparable European studies report similar orders of magnitude, emphasizing the generality of this behavior (Blumenberg et al., 2025; Boothroyd et al., 2016; Vrålstad et al., 2019). From a CCS perspective, the analogue message is straightforward: within any storage domain containing legacy wells, measurable gas release from a subset of wells is likely if investigations are sufficiently sensitive. Leakage frequency is thus an inherent property of mature well populations rather than an anomaly. However, the majority of observed indicators (e.g. SCVF) reflect shallow annular or near-surface leakage, whereas CCS relevance arises primarily from the subset of cases involving deeper, reservoir-connected pathways.

3.2. Magnitude, variability, and consequence of leakage

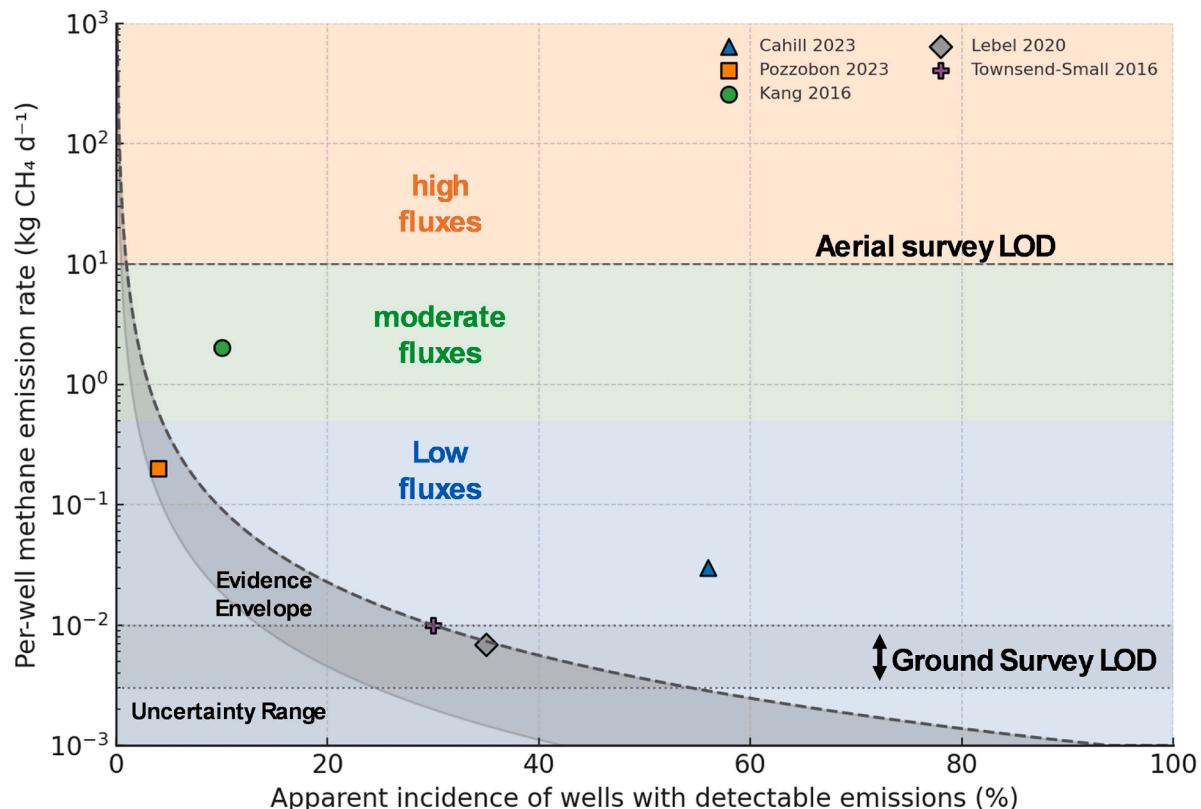
The magnitude of leakage determines consequence. For legacy wells intersecting prospective storage domains, the rate and persistence of any flux, determine its environmental and operational significance. Unless otherwise stated, fluxes cited here are expressed as total per-well emission rates (kg CH₄ d⁻¹); where per-area fluxes (g m⁻² d⁻¹) are referenced, they represent local surface maxima and are not directly comparable without spatial integration.

Field investigations across several mature petroleum regions show that where leakage occurs, emissions are typically small and often attenuated in the near-surface zone. Detailed site measurements document both minor CH₄–CO₂ co-emission and elevated CO₂ flux without detectable CH₄, consistent with near-complete oxidation of fugitive gas in shallow soils (Cahill et al., 2025, 2023; Le Mer and Roger, 2001). Reported per-well totals are generally modest, i.e. commonly tens to a few hundreds of kilograms per year, though distributions are strongly right-skewed with infrequent high emitters (Lebel et al., 2020; Riddick et al., 2019; Townsend-Small et al., 2016). Broader regional surveys that combine ground and aerial detection reach similar conclusions, with central-tendency per-well rates on the order of 0.1 kg d⁻¹ (site- and method-dependent) and only a small fraction producing higher emissions detectable from the air (Pozzobon et al., 2023). Fluxes at individual wells are temporally variable, often modulated by barometric pressure and season, underscoring the need for repeated measurements (Cahill et al., 2025; Forde et al., 2022, O.N. 2019).

It should be noted that methane detected at the surface in legacy-well studies may originate from both thermogenic (deep, hydrocarbon-associated) sources and shallow biogenic production, and in many cases represents a mixture of the two. Where source attribution has been investigated, higher-magnitude and more persistent emissions are more commonly associated with well-connected, thermogenic leakage pathways, whereas low-level or transient fluxes may reflect shallow biogenic methane or near-surface attenuation of deeper gas (Gianoutsos et al., 2024). From a CCS perspective, the analogue relevance therefore lies primarily in the subset of emissions linked to wellbore-connected leakage, which share governing flow pathways and pressure controls with potential CO₂ migration.

When interpreted collectively, the contemporary record delineates an empirical spectrum of leakage magnitudes rather than discrete categories. Measured fluxes are strongly right-skewed, consistent with an approximately log-normal distribution spanning more than five orders of magnitude, from near-zero to ~10³ g CH₄ m⁻² d⁻¹ at localized hotspots

(i.e., site-specific extremes), indicating that persistent, low-rate seepage dominates over acute failures (Lebel et al., 2020; Riddick et al., 2019; Townsend-Small et al., 2016) (Fig. 2). Most measured fluxes fall within a low-flux domain ($< \sim 0.5 \text{ kg CH}_4 \text{ d}^{-1}$), representing subtle, even undetectable seepage. A smaller number extend into a moderate range ($\sim 0.5\text{--}10 \text{ kg d}^{-1}$), detectable at the surface with standard flux methods, and infrequent outliers exceed $10\text{--}100 \text{ kg d}^{-1}$ or more, reflecting more severe integrity impairment (DiGiulio et al., 2023; Lebel et al., 2020; Townsend-Small et al., 2016). These intervals are indicative, not prescriptive, and illustrate the scale over which observed fluxes vary rather than their likelihood of occurrence.


For GCS containment, this evidence suggests that leakage, if it occurs, will most often manifest as low-rate, localized seepage, challenging to detect but of limited immediate impact. A minority of wells produce higher fluxes that dominate cumulative emissions and warrant targeted monitoring or remediation. Although near-surface microbial oxidation can reduce measured CH_4 fluxes, this does not diminish the analogue's relevance: the same structural pathways and pressure gradients govern CH_4 and CO_2 migration, even if surface expression differs (Bai et al., 2016; Kiran et al., 2017; Vrålstad et al., 2019). Taken together, these observations indicate that magnitude, not occurrence alone, determines whether a leak is consequential.

Analogue studies of methane leakage from legacy wells thus define a coherent picture of well integrity behavior relevant to GCS. They show that integrity loss is distributed across well populations rather than confined to rare, discrete failures; that leakage magnitudes span several orders of magnitude but are most often small; and that both incidence and flux are controlled by the geometry and continuity of leakage

pathways and by near-surface modulation. The same physical architecture, i.e. micro-annular flow, partial plug degradation, or compromised cement bonds, governs whether leakage manifests as very low-rate, diffusion-dominated transport or as measurable, advective flow. These controls explain the wide dynamic range observed in analogue data: most leakage pathways impose strong resistance and therefore produce low fluxes, while only a small subset of wells provide sufficiently continuous pathways to sustain higher leakage magnitudes, which are consequently rarer in well populations surveyed with adequate sensitivity. Viewed collectively, the analogue record provides a realistic empirical envelope for the behavior of legacy wells within future GCS projects: leakage is not universal or catastrophic but forms a continuum of low- to moderate-flux behavior shaped by pathway integrity, environmental attenuation, and the sensitivity of monitoring systems.

4. Processes affecting leakage pathways

A wide variety of factors can result in the presence or creation of leakage pathways along wellbores. The most notable leakage pathways in legacy wells are often created through inappropriate well isolation design. Commercial oil and gas drilling began in the mid-1800s and millions of wells have been drilled since (Carter and Flaherty, 2011; Lei et al., 2025). Well drilling and abandonment practices have evolved over the past two centuries alongside changing regulations and advances in drilling technologies, metallurgy, and cement chemistry (King and King, 2013; King and Valencia, 2014). Older wells installed prior to the development of oil and gas regulations may be completely open conduits

Fig. 2. Empirical and conceptual relationship between methane leakage incidence and magnitude for legacy petroleum wells. Verified methane-emission data from six field studies (Cahill et al., 2023; Kang et al., 2016, 2014; Lebel et al., 2020; Pozzobon et al., 2023; Townsend-Small et al., 2016) illustrate the tendency for higher per-well emission rates to be observed less frequently across surveyed populations. The x-axis shows apparent incidence (% of wells with detectable emissions, conditional on method sensitivity); the y-axis shows per-well emission magnitude ($\text{kg CH}_4 \text{ d}^{-1}$, log scale). Shaded fields mark typical flux domains and detection thresholds. The grey dashed curve represents a schematic, evidence-informed upper-bound envelope and levels of detection (LOD) for aerial and ground surveys are also noted. Together, these data define realistic limits on leakage frequency, magnitude, and detectability, providing a quantitative analogue for CO_2 -storage containment-risk assessment.

as well cementing was not standard until the early 1900s, and early plugging practices consisted of filling wells with readily available debris (King and King 2013).

Modern wells are multi-barrier systems that consist of nested strings of steel casings sealed against each other and the surrounding rock with cement to create hydraulic barriers (Fig. 1). Modern plugging practices are designed to render the well impermeable to unwanted fluid migration by establishing long-term zonal isolation through the installation of multiple mechanical and cement plugs interspersed with sections of drilling mud (King and King, 2013; King and Valencia, 2014). While these advances in well design and plugging substantially improve their sealing ability, fluid migration pathways may still exist along modern wells as they are often not designed or abandoned with future use of the subsurface for GCS in mind. Uncemented annular sections through the storage zone are common where GCS target reservoirs are shallower than hydrocarbon producing zones. The lack of a rock-to-rock barrier in line with the GCS reservoir seal is also common, as plugs are often placed above or below shallower GCS targets (Arbad et al., 2022; Jordan and Wagoner, 2017; Lackey et al., 2024). These practices either leave direct migration pathways for reservoir fluids or make the well more susceptible to their development (Fig. 1).

The existence of well barriers across storage intervals does not guarantee the prevention of well leaks; their ability to isolate fluids can be impaired by incorrect installation, material limitations, and thermomechanical stresses (Barclay et al., 2001; de Lemos, 2024; van Riet et al., 2023; Vrålstad et al., 2019). During cementing, ineffective wellbore fluid displacement may lead to cement contamination, which changes its final properties and impacts bond quality at the cement-formation interface (Agbasimalo and Radonjic, 2014; Katende et al., 2020; Ladva et al., 2005; Opedal et al., 2018, 2014). Cement placement can be further complicated by slumping or flipping of annular fluids (Eslami et al., 2022), potentially leading to channels and incomplete cement coverage (Beltrán-Jiménez et al., 2025; Haut and Crook, 1979; Kolchanov et al., 2018). Intersecting gauge cables or control lines, e.g., if placed on the exterior of the casing, can affect annular cement placement and provide additional pathways. Even under ideal placement conditions, conventional Portland cement may exhibit autogenous shrinkage (Acker, 2004; Brouwers, 2011; Geiker and Knudsen, 1982; Jandhyala et al., 2018; Lura et al., 2003; Wolterbeek et al., 2021a; Ye and Radlińska, 2016), which may result in micro-annulus formation (Corina and Moghadam, 2025; Dusseault et al., 2000; Meng et al., 2021; Moghadam and Loizzo, 2024; Roijmans et al., 2023). Pressure cycling from production, injection, or completion operations, formation movement (i.e., creep), and heating or cooling of the near well region, due to fluid injection or cement cooling, all change the stress state of well cement, which can create radial cracks, flat horizontal cracks (i.e., disking), and microannuli due to debonding (Albawi, 2013; Kuanhai et al., 2020; Lei et al., 2025; Moradi et al., 2020; Roy et al., 2016; Wolterbeek and Hangx, 2023).

Alteration of well materials upon interaction with chemicals encountered in subsurface formations and pore fluids, whether native or introduced during GCS activities, can also result in damage to legacy wells and thereby affect leakage potential. Corrosion of legacy well casings, which typically consist of mild steel, is a major concern for GCS and has recently been reviewed by Choi et al. (2013), Cui et al. (2019), and Wang et al. (2024). Carbonic acid reacts with steel casings to form mixed iron-calcium-carbonates or ferrous iron hydroxides (pH dependent), which can manifest either uniformly across the casing or locally through pitting corrosion (Dalla Vecchia et al., 2020; Wolterbeek et al., 2013). The impact of steel corrosion depends strongly on hydrodynamical conditions. In the case of unprotected steel, e.g., free pipe or otherwise directly exposed casing sections along wellbores, corrosion rates can reach up to several millimeters per year (Han et al., 2011; Seiersten and Kongshaug, 2005; Zhang et al., 2013). Accumulation of mineral scale on the steel surface through corrosion reactions (Supplemental Information (SI) Section S1), can slow down corrosion rates by

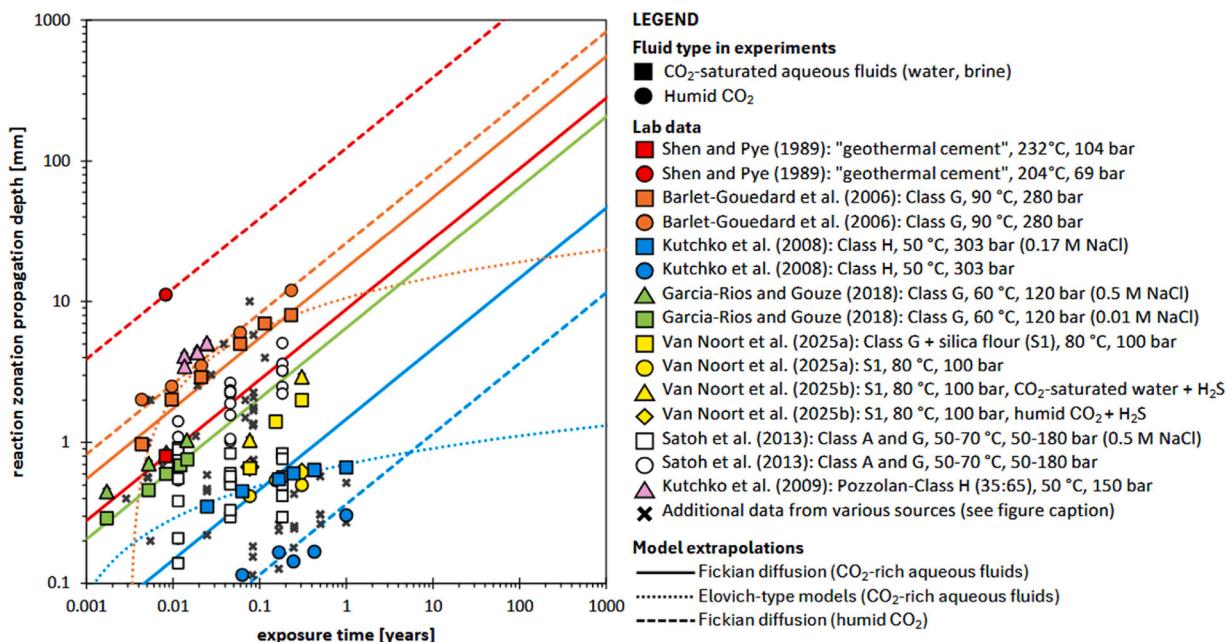
several orders of magnitude if a sufficiently dense and impermeable layer is formed (Azuma et al., 2013; Choi et al., 2013; Dugstad, 1998; Han et al., 2012; Nešić, 2007). On steel exposed to aqueous fluid, the morphology and porosity of the corrosion scale layer will depend on the relative reaction kinetics of scale formation and iron dissolution. If the rate of the latter outstrips the former, and if there is sufficient free space, scale can become highly porous and less protective (Anwar et al., 2019; Nešić, 2007).

Portland cement is also susceptible to a variety of chemical processes in the subsurface that include: mass-loss due to leaching by percolating water, metal cation-induced cement alteration, sulphate-induced reactions, and carbonation from exposure to CO₂-rich fluids—detailed descriptions of which are provided in SI Section S1 (Bao et al., 2022; Carey, 2013; Taylor, 1997; Warren, 1997). Reactions between Portland cement and CO₂-rich fluids and the process of cement carbonation in the context of GCS have been subject of extensive study (Barlet-Gouédard et al., 2006; Barlet-Gouédard et al., 2009; Bjørge et al., 2019; Carey, 2013; Carroll et al., 2016; Kutchko et al., 2008, 2007; Rimmelé et al., 2008; van Noort et al., 2025a; Zhang and Bachu, 2011). These studies show that carbonation creates a sequence of distinct alteration zones that tend to become wider as reaction advances further into the cement matrix. This alteration has been confirmed in the field through the recovery of CO₂-exposed cement samples at CO₂-EOR sites (Carey et al., 2007; Duguid et al., 2014). Cement carbonation involves (incongruent) dissolution of certain solid phases in the cement and precipitation of others, with carbonates being the main reaction products. While calcium carbonate solubility increases significantly with increasing CO₂ partial pressure (Segnit et al., 1962; Weyl, 1959), dissolution reactions only proceed until carbonates reach chemical equilibrium with CO₂-rich aqueous fluids (Baines and Worden, 2004; Rohmer et al., 2016). Consequently, the balance between dissolution and precipitation during chemical alteration, particularly for the carbonate products, is to a large extent determined by the volume of fluid that can interact with the wellbore materials (Bachu and Bennion, 2009; Liteanu and Spiers, 2011). Here, it is worth noting that dissolution of ionic species requires water, i.e., does not scale directly with the volume of CO₂ injected. Along legacy wells, the “degree of exposure” to aqueous fluids depends strongly on hydrodynamical conditions, including interactions with pore fluids and mineralogy in the reservoir, and ultimately along the cement-steel isolations located within the caprock once carbonated waters reach a legacy well.

In the last decade, researchers studying the ability of legacy well materials to withstand the subsurface conditions created by GCS focused predominantly on the material breakdown of Portland cement. Many efforts considered the interplay between chemical reaction and hydrodynamical factors such as advective transport along discrete pathways in flawed cement. The impact of chemical reactions on the geomechanical properties of well materials and the reactions associated with other chemicals commonly found in CO₂ streams have also been major topics.

4.1. Hydrodynamical factors

The matrix permeability of Portland cement with respect to brine is generally very low, typically below 10 μ D (10^{-17} m^2) (Nelson and Guillot, 2006; Taylor, 1997), and the high capillary pressures required to enter its small-sized porosity tend to inhibit displacement of pore-water from the cement matrix under downhole conditions (Carey and Lichtner, 2011; Wolterbeek et al., 2024). Good quality cement that forms a tight interface seal with surrounding casings and rock formations can thereby provide an effective barrier to fluid flow, with residual flowrates reduced to the point where transport of chemical species is effectively diffusion-like in character. This severely restricts the fluid renewal rate, as recently demonstrated in core flooding tests imposing very high differential pressures over short cement samples (Lende et al., 2024). Under such diffusion-dominated conditions, the influence of chemical reactions will be limited to the extent over which CO₂-induced


alteration (SI Section S1) can advance through the cement matrix (Duguid, 2009; Yuan et al., 2022). While carbonation depth as a function of exposure time varies in lab experiments with pressure, temperature, fluid composition, pH, fluid-to-cement ratio and cement formulation, projected chemical alteration depths typically reach less than one meter in 1000 years (Fig. 3). This is sufficient to potentially affect cement sheaths within reservoir intervals, where radial attack by CO₂-rich fluids is possible. However, the extent is considerably less than the along-hole length of cement sheaths and plugs, which typically cover tens to hundreds of meters. For this reason, chemical alteration progression through the cement matrix is widely viewed as insufficient to pose a threat to system-scale integrity of well isolations along caprock (Carey, 2013; Carroll et al., 2016; Duguid, 2009; Wolterbeek et al., 2016b). Recent lab studies expanded our understanding by investigating combined effects from concurrent sulphate attack, ion-exchange reactions, and reactions with impurities (see Section 4.3; SI Section S1) but none of these factors fundamentally change the reactive-diffusive processes that govern reaction front progression in good cement.

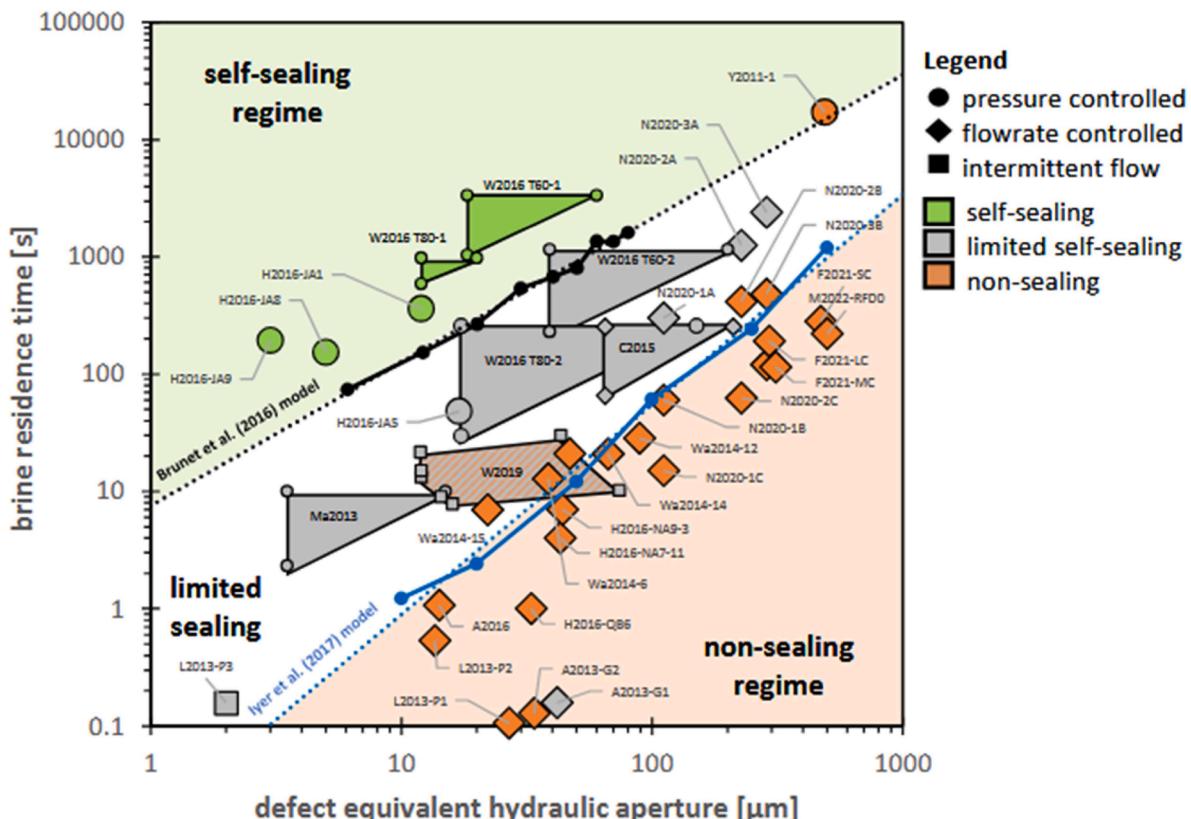
Not all cement isolations form tight interfaces, as evidenced by field studies where chemical alteration has been observed to concentrate along casing-cement-rock interfaces and has reached up to 60 m above the reservoir (Carey et al., 2007; Crow et al., 2010). Indeed, a decade ago, it had become clear that extensive leaching or chemical alteration could become a concern if the low-permeability cement matrix is bypassed via defects (Carey, 2013; Carroll et al., 2017). Wellbore isolations can suffer from preexisting defects such as fractures in the cement, or debonding along interfaces with the casings or surrounding rock formations. If sufficiently interconnected, defects may provide pathways for larger volumes of CO₂-rich fluid to penetrate and interact chemically with wellbore materials. Under advective flow conditions, there is potential for a continuous supply of fresh reactants (e.g., carbonic acid; Reaction SR1 in SI) while calcium ions and other species liberated via (incongruent) dissolution of cement phases (e.g., Reactions SR3-SR4 in SI) may be transported downstream or even removed

entirely with the flowing fluid. Precipitated carbonates (Reaction SR5 in SI) might eventually redissolve (reverse Reaction SR5 in SI) if the cement is exposed to continued inflow of large volumes of carbonate-undersaturated brine.

Numerous experimental studies have investigated how flowing CO₂-rich brine impacts the permeability evolution of open fractures in cement (Abdoulghafoor et al., 2016, 2013; Cao et al., 2015; Chavez Panduro et al., 2020; Huerta et al., 2016; Luquot et al., 2013; Miao et al., 2022; Nguyen et al., 2020; Rod et al., 2020). In many samples, fracture permeability was found to decrease due to clogging via carbonate precipitation, while others showed stable or even increasing flow over time. Parallel advances in coupled numerical modelling of the underlying dissolution-precipitation reactions and diffusive-advection transport processes have shown that the conditions for “self-sealing” versus “non-sealing” reactive flow of CO₂-rich fluids in cement fractures can be captured aptly in terms of the initial a) aperture of the defect and b) residence time of the fluid (Brunet et al., 2016; Cao et al., 2015; Guthrie et al., 2018; Iyer et al., 2017). Qualitatively, narrower defects are easier to seal and increasing the interaction time allows for buildup of higher solute concentrations, enabling precipitation, whereas short residence times do not, maintaining carbonate-undersaturated conditions in the fluid.

Carey et al. (2010) were some of the first to examine CO₂ reactive flow through debonded cement-steel interfaces. Inserting a freshly polished low-carbon steel rod into a pre-slotted cement sample, they found the steel was far more reactive than the cement, observing extensive corrosion and precipitation of iron carbonates. By contrast, corrosion scale formation played a subsidiary role compared to calcium carbonate precipitation in more recent experiments of Wolterbeek et al. (2016b, 2019). Wolterbeek et al. (2016b) used samples consisting of 1–6 m-long cemented steel tubes, in which the cement was cured together with the steel for over one year, preconditioning the steel surface, likely reducing its reactivity (Choi et al., 2013). Despite less prominent corrosion reactions, permeability of the cemented steel tubes was found to decrease

Fig. 3. Plot of CO₂-induced reaction front progression in Portland cement matrix [mm] as a function of exposure time [years] as observed in lab experiments (see legend for cement type and test conditions). Highlighted studies are selected to showcase longer-duration tests and to cover the investigated range in conditions. Black crosses represent data from additional studies, but these have not been separated to maintain legibility of the graph (Barlet-Gouédard et al., 2006; Barlet-Gouédard et al., 2009; Bruckdorfer, 1986; Duguid, 2009; Garcia-Rios and Gouze, 2018; Giannoukos et al., 2014; Gu et al., 2017; Kutchko et al., 2008, 2009; Rimmelé et al., 2008; Satoh et al., 2013; Shen and Pye, 1989; Takla et al., 2010; van Noort et al., 2025b; van Noort et al., 2025a; Wolterbeek et al., 2016b). Experimental data are extrapolated to longer exposure times using least-squares best fits assuming Fickian diffusion (solid and dashed lines) and Elovich-type adsorption models (dotted lines).


by up to four orders of magnitude upon exposure to CO₂-rich brine. Microstructural observations revealed extensive calcium carbonate precipitation in the debonded interfaces. In general, the lab measurements made on debonded cement-steel interfaces can be explained fairly well using the critical residence time concepts originally developed for fractured cement (Wolterbeek et al., 2024).

Cement-rock interfaces are studied less extensively, possibly because this type of contact is variable in nature and comparatively difficult to simulate accurately in lab experiments. The initial condition of the interface is highly dependent on factors like surface roughness of the borehole or residual mud contamination (Agbasimalo and Radonjic, 2014; Opedal et al., 2019, 2014). Significant differences in how reactive transport manifests can also be expected between cement-caprock interfaces, where the rock side has a very low permeability, limiting ingress of fluids to pathways provided by defects, and cement-reservoir rock interfaces, where high permeability of the rock-side enables direct exposure to CO₂-rich fluids (Duguid et al., 2011; Jahanbakhsh et al., 2021; Shi et al., 2025; Tremosa et al., 2017). An example of the latter category includes Cao et al. (2013), who performed CO₂ flow-through tests on a composite cement-Berea sandstone core with a continuous, large initial gap in the cement. They found permeability increased due to extensive leaching.

Focusing on cement-caprock interfaces, which will be more critical to zonal isolation integrity along legacy wells, Newell and Carey (2012) performed core-flooding experiments using CO₂-brine at 10 MPa and 60°C on a cement-siltstone composite core containing a simulated high-permeability damage zone. While post-test microscopy revealed leaching, erosion, and the development of defect-parallel alteration

zones within the cement half, the effective permeability of the composite core was found to have reduced from 200 mD to 35 mD. The authors attributed this to migration and reprecipitation of alteration products derived from the cement within the simulated damage zone. Jung et al. (2014) exposed cement-basalt caprock cores with fractures to CO₂-brine at 10 MPa and 50°C, albeit under static fluid conditions. Based on X-ray microtomography of the fracture network before and after exposure, combined with computational fluid dynamics modelling, Jung et al. (2014) inferred that reactions resulted in precipitation and disconnection of fractures. More recently, Fernandez-Rojo et al. (2021) performed flow-through tests on composite cement-limestone, cement-marl, and cement-sandstone cores containing interfacial defects. Their results showed marked alteration and increased porosity. Based on the reported initial defect aperture (>300 μm) and short residence time (<300 s), these findings are consistent with model predictions based on fractured cement systems (Fig. 4).

Various findings from lab experiments involving exposure of fractured cement (Abdoulghafour et al., 2016, 2013; Cao et al., 2015; Huerta et al., 2016; Luquot et al., 2013; Miao et al., 2022; Nguyen et al., 2020), cement-steel interfaces (Wolterbeek et al., 2016b, 2019), and cement-rock interfaces (Fernandez-Rojo et al., 2021; Mason et al., 2013; Walsh et al., 2014) to flowing CO₂-rich brine can be captured in terms of initial defect aperture and fluid residence time (Brunet et al., 2016; Iyer et al., 2017) (Fig. 4). Experiments that showed a continuing decrease in permeability down to impermeable values (shown in green) are located inside the self-sealing domain delineated by the Brunet et al. (2016) model, while lab samples which displayed no tendency for permeability reduction (orange) plot largely below the critical residence time

Fig. 4. Self-sealing and non-sealing regimes for reactive transport of CO₂-rich brines in cement defects, plotted in residence time versus hydraulic aperture space (modified after Wolterbeek et al., 2024). Graph shows experimental data for cement fractures, cement-casing interfaces and cement-rock interfaces, together with numerical model predictions of Brunet et al., 2016 and Iyer et al., 2017. Circles, diamonds, and squares represent lab tests conducted under pressure-controlled, flowrate-controlled, and intermittent flow conditions, respectively. Labels include codes per study, appended by experiment names as in the original publications: A2016, A2013 = Abdoulghafour et al. (2016, 2013); C2015 = Cao et al. (2015); F2021 = Fernandez-Rojo et al. (2021); H2016 = Huerta et al. (2016); L2013 = Luquot et al. (2013); Ma2013 = Mason et al. (2013); M2022 = Miao et al. (2022); N2020 = Nguyen et al. (2020); Wa2014 = Walsh et al. (2014); W2019, W2016 = Wolterbeek et al. (2019, 2016b); Y2011 = Yalcinkaya et al. (2011).

obtained by Iyer et al. (2017). Experiments marked as “limited sealing” (grey) generally showed some level of permeability reduction (e.g., 1–2 orders of magnitude) but did not become fully impermeable on the timescale of the lab tests. Combined, the experimental and modelling data provide confidence that small defects (e.g., apertures of 1–100 μm wide) possess some definite capacity to self-seal against ingress of CO_2 -rich brine, provided that the wellbore isolation has sufficient length for residence times to exceed critical values. Note the residence time will also depend on the driving force for flow, which may initially be very limited in the case of storage in depleted hydrocarbon reservoirs, in particular. Larger-scale defects such as free-water channels or mud channels (e.g., apertures of $>500 \mu\text{m}$ wide) are much less likely to self-seal through carbonate precipitation. However, it is worth noting that, given the potential magnitude of seepage fluxes associated with defects of this size, taking some form of remedial action to fix the well will likely be warranted, regardless of chemical alteration effects.

While the “critical residence time”-concept has proven a useful metric in predicting whether reactive flow of CO_2 -rich fluids along cement defects in lab experiments will be self-sealing or non-sealing (Brunet et al., 2016; Iyer et al., 2017; Nguyen et al., 2020), application of this concept in numerical models and translation to field conditions is far from trivial (Guthrie et al., 2018; Wolterbeek et al., 2019). Residence time is an extensive property, defined at the system scale (e.g., sample size in lab experiments). While one could also define residence times for individual “cells” in a discretized numerical model, the composition of the influent fluid phase will then be different for subsequent cells, rendering what would be the “critical residence time” at the scale of such individual cells undefined. Clearly, how to effectively upscale the detailed reactive transport models to wellbore dimensions remains one of the outstanding research questions for the coming decade.

The geometry of the leakage pathway is another factor that potentially impacts the self-sealing behavior of cements, which is relevant considering the non-uniform character of microannuli (Moghadam et al., 2021). Flow in rough defects will include inertial effects and system-scale residence time concepts may become challenging to apply if most of the fluid flow occurs via a limited number of preferential pathways. In a numerical modelling study of meter-scale cement-casing sections, Wolterbeek and Raoof (2018) investigated different defect geometries with equivalent system scale-averaged transport properties. They found that initial defect nonuniformity has a profound impact on self-sealing and permeability evolution. Where Wolterbeek and Raoof (2018) only considered non-uniformity in the along-flow direction, Tafen et al. (2023) examined a two-dimensional fracture geometry with surface roughness. Their simulations show that narrower initial aperture domains self-seal rapidly, while wider domains can remain open considerably longer. The authors emphasize they only investigated a constant injection rate scenario, which by definition prevents fully self-sealing flow conditions from occurring (Tafen et al., 2023). Hence, applicability of the critical residence time concept to non-uniform aperture defects remains to be confirmed and is an area of active research (Iyer and Smith, 2024).

Nearly all reactive transport experiments performed to date involved exposure of cement samples to flowing CO_2 -rich aqueous fluids (i.e., water or brine with dissolved CO_2). While water-based flows may be representative for specific cases, due to buoyancy forces it is likely that seepage along many legacy wells will rather involve flow of predominantly humid CO_2 (i.e., CO_2 in its gaseous, liquid or supercritical state with dissolved water) or possibly multiphase flow conditions (Emami-Meybodi et al., 2015; Feng et al., 2017; Kjøller et al., 2016). Such scenarios involve capillary effects, buoyancy-driven flows, transient flow paths, and multiphase flow effects (Anwar et al., 2024; Beltrán-Jiménez et al., 2025; Lima et al., 2025), which can profoundly impact reactive transport processes. Humid CO_2 and CO_2 -rich brine have drastically different properties, e.g., in terms of mineral solubility, and are known to produce distinct alterations in cement batch reaction tests

(Kutchko et al., 2011; Wolterbeek et al., 2013). Nearly all mineral dissolution-precipitation reactions occur in aqueous fluid. Flow of a non-aqueous, CO_2 -dominated fluid instead of carbonated brine will significantly reduce the mobility of water-soluble species, which in turn will impact the distribution and extent of dissolution-precipitation reactions in both defects and the cement matrix. This may be beneficial because, if there is limited water in which carbonates can dissolve, then excessive leaching becomes much less of a concern. Conversely, reduced reactivity can also lessen the effectiveness of self-sealing mechanisms (Wolterbeek and Hangx, 2021). Modelling by Iyer et al. (2018) found that reduction in the reactive surface area associated with lower water-saturation could cause self-sealing processes to slow down or even fail to achieve an impermeable state. Recently, Wolterbeek et al. (2024) reported the first reactive flow-through experiments using humid CO_2 as flowing medium. Their samples consisted of cemented steel pipes containing 2–20 μm -wide interfacial microannuli. While exposure to humid CO_2 produced substantial reductions in effective permeability, the overall extent of reaction and amount of carbonate precipitation were limited compared to earlier experiments using CO_2 -rich brine. These findings underscore the need for more realistic simulation of real CO_2 phases and multiphase flow dynamics in laboratory experiments (Abid et al., 2024).

4.2. Geomechanical factors

Geomechanical factors play a major role in the creation of defects that may provide pathways for flow. In legacy wells, pre-existing defects can be sustained from temperature changes (Albawi, 2013; Li et al., 2025; Moradi et al., 2020; Roy et al., 2018; Wolterbeek and Hangx, 2023) or pressure loads experienced during well operations (Kuanhai et al., 2020; Lecampion et al., 2013; Meng et al., 2021; Nygaard et al., 2014). Once the CO_2 -plume reaches a legacy well, interplay with chemical alteration can induce changes in the mechanical properties of wellbore materials (Hangx et al., 2016; Kuo et al., 2017). This may affect the wellbore response to thermo-geomechanical loads in two ways: (i) mechanical weakening of intact seals may change their susceptibility to damage development and (ii) mechanical deformation can impact the permeability evolution of existing defects. Both could, in turn, change the hydrodynamical conditions prevailing along the wellbore (Section 4.10).

Uniaxial and triaxial compression tests on cement reacted with CO_2 -rich fluids show variable results. Most studies report mechanical weakening (Barría et al., 2022; Condor and Asghari, 2009; Kuo et al., 2017; Neves et al., 2024), while some observe increased strength in carbonated samples (Liteanu et al., 2009; Omosebi et al., 2017; Takla et al., 2010). The diverging results may partly be due to differences in the volume of fluid used in exposure tests, with weakening occurring preferentially in experiments on extensively leached samples, while samples reacted with humid CO_2 or limited CO_2 -brine sometimes show strengthening. Variability is also related to development of zonation. Upon reaction with CO_2 , cement can transform from an homogeneous, isotropic material into a highly heterogeneous and anisotropic one, which complicates mechanical characterization by conventional compressive strength testing methods (Chang and Chen, 2005). Several studies therefore adopted methods that can be applied to individual alteration zones in the CO_2 -reacted cement, such as scratch tests (Hangx et al., 2016) or micro-indentation tests (Kutchko et al., 2009; Li et al., 2015; Mason et al., 2013; Walsh et al., 2014). Such measurements show reaction can locally plug pores and can even create a stiff crust in carbonate-enriched zones (see zones Z2 and Z3 in SI), but zones dominated by loss of portlandite and decalcification of calcium silicate hydrate phases (see zones Z1 and Z4 in SI) have lower stiffness and hardness than unaltered cement. Extensive dissolution can cause cement to lose cohesion and strength, especially just behind the carbonated rim, i.e., at the contact between the carbonated and portlandite-depleted zone (see Z3 and Z4 in SI) (Barría et al., 2022; Kuo et al., 2017; Li

et al., 2025).

Mechanical strength values obtained from scratch and hardness tests vary widely, even within a single reaction zone of a single sample (Hangx et al., 2016; Huet et al., 2010; Kutchko et al., 2009; Mason et al., 2013). Most studies show, despite carbonate precipitation, a significant overall reduction in stiffness (Young's Modulus) and Unconfined Compressive Strength (UCS) of cement when exposed to CO₂-rich fluids (Barría et al., 2022; Kuo et al., 2017; Li et al., 2015; Neves et al., 2024). Key factors that influence the severity include temperature, fluid type (humid CO₂ vs. CO₂-rich brine), exposure duration, and cement formulation. Barría et al. (2022) noted that, although outer layers densify, overall bulk strength did not improve in their CO₂-reacted samples, because the precipitated carbonates were poorly bonded and the calcium silicate hydrate (CSH) "backbone" was degraded. An interesting chemical-mechanical lab study is presented by Gu et al. (2017), who investigated the impact of tensile stress on cement alteration. They subjected Class G cement samples to simultaneous CO₂ exposure and tensile loading (25–75% of tensile strength) to simulate cement under hoop stress in a wellbore. The results showed that samples under higher tension (50–75%) developed more microcracks, which let CO₂ penetrate much faster than in unstressed cement samples. Consequently, the stressed samples failed (lost integrity) much earlier than ones without external load. Exposure to CO₂-saturated brine caused failure sooner than humid CO₂, likely because the aqueous phase facilitates dissolution and transport out of the cracks more effectively. These findings indicate that the combination of chemical and tensile stress may cause accelerated weakening in wellbore isolations.

While lab experiments demonstrate chemical reaction can significantly alter the mechanical properties of cement, it is not trivial to evaluate the impact of these changes on integrity at the well isolation scale. Whether defects lead to zonal isolation loss and integrity failure depends on their extent and interconnectedness. There is a lack of standardization in reporting the changes in mechanical properties of cement. Hardness and UCS measurements are the most reported parameters. These measurements are relatively cheap and fast. However, UCS and hardness are of limited usefulness in geomechanical models. Typically, downhole cement is under confined conditions (Lima et al., 2022; Liteanu et al., 2009; Neves et al., 2024; Wolterbeek et al., 2016a). Parameters such as the Young's Modulus, Poisson's ratio, tensile strength, and plasticity parameters (such as the modified cam-clay model) are more representative of actual cement behavior downhole (Bois et al., 2012; Thiercelin et al., 1998). Shear failure in cement under confinement is typically a ductile response which may not cause fractures (Bois et al., 2011; Lima et al., 2022; Moghadam and Loizzo, 2024; Wolterbeek et al., 2016a). Disking cracks do not lead to vertical fluid migration due to their geometry. Therefore, it is unclear whether a reduction in UCS due to chemical reactions leads to detrimental effects in the cement under downhole conditions if the confined strength holds. Recent near-well mechanical modelling studies conclude that a cement sheath with lower Young's modulus (softer, more compliant) forms smaller micro-annuli when pressure or temperature drops, compared to a stiff cement (Bai et al., 2015; Moghadam and Loizzo, 2024). In essence, a ductile cement can deform with the steel casing, maintaining contact, whereas a brittle cement tends to debond to form a microannulus. A reduction in UCS and Young's Modulus may increase cement's ductility, which may improve its performance against microannuli (Lavrov, 2018). By contrast, a reduction in tensile strength may cause issues if tensile loads are expected in the cement sheath. Tensile cracking of cement has been shown to lead to flow in smaller lab-scale samples (Boukhelifa et al., 2005). However, in large-scale tests (one to two meter length-scale), the tensile cracks do not appear to form a continuous leakage pathway (Corina and Moghadam, 2024; Therond et al., 2017). Therefore, the interplay between chemical reactions and geomechanical factors remains complex and unclear. Additional exposure experiments on samples with representative geometry, under a realistic stress state, temperature, and CO₂ concentration would be beneficial to improve our

understanding of the interplay between geomechanics and chemistry, particularly with respect to changes in susceptibility to defect formation. As discussed in Section 4.1, defects can drastically change hydrodynamic conditions along the well. These intimately coupled reaction-transport-mechanical (RTM) processes have attracted increasing research interest over the last decade and will undoubtedly continue to do so in the next.

The impact of mechanical processes on CO₂-reactive transport in existing defects has also been studied in the last decade. Chemical alteration is generally accompanied by a change in porosity, which can increase if dissolution dominates, or decrease due to precipitation of solids. Without any mechanical deformation, dissolution-controlled reaction (i.e., "non-sealing" regime in Fig. 4) and associated increases in porosity or fracture volume will likely contribute to elevated permeability (e.g., Cao et al., 2013). Under confining pressure, however, reaction-induced weakening of the solid asperities that maintain contact and support the open fracture, can result in lowered transmissivity via mechanical defect aperture closure, potentially even if residence times would be too short to facilitate defect clogging via carbonate precipitation (Rhino et al., 2021; Walsh et al., 2014). Wolterbeek et al. (2016a) considered reaction-induced changes in the strength of already fractured cement, specifically to evaluate whether mechanical weakening could facilitate dynamic reactivation, growth and (re)opening of pathways. They performed triaxial compression tests on cement. Samples that failed on localized shear fractures were subsequently reacted with CO₂-saturated water and then subjected to a second triaxial test to assess changes in mechanical properties. They found that, once shear-fractures formed, subsequent reaction with CO₂ did not produce further mechanical weakening. Instead, after six weeks of reaction, they observed up to 83% cohesion recovery and 15–40% higher frictional strength in the post-failure regime, which Wolterbeek et al. (2016a) attributed to carbonate precipitation within the fractures.

4.3. CO₂ source stream impurities

Removal of low-level concentrations of impurities such as hydrogen sulfide (H₂S), sulfur oxides (SO_x), nitrogen oxides (NO_x), or hydrogen (H₂) from the CO₂ stream is technically complex and operationally expensive, potentially affecting GCS project economics. Even if the concentrations of impurities in the source stream are kept low, once injected into a geological reservoir, higher local concentrations may still develop due to preferential partitioning of impurities like H₂S, SO_x and NO_x into the formation water (van Noort et al., 2025a). Researchers thus began investigating the impact of CO₂ stream impurities on cement alteration, among which the effect of H₂S is probably the best studied. Compared to pure CO₂-brine, exposure of cement to brine saturated with CO₂ and H₂S introduces a number of additional reactions, mainly involving oxidation-reduction and sulfidation of minor cement phases (Kutchko et al., 2011; SI Section S1). One of the additional products is secondary ettringite (Kutchko et al., 2011; Zhang et al., 2014). Ettringite formation involves a net increase in solid volume, which could potentially reduce porosity, but the process can also generate crystallization stress in the cement matrix (Flatt and Scherer, 2008). Excessive ettringite formation can lead to cracking, hence the moniker "sulphate attack" in concrete engineering contexts (Yin et al., 2023; Zhang et al., 2024). On the other hand, limited ettringite-formation can be beneficial to wellbore cement, as evidenced by its use as an expansion additive to mitigate autogenous shrinkage (Beirute, 1976; Bour et al., 1988; Klein, 1958; Souza et al., 2023). Further research is needed to better understand how ettringite formation manifests under the confined conditions typically presented by downhole wellbore environments. Lab tests to date involved cement samples submerged in sulphate-bearing aqueous solutions, which were unconstrained and free to expand (Gu et al., 2019; Jabbour et al., 2022; Pavoine et al., 2012). Under these circumstances, cracking damage can initiate as soon as crystallization stresses exceed the (generally low) tensile strength of the cement (Gu et al., 2022; Sarkar

et al., 2010). By contrast, such free expansion is strongly inhibited in well isolations, where the cement will be restricted by the casing and surrounding rock formations. For other crystallization stress-generating reactions, like magnesium oxide (MgO) hydration, lab experiments showed potential for overexpansion and cracking reduces markedly under confinement (Wolterbeek et al., 2021a).

Concerning the impact on cement carbonation processes, Omosobi et al. (2017) found presence of H₂S reduces carbonation front propagation and helps maintain mechanical integrity, while enhancing permeability. Peng et al. (2022) reported a reduction in mechanical strength in the carbonated rim. More recently, van Noort et al., 2025a found presence of H₂S during exposure to CO₂-saturated water enhanced alteration depths by up to one and a half times, while reducing carbonate precipitation. Neves et al. (2024) report lower mechanical strength and reduced stiffness (decrease in elastic moduli). In general, however, the additional reactions in the presence of H₂S seem to have a relatively minor impact compared to the overall carbonation process (Jacquemet et al., 2012; Kutchko et al., 2011; Um et al., 2017).

To the authors' knowledge, the influence of NO_x impurities on cement carbonation has received little attention to date. Pearce et al. (2018) studied interactions with rock forming minerals and concluded that NO_x and SO_x concentrations below 100 parts per million do not significantly impact pH, with reaction still controlled by carbonate buffering. While still to be confirmed in experiments on cement, this suggests limited impact on carbonates, i.e., the main reaction products of CO₂-induced cement alteration.

5. Leakage risk management

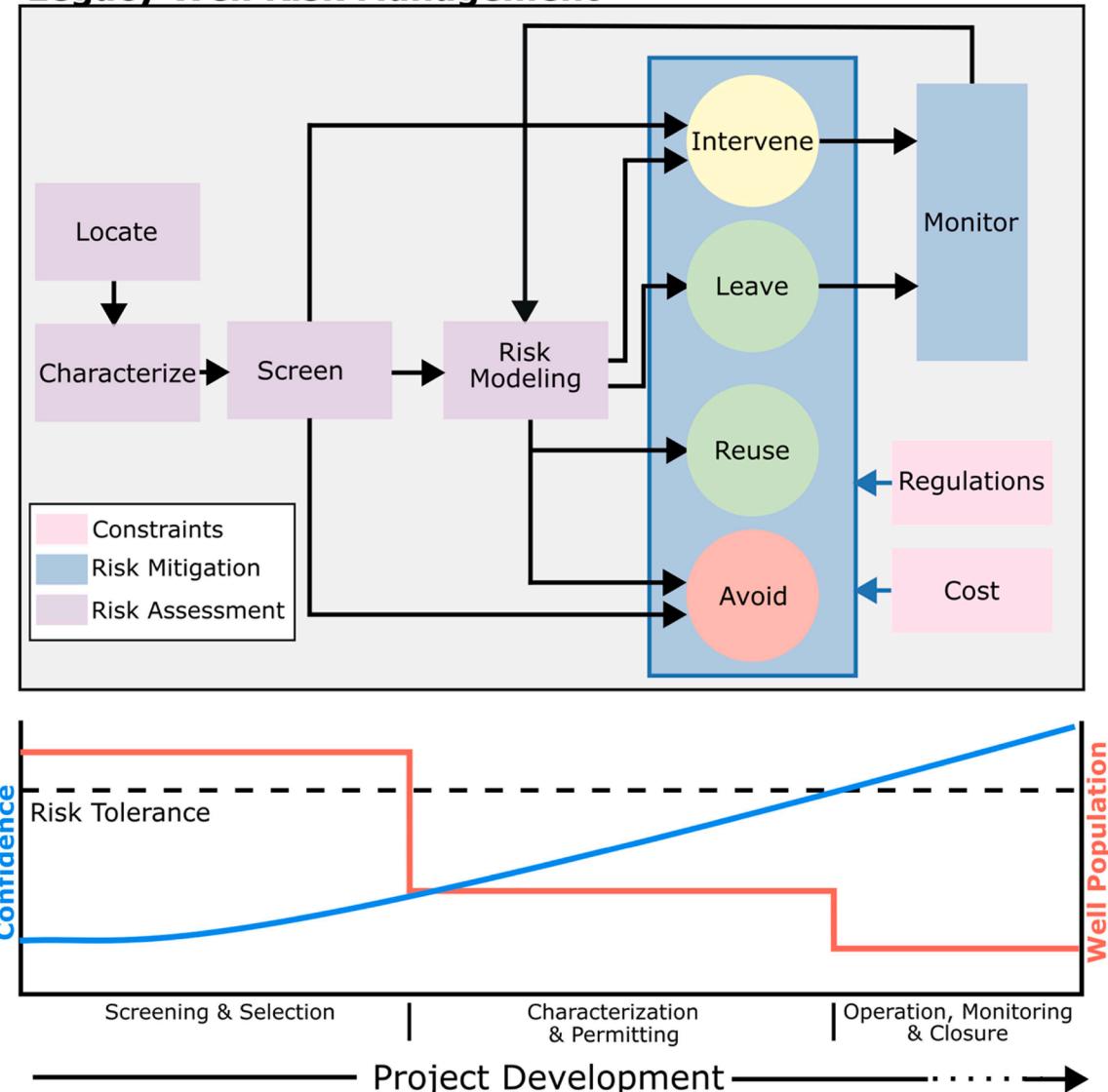
Legacy well leakage is typically interpreted and managed through the lens of risk (Dean and Tucker, 2017; International Association of Oil & Gas Producers, 2023; IPCC, 2005; Thomas et al., 2022). Risk consists of three parts: (i) a scenario of concern such as leakage, (ii) the probability of the scenario occurring, and (iii) the consequence of the occurrence (Kaplan and Garrick, 1981). At the highest level, leakage of injected CO₂, brine, or hydrocarbons is the primary scenario of concern associated with legacy wells. Leaking reservoir fluids can potentially have negative impacts on human health and safety, the environment, permit approvals, company public perception, and project finances (Bielicki et al., 2015; J.M. 2014; Boyd, 2016; Carroll et al., 2014; Deng

et al., 2017). When broken down, there are multiple leakage scenarios that range from the slow seepage of reservoir fluids through a cement defect to a rapid release of fluids through a failed well. These leakage scenarios each have their own associated probability and impact and are typically treated separately in risk assessments.

Managing the risks associated with legacy wells is essential to the safety and success of GCS. Risk management is a comprehensive process that includes identifying, assessing, and mitigating risks (Aven, 2016). The SRCCS outlined the basic elements of legacy well risk management: locating wells, characterizing well integrity, assessing leakage risks, and mitigating risks through well intervention, re-use, and monitoring (IPCC, 2005). Active and approved GCS projects with legacy wells have implemented a variety of different risk management strategies (Table 2). Recent studies have proposed workflows that align combinations of the risk management elements identified in the SRCCS with GCS project development phases and integrate risk assessment with economic and regulatory constraints to determine the need and feasibility of mitigative actions (Patil et al. 2025; 2024; Torsæter et al. 2024). As a project progresses through a legacy well risk management workflow, the total well population considered narrows, and more effort is put into risk assessment. Once the risks associated with individual wells are constrained, they are weighed against the cost and risk of mitigative actions. This decision space is informed by local regulations, which set the threshold for acceptable leakage risk, as well as project economics and operator risk tolerance, which determines the threshold for the cost and risk mitigative actions (Fig. 5). Ultimately, a decision must be made to avoid, intervene, leave, or reuse each well (Fig. 6). Measurement, monitoring, and verification plans collect data that provide feedback on these decisions during project operation, which is valuable for determining the need of future mitigative actions. While commonalities can be found in legacy well risk management processes across projects, their implementation varies due to site-specific considerations, operator preferences, and local regulations. We review the research progress made in the past decade on leakage risk management for legacy wells. The review is organized by the major elements of risk management (Fig. 5).

5.1. Regulatory requirements

Requirements for legacy well risk assessment and risk management

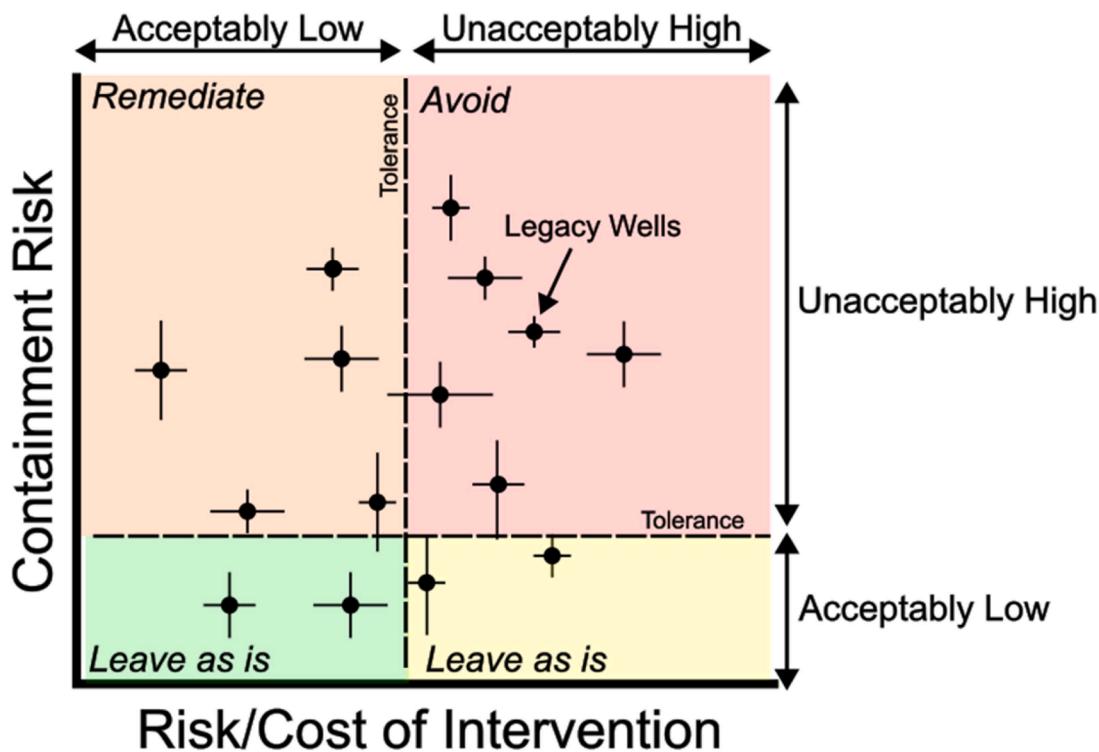

Table 2

Summary of legacy well risk management practices implemented at the Moomba CCS project (Santos, 2024) and proposed for the Porthos (Neele et al., 2020) and Brown Pelican (CCUS Map, 2025) projects.

	Moomba CCS, Australia	Porthos, The Netherlands	Brown Pelican, U.S.
Operator Onshore or Offshore	Santos, Beach Energy Onshore	TAQA Offshore	Oxy Low Carbon Ventures Onshore
Location	Strzelecki and Marabooka Fields; Cooper Basin, South Australia	P-18 gas field (4 and 2); North Sea, South Holland	Lower San Andreas, Midland Basin, Texas
Reservoir Type	Depleted Gas Field	Depleted Gas Field	Saline Aquifer
Project Start	2024	2026 (plan)	T.B.D.
Injection Wells	5	4	3
Injection Rate, Mtpa	1.7	2.5	0.7
Legacy Wells	37*	4	3
Risk Assessment Method	Semi-quantitative (Santos Management System)	Qualitative and Quantitative	Qualitative and Quantitative
Risks Identified	Poor cement, cement degradation, casing corrosion, tubing or packer failure	Surface casing corrosion; Production packer corrosion; Joule-Thomson & evaporative cooling creating microannuli	Lack of proper isolation; cement degradation by carbonic acid; mechanical barrier failure; microannuli
Risk Mitigation	Re-use (11 for monitoring), abandonment (number unclear), monitoring	Workover and re-use (4 for injection)	Re-enter and re-plug (3); brine extraction to manage injection zone pressure
Well Monitoring Plan	Well integrity assessment through annular, cement, and casing/tubing monitoring. Above zone monitoring.	Well integrity monitoring; seabed monitoring	Above zone monitoring; geophysical monitoring
Well Monitoring Methods	Ongoing: acoustic and ultrasonic cement bond logs; mechanical caliper logs	Annular pressure monitoring; logging; annular liquid analysis	Nothing specific to the re-plugged legacy wells

* Estimated from maps and permitting documents; total number may be higher.

Legacy Well Risk Management


Fig. 5. Example legacy well risk management workflow based on proposed workflows in Patil et al. (2025) and Torsæter et al. (2024) (top). The well population and risk assessment confidence throughout the project development timeline are also shown (bottom).

vary by jurisdiction. In Europe, the European Union's (EU) CCS Directive (2009/31/EC) and the United Kingdom's (UK) Energy Act (SI 2010/2221) provide foundational regulatory frameworks for GCS, which are supported by international standards (ISO 27,914:2017 Clause 6 and DNV-RP-J203 Section 6). North American GCS regulations are a mixture of federal and state or provincial laws. In the U.S., the Environmental Protection Agency (US EPA) regulates GCS through the Underground Injection Control Program's Class VI Rule, a mandate of the Safe Drinking Water Act (U.S. EPA, 1974). U.S. states with primacy (North Dakota, Wyoming, Louisiana, and West Virginia) regulate GCS in their own jurisdictions in a manner that meets the federal Class VI requirements. In Canada, Alberta has established comprehensive GCS regulations through the Mines and Minerals Act (CST 56/2016) detailed in Directive 065 (Alberta Energy Regulator, 2024). Australian regulations for offshore GCS are established by the Offshore Petroleum and Greenhouse Gas Storage Act, the Environment Protection (Sea Dumping) Act, and the Environment Protection and Biodiversity Conservation Act and onshore regulations are established by state or territory legislation (Commonwealth of Australia, 2023).

The EU, UK, Australia, and Alberta, take similar but legally distinct

approaches to legacy well risk regulation. All four jurisdictions require formal risk assessments but use different methodologies for risk management. The EU and Australia require the mitigation of legacy well risks until they are as low as reasonably practicable (ALARP) (Commonwealth of Australia, 2023; European Commission, 2024). ALARP is a risk reduction principle commonly applied in health and safety law and industrial operational standards that requires the reduction of risks to a level where further mitigation would involve costs, time, or effort that are grossly disproportionate to the benefits gained.

In Alberta, Directive 065 (D65) adopts a risk-based framework for legacy wells that emphasizes risk tolerability and acceptability rather than explicitly invoking the ALARP principle (Alberta Energy Regulator, 2024). Appendix P of D65 addresses the monitoring, measurement, and verification (MMV) requirements that mandate a comprehensive risk assessment process. These include: i) systematic identification of all risk scenarios capable of posing significant consequences; ii) quantitative or qualitative analysis of the likelihood and severity of each scenario, grounded in the best available scientific evidence; and iii) formal evaluation of whether the resulting risk level is tolerable or acceptable.

Fig. 6. Example decision space for legacy wells at GCS sites considering both the containment risk posed by a well and the risk or cost of intervention. Points represent legacy wells and bars represent the uncertainty associated with containment risk and risk or cost of intervention.

The Alberta approach aligns with the Canadian Standards Association standard CSA Z741, as referenced in D65, which requires that significant risks be reduced to and maintained at a tolerable or acceptable level through appropriate treatment strategies (Section 6.6.4). While the outcome is functionally comparable to the ALARP approach used in the EU and Australia, Alberta's regulatory language and methodology are distinctly framed around risk tolerability criteria rather than ALARP terminology.

The UK differs from the EU, Australia, and Alberta, in that operators must ensure that legacy wells pose no significant risk (NSR) of leakage or of harm to the environment or human health (North Sea Transition Authority, 2025). Unlike ALARP, NSR focuses on absolute assurance in permitting storage and demands evidence that risks are effectively negligible under the proposed conditions, without cost-benefit balancing (Stuart-Smith et al., 2025) (Table 3). The U.S. Class VI rule is unique in that it does not require a formal risk assessment for GCS sites or legacy wells. Rather, operators are required to evaluate wells using available well information or field characterization and perform remedial (i.e., corrective) actions as necessary to prevent fluid migration into shallow groundwater aquifers through wells (U.S. EPA, 2013).

In the petroleum industry, legacy well regulations historically apply ALARP for operational safety but shift to NSR for environmental containment, especially if wells are repurposed or assessed for long-term integrity. An argument against ALARP is that a cost-benefit analysis can be framed to exaggerate implementation costs while downplaying quantified benefits, justifying a lower safety threshold and rejection of further actions. This is particularly relevant to CO₂ storage, where a well intervention could be deferred by arguing that long-term risks are negligible in present-value terms. ALARP baseline assessments may also selectively overlook rare but high-consequence events to keep evaluations in the "tolerable if ALARP" zone by avoiding costly holistic assessments. These practices stem from ALARP's inherent subjectivity in harm quantification and cost evaluation. Regulators aim to counter this through careful oversight and requirements for transparent documentation. NSR addresses this directly by requiring an objective assessment

Table 3
Comparison of regulatory methods for legacy well risk management.

Approach:	ALARP – As Low as Reasonably Practicable	NSR – No Significant Risk
Definition	Requires risk to be reduced to a level where further mitigation involves costs, time, or effort grossly disproportionate to the benefits gained. Balances risk based on cost-benefit analysis.	Focuses on absolute assurance that risks are effectively negligible under proposed conditions, without cost consideration. Risk elimination.
Origin/Usage	Common in health and safety law and industrial standards; applied in the EU CCS Directive and Guidance Documents (EC, 2024).	Used in UK regulations (North Sea Transition Authority, 2025); defers to CCS Directive definitions of 'significant risk' and 'leakage'.
Assessment Criteria	Allows some risks to be deemed acceptable or tolerable if costs are disproportionate; may overlook rare high-consequence events; subjective harm and cost evaluations	Requires objective assessment; risks must be reduced to the satisfaction of the regulator on a well-by-well and site-specific basis. No explicit consideration of cost.
Risk Tolerance	Higher residual risk tolerance: allows measure to stop at "good practice" e.g. standard industry measures, if regulator approves.	Lower overall tolerance: aims for near-elimination of risk e.g. multiple safety barriers and redundancy if required.
Application in Legacy Wells	In the petroleum industry, applies to operational safety; may defer high-cost interventions if long-term risks have a negligible present-value.	Environmental containment emphasis; robust measures for long-term integrity of all wells with potential exposure.
Arguments Against	Subjectivity can lead to exaggerating costs and downplayed benefits, justifying lower safety thresholds and overlooking risk events.	Costs can be prohibitive, limiting CO ₂ storage development and displacing harm from emissions to atmosphere.

that does not prioritize a cost-focused interpretation. NSR requires risks

to be reduced to a level where the consequences of harm are so low that they are effectively negligible. This implies a near-elimination of risk. In practice, this may mean implementing safety measures regardless of cost. The argument against NSR is that the resultant cost is potentially so prohibitive that storage becomes limited, resulting in the displaced harm from emissions to the atmosphere. U.S. Class VI regulations are more closely aligned with NSR in that they do not allow for the consideration of a cost-benefit analysis; however, the lack of a formal risk assessment requirement may result in relevant risks being overlooked.

5.2. Locating wells

Surveying project areas to confirm the locations of documented legacy wells, or to identify undocumented legacy wells is an essential step for GCS projects (IPCC, 2005). While regulatory agencies and private companies maintain well databases that include location information in most regions, these databases often contain inaccurate or incomplete information (Dilmore et al., 2015; Jahan et al., 2025; Saint-Vincent et al., 2020). This is a major challenge in North America, where oil and gas drilling began prior to the establishment of regulatory agencies and modern record keeping practices (Interstate Oil and Gas Compact Commission (IOGCC), 2021). Consequently, hundreds of thousands of oil and gas wells drilled in the U.S. are currently undocumented or “lost” with unknown locations (Boutot et al., 2022; Kang et al., 2023; Merrill et al., 2023). Undocumented wells are often referred to as orphaned wells as they have no owner and the plugging responsibility has defaulted to the state. Documented wells with known locations can also be orphaned if their owner is no longer solvent. In the past decade, methods for identifying and characterizing lost or undocumented wells have advanced substantially through federally funded efforts to locate and plug orphaned oil and gas wells in the U.S. (O’Malley et al., 2024).

Magnetometers are widely used to identify legacy wells as they pinpoint well locations by detecting the magnetic signature of steel casings and can be flown over large areas (Frischknecht et al., 1983; Hammack et al., 2016; Saint-Vincent et al., 2020). Since 2015, advances in unmanned aircraft systems (UAS) technology and miniaturization of field magnetometers have provided an alternative to piloted magnetic surveys (Hammack et al., 2023, 2020; Nikulin and de Smet, 2023, 2019; Sams et al., 2017; Zheng et al., 2021). UAS can be flown closer to the ground with denser flight paths than piloted surveys, which allows for the detection of wells that would have previously required a terrestrial survey (Nikulin and de Smet, 2019; Sams et al., 2017). Applications of UAS-based aeromagnetic surveys at field sites in the Appalachian Basin have demonstrated they are faster, safer, and more efficient than piloted or terrestrial alternatives (De Smet et al., 2021; Hammack et al., 2023). Rotary UAS are primarily used for magnetic surveys as they have large carrying capacities and precisely follow survey lines. Researchers are exploring the use of fixed wing UAS for well finding surveys, which can cover larger areas more rapidly than rotary counterparts (O’Malley et al., 2024).

Recent work has emphasized the limited ability of magnetic surveys to detect legacy wells with pulled or wooden casings (Hammack et al., 2023; Reeder et al., 2023). High-resolution light detection and ranging (LiDAR) surveys are helpful for identifying these older legacy wells as images of bare-earth topography identify leveled well pads and signs of other well infrastructure such as old storage tanks, pipelines, and access roads that may now be covered with vegetation. Additionally, the soil surrounding older legacy wells also tends to subside when casings are removed or deteriorate, which creates a circular subsidence feature detectable with LiDAR (Hammack et al., 2023). Methane surveys can also help identify legacy wells; but are confounded by other sources of methane and are limited in that they can only detect leaking wells (O’Malley et al., 2024).

Deep learning is another rapidly advancing research area that has the

potential to aid legacy well finding efforts. The resolution of remote sensing data is important when attempting to locate legacy wells (Saint-Vincent et al., 2020). Various multilayered neural network modeling approaches have shown promise when applied to sparse data reconstruction problems. Successful application of these models to low-resolution remote sensing datasets could increase their utility for well finding (Fukami et al., 2021; Santos et al., 2023). Multiple recent studies have also applied deep learning models to automate the detection of wells and their associated infrastructure in satellite imagery (Kadeethum and Downs, 2024; Kim et al., 2024; Ramachandran et al., 2024; Seth et al., 2025; Wu et al., 2023; Zhang et al., 2023), historical maps (Ciulla et al., 2024), and magnetic surveys (Bernstein et al., 2024). The ability of these models to identify legacy wells improves when multiple sources of information (e.g., magnetic and methane survey data) are provided (O’Malley et al., 2024). Automating well identification using deep learning methods reduces the manual input needed to digitize well locations from historic maps, aerial photos, and satellite images and speeds the preparation of well finding field campaigns, which are more successful when well location information from multiple sources is combined beforehand (Ciulla et al., 2024; Reeder et al., 2023). Preparation for field campaigns could be further reduced through real time identification of legacy wells in the field with UAS, which would allow for well detection and location verification in a single trip.

Research efforts related to legacy well finding are pushing towards region-scale applications to help improve regulatory well inventories (O’Malley et al., 2024). GCS project areas are relatively small when compared to the size and scale of regional well finding efforts. While existing technologies are sufficient to locate legacy wells at GCS sites, experience gained through the upscaling of well finding efforts will be valuable for GCS operators, and further advancements in UAV surveying, deep learning, and data integration have the potential to increase efficiency and reduce costs. Ultimately, improvement of regulatory well inventories will also benefit GCS operators and may reduce or remove the need to perform well finding surveys in some regions.

5.3. Integrity characterization

Characterization of legacy well integrity informs well screening and risk assessment and occurs at different scales during GCS project development. For example, a review of available well records early in the site selection phase could be sufficient to identify wells that should be avoided because they require complicated remedial actions. As a project develops, field verification of active or suspended wells may become essential to determine the feasibility of their re-use for monitoring or injection. In the past decade, researchers have advanced technologies that facilitate well record review, progress existing invasive techniques, and enable non-invasive well integrity assessments, which aid the integrity characterization of inaccessible wells.

5.3.1. Record review

The availability of information describing legacy well construction varies widely. In some regions, regulatory and proprietary well databases contain detailed well construction information in a structured format, which facilitates rapid well evaluations. If databases are unavailable, well regulatory records such as drilling, completion, and plugging reports are often the only source of well information (Patil et al., 2025). Well information is typically spread across multiple records, the format of which could be digital or non-digital depending on the age of the well (O’Malley et al., 2024). Most jurisdictions have scanned well regulatory records that are available online or through request or purchase, but this process is ongoing as some jurisdictions still rely on the submission of paper forms and have large backlogs of historical records to scan. Scanning records produces a digital image of the file but does not digitize the text contained in the form, which must be manually read to understand well construction. The manual review of well documents becomes impractical as the number of legacy wells

considered increases. For example, a recent construction analysis of 156 offshore wells along the Texas Gulf Coast necessitated the review of 1200 regulatory records (Lackey et al. 2024).

Advances in artificial intelligence and machine learning over the past decade have created the field of Intelligent Document Processing (IDP). IDP tools address multiple issues relevant for digitizing scanned images of records including: (i) splitting files that include multiple documents, (ii) sorting documents by type and format, (iii) cleaning and rectifying documents, (iv) digitizing and cleaning document text, and (v) facilitating human review for error correction (Baviskar et al., 2021). Researchers have leveraged commercially available IDP tools to create custom software designed to digitize well records (Chen et al., 2021; Dong et al., 2022; O'Malley et al., 2024). One such tool was designed for GCS and automates the drawing of well diagrams to identify leakage pathways (Chen et al., 2021; Dong et al., 2022). Researchers are also exploring the application of large language models for data extraction from well records, which could reduce the need to label documents and fields—a manually-intensive process required by many commercial IDP tools (Colman et al., 2025; Ma et al., 2024). The maturation of custom IDP tools for well record digitization has the potential to reduce the effort required to evaluate legacy well construction at GCS sites and increase the availability of well information in regulatory and proprietary databases.

5.3.2. Invasive methods

Integrity characterization methods for accessible wells are established and widely used in the oil and gas industry. A variety of wireline logging tools are available that provide insight into the status of well materials (Taleghani and Santos, 2023). Technologies used for well evaluation include, among others, acoustic tools (sonic and ultrasonic), passive noise logs, temperature logs, resistivity logs, gamma ray logs, neutron logs, oxygen activation logs, X-ray logs and various fiber optic measurements (e.g., Ghosh, 2022; Khalifeh et al., 2017). Most conventional logging techniques allow evaluation of cement quality behind a single steel pipe, which means that the production tubing typically needs to be pulled out to log the casing cement. Recent technology developments aim to extend this reach and enable “through-tubing” or “dual-string” logging, i.e. to allow simultaneous evaluation of two annuli without having to remove the inner pipe (Alimuddin et al., 2025; Singh et al., 2024). Methods such as pressure surveys are also widely used to test and monitor the integrity of well barriers. However, characterizing the integrity of plugged and abandoned wells is more challenging. Upon abandonment, wellheads are typically removed, and casings are cut and capped below surface. Re-entry of a plugged and abandoned well is expensive (especially offshore) and may be technically infeasible for older wells that lack casings, have degraded materials, or were plugged with debris.

5.3.3. Non-invasive methods

Electromagnetic methods have been proposed as low-cost, non-invasive alternatives for characterizing well integrity (Beskarde et al., 2021; MacLennan et al., 2018; Romdhane et al., 2022a; Wilt et al., 2019, 2020). Wilt et al. (2019) demonstrated a proof-of-concept for the top-casing method—a well integrity characterization approach that involves applying a low-frequency electromagnetic current to a well casing at the surface. Electric field data are collected from a distant return electrode and a numerical model is used to identify casing depths and areas of damage. Beskarde et al. (2021) progressed the top-casing method by considering the impact of various well designs and damage types on electromagnetic signals. Romdhane et al., 2022a and Zonetti et al. (2023) numerically modeled the application of the top-casing method to detect corrosion in a legacy well at the Frigg Field in the North Sea. While initial results show promise that electromagnetic inversion can detect and predict well failures, further work is needed to understand how noise and uncertainty in the conductivity field impact the detectability of well damage. Development of other non-invasive

methods for well integrity would also be valuable.

5.4. Screening

In mature basins, hundreds to thousands of legacy wells may lie within a GCS project area or areas considered (Gasda et al., 2004). One problematic well can substantially impact the cost and, ultimately, the viability of a GCS project (Torsæter et al., 2024). While a full integrity evaluation of each well, through detailed records checks, construction diagrams, barrier evaluations, and risk assessments, remains the gold standard, it is far too resource-intensive to conduct at the early site appraisal stage of a project. This mismatch between regulatory requirements and the realities of time and cost has driven the development of legacy well screening approaches, which occupy the front end of legacy well risk management workflows.

Legacy well screening approaches are typically paper exercises that rely on the evaluation of well construction information (e.g., depth, casing design, cement design) and basic geologic details of the permitted storage zone (e.g., depth of reservoir(s) and caprock(s)) to separate wells into categories (Anwar et al., 2025; Arbad et al., 2022; Emmel and Dupuy, 2021; Lackey et al., 2024; Pullen et al., 2025). More involved approaches that include non-invasive methods for well integrity evaluation have also been proposed (Romdhane et al., 2022a; Zonetti et al., 2023). Legacy well screening approaches are underpinned by the concepts of risk assessment; however, they are generally less involved than a full risk assessment, and often only identify potential hazards. Screening approaches differ mainly in the level of data required and the resolution of the outputs. At one end are coarse assessments that rely on the simplest regulatory records; at the other are more data-rich frameworks that consider all available well information. Most legacy well screening approaches have been developed in the past decade alongside the expansion of GCS to brownfield sites.

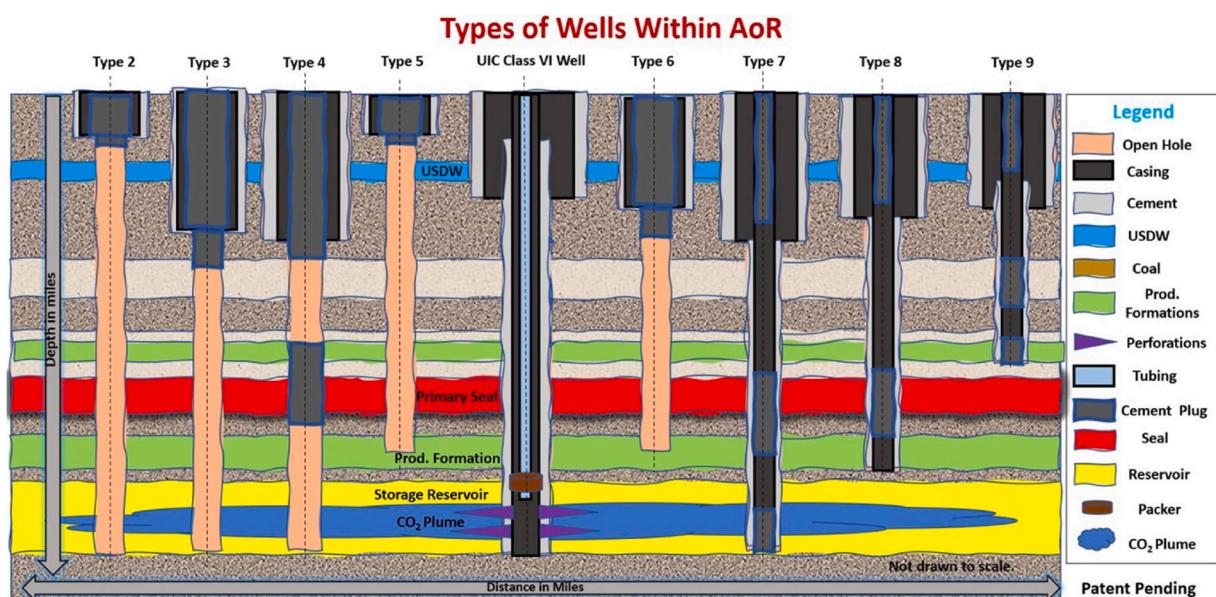
5.4.1. Risk scoring

The calculation of well leakage potential or “risk” scores is one widely applied approach for legacy well screening (Azzolina et al., 2015; Buxton et al., 2015; Cahill and Samano, 2022; Duguid et al., 2019; Emmel and Dupuy, 2021; Glazewski et al., 2014; Lackey et al., 2019; Patil et al., 2022; Pullen et al., 2025; Romdhane et al., 2022a). While some risk scoring approaches use well construction details (e.g., casing depths, cement locations) (Duguid et al., 2019; Emmel and Dupuy, 2021; Romdhane et al., 2022b), most rely on location, status, key dates, depth and other high-level information that is readily available in well databases (Azzolina et al., 2015; Buxton et al., 2015; Cahill and Samano, 2022; Lackey et al., 2019; Pullen et al., 2025). Proposed well risk scoring approaches assign individual scores to a set of well attributes relevant to well integrity, with higher scores given for factors that are either associated with the increased potential for integrity loss through heuristic, statistical (Duguid et al., 2019; Lackey et al., 2019), or expert elicitation methods (Pullen et al., 2025). Attribute scores are then aggregated for each well to determine a final risk score using different methodologies that range from simple, such as addition or multiplication (Duguid et al., 2019; Glazewski et al., 2014; Lackey et al., 2019), to more complex, such as weighted-sum multi-criteria models (Pullen et al., 2025). Wells with higher scores are considered greater risks to containment than wells with lower scores.

Most well risk scoring approaches developed for screening were inspired by the observations of Watson and Bachu (2009). Watson and Bachu (2009) analyzed well integrity testing records from over 300,000 wells in Alberta to show that broad well attributes such as construction era, deviation, abandonment quality, and geology could be used to triage well populations with a higher risk of experiencing integrity issues. Since 2009, efforts have been made to link well attributes to integrity issues recorded in regulatory databases with rigorous statistical and machine learning methods (Lackey et al., 2025; Li et al., 2018, 2025; Montague et al., 2018; Sandi et al., 2021; Zheng et al., 2024). While

predictive modeling efforts have shown promise, the best performing models make correct predictions for only 60–80% of wells considered (Montague et al., 2018; Sandl et al., 2021). Many well attributes used as explanatory variables in well integrity prediction models are collinear and/or spatially autocorrelated, which complicates the identification of independent relationships between well attributes and integrity loss (Lackey et al., 2025; Sandl et al., 2021). Additionally, well integrity issues are often spatially clustered. As a result, well location is the most important feature in multiple well integrity prediction models suggesting that model performance is unlikely to generalize to regions without training data (Lackey et al., 2025; Li et al., 2025; Sandl et al., 2021).

When considered in aggregate, recent analyses of regulatory well integrity testing data highlight the limitations of well risk scoring methods. The value of well risk scoring depends on the ability of the scoring scheme to predict integrity issues or the presence of leakage pathways. Proposed risk scoring methods are unlikely to be accurate predictors of integrity issues as they do not use rigorous well integrity prediction models and, if they did, the performance of the best well integrity prediction model is not sufficient to reliably inform risk mitigation decisions. Additionally, the implicit assumption that well integrity prediction models would apply to legacy wells at GCS sites is questionable as these models are trained with integrity testing data collected from active oil and gas wells, which may be in a different condition than older legacy wells and are not exposed to the unique subsurface conditions created by GCS. The focus of most well risk scoring methods on well integrity issues also ignores leakage pathways that may already be present along wells such as uncemented annuli or improperly placed plugs. Thus, applications of well risk scoring methods for GCS site permitting are limited; however, these methods are one option for characterizing the condition of legacy wells across large regions when data availability is a challenge. In this context, these efforts may be valuable to researchers, regulators, and other stakeholders seeking to understand the feasibility of GCS in a region prior to project planning if they are applied correctly and validated with existing data. Otherwise, simple screening methods that use basic information such as well depth may be the only viable option.


5.4.2. Construction evaluation

Detailed evaluations of legacy well construction are another widely

applied well screening method (Anwar et al., 2025; Arbad et al., 2024b, 2024a, 2022; Haagsma et al., 2015; Lackey et al., 2024; Patil et al., 2025, 2024; Sminchak et al., 2014). At the highest level, depth is used to screen wells that penetrate the permitted storage zone or its caprock. The availability of well construction records enables forensic assessments of construction, which focus on identifying leakage pathways that pose a risk to CO₂ containment as well as determining the feasibility of performing corrective action. Leakage pathways are identified by comparing well construction details with geologic information to determine if well features such as uncemented annuli, open holes, or improperly placed plugs will permit injected or native fluids to leak upward along the well (Anwar et al., 2025; Arbad et al., 2022; Lackey et al., 2024; Patil et al., 2025). The feasibility of corrective action depends on the accessibility of the wellhead (which could be societally inaccessible if the well is located under a building or near a sensitive location such as a school) and the presence of complicating downhole factors such as stuck equipment (i.e., fish), sidetracks, or open holes (Anwar et al., 2025; Arbad et al., 2022; Lackey et al., 2024; Patil et al., 2025). Well construction evaluations also directly inform risk assessments (International Association of Oil & Gas Producers, 2023).

Studies that have developed screening methods based on well construction evaluation rely on categorization schemes that are either granular in that there is one category for every well type (Arbad et al., 2024a, 2024b, 2022) or modular in that they separately categorize relevant aspects of well design and aggregate them (Anwar et al., 2025; Lackey et al., 2024) (Fig. 7). Well construction categories are used either directly to screen wells (Anwar et al., 2025; Arbad et al., 2022) or feed into a separate screening system (Lackey et al., 2024). Well categories in the approach proposed by Arbad et al. (2022) are qualitatively aligned with a risk matrix, which screens wells as higher risk if they have leakage pathways and are difficult to access or lower risk if they can be accessed and have fewer pathways. Similar to Arbad et al. (2022), the screening approach proposed by Patil et al. (2024) (used by Lackey et al. (2024)) also screens wells by the presence of leakage pathways and accessibility of the well. Anwar et al. (2025) proposed a separate approach that screens wells using well construction categories combined with qualitative risk scores aggregated for each individual leakage pathway.

Only a subset of well construction evaluation studies consider cement quality along the depth of a well (Haagsma et al., 2017, 2015;

Fig. 7. Well categorization system developed by Arbad et al. (2022) for legacy wells in the Illinois Basin. Nine variations of legacy well construction are shown with respect to the target reservoir and primary seal. A well that meets U.S. EPA Class VI construction requirements is also shown for comparison. This figure was used with permission of the authors.

Sminchak et al., 2014). Haagsma et al. (2015) proposed a method that scores legacy wells using cement bond index—a normalized interpretation of cement bond log data calculated using maximum and minimum recorded amplitudes. While cement bond logs offer additional insight into the location and quality of cement in a legacy well, their availability is limited among older legacy wells and field validations of the relevance of the cement bond index to gas wells are needed as cement bond logs do not reliably detect gas-filled microannuli (Brown et al., 1971; Wang et al., 2016).

Screening methods based on well construction evaluation have more applications for GCS site permitting than well risk scoring approaches. While it is difficult to perform well construction evaluations in jurisdictions where well construction details are not available in structured digital databases, detailing the construction of legacy wells with respect to the permitted storage zone is generally a requirement for injection permits. Analyses of legacy well construction details may also be sufficient to justify risk mitigation decisions in jurisdictions where formal risk assessments are not required (e.g., U.S. EPA Class VI). However, additional analyses that determine the likelihood and consequence of leakage along legacy wells are needed where formal risk assessments are required.

5.5. Risk assessment

Formal risk assessments that characterize the probability and consequence of negative scenarios such as the occurrence of legacy well leakage are required for GCS site permitting in most jurisdictions. Risk assessments also inform risk mitigation decisions. After screening, decisions for a subset of wells may be unclear without deeper analysis. These unresolved wells could have records that suggest the presence of sufficient well barriers, be located on the periphery of the project area, or be subject to subsurface processes that close off well leakage pathways. Risk assessments create a structured method for weighing leakage risks against other trade-offs to determine the best course of action. In jurisdictions where risk assessments are not required, it may not be necessary to perform a full risk assessment to justify well management decisions. However, a thorough characterization of legacy well conditions using invasive techniques (e.g., wireline logging tools) if entry or re-entry is possible, non-invasive techniques, or modeling may still be needed after screening to meet permit requirements.

Risk assessment has been a major focus of GCS research for over two decades. Many qualitative, semi-quantitative, and quantitative risk assessment approaches have been developed and applied at different projects, most of which were adapted from analogous industries and were in use by 2015. A summary of GCS risk assessment approaches is provided in Pawar et al. (2015) and also in more recent reviews (Gholami et al., 2021; Hajiyev et al., 2025; Su et al., 2023; Xiao et al., 2024). In the past decade, multiple organizations such as the International Association of Oil and Gas Producers (IOGP) and the U.S. Department of Energy have published recommended practices that illustrate the use of various risk assessment methods at GCS sites (IOGP, 2023; Thomas et al., 2022). Qualitative and semi-quantitative risk assessment approaches such as the bowtie method have also become well established through their use in the development of measurement, monitoring, and verification plans for GCS operations (e.g., Dean and Tucker, 2017). Consequently, most risk assessment research progress in the past decade has focused on the development of quantitative methods, which use numerical or analytical models to quantify fluid leakage rates and/or the degree of their impact on sensitive receptors through the simulation of the physical and chemical processes associated with GCS in the subsurface. Quantitative approaches are often designed to be probabilistic to capture the inherent uncertainty associated with subsurface systems. The two major categories of quantitative risk assessment approaches that have been the subject of research over the past decade are (i) site performance assessment modeling and (ii) scenario-based modeling.

5.5.1. Site performance assessment models

Many early well leakage modeling studies focused on site-level predictions of legacy well leakage over the course of a CO₂-EOR or GCS project. These models used probabilistic methods to estimate the percentage of injected CO₂ contained in the permitted storage zone over long time periods. The primary goal of these early efforts was to understand the feasibility of GCS as an enterprise (Metcalfe et al., 2013; Walton et al., 2005). Concepts from early studies progressed into performance assessment models, that use a system modeling approach to dynamically simulate leakage risks over the lifetime of specific projects (LeNeveu, 2008; Oldenburg et al., 2009). Most performance assessment models were developed prior to 2015 and are summarized in Pawar et al. (2015).

One performance assessment model that has been continuously developed over the past decade is the U.S. Department of Energy's National Risk Assessment Partnership (NRAP) Open-Source Integrated Assessment Model (NRAP Open-IAM) (Vasylkivska et al., 2021). NRAP Open-IAM builds on previous versions of the tool (NRAP IAM-CS, CO₂-PENS) that were designed to facilitate probabilistic risk assessment (Pawar et al., 2016; Stauffer et al., 2009). Rapid simulation in NRAP Open-IAM is achieved through a system of coupled reduced order models that simulate the physical processes in reservoirs, leakage pathways, and receptors. In the past decade, the capabilities of NRAP Open-IAM expanded, and the tool has been applied by many case studies. Researchers developed three well models for NRAP Open-IAM that simulate CO₂ and brine flow through: (i) a fully cemented wellbore (Harp et al., 2016), (ii) a wellbore with multiple sections of cement that have varying permeability (Baek et al., 2025, 2023; Nordbotten et al., 2009, 2005), and (iii) a completely open wellbore with no plugs (Bacon et al., 2021; Pan et al., 2011). Reduced order models of groundwater aquifers (Bacon et al., 2016; Keating et al., 2016) and atmospheric dispersion (Zhang et al., 2016) have also been developed that receive outputs from well leakage models to quantify leakage impacts. Dynamic risk simulation capabilities were also developed for NRAP Open-IAM that assimilate monitoring data as it becomes available from a project (Chen et al., 2023, 2020). To the authors knowledge, at least 16 case studies have applied NRAP Open-IAM to prospective and operational GCS projects in the Appalachian, Illinois, Paradox, Permian, San Juan, Raton, and San Joaquin basins in the U.S., the Taishi basin in Taiwan, and the Ordos basin in China (Bacon et al., 2020; Chu et al., 2024, 2023; Cumming et al., 2019; Doherty et al., 2017; Gan et al., 2021; Kim et al., 2025; Mitchell et al., 2023; Ning et al., 2025; Onishi et al., 2019; Skopec et al., 2022; Xiao et al., 2025, 2019; Yang et al., 2024; Yu et al., 2024; Zulqarnain et al., 2017). These studies applied NRAP Open-IAM to calculate the mass of CO₂ retained in the reservoir over the project lifetime, determine risk-based project areas, estimate the detectability of CO₂ and brine leakage in aquifers, justify risk-based post-injection site care periods, and explore the efficacy of risk mitigation measures such as brine extraction.

Another site performance assessment model that progressed in the past decade is the Analytical Solution for Leakage in Multilayered Aquifers tool (ASLMA) (Cihan et al., 2013, 2011). ASLMA contains a multiple analytical and semi-analytical methods that calculate CO₂ and brine flow through wellbores. Oldenburg et al. (2016) proposed a computational framework for estimating project areas using the ASLMA approach. The approach proposed by Oldenburg et al. (2016) was progressed and formalized into a risk mapping approach by Siirila-Woodburn et al. (2017). Burton-Kelly et al. (2021) applied ASLMA to determine the project area of a GCS site operating in an overpressure reservoir in North Dakota and showed that the tool can satisfy U.S. Class VI permitting requirements.

NRAP Open-IAM, ASLMA, and other GCS site performance assessment models have consistently estimated relatively low volumes of CO₂ and brine leakage through legacy wells at GCS sites in case study applications. For example, Zhou et al. (2005), one of the earliest applications of the site performance modeling approach, used a reservoir

simulator to estimate that CO₂ leakage through abandoned wells at the Weyburn CO₂-EOR field will likely remain below 0.001% of the injected volume over a 5000-year period. More recently, Lackey et al. (2019) used NRAP Open-IAM to estimate a maximum of 2.4 t of brine and 10, 200 t ($4.1 \times 10^{-5}\%$) of CO₂ leakage over a 100-year period from a hypothetical 250 Mt injection in the vicinity of 1000 legacy wells. These studies assumed effective well permeabilities between 1 D and 10 μD (10^{-12} and 10^{-17} m^2), which are at the higher end of the range estimated (1 D-10 nD; 10^{-12} – 10^{-20} m^2) for abandoned wells (Carey, 2018). The low probability of leakage from GCS sites has also been supported by GCS industry-level modeling efforts, which estimated a 50% probability that the yearly leakage of CO₂ from GCS will remain below 0.0008% (Alcalde et al., 2018).

The progress made with GCS site performance assessment modeling addresses some of the research goals outlined by Pawar et al. (2015) on the 10th anniversary of the SRCCS report. The capabilities and applications of flagship tools like NRAP Open-IAM and ASLMA have grown substantially over the past decade. While model results remain uncertain and difficult to validate with real data, model outputs continue to be useful for understanding site level containment risks over the lifetime of projects. However, gaps remain in the functionality of these tools, especially for site permitting. Gupta et al. (2024) reviewed the applicability of the NRAP Open-IAM for U.S. Class VI permits and found that many permit applicants had not used the tool because of limited input parameter ranges, questions that could not be addressed by the tool, a lack of sufficient information to generate site-specific results, and a hesitancy to use non-industry standard software. This highlights the need to continue developing GCS site performance assessment models with a focus on implementing new functionality useful for site permitting if these tools are to be useful outside the context of research.

5.5.2. Scenario-based modeling

The implementation of GCS at sites with legacy wells has created a need for scenario-based well leakage models. Scenario-based models focus on simulating specific leakage mechanisms in wells to support site permitting. An example of a scenario-based well leakage model is provided by Neele et al. (2019), which developed a finite-element numerical model to determine if cold CO₂ injection in wells at the Porthos project would create a cement microannulus at casing and/or caprock interfaces. Simulation results demonstrated the potential for micro-annulus formation but estimated negligible leakage (<0.00001% of CO₂ injected annually) under storage conditions. The model developed by Neele et al. (2019) directly informed site permitting by quantifying a specific leakage scenario identified in the project risk assessment.

Over the past two decades, the GCS research community has primarily pursued the probabilistic approach for well leakage modeling used by GCS site performance assessment models (Jenkins, 2023). The probabilistic approach treats wells as a continuous porous medium with an effective permeability representative of well conditions that are highly uncertain. A range of leakage rates is estimated through stochastic simulation and sampling of well permeabilities from a distribution (Celia et al., 2011; Cihan et al., 2013, 2011; Nordbotten et al., 2009; Vasylkivska et al., 2021). This approach is valuable for estimating site-level leakage risks, which has applications for site permitting (e.g., creating risk-based justifications for the project area); however, it informs only one well leakage scenario—CO₂ or brine flow through a compromised cement sheath. Researchers have developed modeling approaches for other leakage scenarios such as blowouts (Bhuvankar and Cihan, 2025), gaps between casings and bridge plugs (Pan and Oldenburg, 2020), and microannuli (Lavrov and Torsæter, 2018; Moghadam and Amiri, 2025). These studies have primarily illustrated their approaches on hypothetical wells to understand factors that influence leakage. Jenkins (2023) highlighted the need for increased sharing of legacy well case study information. Increased sharing of scenario-based well leakage models developed for real GCS projects would also be valuable to progress quantitative risk assessment research.

5.6. Risk mitigation

Traditional risk mitigation strategies for legacy wells include avoidance, plugging and abandonment (P&A), remediation, and re-use. These measures are typically combined with long term monitoring integrated into the measurement, monitoring, and verification plan for the project. The mitigation strategy chosen depends on the condition of the well, the characteristics of the site, and other factors such as project economics. In the past decade, technologies and methodologies for legacy well remediation and re-use have progressed. Researchers have also begun exploring non-traditional methods for legacy well risk mitigation, such as confirming or enhancing the natural sealing of wellbores. Additionally, we review well intervention costs, which are slowly becoming available with the implementation of GCS. We chose not to review legacy well plugging and abandonment technologies and advances in monitoring methods. Industry guidelines and regulatory requirements for well plugging and abandonment (P&A) are established and innovation with P&A technology has been limited (NOGEPA, 2021; NORSO, 2013; OEUK, 2022a, 2022b, 2022c). While recent work by Bakhshian et al. (2025) focused on a low-cost monitoring method for legacy wells at GCS sites, many widely used leakage monitoring technologies for GCS are suitable for monitoring legacy wells and have been the subject of extensive reviews (Jenkins, 2020; Jenkins et al., 2015).

5.6.1. Remediation

Conventional methods for remediation of annular fluid migration along wells include perforate-and-squeeze cementing as well as section-milling and recementing. Perforate-and-squeeze cementing involves high-pressure injection of cement slurry through perforations made in the casing pipe (Cowan, 2007; Slater, 2010; Winarga and Dewanto, 2010). Section-milling and recementing describes the mechanical removal of the existing casing and cement over a specified interval, which subsequently enables the placement of a new cement plug that spans the full bore of the milled window (Joppe et al., 2017; Nelson et al., 2018; Obodozie et al., 2016).

Several advances in remediation technology have been made in the last decade, with the development of new sealant materials and optimized placement techniques (Bothamley et al., 2020; Lucas et al., 2018). Given the relatively low success rate of conventional squeeze cementing operations (typically below 60%; Cowan, 2007), alternatives for squeezing cement explored in recent years include the injection of different low-viscosity epoxies and resins (Beharie et al., 2015; Beltrán-Jiménez et al., 2025; Genedy et al., 2014; Leng et al., 2024; Todorovic et al., 2016; Vicente et al., 2017) and several types of mineral-precipitation based solutions (Hangx et al., 2025; Kirkland et al., 2020; Taheri et al., 2025; Wasch and Koenen, 2019; Wolterbeek and Hangx, 2021). Recent developments in plugging materials include geopolymers (Erguler and Taleghani, 2025; Hajiabadi et al., 2023) and metal alloys (Carpenter et al., 2001; Hmadeh et al., 2024; Lucas et al., 2023). Thermite has also been explored as potential alternative to section-milling and recementing (Carragher and Fulks, 2018; da Silva et al., 2023; Rosnes et al., 2024). Thermite is a metal-metal oxide powder mixture that, upon ignition, releases large amounts of energy via an exothermic oxidation-reduction reaction. This released energy can melt the casing pipe and thermally decompose the cement, where the resulting reaction products are expected to create an impermeable plug after the materials cool down and solidify (Rosnes et al., 2024).

A novel method for annular cement repair is Localized Casing Expansion (LCE). In this technique, the casing pipe is mechanically deformed to permanently enlarge its diameter. This compresses the volume of the surrounding cemented annulus, closing off leakage pathways like microannuli or fractures, and densifying the cement matrix (Kupresan et al., 2014, 2013; Radonjic and Kupresan, 2014). In recent years, two field tools have been developed to impose the required casing expansions in real wells. Experimental work has shown that LCE-treatment using these tools is highly effective in the repair of

casing-cement microannuli (Wolterbeek et al., 2021b) and free-water channels up to several millimeters wide (Beltrán-Jiménez et al., 2022). LCE-technologies have been successfully deployed to remediate fluid migration along wells in Canada (Wolterbeek et al., 2021b), the United States (Foerstner et al., 2025; Green et al., 2021), Kazakhstan (Mendybayev et al., 2024), and Romania (Cirstian and Preda, 2025).

It should be noted that the choice of techniques and equipment available for remediation depend on well status, specifically on accessibility of the borehole. Despite the advances made in the last decade, most of the technologies discussed require wellbore entry. Many legacy wells, especially if plugged and abandoned a long time ago, no longer have a wellhead or associated surface infrastructure. While for land wells it may be possible to excavate the cut-off casing stump and (depending on its corrosion status) reinstall a temporary wellhead, one of the key challenges for remediation operations of minor leaks may in fact become regaining access to the wellbore. Conventional options for well re-entry, up to and including the drilling of a relief well, are highly complex operations that will likely require a drilling rig or other significant material equipment to carry out (Torsæter et al., 2024). The environmental footprint of such operations should be taken into consideration, because the short-term emissions associated with the intervention operation could outstrip those associated with legacy well leakage. Advances in drilling rig electrification aim to reduce these emissions (Al Hadidy et al., 2024; Landry et al., 2024). Drilling into an existing CO₂ plume will also bring technical challenges, as CO₂ is more soluble in drilling fluids than natural gas (Feneuil et al., 2025). Recent research aims to develop software tools to confidently model CO₂-drilling fluid behavior and facilitate timely kick-detection (Skogestad et al., 2024). Efforts to reduce the risk and cost associated with the intervention of inaccessible legacy wells, especially offshore, would be valuable.

5.6.2. Re-use

Re-use of legacy wells for GCS as injection, monitoring or production wells is a potentially viable strategy for GCS projects that can reduce project costs. Multiple GCS projects are either being developed or explored around the world in depleted oil and gas fields, including Porthos (Netherlands), Greensand (Denmark), Acorn (UK), Prinos (Greece), Ravenna (Italy), Sarawak (Malaysia) and Gundih (Indonesia). Past pilot projects such as Lacq (France) & Cortemaggiore (Italy) successfully converted wells in depleted natural gas reservoirs for CO₂ storage field testing and demonstration (Global CCS Institute, 2025). GCS regulatory frameworks, such as the U.S. EPA's Class-VI regulations, allow for conversion of existing oil and gas wells into CO₂ storage wells if it can be demonstrated that the wells will maintain their integrity over the expected subsurface conditions over lifetime (U.S. EPA, 2013).

Marbun et al. (2019) and Marbun et al. (2023) detail a well re-use assessment performed on an existing well in the Gundih depleted gas field in Indonesia that is being converted to a CO₂ injector. Similarly, Neele et al. (2019) report results of the assessment performed to convert existing wells in the Porthos field, a depleted gas field, near offshore Netherlands. These studies emphasize the need for careful well integrity evaluation when reusing existing wells for GCS. Thorough well integrity assessments are important because oil and gas wells are designed for specific operational conditions that are different from CO₂ storage conditions. Workovers may be needed if CO₂ storage conditions lie outside safe operational envelopes for well equipment. Integrity assessments include characterization of all wellbore components using applicable technologies such as cement bond logs, caliper logs, and other specialized tools. Considering the effect of historic and expected wellbore operations (including the degree of casing wear that has or will occur) and operating conditions on well materials through numerical modeling can also provide valuable insight into the performance of well materials under GCS conditions (Marbun et al., 2023, 2019; Neele et al., 2019). Critical considerations include exposure of well materials to CO₂-rich fluids and potential cooling near the injectors in depleted reservoirs (Neele et al., 2019).

A screening tool was developed by the REX-CO₂ project to help determine the suitability and feasibility of reusing existing wells for CO₂ storage operations (Pawar et al., 2021). This tool and its associated workflow filled gaps in standardized methods for well re-use. The REX-CO₂ workflow uses a decision tree approach to guide a stakeholder through the multiple steps of a qualitative, technical assessment that compares the construction and condition of an existing well to the functional and integrity-related requirements of a CO₂ storage well. The objective of the REX-CO₂ workflow is to ensure that a reused well can maintain its integrity under expected operational and environmental conditions over its lifetime. Sub-assessments of the REX-CO₂ workflow include well integrity, out of zone injection risk, well structural integrity and well material compatibility. The REX-CO₂ tool was designed for pre-feasibility assessments to screen candidate wells at a potential GCS sites (Pawar et al., 2021).

5.6.3. Natural or stimulated well sealing

Formation creep is a natural factor that has been demonstrated to seal pathways in wellbores. Shales and salt formations have unique properties that cause them to deform under large stresses through creep and plastic processes (Holt et al., 2020; Pluymakers et al., 2014). The propensity for shale and salt to move inward toward the center of the wellbore during and after drilling is a well-known phenomenon. Researchers have traditionally studied the deformation and failure of rocks along wellbores in the context of borehole stability to design mud programs that avoid borehole collapse and stuck pipe (Hawkes et al., 2000; Holt et al., 2015). However, interest in the ability of creeping shale and salt formations to form natural seals (i.e., self-sealing) along wells for the purpose of simplifying plugging and abandonment operations has grown substantially over the past decade (Buijze et al., 2022; Fjær et al., 2023).

Most research on natural well sealing has focused on shales from the North Sea (Fjær et al., 2023; van Oort et al., 2022a, van Oort et al., 2024). Studies have developed experimental methods that use modified triaxial cells to test the capacity of shales to form a seal at reservoir conditions (Fjær and Larsen, 2018; Thombare et al., 2020). The sealing ability of shales has also been demonstrated using finite-element numerical models populated with rock properties measured during laboratory testing (Enayatpour et al., 2019; Fjær et al., 2016) and pressure tests performed in the field (Williams et al., 2009). Sealing of well leakage pathways with rock salt (i.e., halite) formations in the North Sea have also been explored through field (Loizzo et al., 2024) and numerical studies (Orlic et al., 2019) but have been less of a research focus.

Shales that form barriers exhibit ductile behavior and have low shear stiffness, Young's modulus, cohesion, unconfined compressive strength, and friction angle. In general, these shales are high porosity with low permeability and have a high clay content (in particular smectite) and low quartz and carbonate content (low matrix cementation) (Fjær et al., 2023). Shale barriers can be facilitated (i.e., "activated") by heating the wellbore (Bauer et al., 2017; Xie et al., 2020), dropping the annular pressure (Kristiansen et al., 2021, 2018), or changing the annular fluid chemistry (Gawel et al., 2021; van Oort et al., 2022a). Sonic and ultrasonic logging tools can detect shale barriers if they are calibrated on seals confirmed through pressure testing (Diez et al., 2022; Holt et al., 2017; van Oort et al., 2022b; Williams et al., 2009).

Shale has been accepted as a barrier for the purposes of well plugging and abandonment by the Norwegian Petroleum Safety Authority (PSA) for nearly two decades. The Norwegian PSA accepts shale barriers because they can form impermeable, long term, non-shrinking, and ductile seals that meet the requirements of NORSO D-010 (Williams et al., 2009). Shales with sealing properties have also been documented in the U.S. Gulf Coast (Clark et al., 2005; Davis, 1986; Johnston and Knape, 1986; Nicot, 2009; Warner et al., 1997). However, most reports of sealing shale in the U.S. Gulf Coast are qualitative. Only Clark et al. (1987) has quantified the sealing ability of Gulf Coast shales to demonstrate that natural well closure can reduce the long-term risks associated with hazardous waste injection. The authors drilled a test

well near Orangefield, Texas and measured the ability of Miocene-age shale to close a 27.9 cm (11 inch) open hole. The authors found that shale closed the hole within one week and pressure tested the seal to 0.97 MPa (140 psi).

Natural sealing of legacy well leakage pathways is an important future research area for GCS. Shale or salt sealing of microannuli, partially cemented or uncemented well annuli, or uncased open holes, has the potential to substantially reduce the need for well plugging and corrective action. Relying on natural sealing processes may also be the only technically viable option for some wells that are inaccessible due to borehole collapse or a previous plugging and abandonment operation. While many studies have considered the impact of CO₂ on shale swelling in the context of caprocks (Busch et al., 2016), studies of natural sealing under conditions relevant to GCS are limited to shale sealing of CO₂ injection well annuli (van Oort et al., 2024). More work is needed to understand the performance of natural shale and salt seals for all potential legacy well leakage pathways under reservoir conditions expected at GCS sites with exposure to relevant reservoir fluids (e.g., brine, CO₂ saturated brine, or supercritical CO₂) (Fig. 1). Methodologies for validating natural well barriers without direct access to a well would be particularly valuable. Regulatory acceptance of shale annular barriers for well plugging and abandonment require field demonstrations, laboratory testing, and numerical modeling efforts. Thus, it is reasonable to expect that field, laboratory, and modeling studies will be needed to gain confidence in natural well sealing for GCS.

5.6.4. Cost

The problem of costing legacy well interventions has been central to GCS project development for decades, from early risk assessment to operational site management and decommissioning (Torsaeter et al., 2024). However, given the small number of projects that have undertaken interventions, and sparse data on related costs and outcomes, it remains challenging to identify representative and meaningful costs. The very small amount of data available suggests that costs per legacy well potentially run to millions of dollars onshore and tens of millions of dollars offshore. However, there is barely sufficient data to estimate the mean cost for either setting, or to establish the statistical likelihood of a successful intervention. The challenging lack of data in the public domain on known interventions prompted us to canvas domain experts with many decades of combined experience, and, in some cases, direct experience of the storage demonstrations and pilots with known well interventions outlined below (Table 4).

Table 4
Eleven GCS projects with known well interventions and availability of cost data.

Project	Country	Year	Intervention Required	Costs
Sleipner	NOR	1996	Injection well intervention to improve flow circa 1996	No
Weyburn	CAN	2000	Many routine well interventions to manage EOR flood	No
In Salah	DZA	2004	All CO ₂ wells permanently suspended from 2011	No
Ketzin	DEU	2008	Monitoring well intervention to observe casing in 2015	No
Otway	AUS	2008	Monitoring well interventions in 2017 and 2024	Yes
Snøhvit	NOR	2008	Injection well intervention to change injection interval 2011	No
Decatur	USA	2011	Legacy well and monitoring well interventions 2024	Yes
Goldeneye	GBR	N/A	Legacy well review and interventions costed 2012 to 2015	No
Quest	CAN	2015	Well program for identified legacy wells 2012 to 2015	No
Gorgon	AUS	2019	Water abstraction well interventions planned for 2025	No
Ruby	DNK	2030	Rødby-2 (1953) successfully re-entered and inspected 2025	No

In addition to the eleven projects listed above, six European projects have recently passed a final investment decision (FID): Aurora, Endurance, Greensand, Hamilton, Porthos, and Ravenna. These offshore projects will have submitted detailed and costed plans for legacy well intervention programs. Presumably, the legacy well counts for the depleted hydrocarbon fields – Greensand, Hamilton, Porthos, and Ravenna – are much higher than their saline aquifer counterparts. The cost estimates for the six projects are not in the public domain.

The USA has also recently seen thirteen onshore Class VI wells permitted circa 2024 – EPA (11) and North Dakota (2) – with over one hundred more permits under review. Many, if not all of these, will have submitted costed legacy well intervention programs for their areas of review (AoR). The costs are redacted in the public documentation.

The dearth of cost data in the public domain partly reflects a lack of experience but also an unwillingness to share the little data available—legacy well costs are a sensitive issue for operators. However, recent studies on hydrocarbon legacy well remediation shed some light. For legacy wells in general, the average cost for simply plugging an onshore well in the USA has been reported as \$20k (Raimi et al., 2021). The same study, based on 19,500 wells across four US states, found that the average cost for plugging and surface reclamation was \$76,000; the P10 for the study was \$160,000 per well in 2019. Costs more than \$1 M were rare, with outliers reported at \$1.6 M and \$2.2 M in Texas. Haden Chomphosy et al. (2021) estimated a similar average cost of \$49,000 per legacy well for the USA. For known GCS project data – Decatur, USA and Otway, Australia – onshore costs were consistently \$1M-\$2 M, suggesting that, on the little evidence available, CO₂ legacy well interventions tend to be at the upper end of the cost curve. Taking \$50,000 as a low value and \$1.5 M as a high value, a logarithmic mean for onshore wells might be around \$275k. This is purely speculative.

Offshore costs are much higher. The highest cost for a legacy well intervention in the North Sea was estimated to be around \$50 million, with an expectation of several million dollars per well. This reflects rig hire rates that can exceed \$250k per day and is supported by cost data from Offshore Energies UK for recent decommissioning on the UK Continental Shelf (Offshore Energies UK, 2022) (Fig. 8).

Some further North Sea context is provided by the Norwegian Gyda oil field which was studied as a potential GCS site by Albrightsen (2015). The thirty-year old field was decommissioned from 2020 to 2025 at an estimated cost of \$624 M, including the permanent abandonment of 32 wells. However, discrete costs for the well abandonment operations are not available. Offshore Energies UK estimated that wells account for 48% of North Sea decommissioning costs, followed by topside and subsea infrastructure removal (Offshore Energies UK, 2022). Applying that metric to Gyda, the average decommissioning cost would be \$9 M per well.

Assuming an order of magnitude distribution and slightly higher cost profile for GCS wells, the costs for offshore interventions might be \$5 M to \$50 M, with a logarithmic mean of around \$15 M per well. These estimates are again purely speculative. Furthermore, there are planned interventions and crisis response interventions, routine and ongoing monitoring interventions, and site closure interventions, all with distinct cost profiles. There is no single indicative price for a legacy well intervention, with costs being specific to the site and the well. Generalizations are unlikely to be helpful.

It is tempting, in the absence of data, to borrow assumptions from the much larger domain of oil and gas field operations, especially CO₂-EOR operations with their long history of legacy well management (Chukwuemeka et al., 2023; Hannis et al., 2017; Whittaker et al., 2011). Studied onshore EOR legacy well populations date back to the 1940s—for example, the SACROC site with over 1000 legacy wells in an 80 square mile area had no evidence of leakage. SACROC is known to have been actively managed for legacy well workovers and maintenance as needed, however these costs are not known.

Offshore, hydrocarbon well interventions are a common aspect of field management and decommissioning, as illustrated by the Gyda field

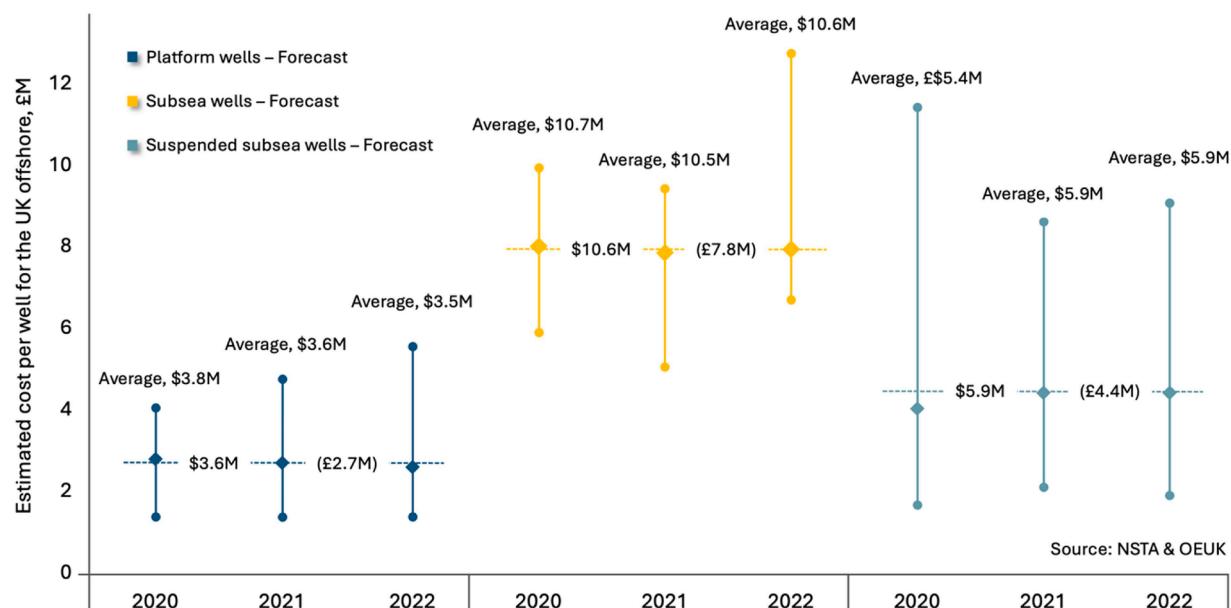


Fig. 8. Offshore well decommissioning costs for the United Kingdom. (Adapted from: [Offshore Energies UK 2022](#)).

example. However, discrete costs for well abandonment operations are not routinely available. A known issue when attempting to draw parallels between common practice for oil and gas operations, such as well abandonment, and CO₂ storage, is that the cost of legacy well management and abandonment is frequently obscured by various financial instruments including internalized cost offsetting and tax exemptions relating to the various stages of field development, management, and decommissioning of hydrocarbon fields (Ho et al., 2016). The estimation of costs for CO₂-EOR legacy well interventions is not straightforward nor necessarily indicative of intervention costs for GCS sites. At present, the general indication is that legacy well remediation costs are expensive and uncertain (Fig. 9). Given this, even a small number of legacy wells are likely to exclude prospective storage areas from serious consideration unless the wells are thoroughly documented and in good condition.

6. Future direction and research needs

Over the past ten years, the collective understanding of legacy well integrity, risks, and effective methods for managing those risks at geologic carbon storage (GCS) sites have advanced substantially. This

progress came through growing efforts to characterize emissions from abandoned oil and gas wells, a continued focus of the research community on the performance of well materials under CO₂ storage conditions, and the practical experiences gained from the implementation of GCS at brownfield sites.

Field observations of well integrity and leakage show that oil and gas wells develop integrity issues over a wider range than previously reported due to several factors including well condition and local geology. Emissions from abandoned wells are probabilistic in nature, span several orders of magnitude, and are controlled by the characteristics of leakage pathways and near-surface modulation. Future research should focus on directly testing and refining the analogue relationship between methane and CO₂ leakage from legacy wells. While methane emissions provide a valuable empirical basis for assessing containment behavior, key uncertainties remain about how faithfully they represent CO₂ migration. Comparative field experiments that expose identical wellbore and near-surface systems to both gases are needed to quantify differences in transmissivity, phase behavior, and reactive alteration. Sustained multi-seasonal monitoring would also clarify the persistence and intermittency of leakage and its modulation by environmental drivers. Further work is required to quantify detection thresholds, reconcile surface-flux and

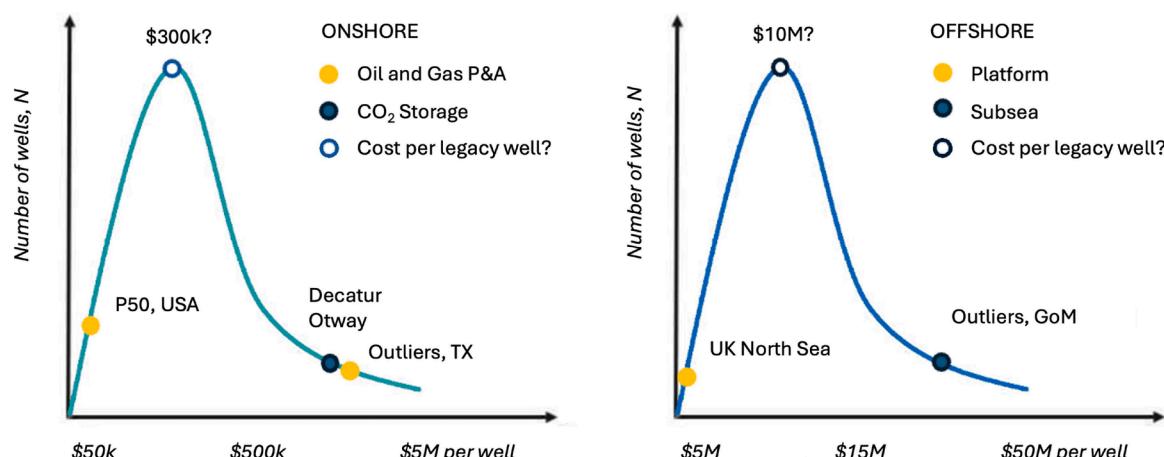


Fig. 9. The approximate cost of legacy well interventions for onshore and offshore projects based on scant data.

downhole indicators, and build harmonized statistical datasets that link well attributes with leakage probability and magnitude. Targeted offshore investigations and benchmarking of analogue predictions against emerging GCS-monitoring results will ultimately determine how transferable these methane-based analogues are to CO₂ containment scenarios and will strengthen the empirical foundation for future risk assessment.

Well materials research has constrained the conditions under which Portland cement exhibits self-sealing and non-sealing behavior in the presence of CO₂-rich fluids. However, characteristics of the leakage pathway and CO₂ phase in contact with the wellbore will impact the rate and extent of reaction. Initial experiments with humid CO₂ show a reduction in reactivity, which reduces leaching and associated degradation effects but simultaneously may reduce self-sealing potential. The presence of impurities such as H₂S can also alter cement carbonation. Chemical alteration has been shown to significantly impact the mechanical properties of cement, which can influence both the development of defects and their subsequent evolution as potential leakage pathways. Collectively, well material research findings continue to emphasize that focusing on chemical reactivity alone without considering the full hydrodynamical, mechanical and geometrical context can lead one to draw incorrect conclusions, which has been previously noted by Zhang and Bachu (2011), Carroll et al. (2016), and especially Carey (2013) in their reviews on the subject. Despite this, studies continue to refer to CO₂-induced reactions as “degradation” or “attack” without defining these terms or thoroughly addressing the impact or significance of observed reaction effects on zonal isolation integrity at the well scale. Future research should continue exploring the interplay between chemical reactions and hydrodynamical and geomechanical factors. Lab studies should expose well cement in representative geometries, under a realistic stress state and temperature, to a variety of CO₂-rich fluids that capture the range of compositions (including impurities) expected in the field. Numerical studies should evaluate the significance of observed reaction effects by modelling their impact on mechanical and hydraulic integrity at the well-isolation scale. These intimately coupled reaction-transport-mechanical processes ultimately impact cement susceptibility to defect formation, which can drastically change the hydrodynamic conditions along the well. Further work on methods for upscaling reactive transport models that simulate chemical reactions observed in the laboratory to wellbore dimensions is also needed.

New legacy well risk management workflows have been proposed that integrate many elements of legacy well risk assessment research with economic and regulatory constraints to determine the need and feasibility of mitigative actions. These workflows include the location, integrity characterization, screening, risk assessment, and risk mitigation of legacy wells. Technological advances in unmanned aircraft systems, machine learning, and artificial intelligence have reduced the costs of legacy well finding and well record digitization to facilitate well location and characterization; however, the inaccessibility (i.e., non-public) or lack of historic well records remains a major barrier in some regions. Researchers have begun developing non-invasive methods for legacy well integrity assessment, but more work is needed to make non-invasive tools valuable in the field. Multiple systems have been developed to evaluate and rank wells based on their construction, which are valuable for well screening. Screening methods based on scores predicted with high-level well attributes remain speculative but may be useful for regional evaluations where detailed well data are unavailable. Legacy well risk assessment research has predominantly focused on GCS site performance models—a quantitative method. Wide application of the NRAP Open-IAM, a flagship GCS risk assessment tool developed by the U.S. Department of Energy, has enhanced its capabilities for legacy well simulation but gaps remain in the software for site permitting applications. The probabilistic approach used by most GCS site performance models also does not quantify the risks of leakage through multiple relevant well leakage mechanisms. Case studies that include detailed scenario-based modeling of well leakage mechanisms relevant

to specific GCS projects would be valuable. Risk mitigation research has focused on advancing annular cement remediation technologies that have the potential to increase the success rate of cement squeeze jobs and other operations that may be needed to ensure zonal isolation along legacy wells. However, deployment of these technologies requires well access, which remains challenging and expensive for abandoned wells, particularly offshore. Natural risk mitigation factors such as shale creep have the potential to close leakage pathways along legacy wells and reduce the need for well intervention—the timeline over which the creep behavior of different shales occur and their ability to seal wells under CO₂ storage conditions are not well understood and would be valuable subjects of future research.

Larger questions also remain about acceptable tolerances for legacy well leakage risk and leakage rates in regulated settings. Intervention is expensive and may be impossible for some legacy wells. The risk reduction gained through well remediation may be negligible when weighed against intervention costs. Additionally, as observed by Torsæter et al. (2024), the leakage risks associated with legacy wells can never be fully eliminated. Thus, regulatory tolerances for legacy well leakage risk will determine the feasibility of many GCS projects. While risk frameworks such as ALARP allow for cost-benefit analysis, NSR and the non-risk approach used in the U.S. Class VI rule do not permit such comparisons. Regulations are also not prescriptive when it comes to acceptable leakage rates. The Northern Lights and Sleipner projects use 50 kg m⁻² day⁻¹ of CO₂ as leakage thresholds to trigger investigation. Assuming a single point source occurrence at a legacy well, the leakage rate sums to just under 20 tonnes per year. For a commercial project like Northern Lights, storing hundreds of millions of tonnes of CO₂, this effectively implies that the containment expectation is 99.99%. Compare this to the quite common expectation of 90% capture for industrial carbon management projects. Further cooperation between regulators, operators, and researchers is needed to define acceptable tolerances for legacy well leakage to ensure the societal benefit of GCS.

CRediT authorship contribution statement

Greg Lackey: Writing – review & editing, Writing – original draft, Visualization, Validation, Methodology, Investigation, Formal analysis, Conceptualization. **Timotheus K.T. Wolterbeek:** Writing – review & editing, Writing – original draft, Visualization, Validation, Investigation, Formal analysis, Conceptualization. **Aaron Cahill:** Writing – review & editing, Writing – original draft, Visualization, Validation, Investigation, Formal analysis. **Andrew Cavanagh:** Writing – review & editing, Writing – original draft, Visualization, Investigation, Formal analysis. **Al Moghadam:** Writing – review & editing, Writing – original draft, Visualization, Investigation, Formal analysis. **Jaisree Iyer:** Writing – review & editing, Writing – original draft, Investigation. **Preston Jordan:** Writing – review & editing, Writing – original draft, Investigation, Data curation. **Rajesh Pawar:** Writing – review & editing, Writing – original draft, Investigation.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors thank Robert Dilmore, Owain Tucker, Marcella Dean, and two anonymous peer-reviewers for their thoughtful comments on the study. Many thanks also to the graphics editing team at TNO for their help with Fig. 1. Parts of this work were performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at [doi:10.1016/j.ijggc.2026.104604](https://doi.org/10.1016/j.ijggc.2026.104604).

Data availability

No data was used for the research described in the article.

References

Abdoughafour, H., Luquot, L., Gouze, P., 2013. Characterization of the mechanisms controlling the permeability changes of fractured cements flowed through by CO₂-rich brine. *Environ. Sci. Technol.* 47, 10332–10338. <https://doi.org/10.1021/es401317c>.

Abdoughafour, H., Gouze, P., Luquot, L., Leprovost, R., 2016. Characterization and modeling of the alteration of fractured class-G Portland cement during flow of CO₂-rich brine. *Int. J. Greenh. Gas Control* 48, 155–170. <https://doi.org/10.1016/j.ijggc.2016.01.032>.

Abid, K., Baena Velásquez, A.F., Teodoriu, C., 2024. Comprehensive comparative review of the cement experimental testing under CO₂ conditions. *Energies* 17, 5968.

Acker, P., 2004. Swelling, shrinkage and creep: a mechanical approach to cement hydration. *Mater. Struct.* 37, 237–243.

Agbasimalo, N., Radonjic, M., 2014. Experimental study of the impact of drilling fluid contamination on the integrity of cement–Formation interface. *J. Energy Resour. Technol.* 136, 42908.

Al Hadid, K., Segui, E., Abdulhamid, O., Abdelhamid, S., Al Jabri, B., Al Hosani, S., 2024. Rig electrification to hit decarbonization target even more. In: Presented at the Abu Dhabi International Petroleum Exhibition and Conference. SPE. D031S108R001.

Albawi, A., 2013. Influence of Thermal Cycling On Cement Sheath Integrity (PhD Thesis). Institutt for petroleumsteknologi og anvendt geofysikk.

Albrigtsen, M., 2015. EOR Opportunities on the Gyda Field, a WAG Injection Simulation Study (Master thesis), 96. NTNU.

Alcalde, J., Flude, S., Wilkinson, M., Johnson, G., Edlmann, K., Bond, C.E., Scott, V., Gilfillan, S.M.V., Ogaya, X., Haszeldine, R.S., 2018. Estimating geological CO₂ storage security to deliver on climate mitigation. *Nat. Commun.* 9, 2201. <https://doi.org/10.1038/s41467-018-04423-1>.

Alimuddin, A., Kasim, M., Tau Chuan, L., Khairudin, M., Zulkifli, S., Ismail, T., Mariot, M.J., Mohd Effendi, M., 2025. Advanced through-tubing cement and sustained annular pressure evaluation in integrity-challenged dual-tubing completions on small-footprint offshore facilities. In: Presented at the SPE/ICoTA Symposium and Exhibition - Well Intervention. OnePetro. <https://doi.org/10.2118/228511-MS>.

Anwar, I., Chojnicki, K., Bettin, G., Taha, M.R., Stormont, J.C., 2019. Characterization of wellbore casing corrosion product as a permeable porous medium. *J. Pet. Sci. Eng.* 180, 982–993.

Anwar, I., Hatambeigi, M., Taha, M.R., Hart, D.B., Lord, D.L., Meng, M., Stormont, J.C., 2024. Relative permeabilities for two-phase flow through wellbore cement fractures. *Geoenergy Sci. Eng.* 241. <https://doi.org/10.1016/j.geoen.2024.213111>.

Anwar, I., Meng, M., Carey, W.J., Ali, A., Dalal, M.V., Stauffer, P.H., 2025. A streamlined qualitative risk assessment framework for corrective action in legacy wells: a case study from the lake Pontchartrain basin. *Int. J. Greenh. Gas Control* 146, 104451. <https://doi.org/10.1016/j.ijggc.2025.104451>.

Arbad, N., Watson, M., Heinze, L., 2022. Risk matrix for legacy wells within the area of review (AoR) of carbon capture & storage (CCS) projects. *Int. J. Greenh. Gas Control* 121, 103801.

Arbad, N., Watson, M., Emadi, H., Eytayo, S., Leggett, S., 2024a. Strategic qualitative risk assessment of thousands of legacy wells within the area of review (AoR) of a potential CO₂ storage site. *Minerals* 14, 383. <https://doi.org/10.3390/min14040383>.

Arbad, N., Watson, M., Heinze, L., Emadi, H., 2024b. Qualitative risk assessment of legacy wells based on publicly available data for class VI well permit applications—Illinois basin case study. *Int. J. Greenh. Gas Control* 133, 104106.

Aven, T., 2016. Risk assessment and risk management: review of recent advances on their foundation. *Eur. J. Oper. Res.* 253, 1–13. <https://doi.org/10.1016/j.ejor.2015.12.023>.

Azuma, S., Kato, H., Yamashita, Y., Miyashiro, K., Saito, S., 2013. The long-term corrosion behaviour of abandoned wells under CO₂ geological storage conditions:(2) experimental results for corrosion of casing steel. *Energy Procedia* 37, 5793–5803.

Azzolina, N.A., Small, M.J., Nakles, D.V., Glazewski, K.A., Peck, W.D., Gorecki, C.D., Bromhal, G.S., Dilmore, R.M., 2015. Quantifying the benefit of wellbore leakage potential estimates for prioritizing long-term MVA well sampling at a CO₂storage site. *Environ. Sci. Technol.* 49, 1215–1224. <https://doi.org/10.1021/es503742n>.

Bachu, S., Bennion, D.B., 2009. Experimental assessment of brine and/or CO₂ leakage through well cements at reservoir conditions. *Int. J. Greenh. Gas Control* 3, 494–501. <https://doi.org/10.1016/j.ijggc.2008.11.002>.

Bachu, S., Gunter, W.D., 2004. Acid-gas injection in the Alberta basin, Canada: a CO₂-storage experience. In: Baines, S.J., Worden, R.H. (Eds.), *Geological Storage of Carbon Dioxide*. Geological Society of London, p. 0. <https://doi.org/10.1144/GSL.SP.2004.233.01.15>.

Bacon, D.H., Qafoku, N.P., Dai, Z., Keating, E.H., Brown, C.F., 2016. Modeling the impact of carbon dioxide leakage into an unconfined, oxidizing carbonate aquifer. *Int. J. Greenh. Gas Control* 44, 290–299. <https://doi.org/10.1016/J.IJGGC.2015.04.008>.

Bacon, D.H., Demirkiranli, D.I., White, S.K., 2020. Probabilistic risk-based area of Review (AoR) determination for a deep-saline carbon storage site. *Int. J. Greenh. Gas Control* 102, 103153. <https://doi.org/10.1016/j.ijggc.2020.103153>.

Bacon, D., Pan, L., Oldenburg, C., 2021. NRAP-Open-IAM: Open Wellbore component (V.2.0) (No. PNNL-31543, 1825929). <https://doi.org/10.2172/1825929>.

Baek, S., Bacon, D.H., Huerta, N.J., 2023. Enabling site-specific well leakage risk estimation during geologic carbon sequestration using a modular deep-learning-based wellbore leakage model. *Int. J. Greenh. Gas Control* 126, 103903. <https://doi.org/10.1016/j.ijggc.2023.103903>.

Baek, S., Hibbard, L., Mitchell, N., Appriou, D., Dilmore, R., Mamud, M., 2025. Deep-learning-enhanced assessment of wellbore barrier effectiveness in geologic storage systems with intermediate aquifers. *Int. J. Greenh. Gas Control* 147, 104487. <https://doi.org/10.1016/j.ijggc.2025.104487>.

Bai, M., Sun, J., Song, K., Reinicke, K.M., Teodoriu, C., 2015. Evaluation of mechanical well integrity during CO₂ underground storage. *Environ. Earth Sci.* 73, 6815–6825. <https://doi.org/10.1007/s12665-015-4157-5>.

Bai, M., Zhang, Z., Fu, X., 2016. A review on well integrity issues for CO₂ geological storage and enhanced gas recovery. *Renew. Sustain. Energy Rev.* 59, 920–926. <https://doi.org/10.1016/j.rser.2016.01.043>.

Baines, S.J., Worden, R.H., 2004. The long-term fate of CO₂ in the subsurface: natural analogues for CO₂ storage. In: Geological Society, 233. Special Publications, London, pp. 59–85. <https://doi.org/10.1144/GSL.SP.2004.233.01.06>.

Bakhshian, Sahar, Hassan Dashtian, Arya Chavoshi, Mahdi Haddad, Susan D. Hovorka, Michael H. Young, Katherine D. Romanak, and Mohsen Ahmadian. "Near-Surface Monitoring of Plugged and Abandoned Wells for Real-Time Leakage Detection in Geologic Carbon Storage." *International Journal of Greenhouse Gas Control* 147 (2025): 104483.

Bao, Y., Pang, Z., Huang, T., Li, Y., Tian, J., Luo, J., Qian, T., 2022. Chemical and isotopic evidences on evaporite dissolution as the origin of high sulfate water in a karst geothermal reservoir. *Appl. Geochem.* 145, 105419.

Barclay, I., Pellenborg, J., Tettero, F., Pfeiffer, J., 2001. The beginning of the end: a review of abandonment and decommissioning practices. *Oilfield Rev.* 28–41.

Barlet-Gouédard, V., Rimmelle, G., Porcherie, O., Quisel, N., Desroches, J., 2009. A solution against well cement degradation under CO₂ geological storage environment. *Int. J. Greenh. Gas Control* 3, 206–216. <https://doi.org/10.1016/j.ijggc.2008.07.005>.

Barlet-Gouédard, V., Rimmelle, G., Goffe, B., Porcherie, O., 2006. Mitigation strategies for the risk of CO₂ migration through wellbores.

Barría, J.C., Bagheri, M., Manzanal, D., Sharatiapour, S.M., Pereira, J.M., 2022. Poromechanical analysis of oil well cements in CO₂-rich environments. *Int. J. Greenh. Gas Control* 119, 103734. <https://doi.org/10.1016/j.ijggc.2022.103734>.

Bauer, A., Stenebråten, J.F., Li, L., Fjær, E., 2017. Can heating-induced creep result in shale barriers for P&A applications?

Baviskar, D., Ahirrao, S., Potdar, V., Kotekha, K., 2021. Efficient automated processing of the unstructured documents using artificial intelligence: a systematic literature review and future directions. *IEEE Access* 9, 72894–72936. <https://doi.org/10.1109/ACCESS.2021.3072900>.

Beharie, C., Francis, S., Øvestad, K.H., 2015. Resin: an alternative barrier solution material. SPE Bergen One Day Seminar. Society of Petroleum Engineers.

Beirute, R.M., 1976. True expansive characteristics of commercially available expansive cement under actual well conditions. In: SPE Annual Fall Technical Conference and Exhibition. Society of Petroleum Engineers.

Beltrán-Jiménez, K., Skadsem, H.J., Sunde, J.K., Gardner, D., Wolterbeek, T.K.T., Cornelissen, E.K., Keuljies, W.J.G., 2022. Restoration of annular zonal isolation using localized casing expansion (LCE) technology: treatment of near-horizontal test sections containing a free-water channel. *J. Pet. Sci. Eng.* 208, 109792.

Beltrán-Jiménez, K., Kragset, S., Skadsem, H.J., Lima, V.N., Stormont, J.C., Taha, M.R., 2025. Sealing and durability evaluation of microannulus treatment with a resin-based material: permeability and tracer measurements in a full-scale test section. In: Presented at the SPE/IADC Drilling Conference and Exhibition, SPE. D0115006R0004.

Bernstein, B., Li, Y., Hammack, R., Kohnke, C., 2024. Unsupervised compensation of spiral-shaped drone magnetic survey using a recurrent convolutional autoencoder. In: Fourth International Meeting for Applied Geoscience & Energy, SEG Technical Program Expanded Abstracts. Society of Exploration Geophysicists and American Association of Petroleum Geologists, pp. 1114–1118. <https://doi.org/10.1190/image2024-4101634.1>.

Beskardes, G.D., Weiss, C.J., Um, E., Wilt, M., MacLennan, K., 2021. The effects of well damage and completion designs on geoelectrical responses in mature wellbore environments. *Geophysics* 86, E355–E366. <https://doi.org/10.1190/geo2020-0702.1>.

Bhuvankar, P., Cihan, A., 2025. A coupled well-reservoir model to quantify CO₂ release rates and temperatures during well blowouts in geologic carbon storage. *Int. J. Greenh. Gas Control* 146, 104373. <https://doi.org/10.1016/j.ijggc.2025.104373>.

Bielicki, J.M., Pollak, M.F., Fitts, J.P., Peters, C.A., Wilson, E.J., 2014. Causes and financial consequences of geologic CO₂ storage reservoir leakage and interference with other subsurface resources. *Int. J. Greenh. Gas Control* 20, 272–284. <https://doi.org/10.1016/j.ijggc.2013.10.024>.

Bielicki, J.M., Peters, C.A., Fitts, J.P., Wilson, E.J., 2015. An examination of geologic carbon sequestration policies in the context of leakage potential. *Int. J. Greenh. Gas Control* 37, 61–75. <https://doi.org/10.1016/j.ijggc.2015.02.023>.

Bjørge, R., Gawel, K., Chavez Panduro, E.A., Torsæter, M., 2019. Carbonation of silica cement at high-temperature well conditions. *Int. J. Greenh. Gas Control* 82, 261–268. <https://doi.org/10.1016/j.ijggc.2019.01.011>.

Blumenberg, M., Jordan, S., Scheeder, G., Krüger, M., Schloemer, S., 2025. Petroleum-fuelled methanogenesis and microbial hydrocarbon oxidation at an abandoned oil well. *Appl. Geochem.* 194, 106589. <https://doi.org/10.1016/j.apgeochem.2025.106589>.

Bois, A.R., Gamier, A., Rodot, F., Saint-Marc, J., Aimard, N., 2011. How to prevent loss of zonal isolation through a comprehensive analysis of microannulus formation. *SPE Drill. Compleat.* 26, 13–31. <https://doi.org/10.2118/124719-PA>.

Bois, A.-P., Garnier, A., Galdioli, G., Laudet, J.-B., 2012. Use of a mechanistic model to forecast cement-sheath integrity. *SPE Drill. Compleat.* 27, 303–314. <https://doi.org/10.2118/139668-PA>.

Boothroyd, I.M., Almond, S., Qassim, S.M., Worrall, F., Davies, R.J., 2016. Fugitive emissions of methane from abandoned, decommissioned oil and gas wells. *Sci. Total Environ.* 547, 461–469. <https://doi.org/10.1016/J.SCITOTENV.2015.12.096>.

Bothamley, R., Haigh, M., Soudi, M., 2020. Installation of annulus cement plugs using perforation, wash and cement technique, a lookback from a first for Australia. In: Presented at the SPE Asia Pacific Oil & Gas Conference and Exhibition. <https://doi.org/10.2118/202430-ms>. D013S102R002.

Boukhelifa, L., Moroni, N., James, S.G., Le Roy-Delage, S., Thiercelin, M.J., Lemaire, G., 2005. Evaluation of cement systems for oil and gas well zonal isolation in a full-scale annular geometry. In: SPE/IADC Drilling Conference, pp. 2–4.

Bour, D.L., Daugherty, D., Sutton, D.L., 1988. New expansive cement system for high temperature. In: Proceedings of the 1988 Southwestern Petroleum Short Course. Southwestern Petroleum, pp. 1–9.

Bourne, S., Crouch, S., Smith, M., 2014. A risk-based framework for measurement, monitoring and verification of the Quest CCS Project. *Int. J. Greenh. Gas Control* 26, 109–126. <https://doi.org/10.1016/j.ijggc.2014.04.026>.

Boutot, J., Peltz, A.S., McVay, R., Kang, M., 2022. Documented orphaned oil and gas wells across the United States. *Env. Sci. Technol.* 56, 14228–14236. <https://doi.org/10.1021/acs.est.2c03268>.

Boyd, A.D., 2016. Risk perceptions of an alleged CO₂ leak at a carbon sequestration site. *Int. J. Greenh. Gas Control* 50, 231–239. <https://doi.org/10.1016/j.ijggc.2016.03.025>.

Brouwers, H.J.H., 2011. A hydration model of Portland cement using the work of Powers and Brownseyard.

Brown, H.D., Grijalva, V.E., Raymer, L.L., 1971. New developments In sonic wave train display and analysis In cases holes. *Log Anal.* 12.

Bruckdorfer, R.A., 1986. Carbon dioxide corrosion in oilwell cements.

Brunet, J.-P.L., Li, L., Karpyn, Z.T., Huerta, N.J., 2016. Fracture opening or self-sealing: critical residence time as a unifying parameter for cement–CO₂–brine interactions. *Int. J. Greenh. Gas Control* 47, 25–37.

Buijze, L., Ter Heege, J., Wassing, B., 2022. Finite element modeling of natural sealing of wellbores in salt using advanced, laboratory-based salt creep laws. *The Mechanical Behavior of Salt X*. CRC Press, pp. 533–544.

Burton-Kelly, M.E., Azzolina, N.A., Connors, K.C., Peck, W.D., Nakles, D.V., Jiang, T., 2021. Risk-based area of review estimation in overpressured reservoirs to support injection well storage facility permit requirements for CO₂ storage projects. *Greenh. Gases: Sci. Technol.* 11, 887–906. <https://doi.org/10.1002/ggh.2098>.

Busch, A., Bertier, P., Gensterblum, Y., Rother, G., Spiers, C.J., Zhang, M., Wentink, H. M., 2016. On sorption and swelling of CO₂ in clays. *Geomech. Geophys. Geo-energ. Geo-resour* 2, 111–130. <https://doi.org/10.1007/s40948-016-0024-4>.

Buxton, B., Weber, S., Moody, M.A., Gupta, N., Sminchak, J., 2015. Approach for assessing wellbore integrity to prioritize study areas for potential siting of a carbon dioxide repository. In: SPE Eastern Regional Meeting. Presented at the SPE Eastern Regional Meeting. Society of Petroleum Engineers, Morgantown, West Virginia, USA. <https://doi.org/10.2118/177315-MS>.

Cahill, A.G., Samano, P.S.G., 2022. Prioritizing stewardship of decommissioned onshore oil and gas wells in the United Kingdom based on risk factors associated with potential long-term integrity. *Int. J. Greenh. Gas Control* 114, 103560. <https://doi.org/10.1016/j.ijggc.2021.103560>.

Cahill, A.G., Joukar, M., Sefat, M., van Geloven, C., 2023. Evaluating methane emissions from decommissioned unconventional petroleum wells in British Columbia, Canada. *Geophys. Res. Letters* 50 (24). <https://doi.org/10.1029/2023GL106496>.

Cahill, A.G., McClure, J., de Jonge-Anderson, I., 2025. Natural soils-based oxidation mitigates methane leakage from integrity compromised legacy wells. *Geophys. Res. Letters* 52 (5). <https://doi.org/10.1029/2024GL113522> e2024GL113522.

Cao, P., Karpyn, Z.T., Li, L., 2013. Dynamic alterations in wellbore cement integrity due to geochemical reactions in CO₂-rich environments. *Water Resour. Res.* 49, 4465–4475.

Cao, P., Karpyn, Z.T., Li, L., 2015. Self-healing of cement fractures under dynamic flow of CO₂-rich brine. *Water Resour. Res.* 51, 4684–4701. <https://doi.org/10.1002/2014WR016162>.

Carey, J., Lichtner, P., 2011. Computational studies of two-phase cement/CO₂/brine interaction in wellbore environments *SPE J.* 16 (4): 940–948. SPE-126666-PA. <https://doi.org/10.2118/126666-PA>.

Carey, J.W., Wigand, M., Chiperia, S.J., WoldeGabriel, G., Pawar, R., Lichtner, P.C., Wehner, S.C., Raines, M.A., Guthrie, G.D., 2007. Analysis and performance of oil well cement with 30 years of CO₂ exposure from the SACROC Unit, West Texas, USA. *Int. J. Greenh. Gas Control* 1, 75–85. [https://doi.org/10.1016/S1750-5836\(06\)0004-1](https://doi.org/10.1016/S1750-5836(06)0004-1).

Carey, J.W., Svec, R., Grigg, R., Zhang, J., Crow, W., 2010. Experimental investigation of wellbore integrity and CO₂-brine flow along the casing–cement microannulus. *Int. J. Greenh. Gas Control* 4, 272–282.

Carey, J.William, 2013. Geochemistry of wellbore integrity in CO₂ sequestration: Portland cement–steel-brine-CO₂ interactions. *Rev. Mineral. Geochem.* 77, 505–539. <https://doi.org/10.2138/rmg.2013.77.15>.

Carey, J.W., 2018. Probability Distributions for Effective Permeability of Potentially Leaking Wells at CO₂ Sequestration Sites (No. LA-UR-18-24076). Los Alamos National Lab. (LANL), Los Alamos, NMUnited States. <https://doi.org/10.2172/1438142>.

Carpenter, R.B., Gonzales, M., Griffith, J.E., 2001. Large-scale evaluation of alloy-metal annular plugs for effective remediation of casing annular gas flow. In: Presented at the SPE Annual Technical Conference and Exhibition, SPE-71371-MS. <https://doi.org/10.2118/71371-ms>.

Carragher, P., Fulks, J., 2018. A new look at sealing with bismuth and thermite. In: Presented at the SPE Annual Technical Conference and Exhibition? SPE. D011S001R006.

Carroll, S.A., Keating, E., Mansoor, K., Dai, Z., Sun, Y., Trainor-Guitton, W., Brown, C., Bacon, D., 2014. Key factors for determining groundwater impacts due to leakage from geologic carbon sequestration reservoirs. *Int. J. Greenh. Gas Control* 29, 153–168. <https://doi.org/10.1016/j.ijggc.2014.07.007>.

Carroll, S.A., Carey, J.W., Dzombak, D., Huerta, N.J., Li, L., Richard, T., Um, W., Walsh, S.D.C., Zhang, L., 2016. Review: role of chemistry, mechanics, and transport on well integrity in CO₂ storage environments. *Int. J. Greenh. Gas Control* 49, 149–160.

Carroll, S.A., Iyer, J., Walsh, S.D.C., 2017. Influence of chemical, mechanical, and transport processes on wellbore leakage from geologic CO₂ storage reservoirs. *Acc. chem. res.* 50, 1829–1837.

Carter, K.M., Flaherty, K.J., 2011. The old, the crude, and the muddy: oil history in western Pennsylvania. In: Ruffolo, R.M., Ciampaglio, C.N. (Eds.), From the Shield to the Sea: Geological Field Trips from the 2011 Joint Meeting of the GSA Northeastern and North-Central Sections. Geological Society of America, p. 0. [https://doi.org/10.1130/2011.0020\(08\)](https://doi.org/10.1130/2011.0020(08)).

CCUS Map, 2025. [WW Document]. <https://ccusmap.com/> (accessed 11.8.25).

Celia, M.A., Nordbotten, J.M., Court, B., Dobosz, M., Bachu, S., 2009. Risk of leakage versus depth of injection in geological storage. *Energy Procedia* 1, 2573–2580. <https://doi.org/10.1016/j.egypro.2009.02.022>.

Celia, M.A., Nordbotten, J.M., Court, B., Dobosz, M., Bachu, S., 2011. Field-scale application of a semi-analytical model for estimation of CO₂ and brine leakage along old wells. *Int. J. Greenh. Gas Control* 5, 257–269. <https://doi.org/10.1016/j.ijggc.2010.10.005>.

Chang, C.F., Chen, J.W., 2005. Strength and elastic modulus of carbonated concrete. *ACI Mater.* 102, 315–321. <https://doi.org/10.14359/14710>.

Chavez Panduro, E.A., Cordonnier, B., Gawel, K., Børve, I., Iyer, J., Carroll, S.A., Michels, L., Rogowska, M., McBeck, J.A., Sørensen, H.O., 2020. Real time 3D observations of Portland cement carbonation at CO₂ storage conditions. *Environ. Sci. Technol.*

Chen, B., Harp, D.R., Lu, Z., Pawar, R.J., 2020. Reducing uncertainty in geologic CO₂ sequestration risk assessment by assimilating monitoring data. *Int. J. Greenh. Gas Control* 94, 102926. <https://doi.org/10.1016/j.ijggc.2019.102926>.

Chen, J., Lu, L., Sidahmed, M., Bai, T., Folmar, I., Seth, P., Sarfare, M., Mikulencak, D., Akil, I., 2021. Machine learning in automating carbon sequestration site assessment. *Climate Change AI*. Presented at the NeurIPS 2021 Workshop on Tackling Climate Change with Machine Learning, Climate Change AI.

Chen, B., Harp, D.R., Zhang, Y., Oldenburg, C.M., Pawar, R.J., 2023. Dynamic risk assessment for geologic CO₂ sequestration. *Gondwana Res.* 122, 232–242. <https://doi.org/10.1016/j.gr.2022.08.002>.

Choi, Y.-S., Young, D., Nesić, S., Gray, L.G.S., 2013. Wellbore integrity and corrosion of carbon steel in CO₂ geologic storage environments: a literature review. *Int. J. Greenh. Gas Control* 16, S70–S77.

Chu, S., Viswanathan, H., Moodie, N., 2023. Legacy Well leakage risk analysis at the Farnsworth unit site. *Energies* 16, 6437. <https://doi.org/10.3390/en16186437>.

Chu, S., Pawar, R., Jiawei Tu, D., Moodie, N., Ampomah, W., Chen, B., 2024. Risk-based area of review delineation and leakage risk assessment for San Juan Basin CarbonSAFE site in the United States. <https://doi.org/10.2139/ssrn.5030862>.

Chukwuemeka, A.O., Oluuyemi, G., Mohammed, A.I., Njuguna, J., 2023. Plug and abandonment of oil and gas wells – a comprehensive review of regulations, practices, and related impact of materials selection. *Geoenergy Sci. Eng.* 226, 211718. <https://doi.org/10.1016/j.geoen.2023.211718>.

Cihan, A., Zhou, Q., Birkholzer, J.T., 2011. Analytical solutions for pressure perturbation and fluid leakage through aquitards and wells in multilayered-aquifer systems. *Water Resour. Res.* 47.

Cihan, A., Birkholzer, J.T., Zhou, Q., 2013. Pressure buildup and brine migration during CO₂ storage in multilayered aquifers. *Groundwater* 51, 252–267.

Cirstian, F., Preda, C., 2025. Casing expansion method a solution for sustained annular pressure. In: Presented at the SPE Europe Energy Conference and Exhibition. <https://doi.org/10.2118/225496-ms>.

Ciulli, F., Santos, A., Jordan, P., Kneafsey, T., Biraud, S.C., Varadarajan, C., 2024. A deep learning based framework to identify undocumented orphaned oil and gas wells from historical maps: a case study for California and Oklahoma. *Env. Sci. Technol.* 58, 22194–22203. <https://doi.org/10.1021/acs.est.4c04413>.

Clark, J.E., Howard, M.R., Sparks, D.K., 1987. Factors that can cause abandoned wells to leak as verified by case histories from Class II injection, Texas Railroad Commission files. In: Proceedings of the International Symposium on Subsurface Injection of Oilfield Brines, pp. 166–224.

Clark, J.E., Bonura, D.K., Papadeas, P.W., McGowen, R.R., 2005. Gulf coast borehole-closure-test well near orange. In: Tsang, C.-F., Apps, J.A. (Eds.), Developments in Water Science, Underground Injection Science and Technology. Elsevier, Texas, pp. 157–166. [https://doi.org/10.1016/S0167-5648\(05\)2013-6](https://doi.org/10.1016/S0167-5648(05)2013-6).

Colman, R., Vu, M., Bhattachari, M., Ma, M., Viswanathan, H., O'Malley, D., Santos, J.E., 2025. PatchFinder: leveraging visual language models for accurate information retrieval using model uncertainty. In: 2025 IEEE/CVF Winter Conference on

Applications of Computer Vision (WACV). Presented at the 2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 9146–9155. <https://doi.org/10.1109/WACV61041.2025.00886>.

Commonwealth of Australia, 2023. Offshore carbon capture and storage regulatory approvals.

Condor, J., Asghari, K., 2009. Experimental study of stability and integrity of cement in wellbores used for CO₂ storage. *Energy Procedia* 1, 3633–3640. <https://doi.org/10.1016/j.egypro.2009.02.159>.

Corina, A.N., Moghadam, A., 2024. The sealing performance of cement sheaths under thermal cycles for low-enthalpy geothermal wells. *Energies* 17. <https://doi.org/10.3390/en17010239>.

Corina, A.N., Moghadam, A., 2025. On the evolution of cement sheath stress in wells during curing. *Cem. Concr. Compos.*, 106102.

Cowan, M., 2007. Field study results improve squeeze cementing success. Production and Operations Symposium. U.S.A. Society of Petroleum Engineers, Oklahoma City, Oklahoma. <https://doi.org/10.2118/106765-MS>, 31 March–3 April.

Crow, W., Carey, J.W., Gasda, S., Brian Williams, D., Celia, M.A., 2010. Wellbore integrity analysis of a natural CO₂ producer. *Int. J. Greenh. Gas Control* 4, 186–197. <https://doi.org/10.1016/j.ijggc.2009.10.010>.

Cui, G., Yang, Z., Liu, J., Li, Z., 2019. A comprehensive review of metal corrosion in a supercritical CO₂ environment. *Int. J. Greenh. Gas Control* 90, 102814. <https://doi.org/10.1016/j.ijggc.2019.102814>.

Cumming, L., Hawkins, J., Sminchak, J., Valluri, M., Gupta, N., 2019. Researching candidate sites for a carbon storage complex in the Central Appalachian Basin, USA. *Int. J. Greenh. Gas Control* 88, 168–181. <https://doi.org/10.1016/j.ijggc.2019.05.030>.

da Silva, R.G.D., Magalhães, E.S., Pires, L.C.M., 2023. Estimation of thermal input in thermite reaction for innovative wellbore plugging & abandonment techniques. *Int. Commun. Heat Mass Transf.* 148, 107071.

Dalla Vecchia, F., dos Santos, V.H.J.M., Schütz, M.K., Ponzi, G.G.D., e Stepanha, A.S.de G., de Fraga Malfatti, C., da Costa, E.M., 2020. Wellbore integrity in a saline aquifer: experimental steel-cement interface degradation under supercritical CO₂ conditions representative of Brazil's Parana basin. *Int. J. Greenh. Gas Control* 98, 103077.

Davies, R.J., Almond, S., Ward, R.S., Jackson, R.B., Adams, C., Worrall, F., Herringshaw, L.G., Guyas, J.G., Whitehead, M.A., 2014. Oil and Gas Wells and Their Integrity: Implications for Shale and Unconventional Resource Exploitation. Elsevier Ltd. <https://doi.org/10.1016/j.marpetgeo.2014.03.001>.

Davis, K.E., 1986. Factors effecting the area of review for hazardous waste disposal Wells. In: Proceedings of the International Symposium on Subsurface Injection of Liquid Wastes. National Water Well Association, Dublin OH, pp. 148–194, 198616 Fig. 6 Tab. 24 Ref.

de Lemos, M.J., 2024. Conventional and emerging technologies for P&A. *Therm. Plug Abandon. Oil Wells* 7–14.

De Smet, T.S., Nikulin, A., Romanzo, N., Graber, N., Dietrich, C., Puliaiev, A., 2021. Successful application of drone-based aeromagnetic surveys to locate legacy oil and gas wells in Cattaraugus county, New York. *J. Appl. Geophys.* 186, 104250. <https://doi.org/10.1016/j.jappgeo.2020.104250>.

Dean, M., Tucker, O., 2017. A risk-based framework for measurement, monitoring and verification (MMV) of the Goldeneye storage complex for the Peterhead CCS project. UK. *Int. J. Greenh. Gas Control* 61, 1–15. <https://doi.org/10.1016/j.ijggc.2017.03.014>.

Deng, H., Bielicki, J.M., Oppenheimer, M., Fitts, J.P., Peters, C.A., 2017. Leakage risks of geologic CO₂ storage and the impacts on the global energy system and climate change mitigation. *Clim. Change* 144, 151–163. <https://doi.org/10.1007/s10584-017-2035-8>.

Diez, A., Johansen, T.F., Larsen, I., 2022. Ultrasonic logging of creeping shale. *Petrophysics* 63, 61–81. <https://doi.org/10.30632/PJV63N1-2022a4>.

DiGiulio, D.C., Rossi, R.J., Lebel, E.D., Bilsback, K.R., Michanowicz, D.R., Shonkoff, S.B. C., 2023. Chemical characterization of natural gas leaking from abandoned oil and gas wells in Western Pennsylvania. *ACS Omega* 8, 19443–19454. <https://doi.org/10.1021/acsomega.3c00676>.

Dilmore, R.M., Sams, J.I., Gossler, D., Carter, K.M., Bain, D.J., 2015. Spatial and temporal characteristics of historical oil and gas wells in Pennsylvania: implications for new shale gas resources. *Environ. Sci. Technol.* 49, 12015–12023. <https://doi.org/10.1021/acs.est.5b00820>.

Doherty, B., Vasylkivska, V., Huerta, N.J., Dilmore, R., 2017. Estimating the leakage along Wells during geologic CO₂ storage: application of the well leakage assessment tool to a hypothetical storage scenario in Natrona County, Wyoming. *Energy procedia*. In: 13th International Conference on Greenhouse Gas Control Technologies, GHGT-13, 14–18 November 2016. Lausanne, Switzerland, 114, pp. 5151–5172. <https://doi.org/10.1016/j.egypro.2017.03.1669>.

Dong, Z., Folmar, I., Chen, J., Lu, L., Su, Q., Seth, P., Sidahmed, M., Sarfare, M., Akil, I., 2022. Machine learning in automating carbon storage site assessment. Presented at the ADIPEC, OnePetro. <https://doi.org/10.2118/210824-MS>.

Dugstad, A., 1998. Mechanism of Protective Film Formation During CO₂ Corrosion of Carbon Steel, 98. CORROSION.

Duguid, A., Radonjic, M., Scherer, G.W., 2011. Degradation of cement at the reservoir/cement interface from exposure to carbonated brine. *Int. J. Greenh. Gas Control* 5, 1413–1428.

Duguid, A., Carey, J.W., Butsch, R., 2014. Well integrity assessment of a 68 year old Well at a CO₂ injection project. *Energy Procedia* 63, 5691–5706. <https://doi.org/10.1016/j.egypro.2014.11.602>.

Duguid, A., Zaluski, W., El-Kaseeh, G., Lee, S.-Y., Piercy, M., 2019. Well integrity risk assessment to inform containment risk monitoring for carbon capture, utilization, and storage, applied to the Weyburn-Midale Field. *Can. Int. J. Greenh. Gas Control* 86, 226–238. <https://doi.org/10.1016/j.ijggc.2016.10.018>.

Duguid, A., 2009. An estimate of the time to degrade the cement sheath in a well exposed to carbonated brine. *Energy Procedia* 1, 3181–3188. <https://doi.org/10.1016/j.egypro.2009.10.101>.

Dusseault, M.B., Gray, M.N., Nawrocki, P., 2000. Why oilwells leak: cement behavior and long-term consequences. In: SPE International Oil and Gas Conference and Exhibition, 64733. SPE, p. 8. <https://doi.org/10.2118/64733-MS>.

Emami-Meybodi, H., Hassanzadeh, H., Green, C.P., Ennis-King, J., 2015. Convective dissolution of CO₂ in saline aquifers: progress in modeling and experiments. *Int. J. Greenh. Gas Control* 40, 238–266.

Emmel, B., Dupuy, B., 2021. Dataset of plugging and abandonment status from exploration wells drilled within the Troll gas and oil field in the Norwegian North Sea. *Data Br.* 37, 107165. <https://doi.org/10.1016/j.dib.2021.107165>.

Enayatpour, S., Thombare, A., Aldin, M., van Oort, E., 2019. Exploiting Shale creep deformation to create annular barriers for well plugging and abandonment: experimental investigation and numerical simulation.

Erguler, G.K., Taleghani, A.D., 2025. Geopolymers for integrity of geothermal and CO₂ sequestration wells: a state-of-the-art review. *Geoenergy Sci. Eng.*, 214081.

Eslami, A., Akbari, S., Taghavi, S.M., 2022. An experimental study of displacement flows in stationary and moving annuli for reverse circulation cementing applications. *J. Pet. Sci. Eng.* 213, 110321. <https://doi.org/10.1016/j.petrol.2022.110321>.

European Commission, 2009. Directive 2009/31/EC of the European Parliament and of the Council of 23 April 2009 on the geological storage of carbon dioxide and amending Council Directive 85/337/EEC, European Parliament and Council Directives 2000/60/EC, 2001/80/EC, 2004/35/EC, 2006/12/EC, 2008/1/EC and Regulation (EC) No 1013/2006.

European Commission, 2024. CO₂ storage life cycle and risk management framework.

Feneuil, B., N'Gouamba, E., Skogestad, J.O., Linga, H., 2025. Effect of dissolution of CO₂ and CH₄ on the flow curve of drilling fluids. *Annu. Trans. Nord. Rheol. Soc.* 33, 79–88.

Feng, G., Xu, T., Tian, H., Lu, M., Connell, L.D., Lei, H., Shi, Y., 2017. Three-phase non-isothermal flow behavior of CO₂-brine leakage from wellbores. *Int. J. Greenh. Gas Control* 64, 183–193.

Fernandez-Rojo, L., Soler, J.M., Dávila, G., Chaparro, M.C., Queralt, I., Cama, J., 2021. Flow and reaction along the interface between hydrated Portland cement and calcareous rocks during CO₂ injection. Laboratory experiments and modeling. *Int. J. Greenh. Gas Control* 108, 103331.

Finley, R.J., 2014. An overview of the Illinois Basin – decatur project. *Greenh. Gases: Sci. Technol.* 4, 571–579. <https://doi.org/10.1002/ghg.1433>.

Fjær, E., Larsen, I., 2018. Shale As a sealing barrier around deep wells. In: Presented at the ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers Digital Collection. <https://doi.org/10.1115/OMAE2018-78749>.

Fjær, E., Folstad, J.S., Li, L., 2016. How creeping shale may form a sealing barrier around a well.

Fjær, E., Stenebråten, J.F., Bakheim, S., Larsen, I., 2023. Characteristic features of shale barrier materials. *Geoenergy Sci. Eng.* 231, 212312. <https://doi.org/10.1016/j.geoen.2023.212312>.

Flatt, R.J., Scherer, G.W., 2008. Thermodynamics of crystallization stresses in DEF. *Cem. Concr. Res.* 38, 325–336. <https://doi.org/10.1016/j.cemconres.2007.10.002>.

Flett, M., Brantjes, J., Gurton, R., McKenna, J., Tankersley, T., Trupp, M., 2009. Subsurface development of CO₂ disposal for the Gorgon Project. *Energy Procedia, Greenhouse Gas Control Technologies* 9 1, pp. 3031–3038. <https://doi.org/10.1016/j.egypro.2009.02.081>.

Foerstner, J., Camponeschi, A., Rairigh, J.G., Murphy, B., 2025. Rigless intervention pipe expansion method to seal gas or fluid leaks. In: Presented at the SPE/ICoTA Well Intervention Conference and Exhibition. SPE. D01S004R007.

Forde, O.N., Cahill, A.G., Beckie, R.D., Mayer, K.U., 2019. Barometric-pumping controls fugitive gas emissions from a vadose zone natural gas release. *Sci. rep.* 9, 1–9.

Forde, O.N., Cahill, A.G., Mayer, B., Beckie, R.D., Mayer, K.U., 2022. Fugitive Gas migration in the Vadose Zone at an experimental field site in the Montney Shale Gas Region. *Geophys. Res. Lett.* 49, e2022GL098762. <https://doi.org/10.1029/2022GL098762>.

Frischknecht, F.C., Muth, L., Grette, R., Buckley, T., Kornegay, B., 1983. Geophysical methods for locating abandoned wells (No. 83–702). Open-File Report. U.S. Geological Survey. <https://doi.org/10.3133/ofr83702>.

Fukami, K., Maulik, R., Ramachandra, N., Fukagata, K., Taira, K., 2021. Global field reconstruction from sparse sensors with Voronoi tessellation-assisted deep learning. *Nat Mach Intell* 3, 945–951. <https://doi.org/10.1038/s42256-021-00402-2>.

Gale, J., Christensen, N.P., Cutler, A., Torp, T.A., 2001. Demonstrating the potential for geological storage of CO₂: the Sleipner and GESTCO projects. *Environ. Geosci.* 8, 160–165. <https://doi.org/10.1046/j.1526-0984.2001.008003160.x>.

Gan, M., Nguyen, M.C., Zhang, L., Wei, N., Li, J., Lei, H., Wang, Y., Li, X., Stauffer, P.H., 2021. Impact of reservoir parameters and wellbore permeability uncertainties on CO₂ and brine leakage potential at the Shenhua CO₂ Storage Site, China. *Int. J. Greenh. Gas Control* 111, 103443. <https://doi.org/10.1016/j.ijggc.2021.103443>.

Gao, X., Krevor, S., 2025. The London Register of Subsurface CO₂ Storage. In: Sixth EAGE Global Energy Transition Conference & Exhibition (GET 2025). European Association of Geoscientists & Engineers, pp. 1–4.

Garcia-Rios, M., Gouze, P., 2018. Time-space characterization of wellbore-cement alteration by CO₂-rich brine. *Geosciences* 8, 490.

Gasda, S.E., Bachu, S., Celia, M.A., 2004. Spatial characterization of the location of potentially leaky wells penetrating a deep saline aquifer in a mature sedimentary basin. *Environ. Geol.* 46, 707–720. <https://doi.org/10.1007/s00254-004-1073-5>.

Gawel, K., Lozovsky, M., Bhuiyan, M.H., Bjørge, R., Fjær, E., 2021. Acid treatment as a way to reduce shale rock mechanical strength and to create a material prone to the

formation of permanent well barrier. *Energies* 14, 2342. <https://doi.org/10.3390/en14092342>.

Geiker, M., Knudsen, T., 1982. Chemical shrinkage of Portland cement pastes. *Cem. Concr. Res.* 12, 603–610.

Genedy, M., Stormont, J., Matteo, E., Taha, M.R., 2014. Examining epoxy-based nanocomposites in wellbore seal repair for effective CO₂ sequestration. *Energy Procedia* 63, 5798–5807.

Gholami, R., Raza, A., Iglauser, S., 2021. Leakage risk assessment of a CO₂ storage site: A review. *Earth-Sci. Rev.* 223, 103849. <https://doi.org/10.1016/j.earscirev.2021.103849>.

Ghosh, S., 2022. A review of basic well log interpretation techniques in highly deviated wells. *J Pet. Explor. Prod. Technol.* 12, 1889–1906. <https://doi.org/10.1007/s13202-021-01437-2>.

Giannoukos, K., Hall, M.R., Rochelle, C.A., Milodowski, A.E., Rigby, S.P., 2014. Preliminary investigation on the chemical response of cementitious grouts used for borehole sealing of geologically stored CO₂. *Energy Procedia* 59, 174–181.

Gianoutsos, N.J., Haase, K.B., Birdwell, J.E., 2024. Geologic sources and well integrity impact methane emissions from orphaned and abandoned oil and gas wells. *Sci. Total Environ.* 912, 169584. <https://doi.org/10.1016/j.scitotenv.2023.169584>.

Glawezski, K.A., Hamling, J.A., Peck, W.D., Doll, T.E., Laumb, J.D., Gorecki, C.D., Steadman, E.N., Harju, J.A., 2014. Wellbore evaluation of the basal cambrian system. In: *Energy Procedia*, 12th International Conference on Greenhouse Gas Control Technologies, 63, pp. 5715–5723. <https://doi.org/10.1016/j.egypro.2014.11.604>. GHGT-12.

Global CCS Institute, 2025. *Global Status of CCS 2025. Australia*.

Gonzalez Samano, P.S., Beckie, R.D., Busch, A., Cahill, A.G., 2023. Evaluating propensity for fugitive gas migration from integrity compromised oil and gas wells in the Peace Region, British Columbia, Canada, with a petrophysical approach. *Mar. Pet. Geol.* 153, 106260. <https://doi.org/10.1016/j.marpetgeo.2023.106260>.

Green, C., Evans, R., Fry, B., Wruck, W.S., 2021. New technology closes micro-annular flow paths in the wellbore, stopping downhole gas from escaping to the surface. In: *SPE/AAPG/SEG Unconventional Resources Technology Conference*. OnePetro.

Gu, T., Guo, X., Li, Z., Cheng, X., Fan, X., Korayem, A., Duan, W.H., 2017. Coupled effect of CO₂ attack and tensile stress on well cement under CO₂ storage conditions. *Constr. Build. Mater.* 130, 92–102. <https://doi.org/10.1016/j.conbuildmat.2016.10.117>.

Gu, Y., Martin, R.-P., Metalssi, O.O., Fen-Chong, T., Dangla, P., 2019. Pore size analyses of cement paste exposed to external sulfate attack and delayed ettringite formation. *Cem. Concr. Res.* 123, 105766.

Gu, Y., Dangla, P., Martin, R.-P., Metalssi, O.O., Fen-Chong, T., 2022. Modeling the sulfate attack induced expansion of cementitious materials based on interface-controlled crystal growth mechanisms. *Cem. Concr. Res.* 152, 106676.

Gupta, N., Newkirk, L., Battelle, C., Battelle, O., Lang, A., 2024. Evaluating the relevance of NRAP tools to support stakeholder decision making related to UIC class VI injection permit application process.

Guthrie, G.D., Pawar, R.J., Carey, J.W., Karra, S., Harp, D.R., Viswanathan, H.S., 2018. The mechanisms, dynamics, and implications of self-sealing and CO₂ resistance in wellbore cements. *Int. J. Greenh. Gas Control* 75, 162–179.

Haagsma, A., Burchwell, A., Sminchak, J., Gerst, J., Moody, M., 2015. Utilizing cement bond logs to evaluate wellbore integrity for local and regional scales. In: *SPE Eastern Regional Meeting*. Presented at the SPE Eastern Regional Meeting. Society of Petroleum Engineers, Morgantown, West Virginia, USA. <https://doi.org/10.2118/177316-MS>.

Haagsma, A., Weber, S., Moody, M., Sminchak, J., Gerst, J., Gupta, N., 2017. Comparative wellbore integrity evaluation across a complex of oil and gas fields within the Michigan Basin and implications for CO₂ storage. *Greenh. Gases: Sci. Technol.* 7, 828–842. <https://doi.org/10.1002/ghg.1620>.

Haden Chomphosy, W., Varriano, S., Leffler, L.H., Nallur, V., McClung, M.R., Moran, M.D., 2021. Ecosystem services benefits from the restoration of non-producing US oil and gas lands. *Nature Sust.* 4 (6), 547–554.

Hajibabadi, S.H., Khalifeh, M., van Noort, R., Silva Santos Moreira, P.H., 2023. Review on geopolymers as wellbore sealants: state of the art optimization for CO₂ exposure and perspectives. *ACS Omega* 8, 23320–23345. <https://doi.org/10.1021/acsomega.3c01777>.

Hajiyev, E., Watson, M., Emadi, H., Eissa, B., Hussain, A., Baig, A.R., Shahin, A., 2025. A comparative study of major risk assessment (RA) frameworks in geologic carbon storage (GCS). *Fuels* 6, 42. <https://doi.org/10.3390/fuels6020042>.

Hammack, R., Veloski, G., Hodges, D.G., White, J., 2016. Methods for Finding Legacy Wells in Large Areas (No. NETL-PUB-20579). National Energy Technology Lab. (NETL), Pittsburgh, PA United States. <https://doi.org/10.2172/1361498>.

Hammack, R., Veloski, G., Schlaggenhauf, M., Lowe, R., Zorn, A., Wylie, L., 2020. Using drone-mounted geophysical sensors to map legacy oil and gas infrastructure. In: *Unconventional Resources Technology Conference*, Virtual, 2022 July 2020, SEG Global Meeting Abstracts. Unconventional Resources Technology Conference (URTeC), pp. 3517–3528. <https://doi.org/10.15530/urtec-2020-2876>.

Hammack, R., Veloski, G., Sams, J., Kohnke, C., 2023. Aeromagnetic surveys for the location of undocumented orphaned wells. *Lead. Edge* 42, 798–807.

Han, J., Carey, J.W., Zhang, J., 2011. A coupled electrochemical-geochemical model of corrosion for mild steel in high-pressure CO₂-saline environments. *Int. J. Greenh. Gas Control* 5, 777–787.

Han, J., Carey, J.W., Zhang, J., 2012. Degradation of cement-steel composite at bonded steel-cement interfaces in supercritical CO₂ saturated brines simulating wellbore systems. In: *NACE - International Corrosion Conference Series*, pp. 151–179.

Hangx, S.J.T., van der Linden, A., Marcelis, F., Liteanu, E., 2016. Defining the brittle failure envelopes of individual reaction zones observed in CO₂-exposed wellbore cement. *Environ. sci. technol.* 50, 1031–1038.

Hangx, S.J.T., Wolterbeek, T.K.T., Bruggeman, M.J., Plümper, O., 2025. The influence of hydrating mineral components on wellbore sealing capacity of salt-plugged wells. *Geomech. Energy Environ.* 42, 100661.

Hanns, S., Lu, J., Chadwick, A., Hovorka, S., Kirk, K., Romanak, K., Pearce, J., 2017. CO₂ storage in depleted or depleting oil and gas fields: what can we learn from existing projects?. In: *Energy Procedia*, 13th International Conference on Greenhouse Gas Control Technologies, GHGT-13, 14–18 November 2016. Lausanne, Switzerland, 114, pp. 5680–5690. <https://doi.org/10.1016/j.egypro.2017.03.1707>.

Harp, D.R., Pawar, R., Carey, J.W., Gable, C.W., 2016. Reduced order models of transient CO₂ and brine leakage along abandoned wellbores from geologic carbon sequestration reservoirs. *Int. J. Greenh. Gas Control* 45, 150–162. <https://doi.org/10.1016/j.ijggc.2015.12.001>.

Haut, R.C., Crook, R.J., 1979. Primary cementing: the mud displacement process. In: *SPE Annual Technical Conference and Exhibition*. Society of Petroleum Engineers, Las Vegas, Nevada, pp. 23–26. <https://doi.org/10.2118/8253-MS>. September.

Hawkes, C., McLellan, P., Maurer, B., Ruan, C., 2000. Wellbore instability in shales: a review of fundamental principles, physico-chemical mechanisms in Mud-shale interaction and GRI-funded research. Part 1.

Hmadeh, L., Jaculli, M.A., Elahifar, B., Sangesland, S., 2024. Development of Bismuth-Based Solutions For Well Plugging and abandonment: A review. *Petroleum Research*.

Hnottavange-Telleine, K., 2014. Risk management at the Illinois Basin - decatur project: a FEPs-based approach: risk management: a FEPs-based approach. *Greenh. Gas Sci Technol* 4, 604–616. <https://doi.org/10.1002/ghg.1450>.

Ho, J., Krupnick, A., McLaughlin, K., Munnings, C., Shih, J.-S., 2016. Plugging the Gaps in Inactive Well Policy (RFF Report).

Holt, R.M., Fjær, E., Stenebråten, J.F., Nes, O.-M., 2015. Brittleness of shales: relevance to borehole collapse and hydraulic fracturing. *J. Pet. Sci. Eng.* 131, 200–209. <https://doi.org/10.1016/j.petrol.2015.04.006>.

Holt, R.M., Fjær, E., Larsen, I., 2017. Ultrasonic properties of creepy shales.

Holt, R.M., Larsen, I., Fjær, E., Stenebråten, J.F., 2020. Comparing mechanical and ultrasonic behaviour of a brittle and a ductile shale: relevance to prediction of borehole stability and verification of shale barriers. *J. Pet. Sci. Eng.* 187, 106746. <https://doi.org/10.1016/j.petrol.2019.106746>.

Huerta, N.J., Hesse, M.A., Bryant, S.L., Strazisar, B.R., Lopano, C., 2016. Reactive transport of CO₂-saturated water in a cement fracture: application to wellbore leakage during geologic CO₂ storage. *Int. J. Greenh. Gas Control* 44, 276–289. <https://doi.org/10.1016/j.ijggc.2015.02.006>.

Huet, B.M., Prevost, J.H., Scherer, G.W., 2010. Quantitative reactive transport modeling of Portland cement in CO₂-saturated water. *Int. J. Greenh. Gas Control* 4, 561–574. <https://doi.org/10.1016/j.ijggc.2009.11.003>.

Ingraffea, A.R., Wells, M.T., Santoro, R.L., Shonkoff, S.B.C., 2014. Assessment and risk analysis of casing and cement impairment in oil and gas wells in Pennsylvania, 2000–2012. *Proc. Natl. Acad. Sci.* 111, 10955–10960. <https://doi.org/10.1073/pnas.1323422111>.

International Association of Oil & Gas Producers, 2023. *Risk and Uncertainty Assessments For Geologic Storage of CO₂* (Report No. 670). IOGP.

Interstate Oil and Gas Compact Commission (IOGCC), 2021. *Idle and orphan oil and gas wells: State and provincial regulatory strategies*.

IPCC, 2005. *Carbon Dioxide Capture and Storage*. Cambridge University Press, Cambridge, United Kingdom and New York, NY USA.

Iyer, J., Smith, M.M., 2024. Impact of cement composition, brine concentration, diffusion rate, reaction rate and boundary condition on self-sealing predictions for cement-CO₂ systems. *Int. J. Greenh. Gas Control* 134, 104126.

Iyer, J., Walsh, S.D.C., Hao, Y., Carroll, S.A., 2017. Incorporating reaction-rate dependence in reaction-front models of wellbore-cement/carbonated-brine systems. *Int. J. Greenh. Gas Control* 59, 160–171.

Iyer, J., Walsh, S.D.C., Hao, Y., Carroll, S.A., 2018. Assessment of two-phase flow on the chemical alteration and sealing of leakage pathways in cemented wellbores. *Int. J. Greenh. Gas Control* 69, 72–80.

Iyer, J., Lackey, G., Edvardsen, L., Bean, A., Carroll, S.A., Huerta, N., Smith, M.M., Torsæter, M., Dilmore, R.M., Cerasi, P., 2022. A review of well integrity based on field experience at carbon utilization and storage sites. *Int. J. Greenh. Gas Control* 113, 103533. <https://doi.org/10.1016/j.ijggc.2021.103533>.

Jabbour, M., Metalssi, O.O., Quiertant, M., Baroghel-Bouny, V., 2022. A critical review of existing test-methods for external sulfate attack. *Materials* 15, 7554.

Jacquemet, N., Pironon, J., Lagneau, V., Saint-Marc, J., 2012. Armouring of well cement in H₂S-CO₂ 2 saturated brine by calcite coating—experiments and numerical modelling. *Appl. geochem.* 27, 782–795.

Jahan, I., Mehana, M., Kang, M., Boutot, J., Govert, A., O'Malley, D., Viswanathan, H.S., 2025. Data-driven estimates of undocumented orphan oil and gas wells with implications to the environment. *Sci. Total Environ.* 967, 178746. <https://doi.org/10.1016/j.scitotenv.2025.178746>.

Jahanbakhsh, A., Liu, Q., Hadi Mosleh, M., Agrawal, H., Farooqui, N.M., Buckman, J., Recasens, M., Maroto-Valer, M., Korre, A., Durucan, S., 2021. An investigation into CO₂-brine-cement-reservoir rock interactions for wellbore integrity in CO₂ geological storage. *Energies* 14, 5033.

Jandhyala, S.R.K., Pangu, G., Deshpande, A., Wolterbeek, T., Cornelissen, E., van Eijden, J., 2018. Volume change of cement plugs: spotlight on the role of boundary conditions using an improved testing method. In: *SPE Asia Pacific Oil and Gas Conference and Exhibition*. Society of Petroleum Engineers.

Jenkins, C., Chadwick, A., Hovorka, S.D., 2015. The state of the art in monitoring and verification—ten years on. *Int. J. Greenh. Gas Control* 40, 312–349. <https://doi.org/10.1016/j.ijggc.2015.05.009>. Special Issue commemorating the 10th year anniversary of the publication of the Intergovernmental Panel on Climate Change Special Report on CO₂ Capture and Storage.

Jenkins, C., 2020. The state of the art in monitoring and verification: an update five years on. *Int. J. Greenh. Gas Control* 100, 103118. <https://doi.org/10.1016/j.ijgge.2020.103118>.

Jenkins, C., 2023. Commentary: legacy wells—we need more case studies. *Int. J. Greenh. Gas Control* 123, 103837. <https://doi.org/10.1016/j.ijgge.2023.103837>.

Johnston, O.C., Knappe, B.K., 1986. Pressure Effects of the Static Mud Column in Abandoned Wells. Texas Water Commission.

Poppe, L.C., Nelson, J.F., Kelman, G.L., 2017. We're stuck: efficient casing removal for well abandonment applications. In: Offshore Technology Conference. Offshore Technology Conference.

Jordan, P.D., Wagoner, J.L., 2017. Characterizing Construction of Existing Wells to a CO₂ Storage Target: The Kimberlina Site, California (Level III Technical Report Series No. NRAP-TRS-III-001-2017). U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV.

Jung, H.B., Kabilan, S., Carson, J.P., Kuprat, A.P., Um, W., Martin, P., Dahl, M., Kafetzis, T., Varga, T., Stephens, S., Arey, B., Carroll, K.C., Bonneville, A., Fernandez, C.A., 2014. Wellbore cement fracture evolution at the cement–basalt caprock interface during geologic carbon sequestration. *Appl. Geochem.* 47, 1–16. <https://doi.org/10.1016/j.apgeochem.2014.04.010>.

Kadeethum, T., Downs, C., 2024. Harnessing machine learning and data fusion for accurate undocumented well identification in satellite images. *Remote Sens.* 16, 2116. <https://doi.org/10.3390/rs16122116>.

Kang, M., Kanno, C.M., Reid, M.C., Zhang, X., Mauzerall, D.L., Celia, M.A., Chen, Y., Onstott, T.C., 2014. Direct measurements of methane emissions from abandoned oil and gas wells in Pennsylvania. *Proc. Natl. Acad. Sci. U. S. A.* 111, 18173–18177. <https://doi.org/10.1073/pnas.1408315111>.

Kang, M., Christian, S., Celia, M.A., Mauzerall, D.L., Bill, M., Miller, A.R., Chen, Y., Conrad, M.E., Darrah, T.H., Jackson, R.B., 2016. Identification and characterization of high methane-emitting abandoned oil and gas wells. *Proc. Natl. Acad. Sci. U. S. A.* 113, 13636–13641. <https://doi.org/10.1073/pnas.1605913113>.

Kang, M., Boutot, J., McVay, R.C., Roberts, K.A., Jasechko, S., Perrone, D., Wen, T., Lackey, G., Raimi, D., Digilio, D.C., Shonkoff, S.B.C., Carey, J.W., Elliott, E.G., Vorhees, D.J., Peltz, A.S., 2023. Environmental risks and opportunities of orphaned oil and gas wells in the United States. *Environ. Res. Lett.* 18, 074012. <https://doi.org/10.1088/1748-9326/acdae7>.

Kaplan, S., Garrick, B.J., 1981. On the quantitative definition of risk. *Risk Anal.* 1, 11–27.

Katende, A., Lu, Y., Bunker, A., Radonjic, M., 2020. Experimental quantification of the effect of oil based drilling fluid contamination on properties of wellbore cement. *J. Nat. Gas Sci. Eng.* 79, 103328. <https://doi.org/10.1016/j.jngse.2020.103328>.

Keating, E., Bacon, D., Carroll, S., Mansoor, K., Sun, Y., Zheng, L., Harp, D., Dai, Z., 2016. Applicability of aquifer impact models to support decisions at CO₂ sequestration sites. *Int. J. Greenh. Gas Control* 52, 319–330. <https://doi.org/10.1016/j.ijgge.2016.07.001>.

Khalifeh, M., Gardner, D., Haddad, M.Y., 2017. Technology trends in cement job evaluation using logging tools. In: Presented at the Abu Dhabi International Petroleum Exhibition & Conference. OnePetro. <https://doi.org/10.2118/188274-MS>.

Kim, A., Kadeethum, T., Downs, C., Viswanathan, H.S., O'Malley, D., 2024. Aerial imagery dataset of lost oil wells. *Sci Data* 11, 1005. <https://doi.org/10.1038/s41597-024-03820-0>.

Kim, T.W., Li, Y., Kohli, A.H., Kovscek, A.R., 2025. Assessment of CO₂ leakage through existing wells and faults for a prospective storage site in the Southern San Joaquin Basin, California. *Int. J. Greenh. Gas Control* 144, 104381. <https://doi.org/10.1016/j.ijgge.2025.104381>.

King, G.E., King, D.E., 2013. Environmental risk arising from well-construction failure—differences between barrier and well failure, and estimates of failure frequency across common well types, locations, and well age. *SPE Prod. Oper.* 28, 323–344. <https://doi.org/10.2118/166142-PA>.

King, G.E., Valencia, R.L., 2014. Environmental risk and well integrity of plugged and abandoned wells. In: Presented at the SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers. <https://doi.org/10.2118/170949-MS>.

Kiran, R., Teodoritu, C., Dadmohammadi, Y., Nygaard, R., Wood, D., Mokhtari, M., Salehi, S., 2017. Identification and evaluation of well integrity and causes of failure of well integrity barriers (A review). *J. Nat. Gas Sci. Eng.* 45, 511–526. <https://doi.org/10.1016/j.jngse.2017.05.009>.

Kirkland, C.M., Thane, A., Hieber, R., Hyatt, R., Kirksey, J., Cunningham, A.B., Gerlach, R., Spangler, L., Phillips, A.J., 2020. Addressing wellbore integrity and thief zone permeability using microbially-induced calcium carbonate precipitation (MICP): A field demonstration. *J. Pet. Sci. Eng.* 190, 107060.

Kjøller, C., Torsæter, M., Lavrov, A., Frykman, P., 2016. Novel experimental/numerical approach to evaluate the permeability of cement–caprock systems. *Int. J. Greenh. Gas Control* 45, 86–93.

Klein, A., 1958. Studies of calcium sulpho aluminate admixtures for expansive cements. In: Presented at the Proceedings of ASTM, pp. 968–1008.

Kolchanov, P., Perroni, D., Medvedev, A., Gao, Y., Tercero, R., Todd, L., Lungwitz, B., Cowan, K.M., Turner, W., 2018. Effective zonal isolation in horizontal wells: mitigating negative impact of mud channels. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.

Kristiansen, T.G., Dyngeland, T., Kinn, S., Flatebø, R., Aarseth, N.A., 2018. Activating shale to form well barriers: theory and field examples. In: SPE Annual Technical Conference and Exhibition? SPE. D011S001R004.

Kristiansen, T.G., Delabroy, L., Obando Palacio, G.A., Winther, T., Aarseth, N.A., Bauer, A., Hagenes, K., Lindal, A., Tybø, P., 2021. Implementing a strategy for shale as well barrier in new wells. In: SPE/IADC Drilling Conference and Exhibition. SPE. D051S028R001.

Kuanhai, D., Yue, Y., Yi, H., Zhonghui, L., Yuanhua, L., 2020. Experimental study on the integrity of casing–cement sheath in shale gas wells under pressure and temperature cycle loading. *J. Pet. Sci. Eng.* 195, 107548. <https://doi.org/10.1016/j.petrol.2020.107548>.

Kuo, C.-C., Wang, C.-L., Hsiang, H.-I., 2017. Mechanical and microscopic properties of API G cement after exposure to supercritical CO₂. *Terr. Atmos. Ocean. Sci.* 28, 209–216. [https://doi.org/10.3319/TAO.2015.08.20.02\(GSC\)](https://doi.org/10.3319/TAO.2015.08.20.02(GSC)).

Kupresan, D., Heathman, J., Radonjic, M., 2013. Application of a new physical model of expandable casing technology in mitigation of wellbore leaks. *J. Can. Energy Technol. Innov. (CETI)* 1.

Kupresan, D., Heathman, J., Radonjic, M., 2014. Casing expansion as a promising solution for microannular gas migration. *SPE Drill. Complet.* 29, 366–371.

Kutchko, B.G., Strazisar, B.R., Dzombak, D.A., Lowry, G.V., Thaulow, N., 2007. Degradation of well cement by CO₂ under geologic sequestration conditions. *Environ. Sci. Technol.* 41, 4787–4792.

Kutchko, B.G., Strazisar, B.R., Lowry, G.V., Dzombak, D.A., Thaulow, N., 2008. Rate of CO₂ attack on hydrated class H well cement under geologic sequestration conditions. *Environ. Sci. Technol.* 42, 6237–6242.

Kutchko, B.G., Strazisar, B.R., Huerta, N., Lowry, G.V., Dzombak, D.A., Thaulow, N., 2009. CO₂ Reaction with hydrated class H well cement under geologic sequestration conditions: effects of flyash admixtures. *Environ. Sci. Technol.* 43, 3947–3952. <https://doi.org/10.1021/es0803007>.

Kutchko, B.G., Strazisar, B.R., Hawthorne, S.B., Lopano, C.L., Miller, D.J., Hakala, J.A., Guthrie, G.D., 2011. H₂S–CO₂ reaction with hydrated Class H well cement: acid-gas injection and CO₂ Co-sequestration. *Int. J. Greenh. Gas Control* 5, 880–888.

Lackey, G., Rajaram, H., 2019. Modeling gas migration, sustained casing pressure, and surface casing vent flow in onshore oil and gas wells. *Water Resour. Res.* 55, 298–323. <https://doi.org/10.1029/2018WR024066>.

Lackey, G., Vasylkivska, V.S., Huerta, N.J., King, S., Dilmore, R.M., 2019. Managing well leakage risks at a geologic carbon storage site with many wells. *Int. J. Greenh. Gas Control* 88, 182–194. <https://doi.org/10.1016/j.ijgge.2019.06.011>.

Lackey, G., Rajaram, H., Bolander, J., Sherwood, O.A., Ryan, J.N., Shih, C.Y., Bromhead, G.S., Dilmore, R.M., 2021. Public data from three US states provide new insights into well integrity. *PNAS* 118. <https://doi.org/10.1073/pnas.2013894118>.

Lackey, G., Pantaleone, S., Montgomery, J.K., Busse, K., Aylor, A.W., Moffett, T.J., 2024. Evaluating offshore legacy wells for geologic carbon storage: a case study from the Galveston and Brazos areas in the Gulf of Mexico. *Int. J. Greenh. Gas Control* 139, 104276. <https://doi.org/10.1016/j.ijgge.2024.104276>.

Lackey, G., Dyer, A., Pfander, I., Shih, C.Y., Dilmore, R.M., 2025. Understanding drivers of oil and gas well integrity issues in the greater wattenberg area of Colorado. *Int. J. Greenh. Gas Control* 141, 104296. <https://doi.org/10.1016/j.ijgge.2024.104296>.

Ladva, H.K.J., Craster, B., Jones, T.G.J., Goldsmith, G., Scott, D., 2005. The cement-toformation interface in zonal isolation. *SPE Drill. Complet.* 20. <https://doi.org/10.2118/88016-PA>.

Landry, B., Stopkoski, C., Norton, B., 2024. Operations reduce scope one emissions through rig electrification and energy efficient lighting. In: Presented at the Abu Dhabi International Petroleum Exhibition and Conference. SPE. D011S004R001.

Lavrov, A., Torsæter, M., 2018. All microannuli are not created equal: role of uncertainty and stochastic properties in well leakage prediction. *Int. J. Greenh. Gas Control* 79, 323–328. <https://doi.org/10.1016/j.ijgge.2018.09.001>.

Lavrov, A., 2018. Stiff cement, soft cement, nonlinearity, arching effect, hysteresis, and irreversibility in CO₂-well integrity and near-well geomechanics. *Int. J. Greenh. Gas Control* 70, 236–242.

Le Mer, J., Roger, P., 2001. Production, oxidation, emission and consumption of methane by soils: a review. *Eur. J. Soil Biol.* 37, 25–50. [https://doi.org/10.1016/S1164-5563\(01\)01067-6](https://doi.org/10.1016/S1164-5563(01)01067-6).

Lebel, E.D., Lu, H.S., Vielstädte, L., Kang, M., Banner, P., Fischer, M.L., Jackson, R.B., 2020. Methane emissions from abandoned oil and gas wells in California. *Environ. Sci. Technol.* 54, 14617–14626. <https://doi.org/10.1021/acs.est.0c05279>.

Lecampion, B., Bunker, A., Kear, J., Quesada, D., 2013. Interface debonding driven by fluid injection in a cased and cemented wellbore: modeling and experiments. *Int. J. Greenh. Gas Control* 18, 208–223. <https://doi.org/10.1016/j.ijgge.2013.07.012>.

Lei, T., Chen, X., Ma, S., Jing, L., Guan, D., 2025. A global inventory of methane emissions from abandoned oil and gas wells and possible mitigation pathways. *Natl. Sci. Rev.* 12, nwaf184. <https://doi.org/10.1093/nsr/nwaf184>.

Lende, G., Sørensen, E., Jandhyala, S.R.K., van Noort, R., 2024. State of the art test method to quantify progression rate of carbonation of wellbore sealing materials. In: Presented at the SPE Europec featured at EAGE Conference and Exhibition?, SPE. D011S007R003.

LeNeveu, D.M., 2008. CQUESTRA, a risk and performance assessment code for geological sequestration of carbon dioxide. *Energy Convers. Manag.* 49, 32–46. <https://doi.org/10.1016/J.ENCONMAN.2007.06.001>.

Leng, G.-Y., Yan, W., Ye, H.-M., Yao, E.-D., Duan, J.-B., Xu, Z.-X., Li, K.-P., Zhang, J.-R., Li, Z., 2024. Evaluation of the injection and plugging ability of a novel epoxy resin in cement cracks. *Pet. Sci.* 21, 1211–1220.

Li, Q., Lim, Y.M., Flores, K.M., Kranjc, K., Jun, Y.-S., 2015. Chemical reactions of Portland cement with aqueous CO₂ and their impacts on cement's mechanical properties under geologic CO₂ sequestration conditions. *Environ. Sci. Technol.* 49, 6335–6343. <https://doi.org/10.1021/es05063488>.

Li, B., Zhou, F., Li, H., Duguid, A., Que, L., Xue, Y., Tan, Y., 2018. Prediction of CO₂ leakage risk for wells in carbon sequestration fields with an optimal artificial neural network. *Int. J. Greenh. Gas Control* 68, 276–286. <https://doi.org/10.1016/j.ijgge.2017.11.004>.

Li, Y., Zhang, J.J., Nguyen, E.D., Bernard, L., McClennen, K.T., Lei, M.J., Lambaric, L.L., McBride, L., Alder, M.I., Sherif, A., Quintero, S.M., Zhang, E.S., Yanez-Laguna, F., Plata, D.L., 2025. Prediction of oil and gas well integrity using well construction

physical parameters and geospatial metrics. *Energy Fuels* 39, 647–656. <https://doi.org/10.1021/acs.energyfuels.4c03758>.

Lima, V.N., de Andrade Silva, F., Skadsem, H.J., Beltrán-Jiménez, K., Sunde, J.K., 2022. Effects of confinement pressure on the mechanical behavior of an oil well cement paste. *J. Pet. Sci. Eng.* 208, 109769.

Lima, V.N., Taheri, A., Randeberg, E., Skadsem, H.J., 2025. Annular cement sheath characterization and hydraulic aperture assessment through single- and two-phase seepage tests. *Geoenergy Sci. Eng.* 245. <https://doi.org/10.1016/j.geoen.2024.213515>.

Liteanu, E., Spiers, C.J., 2011. Fracture healing and transport properties of wellbore cement in the presence of supercritical CO₂. *Chem. Geol.* 281, 195–210. <https://doi.org/10.1016/j.chemgeo.2010.12.008>.

Liteanu, E., Spiers, C.J., Peach, C.J., 2009. Failure behaviour wellbore cement in the presence of water and supercritical CO₂. *Energy Procedia* 1, 3553–3560. <https://doi.org/10.1016/j.egypro.2009.02.149>.

Loizzo, M., Houghton, R.D., Zahmuwl, A.H., Tonning, S.A., Andersen, L.W., 2024. A deeper understanding of the role of salts and creeping formations in well integrity. *Lucas, A., Stokkeland, T.A., Jackson, D., Ingram, S., 2018. Improving the understanding, application and reliability of the perforate, wash and cement technique through the use of cement bond logs, tool enhancements and barrier verification via annular pressure monitoring. In: Presented at the SPE Annual Technical Conference and Exhibition.* <https://doi.org/10.2118/191528-ms>. D022S054R001.

Lucas, A., McWilliam, G., Eden, R., Rege, G., Osnes, K.E., Worthington, S., Gudmestad, K., 2023. A next-generation, fully controllable alloy wellbore sealing technology. In: Presented at the Abu Dhabi International Petroleum Exhibition and Conference. SPE. D031S115R005.

Luquon, L., Abdoulaqafour, H., Gouze, P., 2013. Hydro-dynamically controlled alteration of fractured Portland cements flowed by CO₂-rich brine. *Int. J. Greenh. Gas Control* 16, 167–179. <https://doi.org/10.1016/j.ijggc.2013.04.002>.

Lura, P., Jensen, O.M., Van Breugel, K., 2003. Autogenous shrinkage in high-performance cement paste: an evaluation of basic mechanisms. *Cem. concr. res.* 33, 223–232.

Ma, Z., Santos, J.E., Lackey, G., Viswanathan, H., O’Malley, D., 2024. Information extraction from historical well records using a large language model. *Sci Rep* 14, 31702. <https://doi.org/10.1038/s41598-024-81846-5>.

MacLennan, K., Nieuwenhuis, G., Wilt, M., Um, E., Pendleton, J.M., 2018. Evaluating well casing integrity with non-invasive electromagnetic methods.

Marbun, B.T.H., Prasetyo, D.E., Prabowo, H., Susilo, D., Firmansyah, F.R., Palilu, J.M., Silamba, I.C., Santoso, D., Kadir, W.G.A., Sule, R., Kardani, I., Saprudin, W., Andhika, B., 2019. Well integrity evaluation prior to converting a conventional gas well to CO₂ injector well – Gundih CCS pilot project in Indonesia (phase 1). *Int. J. Greenh. Gas Control* 88, 447–459. <https://doi.org/10.1016/j.ijggc.2019.06.006>.

Marbun, B.T.H., Sinaga, S.Z., Purbantau, B., Santoso, D., Kadir, W.G.A., Sule, R., Prasetyo, D.E., Prabowo, H., Susilo, D., Firmansyah, F.R., Palilu, J.M., Saprudin, W., Andhika, B., 2023. Lesson learned from the assessment of planned converted CO₂ injection well integrity in Indonesia – CCUS project. *Helijon* 9, e18505. <https://doi.org/10.1016/j.helijon.2023.e18505>.

Mason, H.E., Du Frane, W.L., Walsh, S.D.C., Dai, Z., Charnvanichborikarn, S., Carroll, S. A., 2013. Chemical and mechanical properties of wellbore cement altered by CO₂-rich brine using a multianalytical approach. *Environ. sci. technol.* 47, 1745–1752. <https://doi.org/10.1021/es3039906>.

Mendybayev, M.E., Kupeshova, A.S., Akhmetov, N.M., 2024. In: Использование инструмента Local Expander для решения проблемы давления в Межкапонном пространстве [Use of the Local Expander tool to solve the problem of pressure in the annular pipe]. Presented at the XI International scientific and practical conference of students, masters, and doctors “The path to science - 2024”, dedicated to the 125th anniversary of academician K.I. Satpayev. *Zhangir Khan West Kazakhstan Agrarian-Technical University*, pp. 197–202.

Meng, M., Frash, L.P., Carey, J.W., Li, W., Welch, N.J., Zhang, W., 2021. Cement stress and microstructure evolution during curing in semi-rigid high-pressure environments. *Cem. Concr. Res.* 149, 106555.

Merrill, M.D., Grove, C.A., Giannoutsos, N.J., Freeman, P.A., 2023. Analysis of the United States Documented Unplugged Orphaned Oil and Gas Well Dataset. US Geological Survey.

Metcalfe, R., Bond, A.E., Maul, P.R., Paulley, A., 2013. Whole-system process modelling of CO₂storage and its application to the in salah CO₂storage site. *Alger., Energy Procedia* 37, 3859–3866. <https://doi.org/10.1016/j.egypro.2013.06.283>.

Miao, X., Gan, M., Wang, Y., Zhang, L., Jing, H., 2022. Permeability evolution of defective wellbore cement under geologic carbon sequestration conditions by means of varying-radius pipeline modeling. *J. Nat. Gas Sci. Eng.* 98, 104393. <https://doi.org/10.1016/j.jngse.2021.104393>.

Mitchell, N., Lackey, G., Schwartz, B., Strazisar, B., Dilmore, R., 2023. A quantitative risk assessment approach for developing contingency plans at a geologic carbon storage site. *Greenh. Gases* 13, 320–339. <https://doi.org/10.1002/ghg.2219>.

Moghadam, A., Amiri, S., 2025. Quantitative assessment of well leakage, part II: case studies for CCS. *Geomech. Energy Environ.* 42, 100675. <https://doi.org/10.1016/j.gete.2025.100675>.

Moghadam, A., Loizzo, M., 2024. Quantitative assessment of well leakage, part I: cement stress evolution. *Geomech. Energy Environ.* 40, 100586.

Moghadam, A., Castelein, K., ter Heege, J., Orlic, B., 2021. A study on the hydraulic aperture of microannuli at the casing–cement interface using a large-scale laboratory setup. *Geomech. Energy Environ.*, 100269.

Montague, J.A., Pinder, G.F., Watson, T.L., 2018. Predicting gas migration through existing oil and gas wells. *Environ. Geosci.* 25, 121–132. <https://doi.org/10.13066/eg.01241817008>.

Moradi, B., Ayoub, M., Bataee, M., Mohammadian, E., 2020. Calculation of temperature profile in injection wells. *J. Pet. Explor. Prod. Technol.* 10, 687–697.

Nešić, S., 2007. Key issues related to modelling of internal corrosion of oil and gas pipelines-a review. *Corros. Sci.* 49, 4308–4338.

Needle, F., Wildenborg, T., Geel, K., Loeve, D., Peters, L., Kahrobaei, S., Candela, T., Koenen, M., Hopmans, P., Van Der Valk, K., 2019. CO₂ storage feasibility in the P18-2 depleted gas field. *TNO Report 11635*.

Needle, F., Wildenborg, T., Geel, K., Loeve, D., Peters, L., Kahrobaei, S., Candela, T., Koenen, M., Hopmans, P., van der Valk, K., Orlic, B., Vandeweijer, V., 2020. CO₂ storage feasibility in the P18-6 depleted gas field.

Nelson, E.B., Guillot, D., 2006. Well Cementing, 2nd ed. Schlumberger, Sugar Land, TX 77478, USA.

Nelson, J.F., Jørpeland, J.-T., Schwartz, C., 2018. Case history: a new approach to section milling: leaving the swarf behind!. In: Offshore Technology Conference. Offshore Technology Conference.

Neves, A.V., Lima, V.N., Lima, I.N., Letichevsky, S., de Avillez, R.R., de Andrade Silva, F., 2024. The influence of H₂S and CO₂ on the triaxial behavior of class G cement paste under elevated temperature and pressure. *Geoenergy Sci. Eng.* 240, 213084.

Newell, D.L., Carey, J.W., 2012. Experimental evaluation of wellbore integrity along the cement-rock boundary. *Environ. sci. technol.* 47, 276–282.

Nguyen, P., Guthrie Jr, G.D., Carey, J.W., 2020. Experimental validation of self-sealing in wellbore cement fractures exposed to high-pressure, CO₂-saturated solutions. *Int. J. Greenh. Gas Control* 100, 103112.

Nicot, J.P., 2009. A survey of oil and gas wells in the Texas Gulf Coast, USA, and implications for geological sequestration of CO₂. *Environ. Geol.* 57, 1625–1638. <https://doi.org/10.1007/s00254-008-1444-4>.

Nikulin, A., de Smet, T.S., 2019. A UAV-based magnetic survey method to detect and identify orphaned oil and gas wells. *Lead. Edge* 38, 447–452. <https://doi.org/10.1190/tle38060447.1>.

Nikulin, A., de Smet, T.S., 2023. UAV-based aeromagnetic surveys for orphaned well location: emerging best practices. *Lead. Edge* 42, 817–823. <https://doi.org/10.1190/tle42120817.1>.

Ning, Y., Tura, A., Guiltinan, E., 2025. Repurposing a depleted natural CO₂ dome for permanent CO₂ sequestration. *SPE J.* <https://doi.org/10.2118/226182-PA>.

NOGEPA, 2021. Industry Standard nr. 45. Decommissioning of Wells (Translation of the Dutch version As Published in the Staatscourant on 6 December 2019), Version 02 Jan 2021. Nederlandse Olie en Gas Exploratie en Productie Associatie (NOGEPA).

Nordbotten, J.M., Celia, M.A., Bachu, S., Dahle, H.K., 2005. Semianalytical solution for CO₂ leakage through an abandoned well. *Environ. sci. technol.* 39, 602–611.

Nordbotten, J.M., Kavetski, D., Celia, M.A., Bachu, S., 2009. Model for CO₂ leakage including multiple geological layers and multiple leaky wells. *Environ. Sci. Technol.* <https://doi.org/10.1021/es081135v>.

NORSOK, 2013. Norsok Standard D-010 Well integrity in Drilling and Well Operations. NOROK.

North Sea Transition Authority, 2025. Guidance on applications for a carbon storage permit.

Nygaard, R., Salehi, S., Weideman, B., Lavoie, R.G., 2014. Effect of dynamic loading on wellbore leakage for the wabamun area CO₂-sequestration project. *J. Can. Pet. Technol.* 53, 69–82.

O’Malley, D., Delorey, A.A., Guiltinan, E.J., Ma, Z., Kadeethum, T., Lackey, G., Lee, J., Santos, E., J., Follansbee, E., Nair, M.C., Pekney, N.J., Jahan, I., Mehana, M., Hora, P., Carey, J.W., Govert, A., Varadharajan, C., Ciulla, F., Biraud, S.C., Jordan, P., Dubey, M., Santos, A., Wu, Y., Kneafsey, T.J., Dubey, M.K., Weiss, C.J., Downs, C., Boutot, J., Kang, M., Viswanathan, H., 2024. Unlocking solutions: innovative approaches to identifying and mitigating the environmental impacts of undocumented orphan wells in the United States. *Environ. Sci. Technol.* <https://doi.org/10.1021/acs.est.4c02069>.

Obodzio, I.E., Trahan, S.J., Joppe, L.C., 2016. Eliminating sustained casing pressure in well abandonment. In: Offshore Technology Conference Asia. Offshore Technology Conference.

OEUK, 2022a. Well Decommissioning for CO₂ Storage Guidelines (No. ISBN: 978-1-913078-37-9).

OEUK, 2022b. Well Decommissioning Guidelines. Offshore Energy UK (No. ISBN: 978-1-913078-39-3).

OEUK, 2022c. Use of Barrier Materials in Well Decommissioning Guidelines. Offshore Energy UK (No. ISBN: 978-1-913078-38-6).

Offshore Energies UK, 2022. Decommissioning Insight 2022.

Oldenburg, C.M., Pan, L., 2020. Major CO₂ blowouts from offshore wells are strongly attenuated in water deeper than 50 m. *Greenhouse gases. Sci. Technol.* 10, 15–31. <https://doi.org/10.1002/ghg.1943>.

Oldenburg, C.M., Bryant, S.L., Nicot, J.P., 2009. Certification framework based on effective trapping for geologic carbon sequestration. *Int. J. Greenh. Gas Control* 3, 444–457. <https://doi.org/10.1016/j.ijggc.2009.02.009>.

Oldenburg, C.M., Cihan, A., Zhou, Q., Fairweather, S., Spangler, L.H., 2016. Geologic carbon sequestration injection wells in overpressured storage reservoirs: estimating area of review. *Greenhouse gases. Sci. Technol.* 6, 775–786. <https://doi.org/10.1002/ghg.1607>.

Omosebi, O.A., Sharma, M., Ahmed, R.M., Shah, S.N., Saasen, A., Osisanya, S.O., 2017. Cement degradation in CO₂-H₂S environment under high pressure-high temperature conditions. In: Presented at the SPE Norway Subsurface Conference. SPE. D012S009R005.

Onishi, T., Nguyen, M.C., Carey, J.W., Will, B., Zaluski, W., Bowen, D.W., Devault, B.C., Duguid, A., Zhou, Q., Fairweather, S.H., Spangler, L.H., Stauffer, P.H., 2019. Potential CO₂ and brine leakage through wellbore pathways for geologic CO₂ sequestration using the national risk assessment partnership tools: application to the

Big Sky Regional Partnership. Int. J. Greenh. Gas Control. <https://doi.org/10.1016/j.ijggc.2018.12.002>.

Opdal, N., Todorovic, J., Torsæter, M., Vrålstad, T., Mushtaq, W., 2014. Experimental study on the cement-formation bonding. In: Presented at the SPE International Symposium and Exhibition on Formation Damage Control. SPE. <https://doi.org/10.2118/168138-MS>.

Opdal, N., Lavrov, A., Todorovic, J., Torsæter, M., 2018. The importance of shale caprock damage for well integrity. Int. J. Greenh. Gas Control 74, 182–190. <https://doi.org/10.1016/j.ijggc.2018.04.007>.

Opdal, N., Cerasi, P., Vrålstad, T., 2019. Cement bond strength measurements.

Orlic, B., Wollenweber, J., Geel, C.R., Vandeweijer, V.P., Meekes, J.A., Heerens, G.J., TerHeege, J.H., 2019. Formation of a sealing well barrier by the creep of rock salt: numerical investigations. In: Presented at the 53rd U.S. Rock Mechanics/Geomechanics Symposium. OnePetro.

Pan, L., Oldenburg, C.M., 2020. Mechanistic modeling of CO₂ well leakage in a generic abandoned well through a bridge plug cement-casing gap. Int. J. Greenh. Gas Control 97, 103025. <https://doi.org/10.1016/j.ijggc.2020.103025>.

Pan, L., Webb, S.W., Oldenburg, C.M., 2011. Analytical solution for two-phase flow in a wellbore using the drift-flux model. Adv. Water Resour. 34, 1656–1665. <https://doi.org/10.1016/j.advwatres.2011.08.009>.

Patil, P.A., Hamimi, A.M., Abu Bakar, M.A.B., Das, D.P., Tiwari, P.K., Chidambaram, P., Jalil B. A., M.A., 2022. Scrutinizing Wells integrity for determining long-term fate of a CO₂ sequestration project: an improved and rigorous risk assessment strategy. In: Presented at the International Petroleum Technology Conference. OnePetro. <https://doi.org/10.2523/PTC-22348-MS>.

Patil, P., Dixit, R., Mishra, P., Aylor, A., Montgomery, J., Moffett, T., 2024. Legacy wells integrity assessment (LWIA)—An imperative tool for assessing the containment of carbon storage sites. In: Abu Dhabi International Petroleum Exhibition and Conference. SPE. D031S094R005.

Patil, P., Mishra, P., Shandilya, P., Aylor, A., Montgomery, J., Moffett, T., 2025. Characterization of legacy wells for integrity assessment in a depleted offshore CO₂ storage prospect. In: International Petroleum Technology Conference. IPTC. D022S006R002.

Pavoine, A., Brunetaud, X., Divet, L., 2012. The impact of cement parameters on delayed ettringite formation. Cem. Concr. Compos. 34, 521–528. <https://doi.org/10.1016/j.cemconcomp.2011.11.012>.

Pawar, R., Bromhal, G., Carroll, S., Chu, S., Dilmore, R., Gastelum, J., Oldenburg, C., Stauffer, P., Zhang, Y., Guthrie, G., 2014. Quantification of key long-term risks at CO₂ sequestration sites: latest results from US DOE's national risk assessment partnership (NRAP) project. Energy Procedia 63, 4816–4823. <https://doi.org/10.1016/j.egypro.2014.11.512>.

Pawar, R.J., Bromhal, G.S., Carey, J.W., Foxall, W., Korre, A., Ringrose, P.S., Tucker, O., Watson, M.N., White, J.A., 2015. Recent advances in risk assessment and risk management of geologic CO₂ storage. Int. J. Greenh. Gas Control 40, 292–311. <https://doi.org/10.1016/j.ijggc.2015.06.014>.

Pawar, R.J., Bromhal, G.S., Chu, S., Dilmore, R.M., Oldenburg, C.M., Stauffer, P.H., Zhang, Y., Guthrie, G.D., 2016. The national risk assessment partnership's integrated assessment model for carbon storage: a tool to support decision making amidst uncertainty. Int. J. Greenh. Gas Control 52, 175–189. <https://doi.org/10.1016/j.ijggc.2016.06.015>.

Pawar, R.J., van der Valk, K., Brunner, L., van Bijsterveldt, L., Chen, B., Harp, D., 2021. Report on the REX-CO₂ well screening tool (No. 299681).

Pearce, J., Dawson, G., Golding, S., 2018. Interaction of dissolved CO₂, SO_x and NO_x with the moolayember formation underlying the precipice sandstone. Present. 14th Greenh. Gas Control Technol. Conf. Melb. 21–26.

Peng, Z., Lv, F., Feng, Q., Zheng, Y., 2022. Enhancing the CO₂-H₂S corrosion resistance of oil well cement with a modified epoxy resin. Constr. Build. Mater. 326, 126854.

Pluymakers, A.M.H., Peach, C.J., Spiers, C.J., 2014. Diagenetic compaction experiments on simulated anhydrite fault gouge under static conditions. J. Geophys. Res.: Solid Earth 119, 4123–4148.

Pozzobon, C., Liu, Y., Kirkpatrick, J.D., Chesnaux, R., Kang, M., 2023. Methane emissions from non-producing oil and gas wells and the potential role of seismic activity: a case study in Northeast British Columbia, Canada. Environ. Sci. Technol. 57, 21673–21680. <https://doi.org/10.1021/acs.est.3c06062>.

Pullen, B., Cahill, A., Arnold, D., 2025. Differentiating legacy wellbores in the scottish north sea using multi-criteria decision analysis with a view to minimising containment risk for carbon capture and storage. Int. J. Greenh. Gas Control 142, 104336. <https://doi.org/10.1016/j.ijggc.2025.104336>.

Radonjic, M., Kupresan, D., 2014. Mechanical expansion of steel tubing as a solution to leaky wellbores. JoVE (J. Vis. Exp.), e52098.

Raimi, D., Krupnick, A.J., Shah, J.-S., Thompson, A., 2021. Decommissioning orphaned and abandoned oil and gas wells: new estimates and cost drivers. Environ. Sci. Technol. 55, 10224–10230. <https://doi.org/10.1021/acs.est.1c02234>.

Ramachandran, N., Irvin, J., Omara, M., Gautam, R., Meisenhelder, K., Rostami, E., Sheng, H., Ng, A.Y., Jackson, R.B., 2024. Deep learning for detecting and characterizing oil and gas well pads in satellite imagery. Nat. Commun. 15, 7036. <https://doi.org/10.1038/s41467-024-50334-9>.

Reeder, M.D., Sams III, J.I., Gorantla, R., Pekney, N.J., 2023. Procedure for locating oil and gas wells in the Appalachian Basin. Lead. Edge 42, 828–836. <https://doi.org/10.1190/le42120828.1>.

Alberta Energy Regulator, 2024. Directive 065: resources applications for oil and gas reservoirs.

Rhino, K., Iyer, J., Walsh, S., Carroll, S., Smith, M., 2021. Influence of effective stress and transport on mechanical and chemical alteration processes at the Cement-Caprock interface. Int. J. Greenh. Gas Control 109, 103340.

Riddick, S.N., Mauzerall, D.L., Celia, M.A., Kang, M., Bressler, K., Chu, C., Gum, C.D., 2019. Measuring methane emissions from abandoned and active oil and gas wells in West Virginia. Sci. Total Environ. 651, 1849–1856. <https://doi.org/10.1016/j.scitotenv.2018.10.082>.

Rimmelé, G., Barlet-Gouédard, V., Porcherie, O., Goffé, B., Brunet, F., 2008. Heterogeneous porosity distribution in Portland cement exposed to CO₂-rich fluids. Cem. Concr. Res. 38, 1038–1048. <https://doi.org/10.1016/j.cemconres.2008.03.022>.

Rod, K.A., Iyer, J., Lonergan, C., Varga, T., Cantrell, K., Reno, L.R., 2020. Geochemical narrowing of cement fracture aperture during multiphase flow of supercritical CO₂ and brine. Int. J. Greenh. Gas Control 95, 102978. <https://doi.org/10.1016/j.ijggc.2020.102978>.

Rohmer, J., Pluymakers, A.M.H., Renard, F., 2016. Mechano-chemical interactions in sedimentary rocks in the context of CO₂ storage: weak acid, weak effects? Earth-Sci. Rev. 157, 86–110. <https://doi.org/10.1016/j.earscirev.2016.03.009>.

Rojmans, R.F.H., Wolterbeek, T.K.T., Cornelissen, E.K., Keultjes, W.J.G., 2023. Evaluating the sealing performance of plug and abandonment cement systems under downhole conditions. SPE J. 28, 2737–2752.

Romdhane, Anouar, Emmel, B., Zonetti, S., Dupuy, B., 2022a. Screening and non-invasive geophysical monitoring of legacy Wells integrity for offshore CO₂ storage. Available at SSRN 4276670.

Romdhane, A., Emmel, B., Zonetti, S., Dupuy, B., Gawel, K., Edvardsen, L., Bhuiyan, M. H., 2022b. Screening, monitoring, and remediation of legacy wells to improve reservoir integrity for large-scale CO₂ storage—an example from the Smeaheia structure in the Northern North Sea. Front. Energy Res. 10.

Rosnes, C., Hoffman, C., Rudy, T., 2024. Update on exothermic reaction technology to create an eternal seal in wells to be permanently abandoned. In: Presented at the SPE Symposium Well Integrity Management. SPE. D011S003R002.

Roy, N., Molson, J., Lemieux, J.M., Van Stempvoort, D., Nowamoz, A., 2016. Three-dimensional numerical simulations of methane gas migration from decommissioned hydrocarbon production wells into shallow aquifers. Water Resour. Res. 52, 5598–5618. <https://doi.org/10.1002/2016WR018686>.

Roy, P., Morris, J.P., Walsh, S.D.C., Iyer, J., Carroll, S., 2018. Effect of thermal stress on wellbore integrity during CO₂ injection. Int. J. Greenh. Gas Control 77, 14–26. <https://doi.org/10.1016/j.ijggc.2018.07.012>.

Saint-Vincent, P.M.B., Sams, J.I., Hammack, R.W., Veloski, G.A., Pekney, N.J., 2020. Identifying abandoned well sites using database records and aeromagnetic surveys. Environ. Sci. Technol. 54, 8300–8309. <https://doi.org/10.1021/acs.est.0c00044>.

Sams III, J.I., Veloski, G.A., Diehl, J.R., Hammack, R.W., 2017. Methods and challenges to locating legacy wells in western Pennsylvania: case study at Hillman State Park. Environ. Geosci. 24, 95–112. <https://doi.org/10.1306/eg.12211600417009>.

Sandl, E., Cahill, A.G., Welch, L., Beckie, R., 2021. Characterizing oil and gas wells with fugitive gas migration through Bayesian multilevel logistic regression. Sci. Total Environ. 769, 144678. <https://doi.org/10.1016/j.scitotenv.2020.144678>.

Santos, 2024. Moomba CCS project – Strzelecki and Marabooka Toolachee monitoring and verification plan.

Santos, J.E., Fox, Z.R., Mohan, A., O'Malley, D., Viswanathan, H., Lubbers, N., 2023. Development of the Senseiver for efficient field reconstruction from sparse observations. Nat. Mach. Intell. 5, 1317–1325. <https://doi.org/10.1038/s42256-023-0746-x>.

Sarkar, S., Mahadevan, S., Meeussen, J.C.L., Van der Sloot, H., Kosson, D.S., 2010. Numerical simulation of cementitious materials degradation under external sulfate attack. Cem. Concr. Compos. 32, 241–252.

Satoh, H., Shimoda, S., Yamaguchi, K., Kato, H., Yamashita, Y., Miyashiro, K., Saito, S., 2013. The long-term corrosion behavior of abandoned wells under CO₂ geological storage conditions:(1) experimental results for cement alteration. Energy Procedia 37, 5781–5792.

Schout, G., Griffioen, J., Hassanzadeh, S.M., de Lichtbuer, G.C., Hartog, N., 2019. Occurrence and fate of methane leakage from cut and buried abandoned gas wells in The Netherlands. Sci. Total Environ. 659, 773–782.

Segnit, E.R., Holland, H.D., Biscardi, C.J., 1962. The solubility of calcite in aqueous solutions—I The solubility of calcite in water between 75° and 200° at CO₂ pressures up to 60 atm. Geochim. Cosmochim. Acta 26, 1301–1331.

Seiersten, M., Kongshaug, K.O., 2005. Materials selection for capture, compression, transport and injection of CO₂. Carbon Dioxide Capture Storage Deep Geol. Form. 2, 937.

Seth, P., Lin, M., Yaw, B.D., Boutot, J., Kang, M., Rolnick, D., 2025. Alberta Wells dataset: pinpointing oil and gas wells from satellite imagery. <https://doi.org/10.48550/arXiv.2410.09032>.

Shen, J., Pye, D., 1989. Effects of CO₂ attack on cement in high-temperature applications.

Shi, M., Xu, J., Wang, X., Jiang, L., Wei, N., Zhang, Y., Song, Y., 2025. Understanding of dynamic cement-rock interaction in the wellbore during CO₂ geological storage by using X-ray CT. Constr. Build. Mater. 484, 141769. <https://doi.org/10.1016/j.conbuildmat.2025.141769>.

Siirila-Woodburn, E.R., Cihan, A., Birkholzer, J.T., 2017. A risk map methodology to assess the spatial and temporal distribution of leakage into groundwater from Geologic Carbon Storage. Int. J. Greenh. Gas Control 59, 99–109. <https://doi.org/10.1016/j.ijggc.2017.02.003>.

Singh, K., Biyanni, H., Serry, A., Almaazmi, A., Benberber, M.R., Tamuli, A., De Barros, A.J., Khalil, T., Abdalla, A., Bose, S., Wielemaker, E., Ishberdina, G., Yaacoub, M., Shaposhnikov, P., 2024. First application of innovative dual-string barrier evaluation tool for annular cement validation in UAE. In: Presented at the Offshore Technology Conference Asia. OnePetro. <https://doi.org/10.4043/34818-MS>.

Skogested, J.O., Feneuil, B., N'Gouamba, E., Linga, H., Aasen, A., Skår, G., Roggeband, S. M., Nedrum, J., Helgeland, S., 2024. CCS well control impact of CO₂ on drilling fluid performance. In: Presented at the SPE/IADC Drilling Conference and Exhibition, SPE, D021S018R004.

Skopec, S., Mawalkar, S., Vasylkivska, V., Ganesh, P.R., Haagsma, A., Kelley, M., 2022. Risk assessment of carbon storage at potential Midwest Regional Carbon Initiative (MRCI) sites using NRAP Open-IAM component models. In: Presented at the SEG/AAPG International Meeting for Applied Geoscience & Energy. <https://doi.org/10.1190/image2022-3749378.1>.

Slater, H.J., 2010. The recommended practice for surface casing vent flow and gas migration intervention. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.

Sminchak, J.R., Moody, M., Theodos, A., Larsen, G., Gupta, N., 2014. Investigation of wellbore integrity factors in historical oil and gas wells for CO₂ geosequestration in the Midwestern US. *Energy Procedia* 63, 5787–5797. <https://doi.org/10.1016/j.egypro.2014.11.611>.

Souza, M.T., Onghero, L., Sakata, R.D., Neto, F.C., de Campos, C.E.M., de Castro Pessôa, J.R., Repette, W.L., de Oliveira, A.P.N., 2023. Insights into the acting mechanism of ettringite in expansive Portland cement. *Mater. Lett.* 345, 134496.

Stauffer, P.H., Viswanathan, H.S., Pawar, R.J., Guthrie, G.D., 2009. A system model for geologic sequestration off carbon dioxide. *Environ. Sci. Technol.* <https://doi.org/10.1021/es00403w>.

Stuart-Smith, R.F., White, E., Prütz, R., Rogelj, J., Wetzer, T., Wood, M., Rajamani, L., 2025. Implications of states' dependence on carbon dioxide removal for achieving the Paris temperature goal. *Clim. Policy* 0, 1–16. <https://doi.org/10.1080/14693062.2025.2528775>.

Su, X., Liu, S., Zhang, L., Liu, G., Wang, Y., Gan, M., Li, X., 2023. Wellbore leakage risk management in CO₂ geological utilization and storage: a review. *Energy Rev.*, 100049 <https://doi.org/10.1016/j.enrev.2023.100049>.

Tafen, D.N., Kutchko, B., Massoudi, M., 2023. On the flow of CO₂-saturated water in a cement fracture. *Geosciences* 13. <https://doi.org/10.3390/geosciences13100312>.

Taheri, A., Wolterbeek, T.K.T., Olsen, M., Hatlebakk, R., Gardner, D., Krøgset, S., 2025. Assessing a novel glass-based fluid for annular barrier remediation in cemented well sections. In: Presented at the SPE/IADC Drilling Conference and Exhibition, SPE, D011S006R001.

Takla, I., Burlion, N., Shao, J.-F., Saint-Marc, J., Garnier, A., 2010. Effects of the storage of CO₂ on multiaxial mechanical and hydraulic behaviors of oil-well cement. *J. Mater. Civ. Eng.* 23, 741–746.

Taleghani, A.D., Santos, L., 2023. Diagnostic methods: well logging methods. In: Taleghani, A.D., Santos, L. (Eds.), *Wellbore Integrity: From Theory to Practice*. Springer International Publishing, Cham, pp. 123–144. https://doi.org/10.1007/978-3-031-19024-7_6.

Tanaka, Y., Abe, M., Sawada, Y., Tanase, D., Ito, T., Kasukawa, T., 2014. Tomakomai CCS Demonstration Project in Japan, 2014 update. *Energy procedia*. In: 12th International Conference on Greenhouse Gas Control Technologies, GHGT-12, 63, pp. 6111–6119. <https://doi.org/10.1016/j.egypro.2014.11.643>.

Taylor, H.F.W., 1997. *Cement Chemistry*, 2nd ed. Thomas Telford, London, UK.

Therond, E., Bois, A.P., Whaley, K., Murillo, R., 2017. Large-scale testing and modeling for cement zonal isolation in water-injection wells. *SPE Drill. Complet.* 32, 290–300. <https://doi.org/10.2118/181428-pa>.

Thiercelin, M., Baumgarte, C., Guillot, D., 1998. A soil mechanics approach to predict cement sheath behavior. *SPE/ISRM Rock Mech. Pet. Eng.* <https://doi.org/10.2118/47375-MS>.

Thomas, R.B., Schwartz, B., Oldenburg, C., Bacon, D., Gasperikova, E., Lackey, G., Appriou, D., Harp, D., Chen, B., Doughty, C., Burghardt, J., Pawar, R.J., Brown, C., Smith, M., Van Voorhees, R., Strazisar, B.R., Dilmore, R., 2022. NRAP Recommended Practices For Containment Assurance and Leakage Risk Quantification (Technical Report No. NRAP-TRS-I-001-2022; DOE/NETL-2022/3847). National Risk Assessment Partnership (NRAP), National Energy Technology Laboratory (NETL), United States. <https://doi.org/10.2172/1906399>.

Thombare, A., Aldin, M., van Oort, E., 2020. Experimental technique to investigate shale creep for annular barrier formation in oil and gas wells. In: Presented at the 54th U.S. Rock Mechanics/Geomechanics Symposium. OnePetro.

Todorovic, J., Raphaeg, M., Lindeberg, E., Vrålstad, T., Buddensiek, M.-L., 2016. Remediation of leakage through annular cement using a polymer resin: A laboratory study. *Energy Procedia* 86, 442–449. <https://doi.org/10.1016/j.egypro.2016.01.045>.

Torp, T.A., Gale, J., 2004. Demonstrating storage of CO₂ in geological reservoirs: the Sleipner and SACS projects. *Energy*. In: 6th International Conference on Greenhouse Gas Control Technologies, 29, pp. 1361–1369. <https://doi.org/10.1016/j.energy.2004.03.104>.

Torsæter, M., Bello-Palacios, A., Borgerud, L.K., Nygård, O.-K., Frost, T.K., Hofstad, K.H., Andrews, J.S., 2024. Evaluating legacy well leakage risk in CO₂ storage. <https://doi.org/10.2139/ssrn.5062896>.

Townsend-Small, A., Ferrara, T.W., Lyon, D.R., Fries, A.E., Lamb, B.K., 2016. Emissions of coalbed and natural gas methane from abandoned oil and gas wells in the United States. *Geophys. Res. Lett.* 43, 2283–2290. <https://doi.org/10.1002/2015GL067623>.

Tremosa, J., Mito, S., Audigane, P., Xue, Z., 2017. Experimental assessment of well integrity for CO₂ geological storage: a numerical study of the geochemical interactions between a CO₂-brine mixture and a sandstone-cement-steel sample. *Appl. geochem.* 78, 61–73.

U.S. EPA, 1974. Safe Drinking Water Act of 1974, 42 U.S.C. § 300f to 300j-9 1660–1694.

U.S. EPA, 2013. Program class VI Well area of review evaluation and corrective action guidance 96.

U.S. EPA, 2018. Underground injection control (UIC) program class VI implementation Manual for UIC program directors.

Um, W., Rod, K.A., Jung, H.B., Brown, C.F., 2017. Geochemical alteration of wellbore cement by CO₂ or CO₂+ H₂S reaction during long-term carbon storage. *Greenh. Gases: Sci. Technol.* 7, 852–865.

van Noort, R., Svenningsen, G., Li, K., 2025a. Experimental study on the impact of H₂S and H₂SO₄ in CO₂ on five different sealant compositions under conditions relevant for geological CO₂-storage. *Geoenergy Sci. Eng.* 214005

van Noort, R., Svenningsen, G., Li, K., Pluymakers, A., 2025b. Exposure of five cementitious sealant materials to wet supercritical CO₂ and CO₂-saturated water under simulated downhole conditions. *Int. J. Greenh. Gas Control* 144, 104380. <https://doi.org/10.1016/j.ijggc.2025.104380>.

van Oort, E., Thombare, A., Aldin, M., Lucas, A., 2022b. Annular creep barrier evaluation and qualification using ultrasonic measurements. *SPE Drill Compl.* 37, 295–311. <https://doi.org/10.2118/208782-PA>.

van Oort, E., Lucas, A., Kverneland, J., Godøy, R., Reitan, H., Aldin, M., Thombare, A., SPE, 2024. Long Term Annular Sealing of CO₂ Injection and Storage Wells Using Shale Barriers. In: Presented at the SPE Annual Technical Conference and Exhibition p. D021S025R001.

van Oort, E., Juenger, M., Aldin, M., Thombare, A., McDonald, M., Lucas, A., Ditlevsen, F., 2022a. Simplifying well abandonments using shale as a barrier. *SPE Drill Compl* 37, 282–294. <https://doi.org/10.2118/199654-PA>.

van Riet, E.J., Lucas, A., Roijmans, R.F.H., Keuljies, W.J.G., Agnew, A., Benmesbah, M. O., Houghton-Evans, S., Evans-Guthrie, C., Potze, R.J., Keenan, J., 2023. Safe, robust and efficient through tubing abandonment. In: Presented at the SPE/IADC Drilling Conference and Exhibition. SPE, D011S008R001.

Vasylkivska, V., Dilmore, R., Lackey, G., Zhang, Y., King, S., Bacon, D., Chen, B., Mansoor, K., Harp, D., 2021. NRAP-open-IAM: a flexible open-source integrated-assessment-model for geologic carbon storage risk assessment and management. *Environ. Model. Softw.* 143, 105114. <https://doi.org/10.1016/j.envsoft.2021.105114>.

Vicente, P.M., Melo, J., Blanc, R., Roncete, A., Jones, P., 2017. Epoxy resin helps restore well integrity in offshore well: case history. In: Presented at the Offshore Technology Conference Brasil. OTC. D031S026R005.

Vielstädt, L., Linke, P., Schmidt, M., Sommer, S., Haeckel, M., Braack, M., Wallmann, K., 2019. Footprint and detectability of a well leaking CO₂ in the Central North Sea: implications from a field experiment and numerical modelling. *Int. J. Greenh. Gas Control* 84, 190–203. <https://doi.org/10.1016/j.ijggc.2019.03.012>.

Vrålstad, T., Saasen, A., Fjær, E., Øia, T., Ytrehus, J.D., Khalifeh, M., 2019. Plug & abandonment of offshore wells: ensuring long-term well integrity and cost-efficiency. *J. Pet. Sci. Eng.* 173, 478–491. <https://doi.org/10.1016/j.petrol.2018.10.049>.

Walsh, S.D.C., Mason, H.E., Du Frane, W.L., Carroll, S.A., 2014. Experimental calibration of a numerical model describing the alteration of cement/caprock interfaces by carbonated brine. *Int. J. Greenh. Gas Control* 22, 176–188. <https://doi.org/10.1016/j.ijggc.2014.01.004>.

Walton, F.B., Tait, J.C., LeNeveu, D., Sheppard, M.I., 2005. Geological storage of CO₂: a statistical approach to assessing performance risk. In: Rubin, E.S., Keith, D.W., Gilboy, C.F., Wilson, M., Morris, T., Gale, J., Thambimuthu, K. (Eds.), *Greenhouse Gas Control Technologies* 7. Elsevier Science Ltd, Oxford, pp. 693–700. <https://doi.org/10.1016/B978-008044704-9/50070-7>.

Wang, H., Tao, G., Shang, X., 2016. Understanding acoustic methods for cement bond logging. *J. Acoust. Soc. Am* 139, 2407–2416. <https://doi.org/10.1121/1.4947511>.

Wang, H., Zhang, L., Mei, K., Chang, X., Zue, Q., Wang, Y., Fu, X., 2024. Recent progress on the research of steel corrosion behavior and corrosion control in the context of CO₂ geological utilization and storage: a review. *Corros. Rev.* 42, 435–454. <https://doi.org/10.1515/correv-2023-0101>.

Warner, D.L., Koederitz, L.F., Laudon, R.C., 1997. Application of an area-of-review (AOR) concept to the East Texas Field and other selected Texas oilfields.

Warren, J.K., 1997. Evaporites, brines and base metals: fluids, flow and 'the evaporite that was'. *Aust. J. Earth Sci.* 44, 149–183.

Wasch, L., Koenen, M., 2019. Injection of a CO₂-reactive solution for Wellbore annulus leakage remediation. *Minerals* 9, 645.

Watson, T., Bachu, S., 2009. Evaluation of the potential for gas and CO₂ leakage along wellbores. *SPE Drill. Completion* 24, 115–126.

Weyl, P.K., 1959. The change in solubility of calcium carbonate with temperature and carbon dioxide content. *Geochim. Cosmochim. Acta* 17, 214–225.

White, D.J., Burrowes, G., Davis, T., Hajnal, Z., Hirsche, K., Hutcheon, I., Majer, E., Rostron, B., Whittaker, S., 2004. Greenhouse gas sequestration in abandoned oil reservoirs: the International Energy Agency Weyburn pilot project. *GSA Today* 14, 4–10. [https://doi.org/10.1130/1052-5173\(2004\)014%253C004:GGSIAO%253E2.0.CO;2](https://doi.org/10.1130/1052-5173(2004)014%253C004:GGSIAO%253E2.0.CO;2).

Whittaker, S., Rostron, B., Hawkes, C., Gardner, C., White, D., Johnson, J., Chalaturnyk, R., Seeburger, D., 2011. A decade of CO₂ injection into depleting oil fields: monitoring and research activities of the IEA GHG Weyburn-midale CO₂ monitoring and storage project. *Energy Procedia* 4, 6069–6076. <https://doi.org/10.1016/j.egypro.2011.02.612>.

Williams, S., Carlsen, T., Constable, K., Guldahl, A., 2009. Identification and qualification of shale annular barriers using wireline logs during plug and abandonment operations.

Wilt, M.J., Um, E.S., Nichols, E., Weiss, C.J., Nieuwenhuis, G., MacLennan, K., 2019. Casing integrity mapping using top-casing electrodes and surface-based electromagnetic fields. *Geophysics* 85, E1–E13. <https://doi.org/10.1190/geo2018-0692.1>.

Wilt, M.J., Um, E., Nichols, E., Weiss, C.J., 2020. Casing integrity mapping using top-casing electrodes and surface based electromagnetic fields. *Geophysics* 85, E1–E13.

Winarga, K., Dewanto, C.W., 2010. Surfactant treatment has amazingly improved squeeze cementing result. In: Nigeria Annual International Conference and Exhibition. Society of Petroleum Engineers.

Wisen, J., Chesnaux, R., Werring, J., Wendling, G., Baudron, P., Barbucot, F., 2020. A portrait of wellbore leakage in northeastern British Columbia, Canada. *PNAS* 117, 913–922. <https://doi.org/10.1073/pnas.1817929116>.

Wolterbeek, T.K.T., Hangx, S.J.T., 2021. Remediation of annular gas migration along cemented wellbores using reactive mineral fluids: experimental assessment of sodium bicarbonate and sodium silicate-based solutions. *Energies* 14, 7507.

Wolterbeek, T.K.T., Hangx, S.J.T., 2023. The thermal properties of set Portland cements – a literature review in the context of CO₂ injection well integrity. *Int. J. Greenh. Gas Control* 126, 103909.

Wolterbeek, T.K.T., Raoof, A., 2018. Meter-scale reactive transport modeling of CO₂-rich fluid flow along debonded wellbore casing-cement interfaces. *Environ. Sci. Technol.* 52, 3786–3795. <https://doi.org/10.1021/acs.est.7b05358>.

Wolterbeek, T.K.T., Peach, C.J., Spiers, C.J., 2013. Reaction and transport in wellbore interfaces under CO₂ storage conditions: experiments simulating debonded cement–casing interfaces. *Int. J. Greenh. Gas Control* 19, 519–529. <https://doi.org/10.1016/j.ijggc.2013.10.017>.

Wolterbeek, T.K.T., Hangx, S.J.T., Spiers, C.J., 2016a. Effect of CO₂-induced reactions on the mechanical behaviour of fractured wellbore cement. *Geomech. Energy Environ.* 7, 26–46. <https://doi.org/10.1016/j.gete.2016.02.002>.

Wolterbeek, T.K.T., Peach, C.J., Raoof, A., Spiers, C.J., 2016b. Reactive transport of CO₂-rich fluids in simulated wellbore interfaces: flow-through experiments on the 1–6 m length scale. *Int. J. Greenh. Gas Control* 54, 96–116. <https://doi.org/10.1016/j.ijggc.2016.08.034>.

Wolterbeek, T.K.T., Ruckert, F., van Moorsel, S.G., Cornelissen, E.K., 2019. Reactive transport and permeability evolution in wellbore defects exposed to periodic pulses of CO₂-rich water. *Int. J. Greenh. Gas Control* 91, 102835. <https://doi.org/10.1016/j.ijggc.2019.102835>.

Wolterbeek, T.K.T., Cornelissen, E.K., Hangx, S.J.T., Spiers, C.J., 2021a. Impact of downhole pressure and fluid-access on the effectiveness of wellbore cement expansion additives. *Cem. Concr. Res.* 147, 106514.

Wolterbeek, T.K.T., Cornelissen, E.K., Nolan, S., Todea, F., Stam, W., Roggeband, S.M., Dam, L., van Riet, E.J., Ruckert, F., Keuljtes, W.J.G., 2021b. Restoration of annular zonal isolation using localized casing expansion (LCE) technology: a proof of concept based on laboratory studies and field trial results. *J. Pet. Sci. Eng.* 197, 108103. <https://doi.org/10.1016/j.petrol.2020.108103>.

Wolterbeek, T.K.T., Snippe, J.R., Hangx, S.J.T., 2024. Impact of humid supercritical CO₂ flow and CO₂ solvation-induced cement porewater expulsion on reactive self-sealing processes along wellbore microannuli. *Geoenergy Sci. Eng.* 235, 212728.

Wu, H., Dong, H., Wang, Z., Bai, L., Huo, F., Tao, J., Chen, L., 2023. Semantic segmentation of oil well sites using Sentinel-2 imagery. In: IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium. Presented at the IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, pp. 6901–6904. <https://doi.org/10.1109/IGARSS52108.2023.10282739>.

Xiao, T., McPherson, B., Esser, R., Jia, W., Moodie, N., Chu, S., Lee, S.-Y., 2019. Forecasting commercial-scale CO₂ storage capacity in deep saline reservoirs: case study of Buzzard's bench, Central Utah. *Comput. Geosci.* 126, 41–51. <https://doi.org/10.1016/j.cageo.2018.12.006>.

Xiao, T., Chen, T., Ma, Z., Tian, H., Meguerdijian, S., Chen, B., Pawar, R., Huang, L., Xu, T., Cather, M., McPherson, B., 2024. A review of risk and uncertainty assessment for geologic carbon storage. *Renew. Sustain. Energy Rev.* 189, 113945. <https://doi.org/10.1016/j.rser.2023.113945>.

Xiao, T., Moodie, N., Jia, W., Smith, P., Xu, L., Zhang, L., McPherson, B., 2025. Uncertainty reduction of potential leakage from geologic CO₂ storage reservoirs. *Energy* 334, 137734. <https://doi.org/10.1016/j.energy.2025.137734>.

Xie, H., Li, X., Fang, Z., Wang, Y., Li, Q., Shi, L., Bai, B., Wei, N., Hou, Z., 2014. Carbon geological utilization and storage in China: current status and perspectives. *Acta Geotech.* 9, 7–27. <https://doi.org/10.1007/s11440-013-0277-9>.

Xie, X., Bauer, A., Stenebråten, J.F., Bakheim, S., Lavrov, A., Fjær, E., Kristiansen, T.G., 2020. Can heating induce borehole closure? *Rock Mech Rock Eng* 53, 5715–5744. <https://doi.org/10.1007/s00603-020-02238-5>.

Yalcinkaya, T., Radonjić, M., Willson, C.S., Bachu, S., 2011. Experimental study on a single cement-fracture using CO₂ rich brine. *Energy Procedia* 4, 5335–5342.

Yang, Y.-M., Kuo, C.-W., Kuo, T.-H., Lee, B.-H., 2024. Wellbore leakage risk assessment and management for a nearshore carbon storage candidate site. <https://doi.org/10.2139/ssrn.5071236>.

Ye, H., Radlińska, A., 2016. A review and comparative study of existing shrinkage prediction models for portland and non-portland cementitious materials. *Adv. Mater. Sci. Eng.* 2016.

Yin, G.-J., Wen, X.-D., Miao, L., Cui, D., Zuo, X.-B., Tang, Y.-J., 2023. A review on the transport-chemo-mechanical behavior in concrete under external sulfate attack. *Coatings* 13, 174.

Yu, T., Gao, J., Yang, H., Wu, X., 2024. Risk assessment and management strategy of geologic carbon storage in multi-well site. *Process Saf. Environ. Prot.* 192, 822–836. <https://doi.org/10.1016/j.psp.2024.10.097>.

Yuan, B., Luo, W., Xu, B., Fan, H., 2022. A prediction model for carbonation depth of cement sheath of carbon capture utilization and storage (CCUS) wells. *J. Nat. Gas Sci. Eng.* 108, 104842.

Zhang, M., Bachu, S., 2011. Review of integrity of existing wells in relation to CO₂ geological storage: what do we know? *Int. J. Greenh. Gas Control* 5, 826–840. <https://doi.org/10.1016/j.ijggc.2010.11.006>.

Zhang, X., Zevenbergen, J., Benedictus, T., 2013. Corrosion studies on casing steel in CO₂ storage environments. *Energy Procedia* 37, 5816–5822. <https://doi.org/10.1016/j.egypro.2013.06.504>.

Zhang, L., Dzombak, D.A., Nakles, D.V., Hawthorne, S.B., Miller, D.J., Kutchko, B.G., Lopano, C.L., Strazisar, B.R., 2014. Rate of H₂S and CO₂ attack on pozzolan-amended class H well cement under geologic sequestration conditions. *Int. J. Greenh. Gas Control* 27, 299–308.

Zhang, Y., Oldenburg, C.M., Pan, L., 2016. Fast estimation of dense gas dispersion from multiple continuous CO₂ surface leakage sources for risk assessment. *Int. J. Greenh. Gas Control* 49, 323–329. <https://doi.org/10.1016/j.ijggc.2016.03.002>.

Zhang, Yu, Bai, L., Wang, Z., Fan, M., Jurek-Loughrey, A., Zhang, Yuqi, Zhang, Ying, Zhao, M., Chen, L., 2023. Oil well detection under occlusion in remote sensing images using the improved YOLOv5 model. *Remote Sens.* 15, 5788. <https://doi.org/10.3390/rs15245788>.

Zhang, C., Li, J., Yu, M., Lu, Y., Liu, S., 2024. Mechanism and performance control methods of sulfate attack on concrete: a review. *Materials* 17, 4836.

Zheng, Y., Li, S., Xing, K., Zhang, X., 2021. Unmanned aerial vehicles for magnetic surveys: a review on platform selection and interference suppression. *Drones* 5, 93. <https://doi.org/10.3390/drones5030093>.

Zheng, D., Turhan, C., Wang, N., Ashok, P., van Oort, E., 2024. Prioritizing Wells for repurposing or permanent abandonment based on generalized well integrity risk analysis. In: Presented at the IADC/SPE International Drilling Conference and Exhibition. OnePetro. <https://doi.org/10.2118/217738-MS>.

Zhou, W., Stenhouse, M.J., Arthur, R., Whittaker, S., Law, D.H.-S., Chalaturnyk, R., Jazrawi, W., 2005. The IEA Weyburn CO₂ monitoring and storage project — modeling of the long-term migration of CO₂ from Weyburn. *Greenh. Gas Control Technol.* 721–729. <https://doi.org/10.1016/B978-008044704-9/50073-2>.

Zonetti, S., Dupuy, B., Emmel, B., Romdhane, A., 2023. Monitoring casing corrosion of legacy wells using CSEM: implications for large-scale energy and CO₂ storage projects in shut-down hydrocarbon fields. *Lead. Edge* 42, 808–816. <https://doi.org/10.1190/tle42120808.1>.

Zulqarnain, M., Zeidouni, M., Hughes, R.G., 2017. Risk based approach to identify the leakage potential of wells in depleted oil and gas fields for CO₂ geological sequestration. In: Presented at the Carbon Management Technology Conference. OnePetro. <https://doi.org/10.7122/486032-MS>.