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1 Introduction 

The GPT-NL project aims to develop a Dutch-English large language model (LLM) from the 
ground up to promote technological sovereignty and strengthen the Dutch and broader 
European LLM ecosystem. Achieving this objective requires a structured systems engineering 
approach encompassing requirements elicitation, design, implementation, and validation. 
Beyond the creation of the model itself, sovereignty and community growth depend on 
transparent dissemination of knowledge about how such a system is built. This document 
therefore presents the architectural blueprint—both in code and documentation—for the first 
part of this development phase: the System Architecture of the Data Curation Pipeline. 

The documentation and systematic management of this technological blueprint are intended to 
stimulate new research directions and enable future improvements. The GPT-NL System 
Architecture effort serves as the foundation for these goals by providing a coherent, well-
documented engineering framework for large-scale model development. 

From a general point of view, the system architecture activities provide a structured conceptual 
model defining the organization, behaviour, and interactions of system components. It offers a 
high-level view of how hardware, software, data, and processes collaborate to achieve the 
intended system goals. Through clear specification of components, interfaces, and design 
principles, the architecture ensures that key system attributes—such as performance, 
scalability, security, and maintainability—are addressed systematically and in alignment with 
stakeholder requirements and operational constraints. 

Within the GPT-NL team, system architecture plays a coordinating role by providing a shared 
technical framework that guides design, implementation, and verification across teams. This 
work, conducted under Work Package 13 (WP13), facilitates communication among 
engineers, researchers, and developers by defining clear interfaces and dependencies. The 
architectural team ensures design consistency, manages technical risks, and balances trade-
offs among quality attributes. As a result, this document and the associated work contribute to 
the alignment of strategic objectives and technical execution, promoting system coherence, 
continuity, and effective integration throughout the development lifecycle. 
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Figure 1: Overview main GPT-NL Processes and Working Packages 

At a high level, LLM development can be divided into two main components, as depicted in 
Figure 1: data curation and model training and validation. These components differ 
significantly in their technical focus and data processing requirements. 

 The data curation pipeline encompasses all processes from data acquisition to the 
creation of a uniform dataset ready for model training. This includes systematic rea-
soning and documentation of inclusion and exclusion criteria, as well as the production 
of standardized datasets for both training and public release. The data curation pipeline 
is sub-divided in two phases: the data extraction phase and the data curation phase. 
The whole curation pipeline and its phases are detailed in the next sections. Architec-
tural artifacts from this pipeline include: 

o Software developed for data acquisition, extraction, curation, and dataset de-
ployment. 

o Documentation of third-party software and hardware stacks—such as Data-
Trove, PrivateAI, and SURF’s Snellius—including configuration details, ver-
sioning, and integration procedures. 

o CI/CD frameworks for testing, logging, and evaluating both the platform and 
resulting datasets. 

o Records of architectural decisions, design rationales, and supporting technical 
documentation. 
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o Security, privacy, and energy monitoring mechanisms for development and 
operational phases. 

o Final technical reports and communication materials, including this document 
and supporting white papers. 

 The model training and validation phase includes data preparation, tokenization, 
model pre-training, instruction tuning, fine-tuning, and performance evaluation. It re-
sults in a standardized and reproducible model package for internal use and commu-
nity release. Artifacts from this phase include: 

o Software for data mixing, tokenization, model training, fine-tuning, and deploy-
ment. 

o Documentation of third-party stacks such as OlMO and the Snellius HPC in-
frastructure, detailing configurations and integration. 

o CI/CD support for testing and performance tracking. 
o Documentation of design decisions, system rationale, and supporting non-

functional design considerations. 
o Security, privacy, and energy monitoring tools. 
o Final deliverables, including technical documentation and dissemination ma-

terials. 
 

This document, System Architecture Document – Data Curation Pipeline, covers the data 
curation process. Details on model training and validation are presented in the related 
document: System Architecture Document – Training And Evaluation Pipeline1. As 
introduction, we present in the following the architectural overview of the Data Curation 
Pipeline.  

1.1 Architectural overview of the GPT-NL Data 
Curation Pipeline 
The data curation pipeline is a structured sequence of processes and software modules 
responsible for transforming raw data from external sources into a standardized, high-quality 
dataset ready for model training. A diagram of the processes and components involved are 
detailed in Figure 2. This transformation occurs in two main stages: (1) receiving and managing 
incoming raw data and extracting textual content to create an extracted dataset, and (2) pre-
processing this content—through filtering, normalization, and privacy protection—to produce 
the curated dataset. The curated dataset forms the input for the second major component of 
LLM development: model training and validation. 

In the GPT-NL project, data is collected from diverse external sources and providers. Each 
dataset and provider is carefully reviewed to ensure that all materials used for model training 
are either publicly available and openly licensed or obtained with explicit consent for this 
purpose. The processes of selecting and approving data sources fall outside the architectural 
scope and are managed within the working package WP18 - Data Quality. 

_______ 
1 TNO, GPT-NL Project, Report; GPTNL-DEL-4002-1.0-System Architecture Document – Training Pipeline, 

December 2025. 
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Figure 2: Data Curation Pipeline and its main phases and components 

 

Once datasets are approved and agreements with the data provider are in place, the curation 
pipeline begins by physically collecting the data and integrating it into the GPT-NL system. 
Each dataset passes through two distinct processing phases: the data extraction phase and 
the data curation phase. The pipeline concludes when the data is transformed from its raw 
form into a standardized, normalized, and annotated dataset — referred to as the curated 
dataset. 
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The data extraction phase provides a secure environment for ingesting data from external 
providers. It accommodates the consumption of multiple data formats—such as PDF 
documents, CSV tables, or database exports—and extracts relevant textual content and 
metadata. Metadata is used to characterize and assess the data (e.g., authorship, timestamps, 
language, and licensing), informing later filtering and quality assurance processes. The 
outcome of this phase is a uniform, standardized dataset stored in .parquet format, referred to 
as the extracted dataset. Each raw dataset generates its own extracted counterpart which is 
submitted to the curation phase in separate. We often use the term “collection” to identify the 
extracted files provenient from a distinct raw dataset. Details of this phase will be discussed in 
the Data extraction phase section. 

The data curation phase applies automated processing steps to refine the extracted data. 
These steps include normalization, filtering, de-biasing, privacy protection, and annotation. 
Algorithms and techniques developed under the working package WP12 – Data Curation are 
implemented and integrated by the architecture team to ensure scalability and consistency. In 
some cases, external tools such as PrivateAI are incorporated into the GPT-NL stack. The 
output of this phase is a curated dataset — still stored as .parquet files — enhanced with new 
metadata, including quality measures, inclusion and exclusion criteria, aggregated statistics, 
and indicators such as the presence of harmful or sensitive content. Personally identifiable 
information (PII) belonging to non-public individuals is anonymized or removed. Details of this 
phase will be discussed in the Data curation phase section. 

Throughout both phases, detailed process logs and metadata are collected to ensure 
transparency, traceability, and processual (KPI) statistics. All software components — whether 
developed internally or integrated from external sources — are versioned and tracked to 
guarantee reproducibility. Cybersecurity measures are applied at every stage, including 
restricted access to raw data, authentication and authorization controls, and secure 
management of repositories and CI/CD pipelines. For clarity and brevity, many of these 
supporting processes and architectural mechanisms are referenced in the main sections, but 
detailed in the Architectural Support section. 

The next two sections provide a deep dive in the data extraction and the data curation phases. 

1.2 Scope of the System Architecture Work and 
Relation to Other Work 
The overview of the processes, tasks, and artefacts related to the architectural work is depicted 
in Figure 1. The system architecture team collaborates with all other working packages, but 
closest with WP12 (Data Curation), WP14 (Model Development), and WP18 (Data 
Acquisition and Quality). While WP12 and WP14 lead algorithmic development—such as the 
selection of filters, models, and training techniques—WP13 focuses on translating these 
designs into structured, maintainable, and scalable code. This includes defining clean 
interfaces between modules, ensuring continuous data processing flows suitable for HPC 
environments, and addressing non-functional aspects such as security, documentation, and 
energy efficiency. WP18 is responsible for the processes of contacting data providers and 
acquiring/creating datasets. They are strongly involved with the architecture team assessing 
the quality of the data during and after the curation phase. 

Besides the close work developed with WP12, WP14, and WP18, Figure 1 also depicts 
cybersecurity and evaluation tasks(WP21 and WP22). Their activities are out of the scope of 
the architecture team, but their insights and outcomes influence and are influenced by the GPT-
NL architecture work. For example, WP21 (Post-development) Evaluation and the 
Cybersecurity work package (WP22) operate independently to ensure objective assessment 
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and verification. WP21 evaluates the trained model’s performance on key tasks, while the 
cybersecurity and red-teaming teams assess its resilience and safety. Although separate, 
these teams collaborate closely with WP13 by consuming its architectural artifacts, interfaces, 
and documentation, and by providing feedback that informs subsequent development cycles. 
This interaction ensures a robust, secure, and transparent development process for the GPT-
NL system. 

1.2.1 Architecture Team 
The GPT-NL architecture team has a multidisciplinary composition with SW architects and 
engineers, open-source specialists, high performance computers architects, ML engineers, 
and data scientists. Members of TNO and SURF form the team. Acknowledgements for the 
support of SURF in all the management and proper usage of the Snellius supercomputer. 

1.3 How to further read this document 
The architecture documentation is organized into two main reports: the Architecture of the 
GPT-NL Data Curation Pipeline  and the Architecture of the GPT-NL Training Pipeline. 
The present document covers the data curation part. Readers should start with the introductory 
section of the data curation pipeline, which provides a general overview of the system’s 
architecture and objectives. The subsequent sections describe the Data Extraction phase, 
including its input format (GPT Curation Dataset format), extractor architecture (Datasource 
extractors), and associated (data folder structure and source code organization). This part 
outlines how data is ingested and prepared for curation. The Data Curation phase then details 
the data preparation processing pipeline, introducing the DataTrove framework, 
modularization principles, execution methodology, and curation stages. The section 
concludes with information on code organization, deployment at the Snellius A100 Cluster, 
and procedures for assessing and monitoring the curation pipeline. Supplementary 
analyses are provided for additional information on the used SW stacks in Appendix A and 
formal specifications (in croissant format) for the projects’ datasets Appendix B. 
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2 Architecture and Design of the 
Data Extraction Phase 

The GPT-NL project collects data from a wide range of sources. Some datasets come from 
publicly available repositories in the machine learning communities such as HuggingFace—
while others are provided by private data providers with explicit permission for use in GPT-NL 
training. This diversity introduces a key challenge: raw data comes in diverse data structures, 
varying labeling conventions and file formats. In their original state, these datasets are not 
suitable for automated processing during the curation or training phases. Within the GPT-NL 
project, this unprocessed form is referred to as the RAW format. 

In many cases—particularly with private data providers—raw data is subject to copyright 
restrictions and must be protected against unauthorized access or leakage during curation. 
Additionally, it is in the project’s interest to collect metadata and statistics about the raw data, 
such as authorship (for attribution), data sources, timestamps, version information, and 
preliminary size estimates (e.g., character or token counts). 

 

The goal of the data extraction phase is to securely receive and 
convert raw data from external sources into a structured, 
homogeneous format—the EXTRACTED dataset. 

 

Before the curation phase can begin, all incoming data must first be transformed into this 
EXTRACTED format. The extraction process ensures that the curation pipeline starts with a 
standardized input, preventing downstream components from having to handle multiple formats 
or inconsistent structures. It also helps decouple the original data from subsequent processing, 
ensuring that only the relevant textual content needed for curation and training is retained. This 
selective extraction further safeguards the rights and confidentiality of data providers. 

The extraction phase is represented in the first part of the data curation diagram. Its inputs 
consist of external data sources—typically a collection of files, databases, or online 
repositories. These files are securely transferred to an internal protected environment known 
as the Datasource Inbox, which is described in greater detail in the Datasources section. 
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Figure 3: Overview Data Extraction phase 

2.1 Extraction process 
The data extraction process consists of several key steps that work together to transform raw 
data into structured Parquet files. The first two steps occur in the Datasource Inbox and were 
discussed in detail in the previous section. The extraction activity itself is performed in the last 
two steps shown in the diagram: 
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Figure 4: Tasks within the extraction process 

1. Upload Most datasets are provided by data contributors through the SURF Research 
Drive, while others are already available to download from ML community websites, 
such as Hugging Face. The procedures and policies governing data upload — includ-
ing safe transfer, access control, and privacy compliance, and supported data formats 
— are discussed in the Datasource Inbox section. 

2. Download Datasets are retrieved using one of three methods, depending on their 
source: 

o From the SURF Research Drive to the Snellius cluster using the rclone utility, 
which enables efficient, parallelized, and encrypted file transfers. This is per-
formed using automated HPC jobs whenever possible. 

o From Hugging Face using git, allowing version-controlled synchronization of 
datasets. 

o In a few cases, datasets are transferred manually from the SURF Research 
Drive to Snellius (e.g., when access restrictions or network issues prevent au-
tomated transfers). 

  The target directory structure and conventions used for storing downloaded data are 
detailed in the Code Organization and Data Folders section. These steps include data 
checksum validation and hash verification to ensure data integrity after transfer. 

3. Unzip Most datasets are provided in compressed formats such as .zip, .tar.gz, or .xz. 
These are decompressed using standard Linux utilities (e.g., unzip, tar, or gzip). In 
some cases, decompression is integrated into the extraction process itself to stream-
line workflow execution. 

4. Extract The core component of the GPT-NL data pipeline is the extraction frame-
work, built around a modular architecture. It comprises a base Extractor class and 
multiple specialized extractor implementations for different data formats and schemas. 

  Each extractor: 

o Connects and Reads the RAW input files – Connector module. 
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o Parses them according to the dataset-specific structure – Parser module. 
o Outputs a normalized and structured representation of the data – Formatter 

module. 
  The unified data format produced by these extractors is described in the Curation Input 

Format Section, and the storage location of EXTRACTED datasets is documented in 
the Code Organization and Data Folders. The Extractor class provides a common 
interface that integrates connectors, parsers, and formatters, ensuring consistent 
handling of diverse data sources. 

Once data is available in the Datasource Inbox, it is processed using specialized software 
modules known as extractors. Extractors consist of a sequence of connectors, parsers, and 
formatters, which together transform heterogeneous raw data into a consistent structure 
suitable for the next processing phase. The GPT-NL project implements a flexible software 
stack that supports the design, configuration, and composition of these modules, allowing them 
to handle the wide variety of raw data formats encountered across different sources. Extractor 
modules were implemented for each one of the datasets and are available in the data extraction 
code repository. 

 Connectors manage access to and retrieval of data from their original source. Their 
implementation depends on the source type and access method. For example, when 
dealing with web-based content, a connector functions as a scraper, capable of using 
network protocols to retrieve HTML data. In GPT-NL, most connectors operate within 
the secure Snellius environment and provide an abstraction layer for accessing files, 
databases, or API endpoints. The output of a connector is an interface exposing the 
source content—typically in textual or tabular form—to the next processing stage. 
There is no single, universal interface; connectors may consist of custom-built modules 
or widely used open-source libraries. For instance, the pypdf package is commonly 
used to process .pdf documents. 

 Parsers interpret and extract meaningful information from the content provided by con-
nectors. Their key role is to understand the data format and isolate relevant elements, 
primarily raw text, and associated metadata. This metadata can include attributes such 
as authorship, section titles, and publication dates. If such information is unavailable, 
parsers generate default values to maintain consistency. In some cases, parsers may 
apply light filtering to exclude irrelevant content—though this is outside the formal 
scope of GPT-NL’s curation process. Parsers interact with connectors through tailored 
interfaces that allow them to process content at the level of files or file sections. Their 
output is a structured data representation ready to be processed by the formatter mod-
ules. 

 Formatters take the structured output from the parsers and organize it into a stand-
ardized dataset format designed for the data curation pipeline. This step ensures that 
all extracted data—regardless of its origin or initial structure—follows a uniform 
schema. By enforcing this consistency, the curation pipeline can operate efficiently and 
reliably, without needing to manage the complexities or idiosyncrasies of individual 
datasource formats. 

The internal operation of extractors is described in detail in the Datasource Extractors section. 
The result of this process is a collection of structured data records that conform to the 
EXTRACTED format specification and are stored as .parquet files—sometimes referred to as 
the GPT-NL input format. The structure and content of this format are formally defined in the 
Curation Input Format section. 

In fact, at the end of the extraction a sampling process takes place using the extracted set as 
input. This sampling process generates a random subset— smaller than the original dataset. 
This sample is submitted to curation cycles and the effects of the curation pipeline (discussed 
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in the next section) can be evaluated by the data quality team. The data quality decides on 
eventual modifications on the curation parameters, preserving most of the quality data. These 
new parameter settings are put in place and documented by the curation team, which is now 
ready to move on to the curation phase. This sampling process is discussed in the Preparation 
for the Curation phase. 

In the following sections we dive into the architectural details, requirements, and processes for 
each of the extraction stages and components. 
 

2.2 Datasource Inbox 
The GPT-NL project receives data from a variety of partners and external data sources. Many 
datasets are subject to intellectual property (IP) rights and copyright restrictions, and their use 
is authorized solely for project purposes. To comply with these legal and contractual 
obligations—established under Work Package 18 (Data Acquisition and Quality)—the 
project must ensure a secure environment for receiving, storing, and managing partner-
contributed data. This safeguards both the proprietary value of the data and the privacy of 
contributing entities. 

This section describes the environment used in GPT-NL to securely receive data from partners, 
referred to as the Datasource Inbox. 

The Datasource Inbox is hosted at SURF and provides a direct, secure connection to the 
Snellius research cluster, where subsequent data processing and curation take place. SURF 
and Snellius were selected as the primary data handling platforms due to their robust security 
controls, reliable data transfer mechanisms, large-scale storage capacity, and researcher-
oriented usability. These characteristics ensure that sensitive datasets can be ingested and 
processed in full compliance with project and partner requirements. 

Other project datasources are public ML communities – such as HuggingFace – from which 
we download publicly available datasets like Common Corpus into the Datasource Inbox. We 
discuss briefly these two options in the following. 

2.2.1 SURF Research Drive 
The SURF Research Drive is a secure, cloud-based storage service designed specifically for 
researchers, students and information professionals, to store, share, and collaborate on data. 
It offers scalable storage, making it ideal for managing large datasets commonly used in 
research. The platform ensures that sensitive and valuable research data is safeguarded 
through advanced security protocols. Researchers can collaborate seamlessly across 
institutions, making data sharing more efficient while maintaining control over data access. 
Additionally, it integrates well with other research tools, enhancing workflow efficiency and 
ensuring compliance with data management regulations. 

GPT-NL uses the research drive as the designated storage location for data providers to upload 
their datasets. Using rclone, the data was easily transferred to Snellius. rclone was set up by 
following SURF instructions, which uses a WebDAV interface for the Research Drive. Data was 
transferred from the Research Drive to Snellius using a command like the one below, executed 
in a Snellius job to allow long-running transfers. 

rclone copy \ 
  "RD:/GPT-NL (Projectfolder)/Instituut voor NL Taal/CorpusGysseling_1.0.zip" \ 
  /projects/0/prjs0986/wp12/raw/instituut-voor-nl-taal 
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Figure 5: Screenshot of the SURF Research Drive 

2.2.2 Hugging Face 
Hugging Face is a platform that provides a wide range of tools and resources for natural 
language processing (NLP) and machine learning. It offers an extensive collection of pre-
trained models, datasets, and libraries that facilitate the development and deployment of NLP 
applications. Hugging Face is known for its user-friendly interface and active community, 
making it easier for researchers and developers to collaborate and share their work. 

GPT-NL uses Hugging Face as a source for several public datasets. The datasets were 
downloaded using git-lfs. Example commands to download a dataset from Hugging Face look 
like this: 

git lfs install 
git clone https://huggingface.co/datasets/coastalcph/multi_eurlex /projects/0/prjs0986/wp12/raw/multi-eu
rlex 

2.2.3 What happens to the data in the Datasource 
Inbox? 
In accordance with the folder structure defined in the data folder structure documentation, data 
received in the Datasource Inbox are automatically and securely transferred to the following 
directory within the GPT-NL project space on Snellius: 

/projects/0/prjs0986/wp12/raw/ 

This automated transfer ensures that all ingested datasets are consistently stored in the 
designated raw data repository, from which the extraction framework can directly access and 
process them. 

Access to this directory is strictly controlled and limited to authorized members of relevant work 
packages. Furthermore, the retention of partner-contributed data within this folder is time-
bound, in compliance with contractual and data management requirements. 

For details on the file formats used by different data sources and the corresponding extractor 
implementations, refer to the Data Source Extractors Section. 
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2.3 Data Source Extractors 
Once a dataset is received in the inbox and transferred to the appropriate folder within the local 
Snellius curation directory, the GPT-NL data extraction system initiates a modular processing 
framework. This framework transforms the data sources into a unified tabular structure and 
stores them in Parquet format. The resulting dataset serves as the foundational input for 
subsequent curation operations. 

The architecture of the data source extractors employs a plugin-based design pattern, allowing 
new data sources to be integrated easily while ensuring consistency and reliability across the 
system. 

Modules used at each extractor are versioned (in the repository) and automatically evaluated 
before application using a CI/CD pipeline. That is to ensure reproducibility of the data extraction 
in the future. Logging is produced to identify errors and warning messages during the extraction 
and help in the debug of modules. However, if an extraction process is successful and no errors 
occurred, logged files are discarded, as they do not contain information about the process itself. 
Example, there is no performance measurements at this stage. The reason for that is that the 
extraction phase is likely to be performed very few times and is not particularly computing 
intensive. 

Extractors also determine the granularity or size of the text chunks extracted. For some 
datasources, a chunk of extracted text corresponds to a paragraph. In other sources, a chunk 
of extracted text is the full content of a document, e.g., all chapters of a book in one long textual 
stream. That creates data entries in the extracted data that may vary a lot on their sizes. This 
is kept like that by design and eventually adjusted later in the process only when necessary. In 
other words, the extraction process does not automatically chunk the extracted information. 

In certain cases, the unzip and extract stages are combined into a single streaming process. 
This approach is used for very large datasets containing numerous files, as the Snellius cluster 
imposes limits on the number of files (inodes) per user. The streaming workflow allows 
processing data on the fly, thereby avoiding storage exhaustion and improving efficiency. 

For most datasets, the download and unzip operations are automated and defined in .job 
scripts. When these steps are not present, data were downloaded or decompressed manually, 
or the dataset size allowed direct command-line handling. The extract operation is consistently 
implemented in extract[-*].job files. 

The following section provides a detailed analysis of the extraction framework, its architectural 
components, and implementation details. 

2.3.1 Extraction framework - Core Components 

2.3.1.1 Base Extractor Framework (extractor.py) 
The heart of the system is the abstract Extractor class that defines the common interface 
and workflow for all data extraction operations. This has a few features: 

 Set the input and output directories. 
 Set the UID: the unique identifier for the dataset extraction run. If not set manually, a 

random one is generated. Manual setting is useful for parallel processing. 
 

Custom derivations of the Extractor class defines behaviour. The process will be explained 
later in this section. Extractors return a DataFrame structure with the obligatory fields (e.g., 
text, id) per row, and eventually other fields with optional information. That is dependent on 
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the availability of this information in the current dataset. When ingesting tabular format (e.g., 
from open datasets in HuggingFace), it is sufficient to indicate a relationship between the fields 
of the dataframe and the corresponding fields in the source table (e.g., ‘info’ -> ‘text’). For data 
extractors for which it is not easy to establish this relationship, a DataFrame should override 
the get_data_docs() method, which returns an iterable of dictionaries, each containing a text 
field (obligatory) and optional metadata fields. 

2.3.1.2 Extractor Implementations 

The system includes specialized extractors for various data formats and 
sources, each inheriting from the base Extractor class. The format-based ones 
are listed here: 

Class Data format Datasets extracted 

CodebookExtractor Codebook CenterData (txt part) 

CSVExtractor CSV Movisie, BNR and Woogle 

JsonlExtractor JSON Lines Common Crawl, DPC and KPN 

JsonlZipstreamExtractor Compressed JSON 
Lines 

ANP 

OrtExtractor Orthographic tran-
scription (*.ort) 

JASMIN 1.0 and CGNAnn 2.0.3 

ParquetExtractor Parquet Belgian Journal, Common Cor-
pus, Danish PD, English PD, 
French PD Books, Germn PD 
Newspapers, German PD, LoC 
PD Books, Spanish PD Books, 
Spanish PD Newspapers, Swe-
dish PD, TEDEUTenders, and 
YouTube-Commons 

PdfExtractor PDF Tweede Kamer, Auditdienst Rijk, 
HBO and CenterData (pdf part) 

SqliteExtractor SQLite databases NDP print and NDP web 

XmlExtractor Generic XML DAESO 1.0 and CorpusMid-
delnederlands 1.0 

XmlaltoExtractor ALTO XML Noord-Hollands Archief and 
Zeeuws Archief 

XmlpageExtractor PAGE XML Utrechts Archief 

 

These are the specialized extractors for specific datasets: 

Class Datasets extracted 

AmericanStoriesExtractor American Stories 

CorpuscoderingExtractor CorpusGysseling 1.0 

CulturaxExtractor Cultura X (NL part) 
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DANSExtractor DANS 

DNBExtractor DNB 

EuropeanParliamentExtractor European Parliament 

FryskeAkademyExtractor Fryske Akademy 

ICTRechtExtractor ICTRecht 

KBExtractor Koninklijke Bibliotheek 

KBOpenKrantenExtractor Koninklijke Bibliotheek Open Kranten 

LassyLargeExtractor LASSY Large 7.0 

MultiEurlexExtractor MultiEURLEX 

NationaalArchiefExtractor Nationaal Archief 

NaturalisExtractor Naturalis 

NTVGExtractor Nederlands Tijdschrift voor Geneeskunde 

OfficieleBekendmakingenExtractor Officiële Bekendmakingen 

OpenraadsinformatieExtractor Open Raadsinformatie 

PblExtractor Planbureau voor de Leefomgeving 

RechtspraakExtractor Rechtspraak 

WaarbenjijnuExtractor Waarbenjij.nu 

WikidataExtractor Wikidata 

WikiwijsExtractor Wikiwijs 

2.3.1.2.1 Adding New Extractors 

Adding or customizing an extractor is simple. We show the main steps involved with a simplified 
example of the PDF extractor below. Code that outputs the progress is omitted. We provide 
additional comments in this example code explaining intermediate steps. 

First, we inherit from the base Extractor class and implement the get_data_docs() method 
or override get_df() for DataFrame-based processing. 

# file: gptnl_data_extraction/pdf_extractor/pdf_extractor.py 
import gc 
from collections.abc import Generator 
from pathlib import Path 
from gptnl_data_extraction.extractor import DataDoc, Extractor 
from gptnl_data_extraction.utils import read_pdf 
 
class PdfExtractor(Extractor): 
    # Guarantees we are going to connect with .pdf files only. 
    def filter_input_files(self, files: list[Path]) -> list[Path]: 
        return [path for path in files if path.match("**/*.pdf")] 
 
    def get_data_docs(self, files: list[Path]) -> Generator[list[DataDoc], None, None]: 
        datadocs = [] 
        for file in files: 
            # read_pdf is a wrapper for the pypdf python package in this case, 
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            # already extracting only the textual information of a pdf. 
            # This can obviously only be used for typical, well-formed pdfs. 
            text = read_pdf(file) 
            if len(text) == 0: 
                continue 
 
            # In this case, we decide to make the title equal to its filename. 
            # Details on this implementation are set in `main.py`. 
            title = self.filename_to_title_mapper(file) 
 
            # Format into DataDoc so it can be processed. 
            # For this extractor, only text and title are extracted from the sources. 
            datadocs.append( 
                DataDoc( 
                    title=title, 
                    text=text, 
                ) 
            ) 
 
            # Sometimes, we control the size of extracted elements 
            # Avoiding saves at each entry make it more efficient 
            # But memory overhauls must be avoided. 
            if len(datadocs) >= 2000: # Not too many, to avoid memory issues. 
                yield datadocs 
                # Clear memory. 
                del datadocs[:] 
                gc.collect() 
                datadocs = [] 
        yield datadocs 

Note that this approach still uses the concepts of connecting, parsing, and formatting as 
explained in the more generic architectural view. However, the composition of these activities 
can be freely designed on case-by-case within this method. This procedure gives more 
freedom to the extraction team to deal with the diversity of formats as they come. 

Second, we write unit tests for the new extractor to confirm it works. Unit tests are important in 
this context to automate the validation of the extraction phase and future reproducibility. A 
couple of documents randomly sampled from the datasource are used to validate the operation. 

# file: gptnl_data_extraction/pdf_extractor/tests/test_pdf_extractor.py 
from pathlib import Path 
import pandas as pd 
from gptnl_data_extraction.extractor import DatasetMetadata 
from gptnl_data_extraction.pdf_extractor import PdfExtractor 
 
this_dir = Path(__file__).resolve().parent 
 
def test_pdf_extractor(): 
    input_dir = this_dir 
    output_path = this_dir / "test_output.parquet" 
    dataset_name = "Example" 
    dataset_url = "https://example.com" 
    license = "MIT" 
    title0 = "0d54f080-dca2-4c89-a68d-705889424127.pdf" 
    title1 = "34af8277-28b4-41c9-a998-8ff0ba335820.pdf" 
    content_prelude0 = "Tweede Kamer der Stat" 
    content_prelude1 = "16% Hernieuwbare ener" 
 
    job = PdfExtractor( 
        "extraction-test", 
        DatasetMetadata(dataset_name, dataset_url, license), 
    ).set_io(input_dir, output_path) 
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    job.process() 
 
    df = pd.read_parquet(output_path) 
 
    assert df["dataset_name"][0] == df["dataset_name"][1] == dataset_name 
    assert df["dataset_url"][0] == df["dataset_url"][1] == dataset_url 
    assert df["dataset_license"][0] == df["dataset_license"][1] == license 
    assert df["license"][0] == df["license"][1] == license 
    assert df["title"][0] == title0 
    assert df["title"][1] == title1 
    assert df["text"][0][: len(content_prelude0)] == content_prelude0 
    assert df["text"][1][: len(content_prelude1)] == content_prelude1 

Third, we configure dataset metadata and any format-specific parameters and add the job 
configuration to main.py registry. The registry ensures the whole process can be launched 
from a central place in using a single mechanism. Once an extractor is registered, the team 
can launch it by its name, e.g., below tweedekamer. 

 # file: gptnl_data_extraction/main.py 
... 
PdfExtractor( 
        "tweedekamer", 
        DatasetMetadata( 
            name="Tweede Kamer", 
            url="https://opendata.tweedekamer.nl/", 
            license="public-domain", 
        ), 
    ).set_filename_to_title_mapper(lambda file: file.stem) # Just take the filename without extension. 
... 

Fourth, we create corresponding SLURM .job files for cluster execution. Parameters are set 
depending on dataset sizes, expected computing availability, etc. Note that the mechanism on 
the jobs is always the same: running the extract module. The module receives as a parameter 
the specific extractor (e.g., tweedekamer) to be used. 

#!/bin/bash 
#SBATCH --job-name extr-tweedekamer 
#SBATCH --nodes=1 
#SBATCH --ntasks=1 
#SBATCH --time=2-00:00:00 
#SBATCH --output=output/slurm-%j-extract-tweedekamer.out 
#SBATCH --mem=5GB 
 
./init_snellius.sh 
poetry run extract tweedekamer \ 
  --input        /projects/0/prjs0986/wp12/raw/tweedekamer \ 
  --output-path  /projects/0/prjs0986/wp12/extracted/tweedekamer/tweedekamer.parquet 

2.3.1.2.2 Running an Extractor 

You can now run an extractor from the command line using the extract script. The general 
usage is: 

> poetry run extract -i <input> -o <output_path> <job_name> 

The job_name corresponds to the name of the dataset as defined in main.py. The -i and -o 
flags specify the input and output directories, respectively. 
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2.3.1.3 Jobs 
Jobs ensure the steps described above are run on the Snellius cluster. Every extractor has one 
or more job files: if it is a file type extractor, there will be job files for each dataset. If it is a 
dataset extractor, there will be a single job file for the dataset (per step). 

Per dataset, you can run the entire extraction process by starting these jobs in order (examples 
from the CenterData dataset (pdf part)): 

5. download[-*].job (if needed) 

#!/bin/bash 
#SBATCH --job-name dl-centerdata 
#SBATCH --time=1:00:00 
#SBATCH --output=output/slurm-%j-download-centerdata.out 
#SBATCH --cpus-per-task=1 
#SBATCH --ntasks=1 
#SBATCH --mem=5GB 
 
rclone copy \ 
  "RD:GPT-NL (Projectfolder)/CenterData" \ 
  /projects/0/prjs0986/wp12/raw/centerdata 

6. unzip[-*].job (if needed) 

#!/bin/bash 
#SBATCH --job-name unzip-centerdata 
#SBATCH --time=00:05:00 
#SBATCH --output=output/slurm-%j-unzip-centerdata.out 
#SBATCH --nodes=1 
#SBATCH --ntasks=1 
#SBATCH --cpus-per-task=1 
#SBATCH --mem=0.5GB 
#SBATCH --partition=rome 
 
DIR=/projects/0/prjs0986/wp12/raw/centerdata 
FILES=( 
  "${DIR}/Centerdata_Codebook_1.tar" 
  "${DIR}/Centerdata_Codebook_2.tar" 
  "${DIR}/Centerdata_Publications.tar" 
) 
 
for FILE in "${FILES[@]}"; do 
  tar -xvf "$FILE" -C "$DIR/" 
done 

7. extract[-*].job 

#!/bin/bash 
#SBATCH --job-name extr-centerdata 
#SBATCH --nodes=1 
#SBATCH --ntasks=1 
#SBATCH --time=01:30:00 
#SBATCH --output=output/slurm-%j-extract-centerdata.out 
#SBATCH --mem=5GB 
#SBATCH --cpus-per-task=1 
 
./init_snellius.sh 
poetry run extract centerdata-pdf \ 
  --input        /projects/0/prjs0986/wp12/raw/centerdata \ 
  --output-path  /projects/0/prjs0986/wp12/extracted/centerdata/centerdata-pdf.parquet 
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Some extraction jobs are designed to be run in parallel. These are array jobs and are clearly 
described in the job file itself. Sometimes individual, parallel extraction jobs failed due to 
memory limits, so run_parallel_job.sh is provided to help re-run individual array jobs that 
failed. This retains the UID that is associated with one extraction run. 

2.3.1.4 Data Processing Utilities 

Several utility functions support data processing tasks, including: 

 Previewing a parquet file. 

poetry run preview <input_file> [<num_entries>] 

 Combining multiple parquet files into one. If you use * in file_mask, surround 
file_mask with double quotes to avoid shell expansion. 

poetry run combine <file_mask> <output_file> 

 Reducing a parquet file to only a few entries. 

poetry run reduce <input_file> <output_file> <num_entries> 

 

2.3.2 Additional information 
Details of the extraction repository organization and its operation can be found in the Data 
folder structure and Code Organization section in this document. 

2.4 Curation Input Format 
The output of the extraction phase is a dataset with a standardized structure and storage 
format. This section specifies the formal definition and role of this dataset within the GPT-NL 
data processing workflow. 

Definition 

EXTRACTED dataset (GPT-NL Input Dataset): A harmonized 
data product generated by the extraction framework. It consolidates 
heterogeneous external datasets into a uniform tabular structure 
and standardized storage format suitable for subsequent curation 
and analysis. 

2.4.1 Role in the System 
 End Point of the Extraction Phase: The EXTRACTED dataset constitutes the final 

output of the data extraction phase. It represents the fully processed and normalized 
version of all input datasets ingested from external sources. 

 Starting Point of the Curation Phase: The same dataset serves as the primary in-
put to the data curation phase, providing a consistent basis for further quality assur-
ance, enrichment, and transformation steps. 



 

 

 TNO Public  GPTNL-DEL-4001 

 TNO Public 23/95

The EXTRACTED dataset defines the standard input format for all downstream components in 
the GPT-NL pipeline. This structure is also employed for the sample datasets described in the 
preceding section, ensuring alignment and interoperability across the extraction and curation 
phases. It is also worth to mention that the final curation format (after the curation phase) is 
just an extension of the data structure defined here – this extension includes further annotation 
aggregated during the curation process. 

2.4.2 Extracted Data Structure and Storage Format 
The data extracted from source datasets during the data extraction phase are organized into a 
standardized tabular structure, as shown below: 

 

Each table adhering to this schema is stored in the GPT-NL extracted database in the 
.parquet format. All extracted datasets share this internal structure, ensuring interoperability 
and consistency across data sources. 

2.4.2.1 Rationale for Using the Parquet Format 
The .parquet format was selected due to its efficiency, flexibility, and compatibility with large-
scale data processing systems: 

 Columnar Storage Efficiency: Parquet stores data by columns rather than by rows, 
enabling more effective compression and faster access to specific attributes. This is 
particularly advantageous for analytical and distributed workloads, such as those ex-
ecuted during the data curation phase. 

 Compression and Encoding: Parquet supports several built-in compression and 
encoding algorithms (e.g., Snappy, GZIP), which reduce storage footprint while im-
proving read and write performance. 

 Self-Describing Schema: Each Parquet file includes an embedded schema defini-
tion, facilitating data validation, discovery, and schema evolution. This feature simpli-
fies versioning and maintenance when dataset structures evolve over time. 

 Optimized for Distributed Processing: Parquet integrates natively with distributed 
data processing frameworks such as Apache Spark, Hive, and Presto, supporting 
scalable, parallelized data transformations and queries across large datasets. 

 Cross-Platform and Language Interoperability: The format is widely supported 
across programming environments, including Python, Java, and R, ensuring com-
patibility with diverse analytical and machine learning workflows. 

Overall, the use of Parquet provides a robust and scalable foundation for managing extracted 
datasets in GPT-NL, balancing storage efficiency, accessibility, and long-term maintainability. 

2.4.3 Explanation of data structure fields 
In the following, we describe the format fields in detail: 

 text[sc:String] : Content from the document parsed (text). That is a textual infor-
mation relevant for the work. No limitations on the character set used nor the size of 
this field. It should be simply a textual extraction one datasource document. The cu-
ration pipeline and its steps will, when necessary, normalize this text to a well defined 
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format. This is discussed in the curation pipeline phase, not here. This field is obliga-
tory and must be non-empty. 

 title[sc:String] : The title of the document extracted. This field is obligatory, but it can 
be left as an empty string if the title is not known or attributed. In many cases, the title 
is an urn that uniquely identifies the document where the text was extracted. 

 source[sc:String] : an identifier for the source where the document is found in string 
format. In some cases, this source is recorded as a url. Sources may contain several 
documents. Field is obligatory, and its value is always non-empty. 

 author[sc:String] : The author(s) of the document. Field may be an empty string, if 
author not know. 

 license[sc:String] : The license attributed to the document. Document licenses can 
be different from the source license. 

 dataset_name[sc:String] : The name or title of the external dataset (or source) con-
taining the document. This field identifies the dataset within the GPT-NL raw set 
(original sources). It is never empty. 

 dataset-url[sc:String] : The source’s URL from which the dataset (not the docu-
ment) was obtained. This helps trace the origin of the data. It can be empty if the 
content is not known. 

 dataset_license[sc:String] : The license under which the dataset is distributed 
(e.g., CC-BY, MIT, proprietary). This field indicates usage rights and restrictions. The 
referred license is about the source, not the document. If the document license dif-
fers, it is captured in the field license. It can be empty if the content is not known. 

 extraction_uid[sc:String] : Universal Unique IDentifier (ID). In GPT-NL we adopt 
the ULID specification. ULID is the acronym for Universally Unique Lexicograph-
ically Sortable Identifier. The specification is an alternative to the UUID standard. We 
propose the use of the ULID formats for some reasons: 

o It is 128-bit compatible with UUID (so, it can be used where UUID is). 
o Canonically encoded as a 26-character string, as opposed to the 36-charac-

ter UUID 
o It is case-insensitive. 
o Avoids some of the data fragmentation problems created by UUIDs in very 

large data (such as the ones we have). 
o It is lexicographically sortable – not so important for our work, though, but 

handy for data operations. 
o An example of a ULID is 01ARZ3NDEKTSV4RRFFQ69G5FAV 

  Additionally, we append a suffix to the UID fields: _gpt_nl. This suffix can be easily 
eliminated but allow us to distinctly identify UID’s generated and used in GPT-NL’s 
project and datasets. 

  This is an extraction identifier, such that all the entries (rows) are marked with the 
same UID generated during the extraction phase. It allows us to identify accurately 
which extraction run produced the entries in this dataset. 

 extraction_time[sc:string] : Timestamp (datetime) for the data extraction expressed 
in UTC format. This is a used, universal, date-time format supported by almost any 
library. 
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o An example of a timestamp in UTC format looks like 2010-11-12T13:14:15Z 
o We use a UTF-8 string format to represent the UTC timestamp. 

 extra[sc:struct] : This field is a container for other tables. The structure format within 
this field is not defined. It can be custom according to the needs of the extraction 
phase. The curation process is not encouraged to use these fields; they are allowed 
in here to register additional metadata information collected during the extraction 
phase. 

An example of such data record in a JSON frame would be: 

[ 
  { 
    "text" : "Historie van mejuffrouw Sara Burgerhart Betje Wolff en Aagje Deken GEBRUIKT EXEMPLA
AR exemplaar universiteitsbibliotheek Leiden, signatuur: 1282 D 11 en D 12 ALGEMENE OPMERKING
EN Dit bestand is, met een aantal hierna te noemen aanpassingen, een diplomatische weergave van Hi
storie van mejuffrouw Sara Burgerhart uit", 
    "title" : "Historie van mejuffrouw Sara Burgerhart", 
    "source" : "https://dbnl.org/tekst/wolf016hist01_01", 
    "author" : "Aagje Deken", 
    "license" : "CC-BY", 
    "dataset_name": "OpenDutchNews", 
    "dataset_url": "https://data.opendutchnews.nl/archive/2025", 
    "dataset_license": "CC-BY 4.0", 
    "extraction_uid": "01JV89ZPKHECDV65A1891EJ0W0_gptnl", 
    "extraction_time": "2025-10-07T09:15:23Z", 
    "extra": { 
      "language": "nl", 
      "source_type": "news articles", 
      "notes": "Includes regional news from 2023–2025" 
    } 
  } 
] 

2.4.3.1 General policy for missing data 
The fields described above are all obligatory in the final format – however, some of them are 
allowed to be empty. When the proper content of a field is not known, or for some reason 
cannot be recorded, its value should be an empty string (not a NULL element). 

2.4.4 Formal Format Description 
In the data science and machine learning communities, it is standard practice to describe 
dataset structures using a formal schema specification. For this purpose, GPT-NL adopts the 
Croissant schema, developed and maintained by the MLCommons and Hugging Face 
communities. The metadata used in this project follows the conventions and structure defined 
by this schema. 

The Croissant specification provides a standardized, machine-readable framework for 
describing datasets. It defines key dataset components such as: 

 Entities: Logical groupings of related data elements or records. 
 Features: Individual attributes or variables describing each entity. 
 Relationships: Links between entities, enabling representation of structured or hier-

archical data. 
 Metadata: Descriptive information about the dataset’s provenance, licensing, author-

ship, and usage constraints. 

This scheme facilitates interoperability between dataset repositories and tools by offering a 
consistent method for expressing dataset content and structure. Its growing adoption in the 
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large language model (LLM) community further supports long-term compatibility, 
discoverability, and integration with emerging data curation and benchmarking frameworks. 

The Croissant schema for the EXTRACTED dataset is: 

 
{ 
    "@type": "sc:Dataset", 
    "name": "gpt_nl_uncurated_dataset", 
    "description": "The uncurated dataset contains data after the extraction stage.  No stage of the curatio
n pipeline is applied yet. This dataset is the starting     point of the curation pipeline.", 
    "license": "All rights reserved.  License to be defined.", 
    "url": "https://example.com/dataset <TO BE DEFINED>", 
    "distribution": [ 
        { 
            "@type": "cr:FileObject", 
            "@id": "unique_id of the dataset", 
            "name": "name.pdf", 
            "contentUrl": "data/name.pdf", 
            "encodingFormat": "text/csv" 
        } 
    ], 
    "recordSet": [ 
        { 
            "@type": "cr:RecordSet", 
            "name": "gpt_nl_uncurated_recordset", 
            "description": "Minimal record of the uncurated dataset.", 
            "field": [ 
                { 
                    "@type": "cr:Field", 
                    "name": "uid", 
                    "description": "The unique_id of the data record.", 
                    "dataType": "sc:String", 
                    "references": { 
                        "fileObject": { 
                            "@id": "unique_id of the data record " 
                        }, 
                        "extract": { 
                            "column": "uid" 
                        } 
                    } 
                }, 
                { 
                    "@type": "cr:Field", 
                    "name": "text", 
                    "description": "The third column contains the data record", 
                    "dataType": "sc:String", 
                    "references": { 
                        "fileObject": { 
                            "@id": "name.pdf" 
                        }, 
                        "extract": { 
                            "column": "text" 
                        } 
                    } 
                }, 
                { 
                    "@type": "cr:Field", 
                    "name": "meta", 
                    "description": "Metadata associated with each record.", 
                    "dataType": "sc:struct", 
                    "field" : [ 
                        { 
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                            "@type": "cr:Field", 
                            "name": "source", 
                            "description": "A human readable identifier.", 
                            "dataType": "sc:String", 
                            "references": { 
                                "fileObject": { 
                                    "@id": "name.pdf" 
                                }, 
                                "extract": { 
                                    "column": "source" 
                                } 
                            } 
                        }, 
                        { 
                            "@type": "cr:Field", 
                            "name": "source_url", 
                            "description": "A human readable identifier.", 
                            "dataType": "sc:URL", 
                            "references": { 
                                "fileObject": { 
                                    "@id": "name.pdf" 
                                }, 
                                "extract": { 
                                    "column": "source_url" 
                                } 
                            } 
                        }, 
                        { 
                            "@type": "cr:Field", 
                            "name": "timestamp", 
                            "description": "Timestamp of the datasource.", 
                            "dataType": "sc:Timestamp", 
                            "references": { 
                                "fileObject": { 
                                    "@id": "name.pdf" 
                                }, 
                                "extract": { 
                                    "column": "timestamp" 
                                } 
                            } 
                        } 
                    ], 
                    "references": { 
                        "fileObject": { 
                            "@id": "name.pdf" 
                        }, 
                        "extract": { 
                            "column": "meta" 
                        } 
                    } 
                } 
            ] 
        } 
    ] 
} 

2.5 Code Organization and Data Folders 
The primary codebase supporting the extraction phase is maintained in the 
Data Extraction Repository. This section describes the organization of the 
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repository and the related efforts to make it publicly accessible as an open-
source resource. 

In addition, two main data directories are central to managing the datasets and operational 
outputs of this phase: 

 /<project-root>/wp12/raw — containing the raw input data; and 
 /<project-root>/wp12/extracted — containing the datasets produced 

through the extraction process. 

The overall structure and organization of these directories are described in 
detail in the following subsections. 

2.5.1 Data Extraction Repository 
The Data Extraction Repository contains data extraction modules for the GPT-NL project. 
These modules convert raw data files into various formats and from various sources, provided 
by partners as well as data sets available under open licenses, into a structured format used 
by the entirety of the data curation pipeline. 

The function of the extraction repository is to have a centralized location for data ingestion jobs 
and extractor implementations. Extraction involves opening data sets, often stored in large 
(numbers of) files, in an efficient manner, parsing relevant material from them, and writing 
chunks of data sets while adhering to a specification of the data. This avoids challenges 
surrounding unstructured data in later stages of the pipeline. 

The extraction repository provides uncurated data sets in a columnar format, which may then 
be inspected using helper scripts (some of which are also in this repository), passed through 
some stages of a pipeline for initial curation and eventually used as the source of truth for 
further curation practices. Through data extraction, the data set contains not only rows of text 
that belongs in one document, section, or paragraph, but also the associated title, source, 
author, license, and source identifiers belonging to the document and data set. This makes it 
possible to track and manage this additional metadata smoothly during later stages. 

 

Figure 6: Extraction repository on GitHub 
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The data extraction repository is located on TNO’s internal GitLab as well as mirrored to 
GitHub. 

2.5.1.1 Structure 

The following folders and files are essential during development on the ex-
traction repository: 

 gptnl_data_extraction/: Contains the extractors, base interfaces and utilities. Each ex-
tractor consists of an implementation in Python to convert raw data from files into 
chunks of spec-compliant Parquet files, jobs to download the files from external 
sources, start the extraction, and finally tests to demonstrate the working of the extrac-
tor. 

 scripts/: Shell scripts to start jobs for multiple extractors. 
 poetry.toml: Contains metadata about the repository and the scripts that can be run 

using poetry run. 

2.5.1.2 Key Responsibilities 
 Obtaining raw data sets. 
 Extraction of data from raw data files. 
 Writing chunks that conform to a project-wide, accessible standard. 

2.5.1.3 Open-Sourcing Notes 
The data extraction repository works closely with raw data, which means that we have some 
considerations when making this repository open source. We have removed some personally 
identifying information of contributors, such as email addresses in job scripts, but we keep a 
notice of points of contact and authors clearly available in the repository. 

The tests demonstrate whether an extractor is correctly able to write rows of data from its 
respective raw format. Previously, these tests used a small sample of a data set for each of the 
extractors. In the open-source version of the repository, samples obtained from 
private/proprietary data sets have been replaced with synthetic data sets, using randomly 
generated text, fields and metadata like timestamps and URLs. This ensures continued testing 
capabilities while assuring that we do not violate licenses of the data sets which were made 
available to the project. 

2.5.2 Data Folders 
The data management framework relies on a structured directory hierarchy to ensure 
traceability, reproducibility, and efficient data handling throughout the extraction and curation 
pipeline. The primary folders are as follows: 

 /project-root/data/raw: Contains the raw data received directly from external data sup-
pliers. These files may vary in format, size, and type. Decompression may be required 
for compressed data sources. 

 /project-root/data/extracted: Contains the datasets that have been processed and 
transformed from the raw data into the standardized format required for the curation 
pipeline (as specified in curation-input-format.md). 
 

/project-root 
└── /data 
    ├── /README.md  # Description of the folder structure and references to this documentation. 
    ├── /raw 
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    │   ├── /source_001 
    │   │   ├── received_data_file.zip 
    │   │   ├── ... 
    │   │   └── README.md  # Source and data format description, processing notes. 
    │   ├── /source_002 
    │   ├── ... 
    │   └── /source_100 
    ├── /extracted 
    │   ├── /source_001 
    │   │   ├── data00001.parquet 
    │   │   ├── ... 
    │   │   └── data99999.parquet 
    │   ├── /source_002 
    │   ├── ... 
    │   └── /source_100 
  

2.5.2.1 Raw Data Folder 
The raw data directory contains the original data as received from the various data suppliers. 
The content may include files in diverse formats and sizes, depending on the source. When 
necessary, a decompression step should be performed to prepare the files for further 
processing. 

Best practices for managing raw data include: 

 Retaining the original files in their received form. Retention is time boxed. 
 Including a README.md file in each data source folder to document the source, for-

mat, and any preprocessing steps applied. 
 Setting dataset-specific access permissions to ensure compliance with privacy and 

security requirements. 
 Restricting write access for non-extraction team members to preserve data integrity. 

/project-root 
└── /data 
    └── /raw 
        ├── /source_001 
        │   ├── received_data_file.zip 
        │   ├── ... 
        │   └── README.md  # Source and data format description, processing notes. 
        ├── /source_002 
        ├── ... 
        └── /source_100 

2.5.2.2 Extracted Data 
The extracted data directory contains datasets generated from the raw sources through the 
extraction process. These datasets serve as standardized inputs for subsequent curation tasks. 

Key requirements and recommendations for managing extracted data include: 

 Storing data in Parquet format as specified in curation-input-format.md. 
 Applying dataset-level access permissions to protect sensitive content and ensure data 

security. 
 Restricting write access for non-extraction personnel to maintain dataset consistency. 
 Structuring data into multiple smaller Parquet files (typically between 128 MB and 1 

GB each) to facilitate parallel processing. For smaller datasets (a few gigabytes), 
fewer, larger files may be preferred; for larger datasets (hundreds of gigabytes or 
more), a greater number of smaller files improves processing efficiency. 
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/project-root 
└── /data 
    └── /extracted 
        ├── /source_001 
        │   ├── data00001.parquet 
        │   ├── ... 
        │   └── data99999.parquet 
        │   └── /source_001_samples 
        ├── /source_002 
        ├── ... 
        └── /source_100 
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3 Architecture and Design of the 
Data Curation Phase 

3.1 Data Curation Process 
The GPT-NL data curation phase is organized as a sequence of modular pro-
cessing stages, each dedicated to a specific aspect of data quality. Instead of 
a single monolithic cleaning pass, the pipeline divides curation into discrete 
stages, including normalization, language filtering, heuristic quality filtering, PII 
masking, toxicity removal, and deduplication. By progressing through these fo-
cused phases, the pipeline addresses each quality dimension while maintain-
ing clear separation of concerns. This design makes it easy to understand how 
and why the data is transformed at each step, and it allows each stage to be 
configured, inspected, and rerun independently without disrupting the overall 
flow. 

To realize this design, the GPT-NL Curation Pipeline Phase was guided by a set of core 
architectural requirements. The system needed to balance transparency, scalability, and 
robustness while supporting large volumes of data processing. These requirements shape the 
structure of the following sections: the first two chapters focus on the logical architecture, how 
modularity, metadata logging, and extensibility are achieved, while the third focuses on the 
execution architecture, on how the system scales, and on HPC infrastructure. 

In practice, this meant developing a framework that could: 

 Support modular, stage-based execution, reflecting the independent and auditable 
phases of the curation design. Each processing step should run as a self-contained 
module with clearly defined inputs and outputs, enabling transparent inspection, ver-
sion control, and easy reruns. 

 Enable fine-grained metadata tracking throughout all transformations. Every 
change to the dataset, whether filtering, masking, or enrichment, must be traceable 
through structured metadata, ensuring that data lineage and provenance can be re-
constructed at any point. 

 Allow custom extension of the curation modules. The architecture must remain 
open and extensible, allowing researchers to integrate new filters or models that ad-
dress language- or domain-specific needs without disrupting the overall flow. 

 Handle massive parallelism on HPC infrastructure such as SURF’s Snellius 
SLURM cluster. The system must distribute workloads efficiently across numerous 
compute nodes to process terabyte-scale datasets within reasonable timeframes. 

 Provide robust fault tolerance and resumable execution, critical for long-running 
jobs. Failures or node interruptions should not invalidate an entire curation run. In-
stead, stages should be reproducible from well-defined checkpoints. 
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3.1.1 Independent Processing Stages 
A foundational design requirement for the GPT-NL curation phase was that each processing 
stage should operate independently and produce a clearly defined new version of the dataset. 
Rather than modifying data in place or chaining transformations in a black box, the system 
must create an explicit boundary between stages: each phase reads from a prior output and 
emits its own result. This requirement ensures that the pipeline is not just functional, but 
transparent. The curators can clearly inspect how the data evolves across the pipeline. 

By persisting the full output of each phase, the system must enable: 

 Reproducibility, by ensuring that every version of the dataset is traceable and not over-
written by later processing. 

 Auditability, by allowing teams to examine the exact inputs, outputs, and decisions 
made at every step. 

 Stage execution, where individual stages can be re-executed in isolation, e.g., to test 
a different threshold or fix an issue, without requiring upstream stages to be repeated 
unnecessarily. 

Crucially, the architecture should enforce logging at each phase, not just of what is retained, 
but also of what is removed. For every discarded item, the pipeline should record why it was 
filtered (e.g., “low average word length” or “toxic language”) along with sufficient context to 
evaluate that decision later. These logs must be structured in a way that allows the evaluation 
team to verify whether removals were justified, and whether any filtered data should be 
reconsidered. 

This design also reflects a core commitment to iterative refinement. Filters and thresholds are 
often imperfect at first. Therefore, the architecture must preserve not only the clean outputs but 
also the removed data from each stage in a recoverable form. This allows us to later reprocess 
just the discarded subset with updated parameters. This significantly reduces compute costs 
and accelerates experimentation. 

In sum, treating curation as a series of isolated, reproducible phases, each of which generates 
a complete and versioned output, is not an implementation detail, it is a core architectural 
decision. It underpins our ability to scale, experiment safely, collaborate across teams. 
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Figure 7: Overview Data Curation pipeline 
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3.1.2 Stages for Different Quality Dimensions 
Having defined the independent stage structure of the GPT-NL curation pipeline, this section 
details the specific quality dimensions that each stage addresses. Each phase focuses on a 
single transformation goal so that every aspect of dataset quality can be evaluated, improved, 
and documented in isolation. 

Together, these stages ensure that the curated corpus is linguistically clean, representative of 
the intended languages, free of personal data, and safe for downstream model training. For 
each quality dimension, different modules or models can be evaluated and swapped in, 
allowing experimentation and optimization without altering the overall pipeline structure. 

Each phase is scoped to one transformation or evaluation goal:  

 Data Splitting: Splits large .parquet files into a set of files with more typical sizes. 
Useful for controlling data flow and SW worker distribution during the curation. Also, 
large files tend to create problems on the OS side (writing problems, cluttering disk 
access, memory overload). This stage is not a data processing step but rather an ad-
justment of file sizes. It is included though in almost all the datasets, unless the dataset 
itself is already small. 

 Text Normalization (Normalization-Pipeline.md): Standardizes formatting across the 
dataset by unifying Unicode characters, normalizing punctuation, and cleaning up 
whitespace. It consists of three sequential components: FTFYFormatter, Punctua-
tionFormatter, and WhitespaceFormatter. This stage does not modify metadata 
and purely transforms text for consistent downstream processing. 

 Language Detection (Language-Detector.md): Tags each document with a predicted 
language and confidence score, and removes any texts not in the desired set (e.g., 
non-Dutch or non-English). It enriches each entry’s metadata with language and lan-
guage_score, following the Croissant format. 

 Heuristic Quality Filtering (Heuristic-Filters.md): Applies rule-based filters to assess 
document quality, removing entries with excessive repetition, malformed formatting, or 
other low-quality traits. This stage appends heuristic statistics to both retained and re-
moved data, aiding downstream evaluation and analysis. 

 PII Detection and Masking (PII.md): Identifies and masks personally identifiable in-
formation (e.g., names, emails, organizations) using the PrivateAI module. It preserves 
text structure and records metadata about detected entities and replacements. 

 Toxicity Filtering (Harmful-language-Toxicity.md, Harmful-language-Negating-
Bias.md): Detects and removes harmful, toxic, or biased content using ML-based clas-
sifiers. Filtered or modified entries are annotated with toxicity scores, labels, and span-
level metadata. 

 Deduplication (Deduplication.md): Removes duplicate or near-duplicate documents 
using a multi-step min-hash–based procedure: signature generation, similarity bucket-
ing, cluster creation, and final filtering. It reduces redundancy across datasets without 
altering text or metadata and is applied per dataset rather than globally. 

Each phase enriches the dataset or improves its quality in an isolated, inspectable way. 
Metadata generated during earlier phases is preserved and extended by later ones—for 
example, a document might accumulate a language label, quality metrics, masked entities, and 
a toxicity score. This cumulative metadata trail provides full visibility into how and why data was 
curated at each step. 
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The following table summarizes the impact of each stage on metadata, string mutation, and 
filtering. 

Stages Updates 
Metadata 

Mutates 
Strings 

Filters Da-
tabase 

Unicode Normalization Filters  膆  

Language Detectors 膆  膆 

Heuristic Filters 膆  膆 

PII Detection 膆 膆  

Harmful Language Detector 膆 膆  

Deduplication   膆 

3.1.3 Design for Scalable Execution 
From the very beginning, the GPT-NL curation pipeline was designed with scalability at its core. 
Processing massive amounts of data requires efficient distribution of work across high-
performance computing (HPC) resources. To achieve this, each stage of the pipeline is built to 
be parallelizable, ensuring that datasets can be split into hundreds of shards—each processed 
by a separate task within an SLURM job array. This approach allows the system to handle 
massive throughput, isolate faults (so a single failed shard can be retried independently), and 
balance load dynamically, as tasks begin execution as soon as compute nodes become 
available. 

Each stage in the pipeline is also designed with independent resource configurations tailored 
to its specific requirements. Lightweight stages, such as normalization, can run efficiently on 
standard CPU nodes, while computationally heavier stages like PII masking may require GPU 
nodes and longer runtimes. These settings—number of tasks, memory, time limits, and 
hardware specifications—are defined in YAML configuration files that serve as the single 
source of truth for how a curation run is executed. 

Versioning these configurations is critical to ensuring the pipeline’s robustness and 
transparency. It allows every curated dataset to be traced back to the exact configuration that 
produced it, provides clear documentation for auditing and decision-making, and facilitates 
comparison between pipeline versions—highlighting how changes such as adjusted thresholds 
or newly added stages affect results. 

In essence, the combination of shard-level parallelism and declarative, versioned configuration 
makes the GPT-NL pipeline both highly scalable and fully reproducible. This foundation 
supports not only efficient execution but also transparent governance and continuous 
improvement at scale. 

3.1.4 Conclusion 
With these architectural requirements defined, the next step is to select a framework that 
supports this scalable, configurable, and auditable design. The following section compares 
Datatrove and Data-Juicer, two candidate frameworks for implementing the curation pipeline, 
and explains the rationale behind our choice. 
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3.2 Comparison of Data Preprocessing 
Frameworks 
Following the architectural requirements outlined in the Data Curation Phase, the next step 
was to identify a framework that could translate these design principles into a practical 
implementation. The GPT-NL pipeline required a data processing system that could support 
modular, stage-based execution, ensuring that each phase of curation remained 
independent, auditable, and transparent. It also needed to enable fine-grained metadata 
tracking across all transformations to allow full reconstruction of data lineage and provenance. 
To maintain flexibility, the framework had to allow custom extensions for different quality 
dimensions, accommodating both general and Dutch-specific modules. In terms of execution, 
it had to handle massive parallelism on HPC infrastructure such as SURF’s SLURM cluster, 
while providing robust fault tolerance and resumable execution to safeguard long-running 
jobs. Finally, because the pipeline operates on sensitive national-level data, the chosen 
framework needed to ensure security compliance and data governance throughout the 
workflow. 

Two frameworks emerged as the most viable candidates: Datatrove (developed by Hugging 
Face) and Data-Juicer (developed by Alibaba). Both offer modular pipelines and distributed 
execution, but they differ in complexity, integration flexibility, and metadata handling. The 
following table summarizes the comparative analysis. 

The following table summarizes the comparison between Datatrove and Data-Juicer across 
key criteria. 

Criteria Datatrove Data-Juicer 

Pipeline Struc-
ture 

Provides a flexible pipeline capable of sequen-
tially reading data files, applying multiple opera-
tions (read, write, filter), and saving 
intermediate outputs. Each segment produces a 
new dataset version, automatically appends 
metadata, and stores removed data separately 
for auditability.  밇 Well-structured and trans-
parent design. 

Follows a similar stage-based ar-
chitecture to Datatrove, with mod-
ular reading, filtering, and writing 
steps.  밇 Slightly less emphasis 
on metadata management and 
traceability. 

Data Reader 
Support 

Supports multiple input formats out-of-the-box:  
- Hugging Face datasets  - IPC  - CSV  - 
JSONL  - Parquet  - WARC  밇 Broad native 
compatibility ensures seamless integration with 
large-scale corpora and web archives. 

Supports:  - Hugging Face (lim-
ited)  - CSV  - JSON  - Parquet  - 
Text  밇 Automatically selects 
loaders based on the most com-
mon file extension, which can be 
problematic when handling mixed-
format datasets. 

Heuristic Fil-
tering 

Includes a rich set of built-in heuristic modules:  
- Gopher rules  - C4 rules  - Regex rules  - 
CodeParrot rules (custom implementation)  밇 
Extensive modular filtering capabilities with 
strong alignment to academic and HF stand-
ards. 

Provides Gopher rules and com-
mon text cleaning utilities (e.g., re-
move HTML tags, IPs, links, 
emails). 밇 Offers good coverage 
but less modular and less custom-
izable than Datatrove. 

Deduplication Offers several deduplication methods:  - Min-
Hash filter  - Bloom filter  - Exact string  - Exact 
substring  밇 Comprehensive options for preci-
sion and auditability.  밇 Currently slower on 
very large datasets (hours), though determinis-
tic and reproducible. 

Implements:  - MD5 hash  - Min-
HashLSH  - SimHash  밇 Very 
fast deduplication (seconds) 
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Language De-
tection 

Uses FastText with project-specific extensions 
to detect Dutch and English.  밇 Integrated fil-
tering ensures language consistency and full 
metadata traceability. 

Uses FastText for English/Chi-
nese detection (configurable). 밇 
Functional but less configurable 
for multilingual European corpora. 

Scalability 밇 Excellent SLURM integration and proven 
performance on HPC clusters.  밇 Local paral-
lel execution requires Linux (not a target use 
case). 

밇 Integrates with SLURM and 
밇 supports Ray for distributed 
processing.  밇 Less tested at 
scale in public HPC research en-
vironments. 

Ease of Use 밇 Smooth user experience, widely adopted in 
the Hugging Face ecosystem.  밇 Strong log-
ging and resume functionality for long-running 
processes.  밇 PyPI version still maturing; 
GitHub version recommended. 

밇 More complex installation due 
to numerous dependencies.  밇 
PyPI version also incomplete; 
best used via GitHub. 

Extensibility 
(Custom Fil-
ters) 

밇 Highly flexible — custom modules (e.g., PII 
detection, harmful-language filters) can be inte-
grated with minimal boilerplate. Designed for re-
search extensibility. 

밇 Allows custom filters, though 
implementation requires more 
complex configuration. Documen-
tation provides examples but lim-
ited modularity. 

Documenta-
tion and De-
veloper 
Support 

밇 Documentation could be expanded, but 
codebase is clean and intuitive to extend. 밇 
Clear logging and structured metadata simplify 
debugging and development. 

밇 Comprehensive documenta-
tion with detailed developer guide. 
밇 Framework complexity slightly 
higher and codebase harder to 
navigate. 

Security and 
Data Govern-
ance 

밇 Developed and maintained by the Hugging 
Face community, ensuring transparent open-
source governance and full local execution. No 
external API calls are required, making it suita-
ble for handling sensitive or confidential data. 

밇 Several components make 
API calls to Alibaba Cloud serv-
ers by default, which raises poten-
tial compliance and privacy 
concerns in restricted or national-
level research environments. 

Additional 
Notes 

밇 Provides detailed logs summarizing filtering 
statistics (e.g., number of records removed, 
time per step).  밇 Transparent and auditable 
workflow aligned with GPT-NL design princi-
ples.  밇 Does not offer easy configuration for 
filters via YAML by default. 

밇 Provides configuration files for 
parameter tuning.  밇 Includes 
tools to evaluate document quality 
and token counts.  밇 Interface 
for visualizing filtering impact is 
less integrated. 

Legend: 🟩 Strong feature, 🟨 Moderate feature, 🟥 Weak 
feature. | 

3.2.1 Decision 
After a thorough comparison of Datatrove and Data-Juicer, Datatrove showed it to best meet 
the needs and requirements of the GPT-NL project. This decision follows directly from the 
design rationale described in the Data Curation Phase. The modular, auditable, and stage-
based structure envisioned in the architecture aligns seamlessly with Datatrove’s execution 
model. Each GPT-NL curation stage can be mapped directly to a Datatrove pipeline stage, 
allowing independent execution, versioning, and metadata tracking. The latest Datatrove 
release includes components such as the FineWebQuality Filter and C4Badword Filter, which 
address many of GPT-NL’s processing needs. Its Document structure-storing text, id, and 
metadata- matches GPT-NL’s requirement for accumulating contextual metadata across 
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stages, ensuring full traceability of transformations. The framework’s native integration with 
SLURM provides large-scale parallelism and fault-tolerant execution on HPC environments like 
SURF’s Snellius cluster. In addition, Datatrove’s lightweight, Pythonic interface enables rapid 
customization and the development of new filters without modifying the core codebase. Finally, 
due to stringent data governance and cybersecurity requirements, Datatrove’s open-source 
and fully auditable nature ensures compliance with TNO and SURF’s infrastructure security 
standards, making it the most reliable and transparent choice for implementing the GPT-NL 
curation pipeline. 

In contrast, while Data-Juicer provides a wide range of built-in features and solid 
documentation, its design introduces several drawbacks for the GPT-NL context. The 
framework’s heavier dependency footprint and partial reliance on cloud-oriented components, 
including API calls to Alibaba servers, raise security and compliance concerns for use in 
restricted research environments. Moreover, its higher complexity and less transparent 
metadata handling make it less aligned with the modular, auditable, and HPC-based design 
required by GPT-NL. 

Therefore, Datatrove was chosen as the processing backbone for the GPT-NL data 
curation pipeline. It provides the optimal balance between flexibility, reproducibility, 
performance, and maintainability—allowing the team to implement the architectural principles 
of the GPT-NL curation framework effectively and securely. 

3.3 Pipeline and Modules Repositories 
The GPT-NL data curation framework is built around a modular architecture that separates 
responsibilities across multiple repositories. Instead of keeping all logic in a single monolithic 
codebase, the system is split into two coordinated parts, the Modules Repository and the 
Pipeline Repository, that communicate via a Private PyPI package registry. This separation 
ensures maintainability, scalability, and clear version control, while also enabling collaborative 
development across teams. 

This approach follows the TNO coding principles, which emphasize modularity, testability, 
reusability, and transparent workflows: 

Principle How this applies to us 

Readability Each module focuses on a single responsibility, making it easier to 
understand and maintain. 

Documentation Documentation stays close to the code it describes, improving clar-
ity and long-term usability. 

Reproducibility Versioning modules independently allows pipeline runs to be repro-
duced precisely, even years later. 

Reusability Self-contained modules can be reused across pipelines and pro-
jects without modification. 

Testability Modules can be tested in isolation, enabling safe iteration without 
breaking the full pipeline. 

Shareability Isolated modules make open-sourcing straightforward once the pro-
ject is ready. 

Reviewability Code reviews become simpler when changes are limited to specific 
modules rather than a monolithic codebase. 
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Although this split introduces some development overhead, the long-term benefits outweigh 
the cost. The architecture remains clear, versioned, and easy to evolve, especially as GPT-NL 
grows, and new components are added. The repositories involved are:  

Repository Description 

Pipeline Defines the orchestration logic: the order of stages, 
how they run, how data flows between them, and how 
tasks are executed on HPC infrastructure. 

Modules Contains isolated, self-contained data processing 
modules, each implementing a specific task such as 
normalization or PII detection. 

Private PyPI index Acts as the bridge between the two repositories by 
hosting all module versions used by the pipeline. 

Historically, both the pipeline and modules lived in a single monolithic repository (e.g., the 
original Normalization repository), but that structure made it too easy to break reproducibility. 
The current architecture solves this by enforcing strict separation between development 
(modules) and execution (pipeline). 

3.3.1 The Modules Repository: Focused, Reusable 
Components 
The Modules Repository contains all individual building blocks used throughout the GPT-NL 
data curation pipeline. Each module is designed as a small, focused, and independently 
versioned component that implements a specific transformation, normalization, filtering rule, or 
analysis step. By keeping modules isolated and strictly separated from the pipeline itself, we 
ensure that development remains agile, reproducible, and scalable. When a module improves, 
whether through refined heuristics, expanded PII detection, or new filtering logic, no change is 
required in the pipeline code. The pipeline simply locks a specific version from the private PyPI 
index, ensuring that past experiments can always be reproduced exactly. 

This architectural choice avoids the pitfalls that come from mixing pipeline and module 
development in a single repository. If they lived together, it would be tempting to reference 
modules locally, bypassing proper versioning and breaking portability. Instead, each module is 
self-contained, lives in its own folder, and follows the interface defined by HuggingFace 
Datatrove’s PipelineStep. The pipeline, located in a separate repository, acts only as an 
orchestrator that chains together whichever module versions are required for a particular 
curation configuration. 

 C4 Filters: The C4 Filters module applies the heuristics described in the Colossal 
Cleaned Common Crawl (C4) paper. It removes low quality or boilerplate web con-
tent by enforcing linguistic signals such as terminal punctuation, minimum word 
counts, and minimum sentence counts. It also excludes pages containing templated 
text such as “lorem ipsum”, curly braces that suggest code snippets, cookie notifica-
tions, or “Javascript” boilerplate. Additional checks remove lines with excessively 
long words. Together these heuristics help eliminate the most common forms of 
noisy web text. See the original paper: https://jmlr.org/papers/volume21/20-074/20-
074.pdf. 

 FineWeb: The FineWeb filters build upon the heuristics used in HuggingFace’s Fin-
eWeb dataset. The rules overlap with C4 but are tuned more aggressively toward 
high quality web corpora. Lines without punctuation, lines with fewer than three 
words, pages with fewer than five sentences, and pages containing structural 
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artifacts are removed. More information: https://huggingface.co/spaces/Hugging-
FaceFW/blogpost-fineweb-v1. 

 FTFY: The FTFY module applies Unicode normalization and encoding repair based 
on the FTFY library. Its purpose is to clean up messy Unicode text that often arises 
from mis-encoded web pages, script conversions, or scraping artifacts. Documenta-
tion: https://ftfy.readthedocs.io/en/latest/. 

 Gopher Modules: The Gopher filters draw inspiration from the data quality rules de-
scribed in DeepMind’s Gopher work. They apply structural and statistical checks to 
detect unnatural, non-linguistic, or synthetic documents. These checks include sym-
bol density, average word length, word count, the presence of stop words, and fre-
quency of structural tokens such as bullet characters. 

 LLM Processing: The LLM Processing module provides an interface for sending text 
through a selected language model during the curation pipeline. Users can specify a 
model and prompt and receive the LLM generated output. 

 Machine Translation: This module wraps machine translation utilities using Hug-
gingFace models, currently centred on the large google/madlad400-10b-mt model. 
The module is mainly used for converting multilingual input into Dutch. 

 NordicPile: The NordicPile filters enforce minimum thresholds for factors such as 
document length, average line length, and average word length, and they limit the 
proportion of digit only content. These heuristics catch types of low quality text that 
often slip through other filters. Based on: https://arxiv.org/pdf/2303.17183. 

 PII: The PII module identifies and formats Personally Identifiable Information. It de-
tects structured numeric identifiers including phone numbers, IBANs, passport num-
bers, and account numbers, as well as names and organizations. The module 
integrates with PrivateAI for more advanced detection and supports masking to re-
place detected PII with normalized placeholders. 

 Punctuation Formatter: This module normalizes a broad range of Unicode punctua-
tion into standard ASCII style punctuation. It unifies quotation marks, dashes, ellip-
ses, and other variations that would otherwise fragment token distributions. 

 Quality Analysis: The Quality Analysis module evaluates text quality using perplex-
ity scores derived from KenLM language models. High perplexity may indicate unnat-
ural, repetitive, or incoherent text. 

 Regex Formatter: The Regex Formatter applies pattern-based substitution, cleanup 
of boilerplate artifacts, format normalization, and other transformations through regu-
lar expressions. 

 TNO Filters: The TNO Filters module consists of custom quality heuristics adapted 
to the needs of the GPT-NL project. These filters focus online level and paragraph 
level structure such as enforcing minimum and maximum lengths and evaluating av-
erage line statistics. Inspired by the DataJuicer framework: https://github.com/mod-
elscope/data-juicer. 

 Toxic Language Detection: This module filters out toxic or harmful content using 
models such as IMSyPP/hate_speech_nl and tomh/toxigen_hatebert. It detects hate 
speech, harassment, and other forms of harmful language. 

 Whitespace Formatter: The Whitespace Formatter normalizes all whitespace char-
acters to the standard Unicode space (U+0020). It replaces tabs, irregular spacing, 



 

 

 TNO Public  GPTNL-DEL-4001 

 TNO Public 42/95

unusual separators, and non-breaking spaces. Every module in this repository is 
published to a private PyPI index with semantic versioning. 

When the pipeline is executed, it installs the versions specified in its configuration. Older 
versions remain fully accessible so that historical pipelines and experiments never break. By 
separating modules from the pipeline, the GPT-NL project achieves a balance between 
flexibility and stability. Module development can proceed rapidly and independently, while the 
pipeline remains a clean and deterministic definition of how those modules are assembled. 

3.3.2 The Pipeline Repository: Orchestrating the 
Workflow 
The Pipeline Repository provides an orchestration layer that connects all components of the 
GPT-NL data curation process. While the Modules Repository manages the detailed 
processing logic, the pipeline defines how data flows from raw input to curated output, which 
module versions are used, how stages are configured, and how these stages are executed 
across HPC systems. 

A key idea behind this design is the strict separation between orchestration and processing. 
The pipeline itself performs no filtering or transformation; each stage delegates its core logic to 
a versioned module imported from the private PyPI registry. This keeps the pipeline stable and 
ensures that improvements in individual modules do not require changes in pipeline code. 

Pipeline runs are fully defined through YAML configuration files, which act as declarative 
blueprints for a workflow. These files describe the sequence of stages, the exact module 
versions to use, stage-specific parameters, and the structure of input and output folders. 
Because configuration files are versioned, curated datasets can always be linked back to the 
exact settings that produced them. 

The pipeline is designed to scale naturally to high-performance computing (HPC) clusters. 
For large datasets, it expands each stage into parallel tasks, configures SLURM resource 
requirements, and generates job scripts. This includes CPU/GPU allocation, memory settings, 
batching strategies, and job dependencies. Logs and intermediate data are stored predictably, 
supporting monitoring and debugging of long-running workloads. 

Beyond execution, the pipeline integrates with tools for analysing energy usage, supports 
parquet validation, and enables dataset quality comparisons. A structured changelog records 
major adjustments such as module version updates or the introduction of new stages, ensuring 
a clear history of how the workflow evolves. 

Together, these features make the Pipeline Repository the operational backbone of GPT-NL’s 
data curation framework: responsible for workflow design, reproducibility, scalability, and 
structured execution. 
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3.3.3 Understanding the Architecture 

 

Figure 8: Overview Pipeline and Modules repository 

The diagram above illustrates how the distinct parts of the GPT-NL curation framework 
connect. It shows the full life cycle of a module: how it is developed, published, integrated into 
the pipeline, and executed at scale on Snellius. Each part has a clear role, and the arrows 
represent the flow of both code and data. 

The process begins in the Modules Repository, where components such as filters, formatters, 
translators, or quality evaluators are developed and evaluated. Once a module reaches a 
stable state, it is published to the Private PyPI Registry with a version number, which becomes 
the authoritative source for the pipeline. 

The Pipeline Repository imports these modules by name and version. The YAML 
configuration file specifies the sequence of stages, the module versions to use, and the 
resource requirements for running the workflow. The pipeline acts as the blueprint, tying all 
modules and configurations together. 

From this configuration, the pipeline generates a packaged job with the selected modules and 
settings. It also produces the corresponding SLURM script, which defines how the job should 
run on Snellius, including parallelization strategy, memory limits, CPUs, GPUs, and 
dependencies. These scripts are submitted to the HPC system, which schedules and launches 
tasks at scale. 

Finally, the data flows through the system stage by stage, with each stage applying 
transformations defined by its module. Because module versions and pipeline configurations 
are pinned, the resulting dataset is fully traceable. Anyone can reconstruct the exact 
environment and processing logic used in any past run. 
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3.3.4 Conclusion 
The separation of the Modules Repository and the Pipeline Repository is a deliberate 
architectural choice. The modules define what is done — the individual transformations, filters, 
and analyzes. The pipeline defines how these components are executed — their order, 
configuration, and scaling across HPC infrastructure. 

Together, they form a future-proof ecosystem that supports rapid development, transparent 
versioning, and large-scale execution. As GPT-NL evolves, this structure ensures that new 
processing steps or improvements can be integrated cleanly without disrupting the entire 
system. 

3.4 Curation Stages in Datatrove 
This page explains how GPT-NL data curation stages are implemented using Datatrove, 
building on the modular repository structure described in Pipeline Modularization and leading 
toward the execution logic explained in Executing a Pipeline. 

It focuses on how each curation stage maps to Datatrove components, how configurations are 
defined through YAML files, and what parameters can be customized per stage. 

The YAML configuration, in conjunction with the Python package jsonargparse, plays a 
significant role in defining the structure of the pipeline stages. This design ensures maximum 
flexibility and ease of use. The objective is to provide users with full control over pipeline 
execution through the YAML file, including the ability to specify which stages to run, which 
modules to activate within each stage, and the corresponding input parameters and threshold 
values. Below you can find an overview of the example .yaml file, showing how the distinct 
stages are invoked, and how the input arguments of each stage are accessed through the file: 

stages: 
  - stage: data_splitting 
    input_folder: test-data/0. raw 
    hpc_n_tasks: "1" 
    hpc_time: "00:20:00" # should take max 4.86h 
    hpc_partition: "genoa" 
  - stage: string_normalization 
    ParquetReader: 
      # For more information about the reader https://github.com/huggingface/datatrove/blob/v0.3.0/src/da
tatrove/pipeline/readers/parquet.py 
      paths_file: "null" # If define specific parquet file is used instead of a whole folder 
      limit: "-1" # Defines the number of documents to run the pipeline on 
      skip: "0" # Skip the first n documents 
      recursive: "false" # if recursive is set to true glob_patterns needs to be set to null (internal bug...) 
      glob_pattern: "*parquet" 
      shuffle_files: "false" 
    hpc_n_tasks: "4" 
    hpc_time: "00:20:00" # should take max 4.86h 
    hpc_partition: "genoa" 
    FTFYFormatter: 
      normalization: "NFC" 
  - stage: heuristic_filtering 
    hpc_n_tasks: "4" 
    hpc_time: "00:20:00" # should take max 4.86h 
    hpc_partition: "genoa" 
    LanguageFilter: 
      languages: [ 
          "en", # English 
          "nl", # Dutch 
          "da", # Danish 
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          "sv", # Swedish 
          "af", # Afrikaans 
          "fy", # Frisian 
          "de", # German 
        ] 
      language_threshold: "0.65" 
      backend: "ft176" 
    NordicPileQualityFilter: 
      max_digit_fraction: "0.2" 
      min_n_char: "50" 
      min_mean_med_char: "9" 
      min_mean_med_word: "2.1" 
    GopherQualityFilter: 
      min_doc_words: "null" 
      max_doc_words: "null" 
      min_avg_word_length: "null" 
      max_avg_word_length: "null" 
      max_symbol_word_ratio: "0.1" 
      max_bullet_lines_ratio: "0.9" 
      max_ellipsis_lines_ratio: "0.3" 
      max_non_alpha_words_ratio: "0.8" 
      min_stop_words: "2" 
    GopherRepetitionFilter: 
      dup_line_frac: "0.35" 
      dup_para_frac: "0.35" 
      dup_line_char_frac: "0.2" 
      dup_para_char_frac: "0.2" 
      top_n_grams: [[2, 0.25], [3, 0.23], [4, 0.21]] 
      dup_n_grams: 
        [[5, 0.20], [6, 0.19], [7, 0.18], [8, 0.17], [9, 0.16], [10, 0.15]] 
  - stage: pii_masking 
    hpc_time: "04:00:00" 
    hpc_partition: gpu_a100 
    # hpc_reservation: gpt-nl 
    hpc_n_tasks: "4" # Number of data trove tasks with split up files 
    hpc_gpus: "1" 
    hpc_cpus_per_task: "16" # Need 16 cores (per private AI GPU instance - actually needs 64 but CPU 
affinity warnings can be ignored with GPU instance) 
    #hpc_mem_per_cpu_gb: "1"  # 120/128 = 0.9375 
    hpc_mem_per_cpu_gb: "4" # Need 64GB ram per private AI instance, 64/16 = 4 
    # Start multiple containers with different ports and wait healthy containers 
    PII_PrivateAI_TNO: 
      chunk_pool_workers: 32 # Number of workers for chunks 
      doc_pool_workers: 16 # Number of workers for documents 
      request_batch_size: 64 # Chunks of the same document to be sent in the same request to PAI 
      batch_size: 16 # Documents to handle in the same batch 
      api_endpoint: "http://localhost:808{CUDA_VISIBLE_DEVICES}/" # Template for endpoint per GPU i
nstance (uses task array index and comma-separated indexes from CUDA_VISIBLE_DEVICES) 
      replacement_type: "MARKER" # GPU instance does not support SYNTHETIC 
      synthetic_replacement_chance: 1.00 # Replace 100% of markers with own synthetic data 
      synthetic_replacement_locale: "nl-NL" # Depending on the dominant language use : English en-GB, 
Dutch nl-NL 
  - stage: toxic_language_detection 
    hpc_partition: gpu_h100 
    hpc_reservation: gpt-nl 
    hpc_gpu: "1" 
    hpc_time: "00:20:00" # should take max 4.86h 
    hpc_cpus_per_task: "4" # h100: 1/4 node = 16 cores + 1 GPU + 180 GiB 
    hpc_mem_per_cpu_gb: "15" 
    hpc_n_tasks: "4" 
  - stage: deduplication 
    hpc_n_tasks: "4" 
    hpc_partition: "genoa" 
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Types of arguments: 

 hpc_*: Arguments prefixed with hpc* correspond to HPC configuration parameters that 
are essential for integration with the SLURM workload management framework. For 
more information on the hpc_* arguments, please read Executing a Pipeline. 

 rest: All parameters that do not begin with the hpc_ prefix are specific to the modules 
within each stage. 

By using the YAML configuration file together with the jsonargparse library, it is possible not 
only to adjust individual parameters but also to enable or disable specific modules or module-
specific filters. This can be achieved by assigning a value of NULL to the corresponding 
parameter or by setting the entire module to NULL. 

The provided YAML file illustrates that each stage defines both the execution of the curation 
process and the set of modules to be included. The following sections provide a detailed 
explanation of the construction and design principles of the Stage module. 

3.4.1 Integration of DataTrove in the Stage class 
The Datatrove framework forms the core of the curation pipeline. It defines the implementation 
and execution of filters and formatters — referred to here as modules — and governs how 
these modules are orchestrated within a pipeline, whether locally or on an HPC cluster. 
Consequently, when defining stages, it is essential to align with the Datatrove structure to 
ensure optimal integration and interoperability within the pipeline. 

3.4.1.1 Structure of the Stage class 
Each GPT-NL curation stage is implemented as an independent Datatrove stage, wrapped in 
a base Stage class. These stages correspond directly to the conceptual architecture outlined 
in the Data Curation Phase — such as normalization, language filtering, PII masking, and 
deduplication, but are now instantiated and configurable within the Datatrove framework. 

Each stage: 

 Is implemented in a separate Python class (in gptnl_data_curation_pipe-
line/stages/). 

 Each stage regroups all the corresponding modules. For example, the heuristic filtering 
stage consolidates multiple filtering mechanisms, including the LanguageFilter, Nor-
dicPileFilter, and GopherQualityFilter, among others. Similarly, the normalization stage 
comprises several formatting modules such as FTFYFormatter, PunctuationFormatter, 
and WhitespaceFormatter. 

 Defines which Datatrove components (readers, filters, writers) are executed. 

 Supports both local and HPC execution modes through the Stage base class. 

 The system is fully configurable through YAML parameters. Leveraging the Python 
library jsonargparse, both the input of submodules within a stage and the parameters 
of the stage itself are readily accessible and modifiable. This approach ensures a high 
degree of flexibility in YAML-based configuration, allowing precise control over stage-
level and module-level settings. 

 The Stage class encapsulates the modules, their input parameters, and the HPC-spe-
cific parameters to construct a Datatrove Pipeline executor (local or hpc), as illustrated 
in the mock code below. In this example, stage_spec contains all modules to be 
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executed along with their initialization arguments. Additional input arguments for the 
PipelineExecutor—such as those for LocalPipelineExecutor or SlurmPipelineExecu-
tor—are parameters specific to the pipeline configuration. For the SLURM-based ex-
ecutor, invoking executor.run() generates an SLURM script that includes all necessary 
parameters required by the SLURM workload management framework. Furthermore, 
all modules are serialized into a pickle file, which can subsequently be accessed and 
loaded independently on multiple nodes. This enables parallel data curation across the 
cluster while ensuring that all nodes utilize identical module configurations. Each stage 
generates its own Slurm script. Within a .yaml file, the stages run in separate scripts, 
each with a dependency that ensures it waits for the previous stage’s script to complete 
successfully. 

 
 def run_stage( 
        self, 
        job_name: str | None = None, 
        pipeline_config_path: str | None = None, 
        depending_slurm_jobs: SlurmPipelineExecutor | None = None, 
    ) -> None | SlurmPipelineExecutor: 
        stage_spec = self.get_stage_spec() 
        if not os.path.exists(self.logs_folder): 
            os.makedirs(self.logs_folder) 
        if pipeline_config_path: 
            copyfile( 
                src=pipeline_config_path, dst=self.logs_folder / "pipeline_config.yaml" 
            ) 
        with open(self.logs_folder / "stage_params.yaml", "w") as f: 
            yaml.dump(vars(self), f) 
 
        if self.processing_type == ProcessingType.local: 
 
            executor = LocalPipelineExecutor( 
                pipeline=stage_spec, 
                logging_dir=str(self.logs_folder), 
                workers=-1, 
                tasks=1, 
            ) 
            executor.run() 
        else: 
            venv_path = Path(__file__).parents[1] / "venv" / "bin" / "activate" 
 
            if job_name is None: 
                job_name = self.__class__.__name__ 
 
            sbatch_args = self.get_sbatch_args() 
 
            executor = SlurmPipelineExecutor( 
                job_name=job_name, 
                pipeline=stage_spec, 
                tasks=self.hpc_n_tasks, 
                cpus_per_task=self.hpc_cpus_per_task, 
                mem_per_cpu_gb=self.hpc_mem_per_cpu_gb, 
                time=self.hpc_time, 
                workers=-1, 
                logging_dir=str(self.logs_folder), 
                slurm_logs_folder=str(self.slurm_logs_folder), 
                sbatch_args=sbatch_args, 
                randomize_start_duration=3, 
                partition=self.hpc_partition, 
                mail_type=self.mail_type, 
                mail_user=self.mail_user, 



 

 

 TNO Public  GPTNL-DEL-4001 

 TNO Public 48/95

                depends=depending_slurm_jobs, 
                tasks_per_job=1, 
                max_array_size=30001,   
            ) 
 
            # This correction is necessary because the initialization of qos in the 
            # constructor does not work (bug in DataTrove). 
            executor.qos = None 
            return executor 

Furthermore, each stage_spec list is wrapped by the Datatrove ParquetReader and 
ParquetWriter modules to handle the reading and creation of Parquet databases. For each 
module in the yaml file, the reader and writer module can be explicitly defined with overwriting 
input arguments. 

 
def set_up_modules(self, args: Namespace): 
        """Construct the modules""" 
 
        args = self.set_up_base_module(args) 
 
        # First, add the Parquet reader 
        if "ParquetReader" in self._base_module: 
            parquet_reader_module = self._base_module["ParquetReader"] 
            self.active_modules.append( 
                parquet_reader_module["cls"]( 
                    **vars(args.get("ParquetReader", Namespace())) 
                ) 
            ) 
 
        # Then, add the modules from _set_up_modules 
        self._set_up_modules(args) 
 
        # Finally, add the Parquet writer 
        if "ParquetWriter" in self._base_module: 
            parquet_writer_module = self._base_module["ParquetWriter"] 
            args["ParquetWriter"].output_folder = str(self.output_folder) 
            self.active_modules.append( 
                parquet_writer_module["cls"]( 
                    **vars(args.get("ParquetWriter", Namespace())) 
                ) 
            ) 

where the ParrquetReadr and ParquetWriter can take the following arguments: 

 
class ParquetReader(BaseDiskReader): 
    """Read data from Parquet files. 
        Will read each batch as a separate document. 
 
    Args: 
        data_folder: a str, tuple or DataFolder object representing a path/filesystem 
        paths_file: optionally provide a file with one path per line (without the `data_folder` prefix) to read. 
        limit: limit the number of documents to read. Useful for debugging 
        skip: skip the first n rows 
        batch_size: the batch size to use (default: 1000) 
        read_metadata: if True, will read the metadata (default: True) 
        file_progress: show progress bar for files 
        doc_progress: show progress bar for documents 
        adapter: function to adapt the data dict from the source to a Document. 
            Takes as input: (self, data: dict, path: str, id_in_file: int | str) 
                self allows access to self.text_key and self.id_key 
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            Returns: a dict with at least a "text" and "id" keys 
        text_key: the key containing the text data (default: "text"). 
        id_key: the key containing the id for each sample (default: "id"). 
        default_metadata: a dictionary with any data that should be added to all samples' metadata 
        recursive: whether to search files recursively. Ignored if paths_file is provided 
        glob_pattern: pattern that all files must match exactly to be included (relative to data_folder). Ignor
ed if paths_file is provided 
        shuffle_files: shuffle the files within the returned shard. Mostly used for data viz. purposes, do not u
se with dedup blocks 
    """ 
 
 
 
class ParquetWriter(DiskWriter): 
    """Write data to Parquet files. 
 
    Args: 
        output_folder: a str, tuple, or DataFolder object representing the output path/filesystem. 
        output_filename: optional custom filename for the output file. Defaults to "${rank}.parquet". 
        compression: compression algorithm to use. Options: "snappy", "gzip", "brotli", "lz4", "zstd". Default
: "snappy". 
        adapter: function to adapt the data dict from a Document to the Parquet format. 
            Takes as input: (self, data: dict) 
            Returns: a dict suitable for writing to Parquet. 
        batch_size: number of rows per batch when writing. Default: 1000. 
        expand_metadata: if True, expands metadata fields into separate columns. Default: False. 
        max_file_size: maximum size of each output file in bytes. Default: 5GB. 
        schema: optional schema definition for the Parquet file. If None, inferred from data. 
    """ 

Additional wrappers for filters or mappers are also defined. We discuss them in the Section 
DataTrove wrappers for Filters and Formatters. 

3.4.1.2 Standardized HPC-parameters for the Stage class 
The parameters of the Stage class define how the curation step is executed by including the 
following arguments. For detailed information on HPC-related parameters, refer to Executing 
a Pipeline. 

 
  processing_type: ProcessingType 
    """Type of processing: local or on the hpc.""" 
 
    input_folder: Path 
    """Path to the data input directory.""" 
 
    output_folder: Path 
    """Path to the data output directory.""" 
 
    logs_folder: Path 
    """Path to the logs directory.""" 
 
    slurm_logs_folder: Path 
    """Path to the slurm logs directory.""" 
 
    hpc_n_tasks: int 
    """Total number of tasks to run on HPC (comply with execution time limit)""" 
 
    hpc_time: str 
    """Time limit for job""" 
 
    hpc_partition: str 
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    """HPC Partition to use""" 
 
    hpc_cpus_per_task: int 
    """How many CPUs for each task""" 
 
    hpc_mem_per_cpu_gb: int 
    """How much memory for each CPU""" 
 
    hpc_gpus: int 
    """How many GPUs""" 
 
    hpc_reservation: str | None 
    """Name of the slurm eservation""" 
 
    hpc_exclude: str | None 
    """Define which partition to exclude""" 
 
    hpc_nice: int | None 
    """Define adjusted scheduling priority""" 
 
    hpc_ear: bool 
    """To activate the Energy Aware Runtime (EAR) on HPC.""" 
 
    mail_type: str 
    """HPC: Type of email to receive (NONE, BEGIN, END, FAIL, REQUEUE, or ALL)""" 
 
    mail_user: str | None 
    """HPC: Email address to send notifications to""" 
 
    env_commands: str 
    """HPC: Additional env commands that are executed at the start of slurm job""" 

3.4.2 Stage Overview and Subcomponents 
Below, each GPT-NL curation stage is listed with: 

 Purpose — what the stage does. 
 Datatrove/External/Created components used — readers, filters, models, writers. 
 Configurable parameters — expected YAML fields. 

3.4.2.1 Data Splitting 
Description: DataSplittingStage is a processing stage that takes a directory of Parquet files 
and splits them into smaller Parquet files based on configurable constraints. Its primary 
purpose is to manage file sizes and optionally break down very large rows into smaller chunks 
for easier handling. 

File Splitting by Size: You can specify a target maximum file size (max_file_size). The stage 
uses this value to decide when to start writing to a new file. Note that this is not an exact limit 
because the size check occurs before writing a batch of rows. If files exceed the target size, 
reducing batch_size helps improve alignment with the limit. 

Row Splitting: If rows are very large, you can split them into smaller chunks using 
line_chunk_size. This performs simple string chunking (which may truncate words at 
boundaries) to reduce row length and improve file size control. 

Batch Control: The batch_size parameter determines how frequently data is written to disk. 
Smaller batch sizes lead to more frequent size checks and better adherence to the target file 
size. 
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File Size Margin: Because size checks happen before writing a batch, actual file sizes can 
exceed the target by a margin proportional to line_length * batch_size. For example, with very 
long rows and large batch sizes, the overshoot can be significant. 

Use Cases: 

Preparing large datasets for distributed processing by splitting them into manageable chunks. 
Reducing memory and storage overhead when dealing with extremely large rows. Controlling 
output file sizes for downstream systems that have size constraints. 

Components: Datatrove ParquetReader, Datatrove ParquetWriter 

Config Parameters: 

- `max_file_size`: int 
  """Maximum size per split file.""" 
 
- `line_chunk_size`: int | None 
  """Number of characters to split the input rows into shorter rows. If None, no splitting of rows is done.""
" 
 
- `batch_size`: int 
  """How frequently to write to disk (and check file size, affecting file size margin).""" 

code: In this case, the ParquetReader and ParquetWriter are overridden because their input 
arguments need to be specified each time in the YAML file. 

 
   def get_stage_spec(self): 
        reader = ParquetReader( 
            data_folder=str(self.input_folder), 
            file_progress=True, 
            doc_progress=True, 
            # Logs may be present in  a subdirectory of self.input_folder. 
            # As all input files are in the root of self.input_folder, 
            # we prevent log files being read by ParquetReader by setting recursive to False 
            recursive=False, 
            glob_pattern="*.parquet", 
            text_key="text", 
            id_key="extraction_uid", 
        ) 
        writer = ParquetWriter( 
            output_folder=str(self.output_folder), 
            max_file_size=self.max_file_size, 
            batch_size=self.batch_size, 
            expand_metadata=True, 
            adapter=gptnl_parquet_writer_adapter, 
        ) 
 
        if self.line_chunk_size is not None: 
            return [ 
                reader, 
                TextChunkerStep(chunk_size=self.line_chunk_size), 
                writer, 
            ] 
        else: 
            return [ 
                reader, 
                writer, 
            ] 
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3.4.2.2 Text Normalization 
Description: StringNormalizationStage is a processing stage designed to normalize and clean 
text data by applying a sequence of formatting modules. It ensures that text is standardized for 
downstream tasks such as NLP or data analysis. The stage uses an ordered set of formatters, 
each responsible for a specific aspect of normalization:  

Components: 

 FTFYFormatter 
 PunctuationFormatter 
 WhitespaceFormatter 

 

Config Parameters: 

FTFYFormatter: 
 normalization: "NFC" # Unicode normalization form. Options: ['NFC', 'NFKC', 'NFD', 'NFKD'] 
 
PunctuationFormatter: 
  punctionation_unicode: dict[old_string, new_string] # Mapping of Unicode punctuation to normalized A
SCII equivalents. # Default mapping includes common replacements: # Chinese/Japanese punctuation 
→ Western equivalents # Curly quotes → straight quotes # Special symbols → standard characters 
  default: { 
  "，": ",", # Chinese comma → comma 
  "。": ".", # Chinese period → period 
  "、": ",", # Ideographic comma → comma 
  "„": '"', # Double low quote → double quote 
  "”": '"', # Right double quote → double quote 
  "“": '"', # Left double quote → double quote 
  "«": '"', # Left angle quote → double quote 
  "»": '"', # Right angle quote → double quote 
  "１": '"', # Full-width quote → double quote 
  "」": '"', # Closing quote → double quote 
  "「": '"', # Opening quote → double quote 
  "《": '"', # Opening angle quote → double quote 
  "》": '"', # Closing angle quote → double quote 
  "´": "'", # Acute accent → apostrophe 
  "∶": ":", # Ratio sign → colon 
  "：": ":", # Full-width colon → colon 
  "？": "?", # Full-width question mark → question mark 
  "！": "!", # Full-width exclamation → exclamation 
  "（": "(", # Full-width left parenthesis → ( 
  "）": ")", # Full-width right parenthesis → ) 
  "；": ";", # Full-width semicolon → semicolon 
  "–": "-", # En dash → hyphen 
  "—": " - ", # Em dash → spaced hyphen 
  "．": ". ", # Full-width period → period + space 
  "～": "~", # Full-width tilde → tilde 
  "’": "'", # Right single quote → apostrophe 
  "…": "...", # Ellipsis → three dots 
  "━": "-", # Heavy dash → hyphen 
  "〈": "<", # Opening angle bracket → < 
  "〉": ">", # Closing angle bracket → > 
  "【": "[", # Opening bracket → [ 
  "】": "]", # Closing bracket → ] 
  "％": "%", # Full-width percent → percent 
  "►": "-", # Bullet arrow → hyphen 
} 
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WhitespaceFormatter: 
  Various_whiteSPACE: dict[str] # Set of whitespace characters to normalize. If not provided, defaults to
: 
  default: {  " ", "\u200b", "", "", " ⁠", "￼", " "   } 

Code: 
class StringNormalizationStage(Stage): 
 
    def __init__(self): 

        super().__init__() 
        self._modules = OrderedDict( 
            { 
                "FTFYFormatter": { 
                    "cls": FTFYFormatter, 
                    "default": {"normalization": "NFC"}, 

                }, 
                "PunctuationFormatter": {"cls": PunctuationFormatter, "default": {}}, 
                "WhitespaceFormatter": { 
                    "cls": WhitespaceFormatter, 
                    "default": {}, 
                }, 

            } 
        ) 

3.4.2.3 Heuristic Filtering Stage 
Description: In this case, the heuristic filtering stage does include all the heuristic filters such 
as the Gopher rules, Nordic Pile but also the LanguageFilter. The aim of this stage is to remove 
any data points that do not fulfill the criteria set by the heuristic filters/language filter. 

Components: 

 LanguageFilter 
 GopherQualityFilter 
 GopherRepetitionFilter 
 NordicPileQualityFilter 

Config Parameters: 

LanguageFilter: 
  languages: # Languages to Keep 
    [ 
      "en", # English 
      "nl", # Dutch 
      "da", # Danish 
      "sv", # Swedish 
      "af", # Afrikaans 
      "fy", # Frisian 
      "de", # German 
    ] 
  language_threshold: "0.65" # Minimum confidence score for language detection 
  backend: "ft176" # Language detection model to use (FastText 176 languages) 
 
NordicPileQualityFilter: 
  max_digit_fraction: "0.2" # Maximum fraction of digits allowed in the text 
  min_n_char: "50" # Minimum number of characters required in a document 
  min_mean_med_char: "9" # Minimum average median character length per line 
  min_mean_med_word: "2.1" # Minimum average median word length per line 
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GopherQualityFilter: 
  min_doc_words: "null" # Minimum number of words in a document (null = no limit) 
  max_doc_words: "null" # Maximum number of words in a document (null = no limit) 
  min_avg_word_length: "null" # Minimum average word length (null = no limit) 
  max_avg_word_length: "null" # Maximum average word length (null = no limit) 
  max_symbol_word_ratio: "0.1" # Maximum ratio of symbol-only words 
  max_bullet_lines_ratio: "0.9" # Maximum ratio of bullet-point lines 
  max_ellipsis_lines_ratio: "0.3" # Maximum ratio of lines containing ellipses (...) 
  max_non_alpha_words_ratio: "0.8" # Maximum ratio of words without alphabetic characters 
  min_stop_words: "2" # Minimum number of stop words required in the document 
 
GopherRepetitionFilter: 
  dup_line_frac: "0.35" # Maximum fraction of duplicate lines allowed 
  dup_para_frac: "0.35" # Maximum fraction of duplicate paragraphs allowed 
  dup_line_char_frac: "0.2" # Maximum fraction of duplicate characters in lines 
  dup_para_char_frac: "0.2" # Maximum fraction of duplicate characters in paragraphs 
  top_n_grams: [[2, 0.25], [3, 0.23], [4, 0.21]] # Thresholds for top repeated n-grams (n, max ratio) 
  dup_n_grams: [ 
      [5, 0.20], 
      [6, 0.19], 
      [7, 0.18], 
      [8, 0.17], 
      [9, 0.16], 
      [10, 0.15], 
    ] # Thresholds for duplicate n-grams (n, max ratio) 

Code: 

class HeuristicFilteringStage(Stage): 
 
    def __init__(self): 
        super().__init__() 
        self._modules = OrderedDict( 
            { 
                "LanguageFilter": { 
                    "cls": LanguageFilter, 
                    "default": { 
                        "languages": [ 
                            "en",  # English 
                            "nl",  # Dutch 
                            "da",  # Danish 
                            "sv",  # Swedish 
                            "af",  # Afrikaans 
                            "fy",  # Frisian 
                            "de",  # German 
                        ] 
                    }, 
                }, 
                "NordicPileQualityFilter": { 
                    "cls": NordicPileQualityFilter, 
                    "default": {}, 
                }, 
                "GopherQualityFilter": { 
                    "cls": GopherQualityFilter, 
                    "default": { 
                        "min_doc_words": None, 
                        "max_doc_words": None, 
                        "min_avg_word_length": None, 
                        "max_avg_word_length": None, 
                        "max_symbol_word_ratio": 0.1, 
                        "max_bullet_lines_ratio": 0.9, 
                        "max_ellipsis_lines_ratio": 0.3, 
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                        "max_non_alpha_words_ratio": 0.8, 
                        "min_stop_words": 2, 
                    }, 
                }, 
                "GopherRepetitionFilter": { 
                    "cls": GopherRepetitionFilter, 
                    "default": { 
                        "top_n_grams": [[2, 0.25], [3, 0.23], [4, 0.21]], 
                        "dup_n_grams": [ 
                            [5, 0.20], 
                            [6, 0.19], 
                            [7, 0.18], 
                            [8, 0.17], 
                            [9, 0.16], 
                            [10, 0.15], 
                        ], 
                    }, 
                }, 
            } 
        ) 

3.4.2.4 PII Masking 
Description: The PII (Personally Identifiable Information) module is designed to detect and 
handle sensitive information in text data. Its primary goal is to identify entities such as names, 
addresses, phone numbers, email addresses, and other personal identifiers, and then apply 
configurable strategies to protect privacy. 

Components: 

 PII_PrivateAI_TNO 

Config Parameters: 

PrivateAIFormatter: 
  category: "" # Category for the formatter (skipped in defaults) 
  api_endpoint: "http://localhost:8080/" # API endpoint for PrivateAI service 
  replacement_type: "SYNTHETIC" # Replacement strategy (synthetic data generation) 
  entity_grouping_window: 4500 # Window size for grouping detected entities 
  entity_types: [] # Entity types to detect (skipped in defaults) 
  check_public_figure: true # Whether to check for public figures 
  record_processed_entities: true # Whether to record processed entities 
  request_batch_size: 1 # Number of requests per batch 
  chunk_pool_workers: 32 # Number of workers for chunk processing 
  doc_pool_workers: 32 # Number of workers for document processing 
  api_endpoint_attempt_delay: 10 # Delay between API retry attempts (seconds) 
  max_api_endpoint_attempts: 5 # Maximum number of API retry attempts 
  verbose: false # Enable verbose logging 
  validator: null # Optional validator function 
  public_figure_csv_files: [] # List of CSV files for public figures 
  synthetic_replacement_strategies: {} # Strategies for synthetic replacements 
  synthetic_replacement_locale: "nl-NL" # Locale for synthetic replacements 
  synthetic_replacement_chance: 1.0 # Probability of applying synthetic replacement 

Code: 

class PIIMaskingStage(Stage): 
 
    def __init__(self): 
        super().__init__() 
        self._modules = OrderedDict( 
            { 
                "PII_PrivateAI_TNO": { 
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                    "cls": PII_PrivateAI_TNO, 
                    "default": { 
                        "api_endpoint": "http://localhost:8080/", 
                        "replacement_type": "SYNTHETIC", 
                        "entity_grouping_window": 4500, 
                        "check_public_figure": True, 
                        "record_processed_entities": True, 
                        "request_batch_size": 1, 
                    }, 
                    "skip": {"entity_types", "category"}, 
                }, 
            } 
        ) 

Output: PII replaced with synthetic placeholders; metadata stores entity type and position. 

3.4.2.5 Harmful and Toxic Content Filtering 
Description: The ToxicLanguageDetection module is designed to identify and flag toxic or 
offensive language in text data. It leverages pre-trained models specialized for detecting hate 
speech and offensive content in both Dutch and English. 

Components:  

ToxicLanguageDetection 

Config Parameters: 

ToxicLanguageDetection: 
  threshold: 0.995 # The toxicity score above which a chunk is toxic 
  max_chunk_length: 256 # Maximum length of a text chunk to process at once 
  device: null # Device to run the model on (e.g., "cpu" or "cuda") 
  supported_languages: 
    - "nl" # Dutch 
    - "en" # English 
  nltk_language_map: 
    nl: "dutch" # Mapping for NLTK language processing 
    en: "english" 
  model_label_map: 
    nl: 
      LABEL_0: "Acceptable" 
      LABEL_1: "Inappropriate" 
      LABEL_2: "Offensive" 
      LABEL_3: "Violent" 
    en: 
      LABEL_0: "Acceptable" 
      LABEL_1: "Toxic" 

Code: 

class ToxicLanguageDetectionStage(Stage): 
 
    def __init__(self): 
        super().__init__() 
        self._modules = OrderedDict( 
            { 
                "ToxicLanguageDetection": { 
                    "cls": ToxicLanguageDetection, 
                    "default": { 
                        "threshold": 0.995, 
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                        "max_chunk_length": 256, 
                    }, 
                }, 
            } 
        ) 

Output Metadata: Adds toxicity_score and category labels. 

3.4.2.6 Deduplication 
Description: The Deduplication Stage is responsible for identifying and removing duplicate or 
near-duplicate items from the dataset. This process ensures data quality and reduces 
redundancy before downstream tasks such as indexing or analysis. Because deduplication 
involves computing hashes, comparing n-grams, and processing large volumes of data, it is 
typically the longest-running stage in the pipeline. To improve efficiency and fault tolerance, 
this stage is split into multiple sub-stages/SLURM scripts, each handling a portion of the 
workload. 

Stage 1: Signature Generation 

 Component: ParquetReader → MinhashDedupSignature 
 Function: Reads input files and computes MinHash signatures for each document. 
 Parallelization: Runs as multiple tasks (self.hpc_n_tasks), each processing a subset 

of files. 
 Output: Stores signatures in intermediate/signatures. 

Stage 2: Bucket Assignment 

 Component: MinhashDedupBuckets 
 Function: Groups signatures into hash buckets for efficient duplicate detection. 
 Parallelization: Number of tasks equals num_buckets from minhash_config. 
 Output: Buckets saved in intermediate/buckets. 
 Dependency: Starts after Stage 1 finishes. 

Stage 3: Clustering 

 Component: MinhashDedupCluster 
 Function: Combines bucket results to identify clusters of duplicates. 
 Parallelization: Single task (global clustering). 
 Output: IDs of duplicates stored in intermediate/remove_ids. 
 Dependency: Starts after Stage 2. 

Stage 4: Filtering 

 Component: ParquetReader → MinhashDedupFilter → ParquetWriter 
 Function: Reads original data and removes duplicates, keeping one representative 

per cluster. 
 Parallelization: Same number of tasks as Stage 1 for consistency. 
 Output: Deduplicated dataset + exclusion list in intermediate/removed. 
 Dependency: Starts after Stage 3. 

Components (Datatrove): 

 MinhashDedupSignature 
 MinhashDedupBuckets 
 MinhashDedupCluster 
 MinhashDedupFilter 
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Config Parameters: 

DeduplicationStage: 
  # Number of hash buckets used to group similar items. 
  # More buckets reduce collisions but increase memory usage. 
  num_buckets: 14 
 
  # Number of hash values stored per bucket. 
  # Higher values improve granularity but use more memory. 
  hashes_per_bucket: 8 
 
  # Size of n-grams used for hashing. 
  # Larger n-grams capture more context but may miss small changes. 
  n_grams: 5 
 
  # Whether to use 64-bit hashes instead of 32-bit. 
  # Improves uniqueness and reduces collisions at the cost of memory. 
  use_64bit_hashes: true 

Code: 

 
class DeduplicationStage(Stage): 
 
    bit_precision: int 
    """Whether to use 64-bit hashes for the Minhash config. Better precision means fewer false 
positives (collisions).""" 
 
    def __init__(self): 
        """Initialize the pipeline stage. 
 
        Args: 
            default_intermediate_folder (str, optional): default folder to   use for intermediate resul
ts. Defaults to "". 
        """ 
        super().__init__() 
 
        self._modules = OrderedDict( 
            { 
                "MinhashConfig": { 
                    "cls": MinhashConfig, 
                    "default": { 
                        "num_buckets": 14, 
                        "hashes_per_bucket": 8, 
                        "n_grams": 5, 
                    }, 
                } 
            } 
        ) 

Execution: Multi-step process (signature → buckets → cluster → filter) using sequential 
HPC jobs. 

Output: 

 deduplicated_output/ — final dataset. 
 removed/ — duplicates excluded. 
 logs/ — Datatrove and Slurm logs. 



 

 

 TNO Public  GPTNL-DEL-4001 

 TNO Public 59/95

3.4.2.7 LLMProcessingStage 
Description: This module defines a pipeline stage called LLMProcessingStage, which is 
designed to process text using a Large Language Model (LLM) as part of a data curation 
workflow. The stage begins with a RowSplitter that splits long text rows into smaller segments 
for easier processing. Next, RegexFilter removes unwanted patterns such as numeric 
sequences, file extensions, or certain keywords that indicate irrelevant content. After filtering, 
a RowCombiner can merge previously split rows into coherent units if needed. The core of the 
stage is the LLMProcessingStep, which uses a specified LLM model (in this case, 
microsoft/phi4) and a predefined prompt to rewrite or combine sentences into a fluent and 
grammatically correct paragraph in Dutch without adding new information. Finally, a 
LanguageFilter ensures that only texts in the desired languages (Dutch and English) pass 
through, based on a confidence threshold. 

Components: 

 LanguageFilter (Datatrove) 
 RegexFilter (Datarove) 
 LLMProcessingStep 
 RowSplitterOrCombiner 

Config Parameters: 

RegexFilter: 
  regex_exp: "your-regex-here" # Regex expression used to filter rows 
  exclusion_writer: null # Optional writer for excluded documents 
 
LanguageFilter: 
  languages: ["nl", "en"] # List of languages to keep; None for all 
  language_threshold: 0.65 # Minimum confidence score to accept a document 
  exclusion_writer: null # Optional writer for excluded documents 
  backend: "ft176" # Language detection backend; options: ft176 or glotlid 
  label_only: false # If true, only adds language label without filtering 
  keep_top_pairs_threshold: -1 # Keep pairs with score above this; -1 disables 
 
LLMProcessingStep: 
  model_name: "microsoft/phi4" # Name of the LLM model to use (e.g., microsoft/phi4, gpt-4) 
  prompt: "Your prompt text here" # Prompt text provided to the LLM for processing 
  max_tokens: null # Maximum tokens for output; defaults len(input_text)/3 if null 
  temperature: 0.1 # Sampling temperature; lower values make more deterministic 
  batch_size: 10 # Number of items processed per batch 
  use_chat_template: true # Whether to apply chat template formatting 
  debug_mode: false # Enable debug mode for verbose logging 
 
RowSplitterOrCombiner: 
  split: true # Whether to split rows (true) or recombine them (false) 
  separator: "\n" # Delimiter used for splitting or combining rows 
  identifier_metadata_field: "row_splitter_id" # Metadata field name for tracking splits; removed during re
combination 

Code: 

class LLMProcessingStage(Stage): 
    """Use LLM to process text""" 
 
    def __init__(self): 
        super().__init__() 
        self._modules = OrderedDict( 
            { 
                "RowSplitter": { 
                    "cls": RowSplitterOrCombiner, 
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                    "default": { 
                        "split": True, 
                    }, 
                }, 
                "RegexFilter": { 
                    "cls": RegexFilter, 
                    "default": { 
                        "regex_exp": r"([\d°]{3,})|(\.(\w{2,4}))|(\/\w+\/\w+)|(WorldCat)|(Wikikids)", 
                    }, 
                }, 
                "RowCombiner": { 
                    "cls": RowSplitterOrCombiner, 
                    "default": { 
                        "split": False, 
                    }, 
                }, 
                "LLMProcessingStep": { 
                    "cls": LLMProcessingStep, 
                    "default": { 
                        "model_name": "microsoft/phi4", 
                        "prompt": "Given the following sentences, produce a fluent and coherent paragraph that 
contains all the information in the sentences. Do not generate any information that is not in the sentence
s. Ensure that the paragraph is grammatically and syntactically correct in Dutch. Do not produce any ad
ditional text, only the paragraph.\nSentences:\n{text}\n\nParagraph:\n", 
                    }, 
                }, 
                "LanguageFilter": { 
                    "cls": LanguageFilter, 
                    "default": { 
                        "languages": ["nl", "en"], 
                        "language_threshold": 0.65, 
                    }, 
                }, 
            } 
        ) 

3.4.2.8 MachineTranslation 
Description: The MachineTranslation module is typically designed to translate text from one 
language to another within a data processing pipeline. Its main purpose is to ensure multilingual 
datasets are normalized into a target language for downstream tasks such as analysis, training, 
or curation. 

Components: 

 RegexFormatter 
 ParquetWriter 
 LanguageFilter 
 ExtraFieldFilterStep 
 RegexFormattedRowsParquetWriter 
 TranslatorStep 
 SplittedRowsCombiner 

Config Parameters: 

RegexFormatter: 
  pattern: ["your-pattern-here"] # List of regex patterns to match 
  repl: [""] # Replacement strings for each pattern; defaults to empty string 
  flags: [re.DOTALL] # Regex flags applied during matching; defaults to DOTALL 
 
LanguageFilter: 
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  languages: ["nl", "en"] # List of languages to keep; None for all 
  language_threshold: 0.65 # Minimum confidence score to accept a document 
  exclusion_writer: null # Optional writer for excluded documents 
  backend: "ft176" # Language detection backend; options: ft176 or glotlid 
  label_only: false # If true, only adds language label without filtering 
  keep_top_pairs_threshold: -1 # Keep language pairs with score above; -1 disables 
 
ExtraFieldFilterStep: 
  extra_field_name: "your_field_name" # Name of the extra metadata field to check 
  allowed_values: ["value1", "value2"] # List of allowed values for the field 
  raise_when_field_missing: true # Raise an error if the field is missing 
  keep_when_field_missing: false # Keep the document the field is missing 
  exclusion_writer: null # Optional writer for excluded documents 
 
TranslatorStep: 
  model_name: "ModelSpace/GemmaX2-28-9B-v0.1" # Name of the translation model to use 
  use_vllm: true # Whether to use vLLM for inference 
  chunk_mode: "characters" # options: characters or tokens 
  chunk_size: 1024 # Size of each chunk for processing 
  batch_size: 128 # Number of chunks processed per batch 
  stop_at: null # Optional limit on items to process; null for no limit 
  batch_stop_at: null # Optional limit on batches; null for no limit 
  dry_run: false # If true, runs without performing actual translation 
  source_language: null # Source language; null for auto-detection 
  destination_language: "Dutch" # Target language for translation 
 
SplittedRowsCombiner: # No inpit parameters 

### class MachineTranslation(Stage): 
    """Translates into Dutch, splitting text into smaller chunks.""" 
 
    def __init__(self): 
        super().__init__() 
        self._modules = OrderedDict( 
            { 
                "RegexFormatter": {   

                    "cls": RegexFormatter, 
                    "default": { 
                        "pattern": [ 
                            r"\b(\w+)\s+\1\s+\1(\s+\1)*\b", 
                            r"\s?\[[a-zA-Z&;_à-üÀ-Ü\s]{0,15}\]",   
                        ], 
                        "repl": [r"\1", ""], 
                        "flags": [re.DOTALL, re.S], 
                    }, 
                }, 
                "RegexFormattedRowsParquetWriter": { 
                    "cls": ParquetWriter, 
                    "default": {"expand_metadata": True, "output_folder": ""}, 
                }, 
 
                "ExtraFieldFilter": { 
                    "cls": ExtraFieldFilterStep, 
                    "default": { 
                        "extra_field_name": ["original_language"], 
                        "allowed_values": ["en"], 
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                        "raise_when_field_missing": True, 
                        "keep_when_field_missing": False, 
                    }, 
                }, 
                "TranslatorStep": { 
                    "cls": TranslatorStep, 
                    "default": { 
                        "chunk_size": 1024, 
                        "batch_size": 32, 
                        "stop_at": None, 
                        "batch_stop_at": None, 
                        "dry_run": False, 
                    }, 
                }, 
                "PostLanguageFilter": { 
                    "cls": LanguageFilter, 
                    "default": { 
                        "languages": ["nl"], 
                        "language_threshold": 0.65, 
                    }, 
                }, 
 
                "SplittedRowsCombiner": {"cls": SplittedRowsCombiner, "default": {}}, 
            } 
        ) 

3.4.2.9 Extending with New Stages 
To implement a new stage: 

1. Create a new class in gptnl_data_curation_pipeline/stages/. 
2. Inherit from Stage. 
3. Define Datatrove operations in get_stage_spec() or override run_stage() if multi-step. 
4. Add the stage to stages in run_pipeline.py. 
5. Update documentation and YAML schema accordingly. 

3.4.3 DataTrove Wrappers for Filters and Formatters 
Besides the wrappers and custom classes discussed above, we also defined special wrappers 
for filters and formatters and targeting specific cases. In the following we explain how that was 
implemented. If you want to add new operations such as heuristic filters and PII mappers, you 
must follow a specific structure to integrate your operations into the Datatrove pipeline. 
Fortunately, it is straightforward. You just need to adhere to the following templates. 

3.4.3.1 Filters 
The most important aspect is that your Filter operation class needs to have a method called 
filter, which takes a data point, also known as a “Document”. From this Document, you can 
access all the information attached to that data point (ID, metadata, text). The filter function 
should return False if it fails a certain filter or True if it passes all the filters. 

 Very important: Do not define a method called run. BaseFilter already has a method run 
defined, which internally handles how the data points are accessed. Only overwrite the method 
if you know exactly what you are doing!  
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# Put in src/operators/heuristic_filters/ 
 
from datatrove.data import Document 
from datatrove.pipeline.filters.base_filter import BaseFilter 
from datatrove.pipeline.writers.disk_base import DiskWriter 
 
 
 
class TemplateFilter(BaseFilter): 
    name = "⚙ Template quality filter" 
    _requires_dependencies = ["python package"] 
 
    def __init__( 
        self, 
        ..., 
        exclusion_writer: DiskWriter = None, 
    ): 
        """ 
        Filter to apply tempalte's quality heuristic rules. 
        Reference: https://example.pdf 
 
        Args: 
            template_arg_1: 
            template_arg_2: 
            ... 
            exclusion_writer: 
        """ 
        super().__init__(exclusion_writer) 
        self.template_arg_1 = template_arg_1 
        self.template_arg_2 = template_arg_2 
         
 
    def filter(self, doc: Document) -> bool | tuple[bool, str]: 
        """ 
        You must have a filter function defined!!! 
 
        Args: 
            doc: Applies the heuristics rules to decide if a document should be REMOVED 
 
 
        Returns: False if sample.text does not pass any of the the heuristic tests 
 
        """ 
        from your_python_package import word_tokenize 
 
        text = doc.text 
        words = word_tokenize(text)   
        n_words = len(words) 
 
        # words < min_doc_words or words > max_doc_words 
        if n_words < self.template_arg_1: 
            return False, "failed_filter_1" 
        if wrods not in self.template_arg_2: 
            return False, "failed_filter_2" 
 
        ... 
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3.4.3.2 PII Mappers 
In comparison to the filters, the PII operations class needs to have a method called format 
which takes at least a text string. The most important aspect is that the function returns the 
modified text. 

 Very important: Do not define a method called run. BaseFilter already has a method run 
defined, which internally handles how the data points are accessed. Only overwrite the 
method if you know exactly what you are doing!  

 
# Put in src/operators/pii_mappers/ 
 
from datatrove.pipeline.formatters.base import BaseFormatter 
from datatrove.pipeline.fromatters.pii import PIIReplacer 
 
class TemplatePIIFormatter(BaseFormatter): 
    """ 
    Replaces a certain string in the document text. 
    Args: 
        remove_emails: Replace email addresses 
        remove_ips: Replace IP addresses only_remove_public_ips: by default we only replace public (an
d thus PII) IPs 
         
    """ 
 
    name = "🔧 Template PII" 
 
    def __init__( 
        self, 
        remove_emails: bool = True, 
        email_replacement: tuple[str, ...] | str = ("email@example.com", "firstname.lastname@example.org
"), 
    ): 
        super().__init__() 
        self.remove_emails = remove_emails 
        
        self.emails_replacer = PIIReplacer( 
            r"\b[A-Za-z0-9!#$%&'*+/=?^_`{|}~-]+(?:\.[A-Za-z0-9!#$%&'*+/=?^_`{|}~-]+)*@(?:(?:[A-Za-z0-9](?:[
" 
            r"A-Za-z0-9-]*[A-Za-z0-9])?\.)+[A-Za-z0-9](?:[A-Za-z0-9-]*[A-Za-z0-9])?|\[(?:(?:25[0-5]|2[0-4][0-9]
|[" 
            r"01]?[0-9][0-9]?)\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?|[A-Za-z0-9-]*[A-Za-z0-9]:)])", 
            email_replacement, 
        ) 
 
    def format(self, text: str) -> str: 
        if self.remove_emails: 
            text = self.emails_replacer.replace(text) 
        if self.remove_ips: 
            text = self.ip_replacer.replace(text) 
        return text 

 

3.5 Executing a Pipeline 
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Figure 9: Overview execution and parallelization 

 

This Section explains how a GPT-NL curation stage is executed from the moment data enters 
the system until all outputs and logs are produced on the HPC cluster. Rather than listing 
technical parameters in isolation, the goal here is to give a coherent narrative that ties together 
the design choices introduced in the previous documents: modular processing stages, YAML-
driven configuration, and the separation between the pipeline repository and the modules’ 
repository. Execution is where these ideas become concrete—where configuration turns into 
action and data begins its journey through curated transformation steps to produce the GPT-
NL training corpus. 

The execution architecture is intentionally built around transparency. Every operation—how 
files are grouped, how tasks are created, how SLURM schedules work, and how failures are 
isolated—follows the same design principles that shape the earlier phases of the system. The 
pipeline is meant to be observable: you should be able to understand what happened, why it 
happened, and how it can be reproduced. 

3.5.1 From Input Files to Executable Units 
Each stage begins in a physical place: a folder containing Parquet files. These files represent 
the current version of the dataset, already processed by the previous stage. When the pipeline 
reads this folder, Datatrove transforms the set of files into parallelizable units called shards. A 
shard is nothing more than a subset of the input files. The reason for this design is simple: 
Datatrove reads and processes whole Parquet files; it does not split them internally. This means 
the granularity of parallelism is determined by the number and size of the files you provide. As 
an example: 

 If you have 512 files and configure 128 tasks, the system will create ~128 shards of 
about 4 files each. 

 Each shard is then passed to a dedicated task that executes the chosen stage’s logic 
(e.g., normalization). 

 These tasks are designed to be parallel; thus they do not depend on each other and 
can run simultaneously. 

This approach has key advantages: 
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 Scalability: In our example, processing 128 shards in parallel is dramatically faster 
than processing them sequentially. 

 Fault Isolation: If one task fails because of a corrupted file or out-of-memory error, it 
does not impact the others, only that task (alongside its input shard) must be rerun. 

 Efficient Resource Utilization: Tasks can be scheduled and executed as soon as re-
sources are available, instead of waiting for a single long process to finish. 

A crucial consideration is shard uniformity. All shards should contain roughly the same amount 
of data; otherwise, one large shard (a “straggler”) may finish far later than the others, delaying 
the entire stage. For this reason, it is generally recommended to store data within many smaller 
Parquet files rather than a few very large ones. The pipeline itself does not split individual files 
across shards, so file granularity directly affects parallelism and runtime balance. It is, however, 
possible to split parquet files into smaller ones using a special stage called data splitting. 

3.5.2 The YAML Configuration as the Execution Contract 
In earlier documents, the YAML configuration was introduced as the blueprint that defines the 
pipeline logically. During execution, this YAML file becomes a contract: every resource request, 
every module parameter, every input and output path originates from this file. The pipeline does 
not contain hard-coded decisions; it reads, respects, and enforces whatever the YAML 
declares. 

The YAML then specifies how the stage should behave on the HPC system: which partition to 
use, how much memory each task needs, whether GPUs are required, and how long the stage 
is allowed to run. These parameters map directly to SLURM’s scheduling interface. The 
pipeline converts YAML keys into sbatch arguments, so that the user can tune HPC behavior 
entirely through configuration rather than code. 

The same YAML also specifies module parameters. These values—thresholds, language lists, 
model names, syntactic rules—shape the actual processing performed by the modules. In other 
words, the YAML simultaneously defines the logical transformation and the physical execution 
environment. This tight coupling between description and execution enables full reproducibility. 

Below is a simplified example of a GPT-NL pipeline configuration: 

stages: 
  - stage: data_splitting 
    input_folder: test-data/0. raw 
    hpc_n_tasks: "1" 
    hpc_time: "00:20:00"  
    hpc_partition: "genoa" 
  - stage: string_normalization 
    ParquetReader: 
      # For more information about the reader https://github.com/huggingface/datatrove/blob/v0.3.0/src/da
tatrove/pipeline/readers/parquet.py 
      paths_file: "null" # If define specific parquet file is used instead of a whole folder 
      limit: "-1" # Defines the number of documents to run the pipeline on 
      skip: "0" # Skip the first n documents 
      recursive: "false" # if recursive is set to true glob_patterns needs to be set to null (internal bug...) 
      glob_pattern: "*parquet" 
      shuffle_files: "false" 
    hpc_n_tasks: "4" 
    hpc_time: "00:20:00" # should take max 4.86h 
    hpc_partition: "genoa" 
    FTFYFormatter: 
      normalization: "NFC" 
  - stage: heuristic_filtering 
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    hpc_n_tasks: "4" 
    hpc_time: "00:20:00" # should take max 4.86h 
    hpc_partition: "genoa" 
    LanguageFilter: 
      languages: [ 
          "en", # English 
          "nl", # Dutch 
          "da", # Danish 
          "sv", # Swedish 
          "af", # Afrikaans 
          "fy", # Frisian 
          "de", # German 
        ] 
      language_threshold: "0.65" 
      backend: "ft176" 
    NordicPileQualityFilter: 
      max_digit_fraction: "0.2" 
      min_n_char: "50" 
      min_mean_med_char: "9" 
      min_mean_med_word: "2.1" 
    GopherQualityFilter: 
      min_doc_words: "null" 
      max_doc_words: "null" 
      min_avg_word_length: "null" 
      max_avg_word_length: "null" 
      max_symbol_word_ratio: "0.1" 
      max_bullet_lines_ratio: "0.9" 
      max_ellipsis_lines_ratio: "0.3" 
      max_non_alpha_words_ratio: "0.8" 
      min_stop_words: "2" 
    GopherRepetitionFilter: 
      dup_line_frac: "0.35" 
      dup_para_frac: "0.35" 
      dup_line_char_frac: "0.2" 
      dup_para_char_frac: "0.2" 
      top_n_grams: [[2, 0.25], [3, 0.23], [4, 0.21]] 
      dup_n_grams: 
        [[5, 0.20], [6, 0.19], [7, 0.18], [8, 0.17], [9, 0.16], [10, 0.15]] 
  - stage: pii_masking 
    hpc_time: "04:00:00" 
    hpc_partition: gpu_a100 
    # hpc_reservation: gpt-nl 
    hpc_n_tasks: "4" # Number of data trove tasks with split up files 
    hpc_gpus: "1" 
    hpc_cpus_per_task: "16" # Need 16 cores (per private AI GPU instance - actually needs 64 but CPU 
affinity warnings can be ignored with GPU instance) 
    #hpc_mem_per_cpu_gb: "1"  # 120/128 = 0.9375 
    hpc_mem_per_cpu_gb: "4" # Need 64GB ram per private AI instance, 64/16 = 4 
    # Start multiple containers with different ports and wait for healthy containers 
    env_commands: "for gpu in ${{CUDA_VISIBLE_DEVICES//,/ }}; do CUDA_VISIBLE_DEVICES=$gpu 
apptainer run --nv --contain --pwd /app --env PAI_PORT=$((gpu+SLURM_ARRAY_TASK_ID+8080)) --
env PAI_TRITON_HTTP_PORT=$((gpu+SLURM_ARRAY_TASK_ID+SLURM_ARRAY_TASK_MAX+8
089)) /projects/0/prjs0986/wp13/private-ai/private_ai_gpu.sif & done; sleep 40" 
    PII_PrivateAI_TNO: 
      chunk_pool_workers: 32 # Number of workers for chunks 
      doc_pool_workers: 16 # Number of workers for documents 
      request_batch_size: 64 # Chunks of the same document to be sent in the same request to PAI 
      batch_size: 16 # Documents to handle in the same batch 
      api_endpoint: "http://localhost:808{CUDA_VISIBLE_DEVICES}/" # Template for endpoint per GPU i
nstance (uses task array index and comma-separated indexes from CUDA_VISIBLE_DEVICES) 
      replacement_type: "MARKER" # GPU instance does not support SYNTHETIC 
      synthetic_replacement_chance: 1.00 # Replace 100% of markers with own synthetic data 
      synthetic_replacement_locale: "nl-NL" # Depending on the dominant language use : English en-GB, 
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Dutch nl-NL 
  - stage: toxic_language_detection 
    hpc_partition: gpu_h100 
    hpc_reservation: gpt-nl 
    hpc_gpu: "1" 
    hpc_time: "00:20:00" # should take max 4.86h 
    hpc_cpus_per_task: "4" # h100: 1/4 node = 16 cores + 1 GPU + 180 GiB 
    hpc_mem_per_cpu_gb: "15" 
    hpc_n_tasks: "4" 
  - stage: deduplication 
    hpc_n_tasks: "4" 
    hpc_partition: "genoa" 

The first part of the YAML file (not included in example) defines global execution rules that 
apply to the entire pipeline: 

 processing_type – Determines where the pipeline runs: local (on a single machine) 
or HPC (distributed across the cluster). 

 input_from_previous_output – Ensures that each stage automatically uses the out-
put of the previous stage as its input, chaining them into a continuous workflow. 

 output_folder_template – Defines a structured naming pattern for storing results, 
using variables such as {stage_idx} (stage index) and {stage_name} (stage name). 
This makes outputs traceable and reproducible. 

 logs_folder and slurm_logs_folder – Specify where runtime logs and SLURM 
scheduler logs are saved. These logs are essential for debugging, performance anal-
ysis, and auditing. 

 hpc_exclude – Allows you to exclude specific compute nodes (e.g., those reserved 
for other jobs) from being used. 

Together, these settings define the execution environment and output structure for the entire 
run. 

The stages section is the core of the YAML file. It defines which steps the pipeline will execute, 
in which order, and with which parameters. Each stage corresponds to a processing module 
(e.g., normalization, filtering, PII removal) and typically includes three categories of 
configuration: 

1. Execution Parameters – These determine how the stage runs on the HPC: 

o hpc_n_tasks: Number of tasks (shards) into which the data will be split. 

o hpc_time: Maximum runtime for the stage. 

o hpc_partition: Which partition (or queue) on the cluster to use. 

o hpc_gpus, hpc_cpus_per_task, hpc_mem_per_cpu_gb: Hardware require-
ments for GPU or CPU tasks. 

2. I/O and Input Settings - These specify where the data comes from and where results 
should be written. For example, input_folder points to the raw dataset for the first stage. 

3. Module-Specific Parameters - These configure how the processing logic behaves. For 
instance: 

o FTFYFormatter.normalization sets the Unicode normalization mode. 
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o LanguageFilter.languages defines which languages to keep and the minimum 
detection score. 

o PII_PrivateAI_TNO.synthetic_replacement_locale specifies the locale for syn-
thetic PII generation. 

By combining these three layers, the YAML precisely defines not only what happens at each 
stage but also how it should happen. 

In many ways, the YAML file is the single source of truth for a pipeline run. It encapsulates: 

 The logical sequence of curation stages. 

 The physical execution environment (resources, partitions, runtime limits). 

 The parallelization strategy (number of tasks, shards, workers). 

 The operational metadata (paths, logs, monitoring, and notifications). 

Because of this, the YAML file is archived with the output dataset itself, ensuring that anyone 
reviewing the results in the future can reproduce the exact same run, down to the number of 
tasks and normalization parameters used. This traceability is crucial for research, quality 
assurance, and future iterations of the GPT-NL project. 

3.5.3 Task Orchestration with SLURM 
Once shards and tasks are defined, execution is delegated to SLURM, the workload manager 
responsible for distributing jobs across the HPC cluster. SLURM ensures that each task runs 
on an appropriate node with the requested resources and that tasks are efficiently queued and 
scheduled. 

The pipeline does not submit each task separately. Instead, it creates an SLURM job array, a 
single job with many elements, each representing one task. SLURM then assigns these tasks 
to available nodes and CPUs, launching new tasks as resources become free. 

Here’s how this orchestration works in practice: 

1. Job Array Creation: The pipeline packages the code, configuration, and shard infor-
mation for each task and bundles them into a job array. 

2. Scheduling: SLURM reads the resource requests from the YAML and places tasks in 
a queue, scheduling them as soon as CPUs, memory, and GPUs become available. 

3. Execution: Each task runs independently on its assigned shard. If 128 workers are 
allowed, 128 tasks run in parallel. When one finishes, the next queued task begins. 

4. Completion and Monitoring: Once all tasks complete, SLURM marks the job array as 
finished. Logs and metrics from each task are collected for analysis. 

The distinction between tasks and workers is key. “Tasks” refers to the total number of work 
units, while “workers” is the number of tasks that can run concurrently. It is common to configure 
more tasks than workers, especially on shared HPC infrastructure, where the total number of 
available cores is limited. SLURM will automatically queue and execute tasks in waves, 
ensuring efficient resource utilization. 
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3.5.4 Fault Tolerance, Logging, and Reproducibility 
One of the defining properties of this execution architecture is that each shard is processed 
independently. If a single task encounters an out-of-memory error or a corrupted file, only that 
task fails; the rest continue normally. Datatrove writes comprehensive logs for each shard, 
capturing statistics such as how many documents were filtered, which modules triggered 
removals, and how the data evolved. SLURM writes scheduler logs for each task, containing 
stdout, stderr, error traces, and resource usage information. 

When a stage is rerun, Datatrove automatically skips shards that completed successfully and 
retries only the ones that failed. This avoids the inefficiency of restarting an entire stage from 
scratch. The combination of precise logging and idempotent tasks makes it straightforward to 
diagnose failures, reproduce results, and maintain a clear history of execution. 

These logs become part of the dataset’s provenance. Anyone reviewing a curated dataset can 
trace exactly how it was produced, which stage transformed it, which shard processed it, and 
what parameters were applied. This level of transparency is essential for auditing and for 
maintaining trust in a national-scale language model pipeline. 

3.5.5 Why This Architecture Scales 
The SLURM-based execution model integrates principles that allow the GPT-NL pipeline to 
scale without architectural changes: 

 Parallelism by sharding enables hundreds of tasks to run simultaneously, limited 
only by available hardware. 

 Job arrays compact thousands of potential submissions into a single manageable 
entity, reducing scheduler overhead and simplifying monitoring. 

 Declarative configuration via YAML ensures complete reproducibility and traceabil-
ity of every run. 

 Idempotent shard processing makes failures cheap to recover from, improving ro-
bustness on very large datasets. 

 Flexible resource management allows each stage to request precisely the CPUs, 
memory, and GPUs it needs, adapting to datasets of different sizes and different 
computational characteristics. 

This structure has already proven capable of processing hundreds of gigabytes of text 
efficiently. Scaling to larger corpora typically requires only adjusting the number of shards or 
increasing the allowed runtime—never changing the architecture itself. 

3.5.6 Conclusion 
The execution layer brings together all core principles of the GPT-NL curation framework. The 
modular stages defined in the pipeline repository, the versioned modules in the modules’ 
repository, and the YAML configuration converge into a unified workload that SLURM can 
distribute across the HPC cluster. The result is a system that remains fully transparent, 
reproducible, fault-tolerant, and scalable. 

Execution is not a black box but a carefully orchestrated, inspectable process where every 
input, task, log, and output have a clear place and purpose. This guarantees that curated 
datasets are not only high quality, but also trustworthy—each one backed by a clear and 
auditable record of how it was produced. 
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3.6 Code Organization and Data Folders 
The primary codebases supporting the curation phases are maintained in the 
Pipeline Repository and the Modules Repository. This section describes the 
repository organization and the efforts to make it publicly accessible as an 
open-source resource. 

In addition, one main data directory is central to managing the datasets and operational 
outputs of this phase: 

 /<project-root>/wp12/curated — containing the raw input data; and 

The structure of these directories is described in the following subsection. 

3.6.1 Data Folders 

The data management framework relies on a structured directory hierarchy to 
ensure traceability, reproducibility, and efficient data handling throughout the 
extraction and curation pipeline. The primary folders are as follows: 

 /<project-root>/data/curated: Contains the curated datasets produced af-
ter the different stages of the curation pipeline. 

 ~/data-curation-pipeline/pipeline-configs: Contains the YAML configuration 
files used to define and execute curation pipelines. This folder corre-
sponds to the pipeline-configs directory in the Curation Pipeline Reposi-
tory. 
 

/project-root 
└── /data 
    ├── /README.md  # Description of the folder structure and references to this documentation. 
    └── /curated 
        ├── /pipeline{run_idx}_{yaml_filename}_{previous_commit_shorthash} 
        │   ├── stage_{stage_idx}_{stage_name} 
        │   │   ├── logs/ 
        │   │   ├── slurm_logs/ 
        │   │   ├── data00001.parquet 
        │   │   ├── ... 
        │   │   └── data99999.parquet 
        │   ├── ... 
        │   └── stage_6_toxic_language_detection 
        ├── /pipeline00023_test-run_2b69608 
        ├── ... 
        └── /pipeline99999_full-dataset_9dff500 
 
~/data-curation-pipeline/ 
└── /pipeline-configs 
    ├── /test-pl.yaml 
    ├── ... 
    └── /full-final-final-final.yaml 
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3.6.2 15.1.1 Curation Data Folders and Run Logs 
The curated data directory contains the outputs produced by executing the curation pipelines. 
This directory also includes logs and metadata associated with each pipeline execution. 

Each curation run is stored in a versioned folder that captures both the pipeline configuration 
and the corresponding commit hash, ensuring traceability and reproducibility of pipeline runs. 
A single folder contains all stages for a given pipeline run, a design choice that prioritizes 
version control over per-stage access management. 

/project-root 
└── /data 
    └── /curated 
        ├── /pipeline{run_idx}_{yaml_filename}_{previous_commit_shorthash} 
        │   ├── stage_{stage_idx}_{stage_name} 
        │   │   ├── logs/ 
        │   │   ├── slurm_logs/ 
        │   │   ├── data00001.parquet 
        │   │   ├── ... 
        │   │   └── data99999.parquet 
        │   ├── ... 
        │   └── stage_6_toxic_language_detection 
        ├── /pipeline00023_test-run_2b69608 
        ├── ... 
        └── /pipeline99999_full-dataset_9dff500 

Where: 

 {run_idx} is incremented for each pipeline execution. 
 {yaml_filename} denotes the configuration file used for the run. 
 {previous_commit_shorthash} refers to the abbreviated commit hash of the config-

uration version in the version control system. 
 All modifications must be committed prior to execution to ensure reproducibility and 

traceability. 

3.6.3 15.1.2 Pipeline Configurations 
The pipeline configuration directory contains the YAML files used as inputs for the curation 
pipelines. These configurations define the sequence, parameters, and operational settings for 
each curation run. 

Best practices include: 

 Maintaining all configuration files under version control, preferably within the Curation 
Pipeline Repository. 

 Using descriptive filenames, as these are embedded in the output directory names of 
corresponding pipeline runs. 

 Including timestamps or unique identifiers in filenames when multiple configuration 
variants exist, to facilitate differentiation and traceability. 
 

~/data-curation-pipeline/ 
└── /pipeline-configs 
    ├── /test-pl.yaml 
    ├── ... 
    └── /full-final-final-final.yaml 
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3.6.4 Pipeline Repository 
The pipeline repository is responsible for providing high-quality text data as a curated training 
set of a large language model. This involves the tasks of orchestrating a number of pipeline 
steps or stages which apply filters and modify data in order to remove bad quality, harmful 
language or personally identifying information. The pipeline also contains the execution logic 
to transform a raw data set into this quality data, including configuration for each filter and 
operational parameters such as time limits and resource reservations. 

Development in the pipeline repository focuses on building these pipeline configurations using 
modules from the [modulesrepository](#modules-repository). The reason for the split 
between the pipeline and modules repository is that we want to keep the data curation 
modules isolated, small and easy to use. In the pipeline, we will want to specify which version 
of the module we want to use, by tagging the dependency with the known working version. By 
keeping the two separate, we avoid promotion of local referencing, which goes against the 
goals of versioning and modular reusability. 

The pipelines developed in the repository are meant to be run on an SLURM cluster, particularly 
focused on the architecture of Snellius with its differentiated partitions for short jobs and 
specific, resource-heavy jobs. 

 

Pipeline repository on GitHub. 

The pipeline repository is located on TNO’s internal GitLab as well as mirrored to GitHub. 

3.6.4.1 Structure 
The following folders and files are essential during development on the pipeline repository: 

 gptnl_data_curation_pipeline/: Contains the scripts that allow starting a DataTrove 
based pipeline. 

 helper-scripts/: Contains additional scripts to inspect and validate output formats of 
the pipeline and perform delivery of a completed data set. 

 pipeline-configs/: Contains YAML files which configure the pipelines to run in an 
SLURM cluster using DataTrove-based stages. 

 pyproject.toml: Contains metadata about the repository, the module dependencies 
with its tagged versions and the scripts that can be run using poetry run ... 
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3.6.4.2 Key Responsibilities 
 Orchestrating stages by preparing input and output data folders, determining which 

stages are needed and splitting up stages if necessary. 
 Starting SLURM jobs for all the relevant stages. 

 Tracking configurations for data sets to manage resources and allowing reusability 
while bookkeeping a record of pipelines. 

3.6.4.3 Open-Sourcing Notes 
In order to open-source this repository, we have cleaned up the configuration files to not contain 
personal information of the contributors (such as email addresses). Instead, authors will be 
added in a notice as part of the repository alongside the README and license files. 

We open-source the pipeline configuration as an indicator of how to perform dataset curation 
on an HPC system similar to Snellius. We considered not providing the configuration because 
it is of limited use on other types of clusters. While local running is supported, it is not optimized 
for stage runs. Additionally, certain information may become clear about the (partially 
proprietary) input data sets and the quality of them. However, this contribution does not contain 
the data sets themselves. Moreover, other channels of the GPT-NL project will include separate 
details of the data sets provided by partners. As such, pipeline configurations are a standalone 
contribution of the curation and cluster development team for pipeline construction, highlighting 
our work in streamlining this effort. 

The documentation has been standardized and includes detailed information on filters and 
configuration examples, to allow reuse in setting up pipelines for other data sets similarly. 

The repository makes use of the modules obtained from a PyPI registry. We hosted this registry 
at TNO services, but for an open-source variant we also have the modules available in the 
public PyPI index. This means that we remove tokens used to obtain the packages. 

3.6.5 Modules Repository 
The data curation modules repository contains modules for the curation pipeline, which filter, 
transform, reformat or otherwise process rows of text (usually referred to as documents) from 
data sets. The modules are meant to be reusable and focused on a specific modification task 
as part of a pipeline stage. 

Development in the module repository focuses on building these small, isolated modules to be 
reused from within the pipeline repository. The reasons for keeping the two portions separate 
are also mentioned in that section. In the modules, we keep track of versions of the modules 
that become available, thus allowing running pipelines with a known working, tested version. 
By keeping the two separate, we avoid promotion of local referencing, which goes against the 
goals of versioning and modular reusability. 

Keeping the modules together in one repository helps with focusing development resources, 
code quality and publication effort. Initially, we use a private PyPI registry to store tagged 
versions of each module, and this infrastructure becomes usable for local runs as well as 
SLURM installations, in our case the Snellius HPC. During our open-source efforts, the private 
registry is replaced with a public PyPI package index, reflecting the approach used during 
development and first milestones of our curation efforts. 
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Modules repository on GitHub 

The curation modules repository is located on TNO’s internal GitLab as well as mirrored to 
GitHub. 

3.6.5.1 Structure 
Each module is stored in its own folder in the curation modules repository. They are integrated 
as plugins of the curation pipeline, built using HuggingFace’s Datatrove module. Simply put, 
they implement and conform to the same schema as a PipelineStep defined by Datatrove. 

Typically, a module consists of the following: 

 A folder with the actual source code of the module, which can be further split out into 
public interfaces (with normal folders and file names) as well as private interfaces 
(stored in folders and files that start with an underscore). 

 A pyproject.toml file indicating the module’s metadata, dependency packages and 
code style practices. 

 A brief README.md describing its use and development notes. 

Additionally, the module may have the following folders: 

 tests: A number of test files to validate the workings of the module. 
 data: A sample (publishable) data set to test the workings of the module. 

3.6.5.2 Key Responsibilities 
 Implementation of filters and other transforms as pipeline stages. 
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 Testing of modules to ensure proper implementation of concepts discussed during 
development iterations. 

 Tracking versions of each module. 
 Publication of modules to PyPI registries. 

3.6.5.3 Open-Sourcing Notes 
The modules should all be suitable for release as open-source libraries without a particular 
preference on which of them would be prioritized first, as they are all part of the same 
repository. Technically, each module can be published individually on a public index, but this 
only obscures the work, and we instead intend to make every component open-source at the 
same time. 

For improvement of code quality, we keep some standards related to linting and code 
complexity, as well as trying out Sigrid CI for tracking maintainability issues of the code. 

The modules are a good showcase of how we implement our own filters based on research 
material and make use of interfaces of external providers, for example for personally identifying 
information. 

3.6.6 Open-Source Strategy 
GPT-NL promises to be as open and transparent as possible. Although the models and data 
sets may not be completely available under a permissive license, we publish the code that 
resulted in a trained, curated model. 

For the publication of the code, we target GitHub, as this is where the open-source community 
is at its largest. For this purpose, we have geared internal policies and configurations of 
repositories and CI/CD pipelines to keep open-source in mind and perform mirroring of 
development work that went through internal review and approval processes from GitLab to 
GitHub. 

Code review is enforced through protected branches, merge request templates, review 
resolution, mandatory approvals and successful CI pipelines. 

We make sure that our repositories are clean of internal information, secret credentials such 
as registry access tokens, and copies of data sets which are not suitable for publication under 
the permissive license scheme. Contributors have to sign off on these restrictions in open-
sourced repositories, with checklists that include these validation steps. For legacy repositories 
where development may have taken place without this merge request flow, we perform code 
cleanup by resolving any outstanding merge requests and removing instances of data that are 
not suitable for publishing. Next, we copy the current state of the repository to an open-source 
variant, archive the old repository for historic logging purposes, and set up the mirroring on the 
new, open-source repository. 

One part of the cleanup involves tracking which repositories have useful material for 
publication. Some code is barely used, outdated or in a format that is not suitable for reuse, 
such as a one-time Python notebook. Inclusions of forks should be instead brought to review 
at the upstream open-source repository for inclusion in the wider community. This means that 
initial readiness checks and administrative changes do not encompass all development time 
spent on making the repository open-source. 

We intend to only publish code under a permissive license with clear clauses related to 
patents, in our case Apache 2.0. We further aim to not include any dependencies that are 
under more restrictive licenses, such as proprietary code or GPL libraries. In some cases, 
proprietary code such as those from NVIDIA may be used after review from legal teams. 
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Quality standards should be maintained, including consistent documentation, reuse of 
README templates, and code style checks (e.g., linters, CI pipelines). 
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4 Appendices 

This chapter provides a collection of technical reference materials, including 
hardware specifications, detailed software stack evaluations, assessment re-
sults, and formal data and model format definitions. These resources support 
the system architecture activities but are too detailed to include in the main 
body of the document. 

Each section in this chapter consolidates essential technical information on topics related to 
the system architecture work. They serve as reference points for the main sections of the 
report, offering detailed substantiation for their content. 

The following appendices are included: 

 GPT-NL data curation at SURF’s HPC Snellius 
 Assessing and monitoring energy at the curation and training pipeline 
 SW Stacks and Framework for GPT-NL 
 Croissant Format for Curation datasets 

 
 

4.1 Assessing and Monitoring Energy at the 
Curation and Training Pipeline 
The data curation and training phases of large language models (LLMs) are highly 
computational and demand substantial energy resources. Measuring energy consumption 
during these stages is essential for transparency, efficiency, and sustainability in model 
development. This focus is particularly relevant for GPT-NL, which is committed to a fair and 
transparent development cycle for LLMs. 

Accurate energy profiling helps identify energy-intensive operations, optimize resource usage, 
and reduce the environmental footprint of large-model training. In addition, systematic energy 
monitoring provides valuable benchmarks for comparing model architectures, training 
strategies, and hardware configurations in terms of their energy efficiency. 

For GPT-NL, understanding the energy cost of both data curation and pre-training is a strong 
requirement. The data curation process—encompassing large-scale data collection, cleaning, 
and filtering—can be as energy-intensive as the training phase itself. Quantifying the energy 
impact of these operations promotes the responsible use of computational infrastructure and 
supports the adoption of best practices for sustainable AI development. Given current 
milestones and budget constraints, GPT-NL focuses on measuring and reporting energy 
consumption rather than implementing optimization strategies. This approach ensures 
alignment with the project’s goals of transparency and open knowledge sharing. 

To achieve this, GPT-NL employs the EAR software library to measure and analyse energy 
consumption throughout its data curation and training pipeline. In this section, we discuss 
generic information on the EAR library and later the status of our energy assessment with this 
tool. 
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4.1.1 The EAR Software Framework 
EAR (Energy Aware Runtime) software library is an energy management and energy 
monitoring framework designed to measure, analyze, and optimize energy consumption in 
high-performance computing (HPC) environments. EAR integrates seamlessly with cluster 
management systems and parallel job schedulers (such as the SLURM system used at 
Snellius) to provide per-job and per-node energy metrics. It collects real-time data from 
hardware energy counters and exposes this information through an API and visualization tools, 
allowing developers and system administrators to monitor consumption at multiple levels of 
granularity. 

At its core, EAR employs a hierarchical architecture that separates monitoring, analysis, and 
control components. The EAR Daemon runs at the system level, collecting energy data from 
the hardware sensors and performance counters. This data is then processed by the EAR 
Library, which can be linked to applications to provide fine-grained, application-level 
measurements. EAR also supports adaptive power management, dynamically adjusting 
frequency and power limits to balance performance and energy efficiency. 

In addition to monitoring, EAR provides an analytics layer that stores energy metrics in a central 
database for post-processing. This layer enables statistical analysis, trend detection, and 
comparison across workloads. EAR’s modular design allows it to be extended to new 
architectures and integrated into complex workflows, making it a suitable choice for measuring 
energy consumption in large-scale AI training systems such as GPT-NL. 

4.1.2 Use of EAR in GPT-NL 
GPT-NL utilized the EAR system to measure energy consumption during both the data curation 
and pre-training stages. The necessary steps are well documented in the Snellius EAR 
Introduction Website. However, in practice, enabling the EAR monitoring system sometimes 
introduced instability in the SLURM job scheduler. This issue was particularly noticeable in 
long-running jobs, such as extended data processing or full training epochs. As a result, for 
certain extensive data curation and training runs, the EAR-based energy monitoring had to be 
disabled to ensure uninterrupted execution. 

To address these limitations, GPT-NL is developing an alternative measure-and-estimate 
system that remains based on EAR but focuses on shorter, controlled runs. These shorter 
measurements are then used to fit an estimation model that predicts the total energy 
consumption for longer jobs. This hybrid approach balances measurement accuracy with 
system reliability, ensuring that energy tracking does not compromise training throughput. 

At the time of writing, this energy estimation approach is still in validation and results for the 
curation stages of each dataset were still being compiled. The GPT-NL team will publish these 
results in a dedicated report after analysis, contributing to transparent and reproducible 
reporting of LLM development’s environmental cost. 
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4.2 GPT-NL data curation at SURF’s HPC 
Snellius 
Snellius s

 

4.2.1 Hardware Configuration Overview 
These are the key Snellius Partitions used in GPT-NL project. 

4.2.1.1 Standard nodes 

4.2.1.1.1 rome (alias thin) 

 Node type: Thin compute nodes (tcn) 
 CPU: AMD Rome, 128 cores/node 
 Memory: 224 GiB usable RAM/node 
 Allocation granularity: 1/8 node ≈ 16 cores + 28 GiB RAM 

4.2.1.1.2 genoa 

 Node type: Thin compute nodes (tcn) 
 CPU: AMD Genoa, 192 cores/node 
 Memory: 336 GiB usable RAM/node 
 Allocation granularity: 1/8 node ≈ 24 cores + 42 GiB RAM 
 Main usage in GPT-NL: Tests, development, and data curation 

4.2.1.2 GPU-Accelerated Partitions 

4.2.1.2.1 gpu_A100 

 Node type: GPU compute nodes (gcn) 
 CPU: Intel Xeon Platinum 8360Y, 72 cores/node 
 Memory: 480 GiB RAM/node 
 GPU: 4 × NVIDIA A100 (40 GB each) 
 Allocation granularity: 1/4 node ≈ 18 cores + 1 GPU + 120 GiB RAM 
 Main usage in GPT-NL: Tests, development, model training and data curation 

4.2.1.2.2 gpu_H100 

 Node type: GPU compute nodes (gcn) 
 CPU: AMD EPYC 9334, 64 cores/node 
 Memory: 720 GiB RAM/node 
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 GPU: 4 × NVIDIA H100 (94 GiB each) 
 Allocation granularity: 1/4 node ≈ 16 cores + 1 GPU + 180 GiB RAM 
 Main usage in GPT-NL: Tests, development, model training and data curation. Most 

of the pre-training and fine-tuning phases used the gpu_H100 partition with exclusive 
reservations of up to 22 nodes for longer training batches. 

These configurations enable flexible, high-performance computing suitable for a wide range 
of scientific and engineering applications, reflecting Snellius’s role as a versatile and 
advanced national HPC asset. 
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4.3 SW Stacks and Framework for GPT-NL 
The following tables summarize and compare several SW stacks and AI-Frameworks that 
can be used for the data curation, training, and execution phases of the LLM created in GPT-
NL. 

The sections are separated for the different focal activities: 

 SW stacks and frameworks for the Data Creation phase 
 SW stacks and frameworks for LLM Training 
 Support SW and frameworks for implementation in Snelius 
 Other support SW 

At the end of this section, we include a list of references for the tools and SW packages in the 
comparison. 

4.3.1 Training Software 

A
b

o
u

t 

PyTorch HuggingFace Mi-
crosoft 
Deep-
Speed 
(comm) 

NVidia NeMo TensorFlow CUDA 

R
o

le
 w

it
h

in
 G

P
T

-N
L

 

Framework for 
machine learn-
ing 

Umbrella term for 
transformers (Frame-
work for machine 
learning, extends 
PyTorch/Tensor-
Flow/JAX), [datasets] 
(https://hugging-
face.co/docs/da-
tasets/index) 
(Creating, loading, 
sharing of datasets as 
well as preparing for 
ML training), acceler-
ate (Wrapper of 
PyTorch distributed 
machine learning algo-
rithms) and more 

Deep 
learning 
optimi-
zation 
frame-
work for 
distrib-
uted 
training 
and in-
ference 

Generative AI 
framework for 
dataset cura-
tion, machine 
learning training 
and distributing 
inference in an 
end-to-end 
fashion 

Framework for 
machine learn-
ing (direct alter-
native to 
PyTorch) 

Unified pro-
cessing and utili-
zation of NVIDIA 
GPUs 
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G
en

er
al

 d
es

cr
ip

ti
o

n
 

From Wikipe-
dia: PyTorch is 
a machine 
learning library 
based on the 
Torch library, 
used for appli-
cations such as 
computer vision 
and natural lan-
guage pro-
cessing, 
originally devel-
oped by Meta 
AI and now part 
of the Linux 
Foundation um-
brella. It is rec-
ognized as one 
of the two most 
popular ma-
chine learning 
libraries, offer-
ing free and 
open-source 
software re-
leased under 
the modified 
BSD license.  
PyTorch pro-
vides two high-
level features:  

It’s an open source 
data science and ma-
chine learning plat-
form. It acts as a hub 
for AI experts and en-
thusiasts—like a 
GitHub for AI. You can 
browse and use mod-
els created by other 
people, search for and 
use datasets.  It is 
therefore NOT the 
same nature as 
PyTorch because it is 
not a programming li-
brary per se. It is inter-
esting as a repository 
of possibly available 
models and modules. 

 NVIDIA NeMo 
Framework is 
an end-to-end, 
cloud-native 
framework to 
build, custom-
ize, and deploy 
generative AI 
models any-
where. It allows 
researchers 
and model de-
velopers to 
build their own 
neural network 
architectures 
using reusable 
components 
called Neural 
Modules 
(NeMo). It in-
cludes training 
and inferencing 
frameworks, 
guardrailing 
toolkits, data 
curation tools, 
and pretrained 
models, offering 
enterprises an 
easy, cost-ef-
fective, and fast 
way to adopt 
generative AI. 

From Wikipe-
dia: TensorFlow 
is a free and 
open-source 
software library 
for machine 
learning and ar-
tificial intelli-
gence. It can be 
used across a 
range of tasks 
but has a partic-
ular focus on 
training and in-
ference of deep 
neural networks. 
Its flexible archi-
tecture allows 
for the easy de-
ployment of 
computation 
across a variety 
of platforms 
(CPUs, GPUs, 
TPUs), and from 
desktops to 
clusters of serv-
ers to mobile 
and edge de-
vices. 

From Wikipedia: 
CUDA (Compute 
Unified Device 
Architecture) is a 
proprietary and 
closed-source 
parallel compu-
ting platform and 
application pro-
gramming inter-
face (API) that 
allows software to 
use certain types 
of graphics pro-
cessing units 
(GPUs) for gen-
eral-purpose pro-
cessing, an 
approach called 
general-purpose 
computing on 
GPUs (GPGPU). 
CUDA is a soft-
ware layer that 
gives direct ac-
cess to the GPU’s 
virtual instruction 
set and parallel 
computational el-
ements for the 
execution of com-
pute kernels. 

P
ri

m
a

ry
 

w
eb

lin
k 

PyTorch Hugging Face Deep 
Speed 

Nvidia NeMo TensorFlow CUDA 

L
ic

en
si

n
g

 

No specific li-
censing model. 
Redistribution 
and use in 
source and bi-
nary forms, with 
or without modi-
fication, are 
permitted pro-
vided that the 
some condi-
tions are met. 
See License file 

Licenses in Hugging 
Face are particular to 
the models and mod-
ules you use. So a 
case-by-case review is 
needed depending on 
what we import for 
use. 

Apache 
2.0 

Apache 2.0 Apache 2.0 Proprietary and 
closed-source 
(NVidia) 

D
ep

en
d

en
-

ci
es

 

 Depends on models to 
be imported. 

  Full list of de-
pendencies. 
(Python wheels 
or rpm pack-
ages) 

Full list of de-
pendencies and 
discussion here 

4.3.2 Optimization for Snellius 
About General Description Remarks 
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EasyBuild.io EasyBuild is a software build and installation 
framework that allows you to manage (sci-
entific) software on High Performance Com-
puting (HPC) systems in an efficient way. 

SURF is familiar with the use of 
this package. Mostly important for 
the deployment at the HPC. 

Best practices for Data Formats in Deep Learning (SURF pages!!!) 

4.3.3 Negative Recommendations 
 Do not use TensorFlow : 

o The ML community seems to be more PyTorch oriented, with better support 
and documentation. 

o TensorFlow was/is historically more complicated to use, older technology, 
only later adopted graph execution. More cumbersome. 

 Do not use NVidia NeMo (weak recomendation): 

o NeMo offers a end-to-end platform for all stages (curation and training). That 
sounds interesting, but we get dependent on NVidia. 

o Corporative solution, probably involve extra costs 
o Interesting to be investigated if we want to build a more final commercial 

product 
o Not open source 
o Strong dependency to NVidia 

 Prefer Parquet over HDF5: 

o HDF5 is not memory mapped, which may imply less performance 
o HDF5 is a standard for scientific data, but strong on numeric 

4.3.4 Positive Recommendations 
 Use PyTorch : 

o Large community, largely accepted, and well documented. 
o Many packages we intend to use (e.g. Data-Juicer) has PyTorch as depend-

ency. 
 For storage, go for Parquet with Apache Arrow and PySpark on top: 

o Parquet is a very performant storage format, concurrent, and largely used in 
LLM 

o Apache Arrow is for fast in-memory data processing 
o Apache Parquet for efficient on-disk storage 
o PySpark has modes to merge columnar data (expanding of data structure) 

on the fly. [3:57 PM] Apache Spark’s is good for distributed data processing 
o Alternative to PySpark here would be to use Ray 

 
 Build of SW deployments/configuration in Snellius: 

o We follow here the recommendation of SURF: EasyBuild.io 
o No objections 
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4.3.5 References 
 EasyBuild.io 
 Nvidia NeMo GitHub 
 Gruener, R., Cheng, O., and Litvin, Y. (2018) Introducing Petastorm: Uber ATG’s 

Data Access Library for Deep Learning 
 QCon.ai 2019: “Petastorm: A Light-Weight Approach to Building ML Pipelines”. 
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4.4 Croissant Format During Curation 
This Appendix details how the croissant format is updated after each stage. 

 String Normalization 

o Format remains the same.  No changes in table format. 

 Language Detector 

{ 
  "@type": "sc:Dataset", 
  "name": "gpt_nl_curated_dataset", 
  "description": "The curated dataset contains data after the heuristic stage.", 
  "license": "All rights reserved. License to be defined.", 
  "url": "https://example.com/dataset <TO BE DEFINED>", 
  "distribution": [ 
    { 
      "@type": "cr:FileObject", 
      "@id": "unique_id of the dataset", 
      "name": "name.pdf", 
      "contentUrl": "data/name.pdf", 
      "encodingFormat": "text/csv" 
    } 
  ], 
  "recordSet": [ 
    { 
      "@type": "cr:RecordSet", 
      "name": "gpt_nl_curated_recordset", 
      "description": "Record set of the curated dataset.", 
      "field": [ 
        { 
          "@type": "cr:Field", 
          "name": "uid", 
          "description": "The unique_id of the data record. Use an ULID string representation followed by the '_gpt_nl' su
ffix.", 
          "dataType": "sc:String", 
          "references": { 
            "fileObject": { 
              "@id": "unique_id of the data record <DO NOT KNOW WHAT THIS IS. FIX LATER>" 
            }, 
            "extract": { 
              "column": "uid" 
            } 
          } 
        }, 
        { 
          "@type": "cr:Field", 
          "name": "text", 
          "description": "The third column contains the raw text of the data record", 
          "dataType": "sc:String", 
          "references": { 
            "fileObject": { 
              "@id": "name.pdf" 
            }, 
            "extract": { 
              "column": "text" 
            } 
          } 
        }, 
        { 
          "@type": "cr:Field", 
          "name": "meta", 
          "description": "Metadata associated with each record.", 
          "dataType": "sc:struct", 
          "field": [ 
            { 
              "@type": "cr:Field", 
              "name": "source", 
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              "description": "A human readable identifier for the data source.", 
              "dataType": "sc:String", 
              "references": { 
                "fileObject": { 
                  "@id": "name.pdf" 
                }, 
                "extract": { 
                  "column": "source" 
                } 
              } 
            }, 
            { 
              "@type": "cr:Field", 
              "name": "source_url", 
              "description": "A human readable identifier for the data source.", 
              "dataType": "sc:URL", 
              "references": { 
                "fileObject": { 
                  "@id": "name.pdf" 
                }, 
                "extract": { 
                  "column": "source_url" 
                } 
              } 
            }, 
            { 
              "@type": "cr:Field", 
              "name": "timestamp", 
              "description": "Timestamp of the datasource extraction. String representing a datetime UTC timestamp.", 
              "dataType": "sc:Timestamp", 
              "references": { 
                "fileObject": { 
                  "@id": "name.pdf" 
                }, 
                "extract": { 
                  "column": "timestamp" 
                } 
              } 
            }, 
            { 
              "@type": "cr:Field", 
              "name": "language", 
              "description": "Language of the text.", 
              "dataType": "sc:String", 
              "value": "nl" 
            }, 
            { 
              "@type": "cr:Field", 
              "name": "language_score", 
              "description": "Score indicating the confidence of the language detection.", 
              "dataType": "sc:Float64", 
              "value": 0.8238464593887329 
            } 
        } 
      ] 
    } 
  ] 
} 

 Quality Filters 
{ 
  "@type": "sc:Dataset", 
  "name": "gpt_nl_curated_dataset", 
  "description": "The curated dataset contains data after the heuristic stage.", 
  "license": "All rights reserved. License to be defined.", 
  "url": "https://example.com/dataset <TO BE DEFINED>", 
  "distribution": [ 
    { 
      "@type": "cr:FileObject", 
      "@id": "unique_id of the dataset", 
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      "name": "name.pdf", 
      "contentUrl": "data/name.pdf", 
      "encodingFormat": "text/csv" 
    } 
  ], 
  "recordSet": [ 
    { 
      "@type": "cr:RecordSet", 
      "name": "gpt_nl_curated_recordset", 
      "description": "Record set of the curated dataset.", 
      "field": [ 
        { 
          "@type": "cr:Field", 
          "name": "uid", 
          "description": "The unique_id of the data record. Use an ULID string representation followed by the '_gpt_nl' su
ffix.", 
          "dataType": "sc:String", 
          "references": { 
            "fileObject": { 
              "@id": "unique_id of the data record <DO NOT KNOW WHAT THIS IS. FIX LATER>" 
            }, 
            "extract": { 
              "column": "uid" 
            } 
          } 
        }, 
        { 
          "@type": "cr:Field", 
          "name": "text", 
          "description": "The third column contains the raw text of the data record", 
          "dataType": "sc:String", 
          "references": { 
            "fileObject": { 
              "@id": "name.pdf" 
            }, 
            "extract": { 
              "column": "text" 
            } 
          } 
        }, 
        { 
          "@type": "cr:Field", 
          "name": "meta", 
          "description": "Metadata associated with each record.", 
          "dataType": "sc:struct", 
          "field": [ 
            { 
              "@type": "cr:Field", 
              "name": "source", 
              "description": "A human readable identifier for the data source.", 
              "dataType": "sc:String", 
              "references": { 
                "fileObject": { 
                  "@id": "name.pdf" 
                }, 
                "extract": { 
                  "column": "source" 
                } 
              } 
            }, 
            { 
              "@type": "cr:Field", 
              "name": "source_url", 
              "description": "A human readable identifier for the data source.", 
              "dataType": "sc:URL", 
              "references": { 
                "fileObject": { 
                  "@id": "name.pdf" 
                }, 
                "extract": { 
                  "column": "source_url" 



 

 

 TNO Public  GPTNL-DEL-4001 

 TNO Public 89/95

                } 
              } 
            }, 
            { 
              "@type": "cr:Field", 
              "name": "timestamp", 
              "description": "Timestamp of the datasource extraction. String representing a datetime UTC timestamp.", 
              "dataType": "sc:Timestamp", 
              "references": { 
                "fileObject": { 
                  "@id": "name.pdf" 
                }, 
                "extract": { 
                  "column": "timestamp" 
                } 
              } 
            }, 
            { 
              "@type": "cr:Field", 
              "name": "alpha_words_ratio", 
              "description": "Ratio of alpha words in the text.", 
              "dataType": "sc:Float64", 
              "value": 0.928030303030303 
            }, 
            { 
              "@type": "cr:Field", 
              "name": "avg_word_length", 
              "description": "Average length of words in the text.", 
              "dataType": "sc:Float64", 
              "value": 4.780487804878049 
            }, 
            { 
              "@type": "cr:Field", 
              "name": "bullet_lines_ratio", 
              "description": "Ratio of bullet lines in the text.", 
              "dataType": "sc:Float64", 
              "value": 0.013157894736842105 
            }, 
            { 
              "@type": "cr:Field", 
              "name": "digit_char_ratio", 
              "description": "Ratio of digit characters in the text.", 
              "dataType": "sc:Float64", 
              "value": 0.0006934812760055479 
            }, 
            { 
              "@type": "cr:Field", 
              "name": "dup_line_char_frac", 
              "description": "Fraction of duplicate line characters.", 
              "dataType": "sc:Float64", 
              "value": 0.0 
            }, 
            { 
              "@type": "cr:Field", 
              "name": "dup_line_frac", 
              "description": "Fraction of duplicate lines.", 
              "dataType": "sc:Float64", 
              "value": 0.0 
            }, 
            { 
              "@type": "cr:Field", 
              "name": "dup_n_grams", 
              "description": "List of duplicate n-grams.", 
              "dataType": "sc:List", 
              "value": [ 
                [5.0, 0.0], 
                [6.0, 0.0], 
                [7.0, 0.0], 
                [8.0, 0.0], 
                [9.0, 0.0], 
                [10.0, 0.0] 
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              ] 
            }, 
            { 
              "@type": "cr:Field", 
              "name": "dup_para_char_frac", 
              "description": "Fraction of duplicate paragraph characters.", 
              "dataType": "sc:Float64", 
              "value": 0.0 
            }, 
            { 
              "@type": "cr:Field", 
              "name": "dup_para_frac", 
              "description": "Fraction of duplicate paragraphs.", 
              "dataType": "sc:Float64", 
              "value": 0.0 
            }, 
            { 
              "@type": "cr:Field", 
              "name": "ellipsis_lines_ratio", 
              "description": "Ratio of lines with ellipses.", 
              "dataType": "sc:Float64", 
              "value": 0.0 
            }, 
            { 
              "@type": "cr:Field", 
              "name": "ellipsis_ratio", 
              "description": "Ratio of ellipses in the text.", 
              "dataType": "sc:Float64", 
              "value": 0.0 
            }, 
            { 
              "@type": "cr:Field", 
              "name": "hash_ratio", 
              "description": "Hash ratio of the text.", 
              "dataType": "sc:Float64", 
              "value": 0.0 
            }, 
            { 
              "@type": "cr:Field", 
              "name": "language", 
              "description": "Language of the text.", 
              "dataType": "sc:String", 
              "value": "nl" 
            }, 
            { 
              "@type": "cr:Field", 
              "name": "language_score", 
              "description": "Score indicating the confidence of the language detection.", 
              "dataType": "sc:Float64", 
              "value": 0.8238464593887329 
            }, 
            { 
              "@type": "cr:Field", 
              "name": "mean_med_char", 
              "description": "Mean median character length.", 
              "dataType": "sc:Float64", 
              "value": 16.355263157894736 
            }, 
            { 
              "@type": "cr:Field", 
              "name": "mean_med_word", 
              "description": "Mean median word length.", 
              "dataType": "sc:Float64", 
              "value": 3.736842105263158 
            }, 
            { 
              "@type": "cr:Field", 
              "name": "n_char", 
              "description": "Number of characters in the text.", 
              "dataType": "sc:Int64", 
              "value": 1194 
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            }, 
            { 
              "@type": "cr:Field", 
              "name": "n_non_symbol_words", 
              "description": "Number of non-symbol words.", 
              "dataType": "sc:Int64", 
              "value": 246 
            }, 
            { 
              "@type": "cr:Field", 
              "name": "stop_words_count", 
              "description": "Count of stop words in the text.", 
              "dataType": "sc:Int64", 
              "value": 69 
            }, 
            { 
              "@type": "cr:Field", 
              "name": "top_n_grams", 
              "description": "List of top n-grams.", 
              "dataType": "sc:List", 
              "value": [ 
                [2.0, 0.01525659], 
                [3.0, 0.02357836], 
                [4.0, 0.01317614] 
              ] 
            } 
          ], 
          "references": { 
            "fileObject": { 
              "@id": "name.pdf" 
            }, 
            "extract": { 
              "column": "meta" 
            } 
          } 
        } 
      ] 
    } 
  ] 
} 

 Identification and removal of personal information 
{ 
  "@type": "sc:Dataset", 
  "name": "gpt_nl_curated_dataset", 
  "description": "The curated dataset contains data after the heuristic stage.", 
  "license": "All rights reserved. License to be defined.", 
  "url": "https://example.com/dataset <TO BE DEFINED>", 
  "distribution": [ 
    { 
      "@type": "cr:FileObject", 
      "@id": "unique_id of the dataset", 
      "name": "name.pdf", 
      "contentUrl": "data/name.pdf", 
      "encodingFormat": "text/csv" 
    } 
  ], 
  "recordSet": [ 
    { 
      "@type": "cr:RecordSet", 
      "name": "gpt_nl_curated_recordset", 
      "description": "Record set of the curated dataset.", 
      "field": [ 
        { 
          "@type": "cr:Field", 
          "name": "uid", 
          "description": "The unique_id of the data record. Use an ULID string representation followed by the '_gpt_nl' su
ffix.", 
          "dataType": "sc:String", 
          "references": { 
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            "fileObject": { 
              "@id": "unique_id of the data record <DO NOT KNOW WHAT THIS IS. FIX LATER>" 
            }, 
            "extract": { 
              "column": "uid" 
            } 
          } 
        }, 
        { 
          "@type": "cr:Field", 
          "name": "text", 
          "description": "The third column contains the raw text of the data record", 
          "dataType": "sc:String", 
          "references": { 
            "fileObject": { 
              "@id": "name.pdf" 
            }, 
            "extract": { 
              "column": "text" 
            } 
          } 
        }, 
        { 
          "@type": "cr:Field", 
          "name": "meta", 
          "description": "Metadata associated with each record.", 
          "dataType": "sc:struct", 
          "field": [ 
            { 
              "@type": "cr:Field", 
              "name": "source", 
              "description": "A human readable identifier for the data source.", 
              "dataType": "sc:String", 
              "references": { 
                "fileObject": { 
                  "@id": "name.pdf" 
                }, 
                "extract": { 
                  "column": "source" 
                } 
              } 
            }, 
            { 
              "@type": "cr:Field", 
              "name": "source_url", 
              "description": "A human readable identifier for the data source.", 
              "dataType": "sc:URL", 
              "references": { 
                "fileObject": { 
                  "@id": "name.pdf" 
                }, 
                "extract": { 
                  "column": "source_url" 
                } 
              } 
            }, 
            { 
              "@type": "cr:Field", 
              "name": "timestamp", 
              "description": "Timestamp of the datasource extraction. String representing a datetime UTC timestamp.", 
              "dataType": "sc:Timestamp", 
              "references": { 
                "fileObject": { 
                  "@id": "name.pdf" 
                }, 
                "extract": { 
                  "column": "timestamp" 
                } 
              } 
            }, 
            { 
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                "@type": "cr:Field", 
                "name": "entity_types", 
                "description": "List of entity type names.", 
                "dataType": "sc:String", 
                "value": ["PERSON", "ORG", "LOCATION", "..."] 
            }, 
            { 
                "@type": "cr:Field", 
                "name": "entity_type_counts", 
                "description": "Count of each entity type.", 
                "dataType": "sc:Int64", 
                "value": [123, 45, 67, "..."] 
            }, 
            { 
                "@type": "cr:Field", 
                "name": "failed_chunks", 
                "description": "Chunks that failed during processing.", 
                "dataType": "sc:Int64", 
                "value": [5, 12, 19] 
            }, 
            { 
                "@type": "cr:Field", 
                "name": "not_removed_entities", 
                "description": "Entities that were not removed.", 
                "dataType": "sc:String", 
                "value": ["entity1", "entity2", "..."] 
            }, 
            { 
                "@type": "cr:Field", 
                "name": "not_removed_entity_counts", 
                "description": "Counts of not removed entities.", 
                "dataType": "sc:Int64", 
                "value": [3, 7, "..."] 
            }, 
            { 
                "@type": "cr:Field", 
                "name": "processed_entities", 
                "description": "Processed entity names.", 
                "dataType": "sc:String", 
                "value": ["entityA", "entityB", "..."] 
            }, 
            { 
                "@type": "cr:Field", 
                "name": "processed_entity_counts", 
                "description": "Counts of processed entities.", 
                "dataType": "sc:Int64", 
                "value": [10, 20, "..."] 
            }, 
            { 
                "@type": "cr:Field", 
                "name": "processed_entity_types", 
                "description": "Types of processed entities.", 
                "dataType": "sc:String", 
                "value": ["ORG", "PERSON", "..."] 
            }, 
            { 
                "@type": "cr:Field", 
                "name": "processed_entity_replacements", 
                "description": "Replacement values for processed entities.", 
                "dataType": "sc:String", 
                "value": ["[REDACTED]", "[MASKED]", "..."] 
            } 
        } 
      ] 
    } 
  ] 
} 

 Harmful Language 
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{ 
  "@type": "sc:Dataset", 
  "name": "gpt_nl_curated_dataset", 
  "description": "The curated dataset contains data after the heuristic stage.", 
  "license": "All rights reserved. License to be defined.", 
  "url": "https://example.com/dataset <TO BE DEFINED>", 
  "distribution": [ 
    { 
      "@type": "cr:FileObject", 
      "@id": "unique_id of the dataset", 
      "name": "name.pdf", 
      "contentUrl": "data/name.pdf", 
      "encodingFormat": "text/csv" 
    } 
  ], 
  "recordSet": [ 
    { 
      "@type": "cr:RecordSet", 
      "name": "gpt_nl_curated_recordset", 
      "description": "Record set of the curated dataset.", 
      "field": [ 
        { 
          "@type": "cr:Field", 
          "name": "uid", 
          "description": "The unique_id of the data record. Use an ULID string representation followed by the '_gpt_nl' su
ffix.", 
          "dataType": "sc:String", 
          "references": { 
            "fileObject": { 
              "@id": "unique_id of the data record <DO NOT KNOW WHAT THIS IS. FIX LATER>" 
            }, 
            "extract": { 
              "column": "uid" 
            } 
          } 
        }, 
        { 
          "@type": "cr:Field", 
          "name": "text", 
          "description": "The third column contains the raw text of the data record", 
          "dataType": "sc:String", 
          "references": { 
            "fileObject": { 
              "@id": "name.pdf" 
            }, 
            "extract": { 
              "column": "text" 
            } 
          } 
        }, 
        { 
          "@type": "cr:Field", 
          "name": "meta", 
          "description": "Metadata associated with each record.", 
          "dataType": "sc:struct", 
          "field": [ 
            { 
              "@type": "cr:Field", 
              "name": "source", 
              "description": "A human readable identifier for the data source.", 
              "dataType": "sc:String", 
              "references": { 
                "fileObject": { 
                  "@id": "name.pdf" 
                }, 
                "extract": { 
                  "column": "source" 
                } 
              } 
            }, 
            { 
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              "@type": "cr:Field", 
              "name": "source_url", 
              "description": "A human readable identifier for the data source.", 
              "dataType": "sc:URL", 
              "references": { 
                "fileObject": { 
                  "@id": "name.pdf" 
                }, 
                "extract": { 
                  "column": "source_url" 
                } 
              } 
            }, 
            { 
              "@type": "cr:Field", 
              "name": "timestamp", 
              "description": "Timestamp of the datasource extraction. String representing a datetime UTC timestamp.", 
              "dataType": "sc:Timestamp", 
              "references": { 
                "fileObject": { 
                  "@id": "name.pdf" 
                }, 
                "extract": { 
                  "column": "timestamp" 
                } 
              } 
            }, 
            { 
                "@type": "cr:Field", 
                "name": "toxic_sentences", 
                "description": "Sentences identified as toxic based on prediction label and score threshold.", 
                "dataType": "sc:String", 
                "value": [ 
                "This is a toxic sentence.", 
                "Another harmful statement.", 
                "..." 
                ] 
            }, 
            { 
                "@type": "cr:Field", 
                "name": "toxic_sentence_start_indices", 
                "description": "Start indices of toxic sentences in the original text.", 
                "dataType": "sc:Int64", 
                "value": [15, 102, "..."] 
            }, 
            { 
                "@type": "cr:Field", 
                "name": "toxic_labels", 
                "description": "Explainable labels assigned to toxic sentences.", 
                "dataType": "sc:String", 
                "value": ["Hate Speech", "Insult", "..."] 
            }, 
            { 
                "@type": "cr:Field", 
                "name": "toxicity_scores", 
                "description": "Confidence scores for toxicity predictions.", 
                "dataType": "sc:Float64", 
                "value": [0.91, 0.87, "..."] 
            } 
 
        } 
      ] 
    } 
  ] 
} 

 


