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1 Introduction 

The GPT-NL project aims to develop a Dutch-English large language model (LLM) from the 
ground up to promote technological sovereignty and strengthen the Dutch and broader Euro-
pean LLM ecosystem. Achieving this objective requires a structured systems engineering ap-
proach encompassing requirement’s elicitation, design, implementation, and validation. 
Beyond the creation of the model itself, sovereignty and community growth depend on trans-
parent dissemination of knowledge about how such a system is built. This document therefore 
presents the architectural blueprints—both in code and documentation—for the second part of 
this development phase: the System Architecture of the Training Pipeline. 

The documentation and systematic management of this technological blueprint are intended to 

stimulate new research directions and enable future improvements. The GPT-NL System 

Architecture effort serves as the foundation for these goals by providing a coherent, well-

documented engineering framework for large-scale model development. 

From a general point of view, the system architecture activities provide a structured conceptual 

model defining the organization, behavior, and interactions of system components. It offers a 

high-level view of how hardware, software, data, and processes collaborate to achieve the 

intended system goals. Through clear specification of components, interfaces, and design 

principles, the architecture ensures that key system attributes—such as performance, 

scalability, security, and maintainability—are addressed systematically and in alignment with 

stakeholder requirements and operational constraints. 

Within the GPT-NL team, system architecture plays a coordinating role by providing a shared 

technical framework that guides design, implementation, and verification across teams. This 

work, conducted under Work Package 13 (WP13), facilitates communication among 

engineers, researchers, and developers by defining clear interfaces and dependencies. The 

architectural team ensures design consistency, manages technical risks, and balances trade-

offs among quality attributes. As a result, this document and the associated work contribute to 

the alignment of strategic objectives and technical execution, promoting system coherence, 

continuity, and effective integration throughout the development lifecycle. 

The overview of the processes, tasks, and artifacts related to the architectural work is depicted 

in Figure 1. The system architecture team collaborates with all other working packages, but 

closest with WP12 (Data Curation), WP14 (Model Development), and WP18 (Data 

Acquisition and Quality). While WP12 and WP14 lead algorithmic development—such as the 

selection of filters, models, and training techniques—WP13 focuses on translating these 

designs into structured, maintainable, and scalable code. This includes defining clean 

interfaces between modules, ensuring continuous data processing flows suitable for HPC 

environments, and addressing non-functional aspects such as security, documentation, and 

energy efficiency. The WP18 is responsible for the processes of contacting data providers and 

acquiring/creating datasets. They are strongly involved with the architecture team assessing 

the quality of the data during and after the curation phase. 
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Figure 1: Overview main GPT-NL Processes and Work Packages 

In general, LLM development can be divided into two main components: data curation and 

model training and validation. These components differ significantly in their technical focus 

and data processing requirements. 

• The data curation pipeline encompasses all processes from data acquisition to the 
creation of a uniform dataset ready for model training. This includes systematic rea-
soning and documentation of inclusion and exclusion criteria, as well as the production 
of standardized datasets for both training and public release. The data curation pipeline 
is subdivided in two phases: the data extraction phase and the data curation phase. 
The whole curation pipeline and its phases are detailed in the next sections. Architec-
tural artifacts from this pipeline include: 

https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/data-extraction-phase.md
https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/data-curation-phase.md
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o Software developed for data acquisition, extraction, curation, and dataset de-
ployment. 

o Documentation of third-party software and hardware stacks—such as Data-
Trove, PrivateAI, and SURF’s Snellius—including configuration details, ver-
sioning, and integration procedures. 

o CI/CD frameworks for testing, logging, and evaluating both the platform and 
resulting datasets. 

o Records of architectural decisions, design rationales, and supporting technical 
documentation. 

o Security, privacy, and energy monitoring mechanisms for development and 
operational phases. 

o Final technical reports and communication materials, including this document 
and supporting white papers. 

• The model training and validation phase includes data preparation, tokenization, 
model pre-training, instruction fine-tuning, and performance evaluation. It results in a 
standardized and reproducible model package for internal use and community release. 
Artifacts from this phase include: 

o Software for data mixing, tokenization, model training, fine-tuning, and deploy-
ment. 

o Documentation of third-party stacks such as OlMO and the Snellius HPC in-
frastructure, detailing configurations and integration. 

o CI/CD support for testing and performance tracking. 

o Documentation of design decisions, system rationale, and supporting non-
functional design considerations. 

o Security, privacy, and energy monitoring tools. 

o Final deliverables, including technical documentation and dissemination ma-
terials. 

 

This document, System Architecture Document – Training Pipeline, covers the GPT-NL 

model training. Details on data curation are presented in the related document: System 

Architecture Document – Data Curation Pipeline1. As introduction, we present in the 

following the architectural overview of the Training Pipeline.  

 

1.1 Architectural Overview of the GPT-NL 
Training Pipeline 
The GPT-NL training pipeline transforms curated data into deployment-ready language models 

optimized for Dutch and English language tasks. The focus tasks for GPT-NL are 

summarization, simplification, and question answering based on contextual information 

(commonly known as Retrieval Augmented Generation pipelines). It consists of two major 

phases: pre-training and instruction fine-tuning. Each of these phases has distinct 

architectural requirements, computational demands, and outputs. 

 

_______ 

1 TNO, GPT-NL Project, Report; GPTNL-DEL-4001-1.0-System Architecture Document – Data Curation Pipeline, 

December 2025. 

https://github.com/huggingface/datatrove
https://github.com/huggingface/datatrove
https://www.privateai.com/
https://www.surf.nl/en/services/snellius-the-national-supercomputer
https://www.surf.nl/en/services/snellius-the-national-supercomputer
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Figure 2: Introduction GPT-NL Training Process 

 

The training pipeline starts after the data curation pipeline1. It consumes curated datasets as 

its primary input. While the curation pipeline ensures data quality, diversity, and compliance, 

the training pipeline transforms this data into functional language models. 

The relationship with other work packages is essential to the training process. WP12 (Data & 

Algorithms) provides the curated training data, evaluation datasets, and algorithmic guidance 

for data mixing strategies. WP13 (System Architecture & Infrastructure) designs and 

implements the distributed training infrastructure, monitoring systems, and deployment 

mechanisms; and provides this architectural documentation. 

This document gives an overview of the training pipeline for the GPT-NL foundation model. It 

gives a high-level description of the processes involved in training this model that have 

implications for the system architecture design and choices for the supporting software stack. 

Note that document is not meant as a complete and standalone architecture design. 

The training pipeline architecture is built on three core principles that guide design decisions 

and implementation choices: 

Reproducibility ensures every aspect of the training process can be recreated. All 

hyperparameters, data mixture ratios, and training settings are stored in configuration files. 

Data snapshots and metadata track which data was used at each training stage. Experiment 

tracking tools like Weights & Biases log metrics, hyperparameters. Artifacts are stored 

throughout running processes on the Snellius HPC. All training code is version-controlled in Git 

repositories. 

Scalability allows the architecture to support training models of varying sizes across different 

scales. Dedicated libraries enable scalable training across multiple nodes using various 

strategies. SLURM provides job scheduling and resource management. Recovery from 

hardware failures or job time limits is enabled through checkpointing and restart capabilities. 

Performance optimizations include gradient accumulation, mixed-precision training, and 

activation checkpointing. 

Observability provides comprehensive monitoring to ensure training health and progress. 

Training metrics include loss, perplexity, gradient norms, and learning rates. System metrics 

track GPU utilization, memory usage, communication overhead, and throughput. Periodic 

validation loss and benchmark performance are captured as evaluation metrics. Job lifecycle 

alerting systems notify teams to act quickly when needed. 
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1.1.1 Infrastructure & Software 
The training pipeline runs on SURF’s Snellius supercomputer, which provides NVIDIA H100 

GPUs with NVLink and InfiniBand interconnects for high-bandwidth communication. SLURM 

manages job scheduling, resource allocation, and queue management. High-performance 

parallel file systems enable efficient data loading and checkpoint storage. For more details on 

the Snellius HW used in the GPT-NL curation and training see the GPT-NL data curation and 

training at SURF’s HPC Snellius appendix. 

The software stack includes native PyTorch with FSDP (Fully Sharded Data Parallel) for pre-

training, and HuggingFace TRL with DeepSpeed for fine-tuning. Distributed computing relies 

on NCCL for GPU communication. Monitoring uses Weights & Biases and custom logging 

infrastructure. Model serving is managed through vLLM inference engine with Hugging Face 

Transformers. Detailed information about the software stacks and infrastructure is provided in 

the appendices. 

1.1.2 Overview of the Training Lifecycle 
The entire training process moves through a series of linked stages. Each phase consumes 

outputs from previous stages and produces specific artifacts that feed into subsequent steps. 

The process begins with data preparation and tokenization, where curated data is 

transformed into a format suitable for model consumption. This involves training a custom 

tokenizer optimized for Dutch and multilingual text, combining different data sources according 

to designed mixture ratios, and converting raw text into tokenized sequences stored in 

optimized formats. The inputs are curated datasets from the data curation pipeline, and the 

outputs include the trained tokenizer, data mixture configurations  and tokenized datasets. This 

phase runs on CPU-based preprocessing jobs on Snellius compute nodes. 

The pre-training phase trains the core foundation model from scratch using large-scale 

distributed training across multiple GPU nodes. The process leverages parallelization 

mechanisms to scale to 88 H100 GPUs. Training includes continuous evaluation on held-out 

data and benchmark tasks, regular checkpointing of model, optimizer, and scheduler states for 

fault tolerance, and real-time monitoring of loss curves, learning rates, gradient norms, and 

resource utilization. This phase consumes the tokenized training data, tokenizer, and model 

architecture configuration, producing foundation model checkpoints at multiple snapshots 

throughout training. Pre-training is inherently iterative, as new curated data may arrive during 

training and can be incorporated in subsequent cycles or continuation runs. 

Following initial pre-training, context extension adapts the model’s context window from its 

original training length (e.g., 4K tokens) to longer contexts (16K or 32K tokens). This involves 

adjusting positional encodings such as RoPE and brief additional training on long-context data. 

The process takes the pre-trained foundation model and long-context training data as input, 

producing extended-context model checkpoints. 

The instruction fine-tuning phase adapts the foundation model for specific downstream tasks 

using instruction-following datasets. The process involves curating and filtering instruction 

datasets, training the model through supervised fine-tuning to follow instructions and generate 

appropriate responses, and optimizing for specific tasks like summarization, simplification, and 

RAG capabilities. Performance is assessed on instruction-following benchmarks throughout 

the process. This phase uses smaller GPU allocations (8-32 GPUs) and runs for shorter 

durations (hours to days) compared to pre-training. Fine-tuning experiments typically iterate to 

optimize hyperparameters, data mixtures, and training strategies. 

https://www.surf.nl/en/services/snellius-the-national-supercomputer
https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/curation-a100.md
https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/curation-a100.md
https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/sw-stack-training-pipeline.md
https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/pre-training-data-preparation.md
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Finally, model deployment packages trained models for production use. Models are converted 

to deployment-ready formats compatible with Hugging Face, containerized for reproducible 

deployment environments, and integrated with evaluation frameworks and application 

interfaces. The deployed models are served via vLLM inference engine, making them 

accessible via API or for local inference on inference-optimized GPU servers. 

1.2 Scope of the System Architecture Work 
and Relation to Other Work 
Besides the close work developed with WP12, WP14, and WP18, cybersecurity and evaluation 

activities are also depicted in Figure 1. These activities are out of the scope of the architecture 

team, but their insights and outcomes influence and are influenced by the GPT-NL architecture 

work. For example, WP21 Evaluation and the Cybersecurity work package (WP22) operate 

independently to ensure objective assessment and verification. WP21 evaluates the trained 

model’s performance on key tasks, while the cybersecurity and red-teaming teams assess its 

resilience and safety. WP22 is involved with securing the development and model overall (in 

Figure 1 depicted only at the end for readability).  The team puts in place classic and AI-specific 

cybersecurity mechanisms. Although separate, these teams collaborate closely with WP13 by 

consuming its architectural artifacts, interfaces, and documentation, and by providing feedback 

that informs subsequent development cycles.  

1.2.1 Architecture Team 
The GPT-NL architecture team has a multidisciplinary composition with SW architects and 

engineers, open-source specialists, high performance computers architects, ML engineers, 

and data scientists. Members of TNO and SURF form the team. Acknowledgements for the 

support of SURF in all the management and proper usage of the Snellius supercomputer. 

1.3 How to further read this document 
This document focusses on the training of the GPT-NL foundation model, and the following 

sections provide detailed documentation for each phase of the training pipeline. The structure 

progressively increases in technical depth, from high-level architectural decisions to 

implementation details and code-level documentation. 

The pre-training deep dive begins with a comprehensive overview of the pre-training process, 

followed by detailed sections on tokenizer fitting & tokenization, data preparation & mixing, 

running & monitoring pre-training, scaling strategies, context extension, model & 

hyperparameters, and code organization. 

The instruction fine-tuning deep dive starts with a comprehensive overview of the fine-tuning 

process, followed by sections on data preparation, data selection methods, running & 

monitoring fine-tuning, evaluation and initial results, and code organization. 

Additional sections cover model deployment for packaging and deploying trained models, and 

training appendices with additional technical details, software stack analysis, and framework 

experiments. 
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2 Architecture of the Pre-
Training pipeline 

The GPT-NL pre-training pipeline is the most compute-intensive stage of model development, 

transforming curated multilingual datasets into large-scale base language models for Dutch 

and English. This process involves the following key steps: tokenizer fitting, data preparation, 

distributed pre-training across high-performance compute clusters, and optional context 

extension for longer input sequences. The pipeline ensures that models are optimized for 

quality, scalability, and adaptability before fine-tuning. 

Between June and December 2025, GPT-NL underwent three major training epochs and a 

final annealing phase, processing 1.9 trillion tokens across multiple languages and code. The 

resulting model—a 26B-parameter architecture based on Gemma 3—was trained using 220 

H100 nodes on Snellius. This foundation enables robust multilingual capabilities and serves as 

the basis for subsequent fine-tuning and evaluation stages. 

The full pipeline, including its main functional phases, is illustrated in Figure 3 below. At its core 

is the pre-training process, which optimizes a randomly initialized model to one that fits the pre-

training distribution. 

 

Figure 3: Overview of the pre-training pipeline 

The pipeline consists of the following steps: 

Tokenizer fitting - Optimizes an algorithm to efficiently encode raw text into a numerical 

representation that can be processed by the model. 

Data preparation - Transforms the raw, curated data into tokenized form and mixed to match 

specific language types and quality target distributions. 

Pre-training - Runs distributed training across the full compute pool (202 H100 nodes on 

Snellius, each consisting of 4 H100 GPUs). 

Context extension - Optional phase to adapt the model to longer input sequences via longer-

form content. 

Evaluation - Evaluates base model capabilities across tasks to monitor training and select final 

artifacts. 

The pre-training process is an iterative, multiphase process where every phase (epoch) 

processes a mixed version of the data (see Figure 4 below). When new data arrives, it can be 
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incorporated into the pre-training from the next epoch onwards. To finalize a model, it needs to 

undergo a shorter annealing phase (where the data mixture is biased towards higher quality 

data), which can be instantiated after each intermediate epoch, leading to n intermediate base 

models. 

 

Figure 4: Depiction of multi-stage pre-training 

All functionality concerning pre-training is implemented across three GitLab repositories: 

1. The Dataloader repository that implements all steps preceding training, including training 

the tokenizer and tokenizing all curated text datasets. 

2. The Pytorch Native repository that implements the pre-training process and hosts 

additional functionality as well, such as evaluation and running inference with the model. 

3. The Context Lengthening repository which is solely concerned with the context extension 

phase. 

 

This section details the GPT-NL pre-training as it happened between June 16th, 2025, and 

December 31st, 2025. Training was intermittent due to maintenance and shared infrastructure, 

lengthening the overall duration. The pre-training consisted of three main epochs (i.e., passes 

over the data) and an annealing phase. In the second epoch we added new data (mostly Dutch 

text) that arrived while epoch 1 had already started. The annealing phase is a short final phase 

emphasizing higher quality data. The total number of tokens seen by the model is 1.9 trillion 

tokens. 

Total training tokens after up sampling (in billions), seen throughout training: 

Language Epoch 1 Epoch 2 Epoch 3 Annealing 

English 279.78 269.10 269.10 266.24 

Dutch 139.89 116.74 116.74 73.20 

Code 83.93 80.73 80.73 31.71 

Other languages 55.96 53.82 53.82 7.93 

Total 559.56 520.40 520.40 379.07 

Cumulative total 559.56 1079.96 1600.36 1979.44 

 

https://ci.tno.nl/gitlab/gpt-nl/model-development/dataloader
https://ci.tno.nl/gitlab/gpt-nl/model-development/pytorch_native
https://ci.tno.nl/gitlab/gpt-nl/model-development/context-lengthening
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The trained model has 26B parameters and is based on the Gemma 3 architecture. For more 

details on the architecture, see the training hyperparameters Section. 

The following subsections dive into each of the key steps of the pre-training. 

2.1 GPT-NL Tokenizer 
A tokenizer is an algorithm that converts raw text into numerical tokens, enabling a language 

model to process the data effectively. For GPT-NL, a custom tokenizer is trained from scratch 

to ensure efficient representation of Dutch text, which is often underrepresented in existing 

multilingual tokenizers. 

Tokenization refers to the process of transforming a text dataset into this numerical form. A 

trained tokenizer segments text into chunks based on their statistical occurrence and maps 

these segments to numerical representations. Tokens may correspond to individual characters, 

sub-word units, or frequently occurring combinations of characters and symbols. 

The figure below illustrates tokenization by depicting tokens within a sentence, where each 

token is represented by a distinct colour. 

 

Figure 5: A tokenized sentence. Tokens can represent single letters, parts of a word, or frequent sequences of 

letters and symbols. 

The entire tokenization involves roughly 2 stages: 

• Training the tokenizer from scratch 

• Tokenizing the GPT-NL data in preparation for the model training 

 

2.1.1 Tokenizer training 
Training a tokenizer at scale involves processing a high amount of data (in the lines of 100+ 

GB of raw text). Frameworks like Hugging Face's tokenizers are not capable of efficiently 

tokenizing the data even with 1TB+ of RAM. In contrast, SentencePiece does work reasonable 

with high volumes of data, hence the GPT-NL tokenizer was trained with the SentencePiece 

library. 

First, a subset of the training data is sampled to obtain the tokenizer training set. To be precise, 

120GB of raw text was employed for the tokenizer set with the following language mixture: 

https://arxiv.org/abs/2503.19786
https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/pre-training-hyperparameters.md
https://huggingface.co/docs/tokenizers/en/index
https://github.com/google/sentencepiece
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Figure 6: Tokenizer training language distribution 

Secondly, the SentencePiece tokenizer training configuration was set. This includes initializing 

the byte-fallback Byte-Pair Encoding tokenizer, setting the final vocabulary size of 128k, special 

tokens definition and other options. The tokenizer in fact is similar to the Llama tokenizer and 

follows the HuggingFace’s LlamaTokenizer class. The configuration of SentencePiece can be 

found in the internal GitLab here. 

Training the tokenizer took 64 hours on a fat_genoa node with 192 cores and 1440 GiB of 

memory. 

Lastly, the tokenizer is converted from the SentencePiece format to the HuggingFace format 

such that it can be loaded with 

from transformers import AutoTokenizer 
gptnl_tokenizer = AutoTokenizer.from_pretrained(<path_to_tokenizer>) 

The GPT-NL tokenizer is initialized with 100 reserved tokens for downstream adjustments and 

in the form of <reserved_token_xx>. As the tokenizer follows LlamaTokenizer closely, the 

following default tokens are considered: 

{ 
      "id": 0, 
      "content": "<unk>", 
      "single_word": false, 
      "lstrip": false, 
      "rstrip": false, 
      "normalized": false, 
      "special": true 
    }, 
    { 
      "id": 1, 
      "content": "<s>", 
      "single_word": false, 
      "lstrip": false, 
      "rstrip": false, 

https://ci.tno.nl/gitlab/gpt-nl/model-development/dataloader/-/tree/main/gptnl_dataloader/tokenization/config?ref_type=heads
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      "normalized": false, 
      "special": true 
    }, 
    { 
      "id": 2, 
      "content": "</s>", 
      "single_word": false, 
      "lstrip": false, 
      "rstrip": false, 
      "normalized": false, 
      "special": true 
    }, 
    { 
      "id": 3, 
      "content": "<pad>", 
      "single_word": false, 
      "lstrip": false, 
      "rstrip": false, 
      "normalized": false, 
      "special": true 
    }, 

For instruction-tuned tokenizers, we follow the ChatML templates: 

"4": { 
      "content": "<|im_start|>", 
      "lstrip": false, 
      "normalized": false, 
      "rstrip": false, 
      "single_word": false, 
      "special": true 
    }, 
    "5": { 
      "content": "<|im_end|>", 
      "lstrip": false, 
      "normalized": false, 
      "rstrip": false, 
      "single_word": false, 
      "special": true 
    }, 
    "6": { 
      "content": "<|system|>", 
      "lstrip": false, 
      "normalized": false, 
      "rstrip": false, 
      "single_word": false, 
      "special": true 
    }, 
    "7": { 
      "content": "<|user|>", 
      "lstrip": false, 
      "normalized": false, 
      "rstrip": false, 
      "single_word": false, 
      "special": true 
    }, 
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    "8": { 
      "content": "<|assistant|>", 
      "lstrip": false, 
      "normalized": false, 
      "rstrip": false, 
      "single_word": false, 
      "special": true 
    }, 

2.1.2 Tokenization 
The OLMo-core pretraining pipeline expects tokenized .npy (NumPy memory-mapped files) 

as its training data. To this end, the entire dataset is tokenized before training. Specifically, the 

data is put into smaller buckets of file and by employing the SLURM job array, tokenizing the 

entire dataset with parallel jobs only took a couple of hours. 

Tokenizer fertility rate is defined as the average number of tokens produced per word in a given 

text. A lower fertility rate is generally preferable because it indicates that words are represented 

more compactly, which reduces sequence length and enhances model efficiency. When fertility 

is high, token sequences become longer, leading to increased memory consumption and 

slower inference times. 

Optimizing tokenizers for lower fertility ensures that models process text more efficiently 

without sacrificing semantic integrity. By reducing the number of tokens per word, the 

computational workload decreases, directly lowering training and inference costs and making 

large-scale language model operations more economical. 

Below is the tokenizer fertility rate compared to competitive multilingual tokenizers. The 

performance is reported on a random subset of Dutch data: 

 

Figure 7: Tokenizer comparison (lower means a better fit) 

Given the different vocabulary sizes of 128k for GPT-NL and the competitive Salamandra of 

256k, thereby adding extra parameters in the embedding space, the GPT-NL tokenizer shows 

a good trade-off between fertility/token efficiency and model complexity. 

Numeric evaluations of the tokenizer are discussed in the Evaluations Section and in the Data 

Preparation Section. 
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2.2 Pre-training Data Preparation 
This section describes the complete process of transforming curated datasets into optimized 

data mixtures ready for pre-training. The data preparation pipeline connects the data curation 

phase (delivered by WP12) with the pre-training phase, producing data mixtures that support 

Dutch language representation and allow for quality control of input sources. 

The pipeline is implemented in the Dataloader GitLab project and encompasses tokenizer 

fitting, data bucketing, train-validation splitting, tokenization, and distribution mixing. The 

process is guided by two key variables: detected language and quality assessment, which 

together define the characteristics of different data buckets used to construct training mixtures 

for different phases of pre-training. 

2.2.1 Motivation and Design Principles 
One primary objective of GPT-NL is to achieve adequate representation of the Dutch language 

in the final model. The Dutch share of available data is low relative to English, even after 

receiving additional Dutch data during epoch 1 training, the size remains disproportionate 

compared to English resources. To address this imbalance, we up sample the Dutch data share 

during training. 

Data quality also affects model performance. Recent large-scale model reports provide 

evidence for quality-focused data strategies. The Llama 3 team (Llama AI Team, 2024) found 

that using high-quality code and mathematical data in the final training phase can boost 

performance on key benchmarks, with experiments showing improvements (24% on GSM8k 

and 6.4% on MATH) for smaller models. The benefits were less pronounced for larger models 

that already exhibited stronger reasoning capabilities. 

Similarly, EuroLLM (Martins et al., 2024)—a multilingual European language model project—

reports a comparable strategy: in the last 10% of pre-training, they increase the presence of 

high-quality data in the mix. EuroLLM filters monolingual data using a binary classifier inspired 

by FineWeb-Edu (Penedo et al., 2024) to predict whether documents have educational value, 

and incorporates additional high-quality datasets including Cosmopedia-v2, Python-Edu, 

training sets from GSM8K and MATH benchmarks, and document-level parallel data from 

Europarl and ParaDocs. 

Following these approaches, GPT-NL employs a bucket system to control both language 

distribution and data quality throughout pre-training. We categorize all curated data into 

buckets based on two primary dimensions: 

1. Language: Detected language (Dutch, English, Code, Other languages) 

2. Quality: Manually attributed quality assessment labels provided by WP18 at dataset 
level (high, medium, low) 

This bucketing strategy enables us to create specific data mixtures for different training 

phases—maintaining broader diversity during the primary training epochs (1-3) while biasing 

toward higher quality data during the final training phase (i.e., the annealing phase). The 

system also tracks newly added data separately, allowing us to incorporate fresh content that 

arrived during training into subsequent epochs. 

The following sections detail the quality assessment methodology, provide concrete examples 

of bucket characteristics, describe the data preparation pipeline implementation, and present 

the final data mixtures used throughout GPT-NL pre-training. 

https://ci.tno.nl/gitlab/gpt-nl/model-development/dataloader/-/tree/main
https://arxiv.org/pdf/2407.21783
https://arxiv.org/abs/2409.16235
https://arxiv.org/abs/2406.17557
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2.2.2 Quality Assessment and Bucketing Methodology 
Quality assessment for GPT-NL datasets was performed manually by WP18 at the dataset 

level. Rather than applying strict, quantitative criteria, the assessment considers the nature and 

characteristics of each data source to assign quality labels (high, medium, or low). The table 

below illustrates representative examples across the quality spectrum. 

 

Source Quality Rationale 

OpenRaadsInformatie — Public hear-
ings and decision documents from 
~350 Dutch municipalities, water 
boards, and provinces 

High Professionally written transcripts 
with high expected accuracy 

NDP National-Regional — National 
and regional newspapers from mem-
bers of the Dutch news branch organi-
zation 

High Content written by professional jour-
nalists and published in established 
newspapers 

Fryske Akademy — Content from the 
Frisian language and culture research 
institute 

High Curated Frisian language content 
from an academic institution 

Synthetic Wikidata — Synthetically 
generated content based on structured 
Wikidata entries 

Medium Systematic generation from struc-
tured high quality data, but genera-
tion process may introduce errors 

KPN Web Content — Web content 
from the Dutch telecommunications 
company 

Medium Web content that may contain errors 
or inaccuracies typical of online 
sources 

CommonCrawl Creative Commons 
— Dutch CC-BY and public domain 
web content from CommonCrawl 

Medium Variable quality typical of web scrap-
ing, though filtered for permissive li-
censes 

Noord-Hollands Archief — Archives 
older than 100 years from the provincial 
archive of North Holland 

Low Contains numerous OCR errors from 
digitization of historical documents 

YouTube Commons — CC-BY video 
transcripts from YouTube 

Low Automatic transcripts that are often 
inaccurate 

Nationaal Archief — Digitized histori-
cal archives including VOC records 

Low Digitization error rate of approxi-
mately 8%, resulting in substantial 
OCR errors, particularly in the VOC 
subset 

 

Quality assessment is based on multiple criteria including the reputation and origin of the 

source, recency of the content, and technical quality factors such as OCR accuracy. 

High-quality sources typically originate from institutions or organizations with editorial 

standards or quality control processes. These include professional journalism, official 

government documentation, and curated academic content. The writing in these sources is 

produced with attention to accuracy and coherence. Sources in this category have strong 

reputations and provide reliable, well-structured content. 

Medium-quality sources encompass web content and synthetically generated material. While 

web content from reputable organizations or filtered sources may be generally reliable, it lacks 

the editorial oversight of high-quality sources. Synthetic content generated from structured data 

sources like Wikidata is systematic but may contain artifacts from the generation process. 
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Low-quality sources primarily suffer from technical limitations in data capture or transcription. 

Automatic transcription systems and OCR processes applied to historical documents introduce 

errors that degrade text quality. These sources remain valuable for their content and linguistic 

diversity despite their technical imperfections. 

The quality labels are applied at the dataset level rather than at the document level, meaning 

all documents from a given source receive the same quality designation. For the data 

preparation pipeline, low and medium quality data are combined into single buckets. This 

simplification is sufficient because quality distinction is only applied during the final, short 

training phase (annealing), where we bias toward high-quality data. For this purpose, 

distinguishing high-quality sources from all others provides adequate granularity without 

requiring a large volume of finely categorized data. 

Beyond quality labels, the bucketing process relies on additional metadata fields to categorize 

data. Language detection is performed using automated language identification tools as 

described in the curation stages. Code datasets are identified through manual labelling, with 

one primary code dataset comprising the majority of code content. Temporal metadata tracks 

when data arrived—either before training began or during epoch 1, allowing newly added data 

to be incorporated into subsequent epochs while maintaining separate tracking for mixture 

composition purposes. 

2.2.3 Data Bucket Characteristics and Examples 
To illustrate the differences between buckets, this section provides representative text samples 

from each category. These examples demonstrate the characteristics that distinguish high-

quality sources from lower-quality ones, and show the linguistic diversity across Dutch, English, 

code, and other language buckets. Each sample is extracted from actual datasets used in 

training. 

2.2.3.1 English High Quality 
Dataset: Common Corpus 

Text: 

ABSTRACT The palm (Phoenix Dactylifera) is one of important trees and is ec
onomically important in south of Iran. Date palm is propagated by the offsh
oots, number of which is limited. Therefore, adul...<truncated>...eijer., & 
Levi van de Biezenbos. (1993). Occurrence of direct somatic embryogenesis o
n the sword leaf of in vitro plantlets of Phoenix dactylifera L. cultivar b
arhee. Current Science, 887-889. 430 430 

2.2.3.2 English Low/Medium Quality 
Dataset: Common Corpus 

Text: 

The Evangelicals, who had been quickened to seek the spread of the Gospel a
broad through the institution, in 1822, of " La Soci6t6 des Missions Evangd
liques chez les Peuples non-Chr6tiens," earnestly ...<truncated>...tab-' li
shments, supervised by 7000 nuns and served by 48,000 women, bringing an an
nual income, from the unpaid labour of the pensionnaires, of not less than 
;^6oo,ooo.^ The Associations Bill of 1901. 

https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/curation-stages.md
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2.2.3.3 Dutch High Quality 
Dataset: Open Raadsinformatie 

Text: 

**Bouwsteen Economie** Voor deze bouwsteen economie is een rapport opgestel
d door een extern bureau. Dit rapport dient als aanbeveling aan gemeente Zw
olle. Het rapport doet aanbevelingen over de toeko...<truncated>... van de 
stad (voor de verschillende opleidingsniveaus)| **Overi** **g** **e o** **p
** **merkin** **g** **en** **,** **ideeën etc.** Kun je iets niet kwijt ond
er bovenstaande? Daar is hier plek voor. 7 

2.2.3.4 Dutch Low/Medium Quality 
Dataset: Woogle 

Text: 

Toetsing Op grond van artikel 5.16 lid 1 van de Wet milieubeheer kan de ver
gunning alleen worden verleend, als aannemelijk gemaakt kan worden dat vold
aan wordt aan (minimaal) één van de volgende crite...<truncated>...rgunning
houder de resultaten daarvan wil implementeren, daartoe eerst steeds zal mo
etel worden bezien in hoeverre een procedure op grond van de Wabo zal moete
n worden doorlopên. Zaaknum m er: 78891724 

2.2.3.5 New (epoch 2+) Dutch High Quality 
Dataset: NDP 

Text: 

'Chris' wil prijs pakken in Los Angeles CALL OF DUTY Silvano heeft talent v
oor Call of Duty. Hij is zo goed dat hij volgende week gratis naar Los Ange
les mag. door Dewi Willems van Lier MIDDELBURG -Vi...<truncated>...rond te 
kijken. Als ik naar het strand wil, brengen ze me erheen. Ik heb vorige kee
r een hoop Ferrari's gezien. Die wil ik deze keer wat beter bekijken. " fot
o Isabella Oosterhek-Booden Puk Langevoort 

2.2.3.6 New (epoch 2+) Dutch Low/Medium Quality 
Dataset: YouTube-Commons 

Text: 

Hey jongens welkom terug bij een andere video bitcoin is blijven dumpen lat
en we eens kijken naar de grootste winnaars en verliezers in de altcoin-rui
mte het gaat om een soort van top 10 top 20 altcoi...<truncated>...is, is d
e link naar de investeerdersaccelerator in de beschrijving hieronder, we zi
en je daar in de 12-maanden lidmaatschapsgroep, maar tot de volgende keer, 
heb meer plezier om meer gedaan te krijgen 

2.2.3.7 Other Languages (all quality levels) 
Dataset: Common Corpus 

Text: 

doppelten , diese ziehen sich des Wund- winkels h (in der Rich- tung nach d
) ein Ectropium zu Stande kommen. Tritt aber nun noch der Fall ein, dass di
e prima in- tentio nicht erfolgt, dass durch Eiter...<truncated>... die Wis
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senschaft dieselben weglassen, da eine geübte Hand mit einer gewöhnli- chen 
Hakenpincette und gerader oder gebogener Scheere die Falte ebenso gut den V
erhältnissen entsprechend entfernen kann. 

2.2.3.8 Code 
Dataset: Common Corpus 

Text: 

package com.foo.bar.steps import com.foo.bar.SmsVerificationCodeSenderStub 
import com.thebund1st.daming.commands.SendSmsVerificationCodeCommand import 
com.thebund1st.daming.core.SmsVerificationCode im...<truncated>...()) .body
("token", notNullValue()) } def then(String description) { this } def theCo
deReceived() { code } def shouldSeeFailure(HttpStatus httpStatus) { this.re
sponse.statusCode(httpStatus.value()) } } 

2.2.4 Data Availability Across Training Epochs 
New data arrived throughout training, changing the composition and scale of available data 

between epochs. The table below summarizes the token counts in billions available during 

epoch 1 and from epoch 2 onwards (denoted as Epoch 2+), with percentages relative to each 

epoch’s total. These counts include both training and validation data. 

 

Bucket Category Epoch 1 (B) Epoch 1 % Epoch 2+ (B) Epoch 2+ % 

Other languages 48.33 13.31 48.34 8.80 

English (low + medium) 158.39 43.63 158.39 28.84 

English (high quality) 49.52 13.64 49.52 9.02 

Dutch (low + medium) 6.26 1.72 14.76 2.69 

Dutch (high quality) 14.88 4.10 46.24 8.42 

Code 85.64 23.59 231.95 42.23 

Total 363.01 100 549.20 100 

 

The data landscape changed substantially between epochs. Most notably, the Code bucket 

increased from 85.64B to 231.95B tokens (a 2.7× increase) due to an adjustment in the filtering 

steps of the data curation, shifting its percentage from 23.59% to 42.23% of the total. Dutch 

high-quality data increased significantly from 14.88B to 46.24B tokens (a 3.1× increase), more 

than tripling its representation. This influx of Dutch content reflects additional data that arrived 

during epoch 1 training. The relative percentages of other categories decreased 

correspondingly due to the overall growth in total available data from 363B to 549B tokens. 

2.2.5 Data Preparation Pipeline 
The data preparation pipeline implementation transforms curated datasets into training-ready 

data mixtures through a multi-stage process. The complete pipeline is visualized in the diagram 

below, showing the flow from input parquet files through bucketing, train-validation splitting, 

tokenization, and distribution mixing phases. 
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Figure 8: Diagram multi-stage process of creating the pre-training data mixture 

 

The pipeline takes as input files in parquet format organized by data provider or openly 

available dataset and processes them through four main phases: 1) bucketing, 2) train-
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validation split, 3) tokenization, and 4) distribution mixing to create optimized data mixtures for 

model training. 

The pipeline begins with curated datasets (as delivered by WP12) stored in parquet file format, 

organized in subdirectories by dataset name (from a GPT-NL data provider or open dataset). 

Each dataset has slightly different schemas due to varying application of curation stages (e.g., 

Personal Identifiable Information (PII) detection might not be applied to all sets), but files within 

the same dataset maintain consistent structure. Files vary in size due to filtering steps 

employed during curation (disregarding documents, or rows, from the parquet files). 

2.2.5.1 Phase 1: Bucketing 

The bucketing phase groups data by language, quality attributes, and whether the data is newly 

added in that epoch, organizing it into structured containers. These buckets represent key 

characteristics that define our desired training mixtures for both the primary and annealing 

phases of pre-training. 

Metadata Investigation & Assembly 

This stage analyses available curated datasets to understand their structure and content, and 
leverages metadata provided by human annotators (WP18) to further tag the data with quality 
labels (high/medium/low) and stores metadata about which datasets contain code (as de-
scribed in the Quality Assessment section). 

Data Tagging 

This stage enriches existing parquet files with additional metadata columns, adding standard-
ized information including: 

• A unique document ID 

• Original parquet file path as delivered by WP12 

• Original dataset name and quality assessment 

• Language detection results 

• Code dataset classification flags 

Data Bucketing 

This stage distributes data into eight primary buckets based on language, quality, and time of 
arrival (before or during training): 

3. New data high quality (only relevant for epochs > 1, assumed to be almost all Dutch) 

4. New data low + medium (only relevant for epochs > 1, assumed to be almost all Dutch) 

5. English high quality 

6. English low + medium quality 

7. Dutch high quality 

8. Dutch low + medium quality 

9. Other languages 

10. Code 

This stage is implemented by first sorting the data into temporary files and then merging them 
to have equal size (in number of rows or in file size). 
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2.2.5.2 Phase 2: Train-Validation Split 

This phase implements a stratified train-validation split for bucketed parquet datasets. It takes 
categorized data files (organized in buckets like dutch_high_quality, english_low_me-
dium_quality, code, etc.) and splits each file into training and validation sets while maintain-

ing proportional representation of all source datasets. 

The split uses a 98-to-2 ratio (keeping validation small to maximize training data) and stratifies 

by dataset folder (extracted from the original_file_path column) to ensure validation sets 

contain samples from all original datasets. The process handles edge cases where some 

datasets have insufficient samples for stratification by placing single-sample categories into 

training, and processes files in parallel for efficiency while managing memory usage through 

garbage collection and process pool controls. 

This split is necessary to evaluate model performance on held-out data during training, which 

helps prevent overfitting, monitor training progress through validation loss, and ensure the 

validation set is representative of all source datasets. While this is standard practice in machine 

learning, maintaining this separation is important for transparent evaluation of training 

progress. 

2.2.5.3 Phase 3: Tokenization 

This phase converts text data into token sequences suitable for model training, stored in 
memory-mapped NumPy files (memory-mapped for efficient reading during training). 

The tokenization process uses the fitted tokenizer (output of the process described in Section 

2.1) to: 

• Tokenize all bucketed data using the trained tokenizer 

• Implement sequence packing strategies for training efficiency 

• Output tokenized files organized by bucket for downstream processing 

2.2.5.4 Phase 4: Distribution Mixing (Sampling) 

This phase creates training data mixtures optimized for different training phases. A sampling 
module enables flexible mixture construction with the following capabilities: 

• Sample a mixture with a desired language distribution by over- or under sampling files 
to achieve the target distribution 

• Bias sampling toward higher quality files to achieve a higher quality data mixture 

• Constrain the mixture to a specific dataset size 

With this module, the following data mixtures are created for different training phases: 

• For epochs in the primary training phase: Sets sampled with a desired language 
distribution with no bias for higher quality data 

• For the annealing phase: A set sampled with a desired language distribution with 
bias for higher quality data, constrained to consist of about 15% of the primary set in 
size 

Sampling happens at file level, with files containing approximately 1GB worth of documents. 

The sampling process generates structured file lists as output: 

• Primary phase file paths for main training (train and validation) (for epochs 1, 2, and 3) 

• Annealing phase file paths for final training refinement 
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2.2.6 Target Data Mixtures 
For both pre-training phases (primary and annealing) we set a desired language distribution to 

balance the goals of GPT-NL with the available data. As the annealing phase is typically short 

(10-15% of pre-training), less upsampling is required to achieve the target distribution. In this 

phase we bias toward higher quality data by only selecting from high-quality subcategories. 

For the primary phase (epochs 1-3), we target the following language distribution: 

Language Target Percentage 

Dutch 25% 

English 50% 

Code 15% 

Other 10% 

 

These percentages balance GPT-NL’s objective of adequate Dutch language representation 

with the available data while maintaining multilingual capabilities through English and other 

languages and incorporating substantial code data to support technical understanding and 

reasoning capabilities. 

For the annealing phase, we target a distribution more pronounced toward the Dutch language: 

Language Target Percentage 

Dutch 35% 

English 40% 

Code 20% 

Other 5% 

 

The annealing phase constitutes approximately 10-15% of total pre-training. The shift toward 

more Dutch content (from 25% to 35%) and increased code representation (from 15% to 20%) 

reflects the strategy of emphasizing these areas in the final training stage. For this phase, only 

high-quality data buckets are used, excluding all low and medium quality sources. 

To achieve the target distributions with the data available in epoch 1 and in epochs 2 and 3, 

we applied different upsampling rates to each bucket: 

 Lan-
guage 

Epoch 1 To-
kens (B) 

Epoch 1 
Upsamp. 

Rate 

Epoch 
1 % 

Epoch 2 & 3 
Tokens (B) 

Epoch 2 & 
3 Up-

samp. 
Rate 

Epoch 2 & 
3 % 

Annealing 
Tokens (B) 

Annealing 
Upsamp. 

Rate 

Anneal-
ing % 

Code code 83.93 1 15 80.73 0.36 15.51 80.73 0.36 15.51 

English 
low qual-
ity 

en 213.14 1.37 38.
09 

205.01 1.32 39.39 205.01 1.32 39.39 

English 
high 
quality 

en 66.64 1.37 11.
91 

64.09 1.32 12.32 64.09 1.32 12.32 

en_sub-
total 

en 

 

279.78 2.75 50 269.1 2.64 51.71 269.1 2.64 51.71 

Dutch 
low qual-
ity 

nl 41.41 6.75 7.4 6.13 1 1.18 6.13 1 1.18 
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Dutch 
high 
quality 

nl 98.48 6.75 17.
6 

20.88 1 4.01 20.88 1 4.01 

New 
Dutch 
low qual-
ity 

nl - - - 22.81 2.74 4.38 22.81 2.74 4.38 

New 
Dutch 
high 
quality 

nl - - - 66.92 2.74 12.86 66.92 2.74 12.86 

nl_sub-
total 

nl 

 

139.89 13.5 25 116.74 7.48 22.43 116.74 7.48 22.43 

Other 
lan-
guages 

other 55.96 1.18 10 53.82 1.14 10.34 53.82 1.14 10.34 

total  559.56 18.43 100 520.4 11.61 100 520.4 11.61 100 

 

The upsampling rates were calculated to meet target distributions given available data in each 

bucket. Dutch data required the highest upsampling rates (6.75× in epoch 1, decreasing to 

2.74× for new Dutch data in epochs 2-3) to achieve the 25% target in primary training. English 

data required modest upsampling (1.37× and 1.32×), while Code data was actually 

downsampled in epochs 2-3 (0.36×) due to the large influx of code content. The resulting 

mixtures closely approximate the target distributions while incorporating all available data 

according to the defined sampling strategy. 

2.2.7 Pipeline Output and Folder Structure 
The data preparation pipeline produces outputs at each stage, organized in a structured folder 

hierarchy on the Snellius HPC system. The pipeline begins with curated datasets and 

progresses through bucketing, train-validation splitting, tokenization, and sampling phases, 

with each phase producing organized outputs consumed by subsequent stages. Data is stored 

on the project data share. 

Location: /projects/0/prjs0986/wp12/dataset_delivery/ 

wp12/dataset_delivery/ 
├── gpt_nl_dataset_v1.0/   # Parquet files organized by dataset provider 
│   ├── american-stories/ 
│   ├── cc_english-pd/ 
│   ├── kb/ 
│   └── ... (additional datasets) 
└── gpt_nl_dataset_v2.0/ # Same structure as v1.0, available from epoch 2  

Raw curated datasets in parquet format are organized by dataset provider or open-source da-
taset name. 

2.2.7.1 Phase 1 Output: Bucketing 

Location: /projects/0/prjs0986/wp14/<gpt_nl_data_version>_bucketed/ 

After tagging and bucketing, data is organized into eight buckets: 

bucketing_output/ 
├── dutch_high_quality/ 
├── dutch_low_medium_quality/ 
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├── english_high_quality/ 
├── english_low_medium_quality/ 
├── other_languages/ 
├── code/ 
├── new_high_quality/          # (epoch > 1 only) 
└── new_low_medium_quality/    # (epoch > 1 only) 

Each folder contains parquet files of similar size (approximately 1GB) with enriched metadata 
including document IDs, quality labels, language tags, and original file paths. 

2.2.7.2 Phase 2 Output: Train-Validation Split 

Location: /projects/0/prjs0986/wp14/<gpt_nl_data_version>_bucketed/ 

Data is split into training (98%) and validation (2%) sets while maintaining the bucket structure: 

├── buckets_split_train/        # Training files by bucket 
└── buckets_split_validate/     # Validation files by bucket 

The stratified split ensures validation sets contain representative samples from all source da-
tasets within each bucket. 

2.2.7.3 Phase 3 Output: Tokenization 

Location: /projects/0/prjs0986/wp14/<gpt_nl_data_version>_tokenized/ 

Tokenized data is stored as memory-mapped NumPy arrays with uint32 dtype: 

├── buckets_split_train/        # .npy files by bucket (training) 
├── buckets_split_validate/     # .npy files by bucket (validation) 
└── splitted_buckets_{train,validate}/ # Reorganized structure for sampling 

Memory-mapped files enable efficient reading during training without loading entire datasets 
into memory. 

2.2.7.4 Phase 4 Output: Distribution Mixing (Sampling) 

Location:/projects/0/prjs0986/wp14/<gpt_nl_data_version>_to-
kenized/train_datamixtures/ 

The sampling phase produces JSON files specifying data mixtures consumed by the training 

process: 

• validation_files.json - File paths stratified across all buckets (approximately 2% 

of total data) 

• primary_phase_files.json - File paths for epochs 1-3 with balanced language dis-

tribution and no quality bias 

• annealing_phase_files.json - Quality-biased subset (approximately 15% of pri-

mary phase size) using only high-quality buckets 

• mixture_statistics.json - Metadata including file counts, token counts, and distri-

butions per phase 

Each JSON file organizes file paths by bucket, enabling efficient parallel data loading during 
distributed training. The training infrastructure consumes these file lists to construct data load-
ers that sample from the specified files according to the upsampling rates defined for each 
training phase. 
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2.2.8 References 
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2. Martins et al. (2024) | EuroLLM: Multilingual Language Models for Europe 

3. Penedo et al. (2024) | The FineWeb Datasets: Decanting the Web for the Finest Text 
Data at Scale 

 

2.3 Pre-training model & hyperparameters 
Developing a large language model requires making informed decisions regarding both model 

architecture and hyperparameter configuration. Architectural choices include the number of 

layers, the specific transformer design, and the structure of embeddings. In addition, selecting 

appropriate hyperparameters—such as the total number of parameters, learning rate, and 

optimization strategy—is critical to achieving robust performance and efficient training. 

The GPT-NL model is based on the Llama 3 architecture, because of its proven performance, 

adaptability and strong support in modern training frameworks, making it a robust and well-

understood basis for large-scale model development. It also aligned well with our choice of pre-

training codebase as the OLMo model architecture is also similar to the Llama 

modelarchitecture. 

At its core, the architecture is a decoder-only transformer architecture based on Vaswani et 

al. (2017). Building on this, the architecture adopts several improvements that have become 

standard in modern LLMs, including: 

• RoPE embeddings: to allow for longer context scaling. For information on how this 
context is lengthened after pre-training, see this page. 

• Grouped query attention: by reducing the number of key-value heads, the memory and 
computing requirements are reduced with minimal impact on model quality. 

• SwiGLU activations: more efficient and stable than ReLU and GeLU. 

2.3.1 Hyperparameters 

2.3.1.1 Size 
The model size is represented in the number of parameters, which depends on architectural 

choices like dimension sizes and number of layers. To decide on this size, we tried to find an 

optimal balance between model performance and computational feasibility. While smaller 

models (around 7B parameters) were deemed insufficient for our capability’s requirements, 

larger models (70B+) would be too resource-intensive for our current infrastructure. The 26B 

parameter size should adequately handle critical tasks like summarization and retrieval-

augmented generation (RAG) while still allowing for efficient inference and fine-tuning. 

From a compute-optimal perspective, traditional Chinchilla-style scaling laws (Hoffmann et al., 

2022) would suggest using more parameters (around 40B) for the available compute. However, 

these scaling laws assume training for a single epochoptimize for training compute only, 

ignoring inference compute optimization, and do not fully reflect the training set-ups of modern 

LLMs. We also refer to the Llama 3 technical blog which found continued improvement after 

training two orders of magnitude more data than Chinchilla-optimal. In practice, the resulting 

compute-quality trade-off supports a somewhat smaller model without significant loss in model 

performance. 

The exact total number of parameters of the 26B GPT-NL model ends up at: 

https://arxiv.org/pdf/2407.21783
https://arxiv.org/abs/2409.16235
https://arxiv.org/abs/2406.17557
https://arxiv.org/abs/2406.17557
https://arxiv.org/abs/2407.21783
https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/pre-training-code-organization.md
https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/pre-training-code-organization.md
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/pre-training-context-extension.md
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://ai.meta.com/blog/meta-llama-3/
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Parameter Type Count 

Total parameters 26,034,640,896 

Non-embedding parameters 25,248,208,896 

Trainable parameters 26,034,640,896 

 

where non-embedding parameters exclude the input and output embedding matrices (whose 

sizes depend largely on vocabulary size and so on tokenizer design). 

2.3.1.2 Learning rate schedule 
For the pre-training we employ a trapezoidal scheduler (also known as WSD: warmup-stable-

decay, described extensively by Hägele et al., 2024) that offers mostly practical benefits while 

being as performant as a cosine scheduler (the previous state-of-the-art standard). A cosine 

scheduler requires information of the full training length a priori. The trapezoidal scheduler 

consists of three phases: 

4. A short, linear warm-up phase (e.g. of 2000 steps) 

5. A constant learning rate phase (80-85% of steps) (we will refer to this as the primary 
phase) 

6. A linear cool-down or decay phase (15-20% of steps) (we will refer to this as the an-
nealing phase) 

 

Figure 9: Illustration of cosine versus trapezoidal (blue) learning rates (source 

https://doi.org/10.48550/arXiv.2405.18392) 

The primary advantage of the trapezoidal learning rate schedule is its flexibility during the initial 

phase. This phase can be extended if the model continues to improve, delaying the transition 

to the cool-down annealing phase. The cool-down phase stabilizes training and enables fine-

grained parameter updates. 

Another benefit is the ability to resume training from an earlier checkpoint within the constant 

learning rate phase before entering the cool-down stage. This approach is particularly efficient 

in experimental settings where results must be collected across varying training lengths. With 

a trapezoidal scheduler, these variations can be achieved using checkpoints from a single 

training run. In contrast, cosine scheduling requires retraining from scratch for each 

configuration to ensure fair comparisons and interpolation across points. 

https://arxiv.org/abs/2405.18392
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Finally, during the final training run, the trapezoidal schedule also supports an increased 

number of epochs, providing additional flexibility for model convergence. 

2.3.2 Hyperparameter overview 
The following table presents a concise overview of all the chosen GPT-NL hyperparameters: 

Category Hyper parameter Value Notes 

Hardware    

 Number of nodes 22 During hardware failures or mainte-
nance, the number of nodes was 
sometimes temporarily decreased 
(see also the documentation on 
scaling). 

 Number of GPUs 88 4 x H100 GPU per node. 

Architecture    

 Hidden embedding size 6144  

 Vocabulary size 128,000 See documentation on tokenizer. 

 Number of layers 48  

 Number of heads 32  

 Number of key-value 
heads 

16  

 RoPE theta 500,000 Parameter for rotary positional em-
beddings 

 Context length 4096 See this documentation page for 
further information. 

 Activation SwiGLU  

Batching    

 Micro batch size 8  

 Gradient accumulation 
steps 

3 Increases effective batch size by 
accumulating gradients over multi-
ple steps. 

 Global batch size 704 Number of GPUs x micro batch 
size 

Optimizer    

 Optimizer AdamW  

 AdamW betas 0.9, 
0.95 

 

 Weight decay 0.1  

 Max gradient norm 1.0  

Learning 
rate sched-
uler 

   

 Constant learning rate 1e-4  

 Warm-up steps 2000  

 Minimum warm-up learn-
ing rate 

3e-5  

https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/pre-training-scaling.md
https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/pre-training-tokenizer.md
https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/model-development/model-context-length.md
https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/model-development/model-context-length.md
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 Cool-down/annealing 
steps 

12,448  

 Minimum cool-down learn-
ing rate 

3e-5  

2.3.3 References 
1. Hägele et al., 2024 | Scaling Laws and Compute-Optimal Training Beyond Fixed Train-

ing Durations 

2. Hoffmann et al., 2022 | Training Compute-Optimal Large Language Models 

3. Llama 3 team | The Llama 3 Herd of Models 

 

2.4 Configuring, Running, Monitoring, and 
Logging Pre-Training 
This section describes how a single pre-training run is orchestrated end-to-end, from con-
figuration to monitoring and logging. We structure the system into four tightly coupled phases: 

7. Configure (A – Training recipe) 
Define what is being optimized: objective, batch geometry, optimizer, schedule, and 
compute kernels. 

8. Launch (B – Jobs: debug vs production) 
Decide where and how the recipe runs on the HPC cluster: resource shape, prove-
nance checks, restart policy. 

9. Monitor (C – Pre-training health) 
Continuously track whether training is progressing as expected: training dynamics, 
throughput, and run continuity. 

10. Log (D – Persistent record & artifacts) 
Ensure that everything needed to replay or audit the run—metrics, configs, check-
points—is durably recorded. 

Phases A–D form a loop: configuration drives launch; launch activates monitoring; monitoring 
writes to the logging substrate; logging feeds back into configuration and launch decisions for 
subsequent runs. Below we describe each phase with its purpose, technique utilized, how it 
works in our stack, and relevant parameters. We connect design choices to literature where 
appropriate. 

2.4.1 Phase A: Training recipe — how we shape the 

optimization problem 
At this phase we settle each optimization step: batch, optimizer, schedule, and compute path. 

Configuration is YAML-driven and supports multiple environments, so that the same semantic 

recipe can run in both debug and production. 

Batch formation 

Purpose: Control the effective global batch size and thus optimization dynamics, stability, and 
hardware utilization. Large-batch training is known to require careful learning-rate and warmup 
tuning to avoid degradation. 

https://arxiv.org/abs/2405.18392
https://arxiv.org/abs/2405.18392
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2407.21783
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Technique: We express the global batch in tokens, derived from three knobs: 

• per_device_batch_size: ${oc.env:PER_DEVICE_BATCH_SIZE,12} 

• gradient_accumulation_steps: ${oc.env:GRADIENT_ACCUMULATION_STEPS,1} 

• num_nodes: ${oc.env:SLURM_JOB_NUM_NODES,1} 

and compute: 

global_tokens_per_update

= per_device_batch_size × sequence_length × world_size

× gradient_accumulation_steps 

How it works in our stack: 

• YAML is resolved with OmegaConf’s oc.env interpolation, so we can change 

PER_DEVICE_BATCH_SIZE, GRADIENT_ACCUMULATION_STEPS, or node count from 

SLURM, without editing the config file itself. 

• global_batch_size in NumpyDataLoaderConfig is set in tokens; the data loader 

handles packing that many tokens per update. 

• This keeps debug vs production identical at the config level: only environment variables 
change. 

Key parameters: 

• PER_DEVICE_BATCH_SIZE — primary handle on memory usage per GPU and step-

level noise. 

• GRADIENT_ACCUMULATION_STEPS — trades memory vs latency by amortizing opti-

mizer updates over multiple forward/backward micro-steps. 

• SLURM_JOB_NUM_NODES / get_world_size() — define the degree of data parallelism. 

This design aligns with best practice in large batch distributed training, where global batch and 
LR are tied through simple scaling rules. 

Training horizon 

Purpose: Decide how long we train and where a resumed job should continue. 

Technique: We use an epoch-bounded horizon with an optional token cap: 

max_duration: 
  tokens: -1       # disabled 
  epochs: 3 
hard_stop: -1      # no forced step limit 
load_path: ${oc.env:LOAD_PATH, null} 

How it works in our stack: 

• When tokens < 0, we interpret max_duration as Duration.epochs(epochs) and 

let the data loader define epoch length. 

• We expose load_path via the environment and set it from our SLURM wrapper 

(train.sh) based on the latest checkpoint, so resume is always an explicit decision, 

never implicit state. 

• For early experimental phases, epoch-bounded runs are convenient because data in-
gestion and restart behavior are still evolving; later we can switch to token-bounded 
limits for cross-mixture comparability, which is standard in scaling-law analyses [1]. 
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Key parameters: 

• epochs — coarse control; used while pipeline and restarts are being hardened. 

• tokens — fine-grained, disabled by default but compatible with scaling-law account-

ing. 

• hard_stop — optional “circuit breaker” in steps (e.g., for safety or A/B testing). 

Optimizer: AdamW with stability-oriented defaults 

Purpose: Choose an optimizer that is robust on long-horizon, large-scale LM pre-training. 

Technique: We use AdamW (decoupled weight decay) with gradient clipping: 

learning_rate: 1e-4 
weight_decay: 0.1 
betas: [0.9, 0.95] 
max_grad_norm: 1.0 
z_loss_multiplier: 0 

• AdamW decouples weight decay from the gradient step, addressing issues identified 
in adaptive optimizers using naïve L2 regularization [2]. 

• Gradient norm clipping is a standard remedy for exploding gradients [3]. 

How it works in our stack: 

Configured via SkipStepAdamWConfig, which supports: 

• group_overrides — we use this to disable weight decay on embeddings, a common 

practice to avoid shrinking embedding norms and destabilizing normalization layers. 

• optional “skip-step” behavior if numerical problems are detected. 

• max_grad_norm=1.0 is enforced inside the train module; this is cheap protection 

against catastrophic single-step updates in long runs. 

• z_loss_multiplier is wired but set to zero; we keep it available because small z-

loss terms have been reported to stabilize Transformer training in very large LMs [4]. 

Key parameters: 

• learning_rate — main convergence speed knob; tuned in conjunction with global 

batch. 

• weight_decay — controls implicit regularization; decoupled from LR under AdamW. 

• betas — momentum/variance smoothing; [0.9, 0.95] balances adaptivity vs noise. 

• max_grad_norm — stability guardrail. 

• z_loss_multiplier — disabled by default; reserved for future stability tuning. 

LR schedule: Warmup–Stable–Decay (WSD) 

Purpose: Shape how aggressively the optimizer explores the loss landscape across compute 
budget. 
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Technique: We use a Warmup–Stable–Decay (WSD) schedule: 

scheduler: 
  type: WSD 
  warmup_min_lr: 3e-5 
  decay_min_lr: 3e-5 
  warmup_steps: 0 
  warmup_delay: 0 
  decay_steps: 0 

WSD is designed for long-horizon pre-training: maintain a large, stable LR, then branch into a 
rapid decay phase to harvest a strong final checkpoint once a compute budget is chosen. Re-
cent work explains its effectiveness via a “river valley” loss landscape model [5]. 

How it works in our stack: 

During early infrastructure bring-up, we run with a stable LR (no decay) to focus on system 

correctness and throughput. 

For the annealing phase (later in training), we enable decay_steps and decay_fraction to 

implement a trapezoid-like schedule: constant LR followed by a triangular decay to 

decay_min_lr. 

This neatly aligns annealing with data mixture changes (e.g. specialized late-stage curricula) 

and wall time constraints. 

Key parameters: 

• warmup_steps, warmup_min_lr — if enabled, control the initial ramp-up, mitigating 

optimization issues common in large-batch regimes. 

• decay_steps, decay_fraction, decay_min_lr — determine how quickly we “exit 

the river valley” and settle into lower LR. 

• warmup_delay — allows postponing warmup, e.g. when resuming mid-run. 

It lets us run at a stable LR while we validate infrastructure, then branch into annealing without 
needing to predetermine the full step budget from day one. 

It makes it easier to align annealing windows with operational constraints (walltime, data phase 

boundaries), aligning our decision to use a Trapezoid learning rate schedule. For more 

information, please see Section 2.3. 

Compute path accelerators: compilation + FlashAttention 

Purpose: Reduce per-token latency and memory overhead so that a 26B-scale model fits and 
runs efficiently on multi-node H100. 

Technique: 

model_compile: true 
use_flash_attention_2: true 

model_compile: true enables TorchInductor (torch.compile) to fuse kernels and optimize the 

compute graph. 

use_flash_attention_2: true activates FlashAttention-2, an IO-aware exact attention 

implementation that reduces expensive HBM<->SRAM traffic via tiling [6,7]. 

How it works in our stack: 
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We manage per-job/per-rank caches (TORCHINDUCTOR_CACHE_DIR, TRITON_CACHE_DIR, 

XDG_CACHE_HOME) and wipe them at job start, to avoid stale compiled artifacts. 

We ensure debug runs follow the same compile and attention paths as production, so we catch 

kernel-specific bugs early. 

Key parameters: 

• model_compile — toggles the compiler; primarily affects first-step latency and long-

run throughput. 

• use_flash_attention_2 — trades some implementation complexity for substantial 

speedups and memory savings at long sequence lengths. 

2.4.2 Phase B - Launching jobs 

Top-level flow: from sbatch to trainer.fit() 

Purpose: This structure exists because we want one single training entrypoint 
(scripts/snellius/train.sh $CONFIG_PATH) and make all operational behavior (resume, 

profiling, walltime handling, restart policy) a wrapper concern. 

Technique: At a high level we run: 

sbatch launch_train_prod.job (or launch_train_debug.job) 
  -> srun scripts/snellius/train.sh 
      -> set up modules + venv + caches + MONITORING TOOLS 
      -> resolve checkpoint dir + LOAD_PATH 
      -> optional GPU health check / optional nsys profiling 
      -> torchrun (multi-node rendezvous via c10d) 
      -> on exit: handle_restart (state file + optional resubmit) 

Production gating: code provenance guarantees 

Purpose: Ensure all nodes run exactly the same code revision. 

• no uncommitted changes git status --porcelain excluding untracked 

• branch is main 

• local commit equals origin/main (via git fetch + comparing SHAs) 

Why we do it: Distributed training amplifies small inconsistencies if even one node uses slightly 
different code, we observed that we can get non-reproducible failures. This gating makes our 
run auditable and prevents accidentally dirty tree launches. 

We also provide deploy_to_shared.sh which rsyncs only git-tracked files to a shared path. 

So, it enforces a consistent code snapshot across nodes and avoids shipping local ephemeral 

state. 

SLURM resource shape: debug vs production 

For our production we start long and multi-node runs while for debug we start short and single-
node ones, using the SLURM’s sbatch command [8]. 

Production (plunch_train_prod.job): 

--partition=gpu_h100 
--nodes=22 
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--gpus-per-node=4  
--ntasks-per-node=1 
--time=5-0 (5 days) 
--exclusive (avoid noisy neighbours) 
--signal=TERM@60 (send SIGTERM 60s before end) 

Debug (pretrain_debug.sh): 

same partition and 4 GPUs, but  
--nodes=1 and  
--time=0:20:00 

Why we do it: debug should validate correctness (imports, compilation, rendezvous, check-
point logic) quickly, while production maximizes steady-state throughput. 

We rely on --signal=TERM@60 to receive a SIGTERM 60 seconds before wall time, giving us 

an opportunity to checkpoint and exit gracefully. This aligns with SLURM’s recommended 

pattern for cleanup logic. 

Key parameters: 

• --nodes, --gpus-per-node, --ntasks-per-node — define distributed topology. 

• --time — caps wall time; coupled to auto-restart logic. 

• --exclusive — minimizes noisy neighbours, important for consistent throughput. 

Environment and dependency control 

Purpose: Ensure a reproducible runtime environment across nodes. 

Technique: Inside train.sh we: 

• module purge then module load 2024 NCCL/2.22.3-GCCcore-13.3.0-CUDA-
12.6.0 

• activate our local venv 

• set OMP_NUM_THREADS=${SLURM_CPUS_PER_TASK:-8} 

Why it matters: we want deterministic NCCL/CUDA pairings. Purging modules avoids inher-
ited environment contamination, while we load specific versioned libraries. 

Distributed rendezvous: torchrun + c10d, with explicit master host/port 

Purpose: Launch the multi-process, multi-node job and form a global process group. 

Technique: We choose: 

• MASTER_ADDR=$(scontrol show hostnames | head -n 1) 

• MASTER_PORT=39591 

and run our training with the distributed execution command: 

torchrun \ 
  --nproc_per_node=$SLURM_GPUS_PER_NODE \ 
  --nnodes=$SLURM_NNODES \ 
  --rdzv_id=$SLURM_JOBID \ 
  --rdzv_backend=c10d \ 
  --rdzv_endpoint=$MASTER_ADDR:$MASTER_PORT \ 
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  --master_addr=$MASTER_ADDR \ 
  --master_port=$MASTER_PORT \ 
  scripts/train.py $CONFIG_PATH 

Key parameters: 

• rdzv_id — uniquely identifies a worker group. 

• rdzv_backend=c10d, rdzv_endpoint — define how workers discover each other. 

• master_addr, master_port — conventional process-group configuration for 

torch.distributed. 

This is aligned with PyTorch Elastic’s documented rendezvous model: rdzv_backend=c10d 

and rdzv_endpoint=<host>:<port> define where workers coordinate to form the process 

group [4]. 

Why we do it: it makes multi-node startup explicit and debuggable; when something fails, the 

endpoint and rendezvous ID are visible in logs and can be correlated across nodes. 

Cache discipline: isolate and purge compile/profiler caches per rank 

Purpose: Avoid stale or corrupted compilation artifacts across restarts and code changes. 

Technique: We set per-job/per-rank cache paths: 

• TMPDIR=$CACHE_DIR/cache/$SLURM_JOBID 

• ORCHINDUCTOR_CACHE_DIR=..._$SLURM_NODEID_$SLURM_PROCID 

• TRITON_CACHE_DIR=..._$SLURM_PROCID 

• XDG_CACHE_HOME=..._$SLURM_PROCID 

and purge them before launch. 

Why we do it: torch.compile and Triton generate artifacts that can become corrupted or 

incompatible across code changes. Isolating caches reduces heisenbugs and avoids cross-job 

cache poisoning—especially important when running many restarts like in our case (at least 

every 5 days). 

MONITORING TOOLS wiring: project naming by mode & mode separation 

Purpose: Keep debug and production metrics logically separated while sharing infrastructure. 

Technique: 

• WANDB_PROJECT="GPT-NL-$MODEL_SIZE-train" for production 

• WANDB_PROJECT="GPT-NL-$MODEL_SIZE-train-$TRAIN_MODE" for debug 

• WANDB_MODE=online 

Why we do it: it keeps debug runs from polluting production dashboards while still exercising 
the full telemetry path. 

Checkpoint directory resolution and resume policy 

Purpose: Make resumption robust and predictable across restarts and node counts. 

Technique: 
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11. We compute a default checkpoint directory per run that maps to the SLURM_JOB_ID 

so its unique (see code below) 

12. Consult the state file (see B8) to check whether there is an existing run to resume 
from; if so, override CHECKPOINT_DIR. 

13. Discover the latest step<N> subdirectory and export LOAD_PATH accordingly, in case 

OLMo-core’s latest symlink is missing (see code below) 

# point 1 
CHECKPOINT_DIR="$PROJECT_SPACE/$MODEL_NAME-nodes-$SLURM_NNODES-mbs-$PER_DEV
ICE_BATCH_SIZE-gas-$GRADIENT_ACCUMULATION_STEPS-$SLURM_JOB_ID" 
 
# point 3 
LATEST_CHECKPOINT=$(ls "$CHECKPOINT_DIR" | grep '^step[0-9]\+$' | ... | tai
l -n1) 
export LOAD_PATH="$CHECKPOINT_DIR/step$LATEST_CHECKPOINT" 

In our configuration we further set the steps that we store checkpoints: 

save_interval: 880 
ephemeral_save_interval: 110 
save_async: true 

Why we do it: we bias toward resume correctness (perfect resume without data repetition 
across several node counts) by checkpointing on carefully chosen step multiples, and we add 
ephemeral checkpoints as a higher-frequency safety net. OLMo-core’s checkpoint callback is 
designed for exactly this pattern: permanent amd ephemeral intervals. 

State file + auto-restart: training as a resumable workflow 

Purpose: Decouple the logical training run from individual SLURM jobs. 

Technique: 

• train_state_utils.sh maintains a JSON state keyed on (user, model, nodes, 
per_device_batch_size, grad_accum) and tracks: 

o checkpoint_dir, existence 

o job_id, runtime, status, timestamp 

o restart_count 

• handle_restart(exit_code, checkpoint_dir, script_path, max_restarts): 

o Exit 0 -> mark completed and optionally stop. 

o Exit 1 -> mark failed and, if allowed, re-queue. 

o Other -> mark failed and require manual intervention. 

Why we do it: This pattern mirrors standard HPC practices for managing long-running work-
flows over multiple jobs. SLURM jobs are ephemeral; the training run is the persistent entity. 
The state file makes that persistence explicit and supports. At scale, transient failures (file sys-
tem hiccups, node faults, scheduler preemption) are expected; automatic resubmission re-
duces operator toil and shrinks dead time. 

Time-aware graceful termination 

Purpose: Distinguish wall time preemption from manual cancellation and decide whether to 
restart. 

Technique: 

• In production, we install trap graceful_exit TERM. 
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• On SIGTERM: 

1. Query TimeLimit via scontrol show job. 

2. Compute remaining seconds. 

3. If close to zero, treat as walltime preemption (exit 0). 

4. Otherwise, treat as manual cancel (exit 1). 

• Then delegate to handle_restart. 

Why we do it: SLURM typically sends SIGTERM before SIGKILL; we use that window to exit 
cleanly and optionally restart, rather than losing progress to SIGKILL. This is consistent with 
SLURM’s recommendation to use pre-kill signals for job cleanup. 

GPU health check 

Purpose: Fail fast if requested GPUs are degraded (thermal issues, ECC errors, or intercon-
nect problems). 

Technique: 

• When --gpu-health-check is enabled, we: 

o Run an Apptainer (.sif) image across nodes, performing GPU stress and 

diagnostic tests. 

o Parse the container’s summary and abort the run if any GPU fails. 

Profiling: Nsight Systems traces on demand 

Purpose: Obtain detailed CPU/GPU timeline traces for throughput bottleneck analysis. 

Technique: If --profiling is set, we wrap the launcher with: 

nsys profile --stats=true --trace=cuda \ 
  --cuda-memory-usage=true \ 
  -o traces/trace_${SLURM_JOBID} \ 
  $TORCHLAUNCHER 

NVIDIA Nsight Systems is a system-wide performance analysis tool designed to identify bot-
tlenecks across CPUs and GPUs. 

Why we do it: During early experimentation or debug phases we wanted to check the usage 

of our GPU Nodes with more granularity. Still, Nsight Systems tracing can add non-trivial 

overhead, especially with broad CUDA API tracing and memory tracking enabled, so we use it 

selectively in short debug runs rather than in every production job [10]. 

2.4.3 Phase C -: Monitoring 

Following OLMo-core’s training module which is designed for async metric logging and flexible 
callbacks, we treat monitoring as first-class control plane, not an afterthought. 

Metric collection strategy: planes and namespaces 

Purpose: Organize metrics so we can rapidly distinguish between optimization, system, and 
workflow issues. 
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Technique: We group metrics into: 

1. Training dynamics (model health): 

o loss curve stability, LR, grad norms, clipping activity 

o divergence indicators around schedule transitions (stable → decay) 

2. System efficiency (throughput health): 

o tokens/sec and step-time variance 

o Dataloader stalls vs comm stalls vs compile regressions 

3. Run continuity (resumability health): 

o time since last permanent and ephemeral checkpoint 

o correctness of resume (no data repetition, consistent step counters) 

o restart loop behavior (state file + restart count) 

How it works in our stack: We record metrics in the train module (loss, lb, grad norm, etc.) 
and allow OLMo-core to gather/reduce them across ranks. Train modules are explicitly respon-
sible for recording core metrics via record_metric() / record_ce_loss(), with optional 

namespaces and reduction behavior. 

Why we do it: long-running pre-training fails in predictable ways; separating failure modes by 

plane lets us set sharper alerts and faster root-cause. 

Throughput + memory monitoring 

Purpose: Detect performance regressions and emerging OOM risks. 

Technique: We rely on built-ins: 

SpeedMonitorCallback: monitors throughput and is automatically added if not configured 

(we still usually configure it explicitly so dashboards stay consistent across runs). 

GPUMemoryMonitorCallback: adds GPU memory statistics as metrics. 

This combination lets us catch: 

• Dataloader stalls (tokens/sec collapses, batch_load_time rises) 

• silent OOM risk (allocated/reserved creeping up) 

• interconnect regressions (step time rises while compute stays flat) 

In-loop eval monitoring (lightweight guardrails) 

Purpose: Detect capability drift and data/recipe regressions without expensive external eval-
uation. 

Technique: We run periodic in-loop evaluations using the evaluator callback framework: 

• EvaluatorCallback runs evaluators at a specified interval. 

• LMEvaluatorCallbackConfig and DownstreamEvaluatorCallbackConfig config-

ure common evals. 

We treat eval as a drift detector, not a leaderboard generator: 

• small, fixed validation sets for perplexity slope 

• a few targeted tasks and benchmarks (e.g. arc_challenge_test_rc_5shot, hellaswag-
nl_rc_0shot, etc.) to detect capability regressions after recipe changes 
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2.4.4 Phase D - Logging 

Logging is where monitoring data becomes durable evidence. We log at three layers: SLURM, 
state files, and training metrics/artifacts. 

SLURM logs are centralized and symbolically linked back into the repo workspace 

Purpose: Preserve complete job stdout/stderr and make it easy to find per job. 

Technique: Both debug and prod send logs to: 

--output=/projects/prjs0986/wp14/olmo-logs/%j.out 
--error=/projects/prjs0986/wp14/olmo-logs/%j.err 

Then we create symlinks: 

ln -sf /projects/olmo-logs/${SLURM_JOB_ID}.out $SLURM_SUBMIT_DIR/logs/${SLU
RM_JOB_ID}.out 
ln -sf /projects/olmo-logs/${SLURM_JOB_ID}.err $SLURM_SUBMIT_DIR/logs/${SLU
RM_JOB_ID}.err 

Why we do it: centralized storage avoids node-local loss; local symlinks make it easy for us 
to find the right logs from the project directory of our WP. 

State logging 

Purpose: Provide a single, structured source of truth for each logical run. 

Technique: We write a single state JSON per logical run key and update it on transitions: 

The state file encodes: 

• checkpoint_dir, existence 

• job_id, hostname, num_nodes 

• runtime, status (starting, running, completed, failed, max_re-
starts_reached) 

• restart_count 

We update it on every transition and archive it when runs finish or are exhausted. 

Why we do it: This way we create a user-friendly, machine-readable source of truth. It is 

intentionally append-free so that external automation can simply read the latest state without 

parsing logs. 

Distributed logging hygiene (rank filtering + warnings everywhere) 

Purpose: Avoid log storms from thousands of ranks while keeping critical messages visible. 

We initialize the training environment with OLMo-core’s prepare_training_environment(), 

which sets up distributed process groups and supports mixed backends (cpu:gloo,cuda:nccl). 

We intentionally keep a CPU backend available so that async checkpointing and bookkeeping 

collectives do not block training compute. 

We also use log_filter_type semantics so that only selected ranks emit verbose logs (while 

warnings/errors always surface). 

Console logging 
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Purpose: Provide quick, at-a-glance progress information without dashboards. 

Technique: We use the console logger callback patterns so that: 

• step-level progress is visible without opening dashboards 

• periodic metric summaries are emitted at a controlled interval 

This is coded in the callbacks API (see ConsoleLoggerCallback and the callback lifecycle 

hooks). 

Experiment trackers and monitoring tools semantics 

Purpose: Create a rich, query enabled history of experiments: metrics, configs, and artifacts 
[11]. 

Technique: 

• We attach WandBCallback to the trainer with: 

o enabled=True in production. 

o name=config_yaml["run_name"]. 

• Monitoring tools log metrics every step from rank 0 and attaches configuration dic-
tionaries for full reproducibility. 

Implication. Even if metrics_collect_interval is > 1, the tracker still sees dense curves; 

we therefore keep the metric vocabulary compact to avoid excessive volume. 

Checkpoint logging & retention 

Purpose: Balance compute loss (since last checkpoint) vs storage and IO overhead, while 
supporting flexible resumption. 

Technique: We configure checkpointing as a logging artifact pipeline: 

CheckpointerCallback( 
    save_interval=save_interval, 
    ephemeral_save_interval=ephemeral_save_interval, 
    save_async=True,) 

• Permanent checkpoints for every 880 steps provide stable rollback points and are in-
tended to be retained long term. 

• Ephemeral checkpoints for every 110 steps provide fine-grained restart points but 
can be pruned aggressively once upstream runs are healthy. 

We heavily use async checkpointing and more specific ephemeral checkpoints that are in-
tended for frequent recovery points (every 110 steps) and are perfect for resuming on (22, 11, 
10, 5, 2) nodes. 

2.4.5 References 

[0] OLMO-core 

[1] Scaling Laws for Neural Language Models 

[2] Decoupled Weight Decay Regularization 

[3] On the difficulty of training Recurrent Neural Networks 

[4] 2 OLMo 2 Furious 

https://olmo-core.readthedocs.io/en/stable/overview/introduction.html
https://arxiv.org/pdf/2001.08361/1000
https://arxiv.org/pdf/1711.05101
https://arxiv.org/pdf/1211.5063
https://arxiv.org/pdf/2501.00656
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[5] Understanding Warmup-Stable-Decay Learning Rates: A River Valley Loss Landscape 

Perspective 

[6] FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning 

[7] FLASHATTENTION: Fast and Memory-Efficient Exact Attention with IO-Awareness 

[8] SLURM sbatch 

[9] PyTorch torchrun 

[10] NVIDIA Nsight Systems 

[11]  Experiment Tracking 

 

2.5 Evaluation 
During pre-training of the GPT-NL model, we evaluate its performance on both the training 

objective (next-word prediction) as well as downstream tasks, such as reasoning and reading 

comprehension. 

During training, we continuously monitor model performance using two primary metrics: 

• Cross-entropy loss: the average negative log-likelihood of predicted token probabili-
ties, tracked on the training set (training dynamics) and validation set (generaliza-
tion). 

• Perplexity: the exponential of cross-entropy loss, representing how surprised the 
model is by actual next tokens in unseen text. 

The graph below shows cross-entropy training loss across the entire trajectory, with phases 

color-coded for clarity. We observe consistent downward trends indicating stable dynamics, 

with occasional spikes that the model overcame autonomously. Key observations include: (1) 

a noticeable jump between Epoch 1 and Epoch 2 due to intentional data distribution changes, 

(2) steeper loss decreases during annealing phases from reduced learning rates, which 

extracts final performance gains, and (3) the end-of-Epoch-2 checkpoint was annealed mid-

training for intermediate checkpoints, while Epoch 3 runs in parallel with Epoch 2 annealing to 

maintain progression. 

 

Figure 10: Pre-training loss 

https://arxiv.org/pdf/2410.05192
https://arxiv.org/pdf/2410.05192
https://arxiv.org/pdf/2307.08691
https://openreview.net/pdf?id=H4DqfPSibmx
https://slurm.schedmd.com/sbatch.html
https://docs.pytorch.org/docs/stable/elastic/run.html
https://developer.nvidia.com/nsight-systems
https://docs.wandb.ai/models/tutorials/experiments
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We further monitor validation cross-entropy separately for each language and quality bucket to 

track performance across our diverse data distribution, with Dutch and English subdivided by 

quality levels. 

Epoch 1 to Epoch 2 transition: A clear inflection point occurs when new high-quality Dutch 

data and curated code data (with longer sequences) were incorporated mid-training. The Code 

bucket shows the most dramatic effect—loss drops sharply, indicating the model rapidly adapts 

to the longer, curated samples. The Dutch high-quality data similarly benefits from this shift. 

The New Dutch bucket, however, experiences a sudden improvement trajectory, accelerating 

its decline as the proportion of these sources increases in the training mix. 

Annealing phases: When transitioning to annealing phases (both epoch-2-annealing and 

epoch-3-annealing), we deliberately shift toward high-quality sources only. This creates an 

interesting divergence: loss increases on low/medium-quality data (the model becomes less 

confident on lower-quality text), while it continues decreasing on high-quality data. This is the 

intended behavior—biasing the model toward generating high-quality output. The spikes visible 

in several buckets during annealing correspond to this intentional data distribution shift. 
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2.5.1 In-loop evaluation 
 

To evaluate downstream task performance during pre-training, we implement the in-loop 

evaluation mechanism from OLMo, adapted to our training system (Groeneveld, Dirk, et al.). 

Rather than static post-training audits, this dynamic approach enables real-time issue 

detection. Our benchmarks assess Reasoning and Commonsense (HellaSwag, PIQA) and 

Language Understanding (MMLU, ARC): 

 

 

 

 

Evaluation 
Task Name 

Description Example Evaluation 
(input: output) 

Reference 

arc_chal-
lenge_test_rc
_5shot 

ARC Challenge: hard 
multiple‑choice sci-

ence QA, 5‑shot setting 

Input: five example QA 
pairs + new question. 
Output: predicted an-
swer choice. 

Clark et al., 2018 

arc_easy_test
_rc_5shot 

ARC Easy: easier mul-
tiple-choice science 
QA, 5-shot setting 

Input: five examples + a 
new ARC-Easy question 
-> model predicts an-
swer. 

Clark et al., 2018 

piqa_val_rc_5
shot 

PIQA: physical com-
monsense multiple-
choice, validation split, 
5-shot 

Input: five goal/choice 
examples + new goal. 
Output: chooses correct 
solution. 

Bisk et al., 2020 

hellaswag-
nl_rc_0shot 

HellaSwag: com-
monsense next-sen-
tence inference, zero-
shot setting 

Input: context. Output: 
selects most plausible 
continuation. 

Zellers et al., 2019 

mmlu-
nl_stem_mc_5s
hot 

MMLU: multilingual 
multiple-choice exam-
style questions, 5-shot 

Input: five example Q-A 
pairs + a new multiple-
choice question. Output: 
predicted choice. 

Hendrycks et al., 2021 

 

As there are no official Dutch versions of some of the tasks we are interested, we have used 

the machine translated ones for the Dutch language, namely Hellaswag-nl and MMLU-nl. 

In addition, due to the big size of some of these tasks, we have developed a truncation 

mechanism and dynamically select part of the total available sets during our evaluations. 

Setting Definition Example Prompt Structure 

0-shot The model is given only the task descrip-
tion (or question) with no examples be-
forehand. 

“Question: What is the capital of 
France? Choices: A) Berlin B) 
Paris C) Madrid D) Rome. An-
swer:” 

5-shot The model is given five examples of the 
task with correct answers (few-shot 
learning) before the new test question. 

“Q1: … → A1: … \n Q2: … → 
A2: … \n … Q5: … → A5: … \n 
Now: Question: …” 

https://github.com/allenai/OLMo-in-loop-evals
https://github.com/allenai/OLMo-in-loop-evals
https://arxiv.org/pdf/2402.00838
https://arxiv.org/pdf/1803.05457
https://arxiv.org/pdf/1803.05457
https://arxiv.org/pdf/1911.11641
https://arxiv.org/pdf/1905.07830
https://arxiv.org/pdf/2009.03300
https://huggingface.co/datasets/alexandrainst/m_hellaswag/viewer/nl?views%5B%5D=nl
https://huggingface.co/datasets/alexandrainst/m_mmlu/viewer/nl?views%5B%5D=nl_train
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We employ both 0-shot and 5-shot settings to measure baseline generalization and assess in-

context learning ability—whether the model can adapt to tasks without gradient updates. 

Knowledge and Commonsense Tasks: Results reveal distinct learning trajectories. ARC and 

PIQA show rapid initial improvement in Epoch 1 followed by convergence toward performance 

plateaus. The model achieves notably higher accuracy on ARC-Easy (~0.6) and PIQA (~0.8) 

versus ARC-Challenge (~0.4), indicating solid commonsense reasoning but limited scientific 

reasoning capability. These performance differences reflect task difficulty—easier tasks 

provide more reliable patterns in the pre-training distribution. 

Reasoning Tasks: A critical limitation emerges for HellaSwag-NL and MMLU-NL, which 

remain near or below random baseline (0.25 for 4-choice) throughout training. HellaSwag-NL 

exhibits high variance early before stabilizing around chance levels, suggesting either 

insufficient reasoning capability or limited transfer from pre-training to complex multi-step 

reasoning. This knowledge-reasoning gap represents an important avenue for future 

improvements. 
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2.5.2 Out-of-loop evaluation 
Out-of-loop evaluation is performed after pre-training has completed and does not influence 

the training process itself. Evaluation uses frozen model checkpoints and assesses 

downstream task performance, generalization, and alignment but do not affect training 

dynamics or model updates. We employ EuroEval as our offline benchmarking framework to 

comprehensively assess Dutch language performance. EuroEval provides a standardized, 

robust evaluation pipeline that: 

• Covers many task types relevant to Dutch, such as sentiment analysis, named‑entity 
recognition, linguistic acceptability, reading comprehension, knowledge tasks, com-
mon-sense reasoning, and summarization. 

• Uses bootstrapped evaluation, running each model–task pairing 10 times with 
resampled data and reporting mean scores with 95% confidence intervals, yielding 
statistically reliable performance estimates. 

We run EuroEval periodically, selecting the latest checkpoint and comparing the progress of 
GPT-NL in various tasks. 

Below we list an overview of the Dutch tasks integrated into EuroEval: 

Task Category Dutch Datasets Evaluation Setup & Notes 

Sentiment Classi-
fication 

DBRD (Dutch book 
reviews) 

Few-shot prompt (12 examples), generative 
sentiment label output (“positief/negatief/—”). 

Named Entity 
Recognition 

CoNLL-nl Few-shot generative output as JSON dictionary 
of entities. 

Linguistic Accept-
ability 

ScaLA-nl, (Unoffi-
cial) Dutch CoLA 

Few-shot prompts with “correct”/“incorrect” la-
bels. 

Reading Compre-
hension 

SQuAD-nl, (Unoffi-
cial) BeleBele-nl, 
MultiWikiQA-nl 

Generative answer output via prompt templates. 

Knowledge MMLU-nl, (Unoffi-
cial) ARC-nl 

Few-/zero-shot question answering tasks. 

Common-sense 
Reasoning 

HellaSwag-nl, (Un-
official) Gold-
enSwag-nl 

Select most plausible continuation via genera-
tive setup. 

Summarization WikiLingua-nl Summarization of Dutch text, generative output. 

 

https://euroeval.com/
https://euroeval.com/datasets/dutch/


 

 

 TNO Public  GPTNL-DEL-4002-[1.0] 

 TNO Public 47/109 

Within WP21, new Dutch benchmarks are in development that will be included in EuroEval, 

covering additional tasks like simplification and areas like bias. 
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We can see from this table that generally later epochs have better results. 

Sentiment classification 

SST5 (EN) and DBRD (NL). We reach 90% on the Dutch DBRD, while the English stays at 
58%. 

Named Entity Recognition 

Conll-en and Conll-nl have moderate results: 38% EN and 36% NL. There is a slight improve-
ment from epoch 1 to the following epochs, but not a drastic one. 

Linguistic acceptability 

SCALA-EN and SCALA-NL. The metrics improve with the epochs but are very low (17% EN 
and 19% NL). This is one of the problematic tasks, as the model only has to output a letter as 
answer (multiple choice). 

Reading comprehension 
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SQUAD and SQUAD-NL. Moderate performances: 66% EN and 51% NL. 

Knowledge 

LIFE-IN-THE-UK and MMLU-NL: knowledge. The metrics improve but are very low (10% EN 
and 2% NL). Also here, multiple choice is requested to the model. 

Common sense reasoning 

Hellaswag and Hellaswag-NL. For this task we have the worst results: 3% EN and -2% NL. For 
the Dutch version, the results for epoch-3 are also worse than the results for epoch-2. 

Summarization 

cnn-dailymail and wiki-lingua-nl. For this task, the results are acceptable: 67% EN and 61% 

NL. 

 

2.6 Context Extension 
For LLMs, the context length refers to the maximum number of tokens an LLM can process 

within a single forward pass. It determines how far back the model can look when interpreting 

or generating text. A longer context length enables the model to capture broader dependencies 

and maintain coherence across extended sequences [1]. 

GPT-NL is pretrained with a native context length of 4096 tokens. At a later stage, the 

development team included an effort to extend the supported context length using techniques 

such as RoPE Scaling and gradually increasing the context length in the pretraining and 

instruction fine-tuning phases. 

Rotary Positional Embeddings (RoPE) encode relative positional information by rotating token 

representations in attention space [2]. RoPE scaling methods, such as NTK or YaRN [5] 

scaling, adjust the frequency of these rotations to allow extrapolation beyond the context 

lengths seen during training. While RoPE scaling improves numerical stability at longer 

contexts, it does not replace the need for exposure to long sequences during training. 

2.6.1 Increasing Context Length 
Extending a model’s context length typically requires a continued pretraining at progressively 

larger sequence lengths, so the model learns long-range dependencies. Curriculum learning 

is commonly used, where the sequence length is increased in stages (for example, 4k to 8k to 

16k) to improve stability and performance. Context lengthening usually occurs during mid-

training, after the model has already learned short-range dependencies, ensuring that 

attention patterns can adapt to longer sequences without destabilizing previously learned 

knowledge. Depending on the positional encoding method, additional steps may include 

expanding positional embedding matrices or applying RoPE scaling after intermediate training 

phases [6]. 

Within GPT-NL, the pretraining data mixture is split into a new subset of samples which are of 

16k, 32k or 64k tokens. These subsets can be used for the curriculum learning-based mid-

training. 

Evaluation and Benchmarks 

To evaluate GPT-NL capabilities and performance after Context Extension, we used 2 

benchmarks: 
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• Needle in the Haystack [4]: A synthetic long-context retrieval benchmark that tests 
a model’s ability to locate a specific piece of information (the “needle”) within a large 
body of irrelevant text (the “haystack”), measuring basic long-range memory and re-
call performance. 

• RULER [3]: A more comprehensive long-context evaluation suite that extends be-
yond simple retrieval to include multi-needle, multi-hop tracing, aggregation, and 
question answering tasks, aiming to assess a model’s true long-context understand-
ing capabilities as context length increases. 

GPT-NL base: 

  

 

GPT-NL with context extension:  

 

Here we provide the complete results for both tasks: Needle in the Haystack (niah) and RULER. 

Llama 3.1 

Task 4096 8192 16384 

niah_multikey_1 1.0000 1.0000 1.0000 

niah_multikey_2 1.0000 1.0000 1.0000 

niah_multikey_3 0.9900 0.9980 0.9900 

niah_multiquery 0.9995 1.0000 1.0000 

niah_multivalue 0.9910 0.9935 0.9930 

niah_single_1 1.0000 1.0000 1.0000 

niah_single_2 1.0000 1.0000 1.0000 
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niah_single_3 0.9960 0.9980 1.0000 

ruler_cwe 0.9978 0.9776 0.6930 

ruler_fwe 0.9620 0.9173 0.9660 

ruler_qa_hotpot 0.6540 0.6300 0.5820 

ruler_qa_squad 0.7710 0.7303 0.7090 

ruler_vt 0.9996 1.0000 0.9992 

Average 0.9508 0.9419 0.9170 

 

GPT-NL 

Task 4096 8192 16384 

niah_multikey_1 0.9980 0.9960 0.9280 

niah_multikey_2 0.9860 0.9900 0.9720 

niah_multikey_3 0.6940 0.5000 0.5120 

niah_multiquery 0.9790 0.9430 0.7860 

niah_multivalue 0.6620 0.5690 0.4815 

niah_single_1 1.0000 1.0000 0.9980 

niah_single_2 1.0000 1.0000 1.0000 

niah_single_3 0.7060 0.7600 0.6120 

ruler_cwe 0.6438 0.3544 0.2354 

ruler_fwe 0.7960 0.8080 0.8353 

ruler_qa_hotpot 0.4100 0.3800 0.3480 

ruler_qa_squad 0.5192 0.4138 0.4168 

ruler_vt 0.9956 0.9896 0.9732 

Average 0.7992 0.7464 0.6999 

 

Performance comparison 

Model / Metric 4096 8192 16384 

GPT-NL 0.7992 0.7464 (6.61%) 0.6999 (12.45%) 

Llama 3.1 0.9508 0.9419 (0.94%) 0.9170 (3.52%) 

 

Remark: These results are using the epoch 2 weights, not the final model weights. 

What all these tables mean: 

• GPT-NL loses ~6.6% by 8K, and a total of ~12.5% by 16K (relative to 4K baseline). 

• Llama 3.1 only loses ~0.9% at 8K, and ~3.5% at 16K. 

Thus Llama 3.1 is significantly more robust to context scaling — its degradation is only a frac-
tion of GPT-NL. In practical terms, Llama 3.1 retains high performance even when context is 
quadrupled in length, while GPT-NL degrades more noticeably. 

To sum up: 

• Adding dynamic RoPE scaling does not hurt performance and enables longer context 
performance 
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• The context lengthening performance is very inferior to any SOTA models, even 
smaller models from a couple of years ago 

• Even on a native 4k context length our models perform bad (according to benchmark 
results). Finetuning does not have a significant negative effect on the context length-
ening 

2.6.2 References 

[1] A Controlled Study on Long Context Extension and Generalization in LLMs 

[2] LongRoPE: Extending LLM Context Window Beyond 2 Million Tokens 

[3] RULER: What’s the Real Context Size of Your Long-Context Language Models? 

[4] Needle in the Haystack for Memory Based Large Language Models 

[5] YaRN: Efficient Context Window Extension of Large Language Models 

[6] Roformer: Enhanced transformer with rotary position embedding 

 

2.7 Data folder Structure and Source Code 
Organization 
The training set-up is based on the existing implementation of AI2’s OLMo(-core). Initially we 

used the original OLMo codebase, but during development switched to the newest, optimized 

OLMO-core. 

For our original comparison between using the HuggingFace Transformers framework and the 

AI2 OLMo framework, see the results of the November 2024 experiments. The OLMo training 

code, written in native PyTorch, showed a substantially better performance in terms of speed. 

During our initial development, the OLMo-core package was published by AI2. Some initial 

tests comparing our setup using this framework versus using OLMo showed a ~20% speedup 

in throughput (measured in tokens/device/sec). This improvement in performance as well as 

the more up-to-date support and maintenance on the OLMo-core package led to the decision 

to switch framework. 

The code base has been split up into several modules: 

2.7.1 OLMo-Core 
 

A fork from the original OLMo-core code base. This allows us to make small changes 

specific to our setup in a structured way. Changes include adding the GPT-NL tokenizer to 
the configuration, updating evaluation and conversion scripts. 

 

/olmo-core 
└── /docs 
└── /src 
    ├── /examples # training recipe examples  
    └── /olmo_core 
        ├── /data # scripts fro data handling 
        ├── /distributed # scripts for distributed training 
        ├── /eval # scripts for evaluation 

https://arxiv.org/pdf/2409.12181
https://arxiv.org/pdf/2402.13753
https://arxiv.org/pdf/2404.06654
https://arxiv.org/pdf/2407.01437?
https://arxiv.org/pdf/2309.00071
https://arxiv.org/pdf/2104.09864
https://allenai.org/olmo
https://github.com/allenai/OLMo
https://github.com/allenai/OLMo-core
https://ci.tno.nl/gitlab/gpt-nl/model-development/olmo-core
https://github.com/allenai/OLMo-core
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        ├── /float8 # scripts for precision handling 
        ├── /internal # scripts for leaderboard ranking 
        ├── /kernels # scripts for MoE kernel 
        ├── /launch # scripts for training launchers 
        ├── /nn # scripts for neural networks 
        ├── /ops # scripts for MoE operations 
        ├── /optim # scripts for optimization routines 
        ├── /train # scripts for training routines 
    ├── /scripts # various sizes training recipes  
    ├── /test # test suite for olmo_core components  

2.7.2 Pytorch native 
 

All GPT-NL code, including scripts for running the distributed training, evaluation, inference 
along with installation and debugging scripts. 

 

/pytorch_native 
└── /config # model and train configuration 
│   ├── gpt-nl-1B.yaml 
│   ├── gpt-nl-26B.yaml 
└── /logs # output folder of the jobs  
│   ├── job_number.out 
│   ├── job_number.err 
└── /scripts 
    ├── /conversion # checkpoint conversion recipe 
    ├── /evaluation # checkpoint evaluation scripts 
    ├── /inference # inference workflow scripts 
    ├── /installation # installation scripts 
    │   ├── install_olmo_snellius.sh 
    │   ├── update_olmo_local_environment.sh 
    └── /snellius # Training job scripts 
    │   ├── .env   
    │   ├── copy_to_archive.job 
    │   ├── copy_to_snellius.job 
    │   ├── deploy_to_project_space.sh 
    │   ├── launch_train_debug.job 
    │   ├── launch_train_prod.job 
    │   ├── train.sh 
    │   ├── train_state_utils.sh 
    └── cli_helpers.sh 
    └── train.py # main training logic 
└── README.md  
└── pyproject.toml 

For more information on the Training workflow please look at Section 2.4. 

2.7.3 OLMo-in-loop-evals 
A fork from the original OLMo-in-loop-evals, updated to include Dutch benchmarks. 

 

/olmo-in-loop-evals 
└── /olmo_eval 

https://ci.tno.nl/gitlab/gpt-nl/model-development/pytorch_native
https://ci.tno.nl/gitlab/gpt-nl/model-development/olmo-in-loop-evals
https://github.com/allenai/OLMo-in-loop-evals
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    ├── /hf_datasets # local evaluation datasets 
    └── /oe_eval_tasks # configuration files for eval tasks 
    └── /tokenizers 
    ├── metrics.py 
    ├── tasks.py 
    ├── tokenizer.py 
    ├── util.py 
    ├── version.py 
├── /scripts # release scripts 
├── /tests # test suite for eval tasks 
└── README.md  
└── pyproject.toml 

2.7.4 Model conversion 
During training, the model checkpoints are saved as a PyTorch model, as well as in a 

distributed format (.distcp). Since many downstream applications use the 

HuggingFace/Transformers library, we convert the model checkpoints to the HuggingFace-

compatible safetensors format in bfloat16 precision. 

2.7.5 Practical notes 

2.7.5.1 Installation 

It is adviced to clone all the repositories and start the installation following the below order: 

This workflow assumes access to Snellius 

cd pytorch_native 
chmod +x scripts/installation/install_olmo_snellius.sh 
bash scripts/installation/install_olmo_snellius.sh 
 
source venv/bin/activate  
 
cd ../olmo-core 
pip install -e . 
 
cd ../olmo-in-loop-evals 
pip install -e . 

2.7.5.2 Logs and workspace 

All of our logs and checkpoints are store to a shared place $PROJECT_SPACE under the OLMo-
core folder. There, each training job creates a folder with the format: $PRO-
JECT_SPACE/$MODEL_NAME-nodes-$SLURM_NNODES-mbs-$PER_DEVICE_BATCH_SIZE-gas-
$GRADIENT_ACCUMULATION_STEPS-$SLURM_JOB_ID, e.g. gpt-nl-26B-nodes-22-mbs-12-
gas-3-12967709. 

The folder has the below structure: 

/OLMo-core 
└── /checkpoint_step_number 
└── ... 
│   ├── /model_and_optim 
│   ├── /train 
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│   ├── .metadata.json 
│   ├── config.json 
│   ├── data_paths.txt 
└── /wandb 
│   ├── /latest_run 
│   ├── debug-internal.log 
│   ├── debug.log 
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3 Architecture of the Instruction 
Fine-Tuning 

In this set of pages, we describe the GPT-NL fine-tuning approach that we carried out between 

July and December 2025. We start with a brief motivation about why pre-training itself is not 

enough, which type of fine-tuning we employ and why. Then we give an overview of the fine-

tuning process as we implement it and provide an outline of content in this chapter. 

A pre-trained model is a raw language generator that is not useful yet: it does not follow 

instructions. It is optimised to find a likely next token (a numerical representation of words, or 

parts of words), given the previous tokens. What is likely to follow in a text, is not necessarily 

the most useful. Consider the example below, where the base model is asked in which year a 

particular film was released. The model produces a series of years, instead of formulating a 

coherent answer that provides a (single) answer to this question. 

Example: 

Q: In which year was The Godfather first released? 
A: 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 

Modern post-training (i.e., everything that comes after pre-training) is a series of fine-tunes with 

different aims that build upon each other and require careful design: 

• Instruction fine-tuning teach formatting and base of instruction following behaviour 
(e.g., chat interactions, answering questions) 

• Preference tuning: align to human preferences (safety, tone of voice) 

• Reinforcement learning: boost performance on verifiable tasks (e.g., math, precise 
formatting, reasoning) 

As the resources for this activity in this stage of the GPT-NL project are constrained (datasets, 

compute, and time), we resort to instruction fine-tuning only for now. 

3.1 GPT-NL Instruction fine-tuning 
Let’s start with a definition of instruction fine-tuning: 

Instruction fine-tuning is defined as (most-often) supervised fine-tuning 

(SFT) on instruction-demonstration data, potentially in a conversational 

format. This type of training makes that the model can follow 

instructions and make (useful) predictions (potentially with CoT) in a 

zero-shot (or few-shot) setting. 

 

Supervised fine-tuning trains the model on instruction-response pairs (either single-turn 

prompt-completion or multi-turn conversational exchanges) by masking the input tokens and 

computing cross-entropy loss only on the output tokens (assistant responses), teaching the 

model to generate appropriate responses rather than predict any next token. This approach 

transforms the pre-trained language model from a raw text generator into an instruction-

following assistant that produces coherent, task-oriented outputs. 
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Post-training can elicit various capabilities and behavioral traits in the model. Given the broad 

range of possible objectives, we have narrowed these down to a set of priority goals that are 

important, achievable through supervised fine-tuning, and for which data is available. We will 

refer to this set of objectives as the GPT-NL Priorities in figures. The table below recaps the 

objectives that made it to the final selection. 

 

Type Objective Relative 
priority 

Dataset available Main 
strategy 

Instruction 
Following 

General instruction following High   Yes   Yes 

Instruction 
Following 

Supporting chat-style interac-
tion 

Low   Yes (OASST)   Yes 

Instruction 
Following 

Precise formatting following 
(JSON) 

Low A bit SciRIFF Maybe 

NLP Tasks Specializing in main GPT-NL 
NLP tasks 

High   Yes (GPT-NL IT 

dataset) 

  Yes 

NLP Tasks RAG High Only contextual QA   Yes 

NLP Tasks Generalizing to a broader set 
of GPT-NL tasks 

Low   Yes (FLAN)   Yes 

Long Con-
text 

Longer context processing 
than the base model (>4096) 

Medium Yes, if continual 
pre-training 

  Yes 

Knowledge Establishing solid knowledge 
recall 

Medium   Substantial QA 

data 

  Yes 

 

Examples of objectives that did not make it to this priority list include multi-lingual capabilities 

like translation, precise instruction following (e.g., writing exactly three paragraphs when 

instructed), and safety objectives. The latter category encompasses multiple aspects, such as 

producing misinformation or disinformation as well as generating harmful content. While these 

aspects are important for the project, they are not included in this initial priority list because we 

do not have data available for these objectives and other types of fine-tuning (e.g., preference 

fine-tuning) might be more suitable for addressing them. 

3.1.1 GPT-NL instruct dataset 
GPT-NL set out to create its own Dutch instruction fine-tuning dataset, consisting of ~15K 

prompt-completion pairs. The dataset has been created by human annotators of one 

independent company, following detailed instructions. The dataset is subdivided in a few tasks: 
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Figure 11: Task distribution GPT-NL Instruct Dataset 

 

3.1.2 Overall instruction fine-tuning process 
 

 

Figure 12: Fine-tuning Overview 

The overall process (visualised in the diagram above) takes as input a pre-trained base model 

along with the GPT-NL instruction dataset and other openly available datasets, and produces 

an instruction fine-tuned model checkpoint. Since the pre-training pipeline may produce 

multiple versions of the base model, fine-tuning can be performed on different base 

checkpoints. Additionally, the fine-tuning pipeline experiments with different data selections for 

each base model, resulting in multiple fine-tuned variants per base checkpoint. 

1. Data preparation - Preparing the datasets into proper and unified prompt-completion 
format 

2. Data selection - Combining datasets in different proportions and filtering out parts of 
datasets 

3. Training - Supervised Fine-Tuning (SFT) implementation that modifies the model 
weights, with configuration, execution on Snellius HPC, and monitoring capabilities 

https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/fine-tuning-data-preparation.md
https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/fine-tuning-data-selection.md
https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/fine-tuning-training.md
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4. Evaluation - Evaluating model performance through internal and external bench-
marks, comparing fine-tuned variants, and analysing results across task categories 
and languages 

 

For a technical overview of how the codebase and data are organized, see Code and Data 

Organization. 

 

 

3.2 Fine-Tuning Data Preparation 
This section describes the data preparation process for GPT-NL instruction fine-tuning, which 

transforms diverse datasets into a unified format suitable for training. The pipeline handles 

dataset acquisition, standardization, filtering, and formatting to ensure consistent training data 

formats across multiple sources and languages. 

3.2.1 Why data preparation is critical? 
Raw datasets from different sources have inconsistent formats, varied quality, and different 

structures that make them unsuitable for direct use in fine-tuning. The data preparation pipeline 

addresses several key challenges: 

3.2.1.1 Format Heterogeneity 

Different datasets use incompatible schemas and field names. One dataset might use "ques-
tion" and "answer" fields, while another uses "input" and "output". Training frameworks 

like Hugging Face TRL require consistent formats with specific field names. Without standard-
ization, training scripts would need custom handling for each source, leading to parsing errors 
and inability to batch samples efficiently. The pipeline transforms all datasets into a unified 
schema (instruction, context, response, task_category, etc.). 

3.2.1.2 Quality and Noise in Crowdsourced Data 
Datasets from online forums and crowdsourcing platforms (e.g., Goeievraag.nl, 

OpenAssistant) contain data of varying levels of quality including factually incorrect information, 

incomplete responses, off-topic discussions, platform-specific artifacts, and toxic language. 

Training on low-quality data causes models to reproduce incorrect information, develop poor 

instruction-following capabilities, and amplify harmful patterns. The pipeline applies multi-stage 

filtering using PII detection, toxicity screening, and LLM-as-a-judge evaluation to ensure only 

high-quality examples are used. 

3.2.1.3 Task Distribution Imbalance 
Raw dataset collections often have severe imbalances in task types. Without explicit tracking 

and balancing, models can over-optimize frequent tasks at the expense of rare but important 

capabilities. Explicit task_category labelling (including automated inference for datasets 

lacking categories) enables visibility into task distribution, strategic data selection, and targeted 

augmentation of underrepresented capabilities. 

3.2.1.4 License Compliance and Data Provenance 
Datasets may have restrictive licenses (e.g., CC BY-SA requiring share-alike), contain AI-

generated content, or include content with unclear licensing terms. Using incompatible licensed 

data creates legal liability and may violate organizational policies. The pipeline implements 

https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/fine-tuning-evaluation.md
https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/fine-tuning-code-organization.md
https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/fine-tuning-code-organization.md
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systematic license review, filtering to approved licenses only (MIT, Apache-2.0, CC BY 4.0), 

and exclusion of LLM-generated content. 

3.2.1.5 Conversation Structure Inconsistencies 
Different datasets represent conversations in fundamentally different ways: single-turn Q&A, 

multi-turn dialogues with branching, instruction-response pairs without explicit roles, and 

complex nested contexts. Inconsistent handling leads to inefficient tokenization, incorrect 

training signals, and poor conversational performance. Specialized “unrolling” scripts transform 

diverse conversation structures into standardized role-based format (user/assistant 

messages). 

3.2.1.6 Model-Specific Template Requirements 
Modern instruction-tuned models expect specific formatting with special tokens (e.g., <bos>, 

<start_of_turn>, <end_of_turn>) that vary between model families. These templates 

define the training signals that teach models to distinguish between user inputs and model 

responses. Incorrect template applications cause models that cannot distinguish between 

turns, degraded instruction-following, and training instabilities. The pipeline uses tokenizer-

based template application to ensure model-specific formatting is correctly applied. 

3.2.2 Datasets 
This is a table of the datasets used for instruction fine-tuning. The number of samples is 

representative of the amount of the dataset that we consider for use, after the processing 

pipeline, but before the data selection process. The actual size might be larger, depending on 

the dataset. 

Dataset Domain Description # Sam-
ples 

Language Task Categories 

SciRIFF Science Instruction-follow-
ing tasks for scien-
tific literature 
understanding. 

99,194 English information_ex-
traction, multi-
ple_choice, 
qa_with_context, 
reasoning, sum-
marization 

Aqua 
RAT 

Math Math word prob-
lems with multiple 
choice answers 
and rationales. 

97,721 English reasoning 

Open-
Assis-
tant 
(OASST
1) 

General 
(practical, 
scientific, 
creative, 
etc.) 

Crowd-sourced 
multi-turn conver-
sations. 

25,224 English chat 

Narra-
tive QA 

Fiction, En-
tertainment 

QA pairs from 
books and movie 
scripts. 

18,083 English qa_with_context 

Goeiev-
raag.nl 

General Dutch Q&A forum 
similar to Quora. 

17,799 Dutch qa_no_context 

Aya Da-
taset 

General / 
Cultural 

Multilingual in-
struction dataset. 

5,032 English, 
Dutch 

brainstorming, 
chat, generation, 
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information_ex-
traction, multi-
ple_choice, 
qa_no_context, 
qa_with_context, 
reasoning, sim-
plification, sum-
marization 

SciTLD
R 

Science Extreme summar-
ies of scientific pa-
pers. 

431 English summarization 

Qasper 
Dataset 

Science QA dataset on sci-
entific papers. 

1,175 English qa_with_context 

FLAN 
(com-
bined) 

General Reformatted NLU 
datasets for zero-
shot & CoT 
prompting. 

129,176 English multiple_choice, 
reasoning, gen-
eration, 
qa_with_context 

Hug-
ging-
face H4 

General Small, hand-
crafted instruction 
dataset. 

248 English brainstorming, 
chat, generation, 
information_ex-
traction, multi-
ple_choice, 
qa_no_context, 
qa_with_context, 
reasoning, sim-
plification, sum-
marization 

SPIN General Manually gener-
ated prompt/com-
pletion pairs. 

15,000 Dutch brainstorming, 
chat, generation, 
multiple_choice, 
qa_no_context, 
qa_with_context, 
simplification, 
summarization 

— TO-
TAL — 

— — 409,083 — — 

3.2.2.1 Data Acquisition 
The data has highlighted above has been acquired from various sources such as the online 

datasets on HuggingFace or acquired through license purchase as is the case for 

Goeievraag.nl. Based on the requirements set by the GPT-NL project, only open-sourced 

datasets with the following license: MIT, CC BY-SA 4.0 or APache-2.0 were taken into 

consideration. Furthermore, other criteria was that large language models must not generate 

the open-source datasets. Thus, taking this consideration into account, we were able to collect 

various datasets as listed above. 

Regarding the Flan dataset (see table below), which is composed of multiple sub-datasets 

added iteratively over time, we selectively included only those that met the previously 

mentioned criteria. These include GSM8K, AQuA-RAT, StrategyQA, QASC, and CREAK. For 

the AQuA-RAT dataset specifically, we opted for the most recent version available, rather than 

the one listed in the reference table. As for the sub-datasets WinoGrande, Taskmaster, and 

Dialog, we were unable to identify coherent open-source versions that met the licensing and 
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origin requirements. Consequently, these were excluded from the final instruction dataset. The 

table below shows a list of sub-datasets that were analysed for the FLAN Dataset. It must be 

noted that the Flan dataset contains additional sub-datasets that were not reviewed, as the 

current selection sufficiently meets the needs and requirements of this project. 

 

Subset dataset License GPT-NL 
compatible 

Notes 

flan2021 SQuAD (v1/v2) CC BY-SA 4.0 No ShareAlike 
copyleft applies to 
derivatives/redis-
tributions 

flan2021 GSM8K MIT Yes Permissive 

flan2021 AQuA-RAT Apache-2.0 Yes Permissive 

flan2021 QASC CC BY 4.0 Yes Attribution required 
not copyleft 

flan2021 StrategyQA MIT Yes Permissive 

flan2021 e-SNLI MIT (repo); SNLI 
base CC BY-SA 
4.0 

No Underlying SNLI 
share-alike applies 

flan2021 CREAK MIT Yes Permissive 

flan2021 ComVE (Sense-
Making) 

CC BY-SA 4.0 No ShareAlike 
copyleft 

flan2021 QED CC BY-SA 3.0 / 
GFDL-derived 

No Wikipedia-derived; 
share-alike applies 

t0 (P3/T0) SNLI CC BY-SA 4.0 No ShareAlike 
copyleft 

t0 (P3/T0) MultiNLI MIT-style (NYU li-
cense) 

Yes Permissive 

t0 (P3/T0) WinoGrande CC BY 4.0 (da-
taset) 

Yes Attribution required 

t0 (P3/T0) ANLI CC BY-NC 4.0 No Noncommercial re-
striction 

t0 (P3/T0) SQuAD CC BY-SA 4.0 No ShareAlike 
copyleft 

niv2 (Super-
Natural In-
structions 
v2) 

NIv2 collection Apache-2.0 (repo) Partly Collection is 
Apache-2.0; indi-
vidual tasks may 
include content de-
rived from up-
stream datasets—
check task cards 

cot GSM8K MIT Yes Permissive  

cot AQuA-RAT Apache-2.0 Yes Permissive 

cot StrategyQA MIT Yes Permissive 

cot QASC CC BY 4.0 Yes Attribution required 

cot e-SNLI MIT (repo); 
SNLI base 

CC BY-SA 4.0 No Underlying SNLI 
share-alike applies 
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cot ECQA CDLA-Sharing-
1.0 (data) 

No Share-alike style 
data license; check 
obligations 

cot CREAK MIT Yes Permissive 

cot QED CC BY-SA 3.0 
GFDL-derived 

No Wikipedia-derived; 
share-alike applies 

cot ComVE (Sense-
Making) 

CC BY-SA 4.0 No ShareAlike 
copyleft 

dialog WikiDialog CC BY-SA (re-
ported) 

No Wikipedia-derived; 
share-alike applies 

dialog QReCC CC BY-SA 3.0 No ShareAlike 
copyleft 

dialog OR-QuAC CC BY-SA 4.0 No ShareAlike 
copyleft 

dialog QuAC MIT (per HF 
card); 

CC BY-SA 4.0 on 
site 

No Conflicting 
sources; be con-
servative 

dialog Taskmaster-1 CC BY 4.0 (sec-
ondary sources) 

Yes Attribution required 

3.2.3 Data Processing Pipeline 
The data processing pipeline is essential for preparing diverse instruction-tuning datasets for 

language model fine-tuning. Raw datasets from different sources often have inconsistent 

formats, varied quality, and different conversation structures. Our pipeline standardizes these 

datasets into a unified format suitable for training conversational AI models, ensuring 

consistency while preserving the semantic content and task-specific information. 

The pipeline transforms heterogeneous datasets into a standardized prompt-completion format 

that can be efficiently used with training frameworks like Hugging Face’s TRL library. 

 

The pipeline consists of five main steps: 

1. Download: Fetch datasets from Hugging Face or other sources 

2. Standardize: Convert to unified schema with consistent column names 

3. Filter: Apply optional filtering criteria to remove unwanted samples 

4. Unroll: Convert to conversational prompt-completion format 

5. Apply Template: Format using chat templates for specific models 

3.2.3.1 Download 

Purpose: Fetch datasets from external sources, primarily Hugging Face Hub. 

Implementation: The download_datasets.py module handles downloading datasets using 

the Hugging Face datasets library. Downloaded data is saved as Parquet files for efficient 

processing. 
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Sciriff Example: 

{ 
  "input": "You will be presented with a citation segment from the section 
of an NLP research paper, as well as the context surrounding that citation. 
Classify the intent behind this citation by choosing from one of the follow
ing categories:\n- Background: provides context or foundational information 
related to the topic.\n- Extends: builds upon the cited work.\n- Uses: appl
ies the methods or findings of the cited work.\n- Motivation: cites the wor
k as inspiration or rationale for the research.\n- CompareOrContrast: compa
res or contrasts the cited work with others.\n- FutureWork: cites the work 
as a direction for future research.\n\nYour answer should be a single word 
from the following list of options: [\"Background\", \"Extends\", \"Uses\", 
\"Motivation\", \"CompareOrContrast\", \"FutureWork\"]. Do not include any 
other text in your response.\n\nSection Title:\nintroduction\n\nContext bef
ore the citation:\nThus, over the past few years, along with advances in th
e use of learning and statistical methods for acquisition of full parsers (
Collins, 1997; Charniak, 1997a; Charniak, 1997b; Ratnaparkhi, 1997), signif
icant progress has been made...", 
  "output": "Background", 
  "metadata": { 
    "domains": ["artificial_intelligence"], 
    "input_context": "multiple_paragraphs", 
    "output_context": "label", 
    "source_type": "single_source", 
    "task_family": "classification" 
  }, 
  "_instance_id": "acl_arc_intent_classification:train:0" 
} 

3.2.3.2 Standardization 

Purpose: Convert diverse dataset formats into a unified schema with consistent column 
names, data types, and task categories. 

Schema: All datasets are standardized to this format: 

• instruction: Task description or query (serves as system prompt) (string) 

• context: The user’s input (string) 

• response: Expected output or answer (string) 

• task_category: Type of task (e.g., “multiple_choice”, “summarization”) 

• source_dataset: Original dataset name (string) 

• language: Content language (string) 

• source_document_id: Optional identifier for source tracking 

Implementation: The data_standard.py contains dataset-specific standardizer classes. 

Each dataset has a custom DatasetStandardizer subclass that knows how to transform its 

specific format. 

Sciriff Example: 

{ 
  "instruction": "You are a helpful assistant. Answer the user's query.", 
  "context": "You will be presented with a citation segment from the sectio
n of an NLP research paper, as well as the context surrounding that citatio
n. Classify the intent behind this citation by choosing from one of the fol
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lowing categories:\n- Background: provides context or foundational informat
ion related to the topic.\n- Extends: builds upon the cited work.\n- Uses: 
applies the methods or findings of the cited work.\n- Motivation: cites the 
work as inspiration or rationale for the research.\n- CompareOrContrast: co
mpares or contrasts the cited work with others.\n- FutureWork: cites the wo
rk as a direction for future research.\n\nYour answer should be a single wo
rd from the following list of options: [\"Background\", \"Extends\", \"Uses
\", \"Motivation\", \"CompareOrContrast\", \"FutureWork\"]. Do not include 
any other text in your response.\n\nSection Title:\nintroduction\n\nContext 
before the citation:\nThus, over the past few years, along with advances in 
the use of learning and statistical methods for acquisition of full parsers 
(Collins, 1997; Charniak, 1997a; Charniak, 1997b; Ratnaparkhi, 1997), signi
ficant progress has been made...", 
  "response": "Background", 
  "task_category": "multiple_choice", 
  "source_dataset": "sciriff", 
  "language": "en", 
  "source_document_id": "acl_arc_intent_classification:train:0" 
} 

3.2.3.3 Optional Filtering 

Purpose: Remove samples based on specified criteria (e.g., language, length, quality). 

Implementation: The filter_dataset.py module applies pandas-style filter expressions. If 

no filters are specified, this step copies the standardized file unchanged. 

Example: 

# Apply language filtering 
filter_expressions = ["language == 'en'"] 
# Apply length filtering 
filter_expressions = ["length > 100", "task_category == 'multiple_choice'"] 

3.2.3.4 Unrolling 

Purpose: Transform standardized data into conversational prompt-completion format suitable 
for instruction fine-tuning, by converting instruction+context+response into a structured con-
versation format with roles and messages. 

Implementation: Different unroll scripts handle different conversation types: 

• unroll_single_turn.py - For single turn Q&A datasets (like sciriff) 

• unroll_multi_turn_oasst1.py - For multi-turn conversations 

• unroll_gptnl_dataset.py - For SPIN-specific formats 

Sciriff Example: 

{ 
  "task_category": "multiple_choice", 
  "source_dataset": "sciriff", 
  "language": "en", 
  "message_tree_id": "a34de674-bbd6-4f51-b0d7-f5c93056b783", 
  "row_id": "a34de674-bbd6-4f51-b0d7-f5c93056b783", 
  "multi_turn": false, 
  "prompt": [ 
    { 
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      "role": "user", 
      "content": "You are a helpful assistant. Answer the user's query. You 
will be presented with a citation segment from the section of an NLP resear
ch paper, as well as the context surrounding that citation. Classify the in
tent behind this citation by choosing from one of the following categories:
\n- Background: provides context or foundational information related to the 
topic.\n- Extends: builds upon the cited work.\n- Uses: applies the methods 
or findings of the cited work.\n- Motivation: cites the work as inspiration 
or rationale for the research.\n- CompareOrContrast: compares or contrasts 
the cited work with others.\n- FutureWork: cites the work as a direction fo
r future research.\n\nYour answer should be a single word from the followin
g list of options: [\"Background\", \"Extends\", \"Uses\", \"Motivation\", 
\"CompareOrContrast\", \"FutureWork\"]. Do not include any other text in yo
ur response.\n\nSection Title:\nintroduction\n\nContext before the citation
:\nThus, over the past few years, along with advances in the use of learnin
g and statistical methods for acquisition of full parsers..." 
    } 
  ], 
  "completion": [ 
    { 
      "role": "assistant", 
      "content": "Background" 
    } 
  ] 
} 

3.2.3.5 Template Application 

Purpose: Apply model-specific chat templates to convert conversational format into final train-
ing strings. 

Implementation: The apply_template.py module uses Hugging Face tokenizers to apply 

chat templates. Currently uses Gemma-3-4B-it template but can be configured for other 

models. 

Chat Template: The pipeline uses templates that format conversations with special tokens: 

• <bos> - Beginning of sequence 

• <start_of_turn>user - User message start 

• <start_of_turn>model - Assistant message start 

• <end_of_turn> - Turn end marker 

Sciriff Example: 

{ 
  "task_category": "multiple_choice", 
  "source_dataset": "sciriff", 
  "language": "en", 
  "message_tree_id": "a34de674-bbd6-4f51-b0d7-f5c93056b783", 
  "row_id": "a34de674-bbd6-4f51-b0d7-f5c93056b783", 
  "multi_turn": false, 
  "prompt": "<bos><start_of_turn>user\nYou will be presented with a citatio
n segment from the section of an NLP research paper, as well as the context 
surrounding that citation. Classify the intent behind this citation by choo
sing from one of the following categories:\n- Background: provides context 
or foundational information related to the topic.\n- Extends: builds upon t
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he cited work.\n- Uses: applies the methods or findings of the cited work.\
n- Motivation: cites the work as inspiration or rationale for the research.
\n- CompareOrContrast: compares or contrasts the cited work with others.\n- 
FutureWork: cites the work as a direction for future research.\n\nYour answ
er should be a single word from the following list of options: [\"Backgroun
d\", \"Extends\", \"Uses\", \"Motivation\", \"CompareOrContrast\", \"Future
Work\"]. Do not include any other text in your response.\n\nSection Title:\
nintroduction\n\nContext before the citation:\nThus, over the past few year
s, along with advances in the use of learning and statistical methods for a
cquisition of full parsers...<end_of_turn>\n", 
  "completion": "<start_of_turn>model\nBackground<end_of_turn>\n", 
  "all": "<bos><start_of_turn>user\nYou will be presented with a citation s
egment from the section of an NLP research paper, as well as the context su
rrounding that citation. Classify the intent behind this citation by choosi
ng from one of the following categories:\n- Background: provides context or 
foundational information related to the topic.\n- Extends: builds upon the 
cited work.\n- Uses: applies the methods or findings of the cited work.\n- 
Motivation: cites the work as inspiration or rationale for the research.\n- 
CompareOrContrast: compares or contrasts the cited work with others.\n- Fut
ureWork: cites the work as a direction for future research.\n\nYour answer 
should be a single word from the following list of options: [\"Background\"
, \"Extends\", \"Uses\", \"Motivation\", \"CompareOrContrast\", \"FutureWor
k\"]. Do not include any other text in your response.\n\nSection Title:\nin
troduction\n\nContext before the citation:\nThus, over the past few years, 
along with advances in the use of learning and statistical methods for acqu
isition of full parsers...<end_of_turn>\n<start_of_turn>model\nBackground<e
nd_of_turn>\n" 
} 

3.2.3.6 Optional Task Inference 

For datasets without explicit task categories (HuggingfaceH4Instruct and AyaDataset), the 
pipeline includes an optional task inference step using the infer_task_types.py module. 

This uses a language model to automatically classify samples into task categories: 

• qa_no_context: Direct questions without additional context 

• qa_with_context: Questions requiring provided context 

• summarization: Text condensation tasks 

• multiple_choice: Selection tasks 

• information_extraction: Data extraction tasks 

• reasoning: Logic and mathematical reasoning 

The inference uses a Gemma model with carefully crafted prompts to ensure consistent clas-
sification. 

3.2.3.7 Classification prompt 
You are a task classification expert. Your job is to classify a text sample into ex
actly ONE of the following task types. 
 
### Categories 
 
- qa_no_context: A direct question with a definite answer that does NOT rely on add
itional provided context. 
  Example: "What is the deepest abyss in the world?" 
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- qa_with_context: A direct question that CAN ONLY be answered using information pr
ovided in the prompt (a passage, list, or context section). 
  Example: "What important event does the following text describe? This tiger has b
een struggling since 2004, as it lived primarily in Aceh, the northernmost tip of S
umatra. During the 2004 tsunami, much of this nature reserve was washed away. Vario
us organisations are now working to rebuild this nature reserve to ensure the survi
val of the Sumatran tiger." 
 
- summarization: Condensing longer text into a shorter form. 
  Example: "Summarize this 500-word article about climate change in 2-3 sentences." 
 
- simplification: Rewriting complex information into simpler terms. 
  Example: "Explain quantum physics in simple terms for a 10-year-old." 
 
- multiple_choice: Multiple choice questions or selection tasks. 
  Example: "Which of the following is NOT a mammal? A) Dog B) Cat C) Fish D) Whale" 
 
- chat: Conversational or social dialogue. 
  Example: "Hello! How are you doing today?" → "I'm doing well, thank you!" 
 
- generation: Creative, open-ended content creation. **Not a direct question.** Som
etimes the TEXT ends with ... 
  Example: "Write a short story about a dragon who loves to bake cookies." 
 
- brainstorming: Generating multiple ideas or solutions. 
  Example: "Give me 5 creative ideas for a company team-building event." 
 
- reasoning: Logical reasoning, problem-solving, or analytical tasks. 
  Example: "If all roses are flowers and some flowers are red, can we conclude that 
some roses are red?" 
 
- information_extraction: Extracting specific information from given text. 
  Example: "Extract the names, dates, and locations mentioned in this news article.
" 
 
### Decision Rules 
1. If the TEXT is a **question**, classify it as QA (choose `qa_no_context` or `qa_
with_context`, never `generation`). 
2. If the TEXT is shorter than 4 words, classify as generation. 
3. Output ONLY the task type (e.g., `qa_no_context`). No explanation. 

3.2.3.8 Goeievraag.nl data filtering with LLM-as-a-judge 

The Goeievraag.nl dataset contains QA pairs from the goeievraag.nl website. This is a great 
source of Dutch data, but considering it is sourced from unmoderated user responses, it re-
quires additional processing steps to ensure appropriate quality for instruction fine-tuning. To 
this extent we do the following: 

1. Filter out unwanted topics 

2. Only keep questions with a best answer 

3. Apply PII (using the PrivateAI2 tool) + toxic language detection 

4. Use LLM to determine which QA pairs will make it to the final dataset 

3.2.3.9 LLM-as-a-judge scoring prompt 
## Task Introduction 
 
You will evaluate question-answer pairs from an online Dutch forum to determine the

_______ 

2 https://www.privateai.com/ 

https://www.startpagina.nl/v/
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ir suitability for instruction fine-tuning an LLM. The goal is to identify high-qua
lity examples that teach a model to follow instructions accurately, provide helpful 
responses, and avoid harmful biases. To do this, rate each QA pair across five crit
eria using a 1-5 scale. 
 
## Evaluation Criteria 
 
### 1. Instruction Following (1-5) 
Evaluates how well the answer addresses what was specifically asked in the question
. Consider whether the response directly tackles the core request, stays on topic t
hroughout, and uses an appropriate format for the type of question asked. High scor
es indicate the answer comprehensively addresses all parts of the question without 
unnecessary tangents. 
 
### 2. Correctness & Accuracy (1-5) 
Assesses the factual accuracy and reliability of the information provided. This inc
ludes checking whether claims are truthful, procedures are correct, reasoning is so
und, and any limitations or uncertainties are appropriately acknowledged. Consider 
if the information is current and whether any advice could be potentially harmful i
f incorrect. 
 
### 3. Helpfulness & Completeness (1-5) 
Measures how useful the answer would be to someone with the original problem or que
stion. Evaluate whether the response provides sufficient detail to be actionable, i
ncludes important steps or considerations, and offers practical value. Consider if 
key information is missing that would prevent the questioner from successfully appl
ying the answer. 
 
### 4. Bias & Fairness (1-5) 
Examines whether the response treats all people and groups respectfully and fairly. 
Look for discriminatory language, harmful stereotypes, unfair assumptions about the 
questioner, or biased perspectives on controversial topics. High scores indicate in
clusive language and balanced treatment of different viewpoints where appropriate. 
 
### 5. Clarity & Communication (1-5) 
Evaluates how well the answer is communicated and structured. Consider whether the 
response is easy to understand, logically organized, uses appropriate language for 
the context, and maintains a helpful and professional tone throughout. Assess if co
mplex concepts are explained clearly and the overall readability is good. 
 
**Specific deductions for this criterion:** 
- **Rate 1/5** if the answer mentions "GV", "Goeievraag" or synonyms 
- **Lower rating** for answers written primarily in opinion form rather than inform
ative/instructional tone 
- **Lower rating** for answers containing edit markers (e.g., "toegevoegd na [..]", 
"EDIT:", etc.) 
- **Lower rating** for answers that reference links or external sources without pro
viding actual URLs 
 
## Evaluation Steps 
 
### Step 1: Initial Reading 
- Read the question and identify what is specifically being asked 
- Read the entire answer and note its main approach 
 
### Step 2: Score Each Criterion 
For each of the 5 criteria: 
1. **Apply the specific evaluation focus** (instruction following, accuracy, etc.) 
2. **Use the 1-5 scale anchors** provided above 
 
--- 
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**Output Format:** 
- Instruction Following: X/5 - [justification] 
- Correctness: X/5 - [justification] 
- Helpfulness: X/5 - [justification] 
- Bias & Fairness: X/5 - [justification] 
- Clarity: X/5 - [justification] 

3.2.3.10  Results of LLM-as-a-judge scoring 
After scoring the QA pairs marked with a best answer, we did qualitative analysis to pick a strict 

threshold of total score >= 20 and score of each category >= 4. After applying this filter, the 

dataset size decreased from ~62k to 19,778 samples. 

 

 

Figure 13: Goievraag evaluation plots 

 

3.3 Data selection process 
Data selection for instruction-tuning LLMs focuses on identifying and curating high-quality 

training examples from larger datasets. Rather than using all available instruction-response 

pairs indiscriminately, data selection employs various filtering and ranking strategies to identify 

the most valuable examples for model training. Data selection serves two primary objectives 

that are fundamental to developing effective instruction-tuned models: 

1. It acts as a quality filter, systematically removing low-quality examples that could de-
grade model performance. This includes filtering out responses that are factually in-
correct, poorly written, off-topic or contain harmful content. 

2. Data selection enables alignment with specific priorities and objectives defined for 
the model’s intended use cases. 
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It is desired that the instruction-tuned GPT-NL checkpoints must exhibit the following 

objectives, accompanied by a priority score: 

 

 

GPT-NL Priorities 

These priorities highlight the need for a data selection method that can balance multiple 

objectives while scaling to large dataset sizes efficiently. 

The challenge of identifying the most useful training samples for instruction fine-tuning is 

complex, as there is no straightforward method to determine which examples will contribute 

most effectively to model performance. The quality of instruction-response pairs can depend 

on numerous factors including linguistic complexity, task diversity, response accuracy, 

alignment with target capabilities and subtle patterns that may not be immediately apparent 

through manual inspection. This leads us to experiment with three methodologies developed 

in the academic world. 

3.3.1 Representation-based Data Selection Plus (RDS+) 

 

Figure 14: RDS+ Workflow 
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The core insight behind RDS+ is that the hidden representations from a pre-trained model’s 

last layer capture semantic similarity better than dedicated embedding models or gradient-

based approaches. By using these representations to compute cosine similarity between query 

samples and candidate training data, RDS+ can efficiently identify the most relevant training 

examples.  

Our implementation strategy leverages RDS+ in a systematic pipeline designed to maximize 
alignment with GPT-NL priorities: 

1. Priority-Aligned Test Set Curation 

We begin by manually curating a comprehensive test set that directly reflects our priority matrix, 

across task types and source datasets. 

2. Query Set Creation 

From our curated test set, we split a validation subset to serve as RDS+ queries. This way, the 

validation split represents the testing set distribution without causing data leakage. 

3. Training Data Subsampling 

Using RDS+, we subsample our large training corpus by computing similarity scores between 

each training example and our validation queries. The round-robin selection algorithm ensures 

balanced representation across all priority areas while identifying the most relevant training 

samples. 

3.3.2 G-Eval: LLM-as-a-judge filtering 

G-Eval leverages LLMs as judges to assess the quality of instruction-response pairs. Rather 
than relying on simple metrics or heuristics, G-Eval uses LLMs to provide nuanced quality as-
sessments that closely mirror human judgment. The methodology works by presenting a LLM 
with detailed evaluation criteria and asking it to score examples across multiple quality defini-
tions. The LLM judge examines each instruction-response pair and assigns numerical scores 
based on carefully crafted rubrics that define what constitutes quality at different levels. 

For our data selection process, we employed five distinct evaluation rubrics, each targeting a 

critical aspect of training data quality: 

• Language Quality evaluates whether the prompt-completion pair maintains con-
sistent language use (English or Dutch) without inappropriate mixing or code-switch-
ing. This ensures our training data maintains linguistic coherence. 

• Prompt Completeness assesses whether the instruction is clear, unambiguous, and 
provides sufficient context for understanding what the response should contain. Well-
defined prompts are essential for effective instruction fine-tuning. 

• Completion Helpfulness measures how well the response addresses the prompt 
while remaining concise and relevant. This rubric filter out responses that are off-
topic, repetitive, or unnecessarily verbose. 

• Completion Truthfulness evaluates factual accuracy and ensures responses don’t 
contain hallucinations or invented information not present in the provided context or 
general knowledge. 

• Harmlessness ensures the content is safe, respectful, and free from harmful, dis-
criminatory, or inappropriate material that could pose risks to various forms of wel-
fare. 

Each rubric uses a 5-point scale, with detailed descriptions for each score level to ensure con-
sistent evaluation. To maintain quality standards in our final dataset, we established a threshold 

https://github.com/nlpyang/geval
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of 3 or higher across all five rubrics - meaning samples must achieve at least a “moderately 
acceptable” rating in every dimension to be included in our training set. 

3.3.3 UltraFineWeb FastText classifier 
The Ultra-FineWeb classifier represents a lightweight approach to data quality assessment that 

leverages fastText for rapid content evaluation. Unlike the sophisticated LLM-based evaluation 

methods, this classifier prioritizes computational efficiency while maintaining effective filtering 

capabilities, making it particularly suitable for processing large-scale datasets where inference 

speed is crucial. 

The methodology behind the Ultra-FineWeb classifier involves training a fastText model to 

distinguish between high- and low-quality text samples using carefully curated seed data. 

Although the Ultra-FineWeb classifier was originally designed and optimised for pre-training 

data filtering, we decided to explore its utility for instruction fine-tuning data selection. Our 

hypothesis was that this classifier could serve as an effective filter to identify and remove 

outright poorly formatted data or content with significant grammatical errors that would be 

detrimental to instruction fine-tuning. Pre-training data and instruction fine-tuning data share 

certain fundamental quality characteristics: both benefit from proper formatting, grammatical 

correctness, and linguistic coherence, making this cross-domain application a reasonable 

experimental approach. 

The appeal of using this pre-trained classifier lies in its ability to quickly process large volumes 

of instruction-response pairs and flag obviously problematic content such as garbled text, 

severe formatting issues, or content with substantial linguistic errors. While it may not capture 

the nuanced quality aspects specific to instruction-following tasks, it can efficiently eliminate 

the obviously bad quality samples, allowing more sophisticated evaluation methods to focus 

on the remaining, higher-quality candidates. 

3.3.4 Conclusion: Comparing Data Selection 

Approaches 

3.3.4.1 Individual Method Impact Analysis 
Each of the three data selection methods demonstrated distinct filtering patterns across task 

categories and source datasets, revealing different biases and strengths in their quality 

assessment approaches. 

RDS+ 

 

Figure 15: RDS+ Filter Impact 

https://huggingface.co/openbmb/Ultra-FineWeb-classifier
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RDS+ demonstrated a balanced filtering strategy, with the highest removal rate for reasoning 

tasks (63.8%) and moderate filtering across most categories. The method showed relatively 

uniform impact across source datasets, with the most affected being flan_gsm8k (90.7%) and 

aqua_rat (77.6%). This suggests RDS+ focuses on semantic relevance to the target priority 

distribution rather than absolute quality, making it conceptually different from the other two 

filtering approaches. 

G-Eval: LLM-as-a-judge Filtering 

 

Figure 16: G-Eval Filter Impact 

G-Eval’s filtering showed a strong focus on context-dependent tasks, removing 55.3% of 

qa_with_context samples while being more lenient with simpler tasks like multiple_choice 

(0.4% removed). The method heavily filtered specific datasets like narrative Q&A (99.1%) and 

qasper (95.7%), suggesting these sources contained responses that failed to meet the 

stringent rubric requirements for truthfulness, helpfulness, or completeness. This pattern 

indicates G-Eval’s strength in identifying quality issues in long-form, context-heavy responses 

but potentially being overly conservative. 

FastText Classifier 

 

Figure 17: FastText filter Impact 

FastText Filter Impact 

The FastText classifier mostly removed samples containing Dutch samples. This is likely a 

consequence of the classifier not being trained on Dutch samples at all. This approach appears 

to prioritise surface-level quality indicators like grammar and structure over semantic 

appropriateness. 
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3.3.4.2 Agreement Between Methods 

 

Figure 18: Filtering Agreement Matrix 

The agreement analysis between the three methods reveals a fundamental challenge in data 

quality assessment: quality is inherently difficult to estimate, and different methods capture 

different aspects of what constitutes valuable training data. The agreement matrix shows: 

• RDS+ and G-Eval: Only 27.9% agreement (33,531 samples) 

• RDS+ and FastText: Only 22.1% agreement (27,455 samples) 

• G-Eval and FastText: 39.8% agreement (30,964 samples) 

These low agreement rates indicate that each method operates on fundamentally different prin-
ciples. RDS+ prioritizes semantic relevance to target capabilities, G-Eval focuses on multi-di-
mensional quality rubrics, and FastText emphasizes linguistic and formatting correctness. The 
lack of consensus suggests that “quality” in instruction fine-tuning data is multi-faceted and no 
single method captures all relevant dimensions. 
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3.3.4.3 Impact on Model Performance 

 

Figure 19: Filtering results comparison 

Perhaps most surprisingly, none of the filtering solutions improved upon the baseline of 

using all available data. 

All three filtering approaches, along with stratified subsampling, showed performance below 

the baseline. This counterintuitive result can likely be attributed to our low data setting. With 

limited training data available, aggressive filtering may remove examples that, despite quality 

concerns, still contribute valuable signal for learning instruction-following behavior. In resource-

constrained scenarios, the diversity and volume of training data may matter more than 

individual example quality. 

 

3.4 Configuring, Running and Monitoring the 
Instruction Fine-Tuning 
This page provides a comprehensive overview of the Instruction Fine-Tuning process for GPT-

NL, covering execution frameworks, configuration, training, and monitoring. We have already 

described how the data is prepared and selected. Here, we focus on the implementation, 

workflow, and experiments for supervised fine-tuning (SFT) on our HPC infrastructure. 

3.4.1 Frameworks Choice 

After analysing multiple frameworks for instruction fine-tuning, including HuggingFace TRL, 
ColossalAI, DeepSpeedChat, Open-Instruct, and others, we chose HuggingFace TRL as our 
primary fine‑tuning framework, augmented with: 

• DeepSpeed ZeRO for multi‑GPU/multi‑node scaling (Stages 1–3). 

• Dataset streaming (for memory efficiency on large parquet datasets). 

• Synchronization primitives (avoid races in model/dataset caching across many 
ranks). 

• Custom callbacks for throughput and sample generation into monitoring tools. 

https://github.com/huggingface/trl


 

 

 TNO Public  GPTNL-DEL-4002-[1.0] 

 TNO Public 77/109 

Detailed tables, comparisons of frameworks, RLHF methods have been moved to the Appendix 
Fine-tuning frameworks for clarity. 

Why TRL for SFT 

• Wide adoption in the research and open-source community 

• Extensive documentation and examples 

• Support for SFT, DPO, PPO, and full finetuning 

• Dataset format flexibility: prompt‑completion (string or conversational) and lan-
guage‑modeling style with data collators 

• Deep integration with Accelerate and DeepSpeed 

• Active ecosystem: ready‑to‑use trainers (SFTTrainer) and configs (SFTConfig) 

 

The complete comparison of frameworks and RLHF approaches is 

available in the Appendix Fine-tuning frameworks. 

3.4.2 Configuration 
Proper configuration of a fine-tuning run is critical to ensure efficient resource utilization and 

optimal model performance. In this section, we describe the essential steps required to initiate 

a fine-tuning process—specifically, how to configure Supervised Fine-Tuning (SFT). 

Setting up an SFT process involves defining several key options: 

• Model Selection: Specify which pre-trained model will be fine-tuned. This can be a 
local model checkpoint (e.g., a path to the model at a specific epoch) or a publicly 
available model for benchmarking and comparison. 

• Dataset Choice: Determine the dataset to use for training. As outlined in the Data 
preparation and Data selection sections, options include internal datasets such as 
SPIN and selected public datasets. 

• Fine-Tuning Configuration: Define how the fine-tuning should proceed, including 
training duration, hyperparameters (e.g., learning rate, batch size), and allocation of 
HPC resources (e.g., number of GPUs, memory requirements). 

3.4.2.1 YAML Configuration file 

We try to make these options explicit and easy to configure by using YAML configuration files. 
We have a folder named config where we hierarchically store the configurations for our runs. 

The most important parameters are: 

• model_name_or_path: the input model to finetune 

• dataset_name_or_path: the dataset to use. Currently supported: parquet files with a 

supported type of dataset by TRL. It can be a single file or multiple files (if you use a 
* in the variable). If a single file is used, it must contain a column named split to in-

dicate which rows are for training and which ones for testing. If a wildcard (*) is used, 

train and test splits are loaded separately: this has been implemented to be able to 
stream datasets instead of loading them as a bulk in the beginning of the training. 
See below the streaming datasets section for more details. 

• output_dir: where to save the finetuned model 

• chat_template_path: to configure a specific chat template for finetuning the model 

https://huggingface.co/docs/trl/en/dataset_formats
https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/fine-tuning-data-preparation.md
https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/fine-tuning-data-preparation.md
https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/fine-tuning-data-selection.md
https://huggingface.co/docs/trl/en/dataset_formats
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• DeepSpeed: path to a DeepSpeed configuration file, useful to choose the distributed 

strategy (stage 1 / 2 / 3) 

• Model 

o model_name_or_path: the input model to finetune (HF hub or local path to 

checkpoint) 

o tokenizer_name_or_path (optional; defaults to model_name_or_path) 

o trust_remote_code (for custom model code) 

o Long context (optional): rope_scaling_type, rope_scaling_factor 

o Attention backend: enable FlashAttention2 or SDPA (LLaMA) 

• Dataset 

o dataset_name_or_path: the dataset to use. Currently supported: parquet 

files with a supported type of dataset by TRL. 

▪ If using a single file, ensure it contains a split column with values 

train|val|test. 

▪ If using * (wildcard), provide ..._train.parquet, ..._val.par-
quet, optionally ..._test.parquet to enable streaming (reduces 

memory required instead of loading the whole dataset in memory). 
See below the streaming datasets section for more details. 

o (Optional) max_samples and validation_split_percentage 

• Training & Output 

o output_dir: where to save the finetuned model 

o num_train_epochs, per_device_train_batch_size, gradient_accumu-
lation_steps 

o learning_rate, lr_scheduler_type, warmup_steps, weight_decay 

o Precision: bf16|fp16|tf32, gradient_checkpointing 

o save_strategy, save_steps, save_total_limit, 

load_best_model_at_end 

o chat_template_path: to configure a specific chat template for finetuning the 

model (must match inference) 

• Distributed 

o DeepSpeed: path to ZeRO config (ds_config_zero[1|2|3].json) 

o Optional offloading: offload_folder, offload_state_dict 

o low_cpu_mem_usage: true to reduce load on memory 

Example (condensed) 

# config/train/sft_config.yaml 
model_name_or_path: PATH_TO_MODEL 
tokenizer_name_or_path: PATH_TO_MODEL 
trust_remote_code: true 
 
# Long context (optional) 
rope_scaling_type: dynamic       # or 'linear' 
rope_scaling_factor: 2.0 
 
# Attention backend 
use_flash_attention_2: true      # or sdpa for LLaMA 
 
# Dataset: stream by providing separate parquet files 

https://huggingface.co/docs/trl/en/dataset_formats
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dataset_name_or_path: PATH_TO_DATASET_*.parquet 
 
# Output & logging 
output_dir: /output/gptnl-sft 
report_to: ["wandb"] 
chat_template_path: config/evaluate/chat_template_empty.jinja 
 
# Training 
num_train_epochs: 1 
per_device_train_batch_size: 4 
gradient_accumulation_steps: 4 
learning_rate: 2.0e-5 
lr_scheduler_type: cosine 
warmup_steps: 500 
weight_decay: 0.0 
bf16: true 
tf32: true 
gradient_checkpointing: true 
 
# Save/Eval 
do_eval: true 
eval_strategy: steps 
eval_steps: 500 
save_strategy: steps 
save_steps: 500 
save_total_limit: 3 
load_best_model_at_end: false 
 
# Distributed 
DeepSpeed: config/train/ds_config_zero3.json 
low_cpu_mem_usage: true 
offload_folder: /scratch/offload 
disable_cache: true 

Tip: With ZeRO‑3, memory footprint per GPU drops significantly, 

allowing larger batches and improved tokens/sec. 

3.4.2.2 Job Scripts and Execution Flow 

The job scripts are stored in the jobs folder, and they contain job requirements specifications 

(resources): 

• amount of nodes 

• type of nodes 

• usage of reservation 

• duration of the job 

These options cannot be easily moved to YAML configuration, so they need to be checked 
before usage in the corresponding job file. They are written as #SBATCH headers. 

The rest of job scripts contain module loading and preparation of the training run (setting 

environment variables, loading the proper configuration file). 

It is important when you create or use a job script that you check: 

https://servicedesk.surf.nl/wiki/spaces/WIKI/pages/30660220/Writing+a+job+script


 

 

 TNO Public  GPTNL-DEL-4002-[1.0] 

 TNO Public 80/109 

• which configuration file it loads: TRAIN_CONFIG env variable exported 

• #SBATCH headers for resources 

To submit a job to the queue, just use sbatch jobs/<PATH_TO_JOB_SCRIPT>. 

3.4.3 Training 

This section describes how the training works. It is classical supervised training, where there 
are input variables (chat conversations up to a specific point) and target variables (next assis-
tant message). The learning goal is to minimize the loss on the target assistant message. In 
other words, the model learns to reply as the assistant (the target variable). 

If we follow what happens when a job script is launched: 

5. The job is granted resources, and SLURM runs a single copy of the batch script on 
the first node in the set of allocated nodes. 

6. The batch script is executed: the environment is configured (modules are loaded, en-
vironment variables are set, including the TRAIN_CONFIG) 

7. srun launches the tasks in all the configured nodes. In our setting, we have a task for 

each GPU. For example, if we run a fine-tuning on 2 nodes with 4 GPUs each, we 
will have 8 tasks running 

8. torchrun_launcher.sh is executed: each task executes torchrun with target the 

TRAINING_COMMAND (defined in the job script) and connects to the master process 

using NCCL 

Then the TRAINING_COMMAND is actually the python script that gets executed in parallel via 

torchrun. Its entry point is src/train/train.py where the real training happens: 

• data loading: from parquet files, the data is formatted according to chat_template and 
tokenized 

• model loading: using HuggingFace classes, the model and the tokenizer are loaded 

according to configuration 

• DeepSpeed is getting configured and distributes the model accordingly to its stage 

• batches start to be processed (this happens a few minutes later) and loss is com-
puted for backpropagation 

• checkpoints are saved 

3.4.3.1 TRL classes 

• SFTConfig – defines training parameters, optimizer, precision, check-

pointing, DeepSpeed config, chat template, logging 

• SFTTrainer – executes the training loop 

3.4.3.2 DeepSpeed configuration 
As documented in the pre-training documentation, we use DeepSpeed to distribute the training. 

For finetuning we tested the stage 1, 2 and 3. 

3.4.3.3 DeepSpeed and memory constraints 

DeepSpeed is strongly linked to the memory constraints. Stages 1 and 2 already distribute the 
optimizer (stage 1) and gradient (stage 2), but still the memory requirements are almost iden-
tical as DPP strategies, because the largest amount of memory is actually occupied by the 
model parameters (27B). 

https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html
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Stage 3, on the other side, partitions the parameters across multiple workers/devices and really 

enables to reduce the memory requirements of a single device, leaving room for more memory 

for larger batches. The slight performance decrease of stage 3 is totally and over-compensated 

by the speed of larger batches, that indeed would crash with stage 1 and 2. 

We rely on DeepSpeed ZeRO sharding: 

• ZeRO‑1: Shards optimizer states. Memory relief is limited for very large models. 

• ZeRO‑2: Shards gradients as well. Still heavy if parameters stay replicated. 

• ZeRO‑3: Shards parameters, gradients, and optimizer. This is the recommended 
mode for 27B+ models; it enables larger batch sizes and higher throughput. 

Important 

• Do not use device_map="auto" with ZeRO/torchrun. We explicitly unset this in dis-

tributed mode to avoid incorrect HF auto‑sharding. 

DeepSpeed JSON highlights (example fields to inspect in ds_config_zero3.json) 

{ 
  "zero_optimization": { 
    "stage": 3, 
    "offload_param": { 
      "device": "cpu", 
      "pin_memory": true 
    }, 
    "offload_optimizer": { 
      "device": "cpu", 
      "pin_memory": true 
    } 
  }, 
  "bf16": { "enabled": true }, 
  "gradient_accumulation_steps": 4, 
  "train_micro_batch_size_per_gpu": 4 
} 

Memory & performance 

• ZeRO‑3 usually unlocks per_device_train_batch_size ≥ 8 (depending on sequence 
length and model size). 

• With dataset streaming, we observed substantial throughput gains (see Appendix 
B). 

3.4.3.4 Chat_template 
We can configure the specific chat_template used for fine-tuning. The pre-trained model 

has no chat_template. It is important that the same chat_template is used for finetuning 

and inference, as it is used for priming the model to respond. 

3.4.3.5 Data loading 

The training script loads the data from parquet files, according to the configuration. 

TRL works out of the box with the following formats for SFT: 

• Standard Prompt-Completion: prompt and completion are strings. Strings should al-
ready be formatted according to a chat_template 

https://huggingface.co/docs/trl/en/dataset_formats#dataset-formats-and-types
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• conversational Prompt-Completion: prompt and completion are list of messages with 
{role,content} attributes. This is useful if we want to apply a different chat_tem-
plate at runtime 

• language-modelling (conversational) format: we don’t need to manually prepare 
prompts and completions, with a simple DataCollator configuration we can tell TRL 

to use as targets all the assistant messages (intermediate and final ones). 

TRL automatically detects the type of the dataset passed and whether it needs to be tokenized 
(strings) or not (token_ids) and configures the batches to be provided to the different workers 
in a distributed setting. 

3.4.3.6 Additions on top of TRL 

Synchronization primitives 

Some actions make the jobs fail when more than 8 workers are in place (probability of race 
conditions increases): 

• downloading models (when not local model or not yet downloaded in cache) 

• creating cache of datasets (when loading dataset) 

For these cases, we used barriers: 

if is_main_process(): 
    # main process loads first 
    full_dataset = load_dataset(...) 
# Wait for main process to finish downloading/caching 
torch.distributed.barrier() 
if not is_main_process(): 
    # then the other processes can load from cache without concurrent write
s 
    full_dataset = load_dataset(...) 

Streaming datasets 

Easier dataset loading: load everything, transform it to tokenized, then efficiently dispatch sub-
batches to workers. 

Problem: large datasets do not fit in memory, so the processes crash 

Solution: stream the dataset from the disk (parquet). Complications: 

• The train and test datasets need to be separate on disk. This is why in the YAML 
configuration you see that we use the wildcard * to denote when the two files are 

separate. In this way it’s possible to stream them independently. 

• The total size is unknown in streaming mode, need to compute it first. This is fixed by 
doing a first iteration on the dataset. 

• Global batch created in main process, and split for all the workers, 
train_batch_size needs to be adjusted to the global batch size 

3.4.4 Monitoring 

Monitoring uses TRL integration with Weights & Biases. We log: 

• Configuration and hyperparameters 

https://huggingface.co/docs/trl/en/dataset_formats#language-modeling
https://wandb.ai/
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• Training metrics: loss, token accuracy, learning rate, steps, number of tokens pro-
cessed 

• System metrics: GPU usage, network, throughput per device and globally 

• Example outputs during training via a custom LLMSampleCallback (text output by 

the model) 

 

3.5 Instruction fine-tuning evaluation 
Evaluating instruction-tuned models requires a multi-faceted approach to assessing both over-
all performance and task-specific capabilities. This document describes our evaluation meth-
odology and presents initial results from fine-tuning experiments. We implement evaluation for 
two primary purposes: 

1. Comparing GPT-NL to third party models: Benchmarking our models against 
state-of-the-art instruction-tuned models to understand relative performance on com-
mon task categories (linguistic understanding, reasoning, knowledge, etc.). 

2. Gathering insights into how we perform on the GPT-NL instruction fine-tuning 
priorities: Understanding model performance across different task categories with 
more granular and deeper insights than average scores of metrics. We aim to under-
stand to be able to adapt our fine-tuning approach accordingly. 

To achieve these goals, we employ two complementary types of evaluation: 

1. Benchmark evaluation (EuroEval): Using standardized benchmarks for external 
comparison 

2. Internal test set evaluation: Using task-categorized test sets with multiple evalua-
tion approaches for deeper insights: 

o Traditional metrics (BLEU, ROUGE, METEOR) 

o Model-based metrics (BERTScore) 

o LLM-as-a-judge evaluation (Prometheus and GEval) 

 

Figure 20: Instruction fine-tuning evaluation 

The evaluation pipeline orchestrates multiple evaluation approaches in a single compute job 

with sequential stages. Starting with prediction generation using a vLLM server, the cached 

predictions feed into three parallel evaluation tracks: LLM-as-a-judge assessment, traditional 

metrics computation, and EuroEval benchmarking. All results are aggregated and 

synchronized to Weights & Biases for experiment tracking and analysis. We discuss these 

methods in the following. 
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3.5.1 Benchmark Evaluation: EuroEval 
GPT-NL uses EuroEval as the core benchmark collection for evaluating instruction-tuned 

models. EuroEval provides standardized task benchmarks for both English and Dutch, enabling 

comparison with external models and tracking progress across model iterations. WP21 extends 

this collection with Dutch sets that are focused on Dutch language and culture, but that effort 

is described separately and here we consider the base sets available. 

The implementation is re-used from the pre-training pipeline and is explained in this section. 

3.5.2 Internal Test Set Evaluation 
Our internal evaluation pipeline provides detailed insights into model performance across 

different task categories, enabling us to understand where the model excels and where 

improvements are needed. The pipeline follows a modular design with three sequential stages: 

prediction generation, traditional metrics computation, and LLM-as-a-judge evaluation. 

Predictions are generated once and cached for reuse, while results from all stages are 

aggregated and logged to Weights & Biases. 

Our test set is constructed from a subset of the training datasets, carefully selected and 

categorized to ensure comprehensive coverage of different task types. The test set follows a 

standardized Parquet format with the following schema: 

Column Type Description 

prompt str/list The input prompt (string or conversational format as list 
of messages dict) 

completion str The reference/ground truth response 

instruction str The original instruction (before chat template applica-
tion) 

task_category str The task type for granular analysis 

source_dataset str Original dataset name for tracking data provenance 

language str Language code (‘en’ for English, ‘nl’ for Dutch) 

Task categories enable granular performance analysis across different types of instructions: 

Task Category Description 

qa_with_context Question answering using provided context 

qa_no_context Question answering using general knowledge 

summarization Text condensation and summarization 

reasoning Mathematical and logical reasoning 

information_extraction Structured information retrieval 

generation Creative text generation 

simplification Text simplification for accessibility 

multiple_choice Selection of predefined options 

chat Multi-turn conversational dialogue 

brainstorming Idea generation and exploration 

dutch Dutch-specific language tasks 

The test set is typically limited to around 5K samples to enable fast iteration during model 

development while maintaining coverage across all task categories. 

https://euroeval.com/
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Evaluation Criteria 

The evaluation system is designed to assess multiple dimensions of response quality: 

Generic Criteria (all tasks): 

• Helpfulness: Does the response satisfy the user’s intent in a complete, relevant and 
conciseness manner? 

• Truthfulness: Is the response factual and free from hallucinations? When a piece of 
contextual information is given, the model can only use that to base its answer on, 
besides general knowledge. 

• Harmlessness: Is the response harmless, respectful, and appropriate? 

• Language Quality: Is the response accessible, fluent and with correct grammar? 
(Dutch or English specific) 

Task-Specific Criteria: 

• Summarization: Faithfulness, coverage, and conciseness 

• Simplification: Meaning preservation and clarity, not summarized 

• QA with Context: Accuracy using only provided context 

• QA without Context: Appropriate use of general knowledge 

• Generation: Creativity and engagement 

• Brainstorming: Diversity and directional spread of ideas 

• Reasoning: Logical structure and correctness 

• Chat: Appropriate conversational flow 

• Information Extraction: Exactness and completeness 

• Multiple Choice: Correctness 

3.5.2.1 Stage 1: Prediction Generation 

Model predictions are generated using a vLLM server infrastructure for efficient batched infer-
ence. This approach enables: 

• High-throughput generation: Optimized inference for large test sets 

• Format flexibility: Support for both string prompts and conversational message for-
mats 

• Infrastructure reuse: Same deployment for training-time evaluation and post-train-
ing assessment 

The generation process applies appropriate chat templates to prompts, uses configurable sam-
pling parameters (temperature, top-p, repetition penalty), and produces responses that are 
cached for subsequent metric computation stages. Predictions are stored alongside metadata 
including task categories, languages, source datasets, and reference answers, enabling gran-
ular analysis across different data dimensions. 

3.5.2.2 Stage 2: Traditional Metrics 

Traditional metrics provide fast, reference-based evaluation of surface-level similarity and se-
mantic alignment between predictions and references. 

Metric Categories 

The evaluation computes several complementary types of metrics: 
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Metric Category Examples Measures 

Token overlap METEOR Synonym-aware word matching with stemming 

N-gram recall ROUGE-1, 
ROUGE-2, 
ROUGE-L 

Unigram, bigram, and longest subsequence overlap 

N-gram precision BLEU Corpus-level precision with brevity penalty 

Semantic similarity BERTScore Contextual embedding alignment using multilingual 
DeBERTa 

BLEU Aggregation: Unlike sample-level metrics, BLEU is computed at group level 

(combinations of task category, dataset, and language) as it requires corpus-level aggregation 

for meaningful interpretation. 

BERTScore: Uses microsoft/mdeberta-v3-base to compute semantic similarity beyond 

exact word matching, capturing meaning alignment even when phrasing differs. 

Multi-Level Aggregation 

Metrics are aggregated across multiple dimensions to provide comprehensive analysis: 

• Overall: Performance across the entire test set 

• By task category: Identifying strengths in specific instruction types (QA, summariza-
tion, etc.) 

• By dataset: Understanding which training data sources contribute to capabilities 

• By language: Comparing Dutch vs English performance 

• By combinations: Cross-tabulated analysis (e.g., Dutch summarization vs English 
summarization) 

This multi-dimensional view enables identifying both broad patterns and specific areas needing 
improvement. 

3.5.2.3 Stage 3: LLM-as-a-Judge Evaluation 

Traditional metrics capture surface-level similarity but may miss nuanced aspects of response 
quality. GPT-NL implements LLM-as-a-Judge evaluation using two complementary ap-
proaches: 

3. Multilingual-Prometheus (M-Prometheus) (Pombal et al., 2025): Specialized open-
weight evaluation models (3B-14B parameters) extending the original Prometheus 
framework (Kim et al., 2024) to support multilingual assessment across 20+ lan-
guages through direct assessment and pairwise comparison. Prometheus models 
are specifically trained to align with human evaluator judgments, achieving a Pearson 
correlation of 0.897 with human assessments. 

4. GEval with Qwen (Liu et al., 2023): A flexible evaluation paradigm using chain-of-
thought (CoT) prompting with general-purpose instruction-tuned models like Qwen3 
(Yang et al., 2025). The model generates detailed reasoning about response quality 
before assigning a numerical score, enabling GPT-4-level evaluation without special-
ized training. 

Both approaches evaluate responses on multiple criteria using a 1-5 scoring scale, providing 
both numerical scores and textual feedback explaining the assessment. 

Evaluation Methodologies 

https://arxiv.org/abs/2504.04953
https://openreview.net/forum?id=8euJaTveKw
https://openreview.net/forum?id=8euJaTveKw
https://arxiv.org/abs/2303.16634
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2505.09388
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Multilingual-Prometheus: 

• Uses models specifically fine-tuned for multi-criteria evaluation 

• Supports multiple model sizes (3B, 7B, 14B parameters) 

• Evaluates based on structured rubrics with detailed score descriptions 

• Provides both reference-based and reference-free evaluation 

• Generates explanatory feedback alongside numerical scores 

GEval with Qwen: 

• Leverages general-purpose instruction-tuned models for evaluation 

• Uses chain-of-thought prompting to elicit detailed reasoning 

• Generates evaluation rationale before assigning scores 

• More flexible for custom criteria and evaluation frameworks 

• Can be adapted to emerging evaluation needs 

The choice between approaches depends on evaluation goals: Prometheus offers consistency 
through specialized training, while GEval provides adaptability through prompting strategies. 

Evaluation Rubrics 

Both evaluation approaches use a common rubric structure where each criterion is translated 
into a 1-5 scoring scale with detailed descriptions for each score level. The rubrics combine the 
high-level evaluation criteria described earlier with concrete scoring guidance for LLM judges. 

Rubric Structure Example: Summarization 

To illustrate how criteria are operationalized into rubrics, consider the summarization task-

specific criterion: 

- Criterion: "Does the response cover key points, stay faithful to the sour
ce in the instruction, and is meaningfully shorter?" 
- Score 5: Completely faithful, meaningfully shorter, covers all key points 
- Score 4: Mostly faithful, shorter, covers key points well 
- Score 3: Generally faithful and shorter but has some issues 
- Score 2: Significant issues with faithfulness, coverage, or length 
- Score 1: Unfaithful, adds information, misses key points, or too long 

This pattern applies across all generic criteria (helpfulness, truthfulness, harmlessness, lan-
guage quality) and task-specific criteria (QA, generation, reasoning, etc.), providing LLM judges 
with clear guidance for score assignment while maintaining consistency across different task 
types. 

Language-Adaptive Evaluation: 

The evaluation framework automatically selects appropriate language quality criteria based on 

the response language. Dutch responses are evaluated for Dutch language quality, English 

responses for English language quality, ensuring relevant assessment across both languages. 

Evaluation Outputs 

LLM judge evaluations produce structured outputs containing: 

• Numerical scores for each criterion (1-5 scale) 

• Textual feedback explaining the assessment 

• Metadata linking scores to specific samples, task categories, and languages 
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These outputs are aggregated alongside traditional metrics, enabling holistic quality assess-
ment that combines quantitative similarity measures with qualitative judgment of response ap-
propriateness, safety, and task-specific excellence. 

3.5.2.4 Configuration and Results 
• Which evaluation components to execute (EuroEval, traditional metrics, LLM evalua-

tion) 

• Model checkpoint paths and loading parameters 

• Test dataset location and sampling limits 

• Generation parameters for response production 

• Specific settings for each evaluation method (batch sizes, sampling parameters) 

• Experiment tracking integration (project, entity, tags) 

This configuration-driven approach enables consistent evaluation across different model 
checkpoints while allowing fine-tuned control over computational resources and evaluation 
depth. 

Results and Logging 

The evaluation pipeline produces structured outputs organized by evaluation run: 

• Predictions: Cached model responses with metadata 

• Traditional metrics: Aggregated scores at multiple granularities 

• LLM evaluations: Scores and feedback from evaluation models 

• Combined reports: Unified view of all evaluation dimensions 

All results are automatically logged to Weights & Biases when configured, enabling: 

• Experiment comparison: Track metrics across model iterations 

• Interactive exploration: Drill down into specific task categories or failure modes 

• Qualitative analysis: Review LLM feedback and example predictions 

• Progress visualization: Monitor improvements across training runs 

Analysis and Interpretation 

The multi-faceted evaluation provides insights at different levels: 

5. Overall Performance: High-level comparison with baselines 

6. Task-Specific Analysis: Understanding which instruction types work well 

7. Language-Specific Patterns: Dutch vs English performance differences 

8. Quality Dimensions: Separate tracking of helpfulness, truthfulness, harmlessness, 
and language quality 

9. Dataset Correlation: Identifying which training datasets contribute most to specific 
capabilities 

3.5.3 Initial evaluation results 

In this section we examine initial results from fine-tuning GPT-NL across different experimental 
configurations. The figures below present results from the following experiments: 

• GPT-NL 26B (epoch 2): our data The GPT-NL base model trained through 

epoch-2 annealing (before epoch 3 data inclusion). Fine-tuned with all available 
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instruction fine-tuning data, including the GPT-NL instruct dataset (see this section 
for details). 

• GPT-NL 26B (epoch 2): Tulu 3 data The same GPT-NL epoch-2 model fine-

tuned with data from the Tulu 3 initiative. This serves as a data distribution baseline 
to compare our instruction fine-tuning data against. 

• Olmo 32B: our data The Olmo 2 model (Team OLMo) fine-tuned with all our in-

struction fine-tuning data. This enables comparison against a larger, more broadly 
pre-trained base model. 

• Olmo 32B: Tulu 3 data Olmo 2 fine-tuned with Tulu 3 data, essentially replicating 

the Olmo-2 work to verify our evaluation approach. 

• GPT-NL 26B (epoch 2) base model The GPT-NL base model with no fine-tuning, 

serving as a performance floor. 

• Olmo 32B base model The Olmo base model with no fine-tuning, serving as a com-

parable baseline. 

• GPT-NL 26B (epoch 2) RDS+ filtered data GPT-NL fine-tuned with a curated 

subset selected via the RDS+ method. 

• GPT-NL 26B (epoch 2) GEval filtered data GPT-NL fine-tuned with a curated 

subset selected via the GEval method.  

• GPT-NL 26B (epoch 2) SPIN v2 data only (gptnl_it_v2) GPT-NL fine-tuned 

exclusively with instruction datasets created specifically for GPT-NL. 

• GPT-NL 26B (epoch 2) summarization data only GPT-NL fine-tuned only with 

available summarization data. 

• GPT-NL 26B (epoch 2): our data + LoRA adaptor GPT-NL fine-tuned with all 

available instruction data using Low Rank Adaptation (LoRA) (Hu et al., 2021) in-
stead of full-parameter training. 

3.5.3.1 Internal evaluation (LLM-as-a-judge metrics) 

The results below compare all fine-tuning variations using the LLM-as-a-judge evaluation ap-
proach with GEval and Qwen 3 as the judge model. These evaluations use test data drawn 
from the same sources as our fine-tuning datasets and are thus from the same data distribution 
(notably different from the Tulu 3 distribution, which draws from different sources). 

Base Model Performance: The most striking observation is that non-fine-tuned base models 

(GPT-NL epoch 2 and Olmo-2) substantially underperform all instruction-tuned variants across 

all task categories. This is expected—base models are optimized for next-token prediction, not 

instruction following. They lack exposure to this task distribution and thus cannot effectively 

represent it. Between the two base models, Olmo-2 performs consistently better across all 

tasks, which reflects its significantly larger pre-training corpus (~6x more tokens than the GPT-

NL epoch-2 checkpoint evaluated here). This serves as an important baseline: even with vastly 

more pre-training data, a base model without instruction fine-tuning remains fundamentally 

limited for instruction-following tasks. 

External Model and Data Comparisons: The experiments swapping either the model (Olmo 

2) or data (Tulu 3) with external alternatives (top four rows) show mixed results. Tulu 3 data 

consistently underperforms our own instruction fine-tuning data across most task categories. 

This performance gap is primarily attributable to distribution mismatch: Tulu 3 represents these 

tasks differently than our annotated data does, suggesting that data distribution alignment is 

critical for fine-tuning success. Notably, using Olmo 2 as the base model provides only marginal 

improvements over GPT-NL, despite its larger pre-training scale. This suggests that the quality 

and relevance of instruction fine-tuning data matters more than raw pre-training scale for this 

task distribution. 

https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/fine-tuning-data-preparation.md
https://huggingface.co/datasets/allenai/tulu-3-sft-mixture
https://arxiv.org/abs/2501.00656
https://arxiv.org/abs/2106.09685
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Data Selection and Filtering Experiments: The experiments using filtered data subsets 

(RDS+ and GEval methods) and domain-specific data subsets (SPIN v2 instruct data only, 

summarization only) all perform worse than training on the full instruction dataset. This pattern 

suggests we are operating in a low-data regime where broader coverage is more beneficial 

than targeted filtering. The consistent underperformance of these variants indicates that our 

full dataset, despite potential noise, provides valuable diversity that individual task categories 

or filtering strategies cannot replicate. This finding has important implications: it suggests we 

should prioritize data quantity and diversity over aggressive quality filtering at this stage. 

LoRA Adaptation: The LoRA experiment (fine-tuning with Low Rank Adaptation instead of full 

parameters) shows no clear advantage over standard full-parameter fine-tuning. While LoRA 

can be beneficial for parameter efficiency and avoiding catastrophic forgetting, the results here 

indicate it does not improve task performance on our evaluation set. This may reflect that our 

dataset size and task complexity benefit from full-parameter optimization, or that the rank 

constraints of LoRA limit adaptation capability for this diverse task set. 

Cross-Task Consistency: Examining performance across task categories (summarization, 

chat, simplification, brainstorming, generation, reasoning, QA with/without context, multiple 

choice, information extraction) reveals that performance improvements from instruction fine-

tuning are consistent but not uniform. The model shows stronger gains on some task types 

than others, suggesting specific capabilities are better acquired from our instruction data than 

others. This variation across tasks provides direction for future data collection—understanding 

which tasks show smaller improvements can guide targeted data augmentation efforts. 
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3.5.3.2 EuroEval evaluation 

 

Figure 21: EuroEval Evaluation chart 
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Distribution Shift and Independent Evaluation: EuroEval results paint a markedly different 

picture from internal evaluation, revealing a critical discrepancy: the independent test 

distribution substantially challenges all models. Unlike our internal test set—which draws from 

the same distribution as our fine-tuning data—EuroEval employs standardized, externally-

sourced benchmarks across diverse tasks. This distribution shift exposes significant limitations 

not evident in internal metrics. While our GPT-NL fine-tuned models showed competitive 

performance on internal tasks, EuroEval reveals widespread underperformance across 

numerous task categories. This divergence is informative: it indicates our instruction fine-tuning 

data, while enabling instruction-following capability, may not provide sufficient breadth or 

quality to generalize to diverse task distributions encountered in practice. The model struggles 

particularly on certain benchmark tasks (reasoning and knowledge-based tasks), suggesting 

our training distribution does not adequately cover the patterns present in standardized 

benchmarks. 

Unexpected Experimental Anomaly: A concerning observation emerges when comparing 

experiments with identical training configurations but different implementation runs. The Olmo 

32B: Tulu 3 data experiment—which should replicate the original Olmo-2 training (both 

using Olmo as base model and Tulu 3 data) – shows notably different results than expected. 

This discrepancy suggests training parameters, random seeds, or infrastructure differences 

between our implementation and the reference may be affecting reproducibility. This anomaly 

highlights that either: (1) our experimental setup has undocumented variations affecting training 

outcomes, or (2) the reference conditions were not precisely replicated. Resolving this is critical 

for ensuring experimental validity and understanding which design choices actually drive 

performance improvements. 

Metric Disagreement and Evaluation Complexity: A fundamental challenge emerges when 

comparing internal LLM-as-a-judge metrics with EuroEval’s standardized benchmarks: they do 

not tell the same story. Models that rank highly on internal evaluation often show weaker 

EuroEval performance, and vice versa. This metric disagreement reflects different evaluation 

philosophies: our internal LLM judges assess task-specific quality with detailed rubrics aligned 

to our instruction fine-tuning objectives, while EuroEval employs standardized benchmarks 

designed for broad model comparison. This divergence suggests that high performance on 

internally aligned tasks does not guarantee generalization to external benchmarks. Moving 

forward, we cannot optimize against a single metric without risking misaligned improvements. 

This necessitates: (1) identifying which metrics best correlate with our actual deployment goals, 

(2) understanding what EuroEval benchmarks reveal about genuine model limitations, and (3) 

deciding whether to prioritize internal task-specific excellence or external benchmark 

generalization. 

Implications for Future Work: These findings indicate substantial refinement is needed 

before declaring results conclusive. First, the experimental parameter anomaly must be 

investigated and resolved to ensure reproducibility. Second, we need to systematically 

understand which EuroEval tasks show the largest gaps and why, whether due to distribution 

mismatch, insufficient training data, or model capacity limitations. Third, we should establish 

core evaluation metrics that balance internal task performance with external benchmark 

robustness, avoiding optimizing for one dimension at the expense of another. The current 

results suggest we are still in an exploratory phase where different experimental choices lead 

to different rank orderings across evaluation dimensions, indicating the need for more targeted 

experimentation to achieve stable, reproducible improvements across multiple evaluation 

perspectives. 

 



 

 

 TNO Public  GPTNL-DEL-4002-[1.0] 

 TNO Public 94/109 

3.6 Code and Data Organization 
The instruction fine-tuning infrastructure is organized to support efficient experimentation with 
multiple base models, dataset variants, and training configurations. The codebase is main-
tained in the Instruction Fine-Tuning Repository, while all training data and model artifacts are 
stored on the Snellius HPC cluster. 

The organization reflects the iterative nature of fine-tuning research: individual datasets are 

prepared once from their source formats, then combined into different training mixtures for 

experimental runs. Configurations are version-controlled separately from code, and training 

outputs are systematically organized to enable comparison across runs. This structure 

supports rapid experimentation with different data combinations while maintaining 

reproducibility. 

The Instruction Fine-Tuning Repository contains the complete pipeline for GPT-NL instruction 
fine-tuning, built on HuggingFace TRL and scaled to multi-node training with DeepSpeed. The 
repository implements data preparation, distributed training, and comprehensive evaluation ca-
pabilities. 

The repository serves as the central location for all instruction fine-tuning workflows. It provides: 

• Data processing pipeline: Transform heterogeneous instruction datasets into uni-
fied training format 

• Training infrastructure: Distributed fine-tuning with DeepSpeed ZeRO on multi-
node clusters 

• Evaluation framework: Both traditional metrics and LLM-based quality assessment 

• Experiment management: YAML-based configuration and Weights & Biases track-
ing 

The implementation prioritizes modularity and configurability, allowing researchers to easily 
experiment with different data mixtures, training recipes, and evaluation strategies without 
modifying core code. 

3.6.1 Data Folder Structure 

The data organization follows these principles to support reproducibility and efficient experi-
mentation: 

• IT mixture datasets (it_mixtures/): Post-processed, combined dataset variants 

ready for fine-tuning. Each mixture represents a specific data selection strategy (e.g., 
all_data, rds_plus_178k, conversational) and can be directly loaded for train-

ing. 

• Raw IT datasets by split (it_datasets/train/, val/, test/): Individual dataset 

splits organized by source before combining into mixtures. This separation allows 
flexible mixture creation without re-downloading or re-processing source datasets. 

• Pretrained models (pretrained-models/): Base model checkpoints (GPT-NL and 

external models like OLMo) used as starting points for fine-tuning. Organized by 
model name and training stage (e.g., epoch_2_annealed_step98863). 

• Fine-tuned checkpoints (it-checkpoints/): Model checkpoints saved during and 

after training. Naming convention: {BASE_MODEL}-{DATASET}-{BATCH_SIZE}-gas-
{GAS}-nodes-{NODES}-{ZERO_STAGE}-{SLURM_JOB_ID} (e.g., GPTNL-26B-

https://ci.tno.nl/gitlab/gpt-nl/model-development/instruction-finetuning
https://ci.tno.nl/gitlab/gpt-nl/model-development/instruction-finetuning
https://huggingface.co/docs/trl/index
https://www.deepspeed.ai/
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all_data-4-gas-1-nodes-8-zero3-15593638). Each checkpoint folder contains 

model weights, optimizer states, and training metadata. 

• Evaluation results (eval_results/): Outputs and metrics organized by SLURM job 

ID with descriptive folder names: {JOB_ID} BASE=[...] IT_DATA=[...] 
EVAL=[...]. This structure enables easy identification and comparison of evaluation 

runs. 

• Chat templates (chat_templates/): Jinja2 templates for different model families 

that define how to format multi-turn conversations. Used during both training and in-
ference to ensure consistent formatting. 

3.6.2 Source Code Structure 

The codebase follows a modular structure that cleanly separates concerns: configuration files 
define what to run, job scripts define where and how to run it, and source code implements the 
logic. This separation enables easy experimentation and deployment across different compu-
ting environments: 

instruction-finetuning/ 
├─ config/                       # YAML configuration files for data proces
sing, training and evaluating 
│  ├─ data_processing/           
│  ├─ train/                     
│  ├─ evaluate/  
├─ jobs/                         # SLURM job scripts for Snellius 
│  ├─ train/ 
│  │  ├─ distributed_sft.sh      # Main distributed training launcher 
│  │  ├─ distributed_grid_launcher.sh  # Grid search launcher 
│  │  ├─ torchrun_launcher.sh    # PyTorch distributed launcher 
│  │  └─ convert_zero_to_fp32.sh # Convert DeepSpeed checkpoints to FP32 
│  ├─ evaluate/                  # To start evaluation runs 
│  └─ misc/                      # Miscelaneous, for example to set up the 
environment or start RDS+ data selection process 
├─ src/                          # Python source code 
│  ├─ data_processing/           # Data preparation pipeline 
│  ├─ train/                     # Training implementation 
│  ├─ it_evaluate/               # Evaluation framework 
│  └─ utils/                     # Shared utilities 
├─ pyproject.toml                # Python dependencies (uv package manager) 
├─ README.md                     # Repository documentation 
└─ .env_example                  # Environment variable template 

Configuration System: YAML-based configuration using OmegaConf for environment varia-
ble substitution and hierarchical configs. Training, evaluation, and data processing are sepa-
rately configured. 

Data Processing Pipeline: Modular pipeline that downloads, standardizes, unrolls (converts 

to prompt-completion format), applies chat templates, and filters datasets. See Data 

Preparation for details. 

Training Implementation: Built on HuggingFace TRL’s SFTTrainer with DeepSpeed ZeRO 

for distributed training. Supports multi-node training on Snellius with automatic checkpoint 

management. See Training for implementation details. 
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Evaluation Framework: Dual-track evaluation with traditional metrics (BLEU, ROUGE, 

BERTScore) and LLM-based evaluation (Prometheus, G-Eval). Integrates with Weights & 

Biases for tracking. See Evaluation for methodology. 

Utilities: Shared argument parsing (args.py), model loading with flash attention support 

(model_utils.py), and distributed training helpers (distributed_utils.py). 

3.6.3 Dependencies 

Dependencies are managed via pyproject.toml using the uv package manager for fast, re-

liable environment setup: 

• Core: transformers==4.57.1, trl>=0.17.0, torch>=2.0.0, datasets==3.6.0 

• Training: deepspeed>=0.12.0, accelerate>=0.24.0 

• Evaluation: prometheus-eval>=0.1.20, euroeval==15.16.0, bert-
score>=0.3.13, vllm==0.10.0 

• Tracking: wandb>=0.15.0 

• Configuration: omegaconf>=2.3.0, pyyaml>=6.0.0 

3.6.4 Practical Information 

Installation 

For Snellius deployment, use the automated installation script: 

cd instruction-finetuning 
./jobs/misc/install_snellius.sh 

This script sets up a virtual environment, installs all dependencies via uv, and configures the 

environment for distributed training. 

Configuring and Starting Jobs 

Training and evaluation jobs are configured through YAML files in the config/ directory, which 

specify model paths, dataset locations, hyperparameters, and resource requirements. Job 
scripts in jobs/train/ and jobs/evaluate/ contain SLURM directives for compute re-

sources (nodes, GPUs, time limits) and load the appropriate configuration files. Jobs are sub-
mitted to the Snellius queue using sbatch jobs/train/<script>.sh, which launches 

distributed training across the requested compute nodes. 

Logs and Checkpoints 

During training, checkpoints and logs are automatically saved to the shared project space 
(/projects/0/prjs0986/wp14/instruction-finetuning/it-checkpoints/) under de-

scriptive folder names following the naming convention: {BASE_MODEL}-{DATASET}-
{BATCH_SIZE}-gas-{GAS}-nodes-{NODES}-{ZERO_STAGE}-{SLURM_JOB_ID}. 

Each training run directory contains periodic checkpoints saved at configured intervals (e.g., 

checkpoint-100/, checkpoint-200/) with model weights, optimizer states, and training 

metadata. If Weights & Biases tracking is enabled, run data is stored in a wandb/ subdirectory. 

Evaluation outputs are organized under eval_results/ with folders named by SLURM job ID 

and descriptive metadata: {JOB_ID} BASE=[model] IT_DATA=[dataset] 
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EVAL=[test_set]. Each folder contains model predictions, computed metrics, and references 

to the source checkpoint. 
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4 Model Deployment 

We deploy GPT-NL behind an OpenAI-compatible HTTP API provided by vLLM, with two client 
applications on top: 

Gradio “Ops UI”: a lightweight control panel to start and tune runtime knobs (sampling, limits, 

concurrency) and run quick smoke-tests/benchmarks. 

Open WebUI Chat: a full-featured chat workspace for end users (multi-user, permissions, 

conversation UX), connected to the same OpenAI-compatible endpoint. 

vLLM is optimized for high-throughput, GPU-efficient serving via: 

• PagedAttention (KV-cache memory efficiency) and continuous batching of incoming 
requests (better GPU utilization under concurrent load). 

• Production-serving features like streaming outputs, prefix caching, and multi-LoRA 
support. 

• A broad set of performance knobs including quantization options (e.g., GPTQ, AWQ, 
INT4/INT8/FP8) plus features like speculative decoding and chunked prefill (model- 
and workload-dependent). 

• A built-in OpenAI-compatible API server, enabling drop-in compatibility with OpenAI 
SDK-based clients. 

• Seamless integration with HuggingFace checkpointed models (like GPT-NL) 

• Broad hardware compatibility like NVIDIA GPUs, AMD CPUs and GPUs, Intel CPUs 
and GPUs, PowerPC CPUs, Arm CPUs, and TPU. 

Evaluation deployment 

To evaluate both the pre-trained and fine-tuned GPT-NL model, we needed a fast-serving mod-
ule that could work as “plug-and-play” component on various tasks, e.g. offline Euroeval. 

In practice, we have created an Apptainer image with a self-contained vLLM instance. The 

creation recipe is available here, and the image is located on 

/projects/0/prjs0986/wp14/containers/vllm_25.09.sif. 

Deploying this image from cli can be performed with the below command. For the specific 

variables please look here. 

apptainer exec --nv -B $PROJECT_SPACE -B $DOWNLOAD_DIR $CONTAINER_PATH \ 
    vllm serve $MODEL_CHECKPOINT \ 
    --tensor-parallel-size $GPUS --download-dir $DOWNLOAD_DIR \ 
    --uvicorn-log-level warning --chat-template $CHAT_TEMPLATE 

Demo deployment 

For Demo purposes, we developed a 2-stage deployment setup. 

1. Demo starter web application 

2. Demo Chat application 

https://docs.vllm.ai/en/stable/
https://apptainer.org/docs/user/main/
https://ci.tno.nl/gitlab/gpt-nl/use-cases/gpt-nl-stack/-/blob/main/build_vllm.job?ref_type=heads
https://ci.tno.nl/gitlab/gpt-nl/model-development/instruction-finetuning/-/blob/main/jobs/evaluate/evaluate.job?ref_type=heads
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In more detail (available at: https://gpt-nl-demo-starter.k8s.tnods.nl/): 

This is a Gradio web application that allows the user to: 

• Check whether there is a running vLLM instance 

• Select the reservation on snellius (“gpt-nl” or ““) 

• Select which model version / checkpoint to run from Snellius 

• Start / Stop the GPT-NL model serving on Snellius 

• Exposes the endpoint within TNO network 

• Offers a Chatbox window for using the model 

• Provides a Tab with user-adaptable parameters (temperature, top-p, min-p, repetition 
penalty) 

• Provides a Tab with monitoring metrics (prompt throughput, generation throughput 
(tokens/sec), total tokens) 

Codebase and deployment instructions available here. 

 

Figure 22: GPT-NL Demo GUI (screenshot) 

https://www.gradio.app/guides/quickstart
https://ci.tno.nl/gitlab/gpt-nl/use-cases/gpt-nl-demo-starter-website
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Figure 23: GPT-NL Demo GUI (Screenshot 2) 

Demo Chat application 

Available at: http://gpt-nl-chat.tnods.nl/ 

Open WebUI is a user-friendly platform that offers offline operations and works with various 

LLM runners like Ollama and OpenAI-compatible APIs. 

In our case, we are using the endpoint exposed from the Demo starter and enhance the user-

experience with a “ChatGPT” style interaction. 

 

Figure 24: GPT-NL Demo chat application 

https://docs.openwebui.com/
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The Demo starter web application does not interact with Snellius directly; instead, it calls a 

small set of scripts that hide all cluster‑specific logic. The UI uses snellius_get_queue.sh 

(and a companion “is job running” script) to show SLURM queue status and detect existing 

vLLM jobs, and snellius_start.sh / snellius_stop.sh to start or stop the remote vLLM 

server. These scripts delegate the actual job submission, lifecycle management, and SSH 

tunneling to remote_vllm_manager.py, which in turn submits a SLURM job using 

spawn_vllm_slurm_snellius.job to launch the Apptainer-based vLLM server with the 

selected model checkpoint. The Gradio backend (vllm_serve_server_base.py) simply 

streams logs from these scripts into the UI and enables/disables the controls based on their 

output. For full implementation details, see the code and comments in the demo starter 

repository. 
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5 Appendices 

This chapter provides a collection of technical reference materials, including hardware specifi-
cations, detailed software stack evaluations, assessment results, and formal data and model 
format definitions. These resources support the system architecture activities but are too de-
tailed to include in the main body of the document. 

Each section in this chapter consolidates essential technical information on topics related to 

the system architecture work. They serve as reference points for the main sections of the 

report, offering detailed substantiation for their content. 

The following appendices are included: 

• GPT-NL data curation and training at SURF’s HPC Snellius 

• Scaling the training in the HPC 

• Frameworks for GPT-NL Fine-Tuning 

 

5.1   GPT-NL data curation and training at 
SURF’s HPC Snellius 
Snellius serves as the national supercomputer managed by SURF for the Dutch high-

performance computing (HPC) community. Designed to support both academic and industrial 

research, Snellius delivers cutting-edge, heterogeneous computing capabilities—from CPU-

only nodes leveraging AMD’s Rome and Genoa architectures to GPU-accelerated 

configurations with NVIDIA A100 and H100 devices. This system plays a pivotal role in enabling 

large-scale, data-intensive simulations, machine learning applications, and scientific computing 

across the Netherlands. With robust SLURM-based job scheduling, flexible partitioning, and 

precise accounting in System Billing Units (SBUs), Snellius empowers users to maximize 

computational throughput while maintaining transparency and efficiency—making it a 

cornerstone of Dutch HPC infrastructure. 

These are the key Snellius Partitions used in GPT-NL project. 

5.1.1 Standard nodes 

rome (alias thin) 

• Node type: Thin compute nodes (tcn) 

• CPU: AMD Rome, 128 cores/node 

• Memory: 224 GiB usable RAM/node 

• Allocation granularity: 1/8 node ≈ 16 cores + 28 GiB RAM 

genoa 

• Node type: Thin compute nodes (tcn) 

• CPU: AMD Genoa, 192 cores/node 

• Memory: 336 GiB usable RAM/node 

• Allocation granularity: 1/8 node ≈ 24 cores + 42 GiB RAM 

https://www.surf.nl/diensten/rekenen/snellius-de-nationale-supercomputer
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• Main usage in GPT-NL: Tests, development, and data curation 

5.1.2 GPU-Accelerated Partitions 

gpu_A100 

• Node type: GPU compute nodes (gcn) 

• CPU: Intel Xeon Platinum 8360Y, 72 cores/node 

• Memory: 480 GiB RAM/node 

• GPU: 4 × NVIDIA A100 (40 GB each) 

• Allocation granularity: 1/4 node ≈ 18 cores + 1 GPU + 120 GiB RAM 

• Main usage in GPT-NL: Tests, development, model training, and data curation 

gpu_H100 

• Node type: GPU compute nodes (gcn) 

• CPU: AMD EPYC 9334, 64 cores/node 

• Memory: 720 GiB RAM/node 

• GPU: 4 × NVIDIA H100 (94 GiB each) 

• Allocation granularity: 1/4 node ≈ 16 cores + 1 GPU + 180 GiB RAM 

• Main usage in GPT-NL: Tests, development, model training, and data curation. Most 
of the pre-training and fine-tuning phases used the gpu_H100 partition with exclusive 
reservations of up to 22 nodes for longer training batches. 

These configurations enable flexible, high-performance computing suitable for a wide range of 
scientific and engineering applications, reflecting Snellius’s role as a versatile and advanced 
national HPC asset. 
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5.2 Scaling the pre-training at Snellius 
To train the GPT-NL model, we need to scale the 26B parameter model across the multi-node 

GPU cluster on Snellius. 

In the ideal set-up, we scale to the maximum number of nodes available. We also require a 

flexible set-up since individual nodes can become temporarily unavailable due to hardware 

failure or maintenance. 

The main pre-training runs were performed on 22 NVIDIA H100 (4 x 94GiB HBM2e) nodes 

interconnected via Infiniband HDR100 (100Gbps). 

5.2.1 FSDP 

To do so, we use Fully Sharded Data Parallelism (FSDP) implemented in PyTorch FSDP2 
(Zhao et al., 2023). FSDP works by distributing (sharding) the model parameters, optimizer 
states, and gradients across multiple workers, so each worker holds only a portion of the model 
rather than a full replica as in DDP (Distributed Data Parallel). This reduces the memory foot-
print on each GPU, enabling the training of larger models or batch sizes, while internal optimi-
zations like overlapping communication with computation help mitigate the increased 
communication overhead that is added when sharding the model over multiple nodes. Activa-
tion checkpointing is used to reduce memory consumption, allowing for larger batch sizes. 

Experiments 

To investigate the different approaches outlined in the documentation on sharding, we ran ex-
periments to test the scaling of the models using the different sharding strategies and frame-
works. The following figure shows the performance results for training 8B and 30B parameter 
models (with a similar architecture to the final GPT-NL model) on 20 nodes:  

  

Based on these experiments, FSDP showed the best efficiency and throughput (i.e. how many 
tokens can be processed per second). These results were consistent over the increasing model 
sizes. 

Additional experiments were performed to investigate the scaling efficiency when increasing 

the number of nodes from 1 to 22. The models were trained with increasing levels of sharding: 

no sharding (data parallel), Zero2 (for FSDP, this is the SHARD_GRAD_OP setting) and Zero3 

(FSDP:FULL_SHARD). 

https://arxiv.org/abs/2304.11277
https://365tno.sharepoint.com/teams/P060.58424/TeamDocuments/External%20Audience/Deliverables/External/training-frameworks/november-2024/01-sharding.md
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The dotted line in the graph shows the ideal scaling, when adding more nodes would add linear 

improvement to the total throughput. In practice, some performance degradation is expected 

because of communication overhead. In particular, with increasing sharding stages this 

communication is expected to increase. For each of the sharding stages, the FSDP approach 

proved more efficient and showed better throughput. The decrease in throughput also proved 

minimal, due to fast interconnect between the nodes. 

Concluding from these experiments, for the final model training we opted for full sharding with 

FSDP. 

Parameters 

Below is an overview of the key configuration parameters: 

Parameter Value / Expression Description 

Parallelism 
strategy 

FSDP Fully Sharded Data Parallel. Model weights, 
gradients, and optimizer state are sharded 
across GPUs to minimize memory footprint. 

Cluster setup 22 nodes x 4 H100 GPUs 
per node 

Distributes training load across 88 GPUs in 
total, enabling distributed training at scale. 

Parameter pre-
cision 

DType.bfloat16 Parameters are stored in bfloat16, helping 
reduce memory usage while maintaining nu-
meric stability. 

Activation 
checkpointing 

TransformerActiva-
tionCheckpointing-
Mode.full 

Applies full checkpointing of activations to 
save memory during the forward/backward 
passes by recomputing forward activations in 
the backward pass. 

Flash attention True Enables FlashAttention v2 kernels for effi-
cient attention computation. 

Per-device 
batch size 

12 Each GPU processes 12 sequences per 
step, balancing throughput, and memory ca-
pacity. 

Gradient accu-
mulation steps 

3 Accumulates gradients over 3 micro-batches 
before performing an optimizer step, 

https://arxiv.org/pdf/2307.08691
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effectively increasing the global batch size 
without exceeding memory limits. 

5.2.2 Checkpointing 
To ensure a flexible restarting schedule, we ensure that (temporary) checkpoints are stored 
every 220 steps, allowing for continued training with a potentially (temporary) change in num-
ber of nodes. 
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5.3 Frameworks for GPT-NL Fine-Tuning 
This appendix presents a concise study conducted within the GPT-NL project to identify and 
select one or a small set of frameworks suitable for the fine-tuning stage. For the GPT-NL fine-
tuning phase, the primary objective was to perform a full fine-tune using Supervised Fine-Tun-
ing (SFT), as this approach is widely recognized for its effectiveness in adapting large language 
models to domain-specific tasks while maintaining stability. 

The selected framework must fully support this approach. Among the feasible options, the final 

choice was based on performance considerations. The evaluation criteria included scalability, 

ease of integration, community support, and computational efficiency. Other alignment 

techniques, such as Direct Preference Optimization (DPO) and Generalized Reinsertion Policy 

Optimization (GRPO), were outside the scope of this study. However, these methods were kept 

in mind during the framework evaluation to ensure future compatibility. The study compared 

several candidate frameworks commonly used for fine-tuning large language models: 

HuggingFace TRL – A widely adopted library offering strong support for SFT and reinforcement 

learning-based alignment. Open-Instruct (OLMo) – Focused on open-source instruction fine-

tuning with robust tooling for research workflows. ColossalAI – Designed for large-scale 

distributed training with efficient memory optimization. DeepSpeedChat – Provides advanced 

optimizations for chat-based fine-tuning and large-scale deployments. Axolotl – A lightweight 

solution tailored for LoRA and parameter-efficient fine-tuning. Megatron-LM – Optimized for 

massive model training with tensor and pipeline parallelism. TorchTune – A PyTorch-native 

library emphasizing simplicity and modularity for fine-tuning tasks. Unsloth – Specializes in fast 

and resource-efficient fine-tuning, particularly for smaller hardware setups. 

5.3.1 Frameworks Comparison 

These are the frameworks that we found: 
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 AllenAI’s framework for 
instruction fine-tuning. 
Focused on RLHF at 
scale. 

   

FSDP 
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32B In-
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I High-performance train-

ing with 3D parallelism. 
Pretraining and finetun-
ing at scale. 

   

FSDP 
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OpenChat 
3.5, Co-
lossal-
LLaMA 

https://github.com/huggingface/trl
https://github.com/huggingface/trl
https://github.com/allenai/open-instruct
https://github.com/allenai/open-instruct
https://github.com/allenai/open-instruct
https://github.com/hpcaitech/ColossalAI
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After analysing multiple frameworks for instruction fine-tuning, including HuggingFace TRL, 

ColossalAI, DeepSpeedChat, Open-Instruct, and others, we chose HuggingFace TRL as our 

primary fine‑tuning framework, augmented with: 

• DeepSpeed ZeRO for multi‑GPU/multi‑node scaling (Stages 1–3). 

• Dataset streaming (for memory efficiency on large parquet datasets). 

• Synchronization primitives (avoid races in model/dataset caching across many 
ranks). 

• Custom callbacks for throughput and sample generation into monitoring tools. 

See further discussion in the Fine-tuning training Section. 

5.3.2 RLHF approaches guideline 
Method Best For Pros Cons 

PPO (Proximal 
Policy Optimiza-
tion) 

Full RLHF with token-
level control and dy-
namic environment in-
teraction 

   Fine-grained learning 

   Proven for large mod-

els like ChatGPT 

  Expensive (needs re-

ward + value model) 

  Sensitive to reward 

model tuning 

DPO (Direct 
Preference Opti-
mization) 

Simple preference 
alignment tasks, espe-
cially single-turn dia-
logue 

   Stable, efficient 

   No RL or reward 

model needed 

  Limited to pairwise 

preferences 

  Less expressive for 

long-horizon tasks 

GRPO (General-
ized Reinsertion 

Reasoning-heavy, 
long-horizon tasks 
where PPO is unstable 

   No value model re-

quired 

  New and less widely 

adopted 

https://github.com/deepspeedai/DeepSpeedExamples/tree/master/applications/DeepSpeed-Chat
https://github.com/deepspeedai/DeepSpeedExamples/tree/master/applications/DeepSpeed-Chat
https://github.com/axolotl-ai-cloud/axolotl
https://github.com/NVIDIA/Megatron-LM
https://github.com/pytorch/torchtune
https://github.com/unslothai/unsloth
https://github.com/huggingface/trl
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Policy Optimiza-
tion) 

   More stable and sam-

ple-efficient than PPO 

RLVR (RL with 
Verifiable Re-
wards) 

Tasks with objective 
success signals (math, 
code correctness) 

   Uses true/automated 

rewards 

   Less dependent on 

human feedback 

  Only suitable for tasks 

with measurable outputs 

ORPO (Offline 
RL with Policy 
Optimization) 

RLHF-style training 
with static datasets (no 
rollouts) 

   Efficient offline tuning 

   Leverages existing 

reward models 

  No exploration 

  Limited to seen data 

KTO (KL-Tuned 
Optimization) 

Reward-guided fine-
tuning without full RL 
setup 

   Lightweight and easy 

   Ideal for hybrid super-

vised + reward training 

  Less powerful than 

PPO for complex behavior 

5.3.3 References 
• AllenAI released SFT, DPO and Instruct/GRPO versions of their 32B model 

• Trained on 5 8xH100 nodes source 

• Fine-Tuning LLMs with GRPO on AMD MI300X: Scalable RLHF with Hugging Face 
TRL and ROCm - link 

• DeepSpeedChat SFT, DPO, RM finetune, RLHF - link 

• ColossalAI example scripts for PPO, DPO, GRPO, etc. - link 

• OLMo-32B RLVR - link 
 

https://huggingface.co/allenai/OLMo-2-0325-32B-SFT
https://huggingface.co/allenai/OLMo-2-0325-32B-DPO
https://huggingface.co/allenai/OLMo-2-0325-32B-Instruct
https://huggingface.co/allenai/OLMo-2-0325-32B-Instruct
https://rocm.blogs.amd.com/software-tools-optimization/llm-grpo-rocm/README.html
https://github.com/deepspeedai/DeepSpeedExamples/tree/master/applications/DeepSpeed-Chat/training
https://github.com/hpcaitech/ColossalAI/tree/main/applications/ColossalChat/examples/training_scripts
https://huggingface.co/allenai/OLMo-2-0325-32B-Instruct#reproduction-command

