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1

Introduction

The GPT-NL project aims to develop a Dutch-English large language model (LLM) from the
ground up to promote technological sovereignty and strengthen the Dutch and broader Euro-
pean LLM ecosystem. Achieving this objective requires a structured systems engineering ap-
proach encompassing requirement’s elicitation, design, implementation, and validation.
Beyond the creation of the model itself, sovereignty and community growth depend on trans-
parent dissemination of knowledge about how such a system is built. This document therefore
presents the architectural blueprints—both in code and documentation—for the second part of
this development phase: the System Architecture of the Training Pipeline.

The documentation and systematic management of this technological blueprint are intended to
stimulate new research directions and enable future improvements. The GPT-NL System
Architecture effort serves as the foundation for these goals by providing a coherent, well-
documented engineering framework for large-scale model development.

From a general point of view, the system architecture activities provide a structured conceptual
model defining the organization, behavior, and interactions of system components. It offers a
high-level view of how hardware, software, data, and processes collaborate to achieve the
intended system goals. Through clear specification of components, interfaces, and design
principles, the architecture ensures that key system attributes—such as performance,
scalability, security, and maintainability—are addressed systematically and in alignment with
stakeholder requirements and operational constraints.

Within the GPT-NL team, system architecture plays a coordinating role by providing a shared
technical framework that guides design, implementation, and verification across teams. This
work, conducted under Work Package 13 (WP13), facilitates communication among
engineers, researchers, and developers by defining clear interfaces and dependencies. The
architectural team ensures design consistency, manages technical risks, and balances trade-
offs among quality attributes. As a result, this document and the associated work contribute to
the alignment of strategic objectives and technical execution, promoting system coherence,
continuity, and effective integration throughout the development lifecycle.

The overview of the processes, tasks, and artifacts related to the architectural work is depicted
in Figure 1. The system architecture team collaborates with all other working packages, but
closest with WP12 (Data Curation), WP14 (Model Development), and WP18 (Data
Acquisition and Quality). While WP12 and WP14 lead algorithmic development—such as the
selection of filters, models, and training techniques—WP13 focuses on translating these
designs into structured, maintainable, and scalable code. This includes defining clean
interfaces between modules, ensuring continuous data processing flows suitable for HPC
environments, and addressing non-functional aspects such as security, documentation, and
energy efficiency. The WP18 is responsible for the processes of contacting data providers and
acquiring/creating datasets. They are strongly involved with the architecture team assessing
the quality of the data during and after the curation phase.
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Figure 1: Overview main GPT-NL Processes and Work Packages

In general, LLM development can be divided into two main components: data curation and
model training and validation. These components differ significantly in their technical focus
and data processing requirements.

e The data curation pipeline encompasses all processes from data acquisition to the
creation of a uniform dataset ready for model training. This includes systematic rea-
soning and documentation of inclusion and exclusion criteria, as well as the production
of standardized datasets for both training and public release. The data curation pipeline
is subdivided in two phases: the data extraction phase and the data curation phase.
The whole curation pipeline and its phases are detailed in the next sections. Architec-
tural artifacts from this pipeline include:

) TNO Public 5/109


https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/data-extraction-phase.md
https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/data-curation-phase.md

) TNO Public ) GPTNL-DEL-4002-[1.0]

1.1

o Software developed for data acquisition, extraction, curation, and dataset de-
ployment.

o Documentation of third-party software and hardware stacks—such as Data-
Trove, PrivateAl, and SURF’s Snellius—including configuration details, ver-
sioning, and integration procedures.

o CI/CD frameworks for testing, logging, and evaluating both the platform and
resulting datasets.

o Records of architectural decisions, design rationales, and supporting technical
documentation.

o Security, privacy, and energy monitoring mechanisms for development and
operational phases.

o Final technical reports and communication materials, including this document
and supporting white papers.

e The model training and validation phase includes data preparation, tokenization,
model pre-training, instruction fine-tuning, and performance evaluation. It results in a
standardized and reproducible model package for internal use and community release.
Artifacts from this phase include:

o Software for data mixing, tokenization, model training, fine-tuning, and deploy-
ment.

o Documentation of third-party stacks such as OIMO and the Snellius HPC in-
frastructure, detailing configurations and integration.

o CI/CD support for testing and performance tracking.
Documentation of design decisions, system rationale, and supporting non-
functional design considerations.

o Security, privacy, and energy monitoring tools.

Final deliverables, including technical documentation and dissemination ma-
terials.

This document, System Architecture Document — Training Pipeline, covers the GPT-NL
model training. Details on data curation are presented in the related document: System
Architecture Document — Data Curation Pipeline’. As introduction, we present in the
following the architectural overview of the Training Pipeline.

Architectural Overview of the GPT-NL
Training Pipeline

The GPT-NL training pipeline transforms curated data into deployment-ready language models
optimized for Dutch and English language tasks. The focus tasks for GPT-NL are
summarization, simplification, and question answering based on contextual information
(commonly known as Retrieval Augmented Generation pipelines). It consists of two major
phases: pre-training and instruction fine-tuning. Each of these phases has distinct
architectural requirements, computational demands, and outputs.

"TNO, GPT-NL Project, Report; GPTNL-DEL-4001-1.0-System Architecture Document — Data Curation Pipeline,
December 2025.
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Figure 2: Introduction GPT-NL Training Process

The training pipeline starts after the data curation pipeline’. It consumes curated datasets as
its primary input. While the curation pipeline ensures data quality, diversity, and compliance,
the training pipeline transforms this data into functional language models.

The relationship with other work packages is essential to the training process. WP12 (Data &
Algorithms) provides the curated training data, evaluation datasets, and algorithmic guidance
for data mixing strategies. WP13 (System Architecture & Infrastructure) designs and
implements the distributed training infrastructure, monitoring systems, and deployment
mechanisms; and provides this architectural documentation.

This document gives an overview of the training pipeline for the GPT-NL foundation model. It
gives a high-level description of the processes involved in training this model that have
implications for the system architecture design and choices for the supporting software stack.
Note that document is not meant as a complete and standalone architecture design.

The training pipeline architecture is built on three core principles that guide design decisions
and implementation choices:

Reproducibility ensures every aspect of the training process can be recreated. All
hyperparameters, data mixture ratios, and training settings are stored in configuration files.
Data snapshots and metadata track which data was used at each training stage. Experiment
tracking tools like Weights & Biases log metrics, hyperparameters. Artifacts are stored
throughout running processes on the Snellius HPC. All training code is version-controlled in Git
repositories.

Scalability allows the architecture to support training models of varying sizes across different
scales. Dedicated libraries enable scalable training across multiple nodes using various
strategies. SLURM provides job scheduling and resource management. Recovery from
hardware failures or job time limits is enabled through checkpointing and restart capabilities.
Performance optimizations include gradient accumulation, mixed-precision training, and
activation checkpointing.

Observability provides comprehensive monitoring to ensure training health and progress.
Training metrics include loss, perplexity, gradient norms, and learning rates. System metrics
track GPU utilization, memory usage, communication overhead, and throughput. Periodic
validation loss and benchmark performance are captured as evaluation metrics. Job lifecycle
alerting systems notify teams to act quickly when needed.

) TNO Public 7/109
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1.1.1

1.1.2

Infrastructure & Software

The training pipeline runs on SURF’s Snellius supercomputer, which provides NVIDIA H100
GPUs with NVLink and InfiniBand interconnects for high-bandwidth communication. SLURM
manages job scheduling, resource allocation, and queue management. High-performance
parallel file systems enable efficient data loading and checkpoint storage. For more details on
the Snellius HW used in the GPT-NL curation and training see the GPT-NL data curation and
training at SURF’s HPC Snellius appendix.

The software stack includes native PyTorch with FSDP (Fully Sharded Data Parallel) for pre-
training, and HuggingFace TRL with DeepSpeed for fine-tuning. Distributed computing relies
on NCCL for GPU communication. Monitoring uses Weights & Biases and custom logging
infrastructure. Model serving is managed through vLLM inference engine with Hugging Face
Transformers. Detailed information about the software stacks and infrastructure is provided in

the appendices.

Overview of the Training Lifecycle

The entire training process moves through a series of linked stages. Each phase consumes
outputs from previous stages and produces specific artifacts that feed into subsequent steps.

The process begins with data preparation and tokenization, where curated data is
transformed into a format suitable for model consumption. This involves training a custom
tokenizer optimized for Dutch and multilingual text, combining different data sources according
to designed mixture ratios, and converting raw text into tokenized sequences stored in
optimized formats. The inputs are curated datasets from the data curation pipeline, and the
outputs include the trained tokenizer, data mixture configurations and tokenized datasets. This
phase runs on CPU-based preprocessing jobs on Snellius compute nodes.

The pre-training phase trains the core foundation model from scratch using large-scale
distributed training across multiple GPU nodes. The process leverages parallelization
mechanisms to scale to 88 H100 GPUs. Training includes continuous evaluation on held-out
data and benchmark tasks, regular checkpointing of model, optimizer, and scheduler states for
fault tolerance, and real-time monitoring of loss curves, learning rates, gradient norms, and
resource utilization. This phase consumes the tokenized training data, tokenizer, and model
architecture configuration, producing foundation model checkpoints at multiple snapshots
throughout training. Pre-training is inherently iterative, as new curated data may arrive during
training and can be incorporated in subsequent cycles or continuation runs.

Following initial pre-training, context extension adapts the model’s context window from its
original training length (e.g., 4K tokens) to longer contexts (16K or 32K tokens). This involves
adjusting positional encodings such as RoPE and brief additional training on long-context data.
The process takes the pre-trained foundation model and long-context training data as input,
producing extended-context model checkpoints.

The instruction fine-tuning phase adapts the foundation model for specific downstream tasks
using instruction-following datasets. The process involves curating and filtering instruction
datasets, training the model through supervised fine-tuning to follow instructions and generate
appropriate responses, and optimizing for specific tasks like summarization, simplification, and
RAG capabilities. Performance is assessed on instruction-following benchmarks throughout
the process. This phase uses smaller GPU allocations (8-32 GPUs) and runs for shorter
durations (hours to days) compared to pre-training. Fine-tuning experiments typically iterate to
optimize hyperparameters, data mixtures, and training strategies.
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1.2

1.2.1

1.3

Finally, model deployment packages trained models for production use. Models are converted
to deployment-ready formats compatible with Hugging Face, containerized for reproducible
deployment environments, and integrated with evaluation frameworks and application
interfaces. The deployed models are served via vLLM inference engine, making them
accessible via API or for local inference on inference-optimized GPU servers.

Scope of the System Architecture Work
and Relation to Other Work

Besides the close work developed with WP12, WP14, and WP18, cybersecurity and evaluation
activities are also depicted in Figure 1. These activities are out of the scope of the architecture
team, but their insights and outcomes influence and are influenced by the GPT-NL architecture
work. For example, WP21 Evaluation and the Cybersecurity work package (WP22) operate
independently to ensure objective assessment and verification. WP21 evaluates the trained
model’s performance on key tasks, while the cybersecurity and red-teaming teams assess its
resilience and safety. WP22 is involved with securing the development and model overall (in
Figure 1 depicted only at the end for readability). The team puts in place classic and Al-specific
cybersecurity mechanisms. Although separate, these teams collaborate closely with WP13 by
consuming its architectural artifacts, interfaces, and documentation, and by providing feedback
that informs subsequent development cycles.

Architecture Team

The GPT-NL architecture team has a multidisciplinary composition with SW architects and
engineers, open-source specialists, high performance computers architects, ML engineers,
and data scientists. Members of TNO and SURF form the team. Acknowledgements for the
support of SURF in all the management and proper usage of the Snellius supercomputer.

How to further read this document

This document focusses on the training of the GPT-NL foundation model, and the following
sections provide detailed documentation for each phase of the training pipeline. The structure
progressively increases in technical depth, from high-level architectural decisions to
implementation details and code-level documentation.

The pre-training deep dive begins with a comprehensive overview of the pre-training process,
followed by detailed sections on tokenizer fitting & tokenization, data preparation & mixing,
running & monitoring pre-training, scaling strategies, context extension, model &
hyperparameters, and code organization.

The instruction fine-tuning deep dive starts with a comprehensive overview of the fine-tuning
process, followed by sections on data preparation, data selection methods, running &
monitoring fine-tuning, evaluation and initial results, and code organization.

Additional sections cover model deployment for packaging and deploying trained models, and
training appendices with additional technical details, software stack analysis, and framework
experiments.

) TNO Public 9/109
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2 Architecture of the Pre-
Training pipeline

The GPT-NL pre-training pipeline is the most compute-intensive stage of model development,
transforming curated multilingual datasets into large-scale base language models for Dutch
and English. This process involves the following key steps: tokenizer fitting, data preparation,
distributed pre-training across high-performance compute clusters, and optional context
extension for longer input sequences. The pipeline ensures that models are optimized for
quality, scalability, and adaptability before fine-tuning.

Between June and December 2025, GPT-NL underwent three major training epochs and a
final annealing phase, processing 1.9 trillion tokens across multiple languages and code. The
resulting model—a 26B-parameter architecture based on Gemma 3—was trained using 220
H100 nodes on Snellius. This foundation enables robust multilingual capabilities and serves as
the basis for subsequent fine-tuning and evaluation stages.

The full pipeline, including its main functional phases, is illustrated in Figure 3 below. At its core
is the pre-training process, which optimizes a randomly initialized model to one that fits the pre-
training distribution.

]  Tokenizer fitting  Geemeed 1 Madst
( l \C Epoch n..N
—) Data Preparation  Lerd P'Z::d — TR JH e BT G — scoct —>
Data
mixtures

Figure 3: Overview of the pre-training pipeline
The pipeline consists of the following steps:

Tokenizer fitting - Optimizes an algorithm to efficiently encode raw text into a numerical
representation that can be processed by the model.

Data preparation - Transforms the raw, curated data into tokenized form and mixed to match
specific language types and quality target distributions.

Pre-training - Runs distributed training across the full compute pool (202 H100 nodes on
Snellius, each consisting of 4 H100 GPUs).

Context extension - Optional phase to adapt the model to longer input sequences via longer-
form content.

Evaluation - Evaluates base model capabilities across tasks to monitor training and select final
artifacts.

The pre-training process is an iterative, multiphase process where every phase (epoch)
processes a mixed version of the data (see Figure 4 below). When new data arrives, it can be

) TNO Public 10/109
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incorporated into the pre-training from the next epoch onwards. To finalize a model, it needs to
undergo a shorter annealing phase (where the data mixture is biased towards higher quality
data), which can be instantiated after each intermediate epoch, leading to n intermediate base

models.

Curated
Data

Model

4 Data P

Figure 4: Depiction of multi-stage pre-training
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All functionality concerning pre-training is implemented across three GitLab repositories:

1. The Dataloader repository that implements all steps preceding training, including training

the tokenizer and tokenizing all curated text datasets.

2.

The Pytorch Native repository that implements the pre-training process and hosts

additional functionality as well, such as evaluation and running inference with the model.

3.

phase.

The Context Lengthening repository which is solely concerned with the context extension

This section details the GPT-NL pre-training as it happened between June 16th, 2025, and
December 31st, 2025. Training was intermittent due to maintenance and shared infrastructure,
lengthening the overall duration. The pre-training consisted of three main epochs (i.e., passes
over the data) and an annealing phase. In the second epoch we added new data (mostly Dutch
text) that arrived while epoch 1 had already started. The annealing phase is a short final phase
emphasizing higher quality data. The total number of tokens seen by the model is 1.9 frillion

tokens.

Total training tokens after up sampling (in billions), seen throughout training:

English 279.78
Dutch 139.89
Code 83.93
Other languages  55.96
Total 559.56
Cumulative total 559.56

) TNO Public

269.10
116.74
80.73
53.82
520.40
1079.96

269.10
116.74
80.73
53.82
520.40
1600.36

266.24
73.20
31.71
7.93
379.07
1979.44
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The trained model has 26B parameters and is based on the Gemma 3 architecture. For more
details on the architecture, see the training hyperparameters Section.

The following subsections dive into each of the key steps of the pre-training.

2.1 GPT-NL Tokenizer

A tokenizer is an algorithm that converts raw text into numerical tokens, enabling a language
model to process the data effectively. For GPT-NL, a custom tokenizer is trained from scratch
to ensure efficient representation of Dutch text, which is often underrepresented in existing
multilingual tokenizers.

Tokenization refers to the process of transforming a text dataset into this numerical form. A
trained tokenizer segments text into chunks based on their statistical occurrence and maps
these segments to numerical representations. Tokens may correspond to individual characters,
sub-word units, or frequently occurring combinations of characters and symbols.

The figure below illustrates tokenization by depicting tokens within a sentence, where each
token is represented by a distinct colour.

Dit is een zin in het Nederlands.

Figure 5: A tokenized sentence. Tokens can represent single letters, parts of a word, or frequent sequences of
letters and symbols.

The entire tokenization involves roughly 2 stages:

e Training the tokenizer from scratch
e Tokenizing the GPT-NL data in preparation for the model training

2.1.1 Tokenizer training

Training a tokenizer at scale involves processing a high amount of data (in the lines of 100+
GB of raw text). Frameworks like Hugging Face's tokenizers are not capable of efficiently
tokenizing the data even with 1TB+ of RAM. In contrast, SentencePiece does work reasonable
with high volumes of data, hence the GPT-NL tokenizer was trained with the SentencePiece
library.

First, a subset of the training data is sampled to obtain the tokenizer training set. To be precise,
120GB of raw text was employed for the tokenizer set with the following language mixture:

) TNO Public 12/109
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Tokenizer Language Distribution

English medium-low quality
Other languages

English high quality

Code

Dutch medium-low quality

Dutch high quality

Figure 6: Tokenizer training language distribution

Secondly, the SentencePiece tokenizer training configuration was set. This includes initializing
the byte-fallback Byte-Pair Encoding tokenizer, setting the final vocabulary size of 128k, special
tokens definition and other options. The tokenizer in fact is similar to the Llama tokenizer and
follows the HuggingFace’s LlamaTokenizer class. The configuration of SentencePiece can be
found in the internal GitLab here.

Training the tokenizer took 64 hours on a fat_genoa node with 192 cores and 1440 GiB of
memory.

Lastly, the tokenizer is converted from the SentencePiece format to the HuggingFace format
such that it can be loaded with

from transformers import AutoTokenizer
gptnl_tokenizer = AutoTokenizer.from_pretrained(<path_to_tokenizer>)

The GPT-NL tokenizer is initialized with 100 reserved tokens for downstream adjustments and
in the form of <reserved_token_xx>. As the tokenizer follows LlamaTokenizer closely, the
following default tokens are considered:

{
"id": e,
"content": "<unk>",
"single word": false,
"lstrip": false,
"rstrip": false,
"normalized": false,
"special": true

"id": 1,

"content": "<s>",
"single word": false,
"lstrip": false,
"rstrip": false,

) TNO Public 13/109
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For instruction-tuned tokenizers, we follow the ChatML templates:

ng

) TNO Public

"normalized": false,
"special": true

bs

{
"id": 2,
"content": "</s>",
"single word": false,
"lstrip": false,
"rstrip": false,
"normalized": false,
"special": true

bs

{
"id": 3,
"content": "<pad>",
"single word": false,
"lstrip": false,
"rstrip": false,
"normalized": false,
"special": true

¥

{
"content": "<|im_start|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single word": false,
"special": true

¥

"5": {
"content": "<|im_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single word": false,
"special": true

¥

"6": {
"content": "<|system|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true

¥

"7 {
"content": "<|user|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true

}s

14/109
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2.1.2

"8": {
"content": "<|assistant]|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single word": false,
"special": true

1

Tokenization

The OLMo-core pretraining pipeline expects tokenized .npy (NumPy memory-mapped files)
as its training data. To this end, the entire dataset is tokenized before training. Specifically, the
data is put into smaller buckets of file and by employing the SLURM job array, tokenizing the
entire dataset with parallel jobs only took a couple of hours.

Tokenizer fertility rate is defined as the average number of tokens produced per word in a given
text. A lower fertility rate is generally preferable because it indicates that words are represented
more compactly, which reduces sequence length and enhances model efficiency. When fertility
is high, token sequences become longer, leading to increased memory consumption and
slower inference times.

Optimizing tokenizers for lower fertility ensures that models process text more efficiently
without sacrificing semantic integrity. By reducing the number of tokens per word, the
computational workload decreases, directly lowering training and inference costs and making
large-scale language model operations more economical.

Below is the tokenizer fertility rate compared to competitive multilingual tokenizers. The
performance is reported on a random subset of Dutch data:
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Figure 7: Tokenizer comparison (lower means a better fit)

Given the different vocabulary sizes of 128k for GPT-NL and the competitive Salamandra of
256k, thereby adding extra parameters in the embedding space, the GPT-NL tokenizer shows
a good trade-off between fertility/token efficiency and model complexity.

Numeric evaluations of the tokenizer are discussed in the Evaluations Section and in the Data
Preparation Section.
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2.2

2.2.1

Pre-training Data Preparation

This section describes the complete process of transforming curated datasets into optimized
data mixtures ready for pre-training. The data preparation pipeline connects the data curation
phase (delivered by WP12) with the pre-training phase, producing data mixtures that support
Dutch language representation and allow for quality control of input sources.

The pipeline is implemented in the Dataloader GitLab project and encompasses tokenizer
fitting, data bucketing, train-validation splitting, tokenization, and distribution mixing. The
process is guided by two key variables: detected language and quality assessment, which
together define the characteristics of different data buckets used to construct training mixtures
for different phases of pre-training.

Motivation and Design Principles

One primary objective of GPT-NL is to achieve adequate representation of the Dutch language
in the final model. The Dutch share of available data is low relative to English, even after
receiving additional Dutch data during epoch 1 training, the size remains disproportionate
compared to English resources. To address this imbalance, we up sample the Dutch data share
during training.

Data quality also affects model performance. Recent large-scale model reports provide
evidence for quality-focused data strategies. The Llama 3 team (Llama Al Team, 2024) found
that using high-quality code and mathematical data in the final training phase can boost
performance on key benchmarks, with experiments showing improvements (24% on GSM8k
and 6.4% on MATH) for smaller models. The benefits were less pronounced for larger models
that already exhibited stronger reasoning capabilities.

Similarly, EuroLLM (Martins et al., 2024 )—a multilingual European language model project—
reports a comparable strategy: in the last 10% of pre-training, they increase the presence of
high-quality data in the mix. EuroLLM filters monolingual data using a binary classifier inspired
by FineWeb-Edu (Penedo et al., 2024) to predict whether documents have educational value,
and incorporates additional high-quality datasets including Cosmopedia-v2, Python-Edu,
training sets from GSM8K and MATH benchmarks, and document-level parallel data from
Europarl and ParaDocs.

Following these approaches, GPT-NL employs a bucket system to control both language
distribution and data quality throughout pre-training. We categorize all curated data into
buckets based on two primary dimensions:

1. Language: Detected language (Dutch, English, Code, Other languages)
2. Quality: Manually attributed quality assessment labels provided by WP18 at dataset
level (high, medium, low)

This bucketing strategy enables us to create specific data mixtures for different training
phases—maintaining broader diversity during the primary training epochs (1-3) while biasing
toward higher quality data during the final training phase (i.e., the annealing phase). The
system also tracks newly added data separately, allowing us to incorporate fresh content that
arrived during training into subsequent epochs.

The following sections detail the quality assessment methodology, provide concrete examples
of bucket characteristics, describe the data preparation pipeline implementation, and present
the final data mixtures used throughout GPT-NL pre-training.
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2.2.2 Quality Assessment and Bucketing Methodology

Quality assessment for GPT-NL datasets was performed manually by WP18 at the dataset
level. Rather than applying strict, quantitative criteria, the assessment considers the nature and
characteristics of each data source to assign quality labels (high, medium, or low). The table
below illustrates representative examples across the quality spectrum.

OpenRaadsInformatie — Public hear- | High Professionally  written transcripts
ings and decision documents from with high expected accuracy

~350 Dutch municipalities, water

boards, and provinces

NDP National-Regional — National | High Content written by professional jour-

and regional newspapers from mem- nalists and published in established

bers of the Dutch news branch organi- newspapers

zation

Fryske Akademy — Content from the | High Curated Frisian language content

Frisian language and culture research from an academic institution

institute

Synthetic Wikidata — Synthetically = Medium Systematic generation from struc-

generated content based on structured tured high quality data, but genera-

Wikidata entries tion process may introduce errors

KPN Web Content — Web content | Medium Web content that may contain errors

from the Dutch telecommunications or inaccuracies typical of online

company sources

CommonCrawl Creative Commons | Medium Variable quality typical of web scrap-

— Dutch CC-BY and public domain ing, though filtered for permissive li-

web content from CommonCrawl censes

Noord-Hollands Archief — Archives | Low Contains numerous OCR errors from

older than 100 years from the provincial digitization of historical documents

archive of North Holland

YouTube Commons — CC-BY video | Low Automatic transcripts that are often

transcripts from YouTube inaccurate

Nationaal Archief — Digitized histori- | Low Digitization error rate of approxi-

cal archives including VOC records mately 8%, resulting in substantial
OCR errors, particularly in the VOC
subset

Quality assessment is based on multiple criteria including the reputation and origin of the
source, recency of the content, and technical quality factors such as OCR accuracy.

High-quality sources typically originate from institutions or organizations with editorial
standards or quality control processes. These include professional journalism, official
government documentation, and curated academic content. The writing in these sources is
produced with attention to accuracy and coherence. Sources in this category have strong
reputations and provide reliable, well-structured content.

Medium-quality sources encompass web content and synthetically generated material. While
web content from reputable organizations or filtered sources may be generally reliable, it lacks
the editorial oversight of high-quality sources. Synthetic content generated from structured data
sources like Wikidata is systematic but may contain artifacts from the generation process.
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Low-quality sources primarily suffer from technical limitations in data capture or transcription.
Automatic transcription systems and OCR processes applied to historical documents introduce
errors that degrade text quality. These sources remain valuable for their content and linguistic
diversity despite their technical imperfections.

The quality labels are applied at the dataset level rather than at the document level, meaning
all documents from a given source receive the same quality designation. For the data
preparation pipeline, low and medium quality data are combined into single buckets. This
simplification is sufficient because quality distinction is only applied during the final, short
training phase (annealing), where we bias toward high-quality data. For this purpose,
distinguishing high-quality sources from all others provides adequate granularity without
requiring a large volume of finely categorized data.

Beyond quality labels, the bucketing process relies on additional metadata fields to categorize
data. Language detection is performed using automated language identification tools as
described in the curation stages. Code datasets are identified through manual labelling, with
one primary code dataset comprising the majority of code content. Temporal metadata tracks
when data arrived—either before training began or during epoch 1, allowing newly added data
to be incorporated into subsequent epochs while maintaining separate tracking for mixture
composition purposes.

2.2.3 Data Bucket Characteristics and Examples

To illustrate the differences between buckets, this section provides representative text samples
from each category. These examples demonstrate the characteristics that distinguish high-
quality sources from lower-quality ones, and show the linguistic diversity across Dutch, English,
code, and other language buckets. Each sample is extracted from actual datasets used in
training.

2.2.3.1 English High Quality

Dataset: Common Corpus
Text:

ABSTRACT The palm (Phoenix Dactylifera) is one of important trees and is ec
onomically important in south of Iran. Date palm is propagated by the offsh
oots, number of which is limited. Therefore, adul...<truncated>...eijer., &
Levi van de Biezenbos. (1993). Occurrence of direct somatic embryogenesis o
n the sword leaf of in vitro plantlets of Phoenix dactylifera L. cultivar b
arhee. Current Science, 887-889. 430 430

2.2.3.2 English Low/Medium Quality

Dataset: Common Corpus
Text:

The Evangelicals, who had been quickened to seek the spread of the Gospel a
broad through the institution, in 1822, of " La Soci6t6 des Missions Evangd
liques chez les Peuples non-Chrétiens,"” earnestly ...<truncated>...tab-' 1li
shments, supervised by 7000 nuns and served by 48,000 women, bringing an an
nual income, from the unpaid labour of the pensionnaires, of not less than
;7600,000.” The Associations Bill of 1901.
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2.2.3.3
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2.2.3.5

2.2.3.6

2.2.3.7

Dutch High Quality

Dataset: Open Raadsinformatie
Text:

**Bouwsteen Economie** Voor deze bouwsteen economie is een rapport opgestel
d door een extern bureau. Dit rapport dient als aanbeveling aan gemeente Zw
olle. Het rapport doet aanbevelingen over de toeko...<truncated>... van de
stad (voor de verschillende opleidingsniveaus)| **Overi** *xgx* *xa g¥* **p
¥* K¥meprkin** *kgk* kkapkk kk *k*k **jdeeén etc.** Kun je iets niet kwijt ond
er bovenstaande? Daar is hier plek voor. 7

Dutch Low/Medium Quality

Dataset: Woogle
Text:

Toetsing Op grond van artikel 5.16 1lid 1 van de Wet milieubeheer kan de ver
gunning alleen worden verleend, als aannemelijk gemaakt kan worden dat vold
aan wordt aan (minimaal) één van de volgende crite...<truncated>...rgunning
houder de resultaten daarvan wil implementeren, daartoe eerst steeds zal mo
etel worden bezien in hoeverre een procedure op grond van de Wabo zal moete
n worden doorlopén. Zaaknum m er: 78891724

New (epoch 2+) Dutch High Quality
Dataset: NDP

Text:

‘Chris' wil prijs pakken in Los Angeles CALL OF DUTY Silvano heeft talent v
oor Call of Duty. Hij is zo goed dat hij volgende week gratis naar Los Ange
les mag. door Dewi Willems van Lier MIDDELBURG -Vi...<truncated>...rond te
kijken. Als ik naar het strand wil, brengen ze me erheen. Ik heb vorige kee
r een hoop Ferrari's gezien. Die wil ik deze keer wat beter bekijken. " fot
o Isabella Oosterhek-Booden Puk Langevoort

New (epoch 2+) Dutch Low/Medium Quality

Dataset: YouTube-Commons
Text:

Hey jongens welkom terug bij een andere video bitcoin is blijven dumpen lat
en we eens kijken naar de grootste winnaars en verliezers in de altcoin-rui
mte het gaat om een soort van top 10 top 20 altcoi...<truncated>...is, is d
e link naar de investeerdersaccelerator in de beschrijving hieronder, we zi
en je daar in de 12-maanden lidmaatschapsgroep, maar tot de volgende keer,
heb meer plezier om meer gedaan te krijgen

Other Languages (all quality levels)
Dataset: Common Corpus
Text:

doppelten , diese ziehen sich des Wund- winkels h (in der Rich- tung nach d
) ein Ectropium zu Stande kommen. Tritt aber nun noch der Fall ein, dass di
e prima in- tentio nicht erfolgt, dass durch Eiter...<truncated>... die Wis
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2.2.5

senschaft dieselben weglassen, da eine geilibte Hand mit einer gewdhnli- chen
Hakenpincette und gerader oder gebogener Scheere die Falte ebenso gut den V
erhaltnissen entsprechend entfernen kann.

Code

Dataset: Common Corpus
Text:

package com.foo.bar.steps import com.foo.bar.SmsVerificationCodeSenderStub
import com.thebundlst.daming.commands.SendSmsVerificationCodeCommand import
com.thebundlst.daming.core.SmsVerificationCode im...<truncated>...()) .body
("token", notNullvValue()) } def then(String description) { this } def theCo
deReceived() { code } def shouldSeeFailure(HttpStatus httpStatus) { this.re
sponse.statusCode(httpStatus.value()) } }

Data Availability Across Training Epochs

New data arrived throughout training, changing the composition and scale of available data
between epochs. The table below summarizes the token counts in billions available during
epoch 1 and from epoch 2 onwards (denoted as Epoch 2+), with percentages relative to each
epoch’s total. These counts include both training and validation data.

Other languages 48.33 13.31 48.34 8.80
English (low + medium) 158.39 43.63 158.39 28.84
English (high quality) 49.52 13.64 49.52 9.02
Dutch (low + medium) 6.26 1.72 14.76 2.69
Dutch (high quality) 14.88 410 46.24 8.42
Code 85.64 23.59 231.95 42.23
Total 363.01 100 549.20 100

The data landscape changed substantially between epochs. Most notably, the Code bucket
increased from 85.64B to 231.95B tokens (a 2.7x% increase) due to an adjustment in the filtering
steps of the data curation, shifting its percentage from 23.59% to 42.23% of the total. Dutch
high-quality data increased significantly from 14.88B to 46.24B tokens (a 3.1x increase), more
than tripling its representation. This influx of Dutch content reflects additional data that arrived
during epoch 1 training. The relative percentages of other categories decreased
correspondingly due to the overall growth in total available data from 363B to 549B tokens.

Data Preparation Pipeline

The data preparation pipeline implementation transforms curated datasets into training-ready
data mixtures through a multi-stage process. The complete pipeline is visualized in the diagram
below, showing the flow from input parquet files through bucketing, train-validation splitting,
tokenization, and distribution mixing phases.
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Creating Training Data Mixture
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Figure 8: Diagram multi-stage process of creating the pre-training data mixture

The pipeline takes as input files in parquet format organized by data provider or openly

available dataset and processes them through four main phases: 1) bucketing, 2) train-
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2.2.51

validation split, 3) tokenization, and 4) distribution mixing to create optimized data mixtures for
model training.

The pipeline begins with curated datasets (as delivered by WP12) stored in parquet file format,
organized in subdirectories by dataset name (from a GPT-NL data provider or open dataset).
Each dataset has slightly different schemas due to varying application of curation stages (e.g.,
Personal Identifiable Information (PIl) detection might not be applied to all sets), but files within
the same dataset maintain consistent structure. Files vary in size due to filtering steps
employed during curation (disregarding documents, or rows, from the parquet files).

Phase 1: Bucketing

The bucketing phase groups data by language, quality attributes, and whether the data is newly
added in that epoch, organizing it into structured containers. These buckets represent key
characteristics that define our desired training mixtures for both the primary and annealing
phases of pre-training.

Metadata Investigation & Assembly

This stage analyses available curated datasets to understand their structure and content, and
leverages metadata provided by human annotators (WP18) to further tag the data with quality
labels (high/medium/low) and stores metadata about which datasets contain code (as de-
scribed in the Quality Assessment section).

Data Tagging

This stage enriches existing parquet files with additional metadata columns, adding standard-
ized information including:

¢ A unique document ID

e Original parquet file path as delivered by WP12
e Original dataset name and quality assessment
e Language detection results

e Code dataset classification flags

Data Bucketing

This stage distributes data into eight primary buckets based on language, quality, and time of
arrival (before or during training):

3. New data high quality (only relevant for epochs > 1, assumed to be almost all Dutch)
New data low + medium (only relevant for epochs > 1, assumed to be almost all Dutch)
English high quality

English low + medium quality

Dutch high quality

Dutch low + medium quality

. Other languages

10. Code

© NN

This stage is implemented by first sorting the data into temporary files and then merging them
to have equal size (in number of rows or in file size).
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Phase 2: Train-Validation Split

This phase implements a stratified train-validation split for bucketed parquet datasets. It takes
categorized data files (organized in buckets like dutch_high quality, english_low_me-
dium_quality, code, etc.) and splits each file into training and validation sets while maintain-
ing proportional representation of all source datasets.

The split uses a 98-to-2 ratio (keeping validation small to maximize training data) and stratifies
by dataset folder (extracted from the original file_ path column) to ensure validation sets
contain samples from all original datasets. The process handles edge cases where some
datasets have insufficient samples for stratification by placing single-sample categories into
training, and processes files in parallel for efficiency while managing memory usage through
garbage collection and process pool controls.

This split is necessary to evaluate model performance on held-out data during training, which
helps prevent overfitting, monitor training progress through validation loss, and ensure the
validation set is representative of all source datasets. While this is standard practice in machine
learning, maintaining this separation is important for transparent evaluation of training
progress.

Phase 3: Tokenization

This phase converts text data into token sequences suitable for model training, stored in
memory-mapped NumPYy files (memory-mapped for efficient reading during training).

The tokenization process uses the fitted tokenizer (output of the process described in Section
2.1) to:

e Tokenize all bucketed data using the trained tokenizer
¢ Implement sequence packing strategies for training efficiency
e Output tokenized files organized by bucket for downstream processing

Phase 4: Distribution Mixing (Sampling)

This phase creates training data mixtures optimized for different training phases. A sampling
module enables flexible mixture construction with the following capabilities:

e Sample a mixture with a desired language distribution by over- or under sampling files
to achieve the target distribution

e Bias sampling toward higher quality files to achieve a higher quality data mixture
e Constrain the mixture to a specific dataset size

With this module, the following data mixtures are created for different training phases:

e For epochs in the primary training phase: Sets sampled with a desired language
distribution with no bias for higher quality data

e For the annealing phase: A set sampled with a desired language distribution with
bias for higher quality data, constrained to consist of about 15% of the primary set in
size

Sampling happens at file level, with files containing approximately 1GB worth of documents.

The sampling process generates structured file lists as output:

e Primary phase file paths for main training (train and validation) (for epochs 1, 2, and 3)
¢ Annealing phase file paths for final training refinement
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2.2.6 Target Data Mixtures

For both pre-training phases (primary and annealing) we set a desired language distribution to
balance the goals of GPT-NL with the available data. As the annealing phase is typically short
(10-15% of pre-training), less upsampling is required to achieve the target distribution. In this
phase we bias toward higher quality data by only selecting from high-quality subcategories.

For the primary phase (epochs 1-3), we target the following language distribution:

Dutch 25%
English 50%
Code 15%
Other 10%

These percentages balance GPT-NL’s objective of adequate Dutch language representation
with the available data while maintaining multilingual capabilities through English and other
languages and incorporating substantial code data to support technical understanding and
reasoning capabilities.

For the annealing phase, we target a distribution more pronounced toward the Dutch language:

Dutch 35%
English 40%
Code 20%
Other 5%

The annealing phase constitutes approximately 10-15% of total pre-training. The shift toward
more Dutch content (from 25% to 35%) and increased code representation (from 15% to 20%)
reflects the strategy of emphasizing these areas in the final training stage. For this phase, only
high-quality data buckets are used, excluding all low and medium quality sources.

To achieve the target distributions with the data available in epoch 1 and in epochs 2 and 3,
we applied different upsampling rates to each bucket:

Code code 83.93 1 15 80.73 0.36 15.51 80.73 0.36 15.51
English  en 213.14 1.37 38. 205.01 1.32  39.39 205.01 1.32 39.39
low qual- 09

ity

English en 66.64 1.37 11. 64.09 1.32 12.32 64.09 1.32 12.32
high 91

quality

en_sub- en 279.78 275 50 269.1 2.64 51.71 269.1 2.64 51.71
total

Dutch nl 41.41 6.75 7.4 6.13 1 1.18 6.13 1 1.18
low qual-

ity
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Dutch nl 98.48 6.75 17. 20.88 1 4.01 20.88 1 4.01
high 6
quality

New nl - - - 22.81 2.74 4.38 22.81 2.74 4.38
Dutch

low qual-

ity

New nl - - - 66.92 2.74 12.86 66.92 2.74 12.86
Dutch

high

quality

nl_sub- n| 139.89 13.5 25 116.74 7.48 2243 116.74 7.48 22.43
total

Other other 55.96 1.18 10 53.82 1.14 10.34 53.82 1.14 10.34
lan-
guages

total 559.56 18.43 100 520.4 11.61 100 5204 11.61 100

The upsampling rates were calculated to meet target distributions given available data in each
bucket. Dutch data required the highest upsampling rates (6.75x in epoch 1, decreasing to
2.74x for new Dutch data in epochs 2-3) to achieve the 25% target in primary training. English
data required modest upsampling (1.37x and 1.32x), while Code data was actually
downsampled in epochs 2-3 (0.36x%) due to the large influx of code content. The resulting
mixtures closely approximate the target distributions while incorporating all available data
according to the defined sampling strategy.

2.2.7 Pipeline Output and Folder Structure

The data preparation pipeline produces outputs at each stage, organized in a structured folder
hierarchy on the Snellius HPC system. The pipeline begins with curated datasets and
progresses through bucketing, train-validation splitting, tokenization, and sampling phases,
with each phase producing organized outputs consumed by subsequent stages. Data is stored
on the project data share.

Location: /projects/0/prjse986/wpl2/dataset_delivery/

wpl2/dataset_delivery/
gpt_nl dataset_v1.0/ # Parquet files organized by dataset provider
american-stories/
cc_english-pd/
kb/
... (additional datasets)
gpt_nl _dataset_v2.0/ # Same structure as v1.0, available from epoch 2

Raw curated datasets in parquet format are organized by dataset provider or open-source da-
taset name.

2.2.7.1 Phase 1 Output: Bucketing

Location: /projects/0/prjse986/wpld/<gpt_nl_data_version>_bucketed/

After tagging and bucketing, data is organized into eight buckets:

bucketing output/

dutch_high quality/
dutch_low_medium_quality/
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english_high quality/
english_low_medium_quality/

other_languages/

code/

new_high quality/ # (epoch > 1 only)
new_low_medium_quality/ # (epoch > 1 only)

Each folder contains parquet files of similar size (approximately 1GB) with enriched metadata
including document IDs, quality labels, language tags, and original file paths.

2.2.7.2 Phase 2 Output: Train-Validation Split

Location: /projects/0/prjs0986/wpl4/<gpt_nl _data_version>_bucketed/

Data is split into training (98%) and validation (2%) sets while maintaining the bucket structure:

buckets_split_train/ # Training files by bucket
buckets_split_validate/ # Validation files by bucket

The stratified split ensures validation sets contain representative samples from all source da-
tasets within each bucket.

2.2.7.3 Phase 3 Output: Tokenization

Location: /projects/0/prjse986/wpla/<gpt_nl data_version>_tokenized/

Tokenized data is stored as memory-mapped NumPy arrays with uint32 dtype:

buckets_split_train/ # .npy files by bucket (training)
buckets_split_validate/ # .npy files by bucket (validation)
splitted_buckets_{train,validate}/ # Reorganized structure for sampling

Memory-mapped files enable efficient reading during training without loading entire datasets
into memory.

2.2.7.4 Phase 4 Output: Distribution Mixing (Sampling)

Location:/projects/0/prjs0986/wpld/<gpt _nl data_version>_ to-
kenized/train_datamixtures/

The sampling phase produces JSON files specifying data mixtures consumed by the training
process:

e validation_files.json - File paths stratified across all buckets (approximately 2%
of total data)

e primary_phase_files.json - File paths for epochs 1-3 with balanced language dis-
tribution and no quality bias

e annealing_phase_files.json - Quality-biased subset (approximately 15% of pri-
mary phase size) using only high-quality buckets

e mixture_statistics.json - Metadata including file counts, token counts, and distri-
butions per phase

Each JSON file organizes file paths by bucket, enabling efficient parallel data loading during
distributed training. The training infrastructure consumes these file lists to construct data load-
ers that sample from the specified files according to the upsampling rates defined for each
training phase.
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Pre-training model & hyperparameters

Developing a large language model requires making informed decisions regarding both model
architecture and hyperparameter configuration. Architectural choices include the number of
layers, the specific transformer design, and the structure of embeddings. In addition, selecting
appropriate hyperparameters—such as the total number of parameters, learning rate, and
optimization strategy—is critical to achieving robust performance and efficient training.

The GPT-NL model is based on the Llama 3 architecture, because of its proven performance,
adaptability and strong support in modern training frameworks, making it a robust and well-
understood basis for large-scale model development. It also aligned well with our choice of pre-
training codebase as the OLMo model architecture is also similar to the Llama
modelarchitecture.

At its core, the architecture is a decoder-only transformer architecture based on Vaswani et
al. (2017). Building on this, the architecture adopts several improvements that have become
standard in modern LLMs, including:

¢ RoPE embeddings: to allow for longer context scaling. For information on how this
context is lengthened after pre-training, see this page.

e Grouped query attention: by reducing the number of key-value heads, the memory and
computing requirements are reduced with minimal impact on model quality.

e SwiGLU activations: more efficient and stable than ReLU and GeLU.

Hyperparameters

Size

The model size is represented in the number of parameters, which depends on architectural
choices like dimension sizes and number of layers. To decide on this size, we tried to find an
optimal balance between model performance and computational feasibility. While smaller
models (around 7B parameters) were deemed insufficient for our capability’s requirements,
larger models (70B+) would be too resource-intensive for our current infrastructure. The 26B
parameter size should adequately handle critical tasks like summarization and retrieval-
augmented generation (RAG) while still allowing for efficient inference and fine-tuning.

From a compute-optimal perspective, traditional Chinchilla-style scaling laws (Hoffmann et al.,
2022) would suggest using more parameters (around 40B) for the available compute. However,
these scaling laws assume training for a single epochoptimize for training compute only,
ignoring inference compute optimization, and do not fully reflect the training set-ups of modern
LLMs. We also refer to the Llama 3 technical blog which found continued improvement after
training two orders of magnitude more data than Chinchilla-optimal. In practice, the resulting
compute-quality trade-off supports a somewhat smaller model without significant loss in model
performance.

The exact total number of parameters of the 26B GPT-NL model ends up at:
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Total parameters 26,034,640,896
Non-embedding parameters 25,248,208,896
Trainable parameters 26,034,640,896

where non-embedding parameters exclude the input and output embedding matrices (whose
sizes depend largely on vocabulary size and so on tokenizer design).

2.3.1.2 Learning rate schedule

For the pre-training we employ a trapezoidal scheduler (also known as WSD: warmup-stable-
decay, described extensively by Hagele et al., 2024) that offers mostly practical benefits while
being as performant as a cosine scheduler (the previous state-of-the-art standard). A cosine
scheduler requires information of the full training length a priori. The trapezoidal scheduler
consists of three phases:

4. A short, linear warm-up phase (e.g. of 2000 steps)

5. A constant learning rate phase (80-85% of steps) (we will refer to this as the primary
phase)

6. A linear cool-down or decay phase (15-20% of steps) (we will refer to this as the an-
nealing phase)

1.00 =
= 0.75
i
50 — - 10%
E 0.50 = — (Cosine
E 1 - Sqrt
j 0.25 = e [inear Cooldown
0.00 —
| | | | | |
0 200 400 600 =00 1000
Steps

Figure 9: lllustration of cosine versus trapezoidal (blue) learning rates (source
https://doi.org/10.48550/arXiv.2405.18392)

The primary advantage of the trapezoidal learning rate schedule is its flexibility during the initial
phase. This phase can be extended if the model continues to improve, delaying the transition
to the cool-down annealing phase. The cool-down phase stabilizes training and enables fine-
grained parameter updates.

Another benefit is the ability to resume training from an earlier checkpoint within the constant
learning rate phase before entering the cool-down stage. This approach is particularly efficient
in experimental settings where results must be collected across varying training lengths. With
a trapezoidal scheduler, these variations can be achieved using checkpoints from a single
training run. In contrast, cosine scheduling requires retraining from scratch for each
configuration to ensure fair comparisons and interpolation across points.
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Finally, during the final training run, the trapezoidal schedule also supports an increased
number of epochs, providing additional flexibility for model convergence.

2.3.2

Hyperparameter overview

The following table presents a concise overview of all the chosen GPT-NL hyperparameters:

Hardware

Architecture

Batching

Optimizer

Learning
rate sched-
uler

) TNO Public

Number of nodes

Number of GPUs

Hidden embedding size
Vocabulary size
Number of layers
Number of heads

Number of
heads

RoPE theta

key-value

Context length

Activation

Micro batch size

Gradient
steps

accumulation

Global batch size

Optimizer
AdamW betas

Weight decay
Max gradient norm

Constant learning rate
Warm-up steps

Minimum warm-up learn-
ing rate

22

88

6144
128,000
48

32

16

500,000

4096

SwiGLU

704

AdamW

0.9,
0.95

0.1
1.0

1e-4
2000
3e-5

During hardware failures or mainte-
nance, the number of nodes was
sometimes temporarily decreased
(see also the documentation on
scaling).

4 x H100 GPU per node.

See documentation on tokenizer.

Parameter for rotary positional em-
beddings

See this documentation page for
further information.

Increases effective batch size by
accumulating gradients over multi-
ple steps.

Number of GPUs x micro batch
size
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Cool-down/annealing 12,448
steps

Minimum cool-down learn- 3e-5
ing rate

2.3.3 References

1. Hagele et al., 2024 | Scaling Laws and Compute-Optimal Training Beyond Fixed Train-
ing Durations

2. Hoffmann et al., 2022 | Training Compute-Optimal Large Language Models

3. Llama 3 team | The Llama 3 Herd of Models

2.4 Configuring, Running, Monitoring, and
Logging Pre-Training

This section describes how a single pre-training run is orchestrated end-to-end, from con-
figuration to monitoring and logging. We structure the system into four tightly coupled phases:

7. Configure (A - Training recipe)
Define what is being optimized: objective, batch geometry, optimizer, schedule, and
compute kernels.

8. Launch (B - Jobs: debug vs production)
Decide where and how the recipe runs on the HPC cluster: resource shape, prove-
nance checks, restart policy.

9. Monitor (C — Pre-training health)
Continuously track whether training is progressing as expected: training dynamics,
throughput, and run continuity.

10. Log (D — Persistent record & artifacts)
Ensure that everything needed to replay or audit the run—metrics, configs, check-
points—is durably recorded.

Phases A-D form a loop: configuration drives launch; launch activates monitoring; monitoring
writes to the logging substrate; logging feeds back into configuration and launch decisions for
subsequent runs. Below we describe each phase with its purpose, technique utilized, how it
works in our stack, and relevant parameters. We connect design choices to literature where
appropriate.

241 Phase A: Training recipe — how we shape the
optimization problem

At this phase we settle each optimization step: batch, optimizer, schedule, and compute path.
Configuration is YAML-driven and supports multiple environments, so that the same semantic
recipe can run in both debug and production.

Batch formation

Purpose: Control the effective global batch size and thus optimization dynamics, stability, and
hardware utilization. Large-batch training is known to require careful learning-rate and warmup
tuning to avoid degradation.
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Technique: We express the global batch in tokens, derived from three knobs:

e per_device batch_size: ${oc.env:PER_DEVICE BATCH SIZE,12}
e gradient_accumulation_steps: ${oc.env:GRADIENT_ACCUMULATION_STEPS,1}
e num_nodes: ${oc.env:SLURM_JOB_NUM NODES,1}

and compute:

global_tokens_per_update
= per_device_batch_size x sequence_length x world_size
x gradient_accumulation_steps

How it works in our stack:

e YAML is resolved with OmegaConf’s oc.env interpolation, so we can change
PER_DEVICE_BATCH_SIZE, GRADIENT_ACCUMULATION_STEPS, or node count from
SLURM, without editing the config file itself.

e global batch_size in NumpyDatalLoaderConfig is set in tokens; the data loader
handles packing that many tokens per update.

e This keeps debug vs production identical at the config level: only environment variables
change.

Key parameters:

e PER_DEVICE BATCH_SIZE — primary handle on memory usage per GPU and step-
level noise.

e GRADIENT_ACCUMULATION_STEPS — trades memory vs latency by amortizing opti-
mizer updates over multiple forward/backward micro-steps.

e SLURM_JOB_NUM_NODES /get_world_size() — define the degree of data parallelism.

This design aligns with best practice in large batch distributed training, where global batch and
LR are tied through simple scaling rules.

Training horizon
Purpose: Decide how long we train and where a resumed job should continue.

Technique: We use an epoch-bounded horizon with an optional token cap:

max_duration:
tokens: -1
epochs: 3
hard_stop: -1
load_path: ${oc.env:LOAD PATH, null}

How it works in our stack:

e When tokens < 0, we interpret max_duration as Duration.epochs(epochs) and
let the data loader define epoch length.

e We expose load_path via the environment and set it from our SLURM wrapper
(train.sh) based on the latest checkpoint, so resume is always an explicit decision,
never implicit state.

e For early experimental phases, epoch-bounded runs are convenient because data in-

gestion and restart behavior are still evolving; later we can switch to token-bounded
limits for cross-mixture comparability, which is standard in scaling-law analyses [1].
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Key parameters:
e epochs — coarse control; used while pipeline and restarts are being hardened.

e tokens — fine-grained, disabled by default but compatible with scaling-law account-
ing.

e hard_stop — optional “circuit breaker” in steps (e.g., for safety or A/B testing).

Optimizer: AdamW with stability-oriented defaults
Purpose: Choose an optimizer that is robust on long-horizon, large-scale LM pre-training.

Technique: We use AdamW (decoupled weight decay) with gradient clipping:

learning_rate: le-4
weight_decay: 0.1
betas: [0.9, ©.95]
max_grad_norm: 1.0
z_loss_multiplier: ©

e AdamW decouples weight decay from the gradient step, addressing issues identified
in adaptive optimizers using naive L2 regularization [2].

¢ Gradient norm clipping is a standard remedy for exploding gradients [3].
How it works in our stack:

Configured via SkipStepAdamWConfig, which supports:

e group_overrides — we use this to disable weight decay on embeddings, a common
practice to avoid shrinking embedding norms and destabilizing normalization layers.

e optional “skip-step” behavior if numerical problems are detected.

e max_grad_norm=1.0 is enforced inside the train module; this is cheap protection
against catastrophic single-step updates in long runs.

e z loss_multiplier is wired but set to zero; we keep it available because small z-
loss terms have been reported to stabilize Transformer training in very large LMs [4].

Key parameters:

e learning_rate — main convergence speed knob; tuned in conjunction with global
batch.

e weight_decay — controls implicit regularization; decoupled from LR under AdamW.
e betas — momentum/variance smoothing; [0.9, 0.95] balances adaptivity vs noise.

e max_grad_norm — stability guardrail.

e z loss_multiplier — disabled by default; reserved for future stability tuning.

LR schedule: Warmup-Stable-Decay (WSD)

Purpose: Shape how aggressively the optimizer explores the loss landscape across compute
budget.
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Technique: We use a Warmup—Stable-Decay (WSD) schedule:

scheduler:
type: WSD
warmup_min_lr: 3e-5
decay_min_1r: 3e-5
warmup_steps: 9
warmup_delay: ©
decay_steps: ©

WSD is designed for long-horizon pre-training: maintain a large, stable LR, then branch into a
rapid decay phase to harvest a strong final checkpoint once a compute budget is chosen. Re-
cent work explains its effectiveness via a “river valley” loss landscape model [5].

How it works in our stack:

During early infrastructure bring-up, we run with a stable LR (no decay) to focus on system
correctness and throughput.

For the annealing phase (later in training), we enable decay_steps and decay_fraction to
implement a trapezoid-like schedule: constant LR followed by a triangular decay to
decay_min_1r.

This neatly aligns annealing with data mixture changes (e.g. specialized late-stage curricula)
and wall time constraints.

Key parameters:

e warmup_steps, warmup_min_1r — if enabled, control the initial ramp-up, mitigating
optimization issues common in large-batch regimes.

e decay_steps, decay_fraction, decay_min_lr — determine how quickly we “exit
the river valley” and settle into lower LR.

e warmup_delay — allows postponing warmup, e.g. when resuming mid-run.

It lets us run at a stable LR while we validate infrastructure, then branch into annealing without
needing to predetermine the full step budget from day one.

It makes it easier to align annealing windows with operational constraints (walltime, data phase
boundaries), aligning our decision to use a Trapezoid learning rate schedule. For more
information, please see Section 2.3.

Compute path accelerators: compilation + FlashAttention

Purpose: Reduce per-token latency and memory overhead so that a 26B-scale model fits and
runs efficiently on multi-node H100.

Technique:

model_compile: true
use_flash_attention_2: true

model _compile: true enables Torchinductor (torch.compile) to fuse kernels and optimize the
compute graph.

use_flash_attention_2: true activates FlashAttention-2, an |I0-aware exact attention
implementation that reduces expensive HBM<->SRAM traffic via tiling [6,7].

How it works in our stack:
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We manage per-job/per-rank caches (TORCHINDUCTOR_CACHE_DIR, TRITON_CACHE_DIR,
XDG_CACHE_HOME) and wipe them at job start, to avoid stale compiled artifacts.

We ensure debug runs follow the same compile and attention paths as production, so we catch
kernel-specific bugs early.

Key parameters:
e model_compile — toggles the compiler; primarily affects first-step latency and long-
run throughput.

e use_flash_attention_2 — trades some implementation complexity for substantial
speedups and memory savings at long sequence lengths.

2.4.2 Phase B - Launching jobs

Top-level flow: from sbatch to trainer.fit()

Purpose: This structure exists because we want one single training entrypoint
(scripts/snellius/train.sh $CONFIG_PATH) and make all operational behavior (resume,
profiling, walltime handling, restart policy) a wrapper concern.

Technique: At a high level we run:

sbatch launch_train_prod.job (or launch_train_debug.job)
-> srun scripts/snellius/train.sh
-> set up modules + venv + caches + MONITORING TOOLS
-> resolve checkpoint dir + LOAD_PATH
-> optional GPU health check / optional nsys profiling
-> torchrun (multi-node rendezvous via cled)
-> on exit: handle_restart (state file + optional resubmit)

Production gating: code provenance guarantees
Purpose: Ensure all nodes run exactly the same code revision.

e nouncommitted changes git status --porcelain excluding untracked
e branch is main
e local commit equals origin/main (via git fetch + comparing SHAS)

Why we do it: Distributed training amplifies small inconsistencies if even one node uses slightly
different code, we observed that we can get non-reproducible failures. This gating makes our
run auditable and prevents accidentally dirty tree launches.

We also provide deploy_to_shared.sh which rsyncs only git-tracked files to a shared path.
So, it enforces a consistent code snapshot across nodes and avoids shipping local ephemeral
state.

SLURM resource shape: debug vs production

For our production we start long and multi-node runs while for debug we start short and single-
node ones, using the SLURM’s sbatch command [8].

Production (plunch_train_prod.job):

--partition=gpu_h1l00
--nodes=22
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--gpus-per-node=4

--ntasks-per-node=1

--time=5-0 (5 days)

--exclusive (avoid noisy neighbours)
--signal=TERM@6O (send SIGTERM 60s before end)

Debug (pretrain_debug.sh):

same partition and 4 GPUs, but
--nodes=1 and
--time=0:20:00

Why we do it: debug should validate correctness (imports, compilation, rendezvous, check-
point logic) quickly, while production maximizes steady-state throughput.

We rely on --signal=TERM@6@ to receive a SIGTERM 60 seconds before wall time, giving us
an opportunity to checkpoint and exit gracefully. This aligns with SLURM’s recommended
pattern for cleanup logic.

Key parameters:

e --nodes, --gpus-per-node, --ntasks-per-node — define distributed topology.
e --time — caps wall time; coupled to auto-restart logic.
e --exclusive — minimizes noisy neighbours, important for consistent throughput.

Environment and dependency control
Purpose: Ensure a reproducible runtime environment across nodes.

Technique: Inside train.sh we:

e module purge then module load 2024 NCCL/2.22.3-GCCcore-13.3.0-CUDA-
12.6.0

e activate our local venv

e set OMP_NUM_THREADS=${SLURM_CPUS_PER_TASK: -8}

Why it matters: we want deterministic NCCL/CUDA pairings. Purging modules avoids inher-
ited environment contamination, while we load specific versioned libraries.

Distributed rendezvous: torchrun + ¢10d, with explicit master host/port
Purpose: Launch the multi-process, multi-node job and form a global process group.

Technique: We choose:

e MASTER_ADDR=$(scontrol show hostnames | head -n 1)
e MASTER_PORT=39591

and run our training with the distributed execution command:

torchrun \
--nproc_per_node=$SLURM_GPUS_PER_NODE \
--nnodes=$SLURM_NNODES \
--rdzv_id=$SLURM_JOBID \
--rdzv_backend=cled \
--rdzv_endpoint=$MASTER_ADDR:$MASTER_PORT \
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--master addr=$MASTER_ADDR \
--master port=$MASTER_PORT \
scripts/train.py $CONFIG_PATH

Key parameters:
e rdzv_id — uniquely identifies a worker group.
e rdzv_backend=c1ed, rdzv_endpoint — define how workers discover each other.

e master_addr, master_port — conventional process-group configuration for
torch.distributed.

This is aligned with PyTorch Elastic’s documented rendezvous model: rdzv_backend=c1ed
and rdzv_endpoint=<host>:<port> define where workers coordinate to form the process
group [4].

Why we do it: it makes multi-node startup explicit and debuggable; when something fails, the
endpoint and rendezvous ID are visible in logs and can be correlated across nodes.

Cache discipline: isolate and purge compile/profiler caches per rank
Purpose: Avoid stale or corrupted compilation artifacts across restarts and code changes.

Technique: We set per-job/per-rank cache paths:

e TMPDIR=$CACHE_DIR/cache/$SLURM_JOBID

e ORCHINDUCTOR_CACHE_DIR=... $SLURM_NODEID_$SLURM_PROCID
e TRITON_CACHE_DIR=..._$SLURM_PROCID
e XDG_CACHE_HOME=... $SLURM_PROCID

and purge them before launch.

Why we do it: torch.compile and Triton generate artifacts that can become corrupted or
incompatible across code changes. Isolating caches reduces heisenbugs and avoids cross-job
cache poisoning—especially important when running many restarts like in our case (at least
every 5 days).

MONITORING TOOLS wiring: project naming by mode & mode separation
Purpose: Keep debug and production metrics logically separated while sharing infrastructure.

Technique:

e WANDB_PROJECT="GPT-NL-$MODEL_SIZE-train" for production
e WANDB_PROJECT="GPT-NL-$MODEL_SIZE-train-$TRAIN_MODE" for debug
e WANDB_MODE=online

Why we do it: it keeps debug runs from polluting production dashboards while still exercising
the full telemetry path.

Checkpoint directory resolution and resume policy

Purpose: Make resumption robust and predictable across restarts and node counts.

Technique:
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11. We compute a default checkpoint directory per run that maps to the SLURM_JOB_1ID
so its unique (see code below)

12. Consult the state file (see B8) to check whether there is an existing run to resume
from; if so, override CHECKPOINT_DIR.

13. Discover the latest step<N> subdirectory and export LOAD_PATH accordingly, in case
OLMo-core’s latest symlink is missing (see code below)

CHECKPOINT_DIR="$PROJECT_SPACE/$MODEL_NAME-nodes-$SLURM_NNODES-mbs-$PER_DEV
ICE_BATCH_SIZE-gas-$GRADIENT ACCUMULATION_STEPS-$SLURM_JOB_ID"

LATEST_CHECKPOINT=$(1ls "$CHECKPOINT DIR" | grep '~step[0-9]\+$' | ... | tai
1 -n1)
export LOAD_PATH="$CHECKPOINT DIR/step$LATEST CHECKPOINT"

In our configuration we further set the steps that we store checkpoints:

save_interval: 880
ephemeral_save_interval: 110
save_async: true

Why we do it: we bias toward resume correctness (perfect resume without data repetition
across several node counts) by checkpointing on carefully chosen step multiples, and we add
ephemeral checkpoints as a higher-frequency safety net. OLMo-core’s checkpoint callback is
designed for exactly this pattern: permanent amd ephemeral intervals.

State file + auto-restart: training as a resumable workflow
Purpose: Decouple the logical training run from individual SLURM jobs.

Technique:

e train_state_utils.sh maintains a JSON state keyed on (user, model, nodes,
per_device_batch_size, grad_accum) and tracks:

o checkpoint_dir, existence
o job_id, runtime, status, timestamp
o restart_count
e handle_restart(exit_code, checkpoint_dir, script_path, max_restarts):
o Exit 0 -> mark completed and optionally stop.
o Exit1-> mark failed and, if allowed, re-queue.
o Other -> mark failed and require manual intervention.

Why we do it: This pattern mirrors standard HPC practices for managing long-running work-
flows over multiple jobs. SLURM jobs are ephemeral; the training run is the persistent entity.
The state file makes that persistence explicit and supports. At scale, transient failures (file sys-
tem hiccups, node faults, scheduler preemption) are expected; automatic resubmission re-
duces operator toil and shrinks dead time.

Time-aware graceful termination

Purpose: Distinguish wall time preemption from manual cancellation and decide whether to
restart.

Technique:

e In production, we install trap graceful_exit TERM.
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e On SIGTERM:
1. Query TimeLimit via scontrol show job.
2. Compute remaining seconds.
3. If close to zero, treat as walltime preemption (exit 0).
4. Otherwise, treat as manual cancel (exit 1).
e Then delegate to handle_restart.

Why we do it: SLURM typically sends SIGTERM before SIGKILL; we use that window to exit
cleanly and optionally restart, rather than losing progress to SIGKILL. This is consistent with
SLURM’s recommendation to use pre-kill signals for job cleanup.

GPU health check

Purpose: Fail fast if requested GPUs are degraded (thermal issues, ECC errors, or intercon-
nect problems).

Technique:

e When --gpu-health-check is enabled, we:

o Run an Apptainer (.sif) image across nodes, performing GPU stress and
diagnostic tests.
o Parse the container's summary and abort the run if any GPU fails.

Profiling: Nsight Systems traces on demand
Purpose: Obtain detailed CPU/GPU timeline traces for throughput bottleneck analysis.

Technique: If --profiling is set, we wrap the launcher with:

nsys profile --stats=true --trace=cuda \
--cuda-memory-usage=true \
-0 traces/trace_${SLURM_JOBID} \
$TORCHLAUNCHER

NVIDIA Nsight Systems is a system-wide performance analysis tool designed to identify bot-
tlenecks across CPUs and GPUs.

Why we do it: During early experimentation or debug phases we wanted to check the usage
of our GPU Nodes with more granularity. Still, Nsight Systems tracing can add non-trivial
overhead, especially with broad CUDA API tracing and memory tracking enabled, so we use it
selectively in short debug runs rather than in every production job [10].

2.4.3 Phase C -: Monitoring

Following OLMo-core’s training module which is designed for async metric logging and flexible
callbacks, we treat monitoring as first-class control plane, not an afterthought.

Metric collection strategy: planes and namespaces

Purpose: Organize metrics so we can rapidly distinguish between optimization, system, and
workflow issues.
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Technique: We group metrics into:

1. Training dynamics (model health):

o loss curve stability, LR, grad norms, clipping activity
o divergence indicators around schedule transitions (stable — decay)
2. System efficiency (throughput health):

o tokens/sec and step-time variance
o Dataloader stalls vs comm stalls vs compile regressions
3. Run continuity (resumability health):

o time since last permanent and ephemeral checkpoint
o correctness of resume (no data repetition, consistent step counters)
o restart loop behavior (state file + restart count)

How it works in our stack: We record metrics in the train module (loss, Ib, grad norm, etc.)
and allow OLMo-core to gather/reduce them across ranks. Train modules are explicitly respon-
sible for recording core metrics via record_metric() / record_ce_loss(), with optional
namespaces and reduction behavior.

Why we do it: long-running pre-training fails in predictable ways; separating failure modes by
plane lets us set sharper alerts and faster root-cause.

Throughput + memory monitoring
Purpose: Detect performance regressions and emerging OOM risks.

Technique: We rely on built-ins:

SpeedMonitorCallback: monitors throughput and is automatically added if not configured
(we still usually configure it explicitly so dashboards stay consistent across runs).

GPUMemoryMonitorCallback: adds GPU memory statistics as metrics.
This combination lets us catch:
e Dataloader stalls (tokens/sec collapses, batch_load_time rises)
e silent OOM risk (allocated/reserved creeping up)
e interconnect regressions (step time rises while compute stays flat)

In-loop eval monitoring (lightweight guardrails)

Purpose: Detect capability drift and data/recipe regressions without expensive external eval-
uation.

Technique: We run periodic in-loop evaluations using the evaluator callback framework:

e EvaluatorCallback runs evaluators at a specified interval.

e LMEvaluatorCallbackConfig and DownstreamEvaluatorCallbackConfig config-
ure common evals.

We treat eval as a drift detector, not a leaderboard generator:

e small, fixed validation sets for perplexity slope

o afew targeted tasks and benchmarks (e.g. arc_challenge_test_rc_5shot, hellaswag-
nl_rc_Oshot, etc.) to detect capability regressions after recipe changes
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244

Phase D - Logging

Logging is where monitoring data becomes durable evidence. We log at three layers: SLURM,
state files, and training metrics/artifacts.

SLURM logs are centralized and symbolically linked back into the repo workspace
Purpose: Preserve complete job stdout/stderr and make it easy to find per job.

Technique: Both debug and prod send logs to:
--output=/projects/prjse986/wpl4d/olmo-logs/%j.out
--error=/projects/prjse986/wpl4d/olmo-logs/%j.err
Then we create symlinks:

1n -sf /projects/olmo-logs/${SLURM_JOB_ID}.out $SLURM_SUBMIT_DIR/logs/${SLU
RM_JOB_ID}.out
1n -sf /projects/olmo-logs/${SLURM_JOB_ID}.err $SLURM_SUBMIT_DIR/logs/${SLU
RM_JOB_ID}.err

Why we do it: centralized storage avoids node-local loss; local symlinks make it easy for us
to find the right logs from the project directory of our WP.

State logging
Purpose: Provide a single, structured source of truth for each logical run.

Technique: We write a single state JSON per logical run key and update it on transitions:
The state file encodes:

e checkpoint_dir, existence
e job_id, hostname, num_nodes

e runtime, status (starting, running, completed, failed, max_re-
starts_reached)

e restart_count
We update it on every transition and archive it when runs finish or are exhausted.

Why we do it: This way we create a user-friendly, machine-readable source of truth. It is
intentionally append-free so that external automation can simply read the latest state without
parsing logs.

Distributed logging hygiene (rank filtering + warnings everywhere)
Purpose: Avoid log storms from thousands of ranks while keeping critical messages visible.

We initialize the training environment with OLMo-core’s prepare_training_environment(),
which sets up distributed process groups and supports mixed backends (cpu:gloo,cuda:nccl).
We intentionally keep a CPU backend available so that async checkpointing and bookkeeping
collectives do not block training compute.

We also use log_filter_type semantics so that only selected ranks emit verbose logs (while
warnings/errors always surface).

Console logging
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Purpose: Provide quick, at-a-glance progress information without dashboards.

Technique: We use the console logger callback patterns so that:

o step-level progress is visible without opening dashboards
e periodic metric summaries are emitted at a controlled interval

This is coded in the callbacks API (see ConsolelLoggerCallback and the callback lifecycle
hooks).

Experiment trackers and monitoring tools semantics

Purpose: Create a rich, query enabled history of experiments: metrics, configs, and artifacts
[11].

Technique:

e We attach WandBCallback to the trainer with:
o enabled=True in production.
o name=config_yaml["run_name"].

¢ Monitoring tools log metrics every step from rank 0 and attaches configuration dic-
tionaries for full reproducibility.

Implication. Even if metrics_collect_interval is > 1, the tracker still sees dense curves;
we therefore keep the metric vocabulary compact to avoid excessive volume.

Checkpoint logging & retention

Purpose: Balance compute loss (since last checkpoint) vs storage and IO overhead, while
supporting flexible resumption.

Technique: We configure checkpointing as a logging artifact pipeline:

CheckpointerCallback(
save_interval=save_interval,
ephemeral_save_interval=ephemeral_save_interval,
save_async=True,)

e Permanent checkpoints for every 880 steps provide stable rollback points and are in-
tended to be retained long term.

e Ephemeral checkpoints for every 110 steps provide fine-grained restart points but
can be pruned aggressively once upstream runs are healthy.

We heavily use async checkpointing and more specific ephemeral checkpoints that are in-

tended for frequent recovery points (every 110 steps) and are perfect for resuming on (22, 11,
10, 5, 2) nodes.

References
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Evaluation

During pre-training of the GPT-NL model, we evaluate its performance on both the training
objective (next-word prediction) as well as downstream tasks, such as reasoning and reading
comprehension.

During training, we continuously monitor model performance using two primary metrics:

¢ Cross-entropy loss: the average negative log-likelihood of predicted token probabili-
ties, tracked on the training set (training dynamics) and validation set (generaliza-
tion).
e Perplexity: the exponential of cross-entropy loss, representing how surprised the
model is by actual next tokens in unseen text.
The graph below shows cross-entropy training loss across the entire trajectory, with phases
color-coded for clarity. We observe consistent downward trends indicating stable dynamics,
with occasional spikes that the model overcame autonomously. Key observations include: (1)
a noticeable jump between Epoch 1 and Epoch 2 due to intentional data distribution changes,
(2) steeper loss decreases during annealing phases from reduced learning rates, which
extracts final performance gains, and (3) the end-of-Epoch-2 checkpoint was annealed mid-
training for intermediate checkpoints, while Epoch 3 runs in parallel with Epoch 2 annealing to
maintain progression.

train/CE loss

— epoch-3-annealing epoch-3 = epoch-2-annealing = epoch-1

12

10

8

6

4 L

2 i

s o ] e
Step
0
20k 40k 60k 80k 100k 120k 140k

Figure 10: Pre-training loss
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We further monitor validation cross-entropy separately for each language and quality bucket to
track performance across our diverse data distribution, with Dutch and English subdivided by
quality levels.

Epoch 1 to Epoch 2 transition: A clear inflection point occurs when new high-quality Dutch
data and curated code data (with longer sequences) were incorporated mid-training. The Code
bucket shows the most dramatic effect—loss drops sharply, indicating the model rapidly adapts
to the longer, curated samples. The Dutch high-quality data similarly benefits from this shift.
The New Dutch bucket, however, experiences a sudden improvement trajectory, accelerating
its decline as the proportion of these sources increases in the training mix.

Annealing phases: When transitioning to annealing phases (both epoch-2-annealing and
epoch-3-annealing), we deliberately shift toward high-quality sources only. This creates an
interesting divergence: loss increases on low/medium-quality data (the model becomes less
confident on lower-quality text), while it continues decreasing on high-quality data. This is the
intended behavior—biasing the model toward generating high-quality output. The spikes visible
in several buckets during annealing correspond to this intentional data distribution shift.

Dutch High/Low Quality English High/Low Quality

New (Dutch) High/Low Quality Other languages

Code
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2.5.1

In-loop evaluation

To evaluate downstream task performance during pre-training, we implement the in-loop
evaluation mechanism from OLMo, adapted to our training system (Groeneveld, Dirk, et al.).

Rather than static post-training audits, this dynamic approach enables real-time issue
detection. Our benchmarks assess Reasoning and Commonsense (HellaSwag, PIQA) and
Language Understanding (MMLU, ARC):

arc_chal-
lenge_test_rc
_5shot

arc_easy_test
_rc_5shot

piqa_val_rc_5
shot

hellaswag-
nl_rc_@shot

mmlu-
nl_stem_mc_5s
hot

ARC Challenge: hard
multiple-choice sci-
ence QA, 5-shot setting

ARC Easy: easier mul-
tiple-choice science
QA, 5-shot setting

PIQA: physical com-
monsense multiple-
choice, validation split,
5-shot

HellaSwag: com-
monsense  next-sen-
tence inference, zero-
shot setting

MMLU: multilingual
multiple-choice exam-
style questions, 5-shot

Input: five example QA
pairs + new question.
Output: predicted an-
swer choice.

Input: five examples + a
new ARC-Easy question
-> model predicts an-
swer.

Input: five goal/choice
examples + new goal.
Output: chooses correct
solution.

Input: context. Output:
selects most plausible
continuation.

Input: five example Q-A
pairs + a new multiple-
choice question. Output:
predicted choice.

Clark et al., 2018

Clark et al., 2018

Bisk et al., 2020

e e

Zellers et al., 2019

Hendrycks et al., 2021

As there are no official Dutch versions of some of the tasks we are interested, we have used
the machine translated ones for the Dutch language, namely Hellaswag-nl and MMLU-nl.

In addition, due to the big size of some of these tasks, we have developed a truncation
mechanism and dynamically select part of the total available sets during our evaluations.

“Question: What is the capital of
France? Choices: A) Berlin B)

Paris C) Madrid D) Rome. An-

0-shot The model is given only the task descrip-
tion (or question) with no examples be-
forehand.
swer:”
5-shot The model is given five examples of the “Q7: ...

task with correct answers (few-shot
learning) before the new test question.
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We employ both 0-shot and 5-shot settings to measure baseline generalization and assess in-
context learning ability—whether the model can adapt to tasks without gradient updates.

Knowledge and Commonsense Tasks: Results reveal distinct learning trajectories. ARC and
PIQA show rapid initial improvement in Epoch 1 followed by convergence toward performance
plateaus. The model achieves notably higher accuracy on ARC-Easy (~0.6) and PIQA (~0.8)
versus ARC-Challenge (~0.4), indicating solid commonsense reasoning but limited scientific
reasoning capability. These performance differences reflect task difficulty—easier tasks
provide more reliable patterns in the pre-training distribution.

Reasoning Tasks: A critical limitation emerges for HellaSwag-NL and MMLU-NL, which
remain near or below random baseline (0.25 for 4-choice) throughout training. HellaSwag-NL
exhibits high variance early before stabilizing around chance levels, suggesting either
insufficient reasoning capability or limited transfer from pre-training to complex multi-step
reasoning. This knowledge-reasoning gap represents an important avenue for future
improvements.

arc_challenge_test_rc_Sshot (accuracy v2) arc_easy_test_rc_Sshot (accuracy v2)

SN

piga_val_rc_S5shot (accuracy v2) hellaswag-nl_rc_Oshot (accuracy v2)
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mmlu_nl_stem_mc_5shot (accuracy v2)
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2.5.2 Out-of-loop evaluation

Out-of-loop evaluation is performed after pre-training has completed and does not influence
the training process itself. Evaluation uses frozen model checkpoints and assesses
downstream task performance, generalization, and alignment but do not affect training
dynamics or model updates. We employ EuroEval as our offline benchmarking framework to
comprehensively assess Dutch language performance. EuroEval provides a standardized,
robust evaluation pipeline that:

e Covers many task types relevant to Dutch, such as sentiment analysis, named-entity
recognition, linguistic acceptability, reading comprehension, knowledge tasks, com-
mon-sense reasoning, and summarization.

e Uses bootstrapped evaluation, running each model—-task pairing 10 times with
resampled data and reporting mean scores with 95% confidence intervals, yielding
statistically reliable performance estimates.

We run EuroEval periodically, selecting the latest checkpoint and comparing the progress of
GPT-NL in various tasks.

Below we list an overview of the Dutch tasks integrated into EuroEval:

Sentiment Classi-

DBRD (Dutch book

Few-shot prompt (12 examples), generative

fication reviews) sentiment label output (“positief/negatief/—").
Named Entity CoNLL-nl Few-shot generative output as JSON dictionary
Recognition of entities.

Linguistic Accept- ScalLA-nl, (Unoffi- Few-shot prompts with “correct’/“incorrect” la-

ability
Reading Compre-

cial) Dutch CoLA
SQUAD-nl, (Unoffi-

bels.
Generative answer output via prompt templates.

hension cial) BeleBele-nl,
MultiwikiQA-nl
Knowledge MMLU-nl, (Unoffi- Few-/zero-shot question answering tasks.
cial) ARC-nl
Common-sense HellaSwag-nl, (Un- Select most plausible continuation via genera-
Reasoning official) Gold- tive setup.
enSwag-nl
Summarization WikiLingua-nl Summarization of Dutch text, generative output.
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Within WP21, new Dutch benchmarks are in development that will be included in EuroEval,
covering additional tasks like simplification and areas like bias.

sst5/test_mcc

epoch-3-annealing

epoch-3

epoch-2-annealing

epach-2

epach-1

-0 -80  -60 -0 -0 0 Pl @ 0 %0 100
conll-enftest_micro_f1_no_misc
epoch-3-annealing
epoch-3
epoch-2-annealing
epoch-2
epoch-1
0 0 0 30 40 50 60 70 80 90 100
scala-en/test_mcc
epoch-3-annealing
epoch-3
epoch-2-annealing
epoch2
epoch-1
100 80 60 40 20 0 0 40 60 80 100
squad/test_em
epoch-3-annealing
epoch3
epoch-2-annealing
epoch2
epoch-1
0 10 20 30 40 50 60 1 80 % 100

) TNO Public

100 -80 i

epoch-3-annealing

epoch-3

epoch-2-annealing

0

dbrd/test_mcc

epoch-3-annealing

epoch-3

epoch-2-annealing

conll-nl/test_micro_f1_no_misc

epoch-2

epoch-l

epach-3-annealing

0o -80 -60

-40

scala-nl/test_mcc

=20

epach-3-annealing

epoch-3

epach-2-annealing

epoch:2

epoch-1

0 20 40 60 80 100

squad-nl/test_em

epoch3

epoch-2-annealing

epoch2

epoch-1

pul

0

40

50 60 mn 80 90 100
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life-in-the-uk/test_mec

epoch-3-annealing

epoch-3

epoch-2-annealing

hellaswag/test_mcc
epach-3-annealing
epoch-3
epoch-2-annealing

epoch-2

epoch-1

=

mmlu-nl/test_mec
epoch-3-annealing
epoch-3
epoch-2-annealing

epach-2

epoch-l

hellaswag-nl/test_mcc

epoch-3-annealing

epach-3
epach-2-annealing
epoch-2

epach-1

We can see from this table that generally later epochs have better results.

Sentiment classification

100

100

SST5 (EN) and DBRD (NL). We reach 90% on the Dutch DBRD, while the English stays at

58%.

Named Entity Recognition

Conll-en and Conll-nl have moderate results: 38% EN and 36% NL. There is a slight improve-
ment from epoch 1 to the following epochs, but not a drastic one.

Linguistic acceptability

SCALA-EN and SCALA-NL. The metrics improve with the epochs but are very low (17% EN
and 19% NL). This is one of the problematic tasks, as the model only has to output a letter as

answer (multiple choice).

Reading comprehension
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2.6

2.6.1

SQUAD and SQUAD-NL. Moderate performances: 66% EN and 51% NL.

Knowledge

LIFE-IN-THE-UK and MMLU-NL: knowledge. The metrics improve but are very low (10% EN
and 2% NL). Also here, multiple choice is requested to the model.

Common sense reasoning

Hellaswag and Hellaswag-NL. For this task we have the worst results: 3% EN and -2% NL. For
the Dutch version, the results for epoch-3 are also worse than the results for epoch-2.

Summarization
cnn-dailymail and wiki-lingua-nl. For this task, the results are acceptable: 67% EN and 61%
NL.

Context Extension

For LLMs, the context length refers to the maximum number of tokens an LLM can process
within a single forward pass. It determines how far back the model can look when interpreting
or generating text. A longer context length enables the model to capture broader dependencies
and maintain coherence across extended sequences [1].

GPT-NL is pretrained with a native context length of 4096 tokens. At a later stage, the
development team included an effort to extend the supported context length using techniques
such as RoPE Scaling and gradually increasing the context length in the pretraining and
instruction fine-tuning phases.

Rotary Positional Embeddings (RoPE) encode relative positional information by rotating token
representations in attention space [2]. RoPE scaling methods, such as NTK or YaRN [5]
scaling, adjust the frequency of these rotations to allow extrapolation beyond the context
lengths seen during training. While RoPE scaling improves numerical stability at longer
contexts, it does not replace the need for exposure to long sequences during training.

Increasing Context Length

Extending a model’s context length typically requires a continued pretraining at progressively
larger sequence lengths, so the model learns long-range dependencies. Curriculum learning
is commonly used, where the sequence length is increased in stages (for example, 4k to 8k to
16k) to improve stability and performance. Context lengthening usually occurs during mid-
training, after the model has already learned short-range dependencies, ensuring that
attention patterns can adapt to longer sequences without destabilizing previously learned
knowledge. Depending on the positional encoding method, additional steps may include
expanding positional embedding matrices or applying RoPE scaling after intermediate training
phases [6].

Within GPT-NL, the pretraining data mixture is split into a new subset of samples which are of
16k, 32k or 64k tokens. These subsets can be used for the curriculum learning-based mid-
training.

Evaluation and Benchmarks

To evaluate GPT-NL capabilities and performance after Context Extension, we used 2
benchmarks:
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Needle in the Haystack [4]: A synthetic long-context retrieval benchmark that tests
a model’s ability to locate a specific piece of information (the “needle”) within a large
body of irrelevant text (the “haystack”), measuring basic long-range memory and re-

call performance.

RULER [3]: A more comprehensive long-context evaluation suite that extends be-
yond simple retrieval to include multi-needle, multi-hop tracing, aggregation, and
question answering tasks, aiming to assess a model’s true long-context understand-

ing capabilities as context length increases.

GPT-NL base:

Pressure Testing OLMa 2
Fact Retrieval Across

GPT-NL with context extension:

Pressure Testing WiLLM Epoch 2 328 contin ined on 18 tokens 32K length
Fact A HayStack®)

Retrieval Across Context Len e In

A

Taken Linit

o o
& F

score

Here we provide the complete results for both tasks: Needle in the Haystack (niah) and RULER.

Llama 3.1

Task 4096

niah_multikey_1 1.0000
niah_multikey_2 1.0000
niah_multikey 3 0.9900
niah_multiquery = 0.9995
niah_multivalue  0.9910
niah_single_1 1.0000
niah_single_2 1.0000

) TNO Public

8192

1.0000
1.0000
0.9980
1.0000
0.9935
1.0000
1.0000

16384
1.0000
1.0000
0.9900
1.0000
0.9930
1.0000
1.0000
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niah_single_3 0.9960 0.9980 1.0000
ruler_cwe 0.9978 0.9776 0.6930
ruler_fwe 0.9620 0.9173 0.9660
ruler_qa_hotpot 0.6540 0.6300 0.5820
ruler_gqa_squad 0.7710 0.7303 0.7090
ruler_vt 0.9996 1.0000 0.9992
Average 0.9508 0.9419 0.9170

GPT-NL

niah_multikey_1 0.9980 0.9960 0.9280
niah_multikey_2 0.9860 0.9900 0.9720
niah_multikey_3 0.6940 0.5000 0.5120
niah_multiquery 0.9790 0.9430 0.7860
niah_multivalue 0.6620 0.5690 0.4815
niah_single_1 1.0000 1.0000 0.9980
niah_single_2 1.0000 1.0000 1.0000
niah_single_3 0.7060 0.7600 0.6120
ruler_cwe 0.6438 0.3544 0.2354
ruler_fwe 0.7960 0.8080 0.8353
ruler_qa_hotpot 0.4100 0.3800 0.3480
ruler_qa_squad 0.5192 0.4138 0.4168
ruler_vt 0.9956 0.9896 0.9732
Average 0.7992 0.7464 0.6999

Performance comparison

GPT-NL 0.7992 0.7464 (6.61%) 0.6999 (12.45%)
Llama 3.1 0.9508 0.9419 (0.94%) 0.9170 (3.52%)

Remark: These results are using the epoch 2 weights, not the final model weights.

What all these tables mean:
e GPT-NL loses ~6.6% by 8K, and a total of ~12.5% by 16K (relative to 4K baseline).

e Llama 3.1 only loses ~0.9% at 8K, and ~3.5% at 16K.

Thus Llama 3.1 is significantly more robust to context scaling — its degradation is only a frac-
tion of GPT-NL. In practical terms, Llama 3.1 retains high performance even when context is
quadrupled in length, while GPT-NL degrades more noticeably.

To sum up:

e Adding dynamic RoPE scaling does not hurt performance and enables longer context
performance
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e The context lengthening performance is very inferior to any SOTA models, even
smaller models from a couple of years ago

e Even on a native 4k context length our models perform bad (according to benchmark
results). Finetuning does not have a significant negative effect on the context length-
ening

2.6.2 References

2.7

2.71

[1]1 A Controlled Study on Long Context Extension and Generalization in LLMs

[2] LongRoPE: Extending LLM Context Window Beyond 2 Million Tokens
[3] RULER: What’s the Real Context Size of Your Long-Context Language Models?

[4] Needle in the Haystack for Memory Based Large Language Models

[5] YaRN: Efficient Context Window Extension of Large Language Models

[6] Roformer: Enhanced transformer with rotary position embedding

Data folder Structure and Source Code
Organization

The training set-up is based on the existing implementation of Al2’s OLMo(-core). Initially we
used the original OLMo codebase, but during development switched to the newest, optimized
OLMO-core.

For our original comparison between using the HuggingFace Transformers framework and the
Al2 OLMo framework, see the results of the November 2024 experiments. The OLMo training
code, written in native PyTorch, showed a substantially better performance in terms of speed.

During our initial development, the OLMo-core package was published by Al2. Some initial
tests comparing our setup using this framework versus using OLMo showed a ~20% speedup
in throughput (measured in tokens/device/sec). This improvement in performance as well as
the more up-to-date support and maintenance on the OLMo-core package led to the decision
to switch framework.

The code base has been split up into several modules:

OLMo-Core

A fork from the original OLMo-core code base. This allows us to make small changes
specific to our setup in a structured way. Changes include adding the GPT-NL tokenizer to
the configuration, updating evaluation and conversion scripts.

/olmo-core
L— /docs
L— /src
/examples # training recipe examples
/olmo_core
/data # scripts fro data handling
/distributed # scripts for distributed training
/eval # scripts for evaluation

) TNO Public 52/109


https://arxiv.org/pdf/2409.12181
https://arxiv.org/pdf/2402.13753
https://arxiv.org/pdf/2404.06654
https://arxiv.org/pdf/2407.01437?
https://arxiv.org/pdf/2309.00071
https://arxiv.org/pdf/2104.09864
https://allenai.org/olmo
https://github.com/allenai/OLMo
https://github.com/allenai/OLMo-core
https://ci.tno.nl/gitlab/gpt-nl/model-development/olmo-core
https://github.com/allenai/OLMo-core

) TNO Public ) GPTNL-DEL-4002-[1.0]

— /float8 # scripts for precision handling

— /internal # scripts for leaderboard ranking

— /kernels # scripts for MoE kernel

— /launch # scripts for training launchers

— /nn # scripts for neural networks

— /ops # scripts for MoE operations

— /optim # scripts for optimization routines

— /train # scripts for training routines

I: /scripts # various sizes training recipes
/test # test suite for olmo_core components

2.7.2 Pytorch native

All GPT-NL code, including scripts for running the distributed training, evaluation, inference
along with installation and debugging scripts.

/pytorch_native
L— /config # model and train configuration
— gpt-nl-1B.yaml
— gpt-nl-26B.yaml
/logs # output folder of the jobs
—— job_number.out
— job_number.err
/scripts
— /conversion # checkpoint conversion recipe
— /evaluation # checkpoint evaluation scripts
— /inference # inference workflow scripts
— /installation # installation scripts
— install_olmo_snellius.sh
— update_olmo_local_environment.sh
— /snellius # Training job scripts
— .env
— copy_to_archive. job
— copy_to_snellius.job
— deploy_to_project_space.sh
— launch_train_debug.job
— launch_train_prod.job
— train.sh
— train_state_utils.sh
— cli_helpers.sh
— train.py # main training logic
L— README.md
L pyproject.toml

For more information on the Training workflow please look at Section 2.4.

2.7.3 OLMo-in-loop-evals

A fork from the original OLMo-in-loop-evals, updated to include Dutch benchmarks.

/olmo-in-loop-evals
L— /olmo_eval
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2.74

2.7.5
2.7.51

2.7.5.2

— /hf_datasets # local evaluation datasets

— /oe_eval tasks # configuration files for eval tasks
L— /tokenizers

— metrics.py

— tasks.py

— tokenizer.py

— util.py

— version.py

IE /scripts # release scripts

/tests # test suite for eval tasks
README . md
L— pyproject.toml

Model conversion

During training, the model checkpoints are saved as a PyTorch model, as well as in a
distributed format (.distcp). Since many downstream applications wuse the
HuggingFace/Transformers library, we convert the model checkpoints to the HuggingFace-
compatible safetensors format in bfloat16 precision.

Practical notes

Installation
It is adviced to clone all the repositories and start the installation following the below order:

This workflow assumes access to Snellius

cd pytorch_native
chmod +x scripts/installation/install_olmo_snellius.sh
bash scripts/installation/install_olmo_snellius.sh

source venv/bin/activate

cd ../olmo-core
pip install -e .

cd ../olmo-in-loop-evals
pip install -e .

Logs and workspace

All of our logs and checkpoints are store to a shared place $PROJECT_SPACE under the OLMo-
core folder. There, each ftraining job creates a folder with the format: $PRO-
JECT_SPACE/$MODEL_NAME-nodes-$SLURM_NNODES-mbs-$PER_DEVICE_BATCH_SIZE-gas-
$GRADIENT_ACCUMULATION_STEPS-$SLURM_JOB_ID, e.g.gpt-nl-26B-nodes-22-mbs-12-
gas-3-12967709.

The folder has the below structure:
/OLMo-core

L— /checkpoint_step_number
L

/model_and_optim
/train
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— .metadata.json
— config.json

— data_paths.txt

— /wandb

— /latest_run

— debug-internal.log
— debug. log
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3

3.1

Architecture of the Instruction
Fine-Tuning

In this set of pages, we describe the GPT-NL fine-tuning approach that we carried out between
July and December 2025. We start with a brief motivation about why pre-training itself is not
enough, which type of fine-tuning we employ and why. Then we give an overview of the fine-
tuning process as we implement it and provide an outline of content in this chapter.

A pre-trained model is a raw language generator that is not useful yet: it does not follow
instructions. It is optimised to find a likely next token (a numerical representation of words, or
parts of words), given the previous tokens. What is likely to follow in a text, is not necessarily
the most useful. Consider the example below, where the base model is asked in which year a
particular film was released. The model produces a series of years, instead of formulating a
coherent answer that provides a (single) answer to this question.

Example:

Q: In which year was The Godfather first released?
A: 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992

Modern post-training (i.e., everything that comes after pre-training) is a series of fine-tunes with
different aims that build upon each other and require careful design:

¢ Instruction fine-tuning teach formatting and base of instruction following behaviour
(e.g., chat interactions, answering questions)
e Preference tuning: align to human preferences (safety, tone of voice)

¢ Reinforcement learning: boost performance on verifiable tasks (e.g., math, precise
formatting, reasoning)

As the resources for this activity in this stage of the GPT-NL project are constrained (datasets,
compute, and time), we resort to instruction fine-tuning only for now.

GPT-NL Instruction fine-tuning

Let’s start with a definition of instruction fine-tuning:

Instruction fine-tuning is defined as (most-often) supervised fine-tuning
(SFT) on instruction-demonstration data, potentially in a conversational
format. This type of training makes that the model can follow
instructions and make (useful) predictions (potentially with CoT) in a
zero-shot (or few-shot) setting.

Supervised fine-tuning trains the model on instruction-response pairs (either single-turn
prompt-completion or multi-turn conversational exchanges) by masking the input tokens and
computing cross-entropy loss only on the output tokens (assistant responses), teaching the
model to generate appropriate responses rather than predict any next token. This approach
transforms the pre-trained language model from a raw text generator into an instruction-
following assistant that produces coherent, task-oriented outputs.
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Post-training can elicit various capabilities and behavioral traits in the model. Given the broad
range of possible objectives, we have narrowed these down to a set of priority goals that are
important, achievable through supervised fine-tuning, and for which data is available. We will
refer to this set of objectives as the GPT-NL Priorities in figures. The table below recaps the
objectives that made it to the final selection.

Instruction
Following

Instruction
Following

Instruction
Following

NLP Tasks

NLP Tasks
NLP Tasks

Long Con-
text

Knowledge

General instruction following

Supporting chat-style interac-
tion

Precise formatting following
(JSON)

Specializing in main GPT-NL
NLP tasks
RAG

Generalizing to a broader set
of GPT-NL tasks

Longer context processing
than the base model (>4096)

Establishing solid knowledge
recall

High
Low
Low
High

High

Low
Medium

Medium

Yes

Yes (OASST)

A bit SciRIFF

@ Yes (GPT-NL IT
dataset)

Only contextual QA
Yes (FLAN)

Yes, if continual
pre-training

Substantial QA
data

Yes
Yes
Maybe
Yes

Yes
Yes

Yes

Yes

Examples of objectives that did not make it to this priority list include multi-lingual capabilities
like translation, precise instruction following (e.g., writing exactly three paragraphs when
instructed), and safety objectives. The latter category encompasses multiple aspects, such as
producing misinformation or disinformation as well as generating harmful content. While these
aspects are important for the project, they are not included in this initial priority list because we
do not have data available for these objectives and other types of fine-tuning (e.g., preference

fine-tuning) might be more suitable for addressing them.

3.1.1 GPT-NL instruct dataset

GPT-NL set out to create its own Dutch instruction fine-tuning dataset, consisting of ~15K
prompt-completion pairs. The dataset has been created by human annotators of one
independent company, following detailed instructions. The dataset is subdivided in a few tasks:
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Figure 11: Task distribution GPT-NL Instruct Dataset

3.1.2 Overall instruction fine-tuning process
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Figure 12: Fine-tuning Overview

The overall process (visualised in the diagram above) takes as input a pre-trained base model
along with the GPT-NL instruction dataset and other openly available datasets, and produces
an instruction fine-tuned model checkpoint. Since the pre-training pipeline may produce
multiple versions of the base model, fine-tuning can be performed on different base
checkpoints. Additionally, the fine-tuning pipeline experiments with different data selections for

each base model, resulting in multiple fine-tuned variants per base checkpoint.

1. Data preparation - Preparing the datasets into proper and unified prompt-completion

format

2. Data selection - Combining datasets in different proportions and filtering out parts of

datasets

3. Training - Supervised Fine-Tuning (SFT) implementation that modifies the model
weights, with configuration, execution on Snellius HPC, and monitoring capabilities
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3.2

3.2.1

3.211

3.21.2

3.21.3

3.21.4

4. Evaluation - Evaluating model performance through internal and external bench-
marks, comparing fine-tuned variants, and analysing results across task categories
and languages

For a technical overview of how the codebase and data are organized, see Code and Data
Organization.

Fine-Tuning Data Preparation

This section describes the data preparation process for GPT-NL instruction fine-tuning, which
transforms diverse datasets into a unified format suitable for training. The pipeline handles
dataset acquisition, standardization, filtering, and formatting to ensure consistent training data
formats across multiple sources and languages.

Why data preparation is critical?

Raw datasets from different sources have inconsistent formats, varied quality, and different
structures that make them unsuitable for direct use in fine-tuning. The data preparation pipeline
addresses several key challenges:

Format Heterogeneity

Different datasets use incompatible schemas and field names. One dataset might use "ques-
tion" and "answer" fields, while another uses "input" and "output". Training frameworks
like Hugging Face TRL require consistent formats with specific field names. Without standard-
ization, training scripts would need custom handling for each source, leading to parsing errors
and inability to batch samples efficiently. The pipeline transforms all datasets into a unified
schema (instruction, context, response, task_category, etc.).

Quality and Noise in Crowdsourced Data

Datasets from online forums and crowdsourcing platforms (e.g., Goeievraag.nl,
OpenAssistant) contain data of varying levels of quality including factually incorrect information,
incomplete responses, off-topic discussions, platform-specific artifacts, and toxic language.
Training on low-quality data causes models to reproduce incorrect information, develop poor
instruction-following capabilities, and amplify harmful patterns. The pipeline applies multi-stage
filtering using Pl detection, toxicity screening, and LLM-as-a-judge evaluation to ensure only
high-quality examples are used.

Task Distribution Imbalance

Raw dataset collections often have severe imbalances in task types. Without explicit tracking
and balancing, models can over-optimize frequent tasks at the expense of rare but important
capabilities. Explicit task_category labelling (including automated inference for datasets
lacking categories) enables visibility into task distribution, strategic data selection, and targeted
augmentation of underrepresented capabilities.

License Compliance and Data Provenance

Datasets may have restrictive licenses (e.g., CC BY-SA requiring share-alike), contain Al-
generated content, or include content with unclear licensing terms. Using incompatible licensed
data creates legal liability and may violate organizational policies. The pipeline implements
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systematic license review, filtering to approved licenses only (MIT, Apache-2.0, CC BY 4.0),
and exclusion of LLM-generated content.

3.2.1.5 Conversation Structure Inconsistencies

Different datasets represent conversations in fundamentally different ways: single-turn Q&A,
multi-turn dialogues with branching, instruction-response pairs without explicit roles, and
complex nested contexts. Inconsistent handling leads to inefficient tokenization, incorrect
training signals, and poor conversational performance. Specialized “unrolling” scripts transform
diverse conversation structures into standardized role-based format (user/assistant
messages).

3.2.1.6 Model-Specific Template Requirements

Modern instruction-tuned models expect specific formatting with special tokens (e.g., <bos>,
<start_of_turn>, <end_of_turn>) that vary between model families. These templates
define the training signals that teach models to distinguish between user inputs and model
responses. Incorrect template applications cause models that cannot distinguish between
turns, degraded instruction-following, and training instabilities. The pipeline uses tokenizer-
based template application to ensure model-specific formatting is correctly applied.

3.2.2 Datasets

This is a table of the datasets used for instruction fine-tuning. The number of samples is
representative of the amount of the dataset that we consider for use, after the processing
pipeline, but before the data selection process. The actual size might be larger, depending on
the dataset.

Dataset Domain Description Language Task Categories
SciRIFF | Science Instruction-follow- 99,194 English | information_ex-
ing tasks for scien- traction,  multi-
tific literature ple_choice,
understanding. ga_with_context,
reasoning, sum-
marization
Aqua Math Math word prob- 97,721 English | reasoning
RAT lems with multiple

choice  answers
and rationales.

Open- General Crowd-sourced 25,224 English | chat
Assis- (practical, multi-turn conver-
tant scientific, sations.
(OASST | creative,
1) etc.)
Narra- Fiction, En- | QA pairs from 18,083 English | ga_with_context
tive QA | tertainment | books and movie
scripts.
Goeiev- | General Dutch Q&A forum 17,799 Dutch | ga_no_context
raag.nl similar to Quora.
Aya Da- General / | Multilingual in- 5,032 English, | brainstorming,
taset Cultural struction dataset. Dutch | chat, generation,
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information_ex-
traction, multi-
ple_choice,
ga_no_context,
ga_with_context,
reasoning, sim-
plification, sum-
marization
SciTLD | Science Extreme summar- 431 English | summarization
R ies of scientific pa-
pers.
Qasper | Science QA dataset on sci- 1,175 English | ga_with_context
Dataset entific papers.
FLAN General Reformatted NLU | 129,176 English | multiple_choice,
(com- datasets for zero- reasoning, gen-
bined) shot & CoT eration,
prompting. ga_with_context
Hug- General Small, hand- 248 English | brainstorming,
ging- crafted instruction chat, generation,
face H4 dataset. information_ex-
traction,  multi-
ple_choice,
ga_no_context,
ga_with_context,
reasoning, sim-
plification, sum-
marization
SPIN General Manually gener- 15,000 Dutch | brainstorming,
ated prompt/com- chat, generation,
pletion pairs. multiple_choice,
ga_no_context,
ga_with_context,
simplification,
summarization
— TO- — — 409,083 — | —
TAL —

3.2.2.1 Data Acquisition

The data has highlighted above has been acquired from various sources such as the online
datasets on HuggingFace or acquired through license purchase as is the case for
Goeievraag.nl. Based on the requirements set by the GPT-NL project, only open-sourced
datasets with the following license: MIT, CC BY-SA 4.0 or APache-2.0 were taken into
consideration. Furthermore, other criteria was that large language models must not generate
the open-source datasets. Thus, taking this consideration into account, we were able to collect
various datasets as listed above.

Regarding the Flan dataset (see table below), which is composed of multiple sub-datasets
added iteratively over time, we selectively included only those that met the previously
mentioned criteria. These include GSM8K, AQUA-RAT, StrategyQA, QASC, and CREAK. For
the AQUA-RAT dataset specifically, we opted for the most recent version available, rather than
the one listed in the reference table. As for the sub-datasets WinoGrande, Taskmaster, and
Dialog, we were unable to identify coherent open-source versions that met the licensing and
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origin requirements. Consequently, these were excluded from the final instruction dataset. The
table below shows a list of sub-datasets that were analysed for the FLAN Dataset. It must be
noted that the Flan dataset contains additional sub-datasets that were not reviewed, as the
current selection sufficiently meets the needs and requirements of this project.

Subset dataset License GPT-NL Notes
compatible
flan2021 SQuUAD (vi1/v2) CC BY-SA 4.0 No | ShareAlike
copyleft applies to
derivatives/redis-
tributions
flan2021 GSM8K MIT Yes | Permissive
flan2021 AQUA-RAT Apache-2.0 Yes | Permissive
flan2021 QASC CCBY 4.0 Yes | Attribution required
not copyleft
flan2021 StrategyQA MIT Yes | Permissive
flan2021 e-SNLI MIT (repo); SNLI No | Underlying  SNLI
base CC BY-SA share-alike applies
4.0
flan2021 CREAK MIT Yes | Permissive
flan2021 ComVE (Sense- | CCBY-SA 4.0 No | ShareAlike
Making) copyleft
flan2021 QED CC BY-SA 3.0 / No | Wikipedia-derived;
GFDL-derived share-alike applies
t0 (P3/T0) SNLI CC BY-SA 4.0 No | ShareAlike
copyleft
t0 (P3/T0) MultiNLI MIT-style (NYU li- Yes | Permissive
cense)
t0 (P3/T0) WinoGrande CC BY 4.0 (da- Yes | Attribution required
taset)
t0 (P3/T0) ANLI CCBY-NC 4.0 No | Noncommercial re-
striction
t0 (P3/T0) SQuAD CC BY-SA 4.0 No | ShareAlike
copyleft
niv2 (Super- | NIv2 collection Apache-2.0 (repo) Partly | Collection is
Natural In- Apache-2.0; indi-
structions vidual tasks may
v2) include content de-
rived from up-
stream datasets—
check task cards
cot GSM8K MIT Yes Permissive
cot AQUA-RAT Apache-2.0 Yes | Permissive
cot StrategyQA MIT Yes | Permissive
cot QASC CCBY 4.0 Yes | Attribution required
cot e-SNLI MIT (repo); | CC BY-SA 4.0 No | Underlying  SNLI
SNLI base share-alike applies
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3.23

3.2.31

cot ECQA CDLA-Sharing- No | Share-alike style
1.0 (data) data license; check
obligations
cot CREAK MIT Yes | Permissive
cot QED CC BY-SA 3.0 No | Wikipedia-derived;
GFDL-derived share-alike applies
cot ComVE (Sense- | CCBY-SA 4.0 No | ShareAlike
Making) copyleft
dialog WikiDialog CC BY-SA (re- No | Wikipedia-derived;
ported) share-alike applies
dialog QReCC CC BY-SA 3.0 No | ShareAlike
copyleft
dialog OR-QuAC CCBY-SA 4.0 No | ShareAlike
copyleft
dialog QuAC MIT (per HF | CC BY-SA 4.0 on No | Conflicting
card); site sources; be con-
servative
dialog Taskmaster-1 CC BY 4.0 (sec- Yes | Attribution required
ondary sources)

Data Processing Pipeline

The data processing pipeline is essential for preparing diverse instruction-tuning datasets for
language model fine-tuning. Raw datasets from different sources often have inconsistent
formats, varied quality, and different conversation structures. Our pipeline standardizes these
datasets into a unified format suitable for training conversational Al models, ensuring
consistency while preserving the semantic content and task-specific information.

The pipeline transforms heterogeneous datasets into a standardized prompt-completion format
that can be efficiently used with training frameworks like Hugging Face’s TRL library.

Data Processing Pipeline

Raw Dataset - Download » Standardize > Filter - Unroll " Apply Template #  Training-ready Data

The pipeline consists of five main steps:

Download: Fetch datasets from Hugging Face or other sources
Standardize: Convert to unified schema with consistent column names
Filter: Apply optional filtering criteria to remove unwanted samples
Unroll: Convert to conversational prompt-completion format

Apply Template: Format using chat templates for specific models

A

Download
Purpose: Fetch datasets from external sources, primarily Hugging Face Hub.

Implementation: The download_datasets.py module handles downloading datasets using
the Hugging Face datasets library. Downloaded data is saved as Parquet files for efficient
processing.
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3.2.3.2

Sciriff Example:

{

"input"”: "You will be presented with a citation segment from the section
of an NLP research paper, as well as the context surrounding that citation.
Classify the intent behind this citation by choosing from one of the follow
ing categories:\n- Background: provides context or foundational information
related to the topic.\n- Extends: builds upon the cited work.\n- Uses: appl
ies the methods or findings of the cited work.\n- Motivation: cites the wor
k as inspiration or rationale for the research.\n- CompareOrContrast: compa
res or contrasts the cited work with others.\n- FutureWork: cites the work
as a direction for future research.\n\nYour answer should be a single word
from the following list of options: [\"Background\", \"Extends\", \"Uses\",
\"Motivation\", \"CompareOrContrast\", \"FutureWork\"]. Do not include any
other text in your response.\n\nSection Title:\nintroduction\n\nContext bef
ore the citation:\nThus, over the past few years, along with advances in th
e use of learning and statistical methods for acquisition of full parsers (
Collins, 1997; Charniak, 1997a; Charniak, 1997b; Ratnaparkhi, 1997), signif

icant progress has been made...",
"output": "Background",
"metadata"”: {

"domains": ["artificial intelligence"],
"input_context": "multiple_paragraphs”,
"output_context": "label",

"source_type": "single_source",
"task_family": "classification”
¥
"_instance_id": "acl_arc_intent_classification:train:o"
}
Standardization

Purpose: Convert diverse dataset formats into a unified schema with consistent column
names, data types, and task categories.

Schema: All datasets are standardized to this format:

e instruction: Task description or query (serves as system prompt) (string)
e context: The user’s input (string)

e response: Expected output or answer (string)

e task_category: Type of task (e.g., “multiple_choice”, “summarization”)

e source_dataset: Original dataset name (string)

e language: Content language (string)

e source_document_id: Optional identifier for source tracking

Implementation: The data_standard.py contains dataset-specific standardizer classes.
Each dataset has a custom DatasetStandardizer subclass that knows how to transform its
specific format.

Sciriff Example:

{

"instruction": "You are a helpful assistant. Answer the user's query.",

"context": "You will be presented with a citation segment from the sectio
n of an NLP research paper, as well as the context surrounding that citatio
n. Classify the intent behind this citation by choosing from one of the fol
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3.2.3.3

3.2.34

lowing categories:\n- Background: provides context or foundational informat
ion related to the topic.\n- Extends: builds upon the cited work.\n- Uses:
applies the methods or findings of the cited work.\n- Motivation: cites the
work as inspiration or rationale for the research.\n- CompareOrContrast: co
mpares or contrasts the cited work with others.\n- FutureWork: cites the wo
rk as a direction for future research.\n\nYour answer should be a single wo
rd from the following list of options: [\"Background\", \"Extends\", \"Uses
\", \"Motivation\", \"CompareOrContrast\", \"FutureWork\"]. Do not include
any other text in your response.\n\nSection Title:\nintroduction\n\nContext
before the citation:\nThus, over the past few years, along with advances in
the use of learning and statistical methods for acquisition of full parsers
(Collins, 1997; Charniak, 1997a; Charniak, 1997b; Ratnaparkhi, 1997), signi
ficant progress has been made...",

"response”: "Background",

"task_category": "multiple choice",

"source_dataset": "sciriff",

"language": "en",

"source_document_id": "acl_arc_intent_classification:train:e"

}
Optional Filtering

Purpose: Remove samples based on specified criteria (e.g., language, length, quality).

Implementation: The filter_dataset.py module applies pandas-style filter expressions. If
no filters are specified, this step copies the standardized file unchanged.

Example:

# Apply Llanguage filtering

filter_expressions = ["language == 'en'"]
# Apply length filtering
filter_expressions = ["length > 100", "task_category == 'multiple choice'"]

Unrolling

Purpose: Transform standardized data into conversational prompt-completion format suitable
for instruction fine-tuning, by converting instruction+context+response into a structured con-
versation format with roles and messages.

Implementation: Different unroll scripts handle different conversation types:

e unroll_single_turn.py - For single turn Q&A datasets (like sciriff)
e unroll_multi_turn_oasstl.py - For multi-turn conversations
e unroll gptnl_dataset.py - For SPIN-specific formats

Sciriff Example:

{
"task_category": "multiple choice",
"source_dataset": "sciriff",
"language": "en",

"message_tree_id": "a34de674-bbd6-4f51-b0d7-1f5c93056b783",
"row_id": "a34de674-bbd6-4f51-b0d7-f5c93056b783",
"multi_turn": false,
"prompt": [

{
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"role": "user",

"content": "You are a helpful assistant. Answer the user's query. You
will be presented with a citation segment from the section of an NLP resear
ch paper, as well as the context surrounding that citation. Classify the in
tent behind this citation by choosing from one of the following categories:
\n- Background: provides context or foundational information related to the
topic.\n- Extends: builds upon the cited work.\n- Uses: applies the methods
or findings of the cited work.\n- Motivation: cites the work as inspiration
or rationale for the research.\n- CompareOrContrast: compares or contrasts
the cited work with others.\n- FutureWork: cites the work as a direction fo
r future research.\n\nYour answer should be a single word from the followin
g list of options: [\"Background\", \"Extends\", \"Uses\", \"Motivation\",
\"CompareOrContrast\", \"FutureWork\"]. Do not include any other text in yo
ur response.\n\nSection Title:\nintroduction\n\nContext before the citation
:\nThus, over the past few years, along with advances in the use of learnin
g and statistical methods for acquisition of full parsers..."

}
1
"completion": [
{
"role": "assistant",
"content": "Background"
}

1
}

3.2.3.5 Template Application

Purpose: Apply model-specific chat templates to convert conversational format into final train-
ing strings.

Implementation: The apply_template.py module uses Hugging Face tokenizers to apply
chat templates. Currently uses Gemma-3-4B-it template but can be configured for other
models.

Chat Template: The pipeline uses templates that format conversations with special tokens:

e <bos> - Beginning of sequence

e <start_of_turn>user - User message start

e <start_of_turn>model - Assistant message start
e <end_of_turn> - Turn end marker

Sciriff Example:

{
"task_category": "multiple_choice",
"source_dataset": "sciriff",
"language": "en",

"message_tree_id": "a34de674-bbd6-4f51-b0d7-1f5c93056b783",

"row_id": "a34de674-bbd6-4f51-b0d7-f5c93056b783",

"multi_turn": false,

"prompt": "<bos><start_of_turn>user\nYou will be presented with a citatio
n segment from the section of an NLP research paper, as well as the context
surrounding that citation. Classify the intent behind this citation by choo
sing from one of the following categories:\n- Background: provides context
or foundational information related to the topic.\n- Extends: builds upon t
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3.2.3.6

3.2.3.7

he cited work.\n- Uses: applies the methods or findings of the cited work.\
n- Motivation: cites the work as inspiration or rationale for the research.
\n- CompareOrContrast: compares or contrasts the cited work with others.\n-
FutureWork: cites the work as a direction for future research.\n\nYour answ
er should be a single word from the following list of options: [\"Backgroun
d\", \"Extends\", \"Uses\", \"Motivation\", \"CompareOrContrast\", \"Future
Work\"]. Do not include any other text in your response.\n\nSection Title:\
nintroduction\n\nContext before the citation:\nThus, over the past few year
s, along with advances in the use of learning and statistical methods for a
cquisition of full parsers...<end_of_turn>\n",

"completion": "<start_of_turn>model\nBackground<end_of_turn>\n",

"all": "<bos><start_of_turn>user\nYou will be presented with a citation s
egment from the section of an NLP research paper, as well as the context su
rrounding that citation. Classify the intent behind this citation by choosi
ng from one of the following categories:\n- Background: provides context or
foundational information related to the topic.\n- Extends: builds upon the
cited work.\n- Uses: applies the methods or findings of the cited work.\n-
Motivation: cites the work as inspiration or rationale for the research.\n-
CompareOrContrast: compares or contrasts the cited work with others.\n- Fut
urelWork: cites the work as a direction for future research.\n\nYour answer
should be a single word from the following list of options: [\"Background\"
, \"Extends\", \"Uses\", \"Motivation\", \"CompareOrContrast\", \"FutureWor
k\"]. Do not include any other text in your response.\n\nSection Title:\nin
troduction\n\nContext before the citation:\nThus, over the past few years,
along with advances in the use of learning and statistical methods for acqu
isition of full parsers...<end_of_turn>\n<start_of_turn>model\nBackground<e
nd_of_turn>\n"

}

Optional Task Inference

For datasets without explicit task categories (HuggingfaceH4Instruct and AyaDataset), the
pipeline includes an optional task inference step using the infer_task_types.py module.
This uses a language model to automatically classify samples into task categories:

e qga_no_context: Direct questions without additional context
e ga_with_context: Questions requiring provided context

e summarization: Text condensation tasks

e multiple_choice: Selection tasks

e information_extraction: Data extraction tasks

e reasoning: Logic and mathematical reasoning

The inference uses a Gemma model with carefully crafted prompts to ensure consistent clas-
sification.

Classification prompt

You are a task classification expert. Your job is to classify a text sample into ex
actly ONE of the following task types.

### Categories
- ga_no_context: A direct question with a definite answer that does NOT rely on add

itional provided context.
Example: "What is the deepest abyss in the world?"
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3.2.3.8

3.2.3.9

- ga_with_context: A direct question that CAN ONLY be answered using information pr
ovided in the prompt (a passage, List, or context section).

Example: "What important event does the following text describe? This tiger has b
een struggling since 2004, as it lived primarily in Aceh, the northernmost tip of S
umatra. During the 2004 tsunami, much of this nature reserve was washed away. Vario
us organisations are now working to rebuild this nature reserve to ensure the survi
val of the Sumatran tiger."

- summarization: Condensing longer text into a shorter form.
Example: "Summarize this 500-word article about climate change in 2-3 sentences.”

- simplification: Rewriting complex information into simpler terms.
Example: "Explain quantum physics in simple terms for a 10-year-old."

- multiple_choice: Multiple choice questions or selection tasks.
Example: "Which of the following is NOT a mammal? A) Dog B) Cat C) Fish D) Whale"

- chat: Conversational or social dialogue.
Example: "Hello! How are you doing today?" - "I'm doing well, thank you!"

- generation: Creative, open-ended content creation. **Not a direct question.** Som
etimes the TEXT ends with ...
Example: "Write a short story about a dragon who loves to bake cookies."

- brainstorming: Generating multiple ideas or solutions.
Example: "Give me 5 creative ideas for a company team-building event."

- reasoning: Logical reasoning, problem-solving, or analytical tasks.
Example: "If all roses are flowers and some flowers are red, can we conclude that
some roses are red?"

- information_extraction: Extracting specific information from given text.
Example: "Extract the names, dates, and locations mentioned in this news article.

### Decision Rules

1. If the TEXT is a **question**, classify it as QA (choose “qa_no_context™ or “qa_
with_context™, never “generation”).

2. If the TEXT is shorter than 4 words, classify as generation.

3. Output ONLY the task type (e.g., ~qa_no_context™ ). No explanation.

Goeievraag.nl data filtering with LLM-as-a-judge

The Goeievraag.nl dataset contains QA pairs from the goeievraag.nl website. This is a great
source of Dutch data, but considering it is sourced from unmoderated user responses, it re-
quires additional processing steps to ensure appropriate quality for instruction fine-tuning. To
this extent we do the following:

Filter out unwanted topics

Only keep questions with a best answer

Apply PII (using the PrivateAl? tool) + toxic language detection

Use LLM to determine which QA pairs will make it to the final dataset

hobd=~

LLM-as-a-judge scoring prompt
## Task Introduction

You will evaluate question-answer pairs from an online Dutch forum to determine the

2 https://www.privateai.com/
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ir suitability for instruction fine-tuning an LLM. The goal is to identify high-qua
Lity examples that teach a model to follow instructions accurately, provide helpful
responses, and avoid harmful biases. To do this, rate each QA pair across five crit
eria using a 1-5 scale.

## Evaluation Criteria

### 1. Instruction Following (1-5)

Evaluates how well the answer addresses what was specifically asked in the question
. Consider whether the response directly tackles the core request, stays on topic t
hroughout, and uses an appropriate format for the type of question asked. High scor
es indicate the answer comprehensively addresses all parts of the question without
unnecessary tangents.

### 2. Correctness & Accuracy (1-5)

Assesses the factual accuracy and reliability of the information provided. This inc
Ludes checking whether claims are truthful, procedures are correct, reasoning is so
und, and any limitations or uncertainties are appropriately acknowledged. Consider
i1f the information is current and whether any advice could be potentially harmful i
f incorrect.

### 3. Helpfulness & Completeness (1-5)

Measures how useful the answer would be to someone with the original problem or que
stion. Evaluate whether the response provides sufficient detail to be actionable, 1
ncludes important steps or considerations, and offers practical value. Consider 1if
key information is missing that would prevent the questioner from successfully appl
ying the answer.

### 4. Bias & Fairness (1-5)

Examines whether the response treats all people and groups respectfully and fairly.
Look for discriminatory Language, harmful stereotypes, unfair assumptions about the
questioner, or biased perspectives on controversial topics. High scores indicate in
clusive language and balanced treatment of different viewpoints where appropriate.

### 5. Clarity & Communication (1-5)

Evaluates how well the answer is communicated and structured. Consider whether the

response is easy to understand, logically organized, uses appropriate language for

the context, and maintains a helpful and professional tone throughout. Assess if co
mplex concepts are explained clearly and the overall readability is good.

**Specific deductions for this criterion:**

- **Rate 1/5** if the answer mentions "GV", "Goeievraag" or synonyms

- **Lower rating** for answers written primarily in opinion form rather than inform
ative/instructional tone

- **Lower rating** for answers containing edit markers (e.g., "toegevoegd na [..]",
"EDIT:", etc.)

- **Lower rating** for answers that reference Links or external sources without pro
viding actual URLs

## Evaluation Steps

### Step 1: Initial Reading
- Read the question and identify what is specifically being asked
- Read the entire answer and note its main approach

##t#t Step 2: Score Each Criterion

For each of the 5 criteria:

1. **Apply the specific evaluation focus** (instruction following, accuracy, etc.)
2. **Use the 1-5 scale anchors** provided above
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**¥Qutput Format:**

Instruction Following: X/5 - [justification]
- Correctness: X/5 - [justification]
Helpfulness: X/5 - [justification]

- Bias & Fairness: X/5 - [justification]
Clarity: X/5 - [justification]

3.2.3.10 Results of LLM-as-a-judge scoring

After scoring the QA pairs marked with a best answer, we did qualitative analysis to pick a strict
threshold of total score >= 20 and score of each category >= 4. After applying this filter, the
dataset size decreased from ~62k to 19,778 samples.

Score Distribution Analysis for Threshold Determination
Total Score Distribution Score Distribution by Category
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Figure 13: Goievraag evaluation plots

3.3 Data selection process

Data selection for instruction-tuning LLMs focuses on identifying and curating high-quality
training examples from larger datasets. Rather than using all available instruction-response
pairs indiscriminately, data selection employs various filtering and ranking strategies to identify
the most valuable examples for model training. Data selection serves two primary objectives
that are fundamental to developing effective instruction-tuned models:

1. It acts as a quality filter, systematically removing low-quality examples that could de-
grade model performance. This includes filtering out responses that are factually in-
correct, poorly written, off-topic or contain harmful content.

2. Data selection enables alignment with specific priorities and objectives defined for
the model’s intended use cases.

) TNO Public 70/109



) TNO Public ) GPTNL-DEL-4002-[1.0]

It is desired that the instruction-tuned GPT-NL checkpoints must exhibit the following
objectives, accompanied by a priority score:

Type Objective Priority Task Categories Datasets
Instruction Following | General instruction following 25 all all
Instruction Fallowing  |Supparting chat-style interaction 6.25 chat oasstl, gptnl-it
Instruction Following  |Precise formatting following (ISON) 57 information_extraction, reasoning sciriff
NLP Tasks Specialising in main GPT-NL NLP tasks 215 chat ua’wr‘,thjD::::E:Era:‘Mi;vi‘alir‘mjnztm multiple ehaics eptnl-it
NP Tasks RAG 215 qa_with_context qasper, narrativeqa, sciriff, gptnl-it, aya, huggingfacehs, flan
NLP Tasks Generalising to a larger pool of GPT-NL tasks 5 thaf ua,wahjDun::;iie‘ra't‘mni context, multiple_choice, :Ea;‘s;i aya, flan, goeievraag, huggingfacehd, narrativeqa, gasper, sciriff,
Long Context Longer context processing than the base model (>2086) 15 qa_with_context, summarization qasper, scitldr
Knowledge Establishing solid knowledge recall aa_no_context eoeievraag gptnl-it, ava, huggingfacehd
safety® Privacy & Personal Information Protection (ACCIDENTAL) NA NA
Safety* Misinformation & Deception (ACCIDENTAL) NA NA

GPT-NL Priorities

These priorities highlight the need for a data selection method that can balance multiple
objectives while scaling to large dataset sizes efficiently.

The challenge of identifying the most useful training samples for instruction fine-tuning is
complex, as there is no straightforward method to determine which examples will contribute
most effectively to model performance. The quality of instruction-response pairs can depend
on numerous factors including linguistic complexity, task diversity, response accuracy,
alignment with target capabilities and subtle patterns that may not be immediately apparent
through manual inspection. This leads us to experiment with three methodologies developed
in the academic world.

3.3.1 Representation-based Data Selection Plus (RDS+)

dntnpool

Data Pool D ™ embeddings

Pretrained
M

Top-K
o[atapcints

|ood-woRw PeIEem

Figure 14: RDS+ Workflow
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3.3.2

The core insight behind RDS+ is that the hidden representations from a pre-trained model’s
last layer capture semantic similarity better than dedicated embedding models or gradient-
based approaches. By using these representations to compute cosine similarity between query
samples and candidate training data, RDS+ can efficiently identify the most relevant training
examples.

Our implementation strategy leverages RDS+ in a systematic pipeline designed to maximize
alignment with GPT-NL priorities:

1. Priority-Aligned Test Set Curation

We begin by manually curating a comprehensive test set that directly reflects our priority matrix,
across task types and source datasets.

2. Query Set Creation

From our curated test set, we split a validation subset to serve as RDS+ queries. This way, the
validation split represents the testing set distribution without causing data leakage.

3. Training Data Subsampling

Using RDS+, we subsample our large training corpus by computing similarity scores between
each training example and our validation queries. The round-robin selection algorithm ensures
balanced representation across all priority areas while identifying the most relevant training
samples.

G-Eval: LLM-as-a-judge filtering

G-Eval leverages LLMs as judges to assess the quality of instruction-response pairs. Rather
than relying on simple metrics or heuristics, G-Eval uses LLMs to provide nuanced quality as-
sessments that closely mirror human judgment. The methodology works by presenting a LLM
with detailed evaluation criteria and asking it to score examples across multiple quality defini-
tions. The LLM judge examines each instruction-response pair and assigns numerical scores
based on carefully crafted rubrics that define what constitutes quality at different levels.

For our data selection process, we employed five distinct evaluation rubrics, each targeting a
critical aspect of training data quality:

¢ Language Quality evaluates whether the prompt-completion pair maintains con-
sistent language use (English or Dutch) without inappropriate mixing or code-switch-
ing. This ensures our training data maintains linguistic coherence.

e Prompt Completeness assesses whether the instruction is clear, unambiguous, and
provides sufficient context for understanding what the response should contain. Well-
defined prompts are essential for effective instruction fine-tuning.

e Completion Helpfulness measures how well the response addresses the prompt
while remaining concise and relevant. This rubric filter out responses that are off-
topic, repetitive, or unnecessarily verbose.

e Completion Truthfulness evaluates factual accuracy and ensures responses don’t
contain hallucinations or invented information not present in the provided context or
general knowledge.

o Harmlessness ensures the content is safe, respectful, and free from harmful, dis-
criminatory, or inappropriate material that could pose risks to various forms of wel-
fare.

Each rubric uses a 5-point scale, with detailed descriptions for each score level to ensure con-
sistent evaluation. To maintain quality standards in our final dataset, we established a threshold
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3.3.3

3.34

3.3.41

of 3 or higher across all five rubrics - meaning samples must achieve at least a “moderately
acceptable” rating in every dimension to be included in our training set.

UltraFineWeb FastText classifier

The Ultra-FineWeb classifier represents a lightweight approach to data quality assessment that
leverages fastText for rapid content evaluation. Unlike the sophisticated LLM-based evaluation
methods, this classifier prioritizes computational efficiency while maintaining effective filtering
capabilities, making it particularly suitable for processing large-scale datasets where inference
speed is crucial.

The methodology behind the Ultra-FineWeb classifier involves training a fastText model to
distinguish between high- and low-quality text samples using carefully curated seed data.
Although the Ultra-FineWeb classifier was originally designed and optimised for pre-training
data filtering, we decided to explore its utility for instruction fine-tuning data selection. Our
hypothesis was that this classifier could serve as an effective filter to identify and remove
outright poorly formatted data or content with significant grammatical errors that would be
detrimental to instruction fine-tuning. Pre-training data and instruction fine-tuning data share
certain fundamental quality characteristics: both benefit from proper formatting, grammatical
correctness, and linguistic coherence, making this cross-domain application a reasonable
experimental approach.

The appeal of using this pre-trained classifier lies in its ability to quickly process large volumes
of instruction-response pairs and flag obviously problematic content such as garbled text,
severe formatting issues, or content with substantial linguistic errors. While it may not capture
the nuanced quality aspects specific to instruction-following tasks, it can efficiently eliminate
the obviously bad quality samples, allowing more sophisticated evaluation methods to focus
on the remaining, higher-quality candidates.

Conclusion: Comparing Data Selection
Approaches

Individual Method Impact Analysis

Each of the three data selection methods demonstrated distinct filtering patterns across task
categories and source datasets, revealing different biases and strengths in their quality
assessment approaches.

RDS+

RDS+ - Task Category Impact RDS+ - Top 15 Most Affected Source Datasets
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Figure 15: RDS+ Filter Impact
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RDS+ demonstrated a balanced filtering strategy, with the highest removal rate for reasoning
tasks (63.8%) and moderate filtering across most categories. The method showed relatively
uniform impact across source datasets, with the most affected being flan_gsm8k (90.7%) and
aqua_rat (77.6%). This suggests RDS+ focuses on semantic relevance to the target priority
distribution rather than absolute quality, making it conceptually different from the other two
filtering approaches.

G-Eval: LLM-as-a-judge Filtering

G-Eval - Task Category Impact G-Eval - Top 15 Most Affected Source Datasets
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Figure 16: G-Eval Filter Impact

G-Eval's filtering showed a strong focus on context-dependent tasks, removing 55.3% of
ga_with_context samples while being more lenient with simpler tasks like multiple_choice
(0.4% removed). The method heavily filtered specific datasets like narrative Q&A (99.1%) and
gasper (95.7%), suggesting these sources contained responses that failed to meet the
stringent rubric requirements for truthfulness, helpfulness, or completeness. This pattern
indicates G-Eval’s strength in identifying quality issues in long-form, context-heavy responses
but potentially being overly conservative.

FastText Classifier

FastText - Task Category Impact FastText - Top 15 Most Affected Source Datasets
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Figure 17: FastText filter Impact
FastText Filter Impact

The FastText classifier mostly removed samples containing Dutch samples. This is likely a
consequence of the classifier not being trained on Dutch samples at all. This approach appears
to prioritise surface-level quality indicators like grammar and structure over semantic
appropriateness.
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3.3.4.2 Agreement Between Methods

Filtering Agreement Matrix
(% Agreement Between Methods)
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Figure 18: Filtering Agreement Matrix

The agreement analysis between the three methods reveals a fundamental challenge in data
quality assessment: quality is inherently difficult to estimate, and different methods capture
different aspects of what constitutes valuable training data. The agreement matrix shows:

e RDS+ and G-Eval: Only 27.9% agreement (33,531 samples)
e RDS+ and FastText: Only 22.1% agreement (27,455 samples)
e G-Eval and FastText: 39.8% agreement (30,964 samples)

These low agreement rates indicate that each method operates on fundamentally different prin-
ciples. RDS+ prioritizes semantic relevance to target capabilities, G-Eval focuses on multi-di-
mensional quality rubrics, and FastText emphasizes linguistic and formatting correctness. The

lack of consensus suggests that “quality” in instruction fine-tuning data is multi-faceted and no
single method captures all relevant dimensions.
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3.3.4.3 Impact on Model Performance
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Figure 19: Filtering results comparison

Perhaps most surprisingly, none of the filtering solutions improved upon the baseline of
using all available data.

All three filtering approaches, along with stratified subsampling, showed performance below
the baseline. This counterintuitive result can likely be attributed to our low data setting. With
limited training data available, aggressive filtering may remove examples that, despite quality
concerns, still contribute valuable signal for learning instruction-following behavior. In resource-
constrained scenarios, the diversity and volume of training data may matter more than
individual example quality.

Configuring, Running and Monitoring the
Instruction Fine-Tuning

This page provides a comprehensive overview of the Instruction Fine-Tuning process for GPT-
NL, covering execution frameworks, configuration, training, and monitoring. We have already
described how the data is prepared and selected. Here, we focus on the implementation,
workflow, and experiments for supervised fine-tuning (SFT) on our HPC infrastructure.

Frameworks Choice

After analysing multiple frameworks for instruction fine-tuning, including HuggingFace TRL,
ColossalAl, DeepSpeedChat, Open-Instruct, and others, we chose HuggingFace TRL as our
primary fine-tuning framework, augmented with:

e DeepSpeed ZeRO for multi-GPU/multi-node scaling (Stages 1-3).
o Dataset streaming (for memory efficiency on large parquet datasets).

e Synchronization primitives (avoid races in model/dataset caching across many
ranks).

e Custom callbacks for throughput and sample generation into monitoring tools.
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Detailed tables, comparisons of frameworks, RLHF methods have been moved to the Appendix
Fine-tuning frameworks for clarity.

Why TRL for SFT

Wide adoption in the research and open-source community
Extensive documentation and examples
Support for SFT, DPO, PPO, and full finetuning

Dataset format flexibility: prompt-completion (string or conversational) and lan-
guage-modeling style with data collators

Deep integration with Accelerate and DeepSpeed
Active ecosystem: ready-to-use trainers (SFTTrainer) and configs (SFTConfig)

The complete comparison of frameworks and RLHF approaches is
available in the Appendix Fine-tuning frameworks.

3.4.2 Configuration

Proper configuration of a fine-tuning run is critical to ensure efficient resource utilization and
optimal model performance. In this section, we describe the essential steps required to initiate
a fine-tuning process—specifically, how to configure Supervised Fine-Tuning (SFT).

Setting up an SFT process involves defining several key options:

Model Selection: Specify which pre-trained model will be fine-tuned. This can be a
local model checkpoint (e.g., a path to the model at a specific epoch) or a publicly
available model for benchmarking and comparison.

Dataset Choice: Determine the dataset to use for training. As outlined in the Data
preparation and Data selection sections, options include internal datasets such as
SPIN and selected public datasets.

Fine-Tuning Configuration: Define how the fine-tuning should proceed, including
training duration, hyperparameters (e.g., learning rate, batch size), and allocation of
HPC resources (e.g., number of GPUs, memory requirements).

3.4.2.1 YAML Configuration file

We try to make these options explicit and easy to configure by using YAML configuration files.
We have a folder named config where we hierarchically store the configurations for our runs.
The most important parameters are:

) TNO Public

model_name_or_path: the input model to finetune

dataset_name_or_path: the dataset to use. Currently supported: parquet files with a
supported type of dataset by TRL. It can be a single file or multiple files (if you use a
* in the variable). If a single file is used, it must contain a column named split to in-
dicate which rows are for training and which ones for testing. If a wildcard (*) is used,
train and test splits are loaded separately: this has been implemented to be able to
stream datasets instead of loading them as a bulk in the beginning of the training.
See below the streaming datasets section for more details.

output_dir: where to save the finetuned model

chat_template_path: to configure a specific chat template for finetuning the model
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e DeepSpeed: path to a DeepSpeed configuration file, useful to choose the distributed
strategy (stage 1/2/3)

e Model

o model _name_or_path: the input model to finetune (HF hub or local path to
checkpoint)
tokenizer_name_or_path (optional; defaults to model_name_or_path)
trust_remote_code (for custom model code)
Long context (optional): rope_scaling_type, rope_scaling factor

o Attention backend: enable FlashAttention2 or SDPA (LLaMA)
e Dataset

O O O

o dataset_name_or_path: the dataset to use. Currently supported: parquet
files with a supported type of dataset by TRL.
= If using a single file, ensure it contains a split column with values
train|val|test.
= [f using * (wildcard), provide ..._train.parquet, ..._val.par-
quet, optionally ..._test.parquet to enable streaming (reduces
memory required instead of loading the whole dataset in memory).
See below the streaming datasets section for more details.
o (Optional) max_samples and validation_split_percentage

e Training & Output

o output_dir: where to save the finetuned model

num_train_epochs, per_device_train_batch_size, gradient_accumu-
lation_steps

learning_rate, 1lr_scheduler_type, warmup_steps, weight_decay
Precision: bf16|fpl16|tf32, gradient_checkpointing

save_strategy, save_steps, save_total limit,
load_best_model_at_end

o chat_template_path: to configure a specific chat template for finetuning the
model (must match inference)

e Distributed

o DeepSpeed: path to ZeRO config (ds_config_zero[1]2]3].json)
o Optional offloading: offload_folder, offload_state_dict
o low_cpu_mem_usage: true toreduce load on memory

Example (condensed)
# config/train/sft_config.yaml
model_name_or_path: PATH_TO_MODEL

tokenizer_name_or_path: PATH_TO_MODEL
trust_remote_code: true

# Long context (optional)
rope_scaling_type: dynamic # or 'linear'’

rope_scaling_factor: 2.0

# Attention backend
use_flash_attention_2: true # or sdpa for LLaMA

# Dataset: stream by providing separate parquet files
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dataset_name_or_path: PATH TO DATASET *.parquet

# Output & logging

output_dir: /output/gptnl-sft

report_to: ["wandb"]

chat_template_path: config/evaluate/chat template empty.jinja

# Training

num_train_epochs: 1
per_device_train_batch_size: 4
gradient_accumulation_steps: 4
learning_rate: 2.0e-5
1r_scheduler_type: cosine
warmup_steps: 500
weight_decay: 0.0

bfl6: true

tf32: true
gradient_checkpointing: true

# Save/Eval

do_eval: true

eval_strategy: steps

eval steps: 5600
save_strategy: steps
save_steps: 500
save_total_limit: 3
load_best_model_at_end: false

# Distributed

DeepSpeed: config/train/ds_config_zero3.json
low_cpu_mem_usage: true

offload_folder: /scratch/offload
disable_cache: true

Tip: With ZeRO-3, memory footprint per GPU drops significantly,
allowing larger batches and improved tokens/sec.

3.4.2.2 Job Scripts and Execution Flow

The job scripts are stored in the jobs folder, and they contain job requirements specifications
(resources):

amount of nodes
type of nodes

usage of reservation
duration of the job

These options cannot be easily moved to YAML configuration, so they need to be checked
before usage in the corresponding job file. They are written as #SBATCH headers.

The rest of job scripts contain module loading and preparation of the training run (setting
environment variables, loading the proper configuration file).

It is important when you create or use a job script that you check:
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which configuration file it loads: TRAIN_CONFIG env variable exported
#SBATCH headers for resources

To submit a job to the queue, just use sbatch jobs/<PATH_TO_JOB_SCRIPT>.

3.4.3 Training

This section describes how the training works. It is classical supervised training, where there
are input variables (chat conversations up to a specific point) and target variables (next assis-
tant message). The learning goal is to minimize the loss on the target assistant message. In
other words, the model learns to reply as the assistant (the target variable).

If we follow what happens when a job script is launched:

5.

6.

The job is granted resources, and SLURM runs a single copy of the batch script on
the first node in the set of allocated nodes.

The batch script is executed: the environment is configured (modules are loaded, en-
vironment variables are set, including the TRAIN_CONFIG)

srun launches the tasks in all the configured nodes. In our setting, we have a task for
each GPU. For example, if we run a fine-tuning on 2 nodes with 4 GPUs each, we
will have 8 tasks running

torchrun_launcher.sh is executed: each task executes torchrun with target the
TRAINING_COMMAND (defined in the job script) and connects to the master process
using NCCL

Then the TRAINING_COMMAND is actually the python script that gets executed in parallel via
torchrun. Its entry pointis src/train/train.py where the real training happens:

data loading: from parquet files, the data is formatted according to chat_template and
tokenized

model loading: using HuggingFace classes, the model and the tokenizer are loaded
according to configuration

DeepSpeed is getting configured and distributes the model accordingly to its stage

batches start to be processed (this happens a few minutes later) and loss is com-
puted for backpropagation

checkpoints are saved

3.4.3.1 TRL classes

SFTConfig — defines training parameters, optimizer, precision, check-
pointing, DeepSpeed config, chat template, logging
SFTTrainer — executes the training loop

3.4.3.2 DeepSpeed configuration

As documented in the pre-training documentation, we use DeepSpeed to distribute the training.
For finetuning we tested the stage 1, 2 and 3.

3.4.3.3 DeepSpeed and memory constraints

DeepSpeed is strongly linked to the memory constraints. Stages 1 and 2 already distribute the
optimizer (stage 1) and gradient (stage 2), but still the memory requirements are almost iden-
tical as DPP strategies, because the largest amount of memory is actually occupied by the
model parameters (27B).
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3434

3.4.3.5

Stage 3, on the other side, partitions the parameters across multiple workers/devices and really
enables to reduce the memory requirements of a single device, leaving room for more memory
for larger batches. The slight performance decrease of stage 3 is totally and over-compensated
by the speed of larger batches, that indeed would crash with stage 1 and 2.

We rely on DeepSpeed ZeRO sharding:

e ZeRO-1: Shards optimizer states. Memory relief is limited for very large models.
e ZeRO-2: Shards gradients as well. Still heavy if parameters stay replicated.

e ZeRO-3: Shards parameters, gradients, and optimizer. This is the recommended
mode for 27B+ models; it enables larger batch sizes and higher throughput.

Important

e Do not use device_map="auto" with ZeRO/torchrun. We explicitly unset this in dis-
tributed mode to avoid incorrect HF auto-sharding.

DeepSpeed JSON highlights (example fields to inspect in ds_config_zero3.json)
{

"zero_optimization": {

"stage": 3,

"offload param": {
"device": "cpu",
"pin_memory": true

¥

"offload optimizer": {
"device": "cpu",
"pin_memory": true

}

¥
"bfl6": { "enabled": true },

"gradient_accumulation_steps": 4,
"train_micro_batch_size_per_gpu": 4

}
Memory & performance

e ZeRO-3 usually unlocks per_device_train_batch_size = 8 (depending on sequence
length and model size).

o With dataset streaming, we observed substantial throughput gains (see Appendix
B).

Chat_template

We can configure the specific chat_template used for fine-tuning. The pre-trained model
has no chat_template. Itis important that the same chat_template is used for finetuning
and inference, as it is used for priming the model to respond.

Data loading
The training script loads the data from parquet files, according to the configuration.

TRL works out of the box with the following formats for SFT:

e Standard Prompt-Completion: prompt and completion are strings. Strings should al-
ready be formatted according to a chat_template
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e conversational Prompt-Completion: prompt and completion are list of messages with
{role, content} attributes. This is useful if we want to apply a different chat_tem-
plate at runtime

e |anguage-modelling (conversational) format: we don’t need to manually prepare
prompts and completions, with a simple DataCollator configuration we can tell TRL
to use as targets all the assistant messages (intermediate and final ones).

TRL automatically detects the type of the dataset passed and whether it needs to be tokenized
(strings) or not (token_ids) and configures the batches to be provided to the different workers
in a distributed setting.

3.4.3.6 Additions on top of TRL

Synchronization primitives

Some actions make the jobs fail when more than 8 workers are in place (probability of race
conditions increases):

¢ downloading models (when not local model or not yet downloaded in cache)
e creating cache of datasets (when loading dataset)

For these cases, we used barriers:
1f is_main_process():
full dataset = load_dataset(...)

torch.distributed.barrier()
1f not is_main_process():

full dataset = load_dataset(...)

Streaming datasets

Easier dataset loading: load everything, transform it to tokenized, then efficiently dispatch sub-
batches to workers.

Problem: large datasets do not fit in memory, so the processes crash
Solution: stream the dataset from the disk (parquet). Complications:

e The train and test datasets need to be separate on disk. This is why in the YAML
configuration you see that we use the wildcard * to denote when the two files are
separate. In this way it's possible to stream them independently.

e The total size is unknown in streaming mode, need to compute it first. This is fixed by
doing a first iteration on the dataset.

e Global batch created in main process, and split for all the workers,
train_batch_size needs to be adjusted to the global batch size

3.4.4 Monitoring

Monitoring uses TRL integration with Weights & Biases. We log:

e Configuration and hyperparameters
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e Training metrics: loss, token accuracy, learning rate, steps, number of tokens pro-
cessed

e System metrics: GPU usage, network, throughput per device and globally

e Example outputs during training via a custom LLMSampleCallback (text output by
the model)

3.5 Instruction fine-tuning evaluation

Evaluating instruction-tuned models requires a multi-faceted approach to assessing both over-
all performance and task-specific capabilities. This document describes our evaluation meth-
odology and presents initial results from fine-tuning experiments. We implement evaluation for
two primary purposes:

1. Comparing GPT-NL to third party models: Benchmarking our models against
state-of-the-art instruction-tuned models to understand relative performance on com-
mon task categories (linguistic understanding, reasoning, knowledge, etc.).

2. Gathering insights into how we perform on the GPT-NL instruction fine-tuning
priorities: Understanding model performance across different task categories with
more granular and deeper insights than average scores of metrics. We aim to under-
stand to be able to adapt our fine-tuning approach accordingly.

To achieve these goals, we employ two complementary types of evaluation:

1. Benchmark evaluation (EuroEval): Using standardized benchmarks for external
comparison

2. Internal test set evaluation: Using task-categorized test sets with multiple evalua-
tion approaches for deeper insights:

o Traditional metrics (BLEU, ROUGE, METEOR)
o Model-based metrics (BERTScore)
o LLM-as-a-judge evaluation (Prometheus and GEval)

-
GPT-NL
test set
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Job |
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launch |
|
~ |
|
\ |
| |
b b
VLLM server —— mml

Figure 20: Instruction fine-tuning evaluation

The evaluation pipeline orchestrates multiple evaluation approaches in a single compute job
with sequential stages. Starting with prediction generation using a vLLM server, the cached
predictions feed into three parallel evaluation tracks: LLM-as-a-judge assessment, traditional
metrics computation, and EuroEval benchmarking. All results are aggregated and
synchronized to Weights & Biases for experiment tracking and analysis. We discuss these
methods in the following.
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3.5.1 Benchmark Evaluation: EuroEval

GPT-NL uses EuroEval as the core benchmark collection for evaluating instruction-tuned
models. EuroEval provides standardized task benchmarks for both English and Dutch, enabling
comparison with external models and tracking progress across model iterations. WP21 extends
this collection with Dutch sets that are focused on Dutch language and culture, but that effort
is described separately and here we consider the base sets available.

The implementation is re-used from the pre-training pipeline and is explained in this section.

3.5.2 Internal Test Set Evaluation

Our internal evaluation pipeline provides detailed insights into model performance across
different task categories, enabling us to understand where the model excels and where
improvements are needed. The pipeline follows a modular design with three sequential stages:
prediction generation, traditional metrics computation, and LLM-as-a-judge evaluation.
Predictions are generated once and cached for reuse, while results from all stages are
aggregated and logged to Weights & Biases.

Our test set is constructed from a subset of the training datasets, carefully selected and
categorized to ensure comprehensive coverage of different task types. The test set follows a
standardized Parquet format with the following schema:

prompt str/list The input prompt (string or conversational format as list
of messages dict)

completion str The reference/ground truth response

instruction str The original instruction (before chat template applica-
tion)

task_category str The task type for granular analysis

source_dataset str Original dataset name for tracking data provenance

language str Language code (‘en’ for English, ‘nl’ for Dutch)

Task categories enable granular performance analysis across different types of instructions:

ga_with_context Question answering using provided context
ga_no_context Question answering using general knowledge
summarization Text condensation and summarization
reasoning Mathematical and logical reasoning
information_extraction Structured information retrieval
generation Creative text generation

simplification Text simplification for accessibility
multiple choice Selection of predefined options

chat Multi-turn conversational dialogue
brainstorming Idea generation and exploration

dutch Dutch-specific language tasks

The test set is typically limited to around 5K samples to enable fast iteration during model
development while maintaining coverage across all task categories.
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Evaluation Criteria

The evaluation system is designed to assess multiple dimensions of response quality:

Generic Criteria (all tasks):

Helpfulness: Does the response satisfy the user’s intent in a complete, relevant and
conciseness manner?

Truthfulness: Is the response factual and free from hallucinations? When a piece of
contextual information is given, the model can only use that to base its answer on,
besides general knowledge.

Harmlessness: Is the response harmless, respectful, and appropriate?

Language Quality: Is the response accessible, fluent and with correct grammar?
(Dutch or English specific)

Task-Specific Criteria:

Summarization: Faithfulness, coverage, and conciseness
Simplification: Meaning preservation and clarity, not summarized
QA with Context: Accuracy using only provided context

QA without Context: Appropriate use of general knowledge
Generation: Creativity and engagement

Brainstorming: Diversity and directional spread of ideas
Reasoning: Logical structure and correctness

Chat: Appropriate conversational flow

Information Extraction: Exactness and completeness

Multiple Choice: Correctness

3.5.2.1 Stage 1: Prediction Generation

Model predictions are generated using a vLLM server infrastructure for efficient batched infer-
ence. This approach enables:

High-throughput generation: Optimized inference for large test sets

Format flexibility: Support for both string prompts and conversational message for-
mats

Infrastructure reuse: Same deployment for training-time evaluation and post-train-
ing assessment

The generation process applies appropriate chat templates to prompts, uses configurable sam-
pling parameters (temperature, top-p, repetition penalty), and produces responses that are
cached for subsequent metric computation stages. Predictions are stored alongside metadata
including task categories, languages, source datasets, and reference answers, enabling gran-
ular analysis across different data dimensions.

3.5.2.2 Stage 2: Traditional Metrics

Traditional metrics provide fast, reference-based evaluation of surface-level similarity and se-
mantic alignment between predictions and references.

Metric Categories

The evaluation computes several complementary types of metrics:
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3.5.2.3

Token overlap METEOR Synonym-aware word matching with stemming
N-gram recall ROUGE-1, Unigram, bigram, and longest subsequence overlap
ROUGE-2,
ROUGE-L
N-gram precision BLEU Corpus-level precision with brevity penalty

Semantic similarity BERTScore Contextual embedding alignment using multilingual
DeBERTa
BLEU Aggregation: Unlike sample-level metrics, BLEU is computed at group level
(combinations of task category, dataset, and language) as it requires corpus-level aggregation
for meaningful interpretation.

BERTScore: Uses microsoft/mdeberta-v3-base to compute semantic similarity beyond
exact word matching, capturing meaning alignment even when phrasing differs.

Multi-Level Aggregation
Metrics are aggregated across multiple dimensions to provide comprehensive analysis:

e Overall: Performance across the entire test set

e By task category: Identifying strengths in specific instruction types (QA, summariza-
tion, etc.)

o By dataset: Understanding which training data sources contribute to capabilities
e By language: Comparing Dutch vs English performance

e By combinations: Cross-tabulated analysis (e.g., Dutch summarization vs English
summarization)

This multi-dimensional view enables identifying both broad patterns and specific areas needing
improvement.

Stage 3: LLM-as-a-Judge Evaluation

Traditional metrics capture surface-level similarity but may miss nuanced aspects of response
quality. GPT-NL implements LLM-as-a-Judge evaluation using two complementary ap-
proaches:

3. Multilingual-Prometheus (M-Prometheus) (Pombal et al., 2025): Specialized open-
weight evaluation models (3B-14B parameters) extending the original Prometheus
framework (Kim et al., 2024) to support multilingual assessment across 20+ lan-
guages through direct assessment and pairwise comparison. Prometheus models
are specifically trained to align with human evaluator judgments, achieving a Pearson
correlation of 0.897 with human assessments.

4. GEval with Qwen (Liu et al., 2023): A flexible evaluation paradigm using chain-of-
thought (CoT) prompting with general-purpose instruction-tuned models like Qwen3
(Yang et al., 2025). The model generates detailed reasoning about response quality
before assigning a numerical score, enabling GPT-4-level evaluation without special-
ized training.

Both approaches evaluate responses on multiple criteria using a 1-5 scoring scale, providing
both numerical scores and textual feedback explaining the assessment.

Evaluation Methodologies
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Multilingual-Prometheus:

e Uses models specifically fine-tuned for multi-criteria evaluation

e Supports multiple model sizes (3B, 7B, 14B parameters)

e Evaluates based on structured rubrics with detailed score descriptions
e Provides both reference-based and reference-free evaluation

e Generates explanatory feedback alongside numerical scores

GEval with Qwen:

e Leverages general-purpose instruction-tuned models for evaluation
e Uses chain-of-thought prompting to elicit detailed reasoning

e Generates evaluation rationale before assigning scores

e More flexible for custom criteria and evaluation frameworks

e Can be adapted to emerging evaluation needs

The choice between approaches depends on evaluation goals: Prometheus offers consistency
through specialized training, while GEval provides adaptability through prompting strategies.

Evaluation Rubrics

Both evaluation approaches use a common rubric structure where each criterion is translated
into a 1-5 scoring scale with detailed descriptions for each score level. The rubrics combine the
high-level evaluation criteria described earlier with concrete scoring guidance for LLM judges.

Rubric Structure Example: Summarization

To illustrate how criteria are operationalized into rubrics, consider the summarization task-
specific criterion:

- Criterion: "Does the response cover key points, stay faithful to the sour
ce in the instruction, and is meaningfully shorter?"

- Score 5: Completely faithful, meaningfully shorter, covers all key points
- Score 4: Mostly faithful, shorter, covers key points well

- Score 3: Generally faithful and shorter but has some issues

- Score 2: Significant issues with faithfulness, coverage, or length

- Score 1: Unfaithful, adds information, misses key points, or too long

This pattern applies across all generic criteria (helpfulness, truthfulness, harmlessness, lan-
guage quality) and task-specific criteria (QA, generation, reasoning, etc.), providing LLM judges
with clear guidance for score assignment while maintaining consistency across different task
types.

Language-Adaptive Evaluation:

The evaluation framework automatically selects appropriate language quality criteria based on
the response language. Dutch responses are evaluated for Dutch language quality, English
responses for English language quality, ensuring relevant assessment across both languages.

Evaluation Outputs
LLM judge evaluations produce structured outputs containing:

e Numerical scores for each criterion (1-5 scale)
e Textual feedback explaining the assessment
e Metadata linking scores to specific samples, task categories, and languages
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These outputs are aggregated alongside traditional metrics, enabling holistic quality assess-
ment that combines quantitative similarity measures with qualitative judgment of response ap-
propriateness, safety, and task-specific excellence.

3.5.2.4 Configuration and Results
e Which evaluation components to execute (EuroEval, traditional metrics, LLM evalua-
tion)
¢ Model checkpoint paths and loading parameters
e Test dataset location and sampling limits
e Generation parameters for response production
e Specific settings for each evaluation method (batch sizes, sampling parameters)
e Experiment tracking integration (project, entity, tags)

This configuration-driven approach enables consistent evaluation across different model
checkpoints while allowing fine-tuned control over computational resources and evaluation
depth.

Results and Logging
The evaluation pipeline produces structured outputs organized by evaluation run:

e Predictions: Cached model responses with metadata

e Traditional metrics: Aggregated scores at multiple granularities
e LLM evaluations: Scores and feedback from evaluation models
e Combined reports: Unified view of all evaluation dimensions

All results are automatically logged to Weights & Biases when configured, enabling:

Experiment comparison: Track metrics across model iterations

Interactive exploration: Drill down into specific task categories or failure modes
Qualitative analysis: Review LLM feedback and example predictions

Progress visualization: Monitor improvements across training runs

Analysis and Interpretation
The multi-faceted evaluation provides insights at different levels:

Overall Performance: High-level comparison with baselines

Task-Specific Analysis: Understanding which instruction types work well
Language-Specific Patterns: Dutch vs English performance differences

Quality Dimensions: Separate tracking of helpfulness, truthfulness, harmlessness,
and language quality

9. Dataset Correlation: Identifying which training datasets contribute most to specific
capabilities

© NGO

3.5.3 Initial evaluation results

In this section we examine initial results from fine-tuning GPT-NL across different experimental
configurations. The figures below present results from the following experiments:

e GPT-NL 26B (epoch 2): our data The GPT-NL base model trained through
epoch-2 annealing (before epoch 3 data inclusion). Fine-tuned with all available
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instruction fine-tuning data, including the GPT-NL instruct dataset (see this section
for details).

e GPT-NL 26B (epoch 2): Tulu 3 data The same GPT-NL epoch-2 model fine-
tuned with data from the Tulu 3 initiative. This serves as a data distribution baseline
to compare our instruction fine-tuning data against.

e Olmo 32B: our data The Olmo 2 model (Team OLMo) fine-tuned with all our in-
struction fine-tuning data. This enables comparison against a larger, more broadly
pre-trained base model.

e Olmo 32B: Tulu 3 data Olmo 2 fine-tuned with Tulu 3 data, essentially replicating
the Olmo-2 work to verify our evaluation approach.

e GPT-NL 26B (epoch 2) base model The GPT-NL base model with no fine-tuning,
serving as a performance floor.

e O0lmo 32B base model The Olmo base model with no fine-tuning, serving as a com-
parable baseline.

e GPT-NL 26B (epoch 2) RDS+ filtered data GPT-NL fine-tuned with a curated
subset selected via the RDS+ method.

e GPT-NL 26B (epoch 2) GEval filtered data GPT-NL fine-tuned with a curated
subset selected via the GEval method.

e GPT-NL 26B (epoch 2) SPIN v2 data only (gptnl it v2) GPT-NL fine-tuned
exclusively with instruction datasets created specifically for GPT-NL.

e GPT-NL 26B (epoch 2) summarization data only GPT-NL fine-tuned only with
available summarization data.

e GPT-NL 26B (epoch 2): our data + LoRA adaptor GPT-NL fine-tuned with all
available instruction data using Low Rank Adaptation (LoRA) (Hu et al., 2021) in-
stead of full-parameter training.

3.5.3.1 Internal evaluation (LLM-as-a-judge metrics)

The results below compare all fine-tuning variations using the LLM-as-a-judge evaluation ap-
proach with GEval and Qwen 3 as the judge model. These evaluations use test data drawn
from the same sources as our fine-tuning datasets and are thus from the same data distribution
(notably different from the Tulu 3 distribution, which draws from different sources).

Base Model Performance: The most striking observation is that non-fine-tuned base models
(GPT-NL epoch 2 and OImo-2) substantially underperform all instruction-tuned variants across
all task categories. This is expected—base models are optimized for next-token prediction, not
instruction following. They lack exposure to this task distribution and thus cannot effectively
represent it. Between the two base models, Olmo-2 performs consistently better across all
tasks, which reflects its significantly larger pre-training corpus (~6x more tokens than the GPT-
NL epoch-2 checkpoint evaluated here). This serves as an important baseline: even with vastly
more pre-training data, a base model without instruction fine-tuning remains fundamentally
limited for instruction-following tasks.

External Model and Data Comparisons: The experiments swapping either the model (Olmo
2) or data (Tulu 3) with external alternatives (top four rows) show mixed results. Tulu 3 data
consistently underperforms our own instruction fine-tuning data across most task categories.
This performance gap is primarily attributable to distribution mismatch: Tulu 3 represents these
tasks differently than our annotated data does, suggesting that data distribution alignment is
critical for fine-tuning success. Notably, using Olmo 2 as the base model provides only marginal
improvements over GPT-NL, despite its larger pre-training scale. This suggests that the quality
and relevance of instruction fine-tuning data matters more than raw pre-training scale for this
task distribution.
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Data Selection and Filtering Experiments: The experiments using filtered data subsets
(RDS+ and GEval methods) and domain-specific data subsets (SPIN v2 instruct data only,
summarization only) all perform worse than training on the full instruction dataset. This pattern
suggests we are operating in a low-data regime where broader coverage is more beneficial
than targeted filtering. The consistent underperformance of these variants indicates that our
full dataset, despite potential noise, provides valuable diversity that individual task categories
or filtering strategies cannot replicate. This finding has important implications: it suggests we
should prioritize data quantity and diversity over aggressive quality filtering at this stage.

LoRA Adaptation: The LoRA experiment (fine-tuning with Low Rank Adaptation instead of full
parameters) shows no clear advantage over standard full-parameter fine-tuning. While LoRA
can be beneficial for parameter efficiency and avoiding catastrophic forgetting, the results here
indicate it does not improve task performance on our evaluation set. This may reflect that our
dataset size and task complexity benefit from full-parameter optimization, or that the rank
constraints of LORA limit adaptation capability for this diverse task set.

Cross-Task Consistency: Examining performance across task categories (summarization,
chat, simplification, brainstorming, generation, reasoning, QA with/without context, multiple
choice, information extraction) reveals that performance improvements from instruction fine-
tuning are consistent but not uniform. The model shows stronger gains on some task types
than others, suggesting specific capabilities are better acquired from our instruction data than
others. This variation across tasks provides direction for future data collection—understanding
which tasks show smaller improvements can guide targeted data augmentation efforts.
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3.5.3.2 EuroEval evaluation
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Distribution Shift and Independent Evaluation: EuroEval results paint a markedly different
picture from internal evaluation, revealing a critical discrepancy: the independent test
distribution substantially challenges all models. Unlike our internal test set—which draws from
the same distribution as our fine-tuning data—EuroEval employs standardized, externally-
sourced benchmarks across diverse tasks. This distribution shift exposes significant limitations
not evident in internal metrics. While our GPT-NL fine-tuned models showed competitive
performance on internal tasks, EuroEval reveals widespread underperformance across
numerous task categories. This divergence is informative: it indicates our instruction fine-tuning
data, while enabling instruction-following capability, may not provide sufficient breadth or
quality to generalize to diverse task distributions encountered in practice. The model struggles
particularly on certain benchmark tasks (reasoning and knowledge-based tasks), suggesting
our training distribution does not adequately cover the patterns present in standardized
benchmarks.

Unexpected Experimental Anomaly: A concerning observation emerges when comparing
experiments with identical training configurations but different implementation runs. The 0Olmo
32B: Tulu 3 data experiment—which should replicate the original Olmo-2 training (both
using Olmo as base model and Tulu 3 data) — shows notably different results than expected.
This discrepancy suggests training parameters, random seeds, or infrastructure differences
between our implementation and the reference may be affecting reproducibility. This anomaly
highlights that either: (1) our experimental setup has undocumented variations affecting training
outcomes, or (2) the reference conditions were not precisely replicated. Resolving this is critical
for ensuring experimental validity and understanding which design choices actually drive
performance improvements.

Metric Disagreement and Evaluation Complexity: A fundamental challenge emerges when
comparing internal LLM-as-a-judge metrics with EuroEval’s standardized benchmarks: they do
not tell the same story. Models that rank highly on internal evaluation often show weaker
EuroEval performance, and vice versa. This metric disagreement reflects different evaluation
philosophies: our internal LLM judges assess task-specific quality with detailed rubrics aligned
to our instruction fine-tuning objectives, while EuroEval employs standardized benchmarks
designed for broad model comparison. This divergence suggests that high performance on
internally aligned tasks does not guarantee generalization to external benchmarks. Moving
forward, we cannot optimize against a single metric without risking misaligned improvements.
This necessitates: (1) identifying which metrics best correlate with our actual deployment goals,
(2) understanding what EuroEval benchmarks reveal about genuine model limitations, and (3)
deciding whether to prioritize internal task-specific excellence or external benchmark
generalization.

Implications for Future Work: These findings indicate substantial refinement is needed
before declaring results conclusive. First, the experimental parameter anomaly must be
investigated and resolved to ensure reproducibility. Second, we need to systematically
understand which EuroEval tasks show the largest gaps and why, whether due to distribution
mismatch, insufficient training data, or model capacity limitations. Third, we should establish
core evaluation metrics that balance internal task performance with external benchmark
robustness, avoiding optimizing for one dimension at the expense of another. The current
results suggest we are still in an exploratory phase where different experimental choices lead
to different rank orderings across evaluation dimensions, indicating the need for more targeted
experimentation to achieve stable, reproducible improvements across multiple evaluation
perspectives.
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3.6 Code and Data Organization

The instruction fine-tuning infrastructure is organized to support efficient experimentation with
multiple base models, dataset variants, and training configurations. The codebase is main-
tained in the Instruction Fine-Tuning Repository, while all training data and model artifacts are
stored on the Snellius HPC cluster.

The organization reflects the iterative nature of fine-tuning research: individual datasets are
prepared once from their source formats, then combined into different training mixtures for
experimental runs. Configurations are version-controlled separately from code, and training
outputs are systematically organized to enable comparison across runs. This structure
supports rapid experimentation with different data combinations while maintaining
reproducibility.

The Instruction Fine-Tuning Repository contains the complete pipeline for GPT-NL instruction
fine-tuning, built on HuggingFace TRL and scaled to multi-node training with DeepSpeed. The
repository implements data preparation, distributed training, and comprehensive evaluation ca-
pabilities.

The repository serves as the central location for all instruction fine-tuning workflows. It provides:

e Data processing pipeline: Transform heterogeneous instruction datasets into uni-
fied training format

e Training infrastructure: Distributed fine-tuning with DeepSpeed ZeRO on multi-
node clusters

e Evaluation framework: Both traditional metrics and LLM-based quality assessment

e Experiment management: YAML-based configuration and Weights & Biases track-
ing

The implementation prioritizes modularity and configurability, allowing researchers to easily
experiment with different data mixtures, training recipes, and evaluation strategies without
modifying core code.

3.6.1 Data Folder Structure

The data organization follows these principles to support reproducibility and efficient experi-
mentation:

e IT mixture datasets (it_mixtures/): Post-processed, combined dataset variants
ready for fine-tuning. Each mixture represents a specific data selection strategy (e.g.,
all data, rds_plus_178k, conversational) and can be directly loaded for train-

ing.

e Raw IT datasets by split (it_datasets/train/, val/, test/): Individual dataset
splits organized by source before combining into mixtures. This separation allows
flexible mixture creation without re-downloading or re-processing source datasets.

e Pretrained models (pretrained-models/): Base model checkpoints (GPT-NL and
external models like OLMo) used as starting points for fine-tuning. Organized by
model name and training stage (e.g., epoch_2_annealed_step98863).

¢ Fine-tuned checkpoints (it-checkpoints/): Model checkpoints saved during and

after training. Naming convention: {BASE_MODEL } - {DATASET}-{BATCH_SIZE}-gas-
{GAS}-nodes-{NODES}-{ZERO_STAGE}-{SLURM_JOB_ID} (e.g., GPTNL-26B-
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all_data-4-gas-1-nodes-8-zero3-15593638). Each checkpoint folder contains
model weights, optimizer states, and training metadata.

e Evaluation results (eval _results/): Outputs and metrics organized by SLURM job
ID with descriptive folder names: {JOB_ID} BASE=[...] IT DATA=[...]
EVAL=[...]. This structure enables easy identification and comparison of evaluation
runs.

e Chat templates (chat_templates/): Jinja2 templates for different model families
that define how to format multi-turn conversations. Used during both training and in-
ference to ensure consistent formatting.

3.6.2 Source Code Structure

The codebase follows a modular structure that cleanly separates concerns: configuration files
define what to run, job scripts define where and how to run it, and source code implements the
logic. This separation enables easy experimentation and deployment across different compu-
ting environments:

instruction-finetuning/
F— config/ # YAML configuration files for data proces
sing, training and evaluating

— data_processing/

— train/

— evaluate/

— jobs/ # SLURM job scripts for Snellius

— train/
distributed_sft.sh # Main distributed training launcher
distributed_grid_launcher.sh # Grid search launcher
torchrun_launcher.sh # PyTorch distributed launcher
convert_zero_to_fp32.sh # Convert DeepSpeed checkpoints to FP32

— evaluate/ # To start evaluation runs

— misc/ # Miscelaneous, for example to set up the

environment or start RDS+ data selection process
— src/ Python source code
— data_processing/ # Data preparation pipeline

++

— train/ # Training implementation

— it_evaluate/ # Evaluation framework

— utils/ # Shared utilities
— pyproject.toml # Python dependencies (uv package manager)
— README . md # Repository documentation
— .env_example # Environment variable template

Configuration System: YAML-based configuration using OmegaConf for environment varia-
ble substitution and hierarchical configs. Training, evaluation, and data processing are sepa-
rately configured.

Data Processing Pipeline: Modular pipeline that downloads, standardizes, unrolls (converts
to prompt-completion format), applies chat templates, and filters datasets. See Data
Preparation for details.

Training Implementation: Built on HuggingFace TRL’s SFTTrainer with DeepSpeed ZeRO
for distributed training. Supports multi-node training on Snellius with automatic checkpoint
management. See Training for implementation details.
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3.6.3

3.6.4

Evaluation Framework: Dual-track evaluation with traditional metrics (BLEU, ROUGE,
BERTScore) and LLM-based evaluation (Prometheus, G-Eval). Integrates with Weights &
Biases for tracking. See Evaluation for methodology.

Utilities: Shared argument parsing (args.py), model loading with flash attention support
(model_utils.py), and distributed training helpers (distributed_utils.py).

Dependencies

Dependencies are managed via pyproject.toml using the uv package manager for fast, re-
liable environment setup:

e Core: transformers==4.57.1, tr1>=0.17.0, torch>=2.0.0, datasets==3.6.0

e Training: deepspeed>=0.12.0, accelerate>=0.24.0

e Evaluation: prometheus-eval>=0.1.20, euroeval==15.16.0, bert-
score>»=0.3.13,vlim==0.10.0

e Tracking: wandb>=0.15.0

e Configuration: omegaconf>=2.3.0, pyyaml>=6.0.0

Practical Information

Installation
For Snellius deployment, use the automated installation script:

cd instruction-finetuning
./jobs/misc/install snellius.sh

This script sets up a virtual environment, installs all dependencies via uv, and configures the
environment for distributed training.

Configuring and Starting Jobs

Training and evaluation jobs are configured through YAML files in the config/ directory, which
specify model paths, dataset locations, hyperparameters, and resource requirements. Job
scripts in jobs/train/ and jobs/evaluate/ contain SLURM directives for compute re-
sources (nodes, GPUs, time limits) and load the appropriate configuration files. Jobs are sub-
mitted to the Snellius queue using sbatch jobs/train/<script>.sh, which launches
distributed training across the requested compute nodes.

Logs and Checkpoints

During training, checkpoints and logs are automatically saved to the shared project space
(/projects/0/prjse986/wpla/instruction-finetuning/it-checkpoints/) under de-
scriptive folder names following the naming convention: {BASE_MODEL}-{DATASET}-
{BATCH_SIZE}-gas-{GAS}-nodes-{NODES}-{ZERO_STAGE}-{SLURM_JOB_ID}.

Each training run directory contains periodic checkpoints saved at configured intervals (e.g.,
checkpoint-100/, checkpoint-200/) with model weights, optimizer states, and training
metadata. If Weights & Biases tracking is enabled, run data is stored in a wandb/ subdirectory.

Evaluation outputs are organized under eval_results/ with folders named by SLURM job ID
and descriptive metadata: {JOB_ID} BASE=[model] IT_DATA=[dataset]
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EVAL=[test_set]. Each folder contains model predictions, computed metrics, and references
to the source checkpoint.
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4 Model Deployment

We deploy GPT-NL behind an OpenAl-compatible HTTP API provided by vLLM, with two client
applications on top:

Gradio “Ops UI": a lightweight control panel to start and tune runtime knobs (sampling, limits,
concurrency) and run quick smoke-tests/benchmarks.

Open WebUI Chat: a full-featured chat workspace for end users (multi-user, permissions,
conversation UX), connected to the same OpenAl-compatible endpoint.

VvLLM is optimized for high-throughput, GPU-efficient serving via:

e PagedAttention (KV-cache memory efficiency) and continuous batching of incoming
requests (better GPU utilization under concurrent load).

e Production-serving features like streaming outputs, prefix caching, and multi-LoRA
support.

e A broad set of performance knobs including quantization options (e.g., GPTQ, AWQ,
INT4/INT8/FP8) plus features like speculative decoding and chunked prefill (model-
and workload-dependent).

e A built-in OpenAl-compatible API server, enabling drop-in compatibility with OpenAl
SDK-based clients.

e Seamless integration with HuggingFace checkpointed models (like GPT-NL)

e Broad hardware compatibility like NVIDIA GPUs, AMD CPUs and GPUs, Intel CPUs
and GPUs, PowerPC CPUs, Arm CPUs, and TPU.

Evaluation deployment

To evaluate both the pre-trained and fine-tuned GPT-NL model, we needed a fast-serving mod-
ule that could work as “plug-and-play” component on various tasks, e.g. offline Euroeval.

In practice, we have created an Apptainer image with a self-contained vLLM instance. The
creation recipe is available here, and the image is located on
/projects/0/prjs0986/wpla/containers/vllm_25.09.sif.

Deploying this image from cli can be performed with the below command. For the specific
variables please look here.

apptainer exec --nv -B $PROJECT_SPACE -B $DOWNLOAD_DIR $CONTAINER_PATH \
vllm serve $MODEL_CHECKPOINT \
--tensor-parallel-size $GPUS --download-dir $DOWNLOAD_DIR \
--uvicorn-log-level warning --chat-template $CHAT_TEMPLATE

Demo deployment
For Demo purposes, we developed a 2-stage deployment setup.

1. Demo starter web application
2. Demo Chat application
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In more detail (available at: https://gpt-nl-demo-starter.k8s.tnods.nl/):

This is a Gradio web application that allows the user to:

e Check whether there is a running vLLM instance

e Select the reservation on snellius (“gpt-nl” or ““)

e Select which model version / checkpoint to run from Snellius
e Start/ Stop the GPT-NL model serving on Snellius

e Exposes the endpoint within TNO network

e Offers a Chatbox window for using the model

e Provides a Tab with user-adaptable parameters (temperature, top-p, min-p, repetition
penalty)

e Provides a Tab with monitoring metrics (prompt throughput, generation throughput
(tokens/sec), total tokens)

Codebase and deployment instructions available here.

Starton Snellius

Stop on Snellius

Figure 22: GPT-NL Demo GUI (screenshot)
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GPT-NL Chat & Usage

Instruction-finetuning/it-checkpoints/GPTNL 268-all_data_shedl

Chat Demonstration

Figure 23: GPT-NL Demo GUI (Screenshot 2)

Demo Chat application
Available at: http://gpt-nl-chat.tnods.nl/

Open WebUl is a user-friendly platform that offers offline operations and works with various
LLM runners like Ollama and OpenAl-compatible APIs.

In our case, we are using the endpoint exposed from the Demo starter and enhance the user-
experience with a “ChatGPT” style interaction.

WILLM-all_data-checkpoint-2755 ~ +

4 WILLM-all_data-checkpoint-2765

Figure 24: GPT-NL Demo chat application
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The Demo starter web application does not interact with Snellius directly; instead, it calls a
small set of scripts that hide all cluster-specific logic. The Ul uses snellius get queue.sh
(and a companion “is job running” script) to show SLURM queue status and detect existing
VLLM jobs, and snellius_start.sh/snellius stop.sh to start or stop the remote vLLM
server. These scripts delegate the actual job submission, lifecycle management, and SSH
tunneling to remote_vllm_manager.py, which in turn submits a SLURM job using
spawn_v1lm_slurm_snellius.job to launch the Apptainer-based vLLM server with the
selected model checkpoint. The Gradio backend (vllm_serve_server_base.py) simply
streams logs from these scripts into the Ul and enables/disables the controls based on their
output. For full implementation details, see the code and comments in the demo starter
repository.
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5.1

5.1.1

Appendices

This chapter provides a collection of technical reference materials, including hardware specifi-
cations, detailed software stack evaluations, assessment results, and formal data and model
format definitions. These resources support the system architecture activities but are too de-
tailed to include in the main body of the document.

Each section in this chapter consolidates essential technical information on topics related to
the system architecture work. They serve as reference points for the main sections of the
report, offering detailed substantiation for their content.

The following appendices are included:

e GPT-NL data curation and training at SURF’s HPC Snellius
e Scaling the training in the HPC
e Frameworks for GPT-NL Fine-Tuning

GPT-NL data curation and training at
SURF’s HPC Snellius

Snellius serves as the national supercomputer managed by SURF for the Dutch high-
performance computing (HPC) community. Designed to support both academic and industrial
research, Snellius delivers cutting-edge, heterogeneous computing capabilities—from CPU-
only nodes leveraging AMD’s Rome and Genoa architectures to GPU-accelerated
configurations with NVIDIA A100 and H100 devices. This system plays a pivotal role in enabling
large-scale, data-intensive simulations, machine learning applications, and scientific computing
across the Netherlands. With robust SLURM-based job scheduling, flexible partitioning, and
precise accounting in System Billing Units (SBUs), Snellius empowers users to maximize
computational throughput while maintaining transparency and efficiency—making it a
cornerstone of Dutch HPC infrastructure.

These are the key Snellius Partitions used in GPT-NL project.

Standard nodes

rome (alias thin)
e Node type: Thin compute nodes (tcn)
e CPU: AMD Rome, 128 cores/node
e Memory: 224 GiB usable RAM/node
e Allocation granularity: 1/8 node = 16 cores + 28 GiB RAM

e Node type: Thin compute nodes (tcn)

e CPU: AMD Genoa, 192 cores/node

e Memory: 336 GiB usable RAM/node

e Allocation granularity: 1/8 node = 24 cores + 42 GiB RAM
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Main usage in GPT-NL: Tests, development, and data curation

5.1.2 GPU-Accelerated Partitions

gpu_A100

Node type: GPU compute nodes (gcn)

CPU: Intel Xeon Platinum 8360Y, 72 cores/node

Memory: 480 GiB RAM/node

GPU: 4 x NVIDIA A100 (40 GB each)

Allocation granularity: 1/4 node = 18 cores + 1 GPU + 120 GiB RAM

Main usage in GPT-NL: Tests, development, model training, and data curation

gpu_H100

Node type: GPU compute nodes (gcn)

CPU: AMD EPYC 9334, 64 cores/node

Memory: 720 GiB RAM/node

GPU: 4 x NVIDIA H100 (94 GiB each)

Allocation granularity: 1/4 node = 16 cores + 1 GPU + 180 GiB RAM

Main usage in GPT-NL: Tests, development, model training, and data curation. Most
of the pre-training and fine-tuning phases used the gpu_H100 partition with exclusive
reservations of up to 22 nodes for longer training batches.

These configurations enable flexible, high-performance computing suitable for a wide range of
scientific and engineering applications, reflecting Snellius’s role as a versatile and advanced
national HPC asset.
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5.2

5.2.1

Scaling the pre-training at Snellius

To train the GPT-NL model, we need to scale the 26B parameter model across the multi-node
GPU cluster on Snellius.

In the ideal set-up, we scale to the maximum number of nodes available. We also require a
flexible set-up since individual nodes can become temporarily unavailable due to hardware
failure or maintenance.

The main pre-training runs were performed on 22 NVIDIA H100 (4 x 94GiB HBM2e) nodes
interconnected via Infiniband HDR100 (100Gbps).

FSDP

To do so, we use Fully Sharded Data Parallelism (FSDP) implemented in PyTorch FSDP2
(Zhao et al., 2023). FSDP works by distributing (sharding) the model parameters, optimizer
states, and gradients across multiple workers, so each worker holds only a portion of the model
rather than a full replica as in DDP (Distributed Data Parallel). This reduces the memory foot-
print on each GPU, enabling the training of larger models or batch sizes, while internal optimi-
zations like overlapping communication with computation help mitigate the increased
communication overhead that is added when sharding the model over multiple nodes. Activa-
tion checkpointing is used to reduce memory consumption, allowing for larger batch sizes.

Experiments

To investigate the different approaches outlined in the documentation on sharding, we ran ex-
periments to test the scaling of the models using the different sharding strategies and frame-
works. The following figure shows the performance results for training 8B and 30B parameter
models (with a similar architecture to the final GPT-NL model) on 20 nodes:
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Based on these experiments, FSDP showed the best efficiency and throughput (i.e. how many
tokens can be processed per second). These results were consistent over the increasing model
sizes.

Additional experiments were performed to investigate the scaling efficiency when increasing
the number of nodes from 1 to 22. The models were trained with increasing levels of sharding:
no sharding (data parallel), Zero2 (for FSDP, this is the SHARD_GRAD_OP setting) and Zero3
(FSDP:FULL_SHARD).
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The dotted line in the graph shows the ideal scaling, when adding more nodes would add linear
improvement to the total throughput. In practice, some performance degradation is expected
because of communication overhead. In particular, with increasing sharding stages this
communication is expected to increase. For each of the sharding stages, the FSDP approach
proved more efficient and showed better throughput. The decrease in throughput also proved
minimal, due to fast interconnect between the nodes.

Concluding from these experiments, for the final model training we opted for full sharding with
FSDP.

Parameters

Below is an overview of the key configuration parameters:

Parallelism FSDP Fully Sharded Data Parallel. Model weights,
strategy gradients, and optimizer state are sharded
across GPUs to minimize memory footprint.

Cluster setup 22 nodes x 4 H100 GPUs Distributes training load across 88 GPUs in

per node total, enabling distributed training at scale.
Parameter pre- DType.bfloatl6 Parameters are stored in bfloat16, helping
cision reduce memory usage while maintaining nu-
meric stability.
Activation TransformerActiva- Applies full checkpointing of activations to
checkpointing  tionCheckpointing- save memory during the forward/backward
Mode.full passes by recomputing forward activations in
the backward pass.
Flash attention True Enables FlashAttention v2 kernels for effi-
cient attention computation.
Per-device 12 Each GPU processes 12 sequences per
batch size step, balancing throughput, and memory ca-
pacity.
Gradient accu- 3 Accumulates gradients over 3 micro-batches
mulation steps before performing an optimizer step,
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effectively increasing the global batch size
without exceeding memory limits.

5.2.2 Checkpointing

To ensure a flexible restarting schedule, we ensure that (temporary) checkpoints are stored
every 220 steps, allowing for continued training with a potentially (temporary) change in num-

ber of nodes.
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5.3 Frameworks for GPT-NL Fine-Tuning

This appendix presents a concise study conducted within the GPT-NL project to identify and
select one or a small set of frameworks suitable for the fine-tuning stage. For the GPT-NL fine-
tuning phase, the primary objective was to perform a full fine-tune using Supervised Fine-Tun-
ing (SFT), as this approach is widely recognized for its effectiveness in adapting large language
models to domain-specific tasks while maintaining stability.

The selected framework must fully support this approach. Among the feasible options, the final
choice was based on performance considerations. The evaluation criteria included scalability,
ease of integration, community support, and computational efficiency. Other alignment
techniques, such as Direct Preference Optimization (DPO) and Generalized Reinsertion Policy
Optimization (GRPO), were outside the scope of this study. However, these methods were kept
in mind during the framework evaluation to ensure future compatibility. The study compared
several candidate frameworks commonly used for fine-tuning large language models:

HuggingFace TRL — A widely adopted library offering strong support for SFT and reinforcement
learning-based alignment. Open-Instruct (OLMo) — Focused on open-source instruction fine-
tuning with robust tooling for research workflows. ColossalAl — Designed for large-scale
distributed training with efficient memory optimization. DeepSpeedChat — Provides advanced
optimizations for chat-based fine-tuning and large-scale deployments. Axolotl — A lightweight
solution tailored for LORA and parameter-efficient fine-tuning. Megatron-LM — Optimized for
massive model training with tensor and pipeline parallelism. TorchTune — A PyTorch-native
library emphasizing simplicity and modularity for fine-tuning tasks. Unsloth — Specializes in fast
and resource-efficient fine-tuning, particularly for smaller hardware setups.

5.3.1 Frameworks Comparison

These are the frameworks that we found:
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https://github.com/huggingface/trl
https://github.com/huggingface/trl
https://github.com/allenai/open-instruct
https://github.com/allenai/open-instruct
https://github.com/allenai/open-instruct
https://github.com/hpcaitech/ColossalAI
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After analysing multiple frameworks for instruction fine-tuning, including HuggingFace TRL,
ColossalAl, DeepSpeedChat, Open-Instruct, and others, we chose HuggingFace TRL as our
primary fine-tuning framework, augmented with:

o DeepSpeed ZeRO for multi-GPU/multi-node scaling (Stages 1-3).
o Dataset streaming (for memory efficiency on large parquet datasets).
e Synchronization primitives (avoid races in model/dataset caching across many

ranks).

e Custom callbacks for throughput and sample generation into monitoring tools.

See further discussion in the Fine-tuning training Section.

5.3.2 RLHF approaches guideline

PPO (Proximal
Policy Optimiza-
tion)

DPO (Direct
Preference Opti-
mization)

GRPO (General-
ized Reinsertion

) TNO Public

Full RLHF with token-
level control and dy-
namic environment in-
teraction

Simple preference
alignment tasks, espe-
cially single-turn dia-
logue

Reasoning-heavy,
long-horizon tasks
where PPO is unstable

Fine-grained learning

Proven for large mod-
els like ChatGPT

Stable, efficient

No RL or reward
model needed

No value model re-
quired

X Expensive (needs re-
ward + value model)

X Sensitive to reward
model tuning
X Limited
preferences

X Less expressive for
long-horizon tasks

to pairwise

X New and less widely
adopted
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https://github.com/deepspeedai/DeepSpeedExamples/tree/master/applications/DeepSpeed-Chat
https://github.com/deepspeedai/DeepSpeedExamples/tree/master/applications/DeepSpeed-Chat
https://github.com/axolotl-ai-cloud/axolotl
https://github.com/NVIDIA/Megatron-LM
https://github.com/pytorch/torchtune
https://github.com/unslothai/unsloth
https://github.com/huggingface/trl

Policy Optimiza-
tion)
RLVR (RL with

Verifiable Re-
wards)

ORPO (Offline
RL with Policy
Optimization)

KTO (KL-Tuned
Optimization)
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Tasks with objective
success signals (math,
code correctness)

RLHF-style training
with static datasets (no
rollouts)

Reward-guided fine-
tuning without full RL
setup

5.3.3 References

More stable and sam-
ple-efficient than PPO

Uses true/automated
rewards

Less dependent on
human feedback
Efficient offline tuning
Leverages existing
reward models
Lightweight and easy

Ideal for hybrid super-
vised + reward training

X Only suitable for tasks
with measurable outputs

X No exploration
X Limited to seen data

X Less powerful than
PPO for complex behavior

e AllenAl released SFT, DPO and Instruct/GRPO versions of their 32B model
e Trained on 5 8xH100 nodes source

e Fine-Tuning LLMs with GRPO on AMD MI300X: Scalable RLHF with Hugging Face
TRL and ROCm - link

e DeepSpeedChat SFT, DPO, RM finetune, RLHF - link
e ColossalAl example scripts for PPO, DPO, GRPO, etc. - link
e OLMo0-32B RLVR - link

) TNO Public
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https://huggingface.co/allenai/OLMo-2-0325-32B-SFT
https://huggingface.co/allenai/OLMo-2-0325-32B-DPO
https://huggingface.co/allenai/OLMo-2-0325-32B-Instruct
https://huggingface.co/allenai/OLMo-2-0325-32B-Instruct
https://rocm.blogs.amd.com/software-tools-optimization/llm-grpo-rocm/README.html
https://github.com/deepspeedai/DeepSpeedExamples/tree/master/applications/DeepSpeed-Chat/training
https://github.com/hpcaitech/ColossalAI/tree/main/applications/ColossalChat/examples/training_scripts
https://huggingface.co/allenai/OLMo-2-0325-32B-Instruct#reproduction-command

