

1 **Adherence to growth Hormone Treatment in the Transition Age: A**
2 **Prospective Observational Multicenter Study**

3 Chiara Guzzetti¹, Paula van Dommelen², Letizia Casula¹, Marco Cappa³, Manuela
4 Caruso⁴, Anna Maria Colao⁵, Mirjana Doknic⁶, Nataschia Di Iorgi⁷, Luca Persani^{8,9},
5 Gabriella Pozzobon¹⁰, Mariacarolina Salerno¹¹, Sandro Loche^{3,1}

6 ¹ Pediatric Endocrinology Unit, Pediatric Hospital Microcitemico “A. Cao”, Cagliari, Italy

7 ² Department of Child Health, TNO, Leiden, The Netherlands,

8 ³ Research Unit for Innovative Therapies in Endocrinology, Bambino Gesù Children's
9 Hospital, IRCCS, Rome, Italy

10 ⁴ Department of Pediatrics, Azienda Policlinico Università di Catania, Catania, Italy

11 ⁵ Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and
12 Surgery, Federico II University of Naples, Naples, Italy.

13 ⁶ Neuroendocrine Department, Clinic for Endocrinology, Diabetes and Metabolic
14 Diseases, University Clinical Center of Serbia, University of Belgrade, Belgrade, Serbia
15 ⁷Pediatric Clinic, IRCCS Istituto Giannina Gaslini, Department of Neuroscience,
16 Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOOGMI),
17 University of Genoa, Genoa, Italy

18 ⁸ Department of Medical Biotechnology and Translational Medicine, University of Milan,
19 Milan, Italy

20 ⁹ Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano,
21 Milan, Italy

22 ¹⁰Pediatric Unit, Università Vita-Salute, Milan, San Raffaele Hospital, IRCCS, Milan, Italy

23 ¹¹ Department of Translational Medical Sciences, Pediatric Endocrinology Unit, Federico
24 II University of Naples, Naples, Italy

25 ND, LP are members of ENDO ERN

26 **Keywords:** growth hormone deficiency, adherence, transition age, IGF-1, Easypod™

27 **Running Title:** Adherence to GH Therapy in Transition Age

© The Author(s) 2026. Published by Oxford University Press on behalf of the Endocrine Society. This is an
Open Access article distributed under the terms of the Creative Commons Attribution License
(<https://creativecommons.org/licenses/by/4.0/>), which permits unrestricted reuse, distribution, and
reproduction in any medium, provided the original work is properly cited. See the journal About page for
additional terms.

1 **Disclosures**
2 SL received consultancy, advisory board, and lecture SL fees from the healthcare
3 business of Merck KGaA, Darmstadt, Germany. PvD has a consultancy agreement with
4 the healthcare business of Merck KGaA, Darmstadt, Germany.

5 **Funding**
6 This study was supported by an unrestricted grant from Merck (CrossRef Funder ID:
7 10.13039/100009945) and by the Italian Ministry of Health with current research funds
8

9 **Corresponding Author**

10 Sandro Loche
11 Research Unit for Innovative Therapies in Endocrinology
12 Bambino Gesù Children Hospital
13 Piazza S Onofrio, 4, 00165 Roma
14 Email: Sandro.loche@opbg.net
15 ORCID 0000-0003-4558-8533
16

17 **Abstract**

18 **Objective:** To evaluate adherence to growth hormone (GH) treatment during the
19 transition age in patients with permanent childhood-onset GH deficiency (COGHD).

20 **Design:** A prospective, multicenter, observational study conducted across 9 European
21 endocrine centers.

22 **Methods:** Fifty-one patients aged 15–25 years with permanent COGHD, who had
23 reached final height and continued recombinant human GH (r-hGH; 0.003–0.02
24 mg/kg/day), were monitored for 12 months using the Easypod™ device, which provides
25 objective adherence data. Anthropometry, total cholesterol, LDL and HDL cholesterol,
26 and IGF-1 SDS were measured at baseline and after one year. Patients with ≥9 months
27 adherence data (n=41) were analyzed.

1 **Results:** Twenty-six patients (63%, 16 males) had optimal adherence ($\geq 85\%$, median,
2 98%; IQR, 91%–99%), and 15 (37%, 11 males) had suboptimal adherence ($< 85\%$,
3 median, 70%; IQR, 47–80%). At baseline, suboptimal adherent patients had greater
4 mean waist circumference (89.2 vs 78.2 cm) and lower mean IGF-1 SDS (-2.2 vs -1.5).
5 After one year mean waist circumference (84.8 vs 76.7 cm), mean total cholesterol
6 (185.1 vs 167.0 mg/dL), and mean LDL (111.6 vs 98.5) were higher in the suboptimal
7 adherent group, whereas mean IGF-1 SDS was lower (-1.1 vs -0.2). Mean change in
8 IGF-1 SDS after 1 year was +1.4 vs +0.9 in the two groups.

9 **Conclusions:** Over one-third of patients with permanent COGHD during transition show
10 suboptimal adherence to GH therapy, associated with adverse metabolic markers and
11 persistently lower IGF-1 levels. These findings highlight the importance of adherence
12 monitoring and support targeted interventions to optimize long-term outcomes.

13

14 **Introduction**

15 The term transition encompasses a broad spectrum of physical and psychological
16 changes, conventionally defined as beginning in late puberty and concluding with full
17 adult maturation. This period typically extends from mid- to late adolescence until
18 approximately six to seven years after final height is achieved (1, 2). Although linear
19 growth ceases during this stage, somatic development continues, and individuals reach
20 peak bone mass (1, 2).

21 Discontinuation of recombinant human growth hormone (rhGH) therapy during the
22 transition phase in patients with childhood-onset GH deficiency (COGHD) has been
23 shown to increase fat mass, decrease muscle mass, reduce bone mineral content, and

1 worsen lipid profiles (3–5). Conversely, the continuation of rhGH replacement therapy
2 results in increased muscle mass, reduced fat mass, improved bone mineral content
3 and density, and enhanced quality of life (6–7).

4 In accordance with current clinical guidelines, patients with COGHD are advised to
5 maintain rhGH therapy throughout the transition years to achieve full skeletal maturation
6 and prevent metabolic abnormalities (8).

7 The transition from pediatric to adult endocrine care is increasingly recognized as a
8 high-risk stage for patients with chronic conditions, including GHD. The loss of pediatric
9 team support, the necessity to adapt to adult services, and the growing independence of
10 adolescents all contribute to poor treatment adherence. International registry data have
11 indicated that more than 50% of patients may discontinue GH therapy prematurely,
12 even when persistent GHD is biochemically confirmed (9). This attrition may
13 compromise attainment of peak bone mass, optimal muscle strength, and long-term
14 cardiovascular protection (1–7). Psychosocial factors are equally relevant. Adolescents
15 often face competing priorities, academic stress, peer influence, and treatment fatigue.

16 Daily injectable therapy may be perceived as a burden without immediate visible
17 benefits, unlike during the growth years (10).

18 Previous pediatric studies suggest that 15–20% of patients demonstrate poor
19 adherence (11–13), but evidence in transition-age patients remains scarce.

20 Understanding adherence in this age group is critical for designing targeted
21 interventions that safeguard both short- and long-term health outcomes. The advent of
22 electronic injection devices such as Easypod™ provides an opportunity for objective
23 monitoring of adherence, overcoming limitations of self-reported data (14–15).

1 This study aims to fill the gap by prospectively evaluating adherence and associated
2 clinical outcomes in young adults with permanent COGHD.

3

4 **Subjects and Methods**

5 This is a prospective, multicenter, observational study in 9 European centers (6 pediatric
6 endocrinology and 3 adult endocrinology, 8 from Italy, and 1 from Serbia; from 2019–
7 2024,). Fifty-one patients aged 15–25 years with permanent COGHD were enrolled.

8 GHD was confirmed with retesting at the end of growth (with insulin tolerance or with
9 arginine plus GH-releasing hormone test) when indicated (8). Treatment was stopped
10 for 1–4 months before retesting and then re-instituted at a dose of 0.01–0.02 mg/Kg
11 daily. Patients were not retested if they had >3 pituitary hormone deficiencies (1, 2).

12 When they reached near adult height the GH dose was lowered to about half the
13 pediatric dose and then titrated according to IGF-1 concentrations. When they entered
14 the study protocol, they were on treatment with daily rhGH at a dose of 0.003–0.02
15 mg/Kg.

16

17 Adherence was recorded by the Easypod™ device and calculated as
18 administered/expected doses ×100. Optimal adherence was defined ≥85% (16).

19 Anthropometry, total cholesterol (Chol), HDL cholesterol (HDL), LDL cholesterol (LDL),
20 and IGF-1 SDS were evaluated at baseline and 12 months.

21 Statistical analysis was performed using ANOVA, Mann–Whitney, chi-square/Fisher, and
22 Pearson/Spearman correlation tests. $p < 0.05$ was considered significant.

1 The study adhered to the ethical principles outlined in the Declaration of Helsinki and
2 was approved by the Medical Ethics Committee of the Azienda Ospedaliero
3 Universitaria, Cagliari, Italy (Prot. PG/2018/5406). All patients provided written informed
4 consent for participation.

5

6 **Results**

7 Forty-one patients (27 males, age 15-25 y) with >9 months adherence data were
8 available for the analysis. Their data are shown in table 1. GHD was idiopathic in 21
9 subjects, congenital in 11, post radiotherapy in 3, and post-surgery in 6. GHD was
10 isolated in 27 patients. Thirty-five patients underwent retesting, and 6 were not retested.

11 Reasons for withdrawing from the study included side effects (2), withdrawal of consent
12 (2), technical issues with the device (1), lost to follow-up (2), investigator never sent
13 data (1), unknown reasons (2).

14 Twenty-six patients (63%, 16 males) had optimal ($\geq 85\%$) adherence (median, 98%; IQR,
15 91%–99%) and 15 (37%, 11 males) had suboptimal ($< 85\%$) adherence (median, 70%;
16 IQR, 47–80%). Mean (SD) duration of treatment before the study was 9.8 (4.0) years in
17 the optimal adherent group and 9.8 (4.1) years in the suboptimal adherent group. Mean
18 height SDS was similar in the patients with sub-optimal adherence (-0.6 ± 1.1 vs 0.5 ± 1.1)
19 (table 1). After 1 year mean WC (Fig. A) was 76.7 (8.5) and 84.8 (19.2) cm, mean BMI
20 (Fig. B) was 22.3 (4.2) and 23.8 (8.0) g/m², mean Chol (Fig. C) was 167.0 (34.5) and
21 185.1 (38.5) mg/dL, mean LDL (Fig. D) was 98.5 (29.4) and 111.6 (39.2) mg/dL, mean
22 HDL (Fig. E) was 52.0 (16.5) and 51.3 (11.6) mg/dL, and mean IGF-1 SDS (Fig. F) was
23 -0.2 (1.5) and -1.1 (1.5) in the optimal and suboptimal adherent groups, respectively.

1 The mean change in IGF-1 SDS (Δ IGF-1 SDS) between treatment start and 1 year
2 later was greater in the optimal (1.4 ± 1.3) than in the sub-optimal (0.9 ± 1.8) adherent
3 groups (Fig. G). The level of adherence was not correlated with age, sex, duration of
4 treatment, lipids or with the etiology of GHD. There was no difference in the assigned
5 GH dose between the two groups.

6 **Safety:**

7 Few AEs were recorded during the study in 4 subjects (2 males and 2 females) and
8 discontinuation of treatment was necessary in two patients. No SAE was recorded. The
9 small number of patients and the short-term observation period prevents any statistical
10 evaluation.

11 **Discussion**

12 This study indicates that adherence must be considered a key therapeutic target during
13 transition. IGF-1 concentrations increased during GH treatment in both the optimal and
14 the sub-optimal adherent patients, although to a lesser extent in the latter. Furthermore,
15 suboptimal adherence was associated with sustained differences in waist circumference
16 and cholesterol. These findings may indicate that IGF-1 alone may not fully capture the
17 metabolic benefits of GH therapy, and that a broader panel of endpoints should be
18 monitored. The American Association of Clinical Endocrinologists recommends fasting
19 lipid profile monitoring at baseline and during follow-up, ideally every 6–12 months in
20 GH-deficient adults, including transition-age patients (8). Furthermore, the results of this
21 study confirm the safety GH replacement in young adults with GHD as prescribed in
22 routine clinical practice (8).

1 Beyond its well-established role in promoting growth, GH exerts profound effects on
2 lipid metabolism, glucose homeostasis, body composition, and cardiovascular function
3 (17). The withdrawal of GH therapy at final height may precipitate metabolic
4 disturbances, including dyslipidemia and increased visceral adiposity, predisposing
5 these young adults to early cardiovascular risk (18). Previous studies have shown that
6 reinstituting GH replacement in transition patients with confirmed GHD is followed by
7 reduction in total cholesterol and LDL, modest or no significant change in HDL, and
8 improvement in body composition with a reduction in central adiposity (19, 20). Although
9 differences did not reach statistical significance (probably due to the small number of
10 patients), there was a clear trend for increased cholesterol, LDL, waist circumference
11 and BMI values in the patients with sub-optimal adherence in our study.
12 The observed 37% rate of suboptimal adherence is noteworthy, being higher than
13 typical pediatric estimates using the Easypod™ device in the first year of treatment
14 (<15%) (11, 13). This highlights the vulnerability of the transition period, when patients
15 face new responsibilities and may prioritize education, employment, or social activities
16 over medical routines. Strategies to improve adherence might include digital reminders,
17 educational interventions, psychosocial support, and closer engagement with transition
18 care teams (21). The fact that the patients know that their adherence is being
19 objectively monitored by an electronic device may serve itself not only as a monitoring
20 tool but also as a feedback mechanism to empower patients and clinicians to identify
21 adherence barriers (21, 22).
22 Our findings indicate that adherence remains a critical determinant of treatment
23 outcomes during the transition age. Baseline IGF-1 concentrations were lower in the

1 group with sub-optimal adherence. They increased in both optimal and suboptimal
2 adherence groups, but patients with lower adherence maintained lower IGF-1 SDS and
3 higher waist circumference, Chol and LDL levels, indicating potentially unfavorable
4 metabolic trajectories. The fact that the patients with sub-optimal adherence had lower
5 IGF-1 concentrations at baseline may indicate that they were not fully adherent also
6 before entering the study protocol.

7 Our findings align with previous pediatric adherence studies, where sub-optimal
8 adherence was associated with impaired growth outcomes (11, 13, 16, 23). In young
9 adults, the consequences may manifest primarily as metabolic risks, which could
10 translate into long-term cardiovascular complications if left unaddressed. In this regard,
11 it should be noted the severity of lipid profile abnormalities in adult patients with GH
12 deficiency is correlated to the severity of GHD (24), and that the patients of our study
13 were all affected by severe permanent GHD.

14 Despite the small number of subjects, the high rate of suboptimal adherence observed
15 highlights the need for structured transition programs. Educational interventions, digital
16 health tools, and patient-tailored counseling could improve engagement.

17 Interdisciplinary teams that integrate pediatric and adult endocrinologists, psychologists,
18 and nurses are essential to address the multifaceted barriers to adherence.

19 Furthermore, socioeconomic factors, health literacy, and cultural perceptions about
20 chronic therapy should be systematically assessed when planning interventions.

21 Future research should investigate whether early identification of poor adherence
22 through digital monitoring can enable timely corrective strategies. Large-scale

1 longitudinal studies are needed to evaluate the impact of adherence patterns on
2 cardiovascular, skeletal, and psychosocial outcomes.

3 Limitations of our study include the relatively small sample size, and the observational
4 design, which precludes causal inference. Nonetheless, the multicenter nature and
5 prospective design, coupled with objective adherence measurement, strengthen the
6 reliability of our results. Overall, these findings reinforce the message that adherence
7 monitoring should be integral to endocrine care during transition, with targeted
8 interventions aimed at reducing the proportion of patients at risk.

9 In conclusions, this prospective multicenter study demonstrates that over one-third of
10 young adults with permanent COGHD exhibit suboptimal adherence to rhGH therapy
11 during the vulnerable transition period. Suboptimal adherence is associated with
12 unfavorable metabolic profiles, including increased waist circumference, Chol and LDL
13 levels, despite similar IGF-1 improvements compared to adherent patients. These
14 findings emphasize that IGF-1 alone may inadequately reflect the metabolic benefits of
15 GH therapy. Given the known long-term risks of untreated GHD, particularly
16 cardiovascular complications, systematic objective adherence monitoring should be
17 integrated into transitional endocrine care. Multidisciplinary approaches, including digital
18 health interventions and psychosocial support, are essential to improve adherence and
19 optimize health outcomes. Ultimately, improving adherence during transition may
20 reduce lifelong morbidity and healthcare costs for patients with COGHD.

21

22 **Acknowledgements**

23 The authors thank the participating centers and patients.

24

1 **Data availability**

2 Some or all datasets generated during and/or analyzed during the current study are not
3 publicly available but are available from the corresponding author on reasonable
4 request.

5

6 **References**

7

8 1. Clayton PE, Cuneo RC, Juul A, Monson JP, Shalet SM, Tauber M. Consensus
9 statement on the management of the GH-treated adolescent in the transition to adult
10 care. *Eur J Endocrinol.* 2005;152:165–170

11 2. Ho KK; GH Research Society, European Society for Paediatric Endocrinology,
12 Lawson Wilkins Society, European Society of Endocrinology, Japan Endocrine Society,
13 Endocrine Society of Australia. Consensus guidelines for the diagnosis and treatment of
14 adults with GH deficiency II. *Eur J Endocrinol.* 2007;157:695–700

15 3. Loche S, Di Iorgi N, Patti G, Noli S, Giaccardi M, Olivieri I, Ibba A, Maghnie M.
16 Growth hormone deficiency in the transition age. *Endocr Dev.* 2018; 33:46–56

17 4. Johannsson G, Albertsson-Wikland K, Bengtsson BA. Discontinuation of GH
18 treatment: metabolic effects in GH-deficient and GH-sufficient adolescents compared
19 with controls. *J Clin Endocrinol Metab.* 1999;84:4516–4524

20 5. Attanasio AF, Shavrikova E, Blum WF, Cromer M, Child CJ, Paskova M, et al.
21 Continued GH treatment after final height is necessary to complete somatic
22 development in childhood-onset GH-deficient patients. *J Clin Endocrinol Metab.*
23 2004;89:4857–4862

1 6. Hulthén L, Bengtsson BA, Sunnerhagen KS, Hallberg L, Grimby G, Johannsson G.

2 GH is needed for maturation of muscle mass and strength in adolescents. *J Clin*

3 *Endocrinol Metab.* 2001;86:4765–4770

4 7. Drake WM, Carroll PV, Maher KT, Metcalfe KA, Camacho-Hübner C, Shaw NJ, et al.

5 Effects of cessation of GH therapy on bone mineral accretion in GH-deficient

6 adolescents at completion of linear growth. *J Clin Endocrinol Metab.* 2003;88:1658–

7 1663

8 8. Yuen KCJ, Biller BMK, Radovick S, Carmichael JD, Jasim S, Pantalone KM, Hoffman

9 AR. AACE/ACE guidelines for management of adult GH deficiency and patients

10 transitioning from pediatric to adult care. *Endocr Pract.* 2019;25:1191–1232

11 9. Hughes IP, Choong C, Rath S, Atkinson H, Cotterill A, Cutfield W, Hofman P,

12 Harris M. Early cessation and non-response are important and possibly related

13 problems in growth hormone therapy: An OZGROW analysis. *Growth Horm IGF Res.*

14 2016; 29:63-70

15 10. Fisher BG, Acerini CL. Understanding the GH therapy adherence paradigm: a

16 systematic review. *Horm Res Paediatr.* 2013;79:189–196

17 11. Koledova E, Stoyanov G, Ovbude L, Davies PSW. Adherence and long-term growth

18 outcomes: results from the easypod™ connect observational study (ECOS). *Endocr*

19 *Connect.* 2018;7:914–923

20 12. Loftus J, Chen Y, Ma J, Alvir J, Chi L, Dasgupta S, Gupta A, Wajnrajch MP.

21 Suboptimal adherence to daily GH in a US real-world study: an unmet need in pediatric

22 GHD. *Curr Med Res Opin.* 2021;37:2141–2150

1 13. Koledova E, Tornincasa V, van Dommelen P. Analysis of real-world data on growth
2 hormone therapy adherence using a connected injection device. *BMC Med Inform Decis
3 Mak.* 2020 Jul 29;20:176.

4 14. Dahlgren J. Easypod: a new electronic injection device for GH. *Expert Rev Med
5 Devices.* 2008;5:297–304

6 15. Tauber M, Payen C, Cartault A, Jouret B, Edouard T, Roger D. User trial of Easypod,
7 an electronic autoinjector for GH. *Ann Endocrinol (Paris).* 2008;69:511–516

8 16. Cutfield WS, Derraik JGB, Gunn AJ, Reid K, Delany T, Robinson E, Hofman PL.
9 Non-compliance with GH treatment in children is common and impairs linear growth.
10 *PLoS One.* 2011;6:e16223

11 17. Møller N, Jørgensen JO. Effects of growth hormone on glucose, lipid, and protein
12 metabolism in human subjects. *Endocr Rev.* 2009;30:152–77

13 18. Rosen T, Bengtsson BA. Premature mortality due to cardiovascular disease in
14 hypopituitarism. *Lancet.* 1990;336:285–288

15 19. Ratku B, Likó I, Kiss J, Hosszúfalusi N, Patócs A. Effects of adult growth hormone
16 deficiency and replacement therapy on the cardiometabolic risk profile. *Pituitary.*
17 2022;25:438–447

18 20. Hepprich M, Groth KA, Johannsson G. Dyslipidaemia and growth hormone
19 deficiency. *Best Pract Res Clin Endocrinol Metab.* 2023;37:101761

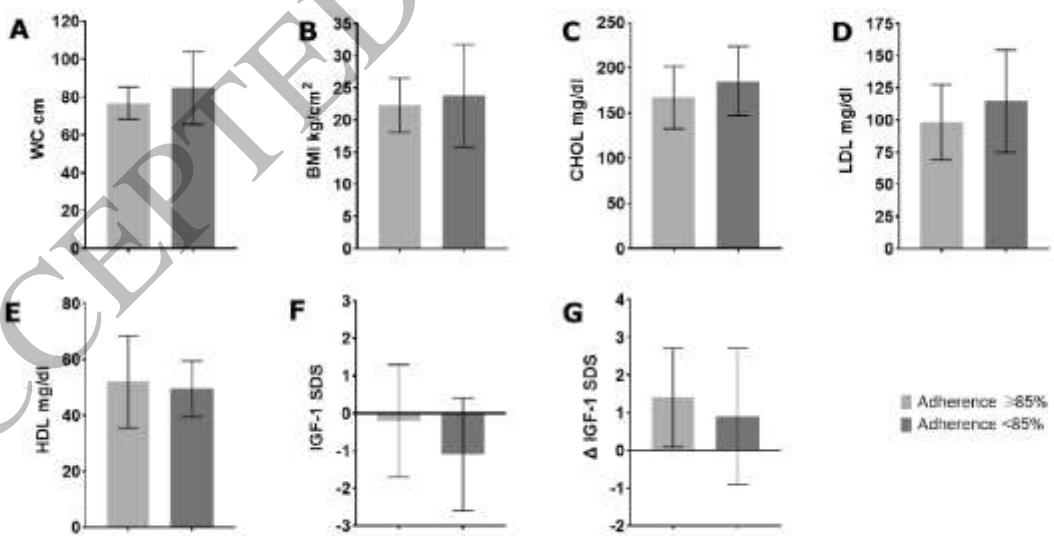
20 21. Dunkel L, Fernandez-Luque L, Loche S, Savage MO. Digital technologies to
21 improve the precision of paediatric growth disorder diagnosis and management *Growth
22 Horm IGF Res.* 2021;59:101408.

1 22. Dimitri P, van Dommelen P, Banerjee I, Bellazzi R, Ciaccio M, de Arriba Muñoz A,
 2 Loche S, Zaini AA, Halabi A, Bagha M, Koledova E. Opportunities for digitally-enabled
 3 personalization and decision support for pediatric growth hormone therapy. *Front
 4 Endocrinol (Lausanne)*. 2024;15:1436778.

5 23. van Dommelen P, Koledova E, Wit JM. Effect of adherence to GH treatment on 0–2
 6 year catch-up growth in children with GHD. *PLoS One*. 2018;13:e0206009

7 24. Colao A, Cerbone G, Pivonello R, Aimaretti G, Loche S, Di Somma C, Faggiano A,
 8 Corneli G, Ghigo E, Lombardi G. The growth hormone (GH) response to the arginine
 9 plus GH-releasing hormone test is correlated to the severity of lipid profile abnormalities
 10 in adult patients with GH deficiency. *J Clin Endocrinol Metab*. 1999; 84:1277–82.

11


Characteristic	Optimal Adherence (Start)	Optimal Adherence (1 Year)	Suboptimal Adherence (Start)	Suboptimal Adherence (1 Year)
N (%)	26 (63%)		15 (37%)	
Age (years)	18.5 (2.6)	—	17.3 (2.0)	—
Sex (M/F)	18/8	—	9/6	—
Height SDS	-0.5 (1.1)	-0.5 (1.2)	-0.6 (1.1)	-0.6 (1.1)
Duration of therapy (years)	9.8 (4.0)	—	9.8 (4.1)	—
WC (cm)	78.2 (10.3)	76.7 (8.5)	89.2 (19.2)	84.8 (19.2)
BMI (kg/m ²)	22.4 (4.2)	22.3 (4.2)	23.5 (8.1)	23.8 (8.0)
Chol (mg/dL)	168.1 (41.6)	167.1 (34.5)	163.5 (40.1)	185.1 (38.5)
LDL (mg/dL)	101.4 (28.7)	98.5 (29.4)	94.9 (32.9)	111.6 (39.2)
HDL (mg/dL)	52.1 (13.0)	52.0 (16.5)	52.6 (15.8)	51.3 (11.6)
IGF-1 SDS	-1.7 (1.7)	-0.2 (1.5)	-2.2 (2.2)	-1.1 (1.5)
Δ IGF-1 SDS		1.4 (1.3)		0.9 (1.8)

1 Table 1. Clinical characteristics of patients subdivided into optimal ($\geq 85\%$) and
 2 suboptimal ($< 85\%$) adherence groups. Values are mean (SD). Abbreviations: SDS,
 3 standard deviation score; WC, waist circumference; BMI, body mass index; Chol, total
 4 cholesterol; LDL, low density lipoprotein; HDL, high density lipoprotein; IGF-1, insulin-
 5 like growth factor 1

6

7 **Figure Legend**

8 Waist circumference (cm, A), Body mass index (kg/m^2 , B), Total cholesterol (mg/dL, C),
 9 LDL (mg/dL, D), HDL (mg/dL, E), IGF-1 SDS (F), after 1 year observation and change in
 10 IGF-1 SDS (Δ IGF-1 SDS, G) between treatment start and 1 year in the two adherence
 11 groups.

12

13

14

Figure 1
 559x335 mm (x DPI)