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Introduction: Digital technologies now mediate a substantial proportion of
human collaboration, reshaping how individuals coordinate attention, share
information, and jointly act on goals. These digitally mediated interactions
engage neural, physiological, and behavioral processes differently compared
to face-to-face settings. Mobile hyperscanning, i.e., simultaneous (neuro-
)physiological measures of two or more individuals, offers a unique window
into these multidimensional dynamics. Yet, the existing literature is highly
fragmented in design, modality, and analytic rigor, making it difficult to
accumulate knowledge. This review systematically synthesizes hyperscanning
research investigating collaboration involving digital components and identifies
key methodological and conceptual gaps that must be addressed to advance
the field.

Methods: We searched Scopus, PubMed, and Web of Science (April 2025) for
mobile hyperscanning studies on digital collaboration. Forty-five eligible studies
involving simultaneous measurements of at least two healthy adults engaged
in collaborative tasks with a digital interaction component were included.
Studies were categorized across 13 dimensions, including modality, task design,
interaction type, analysis method, and cognitive domain. To ensure transparency
and support cumulative synthesis, we created a continuously updated online
resource (“InterBrainDB").

Results: Most studies relied on unimodal neuroimaging, predominantly
electroencephalography (EEG) or functional near-infrared spectroscopy (fNIRS),
with only seven studies implementing multimodal combinations. Study designs
favored cooperative tasks or naturalistic scenarios with symmetrical roles,
typically using same-sex dyads of unfamiliar individuals. Non-verbal interaction
was studied slightly more often than verbal. Analytically, functional connectivity
dominated, whereas effective connectivity, multimodal fusion, and machine
learning were scarcely used. Executive and social cognition were more
frequently investigated than creativity, memory, and language.

Discussion: Research on digital collaboration through hyperscanning is
growing, yet progress is limited by methodological heterogeneity, narrow use
of modalities, and analytical conservatism. Future advances will require: (1)
multimodal integration to fully capture neural, physiological, and behavioral
dynamics; (2) systematic comparisons across varying degrees of digitalization
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to understand how technology shapes interaction; (3) physiology-informed
analysis frameworks capable of modeling high-dimensional interpersonal
dynamics; and (4) clearer reporting standards to enable reproducibility and large-
scale synthesis. Resources like our InterBrainDB can structure a community-
driven progress toward ecologically grounded models of digitally mediated
collaboration, a domain of increasing scientific and societal relevance.

KEYWORDS

collaboration,

database,
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1 Introduction

1.1 Measuring collaboration in the digital
age

Collaboration, i.e., an activity where two or more individuals
share a goal or intention that motivates joint work (Léné et al.,
2021; Wood and Gray, 1991), is one of the most prevalent
topics under study in hyperscanning research. Much of the field
has examined face-to-face social interaction under naturalistic
conditions (Czeszumski et al., 2020; Fan et al., 2021; Réveillé et al.,
2024; Schneider et al.,, 2021). Yet, collaboration in contemporary
society increasingly occurs through digital means, including
screen-based meetings, shared online workspaces, and immersive
virtual environments (Deschénes, 2024; Wu et al., 2023; Yang
etal., 2025). These developments raise critical questions about how
environmental conditions (virtual vs. in-person) and task-specific
tools or modalities (e.g., digital vs. analog objects, verbal vs. text-
based communication) influence the brain, body, and behavioral
signatures of collaboration (Leahy et al., 2025; Magni et al., 2025;
Solomon and Theiss, 2022). Digital media introduces a virtual
divide (e.g., a monitor), altering attentional demands (Chuang
and Hsu, 2023; Snijdewint and Scheepers, 2023), perception of
implicit social cues (Frith and Frith, 2008; Oh et al., 2018; Sharan
et al, 2022), and cognitive workload (Luebstorf et al, 2023;
Nurmi and Pakarinen, 2023). As a result, findings from face-
to-face hyperscanning studies cannot be assumed to generalize
to digitally mediated settings, where collaborators rely on virtual
rather than physical co-presence (Balconi et al., 2022; Balters et al.,
2023; Liu et al.,, 2019; Sarasso et al., 2022, 2024). Although prior
work suggests that the degree of digitality modulates neural and
behavioral responses (for reviews, see Balters et al., 2020; Barde
et al., 2020), the literature remains fragmented by different choices
in task, measurement, and analysis. These developments motivate
a systematic review of how hyperscanning is currently used to
investigate digital collaboration.

Abbreviations: ECG, electrocardiography; EDA, electrodermal activity; EEG,
electroencephalography; fMRI, functional magnetic resonance imaging;
fNIRS, functional near-infrared spectroscopy; IBS, inter-brain synchrony;
MEG, PICOS,

comparison, outcomes, study design; PRISMA, preferred reporting items for

magnetoencephalography; population, intervention,

systematic reviews and meta-analyses; SVM, support vector machine.
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1.2 From hyperscanning origins to
multimodal mobile neuroimaging

The term hyperscanning was introduced by Montague et al.
(2002) to describe simultaneous functional magnetic resonance
imaging (fMRI) of interacting individuals playing a competitive
deception task. Earlier work had already explored dual-brain
recordings and reported synchronized electroencephalography
(EEG) activity in the alpha band (8-13Hz) in identical twins
(Duane and Behrendt, 1965). Since then, hyperscanning has
expanded rapidly, driven by advances in mobile neuroimaging
(for a review on the historical development see Nam et al., 2020).
Today, both EEG and functional near-infrared spectroscopy
(fNIRS) are the most widely used mobile brain-imaging
modalities, offering complementary strengths: EEG provides
high temporal resolution on a millisecond timescale, whereas
fNIRS affords greater spatial specificity for cortical surface
activity, making it well-suited for mapping spatial patterns of
brain activation (for review see Mehta and Parasuraman, 2013).
Recent advances in mobile neuroimaging and physiological
sensing, together with increasingly accessible wearable sensors,
have expanded hyperscanning beyond stationary setups such as
fMRI or magnetoencephalography (MEG), enabling the study of
interpersonal dynamics in increasingly diverse and applied settings
(Carollo and Esposito, 2024).

Real-world and digitally mediated unfold
across multiple sensory channels and involve tightly coupled

interactions

cognitive, affective, and behavioral processes (Zamm et al,
2024). Accordingly, reviews increasingly emphasize the value
of multimodal and ecologically grounded frameworks of social
interaction (Hakim et al., 2023; Schneider et al., 2021). Empirical
work has begun to integrate brain-based methods with bodily
measures such as gaze alignment (Chuang and Hsu, 2023),
electrocardiography (ECG), electrodermal activity (EDA; Numata
et al., 2021), communication signals (Lu et al., 2020), and other
camera-based physiological metrics (Shih et al., 2024). This
integration, called embodied hyperscanning (for review see
Grasso-Cladera et al., 2024), has facilitated the transition from
controlled laboratory paradigms to applied settings such as
classrooms (Dikker et al.,, 2017; Zhang et al., 2024), workplaces
(Wikstrom et al., 2021; Wu et al., 2023), and other real-world
environments (Balters et al., 2023). In line with this evolution,
we use the term “hyperscanning” here to encompass approaches
that incorporate at least one brain- or body-based measurement
modality of physiology.
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1.3 Established and emerging analytic
approaches

Irrespective of the signal measured, inter-brain synchrony
(IBS) has been the most widely reported analysis approach for
interpersonal dynamics in a variety of interactive scenarios (for
review see Réveillé et al., 2024). IBS has been linked to various
processes central to social interaction, including shared attention
(Dikker et al., 2017; Snijdewint and Scheepers, 2023), simultaneous
movements (Gumilar et al., 2021), imitation (Delaherche et al.,
2015; Konvalinka et al., 2023), social closeness between partners
(Reinero et al., 2021), and the nature of their engagement (e.g.,
cooperation vs. competition; Hayne et al, 2023). Given the
pronounced sensitivity of IBS to contextual and situational factors,
newly emerging digital collaboration formats warrant systematic
investigation as they increasingly reflect naturalistic settings (Fan
etal., 2021). Alongside synchrony-based metrics on the inter-brain
level, multivariate modeling and machine learning have emerged in
intra-brain research that could expand the analytical repertoire for
hyperscanning, enabling improved decoding of interpersonal states
and complementary use of EEG, fNIRS, and physiological signals
(for reviews see Dissanayake et al.,, 2025; Lihmann and Miiller,
2017; Pinto-Orellana et al., 2024).

1.4 Challenges and structuring principles in
the literature

advances,

these and

synthesizing hyperscanning studies investigating digital social

Despite methodological analytic
interaction remains challenging due to substantial heterogeneity.
Heterogeneity is introduced by varying group size (dyads, triads,
or larger collectives; Hou et al., 2022; Park et al., 2023), pre-existing
social relationships between partners (Bae et al., 2024; Dikker
et al,, 2021), and the gender composition of paired participants
(Zhang et al, 2023c). Furthermore, the degree of physical vs.
virtual co-presence differs across paradigms with respect to how
participants are situated (same or different rooms, physical or
virtual co-presence), how information is exchanged, and to what
extent interactions rely on digital vs. analog means (Balters et al.,
2020). For instance, some experiments manipulate remoteness
by prohibiting direct visual and/or auditory contact through a
physical divide (e.g., Wu et al.,, 2023) or by placing participants
back-to-back (e.g., Kiitt et al., 2019).

Previous reviews have proposed frameworks to organize this
diversity. For digitally mediated interaction, several categories
have been identified by Balters et al. (2021): (i) the type of
communication (goal-directed vs. open-ended), (ii) the transfer
of information (i.e., whether information exchange between
participants happened via analog, digital, or mixed channels),
(iii) the interaction medium (originally referred to as “interaction
manipulative”) being digital or non-digital, and (iv) the interaction
scenario, i.e., the spatial layout of how participants are situated
relative to each other (e.g., face-to-face, side-by-side, virtually
connected). Other work identified the experimental task itself
as a central factor for recurring experimental archetypes (Barde
et al, 2020; Wang et al, 2018). Moreover, a clear conceptual
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distinction can be made between collaborative interactions based
on task symmetry, distinguishing between symmetrical interactions
without predefined roles and asymmetrical tasks with designated
roles (Wikstrom, 2022). Together, these dimensions outline the
core design space of hyperscanning studies, albeit they are currently
not integrated across modalities or applied specifically to digitally
mediated collaboration.

1.5 Objective of the present review

Without structuring the body of research considering all
these dimensions, theoretical synthesis and cross-study comparison
remain difficult, particularly when assessing how digitalization
shapes the neural, physiological, and behavioral foundations
of collaboration. The current review organizes hyperscanning
research along dimensions relevant to studying remote and digitally
mediated collaboration. Building on this structured synthesis,
we present the framework for a living literature database: an
extensible, interactive platform that categorizes hyperscanning
studies according to measurement modalities, analytic approaches,
interaction design dimensions, and task characteristics. The current
version includes studies of remote collaborative interactions
using mobile hyperscanning methods, with the long-term goal
of expanding the database to incorporate additional modalities,
paradigms, and newly published work.

2 Methods

This review followed the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines
(Liberati et al., 2009; Page et al., 2021). A summary of the retrieval,
screening, and inclusion steps can be found in Figure 1.

2.1 Identification

To identify eligible sources for review, a broadly defined
search for hyperscanning studies, including or focusing on digital
interaction scenarios, was conducted using a combination of
search terms that reflect hyperscanning, collaboration, recording
modalities, and digital context (see Table 1). Initially, Scopus
PubMed (https://pubmed.ncbi.nlm.
nih.gov), and Web of Science (https://www.webofscience.com)

(https://www.scopus.com),

were searched. This search was conducted on April 28, 2025. The
exact search terms were adapted according to the specifications
of each search engine (for details, see Supplementary Table 1).
The initial search was carried out for journal articles published in
English or German, searching paper titles and abstracts only. In
line with the PRISMA guidelines, additional (unsystematic) data
searches were conducted as well (see Figure 1). Any additional
findings brought to us via search alerts or by colleagues were
included if eligible, although no additional proactive search
was conducted.

Following the PRISMA recommendation, we used the
PICOS eligibility criteria (Population, Intervention, Comparison,
Outcomes, Study design) to assess eligibility (see Table 2). For the
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Identification via databases

Identification via other methods

FIGURE 1

Sources identified from
c Sources identified at 28.04.2025
o from colleagues (n = 8)
"‘-“' Scopus (n = 5,482) pilot review (n = 98)
O || |Pubmed (n =441) 5| Duplicate removal random finds (n = 52) Duplicate removal
U= Web of Science (n = 332) n=185 broad hyperscanning search n=47
- scopus (n = 31)
(=
[*]
L)
A4 v
Sources screened Sources screened
n=6,070 Sources excluded through n=120 Sources excluded through
screening screening
l n=5819 n=96
Sources sought for retrieval Sources sought for retrieval
n =251 n=24
Sources not retrieved Sources not retrieved
o l n=13 n=3
=
g Sources assessed for eligibility Sources assessed for eligibility
(7] n =238 Sources excluded n=21 Sources excluded
— — 200*
o n= 200. n=13
(/2] Population (n = 9) Intervention (n = 1)
Intervention (n = 36) Outcome (n = 2)
Comparators (n = 46) Study Design (n = 10)
Outcome (n = 3) Short paper of Gumilar et al.
Study Design (n = 94) (n = 1; Saffaryazdi et al.)
TMS/TES/tVNS application
(n=1)
No empirical data analysis
(n=8)
Duplicate of Balconi et al.
(n = 1; Cassioli et al.)
Duplicate of Balters et al.
, (n = 2; Balters et al.)
Via databases
T n=38
(3]
-g Via other methods <
_— n=7
3]
E Total
n=45

*Studies were counted towards PICOS criteria in ascending order; some did not meet multiple criteria but were considered excluded after the first mismatch.

Overview of source retrieval. Flowchart of source retrieval process according to PRISMA guidelines.

presented review, we considered only studies with a population
of at least two clinically healthy adult participants. As an eligible
experimental intervention, we defined the application of one or
more mobile brain or body imaging techniques for physiological
data to focus on mobile and applied neuroergonomics contexts.
We did not limit the search to one specific mobile method since
we aimed to investigate the number of joint applications of
measurements. Note that we also identified some studies using
camera-based tracking, encompassing the assessment of eye
contact and facial muscle movements. However, this modality
was not explicitly included in the search scope. Nevertheless, a
specific label was assigned in these cases, given that the modality
might be of interest. For the comparison criterion, we included
studies that scanned at least two participants simultaneously
during an interaction. Given the search term, we expected to find
mainly interaction scenarios with group-based collaboration. As
outcomes, we defined any results addressing inter-subject dynamics
as assessed by the measurement modalities of interest. Studies
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reporting no statistical results related to the physiological measures
during the collaborative interactions were not included. Lastly,
we included the additional study design criterion to limit the
review to hyperscanning studies that introduced a collaborative
scenario with a focus on a digital aspect in the study design. For
example, studies meeting all initial criteria and focusing purely
on face-to-face collaboration were excluded. Further, studies with
tasks involving imitation rather than autonomous choice of all
collaborators were not included (Bienkiewicz et al., 2021).

2.2 Duplicate removal

For duplicate removal, the Zotero (version 6.0.36) and Citavi
(version 6.15) software were used, as well as an automated
matching of cosine similarity of titles and abstracts using sklearn
(Pedregosa et al.,, 2011). Finally, the web-based review program
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TABLE 1 Concepts contained in search string components.

Concept Search string component

Hyperscanning | (hyperscan® OR “social neuroscience” OR “two-person
neuroscience” OR interbrain OR interpersonal OR
“brain-to-brain interaction” OR interneural OR inter-subject
OR synchron* OR coupling OR “functional connectivity”

OR “effective connectivity”)

Collaboration (team OR “team performance” OR “team engagement” OR
“team dynamics” OR “group performance” OR “group
dynamics” OR “collaborative engagement” OR “collaborative
performance” OR “collective efficacy” OR flow OR “team

flow” OR “work flow” OR “group flow” OR “collective flow”)

Recording
modalities

(fnirs OR “functional near-infrared spectroscopy” OR eeg
OR electroencephalogra® OR ecg OR electrocardiogra® OR
ppg OR photoplethysmogra* OR eda OR “electrodermal
activity” OR “heart rate” OR pulse OR “skin conductance”
OR eye-track™ OR “eye tracking” OR “gaze tracking” OR
physiolog* OR multimodal* OR “multi-modal”)

(remote OR virtual OR online OR web-based)

Digital context

Search string components reflect the four conceptual domains used in the systematic
database search: hyperscanning terminology, collaboration-related constructs, mobile
neurophysiological and physiological recording modalities, and digital or remote
interaction contexts. Quotation marks indicate exact phrase matching; asterisks denote
wildcard operators.

TABLE 2 PICOS eligibility criteria applied during source selection.

PICOS Description

criterion

Population Two or more clinically healthy adult participants

Intervention fNIRS, EEG, EDA, ECG, PPG, and eye-tracking are applied
to acquire data for analysis

Comparison Scanning two or more participants simultaneously during
interaction

Outcomes Inter-subject dynamics analysis

Study design Collaborative scenario with one or more digital interaction
media or scenarios

ECG, Electrocardiography; EDA, Electrodermal Activity; EEG, Electroencephalography;
fNIRS, Functional Near-Infrared Spectroscopy; PPG, Photoplethysmography.

Rayyan (Ouzzani et al., 2016) was used for duplicate removal and
further screening procedures. All automated duplicate removals
were manually confirmed before exclusion.

2.3 Screening

The identification procedure followed by duplicate removal
resulted in 6,070 sources from the database searches and 120
sources from other methods (see Figure 1).

2.3.1 Initial screening

We adopted a liberal inclusion policy for every step of the
screening process, i.e., we opted to include a source one step
further during screening rather than excluding a source pre-
emptively. Given the large amount of retrieved literature, we
first screened titles to exclude some search results that were
unlikely to meet the inclusion criteria. Titles including words or
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» <«

phrases like “rodents;

» o«

non-human,” “epilepsy,” or “Alzheimer”
were excluded, assuming that the Population criterion would not
be met. Indications of the use of transcranial magnetic stimulation,
transcranial electrical stimulation, or transcutaneous vagus nerve
stimulation were another exclusion reason. Furthermore, several
titles indicated that the source had no relation to the field of
neuroscience in general and instead related to the physics of water
flow or aerodynamics. Hereafter, we screened sources for eligibility
based on both title and abstract.

2.3.2 Retrieval and manuscript screening for
eligibility

After the initial title and abstract screening, the full-text
versions of sources were retrieved. If full-text versions were not
immediately retrievable (e.g., through open-source access), an
effort was made to obtain the full-text version by means of
university access rights or by contacting the corresponding author
once via email to request access. We successfully retrieved 238
sources derived from the systematic search and an additional 21
from other methods. To screen and label sources for eligibility for
the current review, the Rayyan software was used (Ouzzani et al,,
2016). For each review stage, sources were included rather than
excluded to decrease the chance of false exclusion. The eligibility
criteria would be met with certainty in the final full-text review
stage. Screening of the full manuscripts led to the exclusion of an
additional 213 sources (for details, see Figure 1). In summary, a
total of 45 sources were included in this review. Note that, given that
the criteria for study design and comparison often required in-depth
reading of the methods and results sections to ensure thorough
screening, many unsuitable sources were initially included in the
full-text stage. Hence, those criteria were the most common late-
stage exclusion reason (see Figure 1).

2.4 Extraction of information and
categorization

After collecting relevant sources based on the PRISMA
criteria, we aimed to extract commonalities across studies by
categorizing studies across 13 dimensions based on design choices,
measurement modalities, analysis approaches, and targeted
cognitive functions. Category definitions were adapted from
existing hyperscanning reviews (e.g., Balters et al, 2020, 2021;
Wang et al., 2018) or based on influential factors of the sample
and design (e.g., how auditory and visual information is exchanged
between participants during the interaction). Each included
source was individually reviewed and subsequently categorized by
extracting the following information: (1) measurement modalities
of interest used in the study (e.g., EEG, eye-tracking); (2) the
number of participants included in analyses; (3) the pairing
configuration of participants (whether measurements were taken
simultaneously on dyads, triads, tetrads, or larger groups; Hou
et al,, 2022; Park et al,, 2023); the pairing setup of participants,
specifically variables of the setup that are known to influence
behavior and subsequently results, such as (4) gender (Zhang
et al,, 2023¢) and (5) relationship (Bae et al., 2024; Dikker et al,,
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TABLE 3 Paradigm category descriptions.

Paradigm

category

Description

10.3389/fnrgo.2026.1756956

TABLE 4 Categories of interaction media.

Interaction
medium

Description

Economic exchange
tasks

Participants exchange a type of currency (either real or
artificially constructed for the experiment)

Eye
contact/gaze-based
tasks

Participants look at each other and/or follow the gaze of
another

Imitation tasks

Participants imitate the other’s movement or behavior

The paradigm categories were originally derived by Wang et al. (2018). Note that imitation
and economic exchange tasks were included to provide a complete overview of categories,

although none of the included studies in this review fall within those categories.

2021) of simultaneously measured individuals; (6) the type of

Cooperation and Participants either collaborate toward a shared goal or Shared physical IM Participants share physical objects and verbally
competition tasks compete against one another and verbal IM communicate while interacting with the objects
Coordination tasks Participants perform a task that requires actions to be Physical IM w/out Participants interact with non-shared tangible
coordinated in time across partners verbal IM interfaces or musical instruments without verbal
communication
Ecologically valid Participants are placed in real-world interaction contexts
scenarios while under neuroimaging Verbal IM Participants solely interact verbally without any

physical or non-verbal communication

Non-verbal IM

Participants solely interact non-verbally, such as
looking at one another or synchronizing limb
movements while observing one another

Shared digital IM and Participants interact together on one shared

verbal IM computer screen while also engaging in verbal
interaction

Separate digital IM Participants interact together on separate computer

and verbal IM screens while also engaging in verbal interaction

Shared digital IM Participants interact together on one shared

w/out verbal IM computer screen without verbally communicating.

Separate digital IM Participants interact on separate digital task media

w/out verbal IM without interacting verbally

hyperscanning paradigm employed (see Table 3; Barde et al., 2020;
Wang et al., 2018); (7) the task symmetry (Wikstrom, 2022), where
highly symmetrical tasks allow participants to assume equal roles
(e.g., puzzling with shared pieces), whereas low-symmetry tasks
involve distinct roles (e.g., navigator and pilot); (8) the type of
communication defined as either open-ended or goal-driven, and
(9) the transfer of information being either analog, digital, or mixed
(Balters et al., 2020). Following the detailed interaction categories
introduced by Balters et al. (2021) for digital hyperscanning
studies, the (10) interaction scenario during the experiment was
assessed (i.e., how participants were situated in relation to each
other during measurements) and (11) whether the experiment
included verbal, physical, and/or digital interaction media in
shared or separated manners (for details see Table 4; Balters et al.,
2021). Given the diverse measurement modalities included in the
present review, we aimed to categorize (12) analysis methods in a
signal-agnostic manner, i.e., not tied to specific modalities like EEG
or fNIRS (Hakim et al., 2023). Therefore, we distinguished on a
higher level between the analysis approaches focused on temporal
aspects, spatial distribution, and connectivity domains, as well
as machine learning methods (for details, see Table 5). Finally,
we attempted to highlight the (13) cognitive function of interest
investigated primarily during analyses for each study (Balters et al.,
2021). Note that multiple labels within one category may apply to
the same study.

2.4.1 Living literature review database
>InterBrainDB«

Building on the initial review, a continuously updated “living”
literature review was launched and maintained to track emerging
research on multimodal hyperscanning (see Figure 2). The app
utilizes the categories as described in the previous section and
includes an interactive visualization tool, serving as a dynamic,
open-access resource. To build the interactive platform the Python
library streamlit (version 1.45.1; Streamlit Inc., 2025) was used,
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The interaction medium categories were derived from Balters et al. (2021), who defined those
to cluster fNIRS hyperscanning research involving digital components. Note that the category
was originally termed “interaction manipulative.”

supporting the browsers Google Chrome, Firefox, Microsoft Edge,
and Safari. The database allows filtering by sample population,
interaction design, modality, analysis method, and cognitive
domain, and will be expanded to incorporate additional modalities
and future publications. Thus, the purpose of the database is two-
fold: (1) it is intended to supplement the present review by allowing
for replication of results and figures, as well as keeping the present
analyses up-to-date by integrating newly published, relevant
literature; (2) it is intended as a tool for the scientific community
to search for literature based on the introduced categories and be
extended to include hyperscanning studies with digital components
beyond the presented PICOS criteria. To achieve this long-term
value, sources submitted by the scientific community via the
app’s anonymous submission form are reviewed and categorized
monthly by the first author continuously over time. Moreover,
categorization may be proposed by the users upon submission
of a source and changes to existing labels can be requested by
contacting the first author. The server-hosted living review can
be found here: https://websites.fraunhofer.de/interbraindb, with
source code hosted at https://github.com/acv132/InterBrainDB.
So far, 106 studies have been categorized and included in the
online database. Studies in the database comprise the studies
included in this review paper as indicated within the database
itself. Furthermore, hyperscanning studies not strictly meeting the
presented PICOS criteria were included and categorized, such as
studies with underage sample populations, non-mobile imaging
(e.g., IMRI), or paradigms beyond digital collaboration (e.g., face-
to-face collaboration). When initially opening the app, the default
filter configuration includes only sources reported in this paper,
allowing for easy replication of results and interactive figures. By
customizing filters in the sidebar, the database enables users to
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TABLE 5 Categories of multimodal analysis methods.

Analysis

Approach Description

domain

Connectivity Functional Quantifies undirected statistical associations
(e.g., correlation, synchrony) between
signals from two or more individuals.

Applicable to any time-series data

Assesses directed influence or causal
relationships between signals across
individuals (e.g., Granger causality, transfer
entropy, or directional mutual information).
Applicable to any time-series data

Effective

Temporal Time-based

domain

Analyzes time-aligned patterns in signals,
capturing moment-to-moment fluctuations
(e.g., alignment in gaze, HRV bursts, EEG
amplitude). Applicable to signals with
uniform time alignment

Frequency-
based

Decomposes signals into frequency
components to analyze rhythmic coupling
(e.g., alpha-band EEG, cardiac-respiratory
oscillations). Applicable to oscillatory
modalities

10.3389/fnrgo.2026.1756956

& InterBrainDB

Welcome to the Living Literature Review Database
on Hyperscanning

This tool is designed to visualize up-to-date research body related to hyperscanning. The
following features are included:

« Displaying studies: An overview of included studies can be found in table format and
descriptive information is visualized, including filters for specific searches.

e Categorization: Studies are categorized based on population, design, analyses, and
outcomes to derive clusters and shared traits.

e Submission system: Further studies may be submitted by the community.

¢ Replication of original review: An overview of studies included in the original review
paper is provided to replicate reported findings and extend analyses with updated
versions of the database.

FIGURE 2

Screenshot of living literature review platform. A screenshot of the
platform hosting the living literature review built using the Python
library Streamlit (version 1.45.1).

Spatial domain Sensor-level Uses data at the measurement site (e.g., EEG
electrode, {NIRS optode), enabling
cross-participant topographic comparisons
or coupling at sensor locations. Applicable

to spatially distributed signals

Source-level Projects sensor-level data into source space
(e.g., cortical regions or gaze location on
screen), allowing spatially informed
inter-individual comparisons. Applicable to

spatially distributed signals

Machine
learning

Supervised Mappings are learned from multimodal
signal features to predefined labels (e.g., task
success, social outcome) across dyads or
groups, enabling prediction or classification
of interaction dynamics. Applicable to any

signal modality

Unsupervised | Discovers latent patterns, clusters, or
dimensions in joint participant data without
labels (e.g., synchronized state clusters,
engagement modes). Applicable to
high-dimensional or multivariate data of

any sensor modality

Other Grouping label of any analysis method that

does not match the above categories

The inclusion of various measurement modalities requires broad category definitions for
analysis methods employed in studies.

perform analyses according to their preferences and to download
figures, reference tables, and BibTex files.

3 Results
3.1 Study selection

An overview of the 45 included studies can be found in
Table 6. The earliest studies included were published in the mid-
2010s (see Figure 3). The average sample size across studies
was 55.8 + 70.3 (SEM =
considerably, from small-scale studies with four (Poysi-Tarhonen

10.48). The sample sizes varied

et al,, 2021) to large-scale studies with 480 participants (Zhang

Frontiers in Neuroergonomics

et al.,, 2023b). Most studies included within-subjects designs (n
= 33), some analyzed between-subjects effects (n = 10), and
two studies had a mixed design (Fang et al, 2022; Yamaya
et al., 2025). This observed distribution might be attributed to
the fact that sufficient statistical power of a between-subjects
design requires a substantially larger recruitment effort for
hyperscanning studies.

3.2 Study categorization

In the following section, the results of the categorization of the
selected studies according to the labels described in Section 2.4 and
detailed in Table 6 are summarized.

3.2.1 Measurement modalities

Overall, 19 studies included EEG, 12 studies included fNIRS,
and the 14 remaining studies included a type of physiological
measurement or camera-based tracking of a physiological signal
(see Figure 4). Few papers (n = 7) reported results of multiple
measurement modalities jointly, and even fewer (n = 5) reported
a combination of physiological (body) and neurophysiological
(brain) methods (EEG: Balconi et al., 2022; Chuang and Hsu, 2023;
Gugnowska et al., 2022; Wang et al., 2024; fNIRS: Shih et al., 2024).
With respect to other modalities, eye-tracking was employed in
nine studies, but only two studies combined eye-tracking with EEG
(Chuang and Hsu, 2023; Wang et al., 2024), and none reported the
joint use of {NIRS and eye-tracking. A similarly limited pattern was
observed with ECG and EDA: two studies employed ECG alone
(Fang et al., 2022; Strang et al., 2014), while EDA was used in only
one study as a standalone measure (Le Bars et al., 2020). ECG and
EDA were only combined once with EEG (Balconi et al., 2022).
Camera-based tracking was integrated with fNIRS in one instance
(Shih et al., 2024) and with EEG in another (Gugnowska et al.,
2022).
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TABLE 6 Overview of studies.

References Measurement

modalities

Multimodal measurements

Participants;
group size,
gender of

pairs [fm, ff,
mm],
familiarity

Paradigm

Task
symmetry

Type of
communication

Transfer of
information

Interaction
scenario

Interaction
medium

Type of analysis

Cognitive
function

Balconi et al. [“ECG,” “EDA; N = 20; dyad, n/s, Ecologically Low Open-ended Mixed [“FTE [“Verbal IM;? [“Connectivity Social
(2022) “EEG”] [“unfamiliar,” valid setting “virtual”] “separate digital IM functional,” “temporal cognition
“instructor- and verbal IM”] domain frequency,”
student”] “spatial domain source”]
Chuang and [“EEG,” N = 58; dyad, [“ff [“Eye- High Goal-driven Digital [“FTF v-b,” Separate digital IM [“Connectivity [“attention,”
Hsu (2023) “eye-tracking”] “fm,” “mm”], n/s contact/gaze- “virtual”] w/out verbal IM functional,” “temporal “visuospatial
based tasks,” domain time,” “temporal cognition”]
“cooperation/ domain frequency,”
competition “spatial domain sensor”]
tasks”
Gugnowska [“EEG,” N = 28; dyad, [“ff? Ecologically Low Open-ended Digital Virtual Physical IM w/out [“Spatial domain sensor, [“motor,”
et al. (2022) “camera-based “fm,” “mm”], valid setting verbal IM “connectivity “other”]
tracking”] unfamiliar functional,” “temporal
domain frequency”]
Numata et al. [“ECG,” “EDA;” N =9; dyad, mm, Ecologically Low Mixed Digital Virtual Separate digital IM Temporal domain time [“memory;”
(2021) “other”] familiar valid setting and verbal IM “executive
function”]
Shih et al. [“fNIRS;” N = 6; dyad, [“fE Ecologically High Open-ended Mixed [“SBS,” [“Separate digital [“Temporal domain [“other”
(2024) “camera-based “fm,” “mm”], valid setting “virtual”] IM and verbal IM,” time,” “connectivity “executive
tracking”] familiar “separate digital IM functional,” “spatial function”]
w/out verbal IM”] domain sensor”]
Snijdewint and [“ECG,” “other”] N = 117; triad, [“ff) Cooperation/ Low Goal-driven Digital [“FTE” “SBS Separate digital IM [“Temporal domain [“attention,”
Scheepers “fm,” “mm”], competition v-b’] w/out verbal IM time,” “connectivity “executive
(2023) [“familiar,” tasks functional”] function”]
“unfamiliar”]
Wang et al. [“EEG N = 10; dyad, n/s, Ecologically High Open-ended Digital Virtual Separate digital IM [“Temporal domain Executive
(2024) “eye-tracking”] n/s valid setting w/out verbal IM time,” “temporal domain function
frequency,” “connectivity
functional”]
EEG
Astolfi et al. EEG N = 32; dyad, mm, Cooperation/ High Goal-driven Digital FTF v-b Separate digital IM [“Connectivity effective,” Visuospatial
(2020) unfamiliar competition w/out verbal IM “temporal domain cognition
tasks frequency,” “spatial
domain sensor,”
“machine learning
supervised,” “other”]
(Continued)
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TABLE 6 (Continued)

References Measurement Participants; Paradigm  Task Type of Transfer of Interaction Interaction Type of analysis Cognitive
modalities group size, symmetry communication information scenario medium function
gender of
pairs [fm, ff,
mm],
familiarity
Balconi et al. EEG N = 8; more Ecologically High Open-ended Mixed [“FTE’ [“Shared physical Temporal domain [“Social
(2023) (n_group = 8), n/s, valid setting “virtual”] IM and verbal IM, frequency cognition,”
instructor-student “separate digital IM “executive
and verbal IM”] function”]
Chuang et al. EEG N = 58; dyad, [“ff, Cooperation/ High Goal-driven Digital Virtual Separate digital IM [“Connectivity [“Memory,”
(2024) “fm,” “mm”], n/s competition w/out verbal IM functional,” “temporal “visuospatial
tasks domain time,” “temporal cognition”]
domain frequency”]
Ciaramidaro EEG N = 32; dyad, mm, Coordination | High Goal-driven Digital SBS Shared digital IM [“Spatial domain source,” | [“Motor,”
et al. (2024) n/s tasks w/out verbal IM “connectivity effective,” “visuospatial
“temporal domain cognition”]
frequency”]
Cross et al. EEG N = 40; dyad, Ecologically Low Goal-driven Mixed [“SBS, [“Shared physical Temporal domain [“Motor,”
(2022) [“fm,” “mm”], n/s valid setting “virtual”] IM and verbal IM, frequency “executive
“separate digital IM function”]
and verbal IM”]
Duetal. EEG N = 36; triad, n/s, [“Ecologically | High Mixed Digital Virtual Separate digital IM [“Connectivity [“Language,”
(2022) familiar valid setting,” and verbal IM functional,” “temporal “attention,”
“cooperation/ domain frequency”] “executive
competition function”]
tasks”
Flosch et al. EEG N = 32; dyad, [“ff? Cooperation/ High Goal-driven Digital Virtual Separate digital IM [“Spatial domain sensor,” [“Memory,”
(2024a) “mm”], familiar competition w/out verbal IM “temporal domain “language,”
tasks frequency”] “social
cognition,”
“executive
function”]
Flosch et al. EEG N = 24; dyad, [“ff? Cooperation/ High Goal-driven Digital Virtual Separate digital IM Temporal domain time [“Memory,”
(2024b) “mm”], familiar competition w/out verbal IM “language,”
tasks “social
cognition,”
“executive
function”]
Gumilar et al. EEG N = 24; dyad, n/s, Coordination High Goal-driven Mixed Virtual [“Non-verbal IM,” [“Spatial domain source,” [“Motor,”
(2021) unfamiliar tasks “shared digital IM “connectivity “visuospatial
w/out verbal IM”] functional,” “temporal cognition”]

domain frequency”]

(Continued)
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TABLE 6 (Continued)

References Measurement Participants; Paradigm  Task Type of Transfer of Interaction Interaction Type of analysis Cognitive
modalities group size, symmetry communication information scenario medium function
gender of
pairs [fm, ff,
mm],
familiarity
Hayati et al. EEG N = 28; dyad, [“ff? Cooperation/ High Goal-driven Mixed [“SBS,” Shared digital IM [“Connectivity Visuospatial
(2025) “fm,” “mm”], competition “virtual”] and verbal IM functional,” “spatial cognition
familiar tasks domain sensor”]
Liu et al. EEG N = 104; dyad, [“ff” | Cooperation/ High Goal-driven Digital SBS v-b Separate digital IM [“Temporal domain Social
(2024) “mm”], unfamiliar competition w/out verbal IM frequency,” “connectivity | cognition
tasks functional,” “spatial
domain source”]
Léné et al. EEG N = 46; dyad, n/s, Cooperation/ High Goal-driven Digital SBS v-b Shared digital IM [“Connectivity [“Attention,”
(2021) unfamiliar competition w/out verbal IM functional,” “temporal “executive
tasks domain frequency”] function”]
Wikstrém EEG N = 42; dyad, [“ff? Cooperation/ Low Goal-driven Digital virtual Shared digital IM #BEZUG! [“Motor,”
et al. (2022) “fm,” “mm”], competition w/out verbal IM “attention,”
familiar tasks “executive
function,”
“visuospatial
cognition”]
Zhang et al. EEG N = 74; dyad, [“ff? Cooperation/ High Goal-driven Digital FTF v-b Separate digital IM [“Connectivity [“Social
(2019) “mm”], unfamiliar competition w/out verbal IM functional,” “temporal cognition,”
tasks domain time,” “spatial “executive
domain sensor,” “spatial function”]
domain source”]
Zhou et al. EEG N = 60; dyad, [“ff” Cooperation/ High Goal-driven Digital SBS v-b Separate digital IM #BEZUG! Motor
(2021) “mm”], n/s competition w/out verbal IM
tasks
fNIRS
Balters et al. fNIRS N =72; dyad, [“ff? Ecologically High [“Open-ended,” [“analog,” Virtual Verbal IM [“Connectivity [“Social
(2023) “fm,” “mm”], valid setting “goal-driven”] “digital”] functional,” “machine cognition,”
unfamiliar learning unsupervised,” “executive
“spatial domain sensor”] function”]
Cheng et al. fNIRS N = 62; dyad, [“ff? Coordination High Goal-driven Digital FTF v-b Separate digital IM [“Connectivity effective,” [“Motor,”
(2019) “fm”], unfamiliar tasks w/out verbal IM “connectivity “visuospatial
functional”] cognition”]
Hayne et al. fNIRS N = 84; dyad, fm, Cooperation/ High Goal-driven Digital Virtual Separate digital IM [“Spatial domain source,” | Social
(2023) unfamiliar competition w/out verbal IM “machine learning cognition
tasks supervised”]
(Continued)
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TABLE 6 (Continued)

References Measurement Participants; Paradigm  Task Type of Transfer of Interaction Interaction Type of analysis Cognitive
modalities group size, symmetry communication information scenario medium function
gender of
pairs [fm, ff,
mm],
familiarity
Huetal. fNIRS N = 70; dyad, ff, Coordination High Goal-driven Digital FTF v-b Separate digital IM [“Spatial domain sensor, Social
(2017) unfamiliar tasks w/out verbal IM “connectivity cognition
functional”]
Liuetal. fNIRS N = 42; dyad, [} Ecologically Low Open-ended Digital [“FTE’ [“Non-verbal IM;” [“Temporal domain Social
(2019) “mm”], valid setting “virtual”] “separate digital IM time,” “connectivity cognition
instructor-student w/out verbal IM”] functional,” “spatial
domain sensor”]
Lu et al. (2020) fNIRS N = 54; dyad, [“ff} Ecologically High Open-ended Mixed [“FTE’ [“Verbal IM; [“Temporal domain [“Language,”
“mm”], unfamiliar valid setting “virtual”] “separate digital IM frequency,” “connectivity | “social
w/out verbal IM”] functional,” “spatial cognition”]
domain sensor”]
Pan et al. fNIRS N = 98; dyad, fm, Coordination | High Goal-driven Digital SBS v-b Separate digital IM [“Temporal domain [“Motor,”
(2017) [“familiar,” tasks w/out verbal IM frequency,” “connectivity “social
“unfamiliar”] functional,” cognition”]
“connectivity effective”]
Wu et al. fNIRS N =72; dyad, [“ff? Ecologically High Open-ended Mixed [“FTE” “SBS [“Shared physical [“Temporal domain Other
(2025) “fm,” “mm”], valid setting v-b,” “virtual”] IM and verbal IM,” time,” “spatial domain
unfamiliar “separate digital IM sensor;,” “connectivity
w/out verbal IM;? functional,” “temporal
“separate digital IM domain frequency”]
w/out verbal IM”]
Yamaya et al. fNIRS N = 60; dyad, [“ff Coordination High Goal-driven Mixed [“FTE’ Verbal IM Spatial domain source Language
(2025) “mm”], familiar tasks “virtual”]
Zhang et al. fNIRS N = 480; more [“Economic [“High,” “low” Goal-driven Digital Virtual Separate digital IM [“Connectivity [“social
(2023b) (n_group =6), [“fl; | exchange w/out verbal IM functional,” “temporal cognition,”
“fm,” “mm”], tasks,” domain frequency,” “executive
unfamiliar “cooperation/ “spatial domain source”] function”]
competition
tasks”]
Zhang et al. fNIRS N = 84; dyad, [“ff? Cooperation/ Low Goal-driven Mixed [“SBS,” “SBS Shared digital IM [“Connectivity [“Memory,”
(2023a) “mm”], unfamiliar competition v-b’] and verbal IM functional,” “spatial “language”]
tasks domain sensor;”
“machine learning
supervised”]
(Continued)
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TABLE 6 (Continued)

References

Eye-tracking

Measurement
modalities

Participants;
group size,
gender of

pairs [fm, ff,
mm],
familiarity

Paradigm

Task
symmetry

Type of
communication

Transfer of
information

Interaction
scenario

Interaction
medium

Type of analysis

Cognitive
function

Cheng et al. Eye-tracking N = 32; dyad, n/s, Ecologically High Goal-driven Digital Virtual Separate digital IM Other [“Attention,”
(2022) n/s valid setting and verbal IM “social
cognition,”
“executive
function,”
“visuospatial
cognition”]
Findik- Eye-tracking N = 27; triad, n/s, Ecologically High Goal-driven Digital Virtual Separate digital IM [“Temporal domain [“Attention,”
Coskungay n/s valid setting w/out verbal IM time,” “connectivity “social
and Cakir functional”] cognition,”
(2022) “executive
function”]
Hoffmann Eye-tracking N = 74; dyad, n/s, Ecologically High Goal-driven Digital SBS v-b Separate digital IM Connectivity functional Attention
et al. (2024) familiar valid setting and verbal IM
Kiitt et al. Eye-tracking N = 40; dyad, n/s, Ecologically High Mixed Digital BTB Separate digital IM Other [“Attention,”
(2019) [“familiar, valid setting and verbal IM “language”
“unfamiliar”]
Poysi- Eye-tracking N = 4; dyad, [} Cooperation/ High Goal-driven Digital Virtual Separate digital IM Other [“Attention,”
Tarhonen et al. “mm”], familiar competition and verbal IM “social
(2021) tasks cognition,”
“executive
function”]
Wisiecka et al. Eye-tracking N = 54; dyad, [“ff} Cooperation/ High Goal-driven Digital [“SBS,” [“Shared digital IM Other [“Social
(2023) “mm”], n/s competition “virtual”] and verbal IM,” cognition,”
tasks “separate digital IM “executive
and verbal IM”] function”]
Spakov et al. Eye-tracking N = 40; dyad, fm, Cooperation/ Low Goal-driven Digital [“FTF v-b, Separate digital IM Other [“Attention,”
(2019) [“familiar,” competition “virtual”] and verbal IM “social
“unfamiliar” tasks cognition,”
“executive
function,”
“visuospatial

cognition”]

(Continued)

‘|e 19 JayINaLIop

96695/1°9202°064U}/6855°0T


https://doi.org/10.3389/fnrgo.2026.1756956
https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org

S2ILWOUOBIS0INSN Ul SI213U0I

T

Bao uisianuosy

TABLE 6 (Continued)

References Measurement Participants;

modalities

group size,
gender of

pairs [fm, ff,
mm],
familiarity

Physiological data (ECG, EDA, EMG, other)

Paradigm

Task
symmetry

Type of
communication

Transfer of
information

Interaction
scenario

Interaction
medium

Type of analysis

Cognitive
function

“imitation
tasks”]

functional,” “temporal
domain time”]

Fang et al. ECG N = 24; more Cooperation/ Low Mixed Mixed [“FTE? [“Verbal IM,” [“Temporal domain [“Attention,”
(2022) (n_group = 6), fm, competition “virtual”] “separate digital IM time,” “connectivity “social
n/s tasks and verbal IM”] functional”] cognition,”
“executive
function”]
Strang et al. ECG N = 80; dyad, [“ff Cooperation/ Low Goal-driven Digital FTF Separate digital IM [“Temporal domain [“Executive
(2014) “mm”], unfamiliar competition w/out verbal IM time,” “connectivity function,”
tasks functional”] “visuospatial
cognition”]
Le Bars et al. EDA N = 35; dyad, [“ff, Cooperation/ Low Goal-driven Digital SBS v-b Separate digital IM Temporal domain time [“Executive
(2020) “mm”], unfamiliar competition w/out verbal IM function,”
tasks “visuospatial
cognition”]
Melendez- EMG N = 10; dyad, [“ff” Coordination High Goal-driven Digital SBS v-b Separate digital IM [“Other,” “temporal Motor
Calderon et al. “mm”], unfamiliar tasks w/out verbal IM domain time”]
(2015)
Konvalinka Other N = 24; dyad, [“ff? [“Coordination | [“High,” “low”] Goal-driven Digital Virtual separate digital IM [“Temporal domain Motor
etal. (2023) “fm”], unfamiliar tasks,” w/out verbal IM frequency,” “connectivity

Overview of all included sources and assigned category labels. BTB, back-to-back; ECG, electrocardiography; EDA, electrodermal activity; EEG, electroencephalography; ff, female-female pairing; fm, female-male or otherwise mixed-gender pairing; fNIRS, functional
near-infrared spectroscopy; FTF v-b, face-to-face with visual barriers; FTF, face-to-face; IM, interaction medium; mm, male-male pairing; n/s, not specified; SBS v-b, side-by-side with visual barriers; SBS, side-by-side.
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3.2.2 Participants

The majority of studies investigated inter-subject dynamics
in a dyadic setting (n = 39) with an average sample size of
46.6 + 26.1 (SEM = 4.17, min: 4, max: 104), although three
studies measured triads (Du et al., 2022; Findik-Coskunc¢ay and
Cakir, 2022; Snijdewint and Scheepers, 2023), two studies measured
groups of six (Fang et al., 2022; Zhang et al., 2023b), and one paper
reported measuring eight individuals at once (Balconi et al., 2023).

Most reported that paired participants were unfamiliar with
each other (n = 23), although many also used familiar pairings
of participants (n = 14). Ten studies did not state conclusively
whether interacting participants knew each other. In three studies,
the relationship between partners was identified to be of an
instructor-student nature (Balconi et al., 2022, 2023; Liu et al,,
2019).

The majority of studies included measurements of same-sex
pairs (31 studies), with one study including only female pairs (Hu
et al,, 2017) and three studies including only male pairs (Astolfi
et al., 2020; Ciaramidaro et al., 2024; Numata et al., 2021). Fewer
studies indicated a setup with different-sex pairs (n = 17), with four
studies including only mixed-gender pairs (Fang et al., 2022; Hayne
et al., 2023; Pan et al., 2017; Spakov et al., 2019). For 14 studies, the
combination of pairs was not specified conclusively. Note that the
number of participants who indicated to identify as “non-binary”
or “other” was negligibly small, although in this case, the setup was
counted as a different-sex setup (Fang et al., 2022; Hayne et al., 2023;
Spakov et al., 2019).

3.2.3 Paradigm category

We adapted a paradigm categorization based on six previously
defined archetypes (Barde et al., 2020; Wang et al.,, 2018). The
paradigm categorization revealed that for the studies included
in our review, most studies represented cooperation/competition
tasks (n = 22), while some paradigms were more representative of
an ecologically valid setting (n = 16). Seven studies were identified
as belonging to the category of coordination tasks. One study
employed a cooperation/competition paradigm with an interaction
mechanic relying on gaze itself (Chuang and Hsu, 2023). In another
study, respiratory synchrony in a coordination task was compared
to that in an imitation paradigm (Konvalinka et al., 2023). The latter
study used a confederate who did not actually collaborate, yet it
was included because participants believed they were engaging in a
collaborative task related to respiration coordination. Most studies
utilizing a form of economic exchange tasks were not included
since they lacked a collaborative component (i.e., focused on
competitive interactions), except one study in which participants
jointly participated in such a task to investigate collaborative
decision making in competing groups (Zhang et al., 2023b).

3.2.4 Task symmetry

Thirty-three studies involved high task symmetry between
participants, ie., participants fulfilling similar roles, whereas 14
studies were classified as low-symmetry studies, i.e., they involved
predefined, distinct roles. One study incorporated a range of tasks
with varying symmetry (Konvalinka et al., 2023), and another
involved the simultaneous measurement of multiple participants,
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FIGURE 3

Number of publications by year. The number of publications
selected for this review plotted over the years. The earliest included
studies were published in the mid-2010s (Melendez-Calderon et al.,
2015; Strang et al., 2014) with a steady increase in the number of
publications following thereafter, peaking with n = 9 in 2023. Note a
noticeable dip in published studies occurred following the onset of
the COVID pandemic at the end of the year 2019.

EEG

fNIRS
eye-tracking
ECG

EDA

EMG

camera-based tracking

measurement modality

other

count

FIGURE 4

Category counts of measurement modalities. Measurement
modalities were distributed across eight categories. The category
“other” included two studies measuring respiration and one study
measuring impedance cardiography.

some exhibiting high symmetry and others low symmetry toward
each other (Zhang et al., 2023b).

3.2.5 Type of communication

To Dbetter understand the nature of interaction in
hyperscanning studies, we examined the objective of
communication. Goal-driven communication was assumed

when an explicit goal, objective or outcome was pursued in the
task. Any task with no clear or explicit objective was categorized
as open-ended. Tasks containing elements of both were defined as
mixed communication. Thirty-three studies involved goal-driven
communication (either verbal or non-verbal). Nine studies
involved open-ended communication, of which all were identified
as utilizing an ecologically valid setting during the sessions. Four
studies employed a mixed communication (Du et al., 2022; Fang
et al., 2022; Kiitt et al., 2019; Numata et al., 2021). For instance, one
study had participants play a game of Mafia, which allows for an
open-ended portion of communication as part of the game, where
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participants could freely choose whether to speak and what to say
(Fang et al., 2022).

3.2.6 Transfer of information

Before detailing the transfer of information based on the
interaction medium and the interaction scenario, we broadly
categorized whether information exchange between participants
happened via analog, digital, or mixed channels (Balters et al.,
2020). Since one of the study eligibility criteria was the focus on
a digital aspect in collaboration, all included studies utilized some
form of digital information transfer, where most of them (n =
34) examined exclusively digital communication. Approximately a
fourth of all studies (n = 11) involved a mixed information transfer
of both digital and analog ways. One study included a between-
subjects comparison of remote and in-person collaboration and
hence was also categorized as containing an analog form of
information transfer (Balters et al., 2023).

3.2.7 Interaction scenarios

Interaction scenarios refer to the physical or virtual setup of the
participants relatively to each other, e.g., facing each other, sitting
side-by-side, or interacting remotely via screens or Virtual Reality
setups. As expected, based on the search criteria, most studies took
place in a form of virtual scenario (n = 29). Some approximated
a remote setting by placing a visual barrier between participants
positioned side-by-side (n = 10), face-to-face (n = 6), or seating
them back-to-back (n = 1). Some studies directly compared one of
these scenarios to a collaborative interaction in person or utilized
a form of purely digital means of interaction medium, leading to
the inclusion of face-to-face (n = 9) and side-by-side (n = 6)
paradigm scenarios.

3.2.8 Interaction medium

Interaction medium refers to the kind of interaction that the
participants experience with each other and what type of medium
was used, e.g., whether participants were allowed to verbally
communicate, whether they interacted with physical objects, or via
a digital tool (see Table 4). Most studies utilized a separate means of
digital interaction (e.g., two screens) without verbal exchanges (n =
24). A few had similar setups while allowing for verbal interactions
(n = 13). Fewer studies utilized shared digital interaction media
(without verbal: n = 4; with verbal: n = 3).

3.2.9 Comparison of the interaction medium and
scenario

We also looked at the interaction medium and the interaction
scenario jointly to define the extent to which a study design
is digital (Balters et al., 2021). For a differentiated analysis, we
mapped studies along the dimensions of interaction medium,
including the presence of verbal communication, interaction
scenario, measurement modality, and cross-condition occurrences
within the same study. Results are summarized in Figure 5 and
Supplementary Table 2.
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FIGURE 5

Distribution of hyperscanning conditions across modalities and
interaction types. The cross-sectional distribution of all
hyperscanning conditions of 45 studies across interaction medium
and interaction scenario axes. The numbers in circles provide the
counted occurrences (n = 75 conditions across modalities) of the
cross-section of an interaction medium and scenario (n = 22 unique
combinations, shown as circles). The colors represent the
measurement modalities reported for each cross-section of
conditions. The connection lines indicate reported cross-condition
occurrences separated by axis (n = 16 simultaneous condition
occurrences). Studies involving a digital component, either through
a digital medium or a virtual interaction scenario, are marked
through a gray shaded area. Note that conditions that do not fall
within this gray area are part of a comparison to a condition with a
digital component. ECG, electrocardiography; EDA, electrodermal
activity; EEG, electroencephalography; fNIRS, functional
near-infrared spectroscopy.

Across 45 multimodal hyperscanning studies, a total of 75
experimental conditions were reported, consisting of 22 unique
combinations of interaction medium and interaction scenario
(see Figure5). Moreover, 16 co-occurrences of two or more
conditions comparing medium and/or scenario were found, with
eight comparisons of a digital with a non-digital interaction setup
(for details see Supplementary Table 2). The number of studies
including non-verbal communication (n = 26) was slightly higher
than the number including verbal communication (n = 19).
Notably, most studies were designed with a virtual divide or
environment and separate interaction media, independent of the
inclusion of verbal communication.

Some modality-specific patterns became evident by examining
the cross-sectional distribution of interaction medium and scenario
variations (for details, see Supplementary Table 2). ENIRS studies
included more occurrences of various interaction conditions
within the same study, including several that contrasted physical,
hybrid, and fully digital interactions, as well as the greatest
relative number of unique medium-scenario combinations (n =
10 in 12 included studies) with six cross-condition occurrences
within the same studies (for details, see Supplementary Figure 2).
EEG studies also included a high number of unique medium-
scenario combinations (n = 14 in 19 included studies), however,
only six studies included more than one condition at once
(for details, see Supplementary Figure 3). Eye-tracking studies
were confined to digital scenarios, resulting in fewer unique
combinations and no direct digital-analog comparisons (for details,
see Supplementary Figure 4). Together, these patterns highlight
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substantial methodological variation across modalities in how
interaction settings are operationalized and compared.

3.2.10 Analysis approaches

The most common analysis method involved measuring
functional connectivity (n = 29), with some studies also including
effective connectivity (n = 4). Of these, two used Granger causality
(Cheng et al.,, 2019; Pan et al,, 2017) and two computed partial
directed coherence (Astolfi et al., 2020; Ciaramidaro et al., 2024).
The second most prevalent signal analysis approach focused on
the temporal domain, examining time (n = 17) or frequency
(n = 20) aspects. A few studies included analyses in the spatial
domain, be it in sensor space (n = 14) or source space (n =
8). Two EEG studies (Astolfi et al., 2020; Zhou et al., 2021)
and two fNIRS studies (Hayne et al.,, 2023; Zhang et al., 2023a)
employed a form of supervised machine learning. One study
employed a support vector machine (SVM) to differentiate between
cooperative, solo, and competitive gaming based on hemodynamic
features from executive and motor regions (Hayne et al., 2023).
Notably, they determined within-subject features during the
cooperative interaction rather than features based on dyadic
indices. Another fNIRS study predicted mnemonic similarity based
on the interpersonal neural synchronization during a collaborative
remembering task (Zhang et al., 2023a). By creating features based
on graph indices derived from partial directed coherence values,
social and non-social conditions were distinguished using an SVM.
Zhou et al. (2021) used a logistic regression to demonstrate that
the conditional manipulation of dyads could be predicted by using
cumulative inter-brain synchrony from significant electrode pairs
as classification features. Only one fNIRS study reported the use of
unsupervised machine learning to investigate interactions, namely
a k-means clustering approach to identify dynamic interbrain
coherence states along with their corresponding occurrence rates
across time during an online conversation task (see Figure 6; Balters
et al., 2023). Other analysis methods included a form of graph
theory (Astolfi et al., 2020), two reports on the amount of gaze
sharing (Kiitt et al., 2019; Wisiecka et al., 2023), another three
focusing on gaze pattern analysis (Cheng et al., 2022; Poysi-
Tarhonen et al., 2021; Spakov et al.,, 2019), and one study analyzing
co-contraction of two muscles in the right forearm measured via
EMG (2015).

3.2.11 Cognitive functions of interest

Categorization of the cognitive function of interest was not
clear-cut because many tasks required the engagement of multiple
cognitive functions. Based on explicitly stated research objectives
(e.g., Zhang et al., 2023a) or the described tasks (e.g., a visual search
task; Szymanski et al., 2017), the main functions of interest were
categorized (see Figure 7). Perhaps unsurprisingly, given the focus
on collaborative interactions, most studies focused on executive
functioning (n = 22) or social cognition (1 = 19). Various studies
addressed visuospatial cognition (n = 12) and attention (n = 12)
during collaborative scenarios. Some studies focused, by design,
more strongly on motor functions (n = 10) or language (n = 7).
Few studies mainly investigated memory-related processes (n = 5)
or other cognitive functions (n = 3). The latter included two studies
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FIGURE 6

Category counts of analysis methods. Analysis methods were
distributed across eight categories. The category “other” included
two studies assessing the amount of gaze-sharing, two studies
analyzing gaze patterns, and one study measuring

muscle co-contraction.
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FIGURE 7

Category counts of cognitive functions. Cognitive functions were
distributed across eight categories. The category “other” included
two studies focusing on joint designing ability and one study
assessing joint musical ability.

that emphasized creative design (Shih et al., 2024; Wu et al., 2025)
and one focusing on joint musical ability during remote piano
playing (Gugnowska et al., 2022).

3.2.12 Relating modality, analysis, and cognitive
function

To understand how measurement modality aligns with analysis
and cognitive function under study, we plotted their relation in
Figures 8, 9. These comparisons highlight clear patterns in analytic
preferences as well as notable methodological gaps.

Overall, fNIRS emerged as the most versatile modality
regarding analysis, appearing across nearly all analysis categories.
It also represented the only instance of unsupervised machine
learning within the included studies. While EEG was the most
prominently used modality, studies showed a more selective
analysis profile, with analyses predominantly situated in the
functional connectivity and the frequency domain. Eye-tracking
studies were distributed in nearly equal proportions across
time-domain, functional connectivity approaches, and other
forms of analyses. Peripheral physiological signals (e.g., ECG,
EDA, EMG) were primarily analyzed in the time domain
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and through functional connectivity approaches, reflecting an
application in capturing autonomic or muscular synchrony.
Camera-based tracking appeared only sparsely across several
categories. Across modalities, several analytic approaches appeared
markedly underutilized. Effective connectivity was rare, with only
a handful of studies applying it despite its relevance for examining
directional influences between interacting partners (Astolfi et al.,
2020; Cheng et al.,, 2019; Ciaramidaro et al., 2024; Pan et al,
2017). Machine learning approaches were equally rare (Astolfi
et al., 2020; Balters et al., 2023; Hayne et al., 2023; Zhang
et al., 2023¢; Zhou et al.,, 2021), with only one study employing
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FIGURE 8

Heatmap of measurement modalities and analysis methods.
Heatmap of studies across the categorical dimensions analysis
method (rows) and measurement modality (columns). Cell values
show raw co-occurrence counts between the row and column
categories. Cell color intensity increases with the value in each cell;
darker cells indicate higher numbers. camera, camera-based
tracking; ECG, electrocardiography; EDA, electrodermal activity;
EEG, electroencephalography; EMG, electromyography; eye,
eye-tracking; fNIRS, functional near-infrared spectroscopy.
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an unsupervised approach (Balters et al., 2023). Both effective
connectivity and machine learning methods were limited to brain-
based modalities. Together, these patterns indicate a strong reliance
on functional connectivity and temporal analyses, with substantial
methodological opportunities for future work.

Across modalities and analytic approaches, executive function
and social cognition consistently emerge as the most frequently
investigated cognitive domains, forming the largest group of
targeted cognitive functions. Executive function was associated
with the largest body of studies overall, particularly from
EEG-based time-domain, frequency-domain, and functional
connectivity analyses, as well as from fNIRS connectivity
approaches. Social cognition exhibits an equally robust presence,
especially in fNIRS studies employing functional connectivity
methods as well as in eye-tracking studies. In contrast, domains
such as memory, language, and motor cognition were addressed
in fewer studies. Visuospatial cognition occupies a middle ground:
although not as prominent as executive or social cognition, it shows
a clear association with EEG-based temporal and spatial analyses,
indicating a more specialized but stable niche. Interestingly,
comparatively few studies involving eye-tracking focused on
visuospatial cognition (for details, see Supplementary Figure 5).

4 Discussion

We studies
hyperscanning that explored collaboration in digital contexts.
The categorization revealed that most studies used either EEG
or fNIRS as measurement tools, with only seven out of 45

systematically collected and analyzed on

employing multimodal measurement approaches. Among these,
most combined EEG with either eye-tracking or ECG, indicating
a notable underuse of multimodal measurement techniques.
Most studies focused on same-sex dyads, with roughly two-thirds
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of participants unfamiliar with each other. The studies mainly
involved cooperation or competition tasks or aimed at modeling an
ecologically valid setting. Tasks driven by goals with symmetrical
roles between participants were most common in examining
collaboration in digital environments and media. Interestingly,
most studies limited information transfer to digital formats such
as screen-based exchanges, with fewer studies utilizing both
analog and digital transfer methods. FNIRS studies frequently
examined different interaction scenarios or media across various
conditions, while EEG studies featured a broader variety of unique
interaction settings. Regardless of interaction setup, non-verbal
compared to verbal communication was investigated somewhat
more often, albeit the difference was small. Analytical approaches
were mostly constrained to functional connectivity, with limited
application of effective connectivity. Furthermore, very few studies
applied machine learning, highlighting a methodological gap
given the high-dimensional, complex data involved. Research
has primarily concentrated on executive and social functions
during digital collaboration, while fewer studies have addressed
creativity, memory, or language explicitly. Our thorough review
of existing literature indicates a solid foundation of research,
although its scope can be extended. To better understand the
complex dynamics of digital collaboration, it is essential to expand
both the methodological framework and the conceptual basis of
hyperscanning research.

Before discussing the most important aspects and main
takeaways in detail, we summarize the central conclusions
here. First, we recommend a set of reporting guidelines for
hyperscanning studies to increase transparency, reproducibility,
and meaningful comparison across the literature, including a
checklist to help authors document essential methodological
information. Second, we emphasize the contribution of the
present review and the associated online database in organizing
hyperscanning research into standardized categories. Third,
based on the diversity of study designs identified, we recommend
conducting systematic empirical comparisons of differently
structured interaction scenarios to support the development of
theories and the application of findings to real-world settings.
Fourth, our results show that the unimodal use of measurement
modalities currently dominates the hyperscanning research on
digital collaboration. However, we identify considerable potential
in integrating multiple modalities to construct multidimensional
models of the neurophysiological signatures of collaboration.
Such approaches could provide complementary perspectives on
collaborative cognition and how digital components influence
associated cognitive and social processes. Fifth, the present
review also suggests that the choice of measurement modality
is strongly associated with not only the analytic approach
but also the specific cognitive processes investigated. We
therefore argue that multivariate and multimodal approaches
will be necessary to disentangle the involvement of the many
cognitive processes involved in collaborative behavior, and to
capture fine-grained effects associated with different degrees
of digital
researchers to increase the value of this work by contributing

mediation. Finally, we encourage readers and
additional sources to the online database, thereby supporting
the continued comprehensiveness of the InterBrainDB on

digital collaboration.
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TABLE 7 Guidelines for reporting hyperscanning findings.

Category Checklist item

Sample size Number of participants or pairings included in analyses

(i.e., not necessarily how many were originally recruited)

Participant
metadata

Age of participants

Gender distribution within sample

Familiarity or relationship between participants (e.g.,
friends, parent-child)

Pairing characteristics (e.g., dyads, triads)

Gender pairing setup (e.g., same-sex pairs)

Relevant participant traits (e.g., handedness, prior
experience)

Measurement
modality

Type and technical details of measurements (e.g., EEG,
number of electrodes)

Use and joint analysis of multiple modalities (e.g., EEG
and eye-tracking)

Recording
configuration

Timing of neural recordings (e.g., simultaneous, post hoc
sync)

Communication
parameters

Allowed communication types (e.g., verbal, gesture)

Form of interaction (e.g., open-ended conversation, face
visibility)

Task design and
structure

Spatial setup (e.g., face-to-face, side-by-side) with diagram
if possible

Interaction media (e.g., shared screen, physical objects)

Task symmetry (e.g., identical vs. distinct roles)

Task paradigm (e.g., cooperation, imitation, economic
exchange)

Analysis Level of analysis (e.g., intra-brain, inter-brain) with clear

separation in the methods section

This checklist summarizes recommended reporting practices for hyperscanning studies
to improve transparency, reproducibility, and comparability across experiments. Items
are grouped by major methodological domains, including participant characteristics,
measurement modalities, recording configuration, communication parameters, task design,
and analytic levels. Examples in parentheses illustrate typical reporting details but are
not exhaustive.

4.1 Structuring principles: guidelines for
reporting hyperscanning results

To promote transparency, reproducibility, and meaningful
comparison across hyperscanning studies, we strongly encourage
authors to report specific methodological details that directly
impact the interpretation of inter-brain connectivity and
synchronization. Based on our review of the literature, we outlined
a set of minimal reporting guidelines that, if followed, greatly
improve the interpretability and meta-analytic usefulness of future
research (see Table 7).

Firstly, researchers should thoroughly report participant
metadata. This includes age, gender, familiarity among participants,
and any pairing characteristics that might systematically influence
neural coupling or social behavior (e.g., handedness, prior
experiences). Studies that do not disclose this information limit
the ability to meaningfully contextualize, compare, or replicate
their results.
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Secondly, it is crucial to specify the temporal setup of the
neural recordings, i.e., whether data were recorded simultaneously
across participants or if signal streams were aligned afterward.
Although both methods are valid, they have different implications
for interpreting time-locked neural coupling and inter-brain
dynamics. On one side, simultaneous recordings offer higher
ecological validity for social components compared to single-
person recordings; on the other side, single-person recordings
provide greater experimental control and easier replication that
is less dependent on the sample (Fan et al., 2021). The included
studies used simultaneous acquisition (as part of the comparison
inclusion criterion). However, during full-text screening, a notable
subset (n = 46) was excluded because they relied on separate
acquisitions with later alignment, even though the abstract
screening suggested a form of real-time social interaction.

Thirdly, should whether
communication was allowed between participants and, if

authors clearly state verbal
so, describe the nature and structure of the dialogue. Was
communication entirely open-ended, limited to specific prompts,
or completely prohibited? The level of verbal interaction
fundamentally alters the cognitive and emotional demands of
the task (Lu et al., 2020). Apart from affecting social, cognitive,
emotional, and sensory processes, it can also introduce signal
noise through muscle activity. Studies should specify whether
verbal and/or non-verbal communication was possible during the
experiment, as both can influence interpersonal neural synchrony
in collaborative settings (Shih et al., 2024).

Fourthly, it is essential to describe the visual and spatial
arrangement of the participants during the experiment to help
readers better understand the sensorimotor and perceptual context
of the interaction. Specifically, were participants able to see
each other’s facial expressions, gestures, and body movements?
How were they positioned relative to each other (e.g., face-
to-face, side-by-side, separated by a screen)? We recommend
including a schematic diagram or photo of the experimental setup
whenever possible.

Fifthly, we recommend clearly stating whether analyses were
conducted at an intra- or inter-individual level or both. To ensure
a structured and clear understanding of the methods, we suggest
dividing the description of methods accordingly. For studies
involving multimodal data collection, we recommend separating
the description of analysis methods by measurement modality
and clearly specifying how the modalities were combined and
analyzed together.

By following these reporting practices, researchers can ensure
their hyperscanning studies are both understandable on their
own and useful to the larger research community. Future meta-
analyses, database-driven reviews, and cumulative science efforts
will depend heavily on the consistency and completeness of this
essential information.

4.2 Study designs for measuring
collaboration in the digital age

The wide variety of how factors relevant for digital
collaboration are implemented across hyperscanning studies,
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whether through virtual interfaces, perceptual barriers, or hybrid
setups, illustrates the diversity and adaptability of current research
methods. A key contribution of this review is the systematic
organization of interaction scenarios and media, offering a clear
overview of how researchers define digital collaboration. This
categorization is an important initial step toward combining
findings on remote collaboration across different modalities.
Building on this foundation, future research will benefit from
designs that directly compare multiple measurement approaches
during various interaction phases, as such methods can help
develop comprehensive theoretical models and support applying
hyperscanning insights to
(Schneider et al., 2021).

real-world digital environments

4.3 Modality: from unimodal to multimodal
hyperscanning in digital collaboration

Across the reviewed literature, distinct (neuro-)physiological
modalities were associated with specific aspects of collaborative
cognition. This pattern could reflect both methodological
affordances and historical trends in the field of hyperscanning.
FNIRS studies more often targeted social cognition and language
processes compared to EEG, leveraging spatial specificity and
relative robustness to motion artifacts to probe regions such as the
inferior frontal gyrus or temporoparietal junction (Czeszumski
et al,, 2022). EEG, by contrast, was predominantly used to study
executive functions and visuospatial cognition, leveraging its
millisecond-level temporal resolution and sensitivity to oscillatory
synchronization across distributed networks. Eye-tracking
hyperscanning was used less frequently and primarily to investigate
attentional coordination between collaborators, consistent with
gaze as a behavioral marker of visual attention (Ferencova et al.,
2021). Yet relatively few eye-tracking studies explicitly focused
on visuospatial collaborative processes, despite shared digital
workspaces being central to many contemporary platforms (see
Supplementary Figure 5). This represents a missed opportunity
to characterize how gaze alignment supports joint reference,
turn-taking, and spatial negotiation in digital environments.

Multimodal approaches remain rare. The most common
pairing combined EEG with eye-tracking or ECG, the latter likely
reflecting existing EEG measurement infrastructures. Notably,
we did not identify any hyperscanning studies that integrated
EEG and fNIRS in digital interaction contexts, despite strong
theoretical motivation. Such integration could jointly capture
the spatial localization and temporal dynamics of inter-brain
coupling (for review see Li et al., 2022), offering a more complete
description of collaborative processes, especially in more applied,
naturalistic contexts (Pinto-Orellana et al., 2024). The infrequent
use of multimodal approaches in hyperscanning studies highlights
an important area for future research, with the potential to
significantly advance methodological rigor and ecological validity
in this field.

Multimodal acquisition is not trivial: hardware integration,
increased setup complexity and cost, paradigm design that
accommodates diverse temporal and spatial constraints, and a lack
of standardized pipelines for joint analysis can be challenging
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(Gado et al, 2023; Li et al., 2022; Pinto-Orellana et al., 2024).
Nevertheless, multimodal acquisition can provide a uniquely
holistic view of how neural, physiological, and behavioral dynamics
systematically interact during collaborative interaction (Balconi
and Angioletti, 2023; Gado et al., 2023; Li et al., 2022; Lihmann
et al., 2020). Work outside collaborative digital contexts already
illustrates this potential (Balconi and Angioletti, 2023; Zhao
et al, 2023). For example, joint EEG-fNIRS acquisition during
a motor synchronization task yielded complementary inter-brain
coherence indices across modalities (Balconi and Angioletti, 2023).
Hyperscanning in digital collaboration could benefit from adopting
symmetric, unsupervised EEG-fNIRS fusion pipelines (for review
see Codina et al., 2025) to capture hidden inter-brain coupling
beyond standard functional connectivity metrics.

These examples highlight how multimodal setups can shift
interpretation from isolated signals to integrated multidimensional
models of collaboration. The scarcity of such approaches in digital
collaboration studies indicates substantial untapped potential,
especially as hardware synchronization and computational fusion
methods advance (Codina et al., 2025; Dissanayake et al., 2025).
This is particularly critical in digital contexts, where key interaction
channels (e.g., eye contact, gestures, spatial proximity) are filtered,
delayed, or absent. Different modalities exhibit varying degrees
of sensitivity to diverse stimuli (Stuldreher et al., 2020), making
multimodal metrics the most robust choice for studying complex,
dynamic, and digitally mediated forms of collaboration.

In sum, future work should move beyond simple one-to-one
modality-process mapping. In digitally mediated environments,
where cognitive, perceptual, and communicative cues are
systematically altered, each modality provides a complementary
perspective on collaborative cognition. Designing studies that
leverage these strengths in combination, while acknowledging their
limitations, will be crucial for advancing the cognitive neuroscience
of digital interaction.

4.4 Analysis approaches and cognitive
targets: how methods shape what we can
see

Functional connectivity analyses (e.g., IBS measures) remain
dominant as an
This
accessibility and

analytical framework across hyperscanning
modalities. prevalence may reflect both conceptual
methodological convenience, especially in
unimodal setups. Temporal-domain analyses were found to
be common as well, especially in EEG, ECG, EDA, and eye-
tracking, where high temporal resolution lends itself naturally
to event-locked and synchrony-based metrics of coordination
and attention aspects of collaboration. On the other hand, {NIRS
studies frequently employed spatial-domain analyses to leverage
its superior cortical specificity. These modality-aligned analytical
preferences collectively restrict the kinds of collaborative processes
that can be detected and meaningfully interpreted.

Interestingly, only four out of 45 studies incorporated measures
of effective connectivity. A possible explanation could be that
effective connectivity measures require explicit biophysical or

statistical generative models and thus impose stricter assumptions
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on the data. Violations of these assumptions can produce
misleading causal inferences (Friston, 2011). This makes effective
measures harder to interpret and less reliable in dynamic
social contexts with shared stimuli and mutual influence.
Functional connectivity, on the other hand, is more robust and
intuitive for the naturalistic data that increasingly characterize
hyperscanning studies.

These methodological constraints have direct implications
for the cognitive functions that become tractable targets of
investigation. Although many collaborative tasks inherently engage
multiple cognitive processes, a consistent pattern emerged:
executive functions and social cognition are the primary targets
of interest. This emphasis is expected, given their role in
coordinating shared goals, managing joint attention, regulating
turn-taking, and negotiating decisions during collaboration. More
fine-grained characterization of the cognitive dynamics underlying
collaboration will likely require multivariate and multimodal
methods capable of disentangling overlapping components within
complex tasks. Combining complementary modalities with data-
driven methods may clarify how specific subprocesses, for example,
shared attention, perspective taking, and goal monitoring, unfold
over time and how they jointly support digitally mediated
collaboration. A fine distinction such as this also holds potential
for providing specific feedback on interaction processes that
may be diminished or lost when interaction shifts from analog
to digital (Chuang and Hsu, 2023; Poysd-Tarhonen et al,
2021).

Given the limitations of conventional analyses for capturing
these complex dynamics, machine learning represents an
underutilized but promising avenue for advancing hyperscanning
research. One reason for the underuse of machine learning
probably lies in the fields early developmental stage: many
research groups prioritize traditional statistical approaches to
establish basic mechanisms of joint action before introducing
more complex computational models that are difficult to interpret.
Yet, the promise of machine learning goes beyond classification.
Its strength lies in modeling non-linear, high-dimensional, and
temporally evolving dependencies across multiple interacting
processes. For instance, combining fNIRS and EEG features
in intra-brain contexts has been shown to enable classification
of cognitive workload via bivariate connectivity metrics, an
approach readily adaptable to hyperscanning data (Cao et al,
2022). In digitally mediated environments, where communication
channels are constrained or altered by technology, such dynamic,
cross-modal modeling may be essential for explaining systematic
differences between analog and digital collaboration.

A promising direction involves multimodal, physiology-
informed machine learning that jointly integrates neural signals
(EEG, {NIRS), autonomic measures (ECG, EDA), behavioral
indicators (e.g., gaze, EMG), and contextual information into a
shared, multidimensional representational space (Codina et al,
2025). Most current fusion strategies rely on methods such as
feature concatenation or decision-level fusion, whereas more
powerful approaches (e.g., joint independent component analysis)
remain underused despite their ability to reveal latent, cross-
domain structure (Codina et al., 2025). Embedding physiological
priors, such as neurovascular coupling models or autonomic
response patterns, directly into preprocessing and fusion could
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push hyperscanning beyond simple synchrony indices toward
richer, context-aware models of collaborative interaction. Progress
in this direction is tightly coupled to the availability of open-source,
high-quality datasets. As highlighted in a recent overview of human
synchronization datasets by Velletaz et al. (2025), multimodal data
remain scattered and underutilized. Expanding accessible, well-
curated datasets will be critical for enabling advanced analytic
developments and for refining our understanding of the fine-
grained, interacting cognitive processes that support digitally
mediated collaboration.

4.5 Limitations

should be
acknowledged. First, by focusing on collaborative tasks with

Several limitations of the present review
digital components, we excluded hyperscanning studies that are,
for example, centered on imitation, purely economic exchange
paradigms, or shared attention. The resulting distribution
of paradigms does therefore not reflect the full landscape of
hyperscanning research. Nonetheless, even within this constrained
scope, we identified several more open-ended and applied designs,
suggesting a broader trend toward ecologically valid applications.
Second, we deliberately excluded fMRI and MEG to focus on
modalities amenable to mobile and applied use. One could argue,
however, that fMRI and MEG hyperscanning inherently involves
digital elements by design. These modalities are therefore relevant
to digital interaction. The associated living database is intended
to be extended over time to incorporate such studies, enabling
a more comprehensive overview. Notably, although the present
review is static, the InterBrainDB platform is designed as a living,
open-source resource. New studies can be added and re-labeled
over time, and analyses can be replicated with different inclusion
filters (e.g., adding modalities or relaxing collaboration criteria).
In this way, some of the limitations of the present synthesis,
particularly with respect to coverage and modality scope, can be
progressively mitigated as the database grows.

5 Conclusion

This systematic review synthesizes hyperscanning research
on digitally mediated collaboration and reveals a field that is
expanding in scope, albeit still constrained by methodological
conservatism. Across 45 studies, most relied on unimodal EEG
or fNIRS, functional connectivity analyses, and tasks targeting
executive and social cognition, while multimodal measurements,
effective connectivity, and machine-learning approaches remained
rare. Remote digital collaboration was typically operationalized
through study designs that isolate or reconfigure interaction
channels, highlighting the need for systematic comparisons
across graded levels of digitalization. Such comparisons are
crucial for investigating how specific technological affordances,
altering interaction channels and consequently social cues, shape
interpersonal neural, physiological, and behavioral dynamics.

In summary, these patterns highlight both the adaptability
of hyperscanning to emerging technological contexts and the
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limitations that prevent the field from accessing deeper mechanistic
explanations of digitally mediated interaction and collaboration.
To accelerate progress, we outline reporting practices aimed
at improving transparency, reproducibility, and cross-study
comparability, and introduce InterBrainDB, a living open-access
resource for organizing emerging hyperscanning studies across
modalities, paradigms, and analytic approaches.

Future work will benefit from greater multimodal integration,
physiologically grounded data fusion strategies, and machine-
learning models capable of capturing non-linear and temporally
bodies,
environments. Progress also requires a more fine-grained

evolving dependencies across brains, and digital
coverage of cognitive processes to distinguish how each subprocess
unfolds within digitally mediated collaboration.

Advancing these methodological and conceptual frontiers
is essential for building comprehensive, ecologically grounded
models of collaborative behavior in the digital age. Such models
will allow cognitive neuroscience to move beyond mapping
synchrony toward understanding the mechanisms by which

humans coordinate through and with technology.
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