

Defence, Safety &

Security

www.tno.nl

+31 88 866 00 00

info@tno.nl

 TNO Public

GPTNL-DEL-4002-[1.0] – 22 December 2025

System Architecture
Document

Training Pipeline

 TNO Public

Author(s) Julio A. de Oliveira Filho [Editor]

Claartje Barkhof [Editor]

Andrei Roncea [Editor]

Athanasios Trantas

Martino Mensio

Alexandru Turcu

Thomas van den Osch

Simone van Bruggen

Erik de Graaf

Classification report TNO Public

Title TNO Public

Report text TNO Public

Number of pages 109

Number of appendices 0

Project name GPT-NL

Project number 060.58424

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public

All rights reserved

No part of this publication may be reproduced and/or published by print, photoprint, microfilm,

or any other means without the previous written consent of TNO.

© 2026 TNO

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 3/109

Contents

1 Introduction ... 4
1.1 Architectural Overview of the GPT-NL Training Pipeline ... 6
1.2 Scope of the System Architecture Work and Relation to Other Work .. 9
1.3 How to further read this document ... 9

2 Architecture of the Pre-Training pipeline .. 10
2.1 GPT-NL Tokenizer ... 12
2.2 Pre-training Data Preparation .. 16
2.3 Pre-training model & hyperparameters .. 27
2.4 Configuring, Running, Monitoring, and Logging Pre-Training .. 30
2.5 Evaluation.. 42
2.6 Context Extension ... 49
2.7 Data folder Structure and Source Code Organization .. 52

3 Architecture of the Instruction Fine-Tuning ... 56
3.1 GPT-NL Instruction fine-tuning .. 56
3.2 Fine-Tuning Data Preparation ... 59
3.3 Data selection process .. 70
3.4 Configuring, Running and Monitoring the Instruction Fine-Tuning ... 76
3.5 Instruction fine-tuning evaluation ... 83
3.6 Code and Data Organization ... 94

4 Model Deployment .. 98

5 Appendices ... 102
5.1 GPT-NL data curation and training at SURF’s HPC Snellius ..102
5.2 Scaling the pre-training at Snellius ...104
5.3 Frameworks for GPT-NL Fine-Tuning ...107

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 4/109

1 Introduction

The GPT-NL project aims to develop a Dutch-English large language model (LLM) from the
ground up to promote technological sovereignty and strengthen the Dutch and broader Euro-
pean LLM ecosystem. Achieving this objective requires a structured systems engineering ap-
proach encompassing requirement’s elicitation, design, implementation, and validation.
Beyond the creation of the model itself, sovereignty and community growth depend on trans-
parent dissemination of knowledge about how such a system is built. This document therefore
presents the architectural blueprints—both in code and documentation—for the second part of
this development phase: the System Architecture of the Training Pipeline.

The documentation and systematic management of this technological blueprint are intended to

stimulate new research directions and enable future improvements. The GPT-NL System

Architecture effort serves as the foundation for these goals by providing a coherent, well-

documented engineering framework for large-scale model development.

From a general point of view, the system architecture activities provide a structured conceptual

model defining the organization, behavior, and interactions of system components. It offers a

high-level view of how hardware, software, data, and processes collaborate to achieve the

intended system goals. Through clear specification of components, interfaces, and design

principles, the architecture ensures that key system attributes—such as performance,

scalability, security, and maintainability—are addressed systematically and in alignment with

stakeholder requirements and operational constraints.

Within the GPT-NL team, system architecture plays a coordinating role by providing a shared

technical framework that guides design, implementation, and verification across teams. This

work, conducted under Work Package 13 (WP13), facilitates communication among

engineers, researchers, and developers by defining clear interfaces and dependencies. The

architectural team ensures design consistency, manages technical risks, and balances trade-

offs among quality attributes. As a result, this document and the associated work contribute to

the alignment of strategic objectives and technical execution, promoting system coherence,

continuity, and effective integration throughout the development lifecycle.

The overview of the processes, tasks, and artifacts related to the architectural work is depicted

in Figure 1. The system architecture team collaborates with all other working packages, but

closest with WP12 (Data Curation), WP14 (Model Development), and WP18 (Data

Acquisition and Quality). While WP12 and WP14 lead algorithmic development—such as the

selection of filters, models, and training techniques—WP13 focuses on translating these

designs into structured, maintainable, and scalable code. This includes defining clean

interfaces between modules, ensuring continuous data processing flows suitable for HPC

environments, and addressing non-functional aspects such as security, documentation, and

energy efficiency. The WP18 is responsible for the processes of contacting data providers and

acquiring/creating datasets. They are strongly involved with the architecture team assessing

the quality of the data during and after the curation phase.

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 5/109

Figure 1: Overview main GPT-NL Processes and Work Packages

In general, LLM development can be divided into two main components: data curation and

model training and validation. These components differ significantly in their technical focus

and data processing requirements.

• The data curation pipeline encompasses all processes from data acquisition to the
creation of a uniform dataset ready for model training. This includes systematic rea-
soning and documentation of inclusion and exclusion criteria, as well as the production
of standardized datasets for both training and public release. The data curation pipeline
is subdivided in two phases: the data extraction phase and the data curation phase.
The whole curation pipeline and its phases are detailed in the next sections. Architec-
tural artifacts from this pipeline include:

https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/data-extraction-phase.md
https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/data-curation-phase.md

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 6/109

o Software developed for data acquisition, extraction, curation, and dataset de-
ployment.

o Documentation of third-party software and hardware stacks—such as Data-
Trove, PrivateAI, and SURF’s Snellius—including configuration details, ver-
sioning, and integration procedures.

o CI/CD frameworks for testing, logging, and evaluating both the platform and
resulting datasets.

o Records of architectural decisions, design rationales, and supporting technical
documentation.

o Security, privacy, and energy monitoring mechanisms for development and
operational phases.

o Final technical reports and communication materials, including this document
and supporting white papers.

• The model training and validation phase includes data preparation, tokenization,
model pre-training, instruction fine-tuning, and performance evaluation. It results in a
standardized and reproducible model package for internal use and community release.
Artifacts from this phase include:

o Software for data mixing, tokenization, model training, fine-tuning, and deploy-
ment.

o Documentation of third-party stacks such as OlMO and the Snellius HPC in-
frastructure, detailing configurations and integration.

o CI/CD support for testing and performance tracking.

o Documentation of design decisions, system rationale, and supporting non-
functional design considerations.

o Security, privacy, and energy monitoring tools.

o Final deliverables, including technical documentation and dissemination ma-
terials.

This document, System Architecture Document – Training Pipeline, covers the GPT-NL

model training. Details on data curation are presented in the related document: System

Architecture Document – Data Curation Pipeline1. As introduction, we present in the

following the architectural overview of the Training Pipeline.

1.1 Architectural Overview of the GPT-NL
Training Pipeline
The GPT-NL training pipeline transforms curated data into deployment-ready language models

optimized for Dutch and English language tasks. The focus tasks for GPT-NL are

summarization, simplification, and question answering based on contextual information

(commonly known as Retrieval Augmented Generation pipelines). It consists of two major

phases: pre-training and instruction fine-tuning. Each of these phases has distinct

architectural requirements, computational demands, and outputs.

1 TNO, GPT-NL Project, Report; GPTNL-DEL-4001-1.0-System Architecture Document – Data Curation Pipeline,

December 2025.

https://github.com/huggingface/datatrove
https://github.com/huggingface/datatrove
https://www.privateai.com/
https://www.surf.nl/en/services/snellius-the-national-supercomputer
https://www.surf.nl/en/services/snellius-the-national-supercomputer

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 7/109

Figure 2: Introduction GPT-NL Training Process

The training pipeline starts after the data curation pipeline1. It consumes curated datasets as

its primary input. While the curation pipeline ensures data quality, diversity, and compliance,

the training pipeline transforms this data into functional language models.

The relationship with other work packages is essential to the training process. WP12 (Data &

Algorithms) provides the curated training data, evaluation datasets, and algorithmic guidance

for data mixing strategies. WP13 (System Architecture & Infrastructure) designs and

implements the distributed training infrastructure, monitoring systems, and deployment

mechanisms; and provides this architectural documentation.

This document gives an overview of the training pipeline for the GPT-NL foundation model. It

gives a high-level description of the processes involved in training this model that have

implications for the system architecture design and choices for the supporting software stack.

Note that document is not meant as a complete and standalone architecture design.

The training pipeline architecture is built on three core principles that guide design decisions

and implementation choices:

Reproducibility ensures every aspect of the training process can be recreated. All

hyperparameters, data mixture ratios, and training settings are stored in configuration files.

Data snapshots and metadata track which data was used at each training stage. Experiment

tracking tools like Weights & Biases log metrics, hyperparameters. Artifacts are stored

throughout running processes on the Snellius HPC. All training code is version-controlled in Git

repositories.

Scalability allows the architecture to support training models of varying sizes across different

scales. Dedicated libraries enable scalable training across multiple nodes using various

strategies. SLURM provides job scheduling and resource management. Recovery from

hardware failures or job time limits is enabled through checkpointing and restart capabilities.

Performance optimizations include gradient accumulation, mixed-precision training, and

activation checkpointing.

Observability provides comprehensive monitoring to ensure training health and progress.

Training metrics include loss, perplexity, gradient norms, and learning rates. System metrics

track GPU utilization, memory usage, communication overhead, and throughput. Periodic

validation loss and benchmark performance are captured as evaluation metrics. Job lifecycle

alerting systems notify teams to act quickly when needed.

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 8/109

1.1.1 Infrastructure & Software
The training pipeline runs on SURF’s Snellius supercomputer, which provides NVIDIA H100

GPUs with NVLink and InfiniBand interconnects for high-bandwidth communication. SLURM

manages job scheduling, resource allocation, and queue management. High-performance

parallel file systems enable efficient data loading and checkpoint storage. For more details on

the Snellius HW used in the GPT-NL curation and training see the GPT-NL data curation and

training at SURF’s HPC Snellius appendix.

The software stack includes native PyTorch with FSDP (Fully Sharded Data Parallel) for pre-

training, and HuggingFace TRL with DeepSpeed for fine-tuning. Distributed computing relies

on NCCL for GPU communication. Monitoring uses Weights & Biases and custom logging

infrastructure. Model serving is managed through vLLM inference engine with Hugging Face

Transformers. Detailed information about the software stacks and infrastructure is provided in

the appendices.

1.1.2 Overview of the Training Lifecycle
The entire training process moves through a series of linked stages. Each phase consumes

outputs from previous stages and produces specific artifacts that feed into subsequent steps.

The process begins with data preparation and tokenization, where curated data is

transformed into a format suitable for model consumption. This involves training a custom

tokenizer optimized for Dutch and multilingual text, combining different data sources according

to designed mixture ratios, and converting raw text into tokenized sequences stored in

optimized formats. The inputs are curated datasets from the data curation pipeline, and the

outputs include the trained tokenizer, data mixture configurations and tokenized datasets. This

phase runs on CPU-based preprocessing jobs on Snellius compute nodes.

The pre-training phase trains the core foundation model from scratch using large-scale

distributed training across multiple GPU nodes. The process leverages parallelization

mechanisms to scale to 88 H100 GPUs. Training includes continuous evaluation on held-out

data and benchmark tasks, regular checkpointing of model, optimizer, and scheduler states for

fault tolerance, and real-time monitoring of loss curves, learning rates, gradient norms, and

resource utilization. This phase consumes the tokenized training data, tokenizer, and model

architecture configuration, producing foundation model checkpoints at multiple snapshots

throughout training. Pre-training is inherently iterative, as new curated data may arrive during

training and can be incorporated in subsequent cycles or continuation runs.

Following initial pre-training, context extension adapts the model’s context window from its

original training length (e.g., 4K tokens) to longer contexts (16K or 32K tokens). This involves

adjusting positional encodings such as RoPE and brief additional training on long-context data.

The process takes the pre-trained foundation model and long-context training data as input,

producing extended-context model checkpoints.

The instruction fine-tuning phase adapts the foundation model for specific downstream tasks

using instruction-following datasets. The process involves curating and filtering instruction

datasets, training the model through supervised fine-tuning to follow instructions and generate

appropriate responses, and optimizing for specific tasks like summarization, simplification, and

RAG capabilities. Performance is assessed on instruction-following benchmarks throughout

the process. This phase uses smaller GPU allocations (8-32 GPUs) and runs for shorter

durations (hours to days) compared to pre-training. Fine-tuning experiments typically iterate to

optimize hyperparameters, data mixtures, and training strategies.

https://www.surf.nl/en/services/snellius-the-national-supercomputer
https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/curation-a100.md
https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/curation-a100.md
https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/sw-stack-training-pipeline.md
https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/pre-training-data-preparation.md

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 9/109

Finally, model deployment packages trained models for production use. Models are converted

to deployment-ready formats compatible with Hugging Face, containerized for reproducible

deployment environments, and integrated with evaluation frameworks and application

interfaces. The deployed models are served via vLLM inference engine, making them

accessible via API or for local inference on inference-optimized GPU servers.

1.2 Scope of the System Architecture Work
and Relation to Other Work
Besides the close work developed with WP12, WP14, and WP18, cybersecurity and evaluation

activities are also depicted in Figure 1. These activities are out of the scope of the architecture

team, but their insights and outcomes influence and are influenced by the GPT-NL architecture

work. For example, WP21 Evaluation and the Cybersecurity work package (WP22) operate

independently to ensure objective assessment and verification. WP21 evaluates the trained

model’s performance on key tasks, while the cybersecurity and red-teaming teams assess its

resilience and safety. WP22 is involved with securing the development and model overall (in

Figure 1 depicted only at the end for readability). The team puts in place classic and AI-specific

cybersecurity mechanisms. Although separate, these teams collaborate closely with WP13 by

consuming its architectural artifacts, interfaces, and documentation, and by providing feedback

that informs subsequent development cycles.

1.2.1 Architecture Team
The GPT-NL architecture team has a multidisciplinary composition with SW architects and

engineers, open-source specialists, high performance computers architects, ML engineers,

and data scientists. Members of TNO and SURF form the team. Acknowledgements for the

support of SURF in all the management and proper usage of the Snellius supercomputer.

1.3 How to further read this document
This document focusses on the training of the GPT-NL foundation model, and the following

sections provide detailed documentation for each phase of the training pipeline. The structure

progressively increases in technical depth, from high-level architectural decisions to

implementation details and code-level documentation.

The pre-training deep dive begins with a comprehensive overview of the pre-training process,

followed by detailed sections on tokenizer fitting & tokenization, data preparation & mixing,

running & monitoring pre-training, scaling strategies, context extension, model &

hyperparameters, and code organization.

The instruction fine-tuning deep dive starts with a comprehensive overview of the fine-tuning

process, followed by sections on data preparation, data selection methods, running &

monitoring fine-tuning, evaluation and initial results, and code organization.

Additional sections cover model deployment for packaging and deploying trained models, and

training appendices with additional technical details, software stack analysis, and framework

experiments.

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 10/109

2 Architecture of the Pre-
Training pipeline

The GPT-NL pre-training pipeline is the most compute-intensive stage of model development,

transforming curated multilingual datasets into large-scale base language models for Dutch

and English. This process involves the following key steps: tokenizer fitting, data preparation,

distributed pre-training across high-performance compute clusters, and optional context

extension for longer input sequences. The pipeline ensures that models are optimized for

quality, scalability, and adaptability before fine-tuning.

Between June and December 2025, GPT-NL underwent three major training epochs and a

final annealing phase, processing 1.9 trillion tokens across multiple languages and code. The

resulting model—a 26B-parameter architecture based on Gemma 3—was trained using 220

H100 nodes on Snellius. This foundation enables robust multilingual capabilities and serves as

the basis for subsequent fine-tuning and evaluation stages.

The full pipeline, including its main functional phases, is illustrated in Figure 3 below. At its core

is the pre-training process, which optimizes a randomly initialized model to one that fits the pre-

training distribution.

Figure 3: Overview of the pre-training pipeline

The pipeline consists of the following steps:

Tokenizer fitting - Optimizes an algorithm to efficiently encode raw text into a numerical

representation that can be processed by the model.

Data preparation - Transforms the raw, curated data into tokenized form and mixed to match

specific language types and quality target distributions.

Pre-training - Runs distributed training across the full compute pool (202 H100 nodes on

Snellius, each consisting of 4 H100 GPUs).

Context extension - Optional phase to adapt the model to longer input sequences via longer-

form content.

Evaluation - Evaluates base model capabilities across tasks to monitor training and select final

artifacts.

The pre-training process is an iterative, multiphase process where every phase (epoch)

processes a mixed version of the data (see Figure 4 below). When new data arrives, it can be

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 11/109

incorporated into the pre-training from the next epoch onwards. To finalize a model, it needs to

undergo a shorter annealing phase (where the data mixture is biased towards higher quality

data), which can be instantiated after each intermediate epoch, leading to n intermediate base

models.

Figure 4: Depiction of multi-stage pre-training

All functionality concerning pre-training is implemented across three GitLab repositories:

1. The Dataloader repository that implements all steps preceding training, including training

the tokenizer and tokenizing all curated text datasets.

2. The Pytorch Native repository that implements the pre-training process and hosts

additional functionality as well, such as evaluation and running inference with the model.

3. The Context Lengthening repository which is solely concerned with the context extension

phase.

This section details the GPT-NL pre-training as it happened between June 16th, 2025, and

December 31st, 2025. Training was intermittent due to maintenance and shared infrastructure,

lengthening the overall duration. The pre-training consisted of three main epochs (i.e., passes

over the data) and an annealing phase. In the second epoch we added new data (mostly Dutch

text) that arrived while epoch 1 had already started. The annealing phase is a short final phase

emphasizing higher quality data. The total number of tokens seen by the model is 1.9 trillion

tokens.

Total training tokens after up sampling (in billions), seen throughout training:

Language Epoch 1 Epoch 2 Epoch 3 Annealing

English 279.78 269.10 269.10 266.24

Dutch 139.89 116.74 116.74 73.20

Code 83.93 80.73 80.73 31.71

Other languages 55.96 53.82 53.82 7.93

Total 559.56 520.40 520.40 379.07

Cumulative total 559.56 1079.96 1600.36 1979.44

https://ci.tno.nl/gitlab/gpt-nl/model-development/dataloader
https://ci.tno.nl/gitlab/gpt-nl/model-development/pytorch_native
https://ci.tno.nl/gitlab/gpt-nl/model-development/context-lengthening

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 12/109

The trained model has 26B parameters and is based on the Gemma 3 architecture. For more

details on the architecture, see the training hyperparameters Section.

The following subsections dive into each of the key steps of the pre-training.

2.1 GPT-NL Tokenizer
A tokenizer is an algorithm that converts raw text into numerical tokens, enabling a language

model to process the data effectively. For GPT-NL, a custom tokenizer is trained from scratch

to ensure efficient representation of Dutch text, which is often underrepresented in existing

multilingual tokenizers.

Tokenization refers to the process of transforming a text dataset into this numerical form. A

trained tokenizer segments text into chunks based on their statistical occurrence and maps

these segments to numerical representations. Tokens may correspond to individual characters,

sub-word units, or frequently occurring combinations of characters and symbols.

The figure below illustrates tokenization by depicting tokens within a sentence, where each

token is represented by a distinct colour.

Figure 5: A tokenized sentence. Tokens can represent single letters, parts of a word, or frequent sequences of

letters and symbols.

The entire tokenization involves roughly 2 stages:

• Training the tokenizer from scratch

• Tokenizing the GPT-NL data in preparation for the model training

2.1.1 Tokenizer training
Training a tokenizer at scale involves processing a high amount of data (in the lines of 100+

GB of raw text). Frameworks like Hugging Face's tokenizers are not capable of efficiently

tokenizing the data even with 1TB+ of RAM. In contrast, SentencePiece does work reasonable

with high volumes of data, hence the GPT-NL tokenizer was trained with the SentencePiece

library.

First, a subset of the training data is sampled to obtain the tokenizer training set. To be precise,

120GB of raw text was employed for the tokenizer set with the following language mixture:

https://arxiv.org/abs/2503.19786
https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/pre-training-hyperparameters.md
https://huggingface.co/docs/tokenizers/en/index
https://github.com/google/sentencepiece

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 13/109

Figure 6: Tokenizer training language distribution

Secondly, the SentencePiece tokenizer training configuration was set. This includes initializing

the byte-fallback Byte-Pair Encoding tokenizer, setting the final vocabulary size of 128k, special

tokens definition and other options. The tokenizer in fact is similar to the Llama tokenizer and

follows the HuggingFace’s LlamaTokenizer class. The configuration of SentencePiece can be

found in the internal GitLab here.

Training the tokenizer took 64 hours on a fat_genoa node with 192 cores and 1440 GiB of

memory.

Lastly, the tokenizer is converted from the SentencePiece format to the HuggingFace format

such that it can be loaded with

from transformers import AutoTokenizer
gptnl_tokenizer = AutoTokenizer.from_pretrained(<path_to_tokenizer>)

The GPT-NL tokenizer is initialized with 100 reserved tokens for downstream adjustments and

in the form of <reserved_token_xx>. As the tokenizer follows LlamaTokenizer closely, the

following default tokens are considered:

{
 "id": 0,
 "content": "<unk>",
 "single_word": false,
 "lstrip": false,
 "rstrip": false,
 "normalized": false,
 "special": true
 },
 {
 "id": 1,
 "content": "<s>",
 "single_word": false,
 "lstrip": false,
 "rstrip": false,

https://ci.tno.nl/gitlab/gpt-nl/model-development/dataloader/-/tree/main/gptnl_dataloader/tokenization/config?ref_type=heads

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 14/109

 "normalized": false,
 "special": true
 },
 {
 "id": 2,
 "content": "</s>",
 "single_word": false,
 "lstrip": false,
 "rstrip": false,
 "normalized": false,
 "special": true
 },
 {
 "id": 3,
 "content": "<pad>",
 "single_word": false,
 "lstrip": false,
 "rstrip": false,
 "normalized": false,
 "special": true
 },

For instruction-tuned tokenizers, we follow the ChatML templates:

"4": {
 "content": "<|im_start|>",
 "lstrip": false,
 "normalized": false,
 "rstrip": false,
 "single_word": false,
 "special": true
 },
 "5": {
 "content": "<|im_end|>",
 "lstrip": false,
 "normalized": false,
 "rstrip": false,
 "single_word": false,
 "special": true
 },
 "6": {
 "content": "<|system|>",
 "lstrip": false,
 "normalized": false,
 "rstrip": false,
 "single_word": false,
 "special": true
 },
 "7": {
 "content": "<|user|>",
 "lstrip": false,
 "normalized": false,
 "rstrip": false,
 "single_word": false,
 "special": true
 },

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 15/109

 "8": {
 "content": "<|assistant|>",
 "lstrip": false,
 "normalized": false,
 "rstrip": false,
 "single_word": false,
 "special": true
 },

2.1.2 Tokenization
The OLMo-core pretraining pipeline expects tokenized .npy (NumPy memory-mapped files)

as its training data. To this end, the entire dataset is tokenized before training. Specifically, the

data is put into smaller buckets of file and by employing the SLURM job array, tokenizing the

entire dataset with parallel jobs only took a couple of hours.

Tokenizer fertility rate is defined as the average number of tokens produced per word in a given

text. A lower fertility rate is generally preferable because it indicates that words are represented

more compactly, which reduces sequence length and enhances model efficiency. When fertility

is high, token sequences become longer, leading to increased memory consumption and

slower inference times.

Optimizing tokenizers for lower fertility ensures that models process text more efficiently

without sacrificing semantic integrity. By reducing the number of tokens per word, the

computational workload decreases, directly lowering training and inference costs and making

large-scale language model operations more economical.

Below is the tokenizer fertility rate compared to competitive multilingual tokenizers. The

performance is reported on a random subset of Dutch data:

Figure 7: Tokenizer comparison (lower means a better fit)

Given the different vocabulary sizes of 128k for GPT-NL and the competitive Salamandra of

256k, thereby adding extra parameters in the embedding space, the GPT-NL tokenizer shows

a good trade-off between fertility/token efficiency and model complexity.

Numeric evaluations of the tokenizer are discussed in the Evaluations Section and in the Data

Preparation Section.

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 16/109

2.2 Pre-training Data Preparation
This section describes the complete process of transforming curated datasets into optimized

data mixtures ready for pre-training. The data preparation pipeline connects the data curation

phase (delivered by WP12) with the pre-training phase, producing data mixtures that support

Dutch language representation and allow for quality control of input sources.

The pipeline is implemented in the Dataloader GitLab project and encompasses tokenizer

fitting, data bucketing, train-validation splitting, tokenization, and distribution mixing. The

process is guided by two key variables: detected language and quality assessment, which

together define the characteristics of different data buckets used to construct training mixtures

for different phases of pre-training.

2.2.1 Motivation and Design Principles
One primary objective of GPT-NL is to achieve adequate representation of the Dutch language

in the final model. The Dutch share of available data is low relative to English, even after

receiving additional Dutch data during epoch 1 training, the size remains disproportionate

compared to English resources. To address this imbalance, we up sample the Dutch data share

during training.

Data quality also affects model performance. Recent large-scale model reports provide

evidence for quality-focused data strategies. The Llama 3 team (Llama AI Team, 2024) found

that using high-quality code and mathematical data in the final training phase can boost

performance on key benchmarks, with experiments showing improvements (24% on GSM8k

and 6.4% on MATH) for smaller models. The benefits were less pronounced for larger models

that already exhibited stronger reasoning capabilities.

Similarly, EuroLLM (Martins et al., 2024)—a multilingual European language model project—

reports a comparable strategy: in the last 10% of pre-training, they increase the presence of

high-quality data in the mix. EuroLLM filters monolingual data using a binary classifier inspired

by FineWeb-Edu (Penedo et al., 2024) to predict whether documents have educational value,

and incorporates additional high-quality datasets including Cosmopedia-v2, Python-Edu,

training sets from GSM8K and MATH benchmarks, and document-level parallel data from

Europarl and ParaDocs.

Following these approaches, GPT-NL employs a bucket system to control both language

distribution and data quality throughout pre-training. We categorize all curated data into

buckets based on two primary dimensions:

1. Language: Detected language (Dutch, English, Code, Other languages)

2. Quality: Manually attributed quality assessment labels provided by WP18 at dataset
level (high, medium, low)

This bucketing strategy enables us to create specific data mixtures for different training

phases—maintaining broader diversity during the primary training epochs (1-3) while biasing

toward higher quality data during the final training phase (i.e., the annealing phase). The

system also tracks newly added data separately, allowing us to incorporate fresh content that

arrived during training into subsequent epochs.

The following sections detail the quality assessment methodology, provide concrete examples

of bucket characteristics, describe the data preparation pipeline implementation, and present

the final data mixtures used throughout GPT-NL pre-training.

https://ci.tno.nl/gitlab/gpt-nl/model-development/dataloader/-/tree/main
https://arxiv.org/pdf/2407.21783
https://arxiv.org/abs/2409.16235
https://arxiv.org/abs/2406.17557

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 17/109

2.2.2 Quality Assessment and Bucketing Methodology
Quality assessment for GPT-NL datasets was performed manually by WP18 at the dataset

level. Rather than applying strict, quantitative criteria, the assessment considers the nature and

characteristics of each data source to assign quality labels (high, medium, or low). The table

below illustrates representative examples across the quality spectrum.

Source Quality Rationale

OpenRaadsInformatie — Public hear-
ings and decision documents from
~350 Dutch municipalities, water
boards, and provinces

High Professionally written transcripts
with high expected accuracy

NDP National-Regional — National
and regional newspapers from mem-
bers of the Dutch news branch organi-
zation

High Content written by professional jour-
nalists and published in established
newspapers

Fryske Akademy — Content from the
Frisian language and culture research
institute

High Curated Frisian language content
from an academic institution

Synthetic Wikidata — Synthetically
generated content based on structured
Wikidata entries

Medium Systematic generation from struc-
tured high quality data, but genera-
tion process may introduce errors

KPN Web Content — Web content
from the Dutch telecommunications
company

Medium Web content that may contain errors
or inaccuracies typical of online
sources

CommonCrawl Creative Commons
— Dutch CC-BY and public domain
web content from CommonCrawl

Medium Variable quality typical of web scrap-
ing, though filtered for permissive li-
censes

Noord-Hollands Archief — Archives
older than 100 years from the provincial
archive of North Holland

Low Contains numerous OCR errors from
digitization of historical documents

YouTube Commons — CC-BY video
transcripts from YouTube

Low Automatic transcripts that are often
inaccurate

Nationaal Archief — Digitized histori-
cal archives including VOC records

Low Digitization error rate of approxi-
mately 8%, resulting in substantial
OCR errors, particularly in the VOC
subset

Quality assessment is based on multiple criteria including the reputation and origin of the

source, recency of the content, and technical quality factors such as OCR accuracy.

High-quality sources typically originate from institutions or organizations with editorial

standards or quality control processes. These include professional journalism, official

government documentation, and curated academic content. The writing in these sources is

produced with attention to accuracy and coherence. Sources in this category have strong

reputations and provide reliable, well-structured content.

Medium-quality sources encompass web content and synthetically generated material. While

web content from reputable organizations or filtered sources may be generally reliable, it lacks

the editorial oversight of high-quality sources. Synthetic content generated from structured data

sources like Wikidata is systematic but may contain artifacts from the generation process.

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 18/109

Low-quality sources primarily suffer from technical limitations in data capture or transcription.

Automatic transcription systems and OCR processes applied to historical documents introduce

errors that degrade text quality. These sources remain valuable for their content and linguistic

diversity despite their technical imperfections.

The quality labels are applied at the dataset level rather than at the document level, meaning

all documents from a given source receive the same quality designation. For the data

preparation pipeline, low and medium quality data are combined into single buckets. This

simplification is sufficient because quality distinction is only applied during the final, short

training phase (annealing), where we bias toward high-quality data. For this purpose,

distinguishing high-quality sources from all others provides adequate granularity without

requiring a large volume of finely categorized data.

Beyond quality labels, the bucketing process relies on additional metadata fields to categorize

data. Language detection is performed using automated language identification tools as

described in the curation stages. Code datasets are identified through manual labelling, with

one primary code dataset comprising the majority of code content. Temporal metadata tracks

when data arrived—either before training began or during epoch 1, allowing newly added data

to be incorporated into subsequent epochs while maintaining separate tracking for mixture

composition purposes.

2.2.3 Data Bucket Characteristics and Examples
To illustrate the differences between buckets, this section provides representative text samples

from each category. These examples demonstrate the characteristics that distinguish high-

quality sources from lower-quality ones, and show the linguistic diversity across Dutch, English,

code, and other language buckets. Each sample is extracted from actual datasets used in

training.

2.2.3.1 English High Quality
Dataset: Common Corpus

Text:

ABSTRACT The palm (Phoenix Dactylifera) is one of important trees and is ec
onomically important in south of Iran. Date palm is propagated by the offsh
oots, number of which is limited. Therefore, adul...<truncated>...eijer., &
Levi van de Biezenbos. (1993). Occurrence of direct somatic embryogenesis o
n the sword leaf of in vitro plantlets of Phoenix dactylifera L. cultivar b
arhee. Current Science, 887-889. 430 430

2.2.3.2 English Low/Medium Quality
Dataset: Common Corpus

Text:

The Evangelicals, who had been quickened to seek the spread of the Gospel a
broad through the institution, in 1822, of " La Soci6t6 des Missions Evangd
liques chez les Peuples non-Chr6tiens," earnestly ...<truncated>...tab-' li
shments, supervised by 7000 nuns and served by 48,000 women, bringing an an
nual income, from the unpaid labour of the pensionnaires, of not less than
;^6oo,ooo.^ The Associations Bill of 1901.

https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/curation-stages.md

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 19/109

2.2.3.3 Dutch High Quality
Dataset: Open Raadsinformatie

Text:

Bouwsteen Economie Voor deze bouwsteen economie is een rapport opgestel
d door een extern bureau. Dit rapport dient als aanbeveling aan gemeente Zw
olle. Het rapport doet aanbevelingen over de toeko...<truncated>... van de
stad (voor de verschillende opleidingsniveaus)| **Overi** **g** **e o** **p
** **merkin** **g** **en** **,** **ideeën etc.** Kun je iets niet kwijt ond
er bovenstaande? Daar is hier plek voor. 7

2.2.3.4 Dutch Low/Medium Quality
Dataset: Woogle

Text:

Toetsing Op grond van artikel 5.16 lid 1 van de Wet milieubeheer kan de ver
gunning alleen worden verleend, als aannemelijk gemaakt kan worden dat vold
aan wordt aan (minimaal) één van de volgende crite...<truncated>...rgunning
houder de resultaten daarvan wil implementeren, daartoe eerst steeds zal mo
etel worden bezien in hoeverre een procedure op grond van de Wabo zal moete
n worden doorlopên. Zaaknum m er: 78891724

2.2.3.5 New (epoch 2+) Dutch High Quality
Dataset: NDP

Text:

'Chris' wil prijs pakken in Los Angeles CALL OF DUTY Silvano heeft talent v
oor Call of Duty. Hij is zo goed dat hij volgende week gratis naar Los Ange
les mag. door Dewi Willems van Lier MIDDELBURG -Vi...<truncated>...rond te
kijken. Als ik naar het strand wil, brengen ze me erheen. Ik heb vorige kee
r een hoop Ferrari's gezien. Die wil ik deze keer wat beter bekijken. " fot
o Isabella Oosterhek-Booden Puk Langevoort

2.2.3.6 New (epoch 2+) Dutch Low/Medium Quality
Dataset: YouTube-Commons

Text:

Hey jongens welkom terug bij een andere video bitcoin is blijven dumpen lat
en we eens kijken naar de grootste winnaars en verliezers in de altcoin-rui
mte het gaat om een soort van top 10 top 20 altcoi...<truncated>...is, is d
e link naar de investeerdersaccelerator in de beschrijving hieronder, we zi
en je daar in de 12-maanden lidmaatschapsgroep, maar tot de volgende keer,
heb meer plezier om meer gedaan te krijgen

2.2.3.7 Other Languages (all quality levels)
Dataset: Common Corpus

Text:

doppelten , diese ziehen sich des Wund- winkels h (in der Rich- tung nach d
) ein Ectropium zu Stande kommen. Tritt aber nun noch der Fall ein, dass di
e prima in- tentio nicht erfolgt, dass durch Eiter...<truncated>... die Wis

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 20/109

senschaft dieselben weglassen, da eine geübte Hand mit einer gewöhnli- chen
Hakenpincette und gerader oder gebogener Scheere die Falte ebenso gut den V
erhältnissen entsprechend entfernen kann.

2.2.3.8 Code
Dataset: Common Corpus

Text:

package com.foo.bar.steps import com.foo.bar.SmsVerificationCodeSenderStub
import com.thebund1st.daming.commands.SendSmsVerificationCodeCommand import
com.thebund1st.daming.core.SmsVerificationCode im...<truncated>...()) .body
("token", notNullValue()) } def then(String description) { this } def theCo
deReceived() { code } def shouldSeeFailure(HttpStatus httpStatus) { this.re
sponse.statusCode(httpStatus.value()) } }

2.2.4 Data Availability Across Training Epochs
New data arrived throughout training, changing the composition and scale of available data

between epochs. The table below summarizes the token counts in billions available during

epoch 1 and from epoch 2 onwards (denoted as Epoch 2+), with percentages relative to each

epoch’s total. These counts include both training and validation data.

Bucket Category Epoch 1 (B) Epoch 1 % Epoch 2+ (B) Epoch 2+ %

Other languages 48.33 13.31 48.34 8.80

English (low + medium) 158.39 43.63 158.39 28.84

English (high quality) 49.52 13.64 49.52 9.02

Dutch (low + medium) 6.26 1.72 14.76 2.69

Dutch (high quality) 14.88 4.10 46.24 8.42

Code 85.64 23.59 231.95 42.23

Total 363.01 100 549.20 100

The data landscape changed substantially between epochs. Most notably, the Code bucket

increased from 85.64B to 231.95B tokens (a 2.7× increase) due to an adjustment in the filtering

steps of the data curation, shifting its percentage from 23.59% to 42.23% of the total. Dutch

high-quality data increased significantly from 14.88B to 46.24B tokens (a 3.1× increase), more

than tripling its representation. This influx of Dutch content reflects additional data that arrived

during epoch 1 training. The relative percentages of other categories decreased

correspondingly due to the overall growth in total available data from 363B to 549B tokens.

2.2.5 Data Preparation Pipeline
The data preparation pipeline implementation transforms curated datasets into training-ready

data mixtures through a multi-stage process. The complete pipeline is visualized in the diagram

below, showing the flow from input parquet files through bucketing, train-validation splitting,

tokenization, and distribution mixing phases.

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 21/109

Figure 8: Diagram multi-stage process of creating the pre-training data mixture

The pipeline takes as input files in parquet format organized by data provider or openly

available dataset and processes them through four main phases: 1) bucketing, 2) train-

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 22/109

validation split, 3) tokenization, and 4) distribution mixing to create optimized data mixtures for

model training.

The pipeline begins with curated datasets (as delivered by WP12) stored in parquet file format,

organized in subdirectories by dataset name (from a GPT-NL data provider or open dataset).

Each dataset has slightly different schemas due to varying application of curation stages (e.g.,

Personal Identifiable Information (PII) detection might not be applied to all sets), but files within

the same dataset maintain consistent structure. Files vary in size due to filtering steps

employed during curation (disregarding documents, or rows, from the parquet files).

2.2.5.1 Phase 1: Bucketing

The bucketing phase groups data by language, quality attributes, and whether the data is newly

added in that epoch, organizing it into structured containers. These buckets represent key

characteristics that define our desired training mixtures for both the primary and annealing

phases of pre-training.

Metadata Investigation & Assembly

This stage analyses available curated datasets to understand their structure and content, and
leverages metadata provided by human annotators (WP18) to further tag the data with quality
labels (high/medium/low) and stores metadata about which datasets contain code (as de-
scribed in the Quality Assessment section).

Data Tagging

This stage enriches existing parquet files with additional metadata columns, adding standard-
ized information including:

• A unique document ID

• Original parquet file path as delivered by WP12

• Original dataset name and quality assessment

• Language detection results

• Code dataset classification flags

Data Bucketing

This stage distributes data into eight primary buckets based on language, quality, and time of
arrival (before or during training):

3. New data high quality (only relevant for epochs > 1, assumed to be almost all Dutch)

4. New data low + medium (only relevant for epochs > 1, assumed to be almost all Dutch)

5. English high quality

6. English low + medium quality

7. Dutch high quality

8. Dutch low + medium quality

9. Other languages

10. Code

This stage is implemented by first sorting the data into temporary files and then merging them
to have equal size (in number of rows or in file size).

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 23/109

2.2.5.2 Phase 2: Train-Validation Split

This phase implements a stratified train-validation split for bucketed parquet datasets. It takes
categorized data files (organized in buckets like dutch_high_quality, english_low_me-
dium_quality, code, etc.) and splits each file into training and validation sets while maintain-

ing proportional representation of all source datasets.

The split uses a 98-to-2 ratio (keeping validation small to maximize training data) and stratifies

by dataset folder (extracted from the original_file_path column) to ensure validation sets

contain samples from all original datasets. The process handles edge cases where some

datasets have insufficient samples for stratification by placing single-sample categories into

training, and processes files in parallel for efficiency while managing memory usage through

garbage collection and process pool controls.

This split is necessary to evaluate model performance on held-out data during training, which

helps prevent overfitting, monitor training progress through validation loss, and ensure the

validation set is representative of all source datasets. While this is standard practice in machine

learning, maintaining this separation is important for transparent evaluation of training

progress.

2.2.5.3 Phase 3: Tokenization

This phase converts text data into token sequences suitable for model training, stored in
memory-mapped NumPy files (memory-mapped for efficient reading during training).

The tokenization process uses the fitted tokenizer (output of the process described in Section

2.1) to:

• Tokenize all bucketed data using the trained tokenizer

• Implement sequence packing strategies for training efficiency

• Output tokenized files organized by bucket for downstream processing

2.2.5.4 Phase 4: Distribution Mixing (Sampling)

This phase creates training data mixtures optimized for different training phases. A sampling
module enables flexible mixture construction with the following capabilities:

• Sample a mixture with a desired language distribution by over- or under sampling files
to achieve the target distribution

• Bias sampling toward higher quality files to achieve a higher quality data mixture

• Constrain the mixture to a specific dataset size

With this module, the following data mixtures are created for different training phases:

• For epochs in the primary training phase: Sets sampled with a desired language
distribution with no bias for higher quality data

• For the annealing phase: A set sampled with a desired language distribution with
bias for higher quality data, constrained to consist of about 15% of the primary set in
size

Sampling happens at file level, with files containing approximately 1GB worth of documents.

The sampling process generates structured file lists as output:

• Primary phase file paths for main training (train and validation) (for epochs 1, 2, and 3)

• Annealing phase file paths for final training refinement

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 24/109

2.2.6 Target Data Mixtures
For both pre-training phases (primary and annealing) we set a desired language distribution to

balance the goals of GPT-NL with the available data. As the annealing phase is typically short

(10-15% of pre-training), less upsampling is required to achieve the target distribution. In this

phase we bias toward higher quality data by only selecting from high-quality subcategories.

For the primary phase (epochs 1-3), we target the following language distribution:

Language Target Percentage

Dutch 25%

English 50%

Code 15%

Other 10%

These percentages balance GPT-NL’s objective of adequate Dutch language representation

with the available data while maintaining multilingual capabilities through English and other

languages and incorporating substantial code data to support technical understanding and

reasoning capabilities.

For the annealing phase, we target a distribution more pronounced toward the Dutch language:

Language Target Percentage

Dutch 35%

English 40%

Code 20%

Other 5%

The annealing phase constitutes approximately 10-15% of total pre-training. The shift toward

more Dutch content (from 25% to 35%) and increased code representation (from 15% to 20%)

reflects the strategy of emphasizing these areas in the final training stage. For this phase, only

high-quality data buckets are used, excluding all low and medium quality sources.

To achieve the target distributions with the data available in epoch 1 and in epochs 2 and 3,

we applied different upsampling rates to each bucket:

 Lan-
guage

Epoch 1 To-
kens (B)

Epoch 1
Upsamp.

Rate

Epoch
1 %

Epoch 2 & 3
Tokens (B)

Epoch 2 &
3 Up-

samp.
Rate

Epoch 2 &
3 %

Annealing
Tokens (B)

Annealing
Upsamp.

Rate

Anneal-
ing %

Code code 83.93 1 15 80.73 0.36 15.51 80.73 0.36 15.51

English
low qual-
ity

en 213.14 1.37 38.
09

205.01 1.32 39.39 205.01 1.32 39.39

English
high
quality

en 66.64 1.37 11.
91

64.09 1.32 12.32 64.09 1.32 12.32

en_sub-
total

en

279.78 2.75 50 269.1 2.64 51.71 269.1 2.64 51.71

Dutch
low qual-
ity

nl 41.41 6.75 7.4 6.13 1 1.18 6.13 1 1.18

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 25/109

Dutch
high
quality

nl 98.48 6.75 17.
6

20.88 1 4.01 20.88 1 4.01

New
Dutch
low qual-
ity

nl - - - 22.81 2.74 4.38 22.81 2.74 4.38

New
Dutch
high
quality

nl - - - 66.92 2.74 12.86 66.92 2.74 12.86

nl_sub-
total

nl

139.89 13.5 25 116.74 7.48 22.43 116.74 7.48 22.43

Other
lan-
guages

other 55.96 1.18 10 53.82 1.14 10.34 53.82 1.14 10.34

total 559.56 18.43 100 520.4 11.61 100 520.4 11.61 100

The upsampling rates were calculated to meet target distributions given available data in each

bucket. Dutch data required the highest upsampling rates (6.75× in epoch 1, decreasing to

2.74× for new Dutch data in epochs 2-3) to achieve the 25% target in primary training. English

data required modest upsampling (1.37× and 1.32×), while Code data was actually

downsampled in epochs 2-3 (0.36×) due to the large influx of code content. The resulting

mixtures closely approximate the target distributions while incorporating all available data

according to the defined sampling strategy.

2.2.7 Pipeline Output and Folder Structure
The data preparation pipeline produces outputs at each stage, organized in a structured folder

hierarchy on the Snellius HPC system. The pipeline begins with curated datasets and

progresses through bucketing, train-validation splitting, tokenization, and sampling phases,

with each phase producing organized outputs consumed by subsequent stages. Data is stored

on the project data share.

Location: /projects/0/prjs0986/wp12/dataset_delivery/

wp12/dataset_delivery/
├── gpt_nl_dataset_v1.0/ # Parquet files organized by dataset provider
│ ├── american-stories/
│ ├── cc_english-pd/
│ ├── kb/
│ └── ... (additional datasets)
└── gpt_nl_dataset_v2.0/ # Same structure as v1.0, available from epoch 2

Raw curated datasets in parquet format are organized by dataset provider or open-source da-
taset name.

2.2.7.1 Phase 1 Output: Bucketing

Location: /projects/0/prjs0986/wp14/<gpt_nl_data_version>_bucketed/

After tagging and bucketing, data is organized into eight buckets:

bucketing_output/
├── dutch_high_quality/
├── dutch_low_medium_quality/

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 26/109

├── english_high_quality/
├── english_low_medium_quality/
├── other_languages/
├── code/
├── new_high_quality/ # (epoch > 1 only)
└── new_low_medium_quality/ # (epoch > 1 only)

Each folder contains parquet files of similar size (approximately 1GB) with enriched metadata
including document IDs, quality labels, language tags, and original file paths.

2.2.7.2 Phase 2 Output: Train-Validation Split

Location: /projects/0/prjs0986/wp14/<gpt_nl_data_version>_bucketed/

Data is split into training (98%) and validation (2%) sets while maintaining the bucket structure:

├── buckets_split_train/ # Training files by bucket
└── buckets_split_validate/ # Validation files by bucket

The stratified split ensures validation sets contain representative samples from all source da-
tasets within each bucket.

2.2.7.3 Phase 3 Output: Tokenization

Location: /projects/0/prjs0986/wp14/<gpt_nl_data_version>_tokenized/

Tokenized data is stored as memory-mapped NumPy arrays with uint32 dtype:

├── buckets_split_train/ # .npy files by bucket (training)
├── buckets_split_validate/ # .npy files by bucket (validation)
└── splitted_buckets_{train,validate}/ # Reorganized structure for sampling

Memory-mapped files enable efficient reading during training without loading entire datasets
into memory.

2.2.7.4 Phase 4 Output: Distribution Mixing (Sampling)

Location:/projects/0/prjs0986/wp14/<gpt_nl_data_version>_to-
kenized/train_datamixtures/

The sampling phase produces JSON files specifying data mixtures consumed by the training

process:

• validation_files.json - File paths stratified across all buckets (approximately 2%

of total data)

• primary_phase_files.json - File paths for epochs 1-3 with balanced language dis-

tribution and no quality bias

• annealing_phase_files.json - Quality-biased subset (approximately 15% of pri-

mary phase size) using only high-quality buckets

• mixture_statistics.json - Metadata including file counts, token counts, and distri-

butions per phase

Each JSON file organizes file paths by bucket, enabling efficient parallel data loading during
distributed training. The training infrastructure consumes these file lists to construct data load-
ers that sample from the specified files according to the upsampling rates defined for each
training phase.

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 27/109

2.2.8 References
1. Llama AI Team (2024) | The Llama 3 Herd of Models

2. Martins et al. (2024) | EuroLLM: Multilingual Language Models for Europe

3. Penedo et al. (2024) | The FineWeb Datasets: Decanting the Web for the Finest Text
Data at Scale

2.3 Pre-training model & hyperparameters
Developing a large language model requires making informed decisions regarding both model

architecture and hyperparameter configuration. Architectural choices include the number of

layers, the specific transformer design, and the structure of embeddings. In addition, selecting

appropriate hyperparameters—such as the total number of parameters, learning rate, and

optimization strategy—is critical to achieving robust performance and efficient training.

The GPT-NL model is based on the Llama 3 architecture, because of its proven performance,

adaptability and strong support in modern training frameworks, making it a robust and well-

understood basis for large-scale model development. It also aligned well with our choice of pre-

training codebase as the OLMo model architecture is also similar to the Llama

modelarchitecture.

At its core, the architecture is a decoder-only transformer architecture based on Vaswani et

al. (2017). Building on this, the architecture adopts several improvements that have become

standard in modern LLMs, including:

• RoPE embeddings: to allow for longer context scaling. For information on how this
context is lengthened after pre-training, see this page.

• Grouped query attention: by reducing the number of key-value heads, the memory and
computing requirements are reduced with minimal impact on model quality.

• SwiGLU activations: more efficient and stable than ReLU and GeLU.

2.3.1 Hyperparameters

2.3.1.1 Size
The model size is represented in the number of parameters, which depends on architectural

choices like dimension sizes and number of layers. To decide on this size, we tried to find an

optimal balance between model performance and computational feasibility. While smaller

models (around 7B parameters) were deemed insufficient for our capability’s requirements,

larger models (70B+) would be too resource-intensive for our current infrastructure. The 26B

parameter size should adequately handle critical tasks like summarization and retrieval-

augmented generation (RAG) while still allowing for efficient inference and fine-tuning.

From a compute-optimal perspective, traditional Chinchilla-style scaling laws (Hoffmann et al.,

2022) would suggest using more parameters (around 40B) for the available compute. However,

these scaling laws assume training for a single epochoptimize for training compute only,

ignoring inference compute optimization, and do not fully reflect the training set-ups of modern

LLMs. We also refer to the Llama 3 technical blog which found continued improvement after

training two orders of magnitude more data than Chinchilla-optimal. In practice, the resulting

compute-quality trade-off supports a somewhat smaller model without significant loss in model

performance.

The exact total number of parameters of the 26B GPT-NL model ends up at:

https://arxiv.org/pdf/2407.21783
https://arxiv.org/abs/2409.16235
https://arxiv.org/abs/2406.17557
https://arxiv.org/abs/2406.17557
https://arxiv.org/abs/2407.21783
https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/pre-training-code-organization.md
https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/pre-training-code-organization.md
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/pre-training-context-extension.md
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://ai.meta.com/blog/meta-llama-3/

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 28/109

Parameter Type Count

Total parameters 26,034,640,896

Non-embedding parameters 25,248,208,896

Trainable parameters 26,034,640,896

where non-embedding parameters exclude the input and output embedding matrices (whose

sizes depend largely on vocabulary size and so on tokenizer design).

2.3.1.2 Learning rate schedule
For the pre-training we employ a trapezoidal scheduler (also known as WSD: warmup-stable-

decay, described extensively by Hägele et al., 2024) that offers mostly practical benefits while

being as performant as a cosine scheduler (the previous state-of-the-art standard). A cosine

scheduler requires information of the full training length a priori. The trapezoidal scheduler

consists of three phases:

4. A short, linear warm-up phase (e.g. of 2000 steps)

5. A constant learning rate phase (80-85% of steps) (we will refer to this as the primary
phase)

6. A linear cool-down or decay phase (15-20% of steps) (we will refer to this as the an-
nealing phase)

Figure 9: Illustration of cosine versus trapezoidal (blue) learning rates (source

https://doi.org/10.48550/arXiv.2405.18392)

The primary advantage of the trapezoidal learning rate schedule is its flexibility during the initial

phase. This phase can be extended if the model continues to improve, delaying the transition

to the cool-down annealing phase. The cool-down phase stabilizes training and enables fine-

grained parameter updates.

Another benefit is the ability to resume training from an earlier checkpoint within the constant

learning rate phase before entering the cool-down stage. This approach is particularly efficient

in experimental settings where results must be collected across varying training lengths. With

a trapezoidal scheduler, these variations can be achieved using checkpoints from a single

training run. In contrast, cosine scheduling requires retraining from scratch for each

configuration to ensure fair comparisons and interpolation across points.

https://arxiv.org/abs/2405.18392

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 29/109

Finally, during the final training run, the trapezoidal schedule also supports an increased

number of epochs, providing additional flexibility for model convergence.

2.3.2 Hyperparameter overview
The following table presents a concise overview of all the chosen GPT-NL hyperparameters:

Category Hyper parameter Value Notes

Hardware

 Number of nodes 22 During hardware failures or mainte-
nance, the number of nodes was
sometimes temporarily decreased
(see also the documentation on
scaling).

 Number of GPUs 88 4 x H100 GPU per node.

Architecture

 Hidden embedding size 6144

 Vocabulary size 128,000 See documentation on tokenizer.

 Number of layers 48

 Number of heads 32

 Number of key-value
heads

16

 RoPE theta 500,000 Parameter for rotary positional em-
beddings

 Context length 4096 See this documentation page for
further information.

 Activation SwiGLU

Batching

 Micro batch size 8

 Gradient accumulation
steps

3 Increases effective batch size by
accumulating gradients over multi-
ple steps.

 Global batch size 704 Number of GPUs x micro batch
size

Optimizer

 Optimizer AdamW

 AdamW betas 0.9,
0.95

 Weight decay 0.1

 Max gradient norm 1.0

Learning
rate sched-
uler

 Constant learning rate 1e-4

 Warm-up steps 2000

 Minimum warm-up learn-
ing rate

3e-5

https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/pre-training-scaling.md
https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/pre-training-tokenizer.md
https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/model-development/model-context-length.md
https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/model-development/model-context-length.md

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 30/109

 Cool-down/annealing
steps

12,448

 Minimum cool-down learn-
ing rate

3e-5

2.3.3 References
1. Hägele et al., 2024 | Scaling Laws and Compute-Optimal Training Beyond Fixed Train-

ing Durations

2. Hoffmann et al., 2022 | Training Compute-Optimal Large Language Models

3. Llama 3 team | The Llama 3 Herd of Models

2.4 Configuring, Running, Monitoring, and
Logging Pre-Training
This section describes how a single pre-training run is orchestrated end-to-end, from con-
figuration to monitoring and logging. We structure the system into four tightly coupled phases:

7. Configure (A – Training recipe)
Define what is being optimized: objective, batch geometry, optimizer, schedule, and
compute kernels.

8. Launch (B – Jobs: debug vs production)
Decide where and how the recipe runs on the HPC cluster: resource shape, prove-
nance checks, restart policy.

9. Monitor (C – Pre-training health)
Continuously track whether training is progressing as expected: training dynamics,
throughput, and run continuity.

10. Log (D – Persistent record & artifacts)
Ensure that everything needed to replay or audit the run—metrics, configs, check-
points—is durably recorded.

Phases A–D form a loop: configuration drives launch; launch activates monitoring; monitoring
writes to the logging substrate; logging feeds back into configuration and launch decisions for
subsequent runs. Below we describe each phase with its purpose, technique utilized, how it
works in our stack, and relevant parameters. We connect design choices to literature where
appropriate.

2.4.1 Phase A: Training recipe — how we shape the

optimization problem
At this phase we settle each optimization step: batch, optimizer, schedule, and compute path.

Configuration is YAML-driven and supports multiple environments, so that the same semantic

recipe can run in both debug and production.

Batch formation

Purpose: Control the effective global batch size and thus optimization dynamics, stability, and
hardware utilization. Large-batch training is known to require careful learning-rate and warmup
tuning to avoid degradation.

https://arxiv.org/abs/2405.18392
https://arxiv.org/abs/2405.18392
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2407.21783

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 31/109

Technique: We express the global batch in tokens, derived from three knobs:

• per_device_batch_size: ${oc.env:PER_DEVICE_BATCH_SIZE,12}

• gradient_accumulation_steps: ${oc.env:GRADIENT_ACCUMULATION_STEPS,1}

• num_nodes: ${oc.env:SLURM_JOB_NUM_NODES,1}

and compute:

global_tokens_per_update

= per_device_batch_size × sequence_length × world_size

× gradient_accumulation_steps

How it works in our stack:

• YAML is resolved with OmegaConf’s oc.env interpolation, so we can change

PER_DEVICE_BATCH_SIZE, GRADIENT_ACCUMULATION_STEPS, or node count from

SLURM, without editing the config file itself.

• global_batch_size in NumpyDataLoaderConfig is set in tokens; the data loader

handles packing that many tokens per update.

• This keeps debug vs production identical at the config level: only environment variables
change.

Key parameters:

• PER_DEVICE_BATCH_SIZE — primary handle on memory usage per GPU and step-

level noise.

• GRADIENT_ACCUMULATION_STEPS — trades memory vs latency by amortizing opti-

mizer updates over multiple forward/backward micro-steps.

• SLURM_JOB_NUM_NODES / get_world_size() — define the degree of data parallelism.

This design aligns with best practice in large batch distributed training, where global batch and
LR are tied through simple scaling rules.

Training horizon

Purpose: Decide how long we train and where a resumed job should continue.

Technique: We use an epoch-bounded horizon with an optional token cap:

max_duration:
 tokens: -1 # disabled
 epochs: 3
hard_stop: -1 # no forced step limit
load_path: ${oc.env:LOAD_PATH, null}

How it works in our stack:

• When tokens < 0, we interpret max_duration as Duration.epochs(epochs) and

let the data loader define epoch length.

• We expose load_path via the environment and set it from our SLURM wrapper

(train.sh) based on the latest checkpoint, so resume is always an explicit decision,

never implicit state.

• For early experimental phases, epoch-bounded runs are convenient because data in-
gestion and restart behavior are still evolving; later we can switch to token-bounded
limits for cross-mixture comparability, which is standard in scaling-law analyses [1].

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 32/109

Key parameters:

• epochs — coarse control; used while pipeline and restarts are being hardened.

• tokens — fine-grained, disabled by default but compatible with scaling-law account-

ing.

• hard_stop — optional “circuit breaker” in steps (e.g., for safety or A/B testing).

Optimizer: AdamW with stability-oriented defaults

Purpose: Choose an optimizer that is robust on long-horizon, large-scale LM pre-training.

Technique: We use AdamW (decoupled weight decay) with gradient clipping:

learning_rate: 1e-4
weight_decay: 0.1
betas: [0.9, 0.95]
max_grad_norm: 1.0
z_loss_multiplier: 0

• AdamW decouples weight decay from the gradient step, addressing issues identified
in adaptive optimizers using naïve L2 regularization [2].

• Gradient norm clipping is a standard remedy for exploding gradients [3].

How it works in our stack:

Configured via SkipStepAdamWConfig, which supports:

• group_overrides — we use this to disable weight decay on embeddings, a common

practice to avoid shrinking embedding norms and destabilizing normalization layers.

• optional “skip-step” behavior if numerical problems are detected.

• max_grad_norm=1.0 is enforced inside the train module; this is cheap protection

against catastrophic single-step updates in long runs.

• z_loss_multiplier is wired but set to zero; we keep it available because small z-

loss terms have been reported to stabilize Transformer training in very large LMs [4].

Key parameters:

• learning_rate — main convergence speed knob; tuned in conjunction with global

batch.

• weight_decay — controls implicit regularization; decoupled from LR under AdamW.

• betas — momentum/variance smoothing; [0.9, 0.95] balances adaptivity vs noise.

• max_grad_norm — stability guardrail.

• z_loss_multiplier — disabled by default; reserved for future stability tuning.

LR schedule: Warmup–Stable–Decay (WSD)

Purpose: Shape how aggressively the optimizer explores the loss landscape across compute
budget.

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 33/109

Technique: We use a Warmup–Stable–Decay (WSD) schedule:

scheduler:
 type: WSD
 warmup_min_lr: 3e-5
 decay_min_lr: 3e-5
 warmup_steps: 0
 warmup_delay: 0
 decay_steps: 0

WSD is designed for long-horizon pre-training: maintain a large, stable LR, then branch into a
rapid decay phase to harvest a strong final checkpoint once a compute budget is chosen. Re-
cent work explains its effectiveness via a “river valley” loss landscape model [5].

How it works in our stack:

During early infrastructure bring-up, we run with a stable LR (no decay) to focus on system

correctness and throughput.

For the annealing phase (later in training), we enable decay_steps and decay_fraction to

implement a trapezoid-like schedule: constant LR followed by a triangular decay to

decay_min_lr.

This neatly aligns annealing with data mixture changes (e.g. specialized late-stage curricula)

and wall time constraints.

Key parameters:

• warmup_steps, warmup_min_lr — if enabled, control the initial ramp-up, mitigating

optimization issues common in large-batch regimes.

• decay_steps, decay_fraction, decay_min_lr — determine how quickly we “exit

the river valley” and settle into lower LR.

• warmup_delay — allows postponing warmup, e.g. when resuming mid-run.

It lets us run at a stable LR while we validate infrastructure, then branch into annealing without
needing to predetermine the full step budget from day one.

It makes it easier to align annealing windows with operational constraints (walltime, data phase

boundaries), aligning our decision to use a Trapezoid learning rate schedule. For more

information, please see Section 2.3.

Compute path accelerators: compilation + FlashAttention

Purpose: Reduce per-token latency and memory overhead so that a 26B-scale model fits and
runs efficiently on multi-node H100.

Technique:

model_compile: true
use_flash_attention_2: true

model_compile: true enables TorchInductor (torch.compile) to fuse kernels and optimize the

compute graph.

use_flash_attention_2: true activates FlashAttention-2, an IO-aware exact attention

implementation that reduces expensive HBM<->SRAM traffic via tiling [6,7].

How it works in our stack:

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 34/109

We manage per-job/per-rank caches (TORCHINDUCTOR_CACHE_DIR, TRITON_CACHE_DIR,

XDG_CACHE_HOME) and wipe them at job start, to avoid stale compiled artifacts.

We ensure debug runs follow the same compile and attention paths as production, so we catch

kernel-specific bugs early.

Key parameters:

• model_compile — toggles the compiler; primarily affects first-step latency and long-

run throughput.

• use_flash_attention_2 — trades some implementation complexity for substantial

speedups and memory savings at long sequence lengths.

2.4.2 Phase B - Launching jobs

Top-level flow: from sbatch to trainer.fit()

Purpose: This structure exists because we want one single training entrypoint
(scripts/snellius/train.sh $CONFIG_PATH) and make all operational behavior (resume,

profiling, walltime handling, restart policy) a wrapper concern.

Technique: At a high level we run:

sbatch launch_train_prod.job (or launch_train_debug.job)
 -> srun scripts/snellius/train.sh
 -> set up modules + venv + caches + MONITORING TOOLS
 -> resolve checkpoint dir + LOAD_PATH
 -> optional GPU health check / optional nsys profiling
 -> torchrun (multi-node rendezvous via c10d)
 -> on exit: handle_restart (state file + optional resubmit)

Production gating: code provenance guarantees

Purpose: Ensure all nodes run exactly the same code revision.

• no uncommitted changes git status --porcelain excluding untracked

• branch is main

• local commit equals origin/main (via git fetch + comparing SHAs)

Why we do it: Distributed training amplifies small inconsistencies if even one node uses slightly
different code, we observed that we can get non-reproducible failures. This gating makes our
run auditable and prevents accidentally dirty tree launches.

We also provide deploy_to_shared.sh which rsyncs only git-tracked files to a shared path.

So, it enforces a consistent code snapshot across nodes and avoids shipping local ephemeral

state.

SLURM resource shape: debug vs production

For our production we start long and multi-node runs while for debug we start short and single-
node ones, using the SLURM’s sbatch command [8].

Production (plunch_train_prod.job):

--partition=gpu_h100
--nodes=22

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 35/109

--gpus-per-node=4
--ntasks-per-node=1
--time=5-0 (5 days)
--exclusive (avoid noisy neighbours)
--signal=TERM@60 (send SIGTERM 60s before end)

Debug (pretrain_debug.sh):

same partition and 4 GPUs, but
--nodes=1 and
--time=0:20:00

Why we do it: debug should validate correctness (imports, compilation, rendezvous, check-
point logic) quickly, while production maximizes steady-state throughput.

We rely on --signal=TERM@60 to receive a SIGTERM 60 seconds before wall time, giving us

an opportunity to checkpoint and exit gracefully. This aligns with SLURM’s recommended

pattern for cleanup logic.

Key parameters:

• --nodes, --gpus-per-node, --ntasks-per-node — define distributed topology.

• --time — caps wall time; coupled to auto-restart logic.

• --exclusive — minimizes noisy neighbours, important for consistent throughput.

Environment and dependency control

Purpose: Ensure a reproducible runtime environment across nodes.

Technique: Inside train.sh we:

• module purge then module load 2024 NCCL/2.22.3-GCCcore-13.3.0-CUDA-
12.6.0

• activate our local venv

• set OMP_NUM_THREADS=${SLURM_CPUS_PER_TASK:-8}

Why it matters: we want deterministic NCCL/CUDA pairings. Purging modules avoids inher-
ited environment contamination, while we load specific versioned libraries.

Distributed rendezvous: torchrun + c10d, with explicit master host/port

Purpose: Launch the multi-process, multi-node job and form a global process group.

Technique: We choose:

• MASTER_ADDR=$(scontrol show hostnames | head -n 1)

• MASTER_PORT=39591

and run our training with the distributed execution command:

torchrun \
 --nproc_per_node=$SLURM_GPUS_PER_NODE \
 --nnodes=$SLURM_NNODES \
 --rdzv_id=$SLURM_JOBID \
 --rdzv_backend=c10d \
 --rdzv_endpoint=$MASTER_ADDR:$MASTER_PORT \

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 36/109

 --master_addr=$MASTER_ADDR \
 --master_port=$MASTER_PORT \
 scripts/train.py $CONFIG_PATH

Key parameters:

• rdzv_id — uniquely identifies a worker group.

• rdzv_backend=c10d, rdzv_endpoint — define how workers discover each other.

• master_addr, master_port — conventional process-group configuration for

torch.distributed.

This is aligned with PyTorch Elastic’s documented rendezvous model: rdzv_backend=c10d

and rdzv_endpoint=<host>:<port> define where workers coordinate to form the process

group [4].

Why we do it: it makes multi-node startup explicit and debuggable; when something fails, the

endpoint and rendezvous ID are visible in logs and can be correlated across nodes.

Cache discipline: isolate and purge compile/profiler caches per rank

Purpose: Avoid stale or corrupted compilation artifacts across restarts and code changes.

Technique: We set per-job/per-rank cache paths:

• TMPDIR=$CACHE_DIR/cache/$SLURM_JOBID

• ORCHINDUCTOR_CACHE_DIR=..._$SLURM_NODEID_$SLURM_PROCID

• TRITON_CACHE_DIR=..._$SLURM_PROCID

• XDG_CACHE_HOME=..._$SLURM_PROCID

and purge them before launch.

Why we do it: torch.compile and Triton generate artifacts that can become corrupted or

incompatible across code changes. Isolating caches reduces heisenbugs and avoids cross-job

cache poisoning—especially important when running many restarts like in our case (at least

every 5 days).

MONITORING TOOLS wiring: project naming by mode & mode separation

Purpose: Keep debug and production metrics logically separated while sharing infrastructure.

Technique:

• WANDB_PROJECT="GPT-NL-$MODEL_SIZE-train" for production

• WANDB_PROJECT="GPT-NL-$MODEL_SIZE-train-$TRAIN_MODE" for debug

• WANDB_MODE=online

Why we do it: it keeps debug runs from polluting production dashboards while still exercising
the full telemetry path.

Checkpoint directory resolution and resume policy

Purpose: Make resumption robust and predictable across restarts and node counts.

Technique:

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 37/109

11. We compute a default checkpoint directory per run that maps to the SLURM_JOB_ID

so its unique (see code below)

12. Consult the state file (see B8) to check whether there is an existing run to resume
from; if so, override CHECKPOINT_DIR.

13. Discover the latest step<N> subdirectory and export LOAD_PATH accordingly, in case

OLMo-core’s latest symlink is missing (see code below)

point 1
CHECKPOINT_DIR="$PROJECT_SPACE/$MODEL_NAME-nodes-$SLURM_NNODES-mbs-$PER_DEV
ICE_BATCH_SIZE-gas-$GRADIENT_ACCUMULATION_STEPS-$SLURM_JOB_ID"

point 3
LATEST_CHECKPOINT=$(ls "$CHECKPOINT_DIR" | grep '^step[0-9]\+$' | ... | tai
l -n1)
export LOAD_PATH="$CHECKPOINT_DIR/step$LATEST_CHECKPOINT"

In our configuration we further set the steps that we store checkpoints:

save_interval: 880
ephemeral_save_interval: 110
save_async: true

Why we do it: we bias toward resume correctness (perfect resume without data repetition
across several node counts) by checkpointing on carefully chosen step multiples, and we add
ephemeral checkpoints as a higher-frequency safety net. OLMo-core’s checkpoint callback is
designed for exactly this pattern: permanent amd ephemeral intervals.

State file + auto-restart: training as a resumable workflow

Purpose: Decouple the logical training run from individual SLURM jobs.

Technique:

• train_state_utils.sh maintains a JSON state keyed on (user, model, nodes,
per_device_batch_size, grad_accum) and tracks:

o checkpoint_dir, existence

o job_id, runtime, status, timestamp

o restart_count

• handle_restart(exit_code, checkpoint_dir, script_path, max_restarts):

o Exit 0 -> mark completed and optionally stop.

o Exit 1 -> mark failed and, if allowed, re-queue.

o Other -> mark failed and require manual intervention.

Why we do it: This pattern mirrors standard HPC practices for managing long-running work-
flows over multiple jobs. SLURM jobs are ephemeral; the training run is the persistent entity.
The state file makes that persistence explicit and supports. At scale, transient failures (file sys-
tem hiccups, node faults, scheduler preemption) are expected; automatic resubmission re-
duces operator toil and shrinks dead time.

Time-aware graceful termination

Purpose: Distinguish wall time preemption from manual cancellation and decide whether to
restart.

Technique:

• In production, we install trap graceful_exit TERM.

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 38/109

• On SIGTERM:

1. Query TimeLimit via scontrol show job.

2. Compute remaining seconds.

3. If close to zero, treat as walltime preemption (exit 0).

4. Otherwise, treat as manual cancel (exit 1).

• Then delegate to handle_restart.

Why we do it: SLURM typically sends SIGTERM before SIGKILL; we use that window to exit
cleanly and optionally restart, rather than losing progress to SIGKILL. This is consistent with
SLURM’s recommendation to use pre-kill signals for job cleanup.

GPU health check

Purpose: Fail fast if requested GPUs are degraded (thermal issues, ECC errors, or intercon-
nect problems).

Technique:

• When --gpu-health-check is enabled, we:

o Run an Apptainer (.sif) image across nodes, performing GPU stress and

diagnostic tests.

o Parse the container’s summary and abort the run if any GPU fails.

Profiling: Nsight Systems traces on demand

Purpose: Obtain detailed CPU/GPU timeline traces for throughput bottleneck analysis.

Technique: If --profiling is set, we wrap the launcher with:

nsys profile --stats=true --trace=cuda \
 --cuda-memory-usage=true \
 -o traces/trace_${SLURM_JOBID} \
 $TORCHLAUNCHER

NVIDIA Nsight Systems is a system-wide performance analysis tool designed to identify bot-
tlenecks across CPUs and GPUs.

Why we do it: During early experimentation or debug phases we wanted to check the usage

of our GPU Nodes with more granularity. Still, Nsight Systems tracing can add non-trivial

overhead, especially with broad CUDA API tracing and memory tracking enabled, so we use it

selectively in short debug runs rather than in every production job [10].

2.4.3 Phase C -: Monitoring

Following OLMo-core’s training module which is designed for async metric logging and flexible
callbacks, we treat monitoring as first-class control plane, not an afterthought.

Metric collection strategy: planes and namespaces

Purpose: Organize metrics so we can rapidly distinguish between optimization, system, and
workflow issues.

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 39/109

Technique: We group metrics into:

1. Training dynamics (model health):

o loss curve stability, LR, grad norms, clipping activity

o divergence indicators around schedule transitions (stable → decay)

2. System efficiency (throughput health):

o tokens/sec and step-time variance

o Dataloader stalls vs comm stalls vs compile regressions

3. Run continuity (resumability health):

o time since last permanent and ephemeral checkpoint

o correctness of resume (no data repetition, consistent step counters)

o restart loop behavior (state file + restart count)

How it works in our stack: We record metrics in the train module (loss, lb, grad norm, etc.)
and allow OLMo-core to gather/reduce them across ranks. Train modules are explicitly respon-
sible for recording core metrics via record_metric() / record_ce_loss(), with optional

namespaces and reduction behavior.

Why we do it: long-running pre-training fails in predictable ways; separating failure modes by

plane lets us set sharper alerts and faster root-cause.

Throughput + memory monitoring

Purpose: Detect performance regressions and emerging OOM risks.

Technique: We rely on built-ins:

SpeedMonitorCallback: monitors throughput and is automatically added if not configured

(we still usually configure it explicitly so dashboards stay consistent across runs).

GPUMemoryMonitorCallback: adds GPU memory statistics as metrics.

This combination lets us catch:

• Dataloader stalls (tokens/sec collapses, batch_load_time rises)

• silent OOM risk (allocated/reserved creeping up)

• interconnect regressions (step time rises while compute stays flat)

In-loop eval monitoring (lightweight guardrails)

Purpose: Detect capability drift and data/recipe regressions without expensive external eval-
uation.

Technique: We run periodic in-loop evaluations using the evaluator callback framework:

• EvaluatorCallback runs evaluators at a specified interval.

• LMEvaluatorCallbackConfig and DownstreamEvaluatorCallbackConfig config-

ure common evals.

We treat eval as a drift detector, not a leaderboard generator:

• small, fixed validation sets for perplexity slope

• a few targeted tasks and benchmarks (e.g. arc_challenge_test_rc_5shot, hellaswag-
nl_rc_0shot, etc.) to detect capability regressions after recipe changes

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 40/109

2.4.4 Phase D - Logging

Logging is where monitoring data becomes durable evidence. We log at three layers: SLURM,
state files, and training metrics/artifacts.

SLURM logs are centralized and symbolically linked back into the repo workspace

Purpose: Preserve complete job stdout/stderr and make it easy to find per job.

Technique: Both debug and prod send logs to:

--output=/projects/prjs0986/wp14/olmo-logs/%j.out
--error=/projects/prjs0986/wp14/olmo-logs/%j.err

Then we create symlinks:

ln -sf /projects/olmo-logs/${SLURM_JOB_ID}.out $SLURM_SUBMIT_DIR/logs/${SLU
RM_JOB_ID}.out
ln -sf /projects/olmo-logs/${SLURM_JOB_ID}.err $SLURM_SUBMIT_DIR/logs/${SLU
RM_JOB_ID}.err

Why we do it: centralized storage avoids node-local loss; local symlinks make it easy for us
to find the right logs from the project directory of our WP.

State logging

Purpose: Provide a single, structured source of truth for each logical run.

Technique: We write a single state JSON per logical run key and update it on transitions:

The state file encodes:

• checkpoint_dir, existence

• job_id, hostname, num_nodes

• runtime, status (starting, running, completed, failed, max_re-
starts_reached)

• restart_count

We update it on every transition and archive it when runs finish or are exhausted.

Why we do it: This way we create a user-friendly, machine-readable source of truth. It is

intentionally append-free so that external automation can simply read the latest state without

parsing logs.

Distributed logging hygiene (rank filtering + warnings everywhere)

Purpose: Avoid log storms from thousands of ranks while keeping critical messages visible.

We initialize the training environment with OLMo-core’s prepare_training_environment(),

which sets up distributed process groups and supports mixed backends (cpu:gloo,cuda:nccl).

We intentionally keep a CPU backend available so that async checkpointing and bookkeeping

collectives do not block training compute.

We also use log_filter_type semantics so that only selected ranks emit verbose logs (while

warnings/errors always surface).

Console logging

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 41/109

Purpose: Provide quick, at-a-glance progress information without dashboards.

Technique: We use the console logger callback patterns so that:

• step-level progress is visible without opening dashboards

• periodic metric summaries are emitted at a controlled interval

This is coded in the callbacks API (see ConsoleLoggerCallback and the callback lifecycle

hooks).

Experiment trackers and monitoring tools semantics

Purpose: Create a rich, query enabled history of experiments: metrics, configs, and artifacts
[11].

Technique:

• We attach WandBCallback to the trainer with:

o enabled=True in production.

o name=config_yaml["run_name"].

• Monitoring tools log metrics every step from rank 0 and attaches configuration dic-
tionaries for full reproducibility.

Implication. Even if metrics_collect_interval is > 1, the tracker still sees dense curves;

we therefore keep the metric vocabulary compact to avoid excessive volume.

Checkpoint logging & retention

Purpose: Balance compute loss (since last checkpoint) vs storage and IO overhead, while
supporting flexible resumption.

Technique: We configure checkpointing as a logging artifact pipeline:

CheckpointerCallback(
 save_interval=save_interval,
 ephemeral_save_interval=ephemeral_save_interval,
 save_async=True,)

• Permanent checkpoints for every 880 steps provide stable rollback points and are in-
tended to be retained long term.

• Ephemeral checkpoints for every 110 steps provide fine-grained restart points but
can be pruned aggressively once upstream runs are healthy.

We heavily use async checkpointing and more specific ephemeral checkpoints that are in-
tended for frequent recovery points (every 110 steps) and are perfect for resuming on (22, 11,
10, 5, 2) nodes.

2.4.5 References

[0] OLMO-core

[1] Scaling Laws for Neural Language Models

[2] Decoupled Weight Decay Regularization

[3] On the difficulty of training Recurrent Neural Networks

[4] 2 OLMo 2 Furious

https://olmo-core.readthedocs.io/en/stable/overview/introduction.html
https://arxiv.org/pdf/2001.08361/1000
https://arxiv.org/pdf/1711.05101
https://arxiv.org/pdf/1211.5063
https://arxiv.org/pdf/2501.00656

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 42/109

[5] Understanding Warmup-Stable-Decay Learning Rates: A River Valley Loss Landscape

Perspective

[6] FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning

[7] FLASHATTENTION: Fast and Memory-Efficient Exact Attention with IO-Awareness

[8] SLURM sbatch

[9] PyTorch torchrun

[10] NVIDIA Nsight Systems

[11] Experiment Tracking

2.5 Evaluation
During pre-training of the GPT-NL model, we evaluate its performance on both the training

objective (next-word prediction) as well as downstream tasks, such as reasoning and reading

comprehension.

During training, we continuously monitor model performance using two primary metrics:

• Cross-entropy loss: the average negative log-likelihood of predicted token probabili-
ties, tracked on the training set (training dynamics) and validation set (generaliza-
tion).

• Perplexity: the exponential of cross-entropy loss, representing how surprised the
model is by actual next tokens in unseen text.

The graph below shows cross-entropy training loss across the entire trajectory, with phases

color-coded for clarity. We observe consistent downward trends indicating stable dynamics,

with occasional spikes that the model overcame autonomously. Key observations include: (1)

a noticeable jump between Epoch 1 and Epoch 2 due to intentional data distribution changes,

(2) steeper loss decreases during annealing phases from reduced learning rates, which

extracts final performance gains, and (3) the end-of-Epoch-2 checkpoint was annealed mid-

training for intermediate checkpoints, while Epoch 3 runs in parallel with Epoch 2 annealing to

maintain progression.

Figure 10: Pre-training loss

https://arxiv.org/pdf/2410.05192
https://arxiv.org/pdf/2410.05192
https://arxiv.org/pdf/2307.08691
https://openreview.net/pdf?id=H4DqfPSibmx
https://slurm.schedmd.com/sbatch.html
https://docs.pytorch.org/docs/stable/elastic/run.html
https://developer.nvidia.com/nsight-systems
https://docs.wandb.ai/models/tutorials/experiments

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 43/109

We further monitor validation cross-entropy separately for each language and quality bucket to

track performance across our diverse data distribution, with Dutch and English subdivided by

quality levels.

Epoch 1 to Epoch 2 transition: A clear inflection point occurs when new high-quality Dutch

data and curated code data (with longer sequences) were incorporated mid-training. The Code

bucket shows the most dramatic effect—loss drops sharply, indicating the model rapidly adapts

to the longer, curated samples. The Dutch high-quality data similarly benefits from this shift.

The New Dutch bucket, however, experiences a sudden improvement trajectory, accelerating

its decline as the proportion of these sources increases in the training mix.

Annealing phases: When transitioning to annealing phases (both epoch-2-annealing and

epoch-3-annealing), we deliberately shift toward high-quality sources only. This creates an

interesting divergence: loss increases on low/medium-quality data (the model becomes less

confident on lower-quality text), while it continues decreasing on high-quality data. This is the

intended behavior—biasing the model toward generating high-quality output. The spikes visible

in several buckets during annealing correspond to this intentional data distribution shift.

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 44/109

2.5.1 In-loop evaluation

To evaluate downstream task performance during pre-training, we implement the in-loop

evaluation mechanism from OLMo, adapted to our training system (Groeneveld, Dirk, et al.).

Rather than static post-training audits, this dynamic approach enables real-time issue

detection. Our benchmarks assess Reasoning and Commonsense (HellaSwag, PIQA) and

Language Understanding (MMLU, ARC):

Evaluation
Task Name

Description Example Evaluation
(input: output)

Reference

arc_chal-
lenge_test_rc
_5shot

ARC Challenge: hard
multiple‑choice sci-

ence QA, 5‑shot setting

Input: five example QA
pairs + new question.
Output: predicted an-
swer choice.

Clark et al., 2018

arc_easy_test
_rc_5shot

ARC Easy: easier mul-
tiple-choice science
QA, 5-shot setting

Input: five examples + a
new ARC-Easy question
-> model predicts an-
swer.

Clark et al., 2018

piqa_val_rc_5
shot

PIQA: physical com-
monsense multiple-
choice, validation split,
5-shot

Input: five goal/choice
examples + new goal.
Output: chooses correct
solution.

Bisk et al., 2020

hellaswag-
nl_rc_0shot

HellaSwag: com-
monsense next-sen-
tence inference, zero-
shot setting

Input: context. Output:
selects most plausible
continuation.

Zellers et al., 2019

mmlu-
nl_stem_mc_5s
hot

MMLU: multilingual
multiple-choice exam-
style questions, 5-shot

Input: five example Q-A
pairs + a new multiple-
choice question. Output:
predicted choice.

Hendrycks et al., 2021

As there are no official Dutch versions of some of the tasks we are interested, we have used

the machine translated ones for the Dutch language, namely Hellaswag-nl and MMLU-nl.

In addition, due to the big size of some of these tasks, we have developed a truncation

mechanism and dynamically select part of the total available sets during our evaluations.

Setting Definition Example Prompt Structure

0-shot The model is given only the task descrip-
tion (or question) with no examples be-
forehand.

“Question: What is the capital of
France? Choices: A) Berlin B)
Paris C) Madrid D) Rome. An-
swer:”

5-shot The model is given five examples of the
task with correct answers (few-shot
learning) before the new test question.

“Q1: … → A1: … \n Q2: … →
A2: … \n … Q5: … → A5: … \n
Now: Question: …”

https://github.com/allenai/OLMo-in-loop-evals
https://github.com/allenai/OLMo-in-loop-evals
https://arxiv.org/pdf/2402.00838
https://arxiv.org/pdf/1803.05457
https://arxiv.org/pdf/1803.05457
https://arxiv.org/pdf/1911.11641
https://arxiv.org/pdf/1905.07830
https://arxiv.org/pdf/2009.03300
https://huggingface.co/datasets/alexandrainst/m_hellaswag/viewer/nl?views%5B%5D=nl
https://huggingface.co/datasets/alexandrainst/m_mmlu/viewer/nl?views%5B%5D=nl_train

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 45/109

We employ both 0-shot and 5-shot settings to measure baseline generalization and assess in-

context learning ability—whether the model can adapt to tasks without gradient updates.

Knowledge and Commonsense Tasks: Results reveal distinct learning trajectories. ARC and

PIQA show rapid initial improvement in Epoch 1 followed by convergence toward performance

plateaus. The model achieves notably higher accuracy on ARC-Easy (~0.6) and PIQA (~0.8)

versus ARC-Challenge (~0.4), indicating solid commonsense reasoning but limited scientific

reasoning capability. These performance differences reflect task difficulty—easier tasks

provide more reliable patterns in the pre-training distribution.

Reasoning Tasks: A critical limitation emerges for HellaSwag-NL and MMLU-NL, which

remain near or below random baseline (0.25 for 4-choice) throughout training. HellaSwag-NL

exhibits high variance early before stabilizing around chance levels, suggesting either

insufficient reasoning capability or limited transfer from pre-training to complex multi-step

reasoning. This knowledge-reasoning gap represents an important avenue for future

improvements.

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 46/109

2.5.2 Out-of-loop evaluation
Out-of-loop evaluation is performed after pre-training has completed and does not influence

the training process itself. Evaluation uses frozen model checkpoints and assesses

downstream task performance, generalization, and alignment but do not affect training

dynamics or model updates. We employ EuroEval as our offline benchmarking framework to

comprehensively assess Dutch language performance. EuroEval provides a standardized,

robust evaluation pipeline that:

• Covers many task types relevant to Dutch, such as sentiment analysis, named‑entity
recognition, linguistic acceptability, reading comprehension, knowledge tasks, com-
mon-sense reasoning, and summarization.

• Uses bootstrapped evaluation, running each model–task pairing 10 times with
resampled data and reporting mean scores with 95% confidence intervals, yielding
statistically reliable performance estimates.

We run EuroEval periodically, selecting the latest checkpoint and comparing the progress of
GPT-NL in various tasks.

Below we list an overview of the Dutch tasks integrated into EuroEval:

Task Category Dutch Datasets Evaluation Setup & Notes

Sentiment Classi-
fication

DBRD (Dutch book
reviews)

Few-shot prompt (12 examples), generative
sentiment label output (“positief/negatief/—”).

Named Entity
Recognition

CoNLL-nl Few-shot generative output as JSON dictionary
of entities.

Linguistic Accept-
ability

ScaLA-nl, (Unoffi-
cial) Dutch CoLA

Few-shot prompts with “correct”/“incorrect” la-
bels.

Reading Compre-
hension

SQuAD-nl, (Unoffi-
cial) BeleBele-nl,
MultiWikiQA-nl

Generative answer output via prompt templates.

Knowledge MMLU-nl, (Unoffi-
cial) ARC-nl

Few-/zero-shot question answering tasks.

Common-sense
Reasoning

HellaSwag-nl, (Un-
official) Gold-
enSwag-nl

Select most plausible continuation via genera-
tive setup.

Summarization WikiLingua-nl Summarization of Dutch text, generative output.

https://euroeval.com/
https://euroeval.com/datasets/dutch/

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 47/109

Within WP21, new Dutch benchmarks are in development that will be included in EuroEval,

covering additional tasks like simplification and areas like bias.

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 48/109

We can see from this table that generally later epochs have better results.

Sentiment classification

SST5 (EN) and DBRD (NL). We reach 90% on the Dutch DBRD, while the English stays at
58%.

Named Entity Recognition

Conll-en and Conll-nl have moderate results: 38% EN and 36% NL. There is a slight improve-
ment from epoch 1 to the following epochs, but not a drastic one.

Linguistic acceptability

SCALA-EN and SCALA-NL. The metrics improve with the epochs but are very low (17% EN
and 19% NL). This is one of the problematic tasks, as the model only has to output a letter as
answer (multiple choice).

Reading comprehension

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 49/109

SQUAD and SQUAD-NL. Moderate performances: 66% EN and 51% NL.

Knowledge

LIFE-IN-THE-UK and MMLU-NL: knowledge. The metrics improve but are very low (10% EN
and 2% NL). Also here, multiple choice is requested to the model.

Common sense reasoning

Hellaswag and Hellaswag-NL. For this task we have the worst results: 3% EN and -2% NL. For
the Dutch version, the results for epoch-3 are also worse than the results for epoch-2.

Summarization

cnn-dailymail and wiki-lingua-nl. For this task, the results are acceptable: 67% EN and 61%

NL.

2.6 Context Extension
For LLMs, the context length refers to the maximum number of tokens an LLM can process

within a single forward pass. It determines how far back the model can look when interpreting

or generating text. A longer context length enables the model to capture broader dependencies

and maintain coherence across extended sequences [1].

GPT-NL is pretrained with a native context length of 4096 tokens. At a later stage, the

development team included an effort to extend the supported context length using techniques

such as RoPE Scaling and gradually increasing the context length in the pretraining and

instruction fine-tuning phases.

Rotary Positional Embeddings (RoPE) encode relative positional information by rotating token

representations in attention space [2]. RoPE scaling methods, such as NTK or YaRN [5]

scaling, adjust the frequency of these rotations to allow extrapolation beyond the context

lengths seen during training. While RoPE scaling improves numerical stability at longer

contexts, it does not replace the need for exposure to long sequences during training.

2.6.1 Increasing Context Length
Extending a model’s context length typically requires a continued pretraining at progressively

larger sequence lengths, so the model learns long-range dependencies. Curriculum learning

is commonly used, where the sequence length is increased in stages (for example, 4k to 8k to

16k) to improve stability and performance. Context lengthening usually occurs during mid-

training, after the model has already learned short-range dependencies, ensuring that

attention patterns can adapt to longer sequences without destabilizing previously learned

knowledge. Depending on the positional encoding method, additional steps may include

expanding positional embedding matrices or applying RoPE scaling after intermediate training

phases [6].

Within GPT-NL, the pretraining data mixture is split into a new subset of samples which are of

16k, 32k or 64k tokens. These subsets can be used for the curriculum learning-based mid-

training.

Evaluation and Benchmarks

To evaluate GPT-NL capabilities and performance after Context Extension, we used 2

benchmarks:

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 50/109

• Needle in the Haystack [4]: A synthetic long-context retrieval benchmark that tests
a model’s ability to locate a specific piece of information (the “needle”) within a large
body of irrelevant text (the “haystack”), measuring basic long-range memory and re-
call performance.

• RULER [3]: A more comprehensive long-context evaluation suite that extends be-
yond simple retrieval to include multi-needle, multi-hop tracing, aggregation, and
question answering tasks, aiming to assess a model’s true long-context understand-
ing capabilities as context length increases.

GPT-NL base:

GPT-NL with context extension:

Here we provide the complete results for both tasks: Needle in the Haystack (niah) and RULER.

Llama 3.1

Task 4096 8192 16384

niah_multikey_1 1.0000 1.0000 1.0000

niah_multikey_2 1.0000 1.0000 1.0000

niah_multikey_3 0.9900 0.9980 0.9900

niah_multiquery 0.9995 1.0000 1.0000

niah_multivalue 0.9910 0.9935 0.9930

niah_single_1 1.0000 1.0000 1.0000

niah_single_2 1.0000 1.0000 1.0000

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 51/109

niah_single_3 0.9960 0.9980 1.0000

ruler_cwe 0.9978 0.9776 0.6930

ruler_fwe 0.9620 0.9173 0.9660

ruler_qa_hotpot 0.6540 0.6300 0.5820

ruler_qa_squad 0.7710 0.7303 0.7090

ruler_vt 0.9996 1.0000 0.9992

Average 0.9508 0.9419 0.9170

GPT-NL

Task 4096 8192 16384

niah_multikey_1 0.9980 0.9960 0.9280

niah_multikey_2 0.9860 0.9900 0.9720

niah_multikey_3 0.6940 0.5000 0.5120

niah_multiquery 0.9790 0.9430 0.7860

niah_multivalue 0.6620 0.5690 0.4815

niah_single_1 1.0000 1.0000 0.9980

niah_single_2 1.0000 1.0000 1.0000

niah_single_3 0.7060 0.7600 0.6120

ruler_cwe 0.6438 0.3544 0.2354

ruler_fwe 0.7960 0.8080 0.8353

ruler_qa_hotpot 0.4100 0.3800 0.3480

ruler_qa_squad 0.5192 0.4138 0.4168

ruler_vt 0.9956 0.9896 0.9732

Average 0.7992 0.7464 0.6999

Performance comparison

Model / Metric 4096 8192 16384

GPT-NL 0.7992 0.7464 (6.61%) 0.6999 (12.45%)

Llama 3.1 0.9508 0.9419 (0.94%) 0.9170 (3.52%)

Remark: These results are using the epoch 2 weights, not the final model weights.

What all these tables mean:

• GPT-NL loses ~6.6% by 8K, and a total of ~12.5% by 16K (relative to 4K baseline).

• Llama 3.1 only loses ~0.9% at 8K, and ~3.5% at 16K.

Thus Llama 3.1 is significantly more robust to context scaling — its degradation is only a frac-
tion of GPT-NL. In practical terms, Llama 3.1 retains high performance even when context is
quadrupled in length, while GPT-NL degrades more noticeably.

To sum up:

• Adding dynamic RoPE scaling does not hurt performance and enables longer context
performance

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 52/109

• The context lengthening performance is very inferior to any SOTA models, even
smaller models from a couple of years ago

• Even on a native 4k context length our models perform bad (according to benchmark
results). Finetuning does not have a significant negative effect on the context length-
ening

2.6.2 References

[1] A Controlled Study on Long Context Extension and Generalization in LLMs

[2] LongRoPE: Extending LLM Context Window Beyond 2 Million Tokens

[3] RULER: What’s the Real Context Size of Your Long-Context Language Models?

[4] Needle in the Haystack for Memory Based Large Language Models

[5] YaRN: Efficient Context Window Extension of Large Language Models

[6] Roformer: Enhanced transformer with rotary position embedding

2.7 Data folder Structure and Source Code
Organization
The training set-up is based on the existing implementation of AI2’s OLMo(-core). Initially we

used the original OLMo codebase, but during development switched to the newest, optimized

OLMO-core.

For our original comparison between using the HuggingFace Transformers framework and the

AI2 OLMo framework, see the results of the November 2024 experiments. The OLMo training

code, written in native PyTorch, showed a substantially better performance in terms of speed.

During our initial development, the OLMo-core package was published by AI2. Some initial

tests comparing our setup using this framework versus using OLMo showed a ~20% speedup

in throughput (measured in tokens/device/sec). This improvement in performance as well as

the more up-to-date support and maintenance on the OLMo-core package led to the decision

to switch framework.

The code base has been split up into several modules:

2.7.1 OLMo-Core

A fork from the original OLMo-core code base. This allows us to make small changes

specific to our setup in a structured way. Changes include adding the GPT-NL tokenizer to
the configuration, updating evaluation and conversion scripts.

/olmo-core
└── /docs
└── /src
 ├── /examples # training recipe examples
 └── /olmo_core
 ├── /data # scripts fro data handling
 ├── /distributed # scripts for distributed training
 ├── /eval # scripts for evaluation

https://arxiv.org/pdf/2409.12181
https://arxiv.org/pdf/2402.13753
https://arxiv.org/pdf/2404.06654
https://arxiv.org/pdf/2407.01437?
https://arxiv.org/pdf/2309.00071
https://arxiv.org/pdf/2104.09864
https://allenai.org/olmo
https://github.com/allenai/OLMo
https://github.com/allenai/OLMo-core
https://ci.tno.nl/gitlab/gpt-nl/model-development/olmo-core
https://github.com/allenai/OLMo-core

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 53/109

 ├── /float8 # scripts for precision handling
 ├── /internal # scripts for leaderboard ranking
 ├── /kernels # scripts for MoE kernel
 ├── /launch # scripts for training launchers
 ├── /nn # scripts for neural networks
 ├── /ops # scripts for MoE operations
 ├── /optim # scripts for optimization routines
 ├── /train # scripts for training routines
 ├── /scripts # various sizes training recipes
 ├── /test # test suite for olmo_core components

2.7.2 Pytorch native

All GPT-NL code, including scripts for running the distributed training, evaluation, inference
along with installation and debugging scripts.

/pytorch_native
└── /config # model and train configuration
│ ├── gpt-nl-1B.yaml
│ ├── gpt-nl-26B.yaml
└── /logs # output folder of the jobs
│ ├── job_number.out
│ ├── job_number.err
└── /scripts
 ├── /conversion # checkpoint conversion recipe
 ├── /evaluation # checkpoint evaluation scripts
 ├── /inference # inference workflow scripts
 ├── /installation # installation scripts
 │ ├── install_olmo_snellius.sh
 │ ├── update_olmo_local_environment.sh
 └── /snellius # Training job scripts
 │ ├── .env
 │ ├── copy_to_archive.job
 │ ├── copy_to_snellius.job
 │ ├── deploy_to_project_space.sh
 │ ├── launch_train_debug.job
 │ ├── launch_train_prod.job
 │ ├── train.sh
 │ ├── train_state_utils.sh
 └── cli_helpers.sh
 └── train.py # main training logic
└── README.md
└── pyproject.toml

For more information on the Training workflow please look at Section 2.4.

2.7.3 OLMo-in-loop-evals
A fork from the original OLMo-in-loop-evals, updated to include Dutch benchmarks.

/olmo-in-loop-evals
└── /olmo_eval

https://ci.tno.nl/gitlab/gpt-nl/model-development/pytorch_native
https://ci.tno.nl/gitlab/gpt-nl/model-development/olmo-in-loop-evals
https://github.com/allenai/OLMo-in-loop-evals

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 54/109

 ├── /hf_datasets # local evaluation datasets
 └── /oe_eval_tasks # configuration files for eval tasks
 └── /tokenizers
 ├── metrics.py
 ├── tasks.py
 ├── tokenizer.py
 ├── util.py
 ├── version.py
├── /scripts # release scripts
├── /tests # test suite for eval tasks
└── README.md
└── pyproject.toml

2.7.4 Model conversion
During training, the model checkpoints are saved as a PyTorch model, as well as in a

distributed format (.distcp). Since many downstream applications use the

HuggingFace/Transformers library, we convert the model checkpoints to the HuggingFace-

compatible safetensors format in bfloat16 precision.

2.7.5 Practical notes

2.7.5.1 Installation

It is adviced to clone all the repositories and start the installation following the below order:

This workflow assumes access to Snellius

cd pytorch_native
chmod +x scripts/installation/install_olmo_snellius.sh
bash scripts/installation/install_olmo_snellius.sh

source venv/bin/activate

cd ../olmo-core
pip install -e .

cd ../olmo-in-loop-evals
pip install -e .

2.7.5.2 Logs and workspace

All of our logs and checkpoints are store to a shared place $PROJECT_SPACE under the OLMo-
core folder. There, each training job creates a folder with the format: $PRO-
JECT_SPACE/$MODEL_NAME-nodes-$SLURM_NNODES-mbs-$PER_DEVICE_BATCH_SIZE-gas-
$GRADIENT_ACCUMULATION_STEPS-$SLURM_JOB_ID, e.g. gpt-nl-26B-nodes-22-mbs-12-
gas-3-12967709.

The folder has the below structure:

/OLMo-core
└── /checkpoint_step_number
└── ...
│ ├── /model_and_optim
│ ├── /train

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 55/109

│ ├── .metadata.json
│ ├── config.json
│ ├── data_paths.txt
└── /wandb
│ ├── /latest_run
│ ├── debug-internal.log
│ ├── debug.log

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 56/109

3 Architecture of the Instruction
Fine-Tuning

In this set of pages, we describe the GPT-NL fine-tuning approach that we carried out between

July and December 2025. We start with a brief motivation about why pre-training itself is not

enough, which type of fine-tuning we employ and why. Then we give an overview of the fine-

tuning process as we implement it and provide an outline of content in this chapter.

A pre-trained model is a raw language generator that is not useful yet: it does not follow

instructions. It is optimised to find a likely next token (a numerical representation of words, or

parts of words), given the previous tokens. What is likely to follow in a text, is not necessarily

the most useful. Consider the example below, where the base model is asked in which year a

particular film was released. The model produces a series of years, instead of formulating a

coherent answer that provides a (single) answer to this question.

Example:

Q: In which year was The Godfather first released?
A: 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992

Modern post-training (i.e., everything that comes after pre-training) is a series of fine-tunes with

different aims that build upon each other and require careful design:

• Instruction fine-tuning teach formatting and base of instruction following behaviour
(e.g., chat interactions, answering questions)

• Preference tuning: align to human preferences (safety, tone of voice)

• Reinforcement learning: boost performance on verifiable tasks (e.g., math, precise
formatting, reasoning)

As the resources for this activity in this stage of the GPT-NL project are constrained (datasets,

compute, and time), we resort to instruction fine-tuning only for now.

3.1 GPT-NL Instruction fine-tuning
Let’s start with a definition of instruction fine-tuning:

Instruction fine-tuning is defined as (most-often) supervised fine-tuning

(SFT) on instruction-demonstration data, potentially in a conversational

format. This type of training makes that the model can follow

instructions and make (useful) predictions (potentially with CoT) in a

zero-shot (or few-shot) setting.

Supervised fine-tuning trains the model on instruction-response pairs (either single-turn

prompt-completion or multi-turn conversational exchanges) by masking the input tokens and

computing cross-entropy loss only on the output tokens (assistant responses), teaching the

model to generate appropriate responses rather than predict any next token. This approach

transforms the pre-trained language model from a raw text generator into an instruction-

following assistant that produces coherent, task-oriented outputs.

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 57/109

Post-training can elicit various capabilities and behavioral traits in the model. Given the broad

range of possible objectives, we have narrowed these down to a set of priority goals that are

important, achievable through supervised fine-tuning, and for which data is available. We will

refer to this set of objectives as the GPT-NL Priorities in figures. The table below recaps the

objectives that made it to the final selection.

Type Objective Relative
priority

Dataset available Main
strategy

Instruction
Following

General instruction following High Yes Yes

Instruction
Following

Supporting chat-style interac-
tion

Low Yes (OASST) Yes

Instruction
Following

Precise formatting following
(JSON)

Low A bit SciRIFF Maybe

NLP Tasks Specializing in main GPT-NL
NLP tasks

High Yes (GPT-NL IT

dataset)

 Yes

NLP Tasks RAG High Only contextual QA Yes

NLP Tasks Generalizing to a broader set
of GPT-NL tasks

Low Yes (FLAN) Yes

Long Con-
text

Longer context processing
than the base model (>4096)

Medium Yes, if continual
pre-training

 Yes

Knowledge Establishing solid knowledge
recall

Medium Substantial QA

data

 Yes

Examples of objectives that did not make it to this priority list include multi-lingual capabilities

like translation, precise instruction following (e.g., writing exactly three paragraphs when

instructed), and safety objectives. The latter category encompasses multiple aspects, such as

producing misinformation or disinformation as well as generating harmful content. While these

aspects are important for the project, they are not included in this initial priority list because we

do not have data available for these objectives and other types of fine-tuning (e.g., preference

fine-tuning) might be more suitable for addressing them.

3.1.1 GPT-NL instruct dataset
GPT-NL set out to create its own Dutch instruction fine-tuning dataset, consisting of ~15K

prompt-completion pairs. The dataset has been created by human annotators of one

independent company, following detailed instructions. The dataset is subdivided in a few tasks:

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 58/109

Figure 11: Task distribution GPT-NL Instruct Dataset

3.1.2 Overall instruction fine-tuning process

Figure 12: Fine-tuning Overview

The overall process (visualised in the diagram above) takes as input a pre-trained base model

along with the GPT-NL instruction dataset and other openly available datasets, and produces

an instruction fine-tuned model checkpoint. Since the pre-training pipeline may produce

multiple versions of the base model, fine-tuning can be performed on different base

checkpoints. Additionally, the fine-tuning pipeline experiments with different data selections for

each base model, resulting in multiple fine-tuned variants per base checkpoint.

1. Data preparation - Preparing the datasets into proper and unified prompt-completion
format

2. Data selection - Combining datasets in different proportions and filtering out parts of
datasets

3. Training - Supervised Fine-Tuning (SFT) implementation that modifies the model
weights, with configuration, execution on Snellius HPC, and monitoring capabilities

https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/fine-tuning-data-preparation.md
https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/fine-tuning-data-selection.md
https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/fine-tuning-training.md

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 59/109

4. Evaluation - Evaluating model performance through internal and external bench-
marks, comparing fine-tuned variants, and analysing results across task categories
and languages

For a technical overview of how the codebase and data are organized, see Code and Data

Organization.

3.2 Fine-Tuning Data Preparation
This section describes the data preparation process for GPT-NL instruction fine-tuning, which

transforms diverse datasets into a unified format suitable for training. The pipeline handles

dataset acquisition, standardization, filtering, and formatting to ensure consistent training data

formats across multiple sources and languages.

3.2.1 Why data preparation is critical?
Raw datasets from different sources have inconsistent formats, varied quality, and different

structures that make them unsuitable for direct use in fine-tuning. The data preparation pipeline

addresses several key challenges:

3.2.1.1 Format Heterogeneity

Different datasets use incompatible schemas and field names. One dataset might use "ques-
tion" and "answer" fields, while another uses "input" and "output". Training frameworks

like Hugging Face TRL require consistent formats with specific field names. Without standard-
ization, training scripts would need custom handling for each source, leading to parsing errors
and inability to batch samples efficiently. The pipeline transforms all datasets into a unified
schema (instruction, context, response, task_category, etc.).

3.2.1.2 Quality and Noise in Crowdsourced Data
Datasets from online forums and crowdsourcing platforms (e.g., Goeievraag.nl,

OpenAssistant) contain data of varying levels of quality including factually incorrect information,

incomplete responses, off-topic discussions, platform-specific artifacts, and toxic language.

Training on low-quality data causes models to reproduce incorrect information, develop poor

instruction-following capabilities, and amplify harmful patterns. The pipeline applies multi-stage

filtering using PII detection, toxicity screening, and LLM-as-a-judge evaluation to ensure only

high-quality examples are used.

3.2.1.3 Task Distribution Imbalance
Raw dataset collections often have severe imbalances in task types. Without explicit tracking

and balancing, models can over-optimize frequent tasks at the expense of rare but important

capabilities. Explicit task_category labelling (including automated inference for datasets

lacking categories) enables visibility into task distribution, strategic data selection, and targeted

augmentation of underrepresented capabilities.

3.2.1.4 License Compliance and Data Provenance
Datasets may have restrictive licenses (e.g., CC BY-SA requiring share-alike), contain AI-

generated content, or include content with unclear licensing terms. Using incompatible licensed

data creates legal liability and may violate organizational policies. The pipeline implements

https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/fine-tuning-evaluation.md
https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/fine-tuning-code-organization.md
https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/fine-tuning-code-organization.md

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 60/109

systematic license review, filtering to approved licenses only (MIT, Apache-2.0, CC BY 4.0),

and exclusion of LLM-generated content.

3.2.1.5 Conversation Structure Inconsistencies
Different datasets represent conversations in fundamentally different ways: single-turn Q&A,

multi-turn dialogues with branching, instruction-response pairs without explicit roles, and

complex nested contexts. Inconsistent handling leads to inefficient tokenization, incorrect

training signals, and poor conversational performance. Specialized “unrolling” scripts transform

diverse conversation structures into standardized role-based format (user/assistant

messages).

3.2.1.6 Model-Specific Template Requirements
Modern instruction-tuned models expect specific formatting with special tokens (e.g., <bos>,

<start_of_turn>, <end_of_turn>) that vary between model families. These templates

define the training signals that teach models to distinguish between user inputs and model

responses. Incorrect template applications cause models that cannot distinguish between

turns, degraded instruction-following, and training instabilities. The pipeline uses tokenizer-

based template application to ensure model-specific formatting is correctly applied.

3.2.2 Datasets
This is a table of the datasets used for instruction fine-tuning. The number of samples is

representative of the amount of the dataset that we consider for use, after the processing

pipeline, but before the data selection process. The actual size might be larger, depending on

the dataset.

Dataset Domain Description # Sam-
ples

Language Task Categories

SciRIFF Science Instruction-follow-
ing tasks for scien-
tific literature
understanding.

99,194 English information_ex-
traction, multi-
ple_choice,
qa_with_context,
reasoning, sum-
marization

Aqua
RAT

Math Math word prob-
lems with multiple
choice answers
and rationales.

97,721 English reasoning

Open-
Assis-
tant
(OASST
1)

General
(practical,
scientific,
creative,
etc.)

Crowd-sourced
multi-turn conver-
sations.

25,224 English chat

Narra-
tive QA

Fiction, En-
tertainment

QA pairs from
books and movie
scripts.

18,083 English qa_with_context

Goeiev-
raag.nl

General Dutch Q&A forum
similar to Quora.

17,799 Dutch qa_no_context

Aya Da-
taset

General /
Cultural

Multilingual in-
struction dataset.

5,032 English,
Dutch

brainstorming,
chat, generation,

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 61/109

information_ex-
traction, multi-
ple_choice,
qa_no_context,
qa_with_context,
reasoning, sim-
plification, sum-
marization

SciTLD
R

Science Extreme summar-
ies of scientific pa-
pers.

431 English summarization

Qasper
Dataset

Science QA dataset on sci-
entific papers.

1,175 English qa_with_context

FLAN
(com-
bined)

General Reformatted NLU
datasets for zero-
shot & CoT
prompting.

129,176 English multiple_choice,
reasoning, gen-
eration,
qa_with_context

Hug-
ging-
face H4

General Small, hand-
crafted instruction
dataset.

248 English brainstorming,
chat, generation,
information_ex-
traction, multi-
ple_choice,
qa_no_context,
qa_with_context,
reasoning, sim-
plification, sum-
marization

SPIN General Manually gener-
ated prompt/com-
pletion pairs.

15,000 Dutch brainstorming,
chat, generation,
multiple_choice,
qa_no_context,
qa_with_context,
simplification,
summarization

— TO-
TAL —

— — 409,083 — —

3.2.2.1 Data Acquisition
The data has highlighted above has been acquired from various sources such as the online

datasets on HuggingFace or acquired through license purchase as is the case for

Goeievraag.nl. Based on the requirements set by the GPT-NL project, only open-sourced

datasets with the following license: MIT, CC BY-SA 4.0 or APache-2.0 were taken into

consideration. Furthermore, other criteria was that large language models must not generate

the open-source datasets. Thus, taking this consideration into account, we were able to collect

various datasets as listed above.

Regarding the Flan dataset (see table below), which is composed of multiple sub-datasets

added iteratively over time, we selectively included only those that met the previously

mentioned criteria. These include GSM8K, AQuA-RAT, StrategyQA, QASC, and CREAK. For

the AQuA-RAT dataset specifically, we opted for the most recent version available, rather than

the one listed in the reference table. As for the sub-datasets WinoGrande, Taskmaster, and

Dialog, we were unable to identify coherent open-source versions that met the licensing and

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 62/109

origin requirements. Consequently, these were excluded from the final instruction dataset. The

table below shows a list of sub-datasets that were analysed for the FLAN Dataset. It must be

noted that the Flan dataset contains additional sub-datasets that were not reviewed, as the

current selection sufficiently meets the needs and requirements of this project.

Subset dataset License GPT-NL
compatible

Notes

flan2021 SQuAD (v1/v2) CC BY-SA 4.0 No ShareAlike
copyleft applies to
derivatives/redis-
tributions

flan2021 GSM8K MIT Yes Permissive

flan2021 AQuA-RAT Apache-2.0 Yes Permissive

flan2021 QASC CC BY 4.0 Yes Attribution required
not copyleft

flan2021 StrategyQA MIT Yes Permissive

flan2021 e-SNLI MIT (repo); SNLI
base CC BY-SA
4.0

No Underlying SNLI
share-alike applies

flan2021 CREAK MIT Yes Permissive

flan2021 ComVE (Sense-
Making)

CC BY-SA 4.0 No ShareAlike
copyleft

flan2021 QED CC BY-SA 3.0 /
GFDL-derived

No Wikipedia-derived;
share-alike applies

t0 (P3/T0) SNLI CC BY-SA 4.0 No ShareAlike
copyleft

t0 (P3/T0) MultiNLI MIT-style (NYU li-
cense)

Yes Permissive

t0 (P3/T0) WinoGrande CC BY 4.0 (da-
taset)

Yes Attribution required

t0 (P3/T0) ANLI CC BY-NC 4.0 No Noncommercial re-
striction

t0 (P3/T0) SQuAD CC BY-SA 4.0 No ShareAlike
copyleft

niv2 (Super-
Natural In-
structions
v2)

NIv2 collection Apache-2.0 (repo) Partly Collection is
Apache-2.0; indi-
vidual tasks may
include content de-
rived from up-
stream datasets—
check task cards

cot GSM8K MIT Yes Permissive

cot AQuA-RAT Apache-2.0 Yes Permissive

cot StrategyQA MIT Yes Permissive

cot QASC CC BY 4.0 Yes Attribution required

cot e-SNLI MIT (repo);
SNLI base

CC BY-SA 4.0 No Underlying SNLI
share-alike applies

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 63/109

cot ECQA CDLA-Sharing-
1.0 (data)

No Share-alike style
data license; check
obligations

cot CREAK MIT Yes Permissive

cot QED CC BY-SA 3.0
GFDL-derived

No Wikipedia-derived;
share-alike applies

cot ComVE (Sense-
Making)

CC BY-SA 4.0 No ShareAlike
copyleft

dialog WikiDialog CC BY-SA (re-
ported)

No Wikipedia-derived;
share-alike applies

dialog QReCC CC BY-SA 3.0 No ShareAlike
copyleft

dialog OR-QuAC CC BY-SA 4.0 No ShareAlike
copyleft

dialog QuAC MIT (per HF
card);

CC BY-SA 4.0 on
site

No Conflicting
sources; be con-
servative

dialog Taskmaster-1 CC BY 4.0 (sec-
ondary sources)

Yes Attribution required

3.2.3 Data Processing Pipeline
The data processing pipeline is essential for preparing diverse instruction-tuning datasets for

language model fine-tuning. Raw datasets from different sources often have inconsistent

formats, varied quality, and different conversation structures. Our pipeline standardizes these

datasets into a unified format suitable for training conversational AI models, ensuring

consistency while preserving the semantic content and task-specific information.

The pipeline transforms heterogeneous datasets into a standardized prompt-completion format

that can be efficiently used with training frameworks like Hugging Face’s TRL library.

The pipeline consists of five main steps:

1. Download: Fetch datasets from Hugging Face or other sources

2. Standardize: Convert to unified schema with consistent column names

3. Filter: Apply optional filtering criteria to remove unwanted samples

4. Unroll: Convert to conversational prompt-completion format

5. Apply Template: Format using chat templates for specific models

3.2.3.1 Download

Purpose: Fetch datasets from external sources, primarily Hugging Face Hub.

Implementation: The download_datasets.py module handles downloading datasets using

the Hugging Face datasets library. Downloaded data is saved as Parquet files for efficient

processing.

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 64/109

Sciriff Example:

{
 "input": "You will be presented with a citation segment from the section
of an NLP research paper, as well as the context surrounding that citation.
Classify the intent behind this citation by choosing from one of the follow
ing categories:\n- Background: provides context or foundational information
related to the topic.\n- Extends: builds upon the cited work.\n- Uses: appl
ies the methods or findings of the cited work.\n- Motivation: cites the wor
k as inspiration or rationale for the research.\n- CompareOrContrast: compa
res or contrasts the cited work with others.\n- FutureWork: cites the work
as a direction for future research.\n\nYour answer should be a single word
from the following list of options: [\"Background\", \"Extends\", \"Uses\",
\"Motivation\", \"CompareOrContrast\", \"FutureWork\"]. Do not include any
other text in your response.\n\nSection Title:\nintroduction\n\nContext bef
ore the citation:\nThus, over the past few years, along with advances in th
e use of learning and statistical methods for acquisition of full parsers (
Collins, 1997; Charniak, 1997a; Charniak, 1997b; Ratnaparkhi, 1997), signif
icant progress has been made...",
 "output": "Background",
 "metadata": {
 "domains": ["artificial_intelligence"],
 "input_context": "multiple_paragraphs",
 "output_context": "label",
 "source_type": "single_source",
 "task_family": "classification"
 },
 "_instance_id": "acl_arc_intent_classification:train:0"
}

3.2.3.2 Standardization

Purpose: Convert diverse dataset formats into a unified schema with consistent column
names, data types, and task categories.

Schema: All datasets are standardized to this format:

• instruction: Task description or query (serves as system prompt) (string)

• context: The user’s input (string)

• response: Expected output or answer (string)

• task_category: Type of task (e.g., “multiple_choice”, “summarization”)

• source_dataset: Original dataset name (string)

• language: Content language (string)

• source_document_id: Optional identifier for source tracking

Implementation: The data_standard.py contains dataset-specific standardizer classes.

Each dataset has a custom DatasetStandardizer subclass that knows how to transform its

specific format.

Sciriff Example:

{
 "instruction": "You are a helpful assistant. Answer the user's query.",
 "context": "You will be presented with a citation segment from the sectio
n of an NLP research paper, as well as the context surrounding that citatio
n. Classify the intent behind this citation by choosing from one of the fol

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 65/109

lowing categories:\n- Background: provides context or foundational informat
ion related to the topic.\n- Extends: builds upon the cited work.\n- Uses:
applies the methods or findings of the cited work.\n- Motivation: cites the
work as inspiration or rationale for the research.\n- CompareOrContrast: co
mpares or contrasts the cited work with others.\n- FutureWork: cites the wo
rk as a direction for future research.\n\nYour answer should be a single wo
rd from the following list of options: [\"Background\", \"Extends\", \"Uses
\", \"Motivation\", \"CompareOrContrast\", \"FutureWork\"]. Do not include
any other text in your response.\n\nSection Title:\nintroduction\n\nContext
before the citation:\nThus, over the past few years, along with advances in
the use of learning and statistical methods for acquisition of full parsers
(Collins, 1997; Charniak, 1997a; Charniak, 1997b; Ratnaparkhi, 1997), signi
ficant progress has been made...",
 "response": "Background",
 "task_category": "multiple_choice",
 "source_dataset": "sciriff",
 "language": "en",
 "source_document_id": "acl_arc_intent_classification:train:0"
}

3.2.3.3 Optional Filtering

Purpose: Remove samples based on specified criteria (e.g., language, length, quality).

Implementation: The filter_dataset.py module applies pandas-style filter expressions. If

no filters are specified, this step copies the standardized file unchanged.

Example:

Apply language filtering
filter_expressions = ["language == 'en'"]
Apply length filtering
filter_expressions = ["length > 100", "task_category == 'multiple_choice'"]

3.2.3.4 Unrolling

Purpose: Transform standardized data into conversational prompt-completion format suitable
for instruction fine-tuning, by converting instruction+context+response into a structured con-
versation format with roles and messages.

Implementation: Different unroll scripts handle different conversation types:

• unroll_single_turn.py - For single turn Q&A datasets (like sciriff)

• unroll_multi_turn_oasst1.py - For multi-turn conversations

• unroll_gptnl_dataset.py - For SPIN-specific formats

Sciriff Example:

{
 "task_category": "multiple_choice",
 "source_dataset": "sciriff",
 "language": "en",
 "message_tree_id": "a34de674-bbd6-4f51-b0d7-f5c93056b783",
 "row_id": "a34de674-bbd6-4f51-b0d7-f5c93056b783",
 "multi_turn": false,
 "prompt": [
 {

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 66/109

 "role": "user",
 "content": "You are a helpful assistant. Answer the user's query. You
will be presented with a citation segment from the section of an NLP resear
ch paper, as well as the context surrounding that citation. Classify the in
tent behind this citation by choosing from one of the following categories:
\n- Background: provides context or foundational information related to the
topic.\n- Extends: builds upon the cited work.\n- Uses: applies the methods
or findings of the cited work.\n- Motivation: cites the work as inspiration
or rationale for the research.\n- CompareOrContrast: compares or contrasts
the cited work with others.\n- FutureWork: cites the work as a direction fo
r future research.\n\nYour answer should be a single word from the followin
g list of options: [\"Background\", \"Extends\", \"Uses\", \"Motivation\",
\"CompareOrContrast\", \"FutureWork\"]. Do not include any other text in yo
ur response.\n\nSection Title:\nintroduction\n\nContext before the citation
:\nThus, over the past few years, along with advances in the use of learnin
g and statistical methods for acquisition of full parsers..."
 }
],
 "completion": [
 {
 "role": "assistant",
 "content": "Background"
 }
]
}

3.2.3.5 Template Application

Purpose: Apply model-specific chat templates to convert conversational format into final train-
ing strings.

Implementation: The apply_template.py module uses Hugging Face tokenizers to apply

chat templates. Currently uses Gemma-3-4B-it template but can be configured for other

models.

Chat Template: The pipeline uses templates that format conversations with special tokens:

• <bos> - Beginning of sequence

• <start_of_turn>user - User message start

• <start_of_turn>model - Assistant message start

• <end_of_turn> - Turn end marker

Sciriff Example:

{
 "task_category": "multiple_choice",
 "source_dataset": "sciriff",
 "language": "en",
 "message_tree_id": "a34de674-bbd6-4f51-b0d7-f5c93056b783",
 "row_id": "a34de674-bbd6-4f51-b0d7-f5c93056b783",
 "multi_turn": false,
 "prompt": "<bos><start_of_turn>user\nYou will be presented with a citatio
n segment from the section of an NLP research paper, as well as the context
surrounding that citation. Classify the intent behind this citation by choo
sing from one of the following categories:\n- Background: provides context
or foundational information related to the topic.\n- Extends: builds upon t

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 67/109

he cited work.\n- Uses: applies the methods or findings of the cited work.\
n- Motivation: cites the work as inspiration or rationale for the research.
\n- CompareOrContrast: compares or contrasts the cited work with others.\n-
FutureWork: cites the work as a direction for future research.\n\nYour answ
er should be a single word from the following list of options: [\"Backgroun
d\", \"Extends\", \"Uses\", \"Motivation\", \"CompareOrContrast\", \"Future
Work\"]. Do not include any other text in your response.\n\nSection Title:\
nintroduction\n\nContext before the citation:\nThus, over the past few year
s, along with advances in the use of learning and statistical methods for a
cquisition of full parsers...<end_of_turn>\n",
 "completion": "<start_of_turn>model\nBackground<end_of_turn>\n",
 "all": "<bos><start_of_turn>user\nYou will be presented with a citation s
egment from the section of an NLP research paper, as well as the context su
rrounding that citation. Classify the intent behind this citation by choosi
ng from one of the following categories:\n- Background: provides context or
foundational information related to the topic.\n- Extends: builds upon the
cited work.\n- Uses: applies the methods or findings of the cited work.\n-
Motivation: cites the work as inspiration or rationale for the research.\n-
CompareOrContrast: compares or contrasts the cited work with others.\n- Fut
ureWork: cites the work as a direction for future research.\n\nYour answer
should be a single word from the following list of options: [\"Background\"
, \"Extends\", \"Uses\", \"Motivation\", \"CompareOrContrast\", \"FutureWor
k\"]. Do not include any other text in your response.\n\nSection Title:\nin
troduction\n\nContext before the citation:\nThus, over the past few years,
along with advances in the use of learning and statistical methods for acqu
isition of full parsers...<end_of_turn>\n<start_of_turn>model\nBackground<e
nd_of_turn>\n"
}

3.2.3.6 Optional Task Inference

For datasets without explicit task categories (HuggingfaceH4Instruct and AyaDataset), the
pipeline includes an optional task inference step using the infer_task_types.py module.

This uses a language model to automatically classify samples into task categories:

• qa_no_context: Direct questions without additional context

• qa_with_context: Questions requiring provided context

• summarization: Text condensation tasks

• multiple_choice: Selection tasks

• information_extraction: Data extraction tasks

• reasoning: Logic and mathematical reasoning

The inference uses a Gemma model with carefully crafted prompts to ensure consistent clas-
sification.

3.2.3.7 Classification prompt
You are a task classification expert. Your job is to classify a text sample into ex
actly ONE of the following task types.

Categories

- qa_no_context: A direct question with a definite answer that does NOT rely on add
itional provided context.
 Example: "What is the deepest abyss in the world?"

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 68/109

- qa_with_context: A direct question that CAN ONLY be answered using information pr
ovided in the prompt (a passage, list, or context section).
 Example: "What important event does the following text describe? This tiger has b
een struggling since 2004, as it lived primarily in Aceh, the northernmost tip of S
umatra. During the 2004 tsunami, much of this nature reserve was washed away. Vario
us organisations are now working to rebuild this nature reserve to ensure the survi
val of the Sumatran tiger."

- summarization: Condensing longer text into a shorter form.
 Example: "Summarize this 500-word article about climate change in 2-3 sentences."

- simplification: Rewriting complex information into simpler terms.
 Example: "Explain quantum physics in simple terms for a 10-year-old."

- multiple_choice: Multiple choice questions or selection tasks.
 Example: "Which of the following is NOT a mammal? A) Dog B) Cat C) Fish D) Whale"

- chat: Conversational or social dialogue.
 Example: "Hello! How are you doing today?" → "I'm doing well, thank you!"

- generation: Creative, open-ended content creation. **Not a direct question.** Som
etimes the TEXT ends with ...
 Example: "Write a short story about a dragon who loves to bake cookies."

- brainstorming: Generating multiple ideas or solutions.
 Example: "Give me 5 creative ideas for a company team-building event."

- reasoning: Logical reasoning, problem-solving, or analytical tasks.
 Example: "If all roses are flowers and some flowers are red, can we conclude that
some roses are red?"

- information_extraction: Extracting specific information from given text.
 Example: "Extract the names, dates, and locations mentioned in this news article.
"

Decision Rules
1. If the TEXT is a **question**, classify it as QA (choose `qa_no_context` or `qa_
with_context`, never `generation`).
2. If the TEXT is shorter than 4 words, classify as generation.
3. Output ONLY the task type (e.g., `qa_no_context`). No explanation.

3.2.3.8 Goeievraag.nl data filtering with LLM-as-a-judge

The Goeievraag.nl dataset contains QA pairs from the goeievraag.nl website. This is a great
source of Dutch data, but considering it is sourced from unmoderated user responses, it re-
quires additional processing steps to ensure appropriate quality for instruction fine-tuning. To
this extent we do the following:

1. Filter out unwanted topics

2. Only keep questions with a best answer

3. Apply PII (using the PrivateAI2 tool) + toxic language detection

4. Use LLM to determine which QA pairs will make it to the final dataset

3.2.3.9 LLM-as-a-judge scoring prompt
Task Introduction

You will evaluate question-answer pairs from an online Dutch forum to determine the

2 https://www.privateai.com/

https://www.startpagina.nl/v/

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 69/109

ir suitability for instruction fine-tuning an LLM. The goal is to identify high-qua
lity examples that teach a model to follow instructions accurately, provide helpful
responses, and avoid harmful biases. To do this, rate each QA pair across five crit
eria using a 1-5 scale.

Evaluation Criteria

1. Instruction Following (1-5)
Evaluates how well the answer addresses what was specifically asked in the question
. Consider whether the response directly tackles the core request, stays on topic t
hroughout, and uses an appropriate format for the type of question asked. High scor
es indicate the answer comprehensively addresses all parts of the question without
unnecessary tangents.

2. Correctness & Accuracy (1-5)
Assesses the factual accuracy and reliability of the information provided. This inc
ludes checking whether claims are truthful, procedures are correct, reasoning is so
und, and any limitations or uncertainties are appropriately acknowledged. Consider
if the information is current and whether any advice could be potentially harmful i
f incorrect.

3. Helpfulness & Completeness (1-5)
Measures how useful the answer would be to someone with the original problem or que
stion. Evaluate whether the response provides sufficient detail to be actionable, i
ncludes important steps or considerations, and offers practical value. Consider if
key information is missing that would prevent the questioner from successfully appl
ying the answer.

4. Bias & Fairness (1-5)
Examines whether the response treats all people and groups respectfully and fairly.
Look for discriminatory language, harmful stereotypes, unfair assumptions about the
questioner, or biased perspectives on controversial topics. High scores indicate in
clusive language and balanced treatment of different viewpoints where appropriate.

5. Clarity & Communication (1-5)
Evaluates how well the answer is communicated and structured. Consider whether the
response is easy to understand, logically organized, uses appropriate language for
the context, and maintains a helpful and professional tone throughout. Assess if co
mplex concepts are explained clearly and the overall readability is good.

Specific deductions for this criterion:
- **Rate 1/5** if the answer mentions "GV", "Goeievraag" or synonyms
- **Lower rating** for answers written primarily in opinion form rather than inform
ative/instructional tone
- **Lower rating** for answers containing edit markers (e.g., "toegevoegd na [..]",
"EDIT:", etc.)
- **Lower rating** for answers that reference links or external sources without pro
viding actual URLs

Evaluation Steps

Step 1: Initial Reading
- Read the question and identify what is specifically being asked
- Read the entire answer and note its main approach

Step 2: Score Each Criterion
For each of the 5 criteria:
1. **Apply the specific evaluation focus** (instruction following, accuracy, etc.)
2. **Use the 1-5 scale anchors** provided above

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 70/109

Output Format:
- Instruction Following: X/5 - [justification]
- Correctness: X/5 - [justification]
- Helpfulness: X/5 - [justification]
- Bias & Fairness: X/5 - [justification]
- Clarity: X/5 - [justification]

3.2.3.10 Results of LLM-as-a-judge scoring
After scoring the QA pairs marked with a best answer, we did qualitative analysis to pick a strict

threshold of total score >= 20 and score of each category >= 4. After applying this filter, the

dataset size decreased from ~62k to 19,778 samples.

Figure 13: Goievraag evaluation plots

3.3 Data selection process
Data selection for instruction-tuning LLMs focuses on identifying and curating high-quality

training examples from larger datasets. Rather than using all available instruction-response

pairs indiscriminately, data selection employs various filtering and ranking strategies to identify

the most valuable examples for model training. Data selection serves two primary objectives

that are fundamental to developing effective instruction-tuned models:

1. It acts as a quality filter, systematically removing low-quality examples that could de-
grade model performance. This includes filtering out responses that are factually in-
correct, poorly written, off-topic or contain harmful content.

2. Data selection enables alignment with specific priorities and objectives defined for
the model’s intended use cases.

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 71/109

It is desired that the instruction-tuned GPT-NL checkpoints must exhibit the following

objectives, accompanied by a priority score:

GPT-NL Priorities

These priorities highlight the need for a data selection method that can balance multiple

objectives while scaling to large dataset sizes efficiently.

The challenge of identifying the most useful training samples for instruction fine-tuning is

complex, as there is no straightforward method to determine which examples will contribute

most effectively to model performance. The quality of instruction-response pairs can depend

on numerous factors including linguistic complexity, task diversity, response accuracy,

alignment with target capabilities and subtle patterns that may not be immediately apparent

through manual inspection. This leads us to experiment with three methodologies developed

in the academic world.

3.3.1 Representation-based Data Selection Plus (RDS+)

Figure 14: RDS+ Workflow

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 72/109

The core insight behind RDS+ is that the hidden representations from a pre-trained model’s

last layer capture semantic similarity better than dedicated embedding models or gradient-

based approaches. By using these representations to compute cosine similarity between query

samples and candidate training data, RDS+ can efficiently identify the most relevant training

examples.

Our implementation strategy leverages RDS+ in a systematic pipeline designed to maximize
alignment with GPT-NL priorities:

1. Priority-Aligned Test Set Curation

We begin by manually curating a comprehensive test set that directly reflects our priority matrix,

across task types and source datasets.

2. Query Set Creation

From our curated test set, we split a validation subset to serve as RDS+ queries. This way, the

validation split represents the testing set distribution without causing data leakage.

3. Training Data Subsampling

Using RDS+, we subsample our large training corpus by computing similarity scores between

each training example and our validation queries. The round-robin selection algorithm ensures

balanced representation across all priority areas while identifying the most relevant training

samples.

3.3.2 G-Eval: LLM-as-a-judge filtering

G-Eval leverages LLMs as judges to assess the quality of instruction-response pairs. Rather
than relying on simple metrics or heuristics, G-Eval uses LLMs to provide nuanced quality as-
sessments that closely mirror human judgment. The methodology works by presenting a LLM
with detailed evaluation criteria and asking it to score examples across multiple quality defini-
tions. The LLM judge examines each instruction-response pair and assigns numerical scores
based on carefully crafted rubrics that define what constitutes quality at different levels.

For our data selection process, we employed five distinct evaluation rubrics, each targeting a

critical aspect of training data quality:

• Language Quality evaluates whether the prompt-completion pair maintains con-
sistent language use (English or Dutch) without inappropriate mixing or code-switch-
ing. This ensures our training data maintains linguistic coherence.

• Prompt Completeness assesses whether the instruction is clear, unambiguous, and
provides sufficient context for understanding what the response should contain. Well-
defined prompts are essential for effective instruction fine-tuning.

• Completion Helpfulness measures how well the response addresses the prompt
while remaining concise and relevant. This rubric filter out responses that are off-
topic, repetitive, or unnecessarily verbose.

• Completion Truthfulness evaluates factual accuracy and ensures responses don’t
contain hallucinations or invented information not present in the provided context or
general knowledge.

• Harmlessness ensures the content is safe, respectful, and free from harmful, dis-
criminatory, or inappropriate material that could pose risks to various forms of wel-
fare.

Each rubric uses a 5-point scale, with detailed descriptions for each score level to ensure con-
sistent evaluation. To maintain quality standards in our final dataset, we established a threshold

https://github.com/nlpyang/geval

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 73/109

of 3 or higher across all five rubrics - meaning samples must achieve at least a “moderately
acceptable” rating in every dimension to be included in our training set.

3.3.3 UltraFineWeb FastText classifier
The Ultra-FineWeb classifier represents a lightweight approach to data quality assessment that

leverages fastText for rapid content evaluation. Unlike the sophisticated LLM-based evaluation

methods, this classifier prioritizes computational efficiency while maintaining effective filtering

capabilities, making it particularly suitable for processing large-scale datasets where inference

speed is crucial.

The methodology behind the Ultra-FineWeb classifier involves training a fastText model to

distinguish between high- and low-quality text samples using carefully curated seed data.

Although the Ultra-FineWeb classifier was originally designed and optimised for pre-training

data filtering, we decided to explore its utility for instruction fine-tuning data selection. Our

hypothesis was that this classifier could serve as an effective filter to identify and remove

outright poorly formatted data or content with significant grammatical errors that would be

detrimental to instruction fine-tuning. Pre-training data and instruction fine-tuning data share

certain fundamental quality characteristics: both benefit from proper formatting, grammatical

correctness, and linguistic coherence, making this cross-domain application a reasonable

experimental approach.

The appeal of using this pre-trained classifier lies in its ability to quickly process large volumes

of instruction-response pairs and flag obviously problematic content such as garbled text,

severe formatting issues, or content with substantial linguistic errors. While it may not capture

the nuanced quality aspects specific to instruction-following tasks, it can efficiently eliminate

the obviously bad quality samples, allowing more sophisticated evaluation methods to focus

on the remaining, higher-quality candidates.

3.3.4 Conclusion: Comparing Data Selection

Approaches

3.3.4.1 Individual Method Impact Analysis
Each of the three data selection methods demonstrated distinct filtering patterns across task

categories and source datasets, revealing different biases and strengths in their quality

assessment approaches.

RDS+

Figure 15: RDS+ Filter Impact

https://huggingface.co/openbmb/Ultra-FineWeb-classifier

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 74/109

RDS+ demonstrated a balanced filtering strategy, with the highest removal rate for reasoning

tasks (63.8%) and moderate filtering across most categories. The method showed relatively

uniform impact across source datasets, with the most affected being flan_gsm8k (90.7%) and

aqua_rat (77.6%). This suggests RDS+ focuses on semantic relevance to the target priority

distribution rather than absolute quality, making it conceptually different from the other two

filtering approaches.

G-Eval: LLM-as-a-judge Filtering

Figure 16: G-Eval Filter Impact

G-Eval’s filtering showed a strong focus on context-dependent tasks, removing 55.3% of

qa_with_context samples while being more lenient with simpler tasks like multiple_choice

(0.4% removed). The method heavily filtered specific datasets like narrative Q&A (99.1%) and

qasper (95.7%), suggesting these sources contained responses that failed to meet the

stringent rubric requirements for truthfulness, helpfulness, or completeness. This pattern

indicates G-Eval’s strength in identifying quality issues in long-form, context-heavy responses

but potentially being overly conservative.

FastText Classifier

Figure 17: FastText filter Impact

FastText Filter Impact

The FastText classifier mostly removed samples containing Dutch samples. This is likely a

consequence of the classifier not being trained on Dutch samples at all. This approach appears

to prioritise surface-level quality indicators like grammar and structure over semantic

appropriateness.

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 75/109

3.3.4.2 Agreement Between Methods

Figure 18: Filtering Agreement Matrix

The agreement analysis between the three methods reveals a fundamental challenge in data

quality assessment: quality is inherently difficult to estimate, and different methods capture

different aspects of what constitutes valuable training data. The agreement matrix shows:

• RDS+ and G-Eval: Only 27.9% agreement (33,531 samples)

• RDS+ and FastText: Only 22.1% agreement (27,455 samples)

• G-Eval and FastText: 39.8% agreement (30,964 samples)

These low agreement rates indicate that each method operates on fundamentally different prin-
ciples. RDS+ prioritizes semantic relevance to target capabilities, G-Eval focuses on multi-di-
mensional quality rubrics, and FastText emphasizes linguistic and formatting correctness. The
lack of consensus suggests that “quality” in instruction fine-tuning data is multi-faceted and no
single method captures all relevant dimensions.

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 76/109

3.3.4.3 Impact on Model Performance

Figure 19: Filtering results comparison

Perhaps most surprisingly, none of the filtering solutions improved upon the baseline of

using all available data.

All three filtering approaches, along with stratified subsampling, showed performance below

the baseline. This counterintuitive result can likely be attributed to our low data setting. With

limited training data available, aggressive filtering may remove examples that, despite quality

concerns, still contribute valuable signal for learning instruction-following behavior. In resource-

constrained scenarios, the diversity and volume of training data may matter more than

individual example quality.

3.4 Configuring, Running and Monitoring the
Instruction Fine-Tuning
This page provides a comprehensive overview of the Instruction Fine-Tuning process for GPT-

NL, covering execution frameworks, configuration, training, and monitoring. We have already

described how the data is prepared and selected. Here, we focus on the implementation,

workflow, and experiments for supervised fine-tuning (SFT) on our HPC infrastructure.

3.4.1 Frameworks Choice

After analysing multiple frameworks for instruction fine-tuning, including HuggingFace TRL,
ColossalAI, DeepSpeedChat, Open-Instruct, and others, we chose HuggingFace TRL as our
primary fine‑tuning framework, augmented with:

• DeepSpeed ZeRO for multi‑GPU/multi‑node scaling (Stages 1–3).

• Dataset streaming (for memory efficiency on large parquet datasets).

• Synchronization primitives (avoid races in model/dataset caching across many
ranks).

• Custom callbacks for throughput and sample generation into monitoring tools.

https://github.com/huggingface/trl

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 77/109

Detailed tables, comparisons of frameworks, RLHF methods have been moved to the Appendix
Fine-tuning frameworks for clarity.

Why TRL for SFT

• Wide adoption in the research and open-source community

• Extensive documentation and examples

• Support for SFT, DPO, PPO, and full finetuning

• Dataset format flexibility: prompt‑completion (string or conversational) and lan-
guage‑modeling style with data collators

• Deep integration with Accelerate and DeepSpeed

• Active ecosystem: ready‑to‑use trainers (SFTTrainer) and configs (SFTConfig)

The complete comparison of frameworks and RLHF approaches is

available in the Appendix Fine-tuning frameworks.

3.4.2 Configuration
Proper configuration of a fine-tuning run is critical to ensure efficient resource utilization and

optimal model performance. In this section, we describe the essential steps required to initiate

a fine-tuning process—specifically, how to configure Supervised Fine-Tuning (SFT).

Setting up an SFT process involves defining several key options:

• Model Selection: Specify which pre-trained model will be fine-tuned. This can be a
local model checkpoint (e.g., a path to the model at a specific epoch) or a publicly
available model for benchmarking and comparison.

• Dataset Choice: Determine the dataset to use for training. As outlined in the Data
preparation and Data selection sections, options include internal datasets such as
SPIN and selected public datasets.

• Fine-Tuning Configuration: Define how the fine-tuning should proceed, including
training duration, hyperparameters (e.g., learning rate, batch size), and allocation of
HPC resources (e.g., number of GPUs, memory requirements).

3.4.2.1 YAML Configuration file

We try to make these options explicit and easy to configure by using YAML configuration files.
We have a folder named config where we hierarchically store the configurations for our runs.

The most important parameters are:

• model_name_or_path: the input model to finetune

• dataset_name_or_path: the dataset to use. Currently supported: parquet files with a

supported type of dataset by TRL. It can be a single file or multiple files (if you use a
* in the variable). If a single file is used, it must contain a column named split to in-

dicate which rows are for training and which ones for testing. If a wildcard (*) is used,

train and test splits are loaded separately: this has been implemented to be able to
stream datasets instead of loading them as a bulk in the beginning of the training.
See below the streaming datasets section for more details.

• output_dir: where to save the finetuned model

• chat_template_path: to configure a specific chat template for finetuning the model

https://huggingface.co/docs/trl/en/dataset_formats
https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/fine-tuning-data-preparation.md
https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/fine-tuning-data-preparation.md
https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/fine-tuning-data-selection.md
https://huggingface.co/docs/trl/en/dataset_formats

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 78/109

• DeepSpeed: path to a DeepSpeed configuration file, useful to choose the distributed

strategy (stage 1 / 2 / 3)

• Model

o model_name_or_path: the input model to finetune (HF hub or local path to

checkpoint)

o tokenizer_name_or_path (optional; defaults to model_name_or_path)

o trust_remote_code (for custom model code)

o Long context (optional): rope_scaling_type, rope_scaling_factor

o Attention backend: enable FlashAttention2 or SDPA (LLaMA)

• Dataset

o dataset_name_or_path: the dataset to use. Currently supported: parquet

files with a supported type of dataset by TRL.

▪ If using a single file, ensure it contains a split column with values

train|val|test.

▪ If using * (wildcard), provide ..._train.parquet, ..._val.par-
quet, optionally ..._test.parquet to enable streaming (reduces

memory required instead of loading the whole dataset in memory).
See below the streaming datasets section for more details.

o (Optional) max_samples and validation_split_percentage

• Training & Output

o output_dir: where to save the finetuned model

o num_train_epochs, per_device_train_batch_size, gradient_accumu-
lation_steps

o learning_rate, lr_scheduler_type, warmup_steps, weight_decay

o Precision: bf16|fp16|tf32, gradient_checkpointing

o save_strategy, save_steps, save_total_limit,

load_best_model_at_end

o chat_template_path: to configure a specific chat template for finetuning the

model (must match inference)

• Distributed

o DeepSpeed: path to ZeRO config (ds_config_zero[1|2|3].json)

o Optional offloading: offload_folder, offload_state_dict

o low_cpu_mem_usage: true to reduce load on memory

Example (condensed)

config/train/sft_config.yaml
model_name_or_path: PATH_TO_MODEL
tokenizer_name_or_path: PATH_TO_MODEL
trust_remote_code: true

Long context (optional)
rope_scaling_type: dynamic # or 'linear'
rope_scaling_factor: 2.0

Attention backend
use_flash_attention_2: true # or sdpa for LLaMA

Dataset: stream by providing separate parquet files

https://huggingface.co/docs/trl/en/dataset_formats

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 79/109

dataset_name_or_path: PATH_TO_DATASET_*.parquet

Output & logging
output_dir: /output/gptnl-sft
report_to: ["wandb"]
chat_template_path: config/evaluate/chat_template_empty.jinja

Training
num_train_epochs: 1
per_device_train_batch_size: 4
gradient_accumulation_steps: 4
learning_rate: 2.0e-5
lr_scheduler_type: cosine
warmup_steps: 500
weight_decay: 0.0
bf16: true
tf32: true
gradient_checkpointing: true

Save/Eval
do_eval: true
eval_strategy: steps
eval_steps: 500
save_strategy: steps
save_steps: 500
save_total_limit: 3
load_best_model_at_end: false

Distributed
DeepSpeed: config/train/ds_config_zero3.json
low_cpu_mem_usage: true
offload_folder: /scratch/offload
disable_cache: true

Tip: With ZeRO‑3, memory footprint per GPU drops significantly,

allowing larger batches and improved tokens/sec.

3.4.2.2 Job Scripts and Execution Flow

The job scripts are stored in the jobs folder, and they contain job requirements specifications

(resources):

• amount of nodes

• type of nodes

• usage of reservation

• duration of the job

These options cannot be easily moved to YAML configuration, so they need to be checked
before usage in the corresponding job file. They are written as #SBATCH headers.

The rest of job scripts contain module loading and preparation of the training run (setting

environment variables, loading the proper configuration file).

It is important when you create or use a job script that you check:

https://servicedesk.surf.nl/wiki/spaces/WIKI/pages/30660220/Writing+a+job+script

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 80/109

• which configuration file it loads: TRAIN_CONFIG env variable exported

• #SBATCH headers for resources

To submit a job to the queue, just use sbatch jobs/<PATH_TO_JOB_SCRIPT>.

3.4.3 Training

This section describes how the training works. It is classical supervised training, where there
are input variables (chat conversations up to a specific point) and target variables (next assis-
tant message). The learning goal is to minimize the loss on the target assistant message. In
other words, the model learns to reply as the assistant (the target variable).

If we follow what happens when a job script is launched:

5. The job is granted resources, and SLURM runs a single copy of the batch script on
the first node in the set of allocated nodes.

6. The batch script is executed: the environment is configured (modules are loaded, en-
vironment variables are set, including the TRAIN_CONFIG)

7. srun launches the tasks in all the configured nodes. In our setting, we have a task for

each GPU. For example, if we run a fine-tuning on 2 nodes with 4 GPUs each, we
will have 8 tasks running

8. torchrun_launcher.sh is executed: each task executes torchrun with target the

TRAINING_COMMAND (defined in the job script) and connects to the master process

using NCCL

Then the TRAINING_COMMAND is actually the python script that gets executed in parallel via

torchrun. Its entry point is src/train/train.py where the real training happens:

• data loading: from parquet files, the data is formatted according to chat_template and
tokenized

• model loading: using HuggingFace classes, the model and the tokenizer are loaded

according to configuration

• DeepSpeed is getting configured and distributes the model accordingly to its stage

• batches start to be processed (this happens a few minutes later) and loss is com-
puted for backpropagation

• checkpoints are saved

3.4.3.1 TRL classes

• SFTConfig – defines training parameters, optimizer, precision, check-

pointing, DeepSpeed config, chat template, logging

• SFTTrainer – executes the training loop

3.4.3.2 DeepSpeed configuration
As documented in the pre-training documentation, we use DeepSpeed to distribute the training.

For finetuning we tested the stage 1, 2 and 3.

3.4.3.3 DeepSpeed and memory constraints

DeepSpeed is strongly linked to the memory constraints. Stages 1 and 2 already distribute the
optimizer (stage 1) and gradient (stage 2), but still the memory requirements are almost iden-
tical as DPP strategies, because the largest amount of memory is actually occupied by the
model parameters (27B).

https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 81/109

Stage 3, on the other side, partitions the parameters across multiple workers/devices and really

enables to reduce the memory requirements of a single device, leaving room for more memory

for larger batches. The slight performance decrease of stage 3 is totally and over-compensated

by the speed of larger batches, that indeed would crash with stage 1 and 2.

We rely on DeepSpeed ZeRO sharding:

• ZeRO‑1: Shards optimizer states. Memory relief is limited for very large models.

• ZeRO‑2: Shards gradients as well. Still heavy if parameters stay replicated.

• ZeRO‑3: Shards parameters, gradients, and optimizer. This is the recommended
mode for 27B+ models; it enables larger batch sizes and higher throughput.

Important

• Do not use device_map="auto" with ZeRO/torchrun. We explicitly unset this in dis-

tributed mode to avoid incorrect HF auto‑sharding.

DeepSpeed JSON highlights (example fields to inspect in ds_config_zero3.json)

{
 "zero_optimization": {
 "stage": 3,
 "offload_param": {
 "device": "cpu",
 "pin_memory": true
 },
 "offload_optimizer": {
 "device": "cpu",
 "pin_memory": true
 }
 },
 "bf16": { "enabled": true },
 "gradient_accumulation_steps": 4,
 "train_micro_batch_size_per_gpu": 4
}

Memory & performance

• ZeRO‑3 usually unlocks per_device_train_batch_size ≥ 8 (depending on sequence
length and model size).

• With dataset streaming, we observed substantial throughput gains (see Appendix
B).

3.4.3.4 Chat_template
We can configure the specific chat_template used for fine-tuning. The pre-trained model

has no chat_template. It is important that the same chat_template is used for finetuning

and inference, as it is used for priming the model to respond.

3.4.3.5 Data loading

The training script loads the data from parquet files, according to the configuration.

TRL works out of the box with the following formats for SFT:

• Standard Prompt-Completion: prompt and completion are strings. Strings should al-
ready be formatted according to a chat_template

https://huggingface.co/docs/trl/en/dataset_formats#dataset-formats-and-types

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 82/109

• conversational Prompt-Completion: prompt and completion are list of messages with
{role,content} attributes. This is useful if we want to apply a different chat_tem-
plate at runtime

• language-modelling (conversational) format: we don’t need to manually prepare
prompts and completions, with a simple DataCollator configuration we can tell TRL

to use as targets all the assistant messages (intermediate and final ones).

TRL automatically detects the type of the dataset passed and whether it needs to be tokenized
(strings) or not (token_ids) and configures the batches to be provided to the different workers
in a distributed setting.

3.4.3.6 Additions on top of TRL

Synchronization primitives

Some actions make the jobs fail when more than 8 workers are in place (probability of race
conditions increases):

• downloading models (when not local model or not yet downloaded in cache)

• creating cache of datasets (when loading dataset)

For these cases, we used barriers:

if is_main_process():
 # main process loads first
 full_dataset = load_dataset(...)
Wait for main process to finish downloading/caching
torch.distributed.barrier()
if not is_main_process():
 # then the other processes can load from cache without concurrent write
s
 full_dataset = load_dataset(...)

Streaming datasets

Easier dataset loading: load everything, transform it to tokenized, then efficiently dispatch sub-
batches to workers.

Problem: large datasets do not fit in memory, so the processes crash

Solution: stream the dataset from the disk (parquet). Complications:

• The train and test datasets need to be separate on disk. This is why in the YAML
configuration you see that we use the wildcard * to denote when the two files are

separate. In this way it’s possible to stream them independently.

• The total size is unknown in streaming mode, need to compute it first. This is fixed by
doing a first iteration on the dataset.

• Global batch created in main process, and split for all the workers,
train_batch_size needs to be adjusted to the global batch size

3.4.4 Monitoring

Monitoring uses TRL integration with Weights & Biases. We log:

• Configuration and hyperparameters

https://huggingface.co/docs/trl/en/dataset_formats#language-modeling
https://wandb.ai/

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 83/109

• Training metrics: loss, token accuracy, learning rate, steps, number of tokens pro-
cessed

• System metrics: GPU usage, network, throughput per device and globally

• Example outputs during training via a custom LLMSampleCallback (text output by

the model)

3.5 Instruction fine-tuning evaluation
Evaluating instruction-tuned models requires a multi-faceted approach to assessing both over-
all performance and task-specific capabilities. This document describes our evaluation meth-
odology and presents initial results from fine-tuning experiments. We implement evaluation for
two primary purposes:

1. Comparing GPT-NL to third party models: Benchmarking our models against
state-of-the-art instruction-tuned models to understand relative performance on com-
mon task categories (linguistic understanding, reasoning, knowledge, etc.).

2. Gathering insights into how we perform on the GPT-NL instruction fine-tuning
priorities: Understanding model performance across different task categories with
more granular and deeper insights than average scores of metrics. We aim to under-
stand to be able to adapt our fine-tuning approach accordingly.

To achieve these goals, we employ two complementary types of evaluation:

1. Benchmark evaluation (EuroEval): Using standardized benchmarks for external
comparison

2. Internal test set evaluation: Using task-categorized test sets with multiple evalua-
tion approaches for deeper insights:

o Traditional metrics (BLEU, ROUGE, METEOR)

o Model-based metrics (BERTScore)

o LLM-as-a-judge evaluation (Prometheus and GEval)

Figure 20: Instruction fine-tuning evaluation

The evaluation pipeline orchestrates multiple evaluation approaches in a single compute job

with sequential stages. Starting with prediction generation using a vLLM server, the cached

predictions feed into three parallel evaluation tracks: LLM-as-a-judge assessment, traditional

metrics computation, and EuroEval benchmarking. All results are aggregated and

synchronized to Weights & Biases for experiment tracking and analysis. We discuss these

methods in the following.

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 84/109

3.5.1 Benchmark Evaluation: EuroEval
GPT-NL uses EuroEval as the core benchmark collection for evaluating instruction-tuned

models. EuroEval provides standardized task benchmarks for both English and Dutch, enabling

comparison with external models and tracking progress across model iterations. WP21 extends

this collection with Dutch sets that are focused on Dutch language and culture, but that effort

is described separately and here we consider the base sets available.

The implementation is re-used from the pre-training pipeline and is explained in this section.

3.5.2 Internal Test Set Evaluation
Our internal evaluation pipeline provides detailed insights into model performance across

different task categories, enabling us to understand where the model excels and where

improvements are needed. The pipeline follows a modular design with three sequential stages:

prediction generation, traditional metrics computation, and LLM-as-a-judge evaluation.

Predictions are generated once and cached for reuse, while results from all stages are

aggregated and logged to Weights & Biases.

Our test set is constructed from a subset of the training datasets, carefully selected and

categorized to ensure comprehensive coverage of different task types. The test set follows a

standardized Parquet format with the following schema:

Column Type Description

prompt str/list The input prompt (string or conversational format as list
of messages dict)

completion str The reference/ground truth response

instruction str The original instruction (before chat template applica-
tion)

task_category str The task type for granular analysis

source_dataset str Original dataset name for tracking data provenance

language str Language code (‘en’ for English, ‘nl’ for Dutch)

Task categories enable granular performance analysis across different types of instructions:

Task Category Description

qa_with_context Question answering using provided context

qa_no_context Question answering using general knowledge

summarization Text condensation and summarization

reasoning Mathematical and logical reasoning

information_extraction Structured information retrieval

generation Creative text generation

simplification Text simplification for accessibility

multiple_choice Selection of predefined options

chat Multi-turn conversational dialogue

brainstorming Idea generation and exploration

dutch Dutch-specific language tasks

The test set is typically limited to around 5K samples to enable fast iteration during model

development while maintaining coverage across all task categories.

https://euroeval.com/

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 85/109

Evaluation Criteria

The evaluation system is designed to assess multiple dimensions of response quality:

Generic Criteria (all tasks):

• Helpfulness: Does the response satisfy the user’s intent in a complete, relevant and
conciseness manner?

• Truthfulness: Is the response factual and free from hallucinations? When a piece of
contextual information is given, the model can only use that to base its answer on,
besides general knowledge.

• Harmlessness: Is the response harmless, respectful, and appropriate?

• Language Quality: Is the response accessible, fluent and with correct grammar?
(Dutch or English specific)

Task-Specific Criteria:

• Summarization: Faithfulness, coverage, and conciseness

• Simplification: Meaning preservation and clarity, not summarized

• QA with Context: Accuracy using only provided context

• QA without Context: Appropriate use of general knowledge

• Generation: Creativity and engagement

• Brainstorming: Diversity and directional spread of ideas

• Reasoning: Logical structure and correctness

• Chat: Appropriate conversational flow

• Information Extraction: Exactness and completeness

• Multiple Choice: Correctness

3.5.2.1 Stage 1: Prediction Generation

Model predictions are generated using a vLLM server infrastructure for efficient batched infer-
ence. This approach enables:

• High-throughput generation: Optimized inference for large test sets

• Format flexibility: Support for both string prompts and conversational message for-
mats

• Infrastructure reuse: Same deployment for training-time evaluation and post-train-
ing assessment

The generation process applies appropriate chat templates to prompts, uses configurable sam-
pling parameters (temperature, top-p, repetition penalty), and produces responses that are
cached for subsequent metric computation stages. Predictions are stored alongside metadata
including task categories, languages, source datasets, and reference answers, enabling gran-
ular analysis across different data dimensions.

3.5.2.2 Stage 2: Traditional Metrics

Traditional metrics provide fast, reference-based evaluation of surface-level similarity and se-
mantic alignment between predictions and references.

Metric Categories

The evaluation computes several complementary types of metrics:

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 86/109

Metric Category Examples Measures

Token overlap METEOR Synonym-aware word matching with stemming

N-gram recall ROUGE-1,
ROUGE-2,
ROUGE-L

Unigram, bigram, and longest subsequence overlap

N-gram precision BLEU Corpus-level precision with brevity penalty

Semantic similarity BERTScore Contextual embedding alignment using multilingual
DeBERTa

BLEU Aggregation: Unlike sample-level metrics, BLEU is computed at group level

(combinations of task category, dataset, and language) as it requires corpus-level aggregation

for meaningful interpretation.

BERTScore: Uses microsoft/mdeberta-v3-base to compute semantic similarity beyond

exact word matching, capturing meaning alignment even when phrasing differs.

Multi-Level Aggregation

Metrics are aggregated across multiple dimensions to provide comprehensive analysis:

• Overall: Performance across the entire test set

• By task category: Identifying strengths in specific instruction types (QA, summariza-
tion, etc.)

• By dataset: Understanding which training data sources contribute to capabilities

• By language: Comparing Dutch vs English performance

• By combinations: Cross-tabulated analysis (e.g., Dutch summarization vs English
summarization)

This multi-dimensional view enables identifying both broad patterns and specific areas needing
improvement.

3.5.2.3 Stage 3: LLM-as-a-Judge Evaluation

Traditional metrics capture surface-level similarity but may miss nuanced aspects of response
quality. GPT-NL implements LLM-as-a-Judge evaluation using two complementary ap-
proaches:

3. Multilingual-Prometheus (M-Prometheus) (Pombal et al., 2025): Specialized open-
weight evaluation models (3B-14B parameters) extending the original Prometheus
framework (Kim et al., 2024) to support multilingual assessment across 20+ lan-
guages through direct assessment and pairwise comparison. Prometheus models
are specifically trained to align with human evaluator judgments, achieving a Pearson
correlation of 0.897 with human assessments.

4. GEval with Qwen (Liu et al., 2023): A flexible evaluation paradigm using chain-of-
thought (CoT) prompting with general-purpose instruction-tuned models like Qwen3
(Yang et al., 2025). The model generates detailed reasoning about response quality
before assigning a numerical score, enabling GPT-4-level evaluation without special-
ized training.

Both approaches evaluate responses on multiple criteria using a 1-5 scoring scale, providing
both numerical scores and textual feedback explaining the assessment.

Evaluation Methodologies

https://arxiv.org/abs/2504.04953
https://openreview.net/forum?id=8euJaTveKw
https://openreview.net/forum?id=8euJaTveKw
https://arxiv.org/abs/2303.16634
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2505.09388

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 87/109

Multilingual-Prometheus:

• Uses models specifically fine-tuned for multi-criteria evaluation

• Supports multiple model sizes (3B, 7B, 14B parameters)

• Evaluates based on structured rubrics with detailed score descriptions

• Provides both reference-based and reference-free evaluation

• Generates explanatory feedback alongside numerical scores

GEval with Qwen:

• Leverages general-purpose instruction-tuned models for evaluation

• Uses chain-of-thought prompting to elicit detailed reasoning

• Generates evaluation rationale before assigning scores

• More flexible for custom criteria and evaluation frameworks

• Can be adapted to emerging evaluation needs

The choice between approaches depends on evaluation goals: Prometheus offers consistency
through specialized training, while GEval provides adaptability through prompting strategies.

Evaluation Rubrics

Both evaluation approaches use a common rubric structure where each criterion is translated
into a 1-5 scoring scale with detailed descriptions for each score level. The rubrics combine the
high-level evaluation criteria described earlier with concrete scoring guidance for LLM judges.

Rubric Structure Example: Summarization

To illustrate how criteria are operationalized into rubrics, consider the summarization task-

specific criterion:

- Criterion: "Does the response cover key points, stay faithful to the sour
ce in the instruction, and is meaningfully shorter?"
- Score 5: Completely faithful, meaningfully shorter, covers all key points
- Score 4: Mostly faithful, shorter, covers key points well
- Score 3: Generally faithful and shorter but has some issues
- Score 2: Significant issues with faithfulness, coverage, or length
- Score 1: Unfaithful, adds information, misses key points, or too long

This pattern applies across all generic criteria (helpfulness, truthfulness, harmlessness, lan-
guage quality) and task-specific criteria (QA, generation, reasoning, etc.), providing LLM judges
with clear guidance for score assignment while maintaining consistency across different task
types.

Language-Adaptive Evaluation:

The evaluation framework automatically selects appropriate language quality criteria based on

the response language. Dutch responses are evaluated for Dutch language quality, English

responses for English language quality, ensuring relevant assessment across both languages.

Evaluation Outputs

LLM judge evaluations produce structured outputs containing:

• Numerical scores for each criterion (1-5 scale)

• Textual feedback explaining the assessment

• Metadata linking scores to specific samples, task categories, and languages

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 88/109

These outputs are aggregated alongside traditional metrics, enabling holistic quality assess-
ment that combines quantitative similarity measures with qualitative judgment of response ap-
propriateness, safety, and task-specific excellence.

3.5.2.4 Configuration and Results
• Which evaluation components to execute (EuroEval, traditional metrics, LLM evalua-

tion)

• Model checkpoint paths and loading parameters

• Test dataset location and sampling limits

• Generation parameters for response production

• Specific settings for each evaluation method (batch sizes, sampling parameters)

• Experiment tracking integration (project, entity, tags)

This configuration-driven approach enables consistent evaluation across different model
checkpoints while allowing fine-tuned control over computational resources and evaluation
depth.

Results and Logging

The evaluation pipeline produces structured outputs organized by evaluation run:

• Predictions: Cached model responses with metadata

• Traditional metrics: Aggregated scores at multiple granularities

• LLM evaluations: Scores and feedback from evaluation models

• Combined reports: Unified view of all evaluation dimensions

All results are automatically logged to Weights & Biases when configured, enabling:

• Experiment comparison: Track metrics across model iterations

• Interactive exploration: Drill down into specific task categories or failure modes

• Qualitative analysis: Review LLM feedback and example predictions

• Progress visualization: Monitor improvements across training runs

Analysis and Interpretation

The multi-faceted evaluation provides insights at different levels:

5. Overall Performance: High-level comparison with baselines

6. Task-Specific Analysis: Understanding which instruction types work well

7. Language-Specific Patterns: Dutch vs English performance differences

8. Quality Dimensions: Separate tracking of helpfulness, truthfulness, harmlessness,
and language quality

9. Dataset Correlation: Identifying which training datasets contribute most to specific
capabilities

3.5.3 Initial evaluation results

In this section we examine initial results from fine-tuning GPT-NL across different experimental
configurations. The figures below present results from the following experiments:

• GPT-NL 26B (epoch 2): our data The GPT-NL base model trained through

epoch-2 annealing (before epoch 3 data inclusion). Fine-tuned with all available

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 89/109

instruction fine-tuning data, including the GPT-NL instruct dataset (see this section
for details).

• GPT-NL 26B (epoch 2): Tulu 3 data The same GPT-NL epoch-2 model fine-

tuned with data from the Tulu 3 initiative. This serves as a data distribution baseline
to compare our instruction fine-tuning data against.

• Olmo 32B: our data The Olmo 2 model (Team OLMo) fine-tuned with all our in-

struction fine-tuning data. This enables comparison against a larger, more broadly
pre-trained base model.

• Olmo 32B: Tulu 3 data Olmo 2 fine-tuned with Tulu 3 data, essentially replicating

the Olmo-2 work to verify our evaluation approach.

• GPT-NL 26B (epoch 2) base model The GPT-NL base model with no fine-tuning,

serving as a performance floor.

• Olmo 32B base model The Olmo base model with no fine-tuning, serving as a com-

parable baseline.

• GPT-NL 26B (epoch 2) RDS+ filtered data GPT-NL fine-tuned with a curated

subset selected via the RDS+ method.

• GPT-NL 26B (epoch 2) GEval filtered data GPT-NL fine-tuned with a curated

subset selected via the GEval method.

• GPT-NL 26B (epoch 2) SPIN v2 data only (gptnl_it_v2) GPT-NL fine-tuned

exclusively with instruction datasets created specifically for GPT-NL.

• GPT-NL 26B (epoch 2) summarization data only GPT-NL fine-tuned only with

available summarization data.

• GPT-NL 26B (epoch 2): our data + LoRA adaptor GPT-NL fine-tuned with all

available instruction data using Low Rank Adaptation (LoRA) (Hu et al., 2021) in-
stead of full-parameter training.

3.5.3.1 Internal evaluation (LLM-as-a-judge metrics)

The results below compare all fine-tuning variations using the LLM-as-a-judge evaluation ap-
proach with GEval and Qwen 3 as the judge model. These evaluations use test data drawn
from the same sources as our fine-tuning datasets and are thus from the same data distribution
(notably different from the Tulu 3 distribution, which draws from different sources).

Base Model Performance: The most striking observation is that non-fine-tuned base models

(GPT-NL epoch 2 and Olmo-2) substantially underperform all instruction-tuned variants across

all task categories. This is expected—base models are optimized for next-token prediction, not

instruction following. They lack exposure to this task distribution and thus cannot effectively

represent it. Between the two base models, Olmo-2 performs consistently better across all

tasks, which reflects its significantly larger pre-training corpus (~6x more tokens than the GPT-

NL epoch-2 checkpoint evaluated here). This serves as an important baseline: even with vastly

more pre-training data, a base model without instruction fine-tuning remains fundamentally

limited for instruction-following tasks.

External Model and Data Comparisons: The experiments swapping either the model (Olmo

2) or data (Tulu 3) with external alternatives (top four rows) show mixed results. Tulu 3 data

consistently underperforms our own instruction fine-tuning data across most task categories.

This performance gap is primarily attributable to distribution mismatch: Tulu 3 represents these

tasks differently than our annotated data does, suggesting that data distribution alignment is

critical for fine-tuning success. Notably, using Olmo 2 as the base model provides only marginal

improvements over GPT-NL, despite its larger pre-training scale. This suggests that the quality

and relevance of instruction fine-tuning data matters more than raw pre-training scale for this

task distribution.

https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/fine-tuning-data-preparation.md
https://huggingface.co/datasets/allenai/tulu-3-sft-mixture
https://arxiv.org/abs/2501.00656
https://arxiv.org/abs/2106.09685

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 90/109

Data Selection and Filtering Experiments: The experiments using filtered data subsets

(RDS+ and GEval methods) and domain-specific data subsets (SPIN v2 instruct data only,

summarization only) all perform worse than training on the full instruction dataset. This pattern

suggests we are operating in a low-data regime where broader coverage is more beneficial

than targeted filtering. The consistent underperformance of these variants indicates that our

full dataset, despite potential noise, provides valuable diversity that individual task categories

or filtering strategies cannot replicate. This finding has important implications: it suggests we

should prioritize data quantity and diversity over aggressive quality filtering at this stage.

LoRA Adaptation: The LoRA experiment (fine-tuning with Low Rank Adaptation instead of full

parameters) shows no clear advantage over standard full-parameter fine-tuning. While LoRA

can be beneficial for parameter efficiency and avoiding catastrophic forgetting, the results here

indicate it does not improve task performance on our evaluation set. This may reflect that our

dataset size and task complexity benefit from full-parameter optimization, or that the rank

constraints of LoRA limit adaptation capability for this diverse task set.

Cross-Task Consistency: Examining performance across task categories (summarization,

chat, simplification, brainstorming, generation, reasoning, QA with/without context, multiple

choice, information extraction) reveals that performance improvements from instruction fine-

tuning are consistent but not uniform. The model shows stronger gains on some task types

than others, suggesting specific capabilities are better acquired from our instruction data than

others. This variation across tasks provides direction for future data collection—understanding

which tasks show smaller improvements can guide targeted data augmentation efforts.

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 91/109

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 92/109

3.5.3.2 EuroEval evaluation

Figure 21: EuroEval Evaluation chart

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 93/109

Distribution Shift and Independent Evaluation: EuroEval results paint a markedly different

picture from internal evaluation, revealing a critical discrepancy: the independent test

distribution substantially challenges all models. Unlike our internal test set—which draws from

the same distribution as our fine-tuning data—EuroEval employs standardized, externally-

sourced benchmarks across diverse tasks. This distribution shift exposes significant limitations

not evident in internal metrics. While our GPT-NL fine-tuned models showed competitive

performance on internal tasks, EuroEval reveals widespread underperformance across

numerous task categories. This divergence is informative: it indicates our instruction fine-tuning

data, while enabling instruction-following capability, may not provide sufficient breadth or

quality to generalize to diverse task distributions encountered in practice. The model struggles

particularly on certain benchmark tasks (reasoning and knowledge-based tasks), suggesting

our training distribution does not adequately cover the patterns present in standardized

benchmarks.

Unexpected Experimental Anomaly: A concerning observation emerges when comparing

experiments with identical training configurations but different implementation runs. The Olmo

32B: Tulu 3 data experiment—which should replicate the original Olmo-2 training (both

using Olmo as base model and Tulu 3 data) – shows notably different results than expected.

This discrepancy suggests training parameters, random seeds, or infrastructure differences

between our implementation and the reference may be affecting reproducibility. This anomaly

highlights that either: (1) our experimental setup has undocumented variations affecting training

outcomes, or (2) the reference conditions were not precisely replicated. Resolving this is critical

for ensuring experimental validity and understanding which design choices actually drive

performance improvements.

Metric Disagreement and Evaluation Complexity: A fundamental challenge emerges when

comparing internal LLM-as-a-judge metrics with EuroEval’s standardized benchmarks: they do

not tell the same story. Models that rank highly on internal evaluation often show weaker

EuroEval performance, and vice versa. This metric disagreement reflects different evaluation

philosophies: our internal LLM judges assess task-specific quality with detailed rubrics aligned

to our instruction fine-tuning objectives, while EuroEval employs standardized benchmarks

designed for broad model comparison. This divergence suggests that high performance on

internally aligned tasks does not guarantee generalization to external benchmarks. Moving

forward, we cannot optimize against a single metric without risking misaligned improvements.

This necessitates: (1) identifying which metrics best correlate with our actual deployment goals,

(2) understanding what EuroEval benchmarks reveal about genuine model limitations, and (3)

deciding whether to prioritize internal task-specific excellence or external benchmark

generalization.

Implications for Future Work: These findings indicate substantial refinement is needed

before declaring results conclusive. First, the experimental parameter anomaly must be

investigated and resolved to ensure reproducibility. Second, we need to systematically

understand which EuroEval tasks show the largest gaps and why, whether due to distribution

mismatch, insufficient training data, or model capacity limitations. Third, we should establish

core evaluation metrics that balance internal task performance with external benchmark

robustness, avoiding optimizing for one dimension at the expense of another. The current

results suggest we are still in an exploratory phase where different experimental choices lead

to different rank orderings across evaluation dimensions, indicating the need for more targeted

experimentation to achieve stable, reproducible improvements across multiple evaluation

perspectives.

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 94/109

3.6 Code and Data Organization
The instruction fine-tuning infrastructure is organized to support efficient experimentation with
multiple base models, dataset variants, and training configurations. The codebase is main-
tained in the Instruction Fine-Tuning Repository, while all training data and model artifacts are
stored on the Snellius HPC cluster.

The organization reflects the iterative nature of fine-tuning research: individual datasets are

prepared once from their source formats, then combined into different training mixtures for

experimental runs. Configurations are version-controlled separately from code, and training

outputs are systematically organized to enable comparison across runs. This structure

supports rapid experimentation with different data combinations while maintaining

reproducibility.

The Instruction Fine-Tuning Repository contains the complete pipeline for GPT-NL instruction
fine-tuning, built on HuggingFace TRL and scaled to multi-node training with DeepSpeed. The
repository implements data preparation, distributed training, and comprehensive evaluation ca-
pabilities.

The repository serves as the central location for all instruction fine-tuning workflows. It provides:

• Data processing pipeline: Transform heterogeneous instruction datasets into uni-
fied training format

• Training infrastructure: Distributed fine-tuning with DeepSpeed ZeRO on multi-
node clusters

• Evaluation framework: Both traditional metrics and LLM-based quality assessment

• Experiment management: YAML-based configuration and Weights & Biases track-
ing

The implementation prioritizes modularity and configurability, allowing researchers to easily
experiment with different data mixtures, training recipes, and evaluation strategies without
modifying core code.

3.6.1 Data Folder Structure

The data organization follows these principles to support reproducibility and efficient experi-
mentation:

• IT mixture datasets (it_mixtures/): Post-processed, combined dataset variants

ready for fine-tuning. Each mixture represents a specific data selection strategy (e.g.,
all_data, rds_plus_178k, conversational) and can be directly loaded for train-

ing.

• Raw IT datasets by split (it_datasets/train/, val/, test/): Individual dataset

splits organized by source before combining into mixtures. This separation allows
flexible mixture creation without re-downloading or re-processing source datasets.

• Pretrained models (pretrained-models/): Base model checkpoints (GPT-NL and

external models like OLMo) used as starting points for fine-tuning. Organized by
model name and training stage (e.g., epoch_2_annealed_step98863).

• Fine-tuned checkpoints (it-checkpoints/): Model checkpoints saved during and

after training. Naming convention: {BASE_MODEL}-{DATASET}-{BATCH_SIZE}-gas-
{GAS}-nodes-{NODES}-{ZERO_STAGE}-{SLURM_JOB_ID} (e.g., GPTNL-26B-

https://ci.tno.nl/gitlab/gpt-nl/model-development/instruction-finetuning
https://ci.tno.nl/gitlab/gpt-nl/model-development/instruction-finetuning
https://huggingface.co/docs/trl/index
https://www.deepspeed.ai/

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 95/109

all_data-4-gas-1-nodes-8-zero3-15593638). Each checkpoint folder contains

model weights, optimizer states, and training metadata.

• Evaluation results (eval_results/): Outputs and metrics organized by SLURM job

ID with descriptive folder names: {JOB_ID} BASE=[...] IT_DATA=[...]
EVAL=[...]. This structure enables easy identification and comparison of evaluation

runs.

• Chat templates (chat_templates/): Jinja2 templates for different model families

that define how to format multi-turn conversations. Used during both training and in-
ference to ensure consistent formatting.

3.6.2 Source Code Structure

The codebase follows a modular structure that cleanly separates concerns: configuration files
define what to run, job scripts define where and how to run it, and source code implements the
logic. This separation enables easy experimentation and deployment across different compu-
ting environments:

instruction-finetuning/
├─ config/ # YAML configuration files for data proces
sing, training and evaluating
│ ├─ data_processing/
│ ├─ train/
│ ├─ evaluate/
├─ jobs/ # SLURM job scripts for Snellius
│ ├─ train/
│ │ ├─ distributed_sft.sh # Main distributed training launcher
│ │ ├─ distributed_grid_launcher.sh # Grid search launcher
│ │ ├─ torchrun_launcher.sh # PyTorch distributed launcher
│ │ └─ convert_zero_to_fp32.sh # Convert DeepSpeed checkpoints to FP32
│ ├─ evaluate/ # To start evaluation runs
│ └─ misc/ # Miscelaneous, for example to set up the
environment or start RDS+ data selection process
├─ src/ # Python source code
│ ├─ data_processing/ # Data preparation pipeline
│ ├─ train/ # Training implementation
│ ├─ it_evaluate/ # Evaluation framework
│ └─ utils/ # Shared utilities
├─ pyproject.toml # Python dependencies (uv package manager)
├─ README.md # Repository documentation
└─ .env_example # Environment variable template

Configuration System: YAML-based configuration using OmegaConf for environment varia-
ble substitution and hierarchical configs. Training, evaluation, and data processing are sepa-
rately configured.

Data Processing Pipeline: Modular pipeline that downloads, standardizes, unrolls (converts

to prompt-completion format), applies chat templates, and filters datasets. See Data

Preparation for details.

Training Implementation: Built on HuggingFace TRL’s SFTTrainer with DeepSpeed ZeRO

for distributed training. Supports multi-node training on Snellius with automatic checkpoint

management. See Training for implementation details.

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 96/109

Evaluation Framework: Dual-track evaluation with traditional metrics (BLEU, ROUGE,

BERTScore) and LLM-based evaluation (Prometheus, G-Eval). Integrates with Weights &

Biases for tracking. See Evaluation for methodology.

Utilities: Shared argument parsing (args.py), model loading with flash attention support

(model_utils.py), and distributed training helpers (distributed_utils.py).

3.6.3 Dependencies

Dependencies are managed via pyproject.toml using the uv package manager for fast, re-

liable environment setup:

• Core: transformers==4.57.1, trl>=0.17.0, torch>=2.0.0, datasets==3.6.0

• Training: deepspeed>=0.12.0, accelerate>=0.24.0

• Evaluation: prometheus-eval>=0.1.20, euroeval==15.16.0, bert-
score>=0.3.13, vllm==0.10.0

• Tracking: wandb>=0.15.0

• Configuration: omegaconf>=2.3.0, pyyaml>=6.0.0

3.6.4 Practical Information

Installation

For Snellius deployment, use the automated installation script:

cd instruction-finetuning
./jobs/misc/install_snellius.sh

This script sets up a virtual environment, installs all dependencies via uv, and configures the

environment for distributed training.

Configuring and Starting Jobs

Training and evaluation jobs are configured through YAML files in the config/ directory, which

specify model paths, dataset locations, hyperparameters, and resource requirements. Job
scripts in jobs/train/ and jobs/evaluate/ contain SLURM directives for compute re-

sources (nodes, GPUs, time limits) and load the appropriate configuration files. Jobs are sub-
mitted to the Snellius queue using sbatch jobs/train/<script>.sh, which launches

distributed training across the requested compute nodes.

Logs and Checkpoints

During training, checkpoints and logs are automatically saved to the shared project space
(/projects/0/prjs0986/wp14/instruction-finetuning/it-checkpoints/) under de-

scriptive folder names following the naming convention: {BASE_MODEL}-{DATASET}-
{BATCH_SIZE}-gas-{GAS}-nodes-{NODES}-{ZERO_STAGE}-{SLURM_JOB_ID}.

Each training run directory contains periodic checkpoints saved at configured intervals (e.g.,

checkpoint-100/, checkpoint-200/) with model weights, optimizer states, and training

metadata. If Weights & Biases tracking is enabled, run data is stored in a wandb/ subdirectory.

Evaluation outputs are organized under eval_results/ with folders named by SLURM job ID

and descriptive metadata: {JOB_ID} BASE=[model] IT_DATA=[dataset]

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 97/109

EVAL=[test_set]. Each folder contains model predictions, computed metrics, and references

to the source checkpoint.

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 98/109

4 Model Deployment

We deploy GPT-NL behind an OpenAI-compatible HTTP API provided by vLLM, with two client
applications on top:

Gradio “Ops UI”: a lightweight control panel to start and tune runtime knobs (sampling, limits,

concurrency) and run quick smoke-tests/benchmarks.

Open WebUI Chat: a full-featured chat workspace for end users (multi-user, permissions,

conversation UX), connected to the same OpenAI-compatible endpoint.

vLLM is optimized for high-throughput, GPU-efficient serving via:

• PagedAttention (KV-cache memory efficiency) and continuous batching of incoming
requests (better GPU utilization under concurrent load).

• Production-serving features like streaming outputs, prefix caching, and multi-LoRA
support.

• A broad set of performance knobs including quantization options (e.g., GPTQ, AWQ,
INT4/INT8/FP8) plus features like speculative decoding and chunked prefill (model-
and workload-dependent).

• A built-in OpenAI-compatible API server, enabling drop-in compatibility with OpenAI
SDK-based clients.

• Seamless integration with HuggingFace checkpointed models (like GPT-NL)

• Broad hardware compatibility like NVIDIA GPUs, AMD CPUs and GPUs, Intel CPUs
and GPUs, PowerPC CPUs, Arm CPUs, and TPU.

Evaluation deployment

To evaluate both the pre-trained and fine-tuned GPT-NL model, we needed a fast-serving mod-
ule that could work as “plug-and-play” component on various tasks, e.g. offline Euroeval.

In practice, we have created an Apptainer image with a self-contained vLLM instance. The

creation recipe is available here, and the image is located on

/projects/0/prjs0986/wp14/containers/vllm_25.09.sif.

Deploying this image from cli can be performed with the below command. For the specific

variables please look here.

apptainer exec --nv -B $PROJECT_SPACE -B $DOWNLOAD_DIR $CONTAINER_PATH \
 vllm serve $MODEL_CHECKPOINT \
 --tensor-parallel-size $GPUS --download-dir $DOWNLOAD_DIR \
 --uvicorn-log-level warning --chat-template $CHAT_TEMPLATE

Demo deployment

For Demo purposes, we developed a 2-stage deployment setup.

1. Demo starter web application

2. Demo Chat application

https://docs.vllm.ai/en/stable/
https://apptainer.org/docs/user/main/
https://ci.tno.nl/gitlab/gpt-nl/use-cases/gpt-nl-stack/-/blob/main/build_vllm.job?ref_type=heads
https://ci.tno.nl/gitlab/gpt-nl/model-development/instruction-finetuning/-/blob/main/jobs/evaluate/evaluate.job?ref_type=heads

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 99/109

In more detail (available at: https://gpt-nl-demo-starter.k8s.tnods.nl/):

This is a Gradio web application that allows the user to:

• Check whether there is a running vLLM instance

• Select the reservation on snellius (“gpt-nl” or ““)

• Select which model version / checkpoint to run from Snellius

• Start / Stop the GPT-NL model serving on Snellius

• Exposes the endpoint within TNO network

• Offers a Chatbox window for using the model

• Provides a Tab with user-adaptable parameters (temperature, top-p, min-p, repetition
penalty)

• Provides a Tab with monitoring metrics (prompt throughput, generation throughput
(tokens/sec), total tokens)

Codebase and deployment instructions available here.

Figure 22: GPT-NL Demo GUI (screenshot)

https://www.gradio.app/guides/quickstart
https://ci.tno.nl/gitlab/gpt-nl/use-cases/gpt-nl-demo-starter-website

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 100/109

Figure 23: GPT-NL Demo GUI (Screenshot 2)

Demo Chat application

Available at: http://gpt-nl-chat.tnods.nl/

Open WebUI is a user-friendly platform that offers offline operations and works with various

LLM runners like Ollama and OpenAI-compatible APIs.

In our case, we are using the endpoint exposed from the Demo starter and enhance the user-

experience with a “ChatGPT” style interaction.

Figure 24: GPT-NL Demo chat application

https://docs.openwebui.com/

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 101/109

The Demo starter web application does not interact with Snellius directly; instead, it calls a

small set of scripts that hide all cluster‑specific logic. The UI uses snellius_get_queue.sh

(and a companion “is job running” script) to show SLURM queue status and detect existing

vLLM jobs, and snellius_start.sh / snellius_stop.sh to start or stop the remote vLLM

server. These scripts delegate the actual job submission, lifecycle management, and SSH

tunneling to remote_vllm_manager.py, which in turn submits a SLURM job using

spawn_vllm_slurm_snellius.job to launch the Apptainer-based vLLM server with the

selected model checkpoint. The Gradio backend (vllm_serve_server_base.py) simply

streams logs from these scripts into the UI and enables/disables the controls based on their

output. For full implementation details, see the code and comments in the demo starter

repository.

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 102/109

5 Appendices

This chapter provides a collection of technical reference materials, including hardware specifi-
cations, detailed software stack evaluations, assessment results, and formal data and model
format definitions. These resources support the system architecture activities but are too de-
tailed to include in the main body of the document.

Each section in this chapter consolidates essential technical information on topics related to

the system architecture work. They serve as reference points for the main sections of the

report, offering detailed substantiation for their content.

The following appendices are included:

• GPT-NL data curation and training at SURF’s HPC Snellius

• Scaling the training in the HPC

• Frameworks for GPT-NL Fine-Tuning

5.1 GPT-NL data curation and training at
SURF’s HPC Snellius
Snellius serves as the national supercomputer managed by SURF for the Dutch high-

performance computing (HPC) community. Designed to support both academic and industrial

research, Snellius delivers cutting-edge, heterogeneous computing capabilities—from CPU-

only nodes leveraging AMD’s Rome and Genoa architectures to GPU-accelerated

configurations with NVIDIA A100 and H100 devices. This system plays a pivotal role in enabling

large-scale, data-intensive simulations, machine learning applications, and scientific computing

across the Netherlands. With robust SLURM-based job scheduling, flexible partitioning, and

precise accounting in System Billing Units (SBUs), Snellius empowers users to maximize

computational throughput while maintaining transparency and efficiency—making it a

cornerstone of Dutch HPC infrastructure.

These are the key Snellius Partitions used in GPT-NL project.

5.1.1 Standard nodes

rome (alias thin)

• Node type: Thin compute nodes (tcn)

• CPU: AMD Rome, 128 cores/node

• Memory: 224 GiB usable RAM/node

• Allocation granularity: 1/8 node ≈ 16 cores + 28 GiB RAM

genoa

• Node type: Thin compute nodes (tcn)

• CPU: AMD Genoa, 192 cores/node

• Memory: 336 GiB usable RAM/node

• Allocation granularity: 1/8 node ≈ 24 cores + 42 GiB RAM

https://www.surf.nl/diensten/rekenen/snellius-de-nationale-supercomputer

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 103/109

• Main usage in GPT-NL: Tests, development, and data curation

5.1.2 GPU-Accelerated Partitions

gpu_A100

• Node type: GPU compute nodes (gcn)

• CPU: Intel Xeon Platinum 8360Y, 72 cores/node

• Memory: 480 GiB RAM/node

• GPU: 4 × NVIDIA A100 (40 GB each)

• Allocation granularity: 1/4 node ≈ 18 cores + 1 GPU + 120 GiB RAM

• Main usage in GPT-NL: Tests, development, model training, and data curation

gpu_H100

• Node type: GPU compute nodes (gcn)

• CPU: AMD EPYC 9334, 64 cores/node

• Memory: 720 GiB RAM/node

• GPU: 4 × NVIDIA H100 (94 GiB each)

• Allocation granularity: 1/4 node ≈ 16 cores + 1 GPU + 180 GiB RAM

• Main usage in GPT-NL: Tests, development, model training, and data curation. Most
of the pre-training and fine-tuning phases used the gpu_H100 partition with exclusive
reservations of up to 22 nodes for longer training batches.

These configurations enable flexible, high-performance computing suitable for a wide range of
scientific and engineering applications, reflecting Snellius’s role as a versatile and advanced
national HPC asset.

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 104/109

5.2 Scaling the pre-training at Snellius
To train the GPT-NL model, we need to scale the 26B parameter model across the multi-node

GPU cluster on Snellius.

In the ideal set-up, we scale to the maximum number of nodes available. We also require a

flexible set-up since individual nodes can become temporarily unavailable due to hardware

failure or maintenance.

The main pre-training runs were performed on 22 NVIDIA H100 (4 x 94GiB HBM2e) nodes

interconnected via Infiniband HDR100 (100Gbps).

5.2.1 FSDP

To do so, we use Fully Sharded Data Parallelism (FSDP) implemented in PyTorch FSDP2
(Zhao et al., 2023). FSDP works by distributing (sharding) the model parameters, optimizer
states, and gradients across multiple workers, so each worker holds only a portion of the model
rather than a full replica as in DDP (Distributed Data Parallel). This reduces the memory foot-
print on each GPU, enabling the training of larger models or batch sizes, while internal optimi-
zations like overlapping communication with computation help mitigate the increased
communication overhead that is added when sharding the model over multiple nodes. Activa-
tion checkpointing is used to reduce memory consumption, allowing for larger batch sizes.

Experiments

To investigate the different approaches outlined in the documentation on sharding, we ran ex-
periments to test the scaling of the models using the different sharding strategies and frame-
works. The following figure shows the performance results for training 8B and 30B parameter
models (with a similar architecture to the final GPT-NL model) on 20 nodes:

Based on these experiments, FSDP showed the best efficiency and throughput (i.e. how many
tokens can be processed per second). These results were consistent over the increasing model
sizes.

Additional experiments were performed to investigate the scaling efficiency when increasing

the number of nodes from 1 to 22. The models were trained with increasing levels of sharding:

no sharding (data parallel), Zero2 (for FSDP, this is the SHARD_GRAD_OP setting) and Zero3

(FSDP:FULL_SHARD).

https://arxiv.org/abs/2304.11277
https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/training-frameworks/november-2024/01-sharding.md

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 105/109

The dotted line in the graph shows the ideal scaling, when adding more nodes would add linear

improvement to the total throughput. In practice, some performance degradation is expected

because of communication overhead. In particular, with increasing sharding stages this

communication is expected to increase. For each of the sharding stages, the FSDP approach

proved more efficient and showed better throughput. The decrease in throughput also proved

minimal, due to fast interconnect between the nodes.

Concluding from these experiments, for the final model training we opted for full sharding with

FSDP.

Parameters

Below is an overview of the key configuration parameters:

Parameter Value / Expression Description

Parallelism
strategy

FSDP Fully Sharded Data Parallel. Model weights,
gradients, and optimizer state are sharded
across GPUs to minimize memory footprint.

Cluster setup 22 nodes x 4 H100 GPUs
per node

Distributes training load across 88 GPUs in
total, enabling distributed training at scale.

Parameter pre-
cision

DType.bfloat16 Parameters are stored in bfloat16, helping
reduce memory usage while maintaining nu-
meric stability.

Activation
checkpointing

TransformerActiva-
tionCheckpointing-
Mode.full

Applies full checkpointing of activations to
save memory during the forward/backward
passes by recomputing forward activations in
the backward pass.

Flash attention True Enables FlashAttention v2 kernels for effi-
cient attention computation.

Per-device
batch size

12 Each GPU processes 12 sequences per
step, balancing throughput, and memory ca-
pacity.

Gradient accu-
mulation steps

3 Accumulates gradients over 3 micro-batches
before performing an optimizer step,

https://arxiv.org/pdf/2307.08691

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 106/109

effectively increasing the global batch size
without exceeding memory limits.

5.2.2 Checkpointing
To ensure a flexible restarting schedule, we ensure that (temporary) checkpoints are stored
every 220 steps, allowing for continued training with a potentially (temporary) change in num-
ber of nodes.

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 107/109

5.3 Frameworks for GPT-NL Fine-Tuning
This appendix presents a concise study conducted within the GPT-NL project to identify and
select one or a small set of frameworks suitable for the fine-tuning stage. For the GPT-NL fine-
tuning phase, the primary objective was to perform a full fine-tune using Supervised Fine-Tun-
ing (SFT), as this approach is widely recognized for its effectiveness in adapting large language
models to domain-specific tasks while maintaining stability.

The selected framework must fully support this approach. Among the feasible options, the final

choice was based on performance considerations. The evaluation criteria included scalability,

ease of integration, community support, and computational efficiency. Other alignment

techniques, such as Direct Preference Optimization (DPO) and Generalized Reinsertion Policy

Optimization (GRPO), were outside the scope of this study. However, these methods were kept

in mind during the framework evaluation to ensure future compatibility. The study compared

several candidate frameworks commonly used for fine-tuning large language models:

HuggingFace TRL – A widely adopted library offering strong support for SFT and reinforcement

learning-based alignment. Open-Instruct (OLMo) – Focused on open-source instruction fine-

tuning with robust tooling for research workflows. ColossalAI – Designed for large-scale

distributed training with efficient memory optimization. DeepSpeedChat – Provides advanced

optimizations for chat-based fine-tuning and large-scale deployments. Axolotl – A lightweight

solution tailored for LoRA and parameter-efficient fine-tuning. Megatron-LM – Optimized for

massive model training with tensor and pipeline parallelism. TorchTune – A PyTorch-native

library emphasizing simplicity and modularity for fine-tuning tasks. Unsloth – Specializes in fast

and resource-efficient fine-tuning, particularly for smaller hardware setups.

5.3.1 Frameworks Comparison

These are the frameworks that we found:

F
ra

m
e

w
o

rk

D
e
s

c
rip

tio
n

/

F
o

c
u

s

M
u

lti-n
o

d
e

&

S
h

a
rd

in
g

M
u

lti-G
P

U

P
E

F
T

 (L
o

R
A

)

F
u

ll F
in

e
tu

n
e

S
F

T

D
P

O

G
R

P
O

N
o

ta
b

le

M
o

d
-

e
ls

 T
ra

in
e

d

H
u
g

g
in

g
fa

c
e

T
R

L

Fine-tuning and align-
ment (SFT, DPO, PPO).
Built on HF + Accelerate
+ DeepSpeed. Good
balance between boiler-
plate and modularity

ZeRO
FSDP

 (O

R
P

O
)

OpenAs-
sistant

O
p

e
n

-I
n

-

s
tr

u
c
t

/

o
lm

o
-c

o
re

 AllenAI’s framework for
instruction fine-tuning.
Focused on RLHF at
scale.

FSDP

 (R

L
V

R
)

OLMo-2
32B In-
struct

C
o

lo
s
s
a

lA
I High-performance train-

ing with 3D parallelism.
Pretraining and finetun-
ing at scale.

FSDP

 O

R
P

O
,

K
T

O

OpenChat
3.5, Co-
lossal-
LLaMA

https://github.com/huggingface/trl
https://github.com/huggingface/trl
https://github.com/allenai/open-instruct
https://github.com/allenai/open-instruct
https://github.com/allenai/open-instruct
https://github.com/hpcaitech/ColossalAI

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 108/109

D
e

e
p

S
p

e
e

d
-

C
h

a
t

High-efficiency distrib-
uted training. Focus on
full finetuning & RLHF
(SFT, PPO, RM). Excel-
lent performance.

ZeRO
-
1/2/3,
multi-
node

 Lim-
ited

(via
cus-
tom
setu
p)

 (n

o
 o

ffic
ia

l

s
u

p
p
o

rt)

Salaman-
dra

A
x
o

lo
tl

Config-based wrapper
for HF. Easy
SFT/LoRA/full finetune.

ZeRO
,
FSDP

EuroLLM-
9B, Open-
Hermes

M
e

g
a

tr
o

n
-L

M
 Scalable pretraining &

full finetuning. Perfor-
mance-optimized. No
alignment-specific tools.

FSDP
, DP,
PP,
SP

(in
Ne
MO
yes)

Megatron-
Turing
NLG
530B,
GPT-
NeoX

T
o

rc
h

T
u

n
e
 Modular PyTorch-native

tuning. Research-
friendly. Early but grow-
ing.

(no
DPO)

Llama?

U
n
s
lo

th

High-performance, opti-
mized fine-tuning &
RLHF; low VRAM, fast
speed-ups

Multi-
node
(Paid
enter-
prise)

LoR
A &
QLo
RA

After analysing multiple frameworks for instruction fine-tuning, including HuggingFace TRL,

ColossalAI, DeepSpeedChat, Open-Instruct, and others, we chose HuggingFace TRL as our

primary fine‑tuning framework, augmented with:

• DeepSpeed ZeRO for multi‑GPU/multi‑node scaling (Stages 1–3).

• Dataset streaming (for memory efficiency on large parquet datasets).

• Synchronization primitives (avoid races in model/dataset caching across many
ranks).

• Custom callbacks for throughput and sample generation into monitoring tools.

See further discussion in the Fine-tuning training Section.

5.3.2 RLHF approaches guideline
Method Best For Pros Cons

PPO (Proximal
Policy Optimiza-
tion)

Full RLHF with token-
level control and dy-
namic environment in-
teraction

 Fine-grained learning

 Proven for large mod-

els like ChatGPT

 Expensive (needs re-

ward + value model)

 Sensitive to reward

model tuning

DPO (Direct
Preference Opti-
mization)

Simple preference
alignment tasks, espe-
cially single-turn dia-
logue

 Stable, efficient

 No RL or reward

model needed

 Limited to pairwise

preferences

 Less expressive for

long-horizon tasks

GRPO (General-
ized Reinsertion

Reasoning-heavy,
long-horizon tasks
where PPO is unstable

 No value model re-

quired

 New and less widely

adopted

https://github.com/deepspeedai/DeepSpeedExamples/tree/master/applications/DeepSpeed-Chat
https://github.com/deepspeedai/DeepSpeedExamples/tree/master/applications/DeepSpeed-Chat
https://github.com/axolotl-ai-cloud/axolotl
https://github.com/NVIDIA/Megatron-LM
https://github.com/pytorch/torchtune
https://github.com/unslothai/unsloth
https://github.com/huggingface/trl

 TNO Public GPTNL-DEL-4002-[1.0]

 TNO Public 109/109

Policy Optimiza-
tion)

 More stable and sam-

ple-efficient than PPO

RLVR (RL with
Verifiable Re-
wards)

Tasks with objective
success signals (math,
code correctness)

 Uses true/automated

rewards

 Less dependent on

human feedback

 Only suitable for tasks

with measurable outputs

ORPO (Offline
RL with Policy
Optimization)

RLHF-style training
with static datasets (no
rollouts)

 Efficient offline tuning

 Leverages existing

reward models

 No exploration

 Limited to seen data

KTO (KL-Tuned
Optimization)

Reward-guided fine-
tuning without full RL
setup

 Lightweight and easy

 Ideal for hybrid super-

vised + reward training

 Less powerful than

PPO for complex behavior

5.3.3 References
• AllenAI released SFT, DPO and Instruct/GRPO versions of their 32B model

• Trained on 5 8xH100 nodes source

• Fine-Tuning LLMs with GRPO on AMD MI300X: Scalable RLHF with Hugging Face
TRL and ROCm - link

• DeepSpeedChat SFT, DPO, RM finetune, RLHF - link

• ColossalAI example scripts for PPO, DPO, GRPO, etc. - link

• OLMo-32B RLVR - link

https://huggingface.co/allenai/OLMo-2-0325-32B-SFT
https://huggingface.co/allenai/OLMo-2-0325-32B-DPO
https://huggingface.co/allenai/OLMo-2-0325-32B-Instruct
https://huggingface.co/allenai/OLMo-2-0325-32B-Instruct
https://rocm.blogs.amd.com/software-tools-optimization/llm-grpo-rocm/README.html
https://github.com/deepspeedai/DeepSpeedExamples/tree/master/applications/DeepSpeed-Chat/training
https://github.com/hpcaitech/ColossalAI/tree/main/applications/ColossalChat/examples/training_scripts
https://huggingface.co/allenai/OLMo-2-0325-32B-Instruct#reproduction-command

