) TNO Public

GPTNL-DEL-4001 — 6 November 2025
System Architecture

Document

Data Curation Pipeline

Author(s)

Classification report
Title

Report text

Number of pages
Number of appendices

Project name

) TNO Public

Julio A. de Oliveira Filho [Editor]
Andrei Roncea [Editor]
Louis Weyland

Karim El Assal

Leon Helwerda
Thomas van Osch
TNO Public

TNO Public

TNO Public

95

0

GPT-NL

innovation
for life

Defence, Safety &
Security
www.tno.nl

+31 88 866 10 00
info@tno.nl

) TNO Public) GPTNL-DEL-4001

All rights reserved
No part of this publication may be reproduced and/or published by print, photoprint, microfilm
or any other means without the previous written consent of TNO.

© 2025 TNO

) TNO Public

) TNO Public) GPTNL-DEL-4001

Contents

1.1
1.2
1.3

21
22
23
24
25

3.1
3.2
3.3
34
35
3.6

4.1
42
43
4.4

) TNO Public

INEFOAUCTION ... et et e e e e e e e e e e e e e e e e et e e e aaaeeeees 4
Architectural overview of the GPT-NL Data Curation Pipelineccccoeeviiiiiie e 6
Scope of the System Architecture Work and Relation to Other Workccccooviiiiine e 8
How to further read this dOCUMENL...........oiiiiiii e 9
Architecture and Design of the Data Extraction Phasec.cccoooiiiiiiiiiiie 10
Q= Lo 110 N o] 0T = TSR
DatasourCe INDOXoeiiiiiiiie et e e
Data SOUICE EXITACIONSciiiiiiiiiiie ettt ettt ettt e e s e e ettt e et e e e s st e e e e aabeeeaanbeeaeanneeaean
Curation Input Format.............ccccceeeinnns

Code Organization and Data Folders

Architecture and Design of the Data Curation Phase.............cccoccvvvviiiie i 32
Data CUration PrOCESSciiiiiiiiiiiiie ettt ettt ettt e e ea et e ettt e e sabe e e s aabeee e aabeeeaanbeeeeanbeeesanneeanan 32
Comparison of Data Preprocessing FrameWOrKsccoiiiiiiiiiiiiiiiie e 37
Pipeline and Modules REPOSItOMIES.oiiiuiiieiie e e e e e e e e e s e eee e e e e ennnees 39
Curation Stages iN DatatrOVe.........ooeieiiiie e e e ee e e 44
EXECULING @ PIPEIINEot e e e e e e e e e e e e e e ne e e e e e anneee 64
Code Organization and Data FOIAErSoueiiiiiiiiiiie e e e e e 71
APPENICES ... 78
Assessing and Monitoring Energy at the Curation and Training Pipeline..........cccccoooovieiiiiiicennn. 78
GPT-NL data curation at SURF’S HPC Snellius...........ccuuaiiiiiiiiiiieie et 80
SW Stacks and Framework for GPT-NLc.uiiiiiiiie e 82

Croissant Format During Curation

3/95

) TNO Public) GPTNL-DEL-4001

1

Introduction

The GPT-NL project aims to develop a Dutch-English large language model (LLM) from the
ground up to promote technological sovereignty and strengthen the Dutch and broader
European LLM ecosystem. Achieving this objective requires a structured systems engineering
approach encompassing requirements elicitation, design, implementation, and validation.
Beyond the creation of the model itself, sovereignty and community growth depend on
transparent dissemination of knowledge about how such a system is built. This document
therefore presents the architectural blueprint—both in code and documentation—for the first
part of this development phase: the System Architecture of the Data Curation Pipeline.

The documentation and systematic management of this technological blueprint are intended to
stimulate new research directions and enable future improvements. The GPT-NL System
Architecture effort serves as the foundation for these goals by providing a coherent, well-
documented engineering framework for large-scale model development.

From a general point of view, the system architecture activities provide a structured conceptual
model defining the organization, behaviour, and interactions of system components. It offers a
high-level view of how hardware, software, data, and processes collaborate to achieve the
intended system goals. Through clear specification of components, interfaces, and design
principles, the architecture ensures that key system attributes—such as performance,
scalability, security, and maintainability—are addressed systematically and in alignment with
stakeholder requirements and operational constraints.

Within the GPT-NL team, system architecture plays a coordinating role by providing a shared
technical framework that guides design, implementation, and verification across teams. This
work, conducted under Work Package 13 (WP13), facilitates communication among
engineers, researchers, and developers by defining clear interfaces and dependencies. The
architectural team ensures design consistency, manages technical risks, and balances trade-
offs among quality attributes. As a result, this document and the associated work contribute to
the alignment of strategic objectives and technical execution, promoting system coherence,
continuity, and effective integration throughout the development lifecycle.

) TNO Public 4/95

) TNO Public) GPTNL-DEL-4001

WP 13 - System Architecture and Infrastructure

= e - - I
I +
1 * Data Curation Pipeline 1
| R B e B B
Raw Datasets rr I =
1 1 153
=
! L Extraction Phase L Data Acquisition and Quality] 1 Q. =
! 1 U 1222
zs
: 1 1£53
- | === mm - - -
1 Extracted Dataset
R e -
1 1 13
1 1 B
1 1 3
1 [Curation Phase }——|+(Curation Algorithm development) ! S e
182
! 1 1 a3
1 . / I s o e e 120
1 v 1
I) 1
I Curated Dataset 1
I 1
1 1
I Training ang Evaluation | o e e - - ===
. f Y 1 ' !
! . 1t :
I [Model Pre-training » T L Model Development J 1
1 1 1 § -
1 Traxmngranhd Fine-Tuning] 1=2
l echniques =
! GPT-NL pre-trained 1 X ! =2
[model 1 lag3
] U e o) e om T, n om| m 150
1]
! Instruction and Fine-tuning L 1 P -
1 Training J’ 1 s
[1 ! 15
1 1 Benchmarks] 1S
w
1 L J ! [1=
1 1 ! 1o
1 \ 1 A U L S =
1 1 i 1
1 1 ! 1 =
1 GPT-NL final mode| e——— 1 Red Teaming and model 1 3
1 ! security 1o e
o
1 1 ! e g
e - - e - 4 =0

Figure 1: Overview main GPT-NL Processes and Working Packages

At a high level, LLM development can be divided into two main components, as depicted in
Figure 1: data curation and model training and validation. These components differ
significantly in their technical focus and data processing requirements.

) TNO Public

0 The data curation pipeline encompasses all processes from data acquisition to the
creation of a uniform dataset ready for model training. This includes systematic rea-
soning and documentation of inclusion and exclusion criteria, as well as the production
of standardized datasets for both training and public release. The data curation pipeline
is sub-divided in two phases: the data extraction phase and the data curation phase.
The whole curation pipeline and its phases are detailed in the next sections. Architec-
tural artifacts from this pipeline include:

(o]

(o]

Software developed for data acquisition, extraction, curation, and dataset de-
ployment.

Documentation of third-party software and hardware stacks—such as Data-
Trove, PrivateAl, and SURF’s Snellius—including configuration details, ver-
sioning, and integration procedures.

CI/CD frameworks for testing, logging, and evaluating both the platform and
resulting datasets.

Records of architectural decisions, design rationales, and supporting technical
documentation.

5/95

) TNO Public) GPTNL-DEL-4001

1.1

o Security, privacy, and energy monitoring mechanisms for development and
operational phases.

o Final technical reports and communication materials, including this document
and supporting white papers.

[J The model training and validation phase includes data preparation, tokenization,
model pre-training, instruction tuning, fine-tuning, and performance evaluation. It re-
sults in a standardized and reproducible model package for internal use and commu-
nity release. Artifacts from this phase include:

o Software for data mixing, tokenization, model training, fine-tuning, and deploy-
ment.

o Documentation of third-party stacks such as OIMO and the Snellius HPC in-
frastructure, detailing configurations and integration.

o CI/CD support for testing and performance tracking.

o Documentation of design decisions, system rationale, and supporting non-
functional design considerations.

o Security, privacy, and energy monitoring tools.

o Final deliverables, including technical documentation and dissemination ma-
terials.

This document, System Architecture Document — Data Curation Pipeline, covers the data
curation process. Details on model training and validation are presented in the related
document: System Architecture Document — Training And Evaluation Pipeline’. As
introduction, we present in the following the architectural overview of the Data Curation
Pipeline.

Architectural overview of the GPT-NL Data
Curation Pipeline

The data curation pipeline is a structured sequence of processes and software modules
responsible for transforming raw data from external sources into a standardized, high-quality
dataset ready for model training. A diagram of the processes and components involved are
detailed in Figure 2. This transformation occurs in two main stages: (1) receiving and managing
incoming raw data and extracting textual content to create an extracted dataset, and (2) pre-
processing this content—through filtering, normalization, and privacy protection—to produce
the curated dataset. The curated dataset forms the input for the second major component of
LLM development: model training and validation.

In the GPT-NL project, data is collected from diverse external sources and providers. Each
dataset and provider is carefully reviewed to ensure that all materials used for model training
are either publicly available and openly licensed or obtained with explicit consent for this
purpose. The processes of selecting and approving data sources fall outside the architectural
scope and are managed within the working package WP18 - Data Quality.

"TNO, GPT-NL Project, Report; GPTNL-DEL-4002-1.0-System Architecture Document — Training Pipeline,
December 2025.

) TNO Public 6/95

) TNO Public) GPTNL-DEL-4001

Downloads Secure connection (encrypted

Dataset communities

e.g. HuggingFace Dataproviders

- S0 AND
8 2 2
= =
| 3
el 8
s| ©
g § Open datasets
%| § Provided datasets
w| @ e.g. OpenAlex St
& nationaal-archief, gnat‘:uéhs P.
- german-pd Temporary retention
a Secure environment
Restricted access
pes|ntemal secure channelJ
Raw Datasets ‘ y
Secure environment
Restricted access to curation team only
ol 1 +
s \ 4
3 g
c% RAWfolder | sereeeeereeesseeeeen;
= ° . Connectors + Performat: e.g. PDF, HTML, CSV
s = Seseaseesaneaaaeaaaal or custom made
" == s
4 § Parsers
3 £ A — .
<
g g| i Fomaters
Curation Phase
\ i J
‘ -
i Uniform
Curated Dataset Formally specified format for GPT-NL
l Extracted Dataset
Extraction
EXTRACTED folder S0P
8(N\
£ Stages integrated via DataTrove(TM)
z Fully automated
Sl [sesevssvssnssspssnsssnsssnpisnsasnen
. H H ' H H H
< i 1Si8iglmt | _¢
3 Tl igLEIE L e
o :5:‘5:@:8:“:3:2.
TEISIBISEISR SR
IS 8 Qi ks O .
—> GiEiel BB GIE!
zisiEigizaizig:
idigiBigie i”ig:
: iRieixTia H . Deployment
..... O U I . U P -

—

CURATED folder Curated Datase Curation logs

—Quration—| ==
Metadata Statistics

Figure 2: Data Curation Pipeline and its main phases and components

Once datasets are approved and agreements with the data provider are in place, the curation
pipeline begins by physically collecting the data and integrating it into the GPT-NL system.
Each dataset passes through two distinct processing phases: the data extraction phase and
the data curation phase. The pipeline concludes when the data is transformed from its raw
form into a standardized, normalized, and annotated dataset — referred to as the curated
dataset.

) TNO Public 7/95

) TNO Public) GPTNL-DEL-4001

1.2

The data extraction phase provides a secure environment for ingesting data from external
providers. It accommodates the consumption of multiple data formats—such as PDF
documents, CSV tables, or database exports—and extracts relevant textual content and
metadata. Metadata is used to characterize and assess the data (e.g., authorship, timestamps,
language, and licensing), informing later filtering and quality assurance processes. The
outcome of this phase is a uniform, standardized dataset stored in .parquet format, referred to
as the extracted dataset. Each raw dataset generates its own extracted counterpart which is
submitted to the curation phase in separate. We often use the term “collection” to identify the
extracted files provenient from a distinct raw dataset. Details of this phase will be discussed in
the Data extraction phase section.

The data curation phase applies automated processing steps to refine the extracted data.
These steps include normalization, filtering, de-biasing, privacy protection, and annotation.
Algorithms and techniques developed under the working package WP12 — Data Curation are
implemented and integrated by the architecture team to ensure scalability and consistency. In
some cases, external tools such as PrivateAl are incorporated into the GPT-NL stack. The
output of this phase is a curated dataset — still stored as .parquet files — enhanced with new
metadata, including quality measures, inclusion and exclusion criteria, aggregated statistics,
and indicators such as the presence of harmful or sensitive content. Personally identifiable
information (PIl) belonging to non-public individuals is anonymized or removed. Details of this
phase will be discussed in the Data curation phase section.

Throughout both phases, detailed process logs and metadata are collected to ensure
transparency, traceability, and processual (KPI) statistics. All software components — whether
developed internally or integrated from external sources — are versioned and tracked to
guarantee reproducibility. Cybersecurity measures are applied at every stage, including
restricted access to raw data, authentication and authorization controls, and secure
management of repositories and CI/CD pipelines. For clarity and brevity, many of these
supporting processes and architectural mechanisms are referenced in the main sections, but
detailed in the Architectural Support section.

The next two sections provide a deep dive in the data extraction and the data curation phases.

Scope of the System Architecture Work and
Relation to Other Work

The overview of the processes, tasks, and artefacts related to the architectural work is depicted
in Figure 1. The system architecture team collaborates with all other working packages, but
closest with WP12 (Data Curation), WP14 (Model Development), and WP18 (Data
Acquisition and Quality). While WP12 and WP14 lead algorithmic development—such as the
selection of filters, models, and training techniques—WP13 focuses on translating these
designs into structured, maintainable, and scalable code. This includes defining clean
interfaces between modules, ensuring continuous data processing flows suitable for HPC
environments, and addressing non-functional aspects such as security, documentation, and
energy efficiency. WP18 is responsible for the processes of contacting data providers and
acquiring/creating datasets. They are strongly involved with the architecture team assessing
the quality of the data during and after the curation phase.

Besides the close work developed with WP12, WP14, and WP18, Figure 1 also depicts
cybersecurity and evaluation tasks(WP21 and WP22). Their activities are out of the scope of
the architecture team, but their insights and outcomes influence and are influenced by the GPT-
NL architecture work. For example, WP21 (Post-development) Evaluation and the
Cybersecurity work package (WP22) operate independently to ensure objective assessment

) TNO Public 8/95

) TNO Public) GPTNL-DEL-4001

1.2.1

1.3

and verification. WP21 evaluates the trained model's performance on key tasks, while the
cybersecurity and red-teaming teams assess its resilience and safety. Although separate,
these teams collaborate closely with WP13 by consuming its architectural artifacts, interfaces,
and documentation, and by providing feedback that informs subsequent development cycles.
This interaction ensures a robust, secure, and transparent development process for the GPT-
NL system.

Architecture Team

The GPT-NL architecture team has a multidisciplinary composition with SW architects and
engineers, open-source specialists, high performance computers architects, ML engineers,
and data scientists. Members of TNO and SURF form the team. Acknowledgements for the
support of SURF in all the management and proper usage of the Snellius supercomputer.

How to further read this document

The architecture documentation is organized into two main reports: the Architecture of the
GPT-NL Data Curation Pipeline and the Architecture of the GPT-NL Training Pipeline.
The present document covers the data curation part. Readers should start with the introductory
section of the data curation pipeline, which provides a general overview of the system’s
architecture and objectives. The subsequent sections describe the Data Extraction phase,
including its input format (GPT Curation Dataset format), extractor architecture (Datasource
extractors), and associated (data folder structure and source code organization). This part
outlines how data is ingested and prepared for curation. The Data Curation phase then details
the data preparation processing pipeline, introducing the DataTrove framework,
modularization principles, execution methodology, and curation stages. The section
concludes with information on code organization, deployment at the Snellius A100 Cluster,
and procedures for assessing and monitoring the curation pipeline. Supplementary
analyses are provided for additional information on the used SW stacks in Appendix A and
formal specifications (in croissant format) for the projects’ datasets Appendix B.

) TNO Public 9/95

) TNO Public) GPTNL-DEL-4001

2 Architecture and Design of the
Data Extraction Phase

The GPT-NL project collects data from a wide range of sources. Some datasets come from
publicly available repositories in the machine learning communities such as HuggingFace—
while others are provided by private data providers with explicit permission for use in GPT-NL
training. This diversity introduces a key challenge: raw data comes in diverse data structures,
varying labeling conventions and file formats. In their original state, these datasets are not
suitable for automated processing during the curation or training phases. Within the GPT-NL
project, this unprocessed form is referred to as the RAW format.

In many cases—particularly with private data providers—raw data is subject to copyright
restrictions and must be protected against unauthorized access or leakage during curation.
Additionally, it is in the project’s interest to collect metadata and statistics about the raw data,
such as authorship (for attribution), data sources, timestamps, version information, and
preliminary size estimates (e.g., character or token counts).

The goal of the data extraction phase is to securely receive and
convert raw data from external sources into a structured,
homogeneous format—the EXTRACTED dataset.

Before the curation phase can begin, all incoming data must first be transformed into this
EXTRACTED format. The extraction process ensures that the curation pipeline starts with a
standardized input, preventing downstream components from having to handle multiple formats
or inconsistent structures. It also helps decouple the original data from subsequent processing,
ensuring that only the relevant textual content needed for curation and training is retained. This
selective extraction further safeguards the rights and confidentiality of data providers.

The extraction phase is represented in the first part of the data curation diagram. Its inputs
consist of external data sources—typically a collection of files, databases, or online
repositories. These files are securely transferred to an internal protected environment known
as the Datasource Inbox, which is described in greater detail in the Datasources section.

) TNO Public 10/95

) TNO Public) GPTNL-DEL-4001

Data Extraction and
Preparation for

9

i_

Data Formats Supported:

« JSON, PDF, XML, CSV, Parquet, HTML
« Custom (e.g. mysql databases)

Dataset compuiaitiesd: —) A
e.. HuggingFace o Secure connection (encryptedataproviders
eg. ANP
Y Y
Th-]
X3
82
£0
i
5 § ggenoszi‘a:lzf Provided datasets
28 nationaal-archief, 8.4, kpn, ndp
s german-pd naturalis Temporary retention
=
og Secure environment
a Restricted access

/ RAW 'o[cer\

Steps

Data Loader/
Connector

Data Loader/
Connector

« Safely copy files from Research Cloud to Snellius File System
« Launch corresponding Loader/Connector

« Choose and activate parser

« Extract relevant and available information

Data Loader/
Connector

|

« Create RAW Input data structure in specified format

Connectors, parsers, and formatters are logical elements. Their
ion, and are coded as a

Parser File Format 2
HTML

per-case by the curation team.

Parser File Format
csv

Parser File Format 1
PDF

|—: Common API fo

| creating RAW Input |
| Elements

Extracted Dataset

Extraction

EXTRACTED folder Saks

Figure 3: Overview Data Extraction phase

2.1 Extraction process

The data extraction process consists of seve

T

A | source A 2.4 license

door middel v

GPT-NL RAW format -- formally specification available in Croissant format
(scheme)

ral key steps that work together to transform raw

data into structured Parquet files. The first two steps occur in the Datasource Inbox and were
discussed in detail in the previous section. The extraction activity itself is performed in the last

two steps shown in the diagram:

) TNO Public

11/95

) TNO Public) GPTNL-DEL-4001

| Specialized extractors per
format

0 Extract » Extractor base class

~—» Outputs structured data

Buzp |) Compressed files .zip,
targz etc

Download

.| rclone from SURF Research

> gitfrom Hugging Face

» Manual transfer

/" Upload

B upload [» SURF Research Drive

External repositories i.e.
Hugging Face

Figure 4: Tasks within the extraction process

1.

) TNO Public

Upload Most datasets are provided by data contributors through the SURF Research
Drive, while others are already available to download from ML community websites,
such as Hugging Face. The procedures and policies governing data upload — includ-
ing safe transfer, access control, and privacy compliance, and supported data formats
— are discussed in the Datasource Inbox section.

Download Datasets are retrieved using one of three methods, depending on their
source:

o From the SURF Research Drive to the Snellius cluster using the rclone utility,
which enables efficient, parallelized, and encrypted file transfers. This is per-
formed using automated HPC jobs whenever possible.

o From Hugging Face using git, allowing version-controlled synchronization of
datasets.

o In a few cases, datasets are transferred manually from the SURF Research
Drive to Snellius (e.g., when access restrictions or network issues prevent au-
tomated transfers).

The target directory structure and conventions used for storing downloaded data are
detailed in the Code Organization and Data Folders section. These steps include data
checksum validation and hash verification to ensure data integrity after transfer.

Unzip Most datasets are provided in compressed formats such as .zip, .tar.gz, or .xz.
These are decompressed using standard Linux utilities (e.g., unzip, tar, or gzip). In
some cases, decompression is integrated into the extraction process itself to stream-
line workflow execution.

Extract The core component of the GPT-NL data pipeline is the extraction frame-
work, built around a modular architecture. It comprises a base Extractor class and
multiple specialized extractor implementations for different data formats and schemas.

Each extractor:

o Connects and Reads the RAW input files — Connector module.

12/95

) TNO Public) GPTNL-DEL-4001

o Parses them according to the dataset-specific structure — Parser module.
o Outputs a normalized and structured representation of the data — Formatter
module.

The unified data format produced by these extractors is described in the Curation Input
Format Section, and the storage location of EXTRACTED datasets is documented in
the Code Organization and Data Folders. The Extractor class provides a common
interface that integrates connectors, parsers, and formatters, ensuring consistent
handling of diverse data sources.

Once data is available in the Datasource Inbox, it is processed using specialized software
modules known as extractors. Extractors consist of a sequence of connectors, parsers, and
formatters, which together transform heterogeneous raw data into a consistent structure
suitable for the next processing phase. The GPT-NL project implements a flexible software
stack that supports the design, configuration, and composition of these modules, allowing them
to handle the wide variety of raw data formats encountered across different sources. Extractor
modules were implemented for each one of the datasets and are available in the data extraction

code repository.

[0 Connectors manage access to and retrieval of data from their original source. Their
implementation depends on the source type and access method. For example, when
dealing with web-based content, a connector functions as a scraper, capable of using
network protocols to retrieve HTML data. In GPT-NL, most connectors operate within
the secure Snellius environment and provide an abstraction layer for accessing files,
databases, or API endpoints. The output of a connector is an interface exposing the
source content—typically in textual or tabular form—to the next processing stage.
There is no single, universal interface; connectors may consist of custom-built modules
or widely used open-source libraries. For instance, the pypdf package is commonly

used to process .pdf documents.

00 Parsers interpret and extract meaningful information from the content provided by con-
nectors. Their key role is to understand the data format and isolate relevant elements,
primarily raw text, and associated metadata. This metadata can include attributes such
as authorship, section titles, and publication dates. If such information is unavailable,
parsers generate default values to maintain consistency. In some cases, parsers may
apply light filtering to exclude irrelevant content—though this is outside the formal
scope of GPT-NL’s curation process. Parsers interact with connectors through tailored
interfaces that allow them to process content at the level of files or file sections. Their
output is a structured data representation ready to be processed by the formatter mod-
ules.

00 Formatters take the structured output from the parsers and organize it into a stand-
ardized dataset format designed for the data curation pipeline. This step ensures that
all extracted data—regardless of its origin or initial structure—follows a uniform
schema. By enforcing this consistency, the curation pipeline can operate efficiently and
reliably, without needing to manage the complexities or idiosyncrasies of individual
datasource formats.

The internal operation of extractors is described in detail in the Datasource Exiractors section.
The result of this process is a collection of structured data records that conform to the
EXTRACTED format specification and are stored as .parquet files—sometimes referred to as
the GPT-NL input format. The structure and content of this format are formally defined in the
Curation Input Format section.

In fact, at the end of the extraction a sampling process takes place using the extracted set as
input. This sampling process generates a random subset— smaller than the original dataset.
This sample is submitted to curation cycles and the effects of the curation pipeline (discussed

) TNO Public 13/95

) TNO Public) GPTNL-DEL-4001

2.2

2.2.1

in the next section) can be evaluated by the data quality team. The data quality decides on
eventual modifications on the curation parameters, preserving most of the quality data. These
new parameter settings are put in place and documented by the curation team, which is now
ready to move on to the curation phase. This sampling process is discussed in the Preparation
for the Curation phase.

In the following sections we dive into the architectural details, requirements, and processes for
each of the extraction stages and components.

Datasource Inbox

The GPT-NL project receives data from a variety of partners and external data sources. Many
datasets are subject to intellectual property (IP) rights and copyright restrictions, and their use
is authorized solely for project purposes. To comply with these legal and contractual
obligations—established under Work Package 18 (Data Acquisition and Quality)—the
project must ensure a secure environment for receiving, storing, and managing partner-
contributed data. This safeguards both the proprietary value of the data and the privacy of
contributing entities.

This section describes the environment used in GPT-NL to securely receive data from partners,
referred to as the Datasource Inbox.

The Datasource Inbox is hosted at SURF and provides a direct, secure connection to the
Snellius research cluster, where subsequent data processing and curation take place. SURF
and Snellius were selected as the primary data handling platforms due to their robust security
controls, reliable data transfer mechanisms, large-scale storage capacity, and researcher-
oriented usability. These characteristics ensure that sensitive datasets can be ingested and
processed in full compliance with project and partner requirements.

Other project datasources are public ML communities — such as HuggingFace — from which
we download publicly available datasets like Common Corpus into the Datasource Inbox. We
discuss briefly these two options in the following.

SURF Research Drive

The SURF Research Drive is a secure, cloud-based storage service designed specifically for
researchers, students and information professionals, to store, share, and collaborate on data.
It offers scalable storage, making it ideal for managing large datasets commonly used in
research. The platform ensures that sensitive and valuable research data is safeguarded
through advanced security protocols. Researchers can collaborate seamlessly across
institutions, making data sharing more efficient while maintaining control over data access.
Additionally, it integrates well with other research tools, enhancing workflow efficiency and
ensuring compliance with data management regulations.

GPT-NL uses the research drive as the designated storage location for data providers to upload
their datasets. Using rclone, the data was easily transferred to Snellius. rclone was set up by
following SURF instructions, which uses a WebDAV interface for the Research Drive. Data was
transferred from the Research Drive to Snellius using a command like the one below, executed
in a Snellius job to allow long-running transfers.

rclone copy \
"RD:/GPT-NL (Projectfolder)/Instituut voor NL Taal/CorpusGysseling_1.0.zip" \
Iprojects/0/prjs0986/wp12/raw/instituut-voor-nl-taal

) TNO Public 14/95

) TNO Public) GPTNL-DEL-4001

2.2.2

2.2.3

| Filter file names .. x| = BB Ali files H

B All files
. GPT-NL (Projectfolder) . GPT-NL OpenStateFoundation (Projectfolder)

o
= Personal files Recently shared

Recently shared

£ Recent

B Type) Modified 2\ People
% Favorites

+& Shares v O Name < Size Modified
8 Extemal storage (] B GPT-NL (Projectfolder) Shared G 835.1GB September 15
(B Al folders v

O B GPT-NL OpenStateFoundation (Projectfolder) Shared GO+ 487.7GB August 4
W Deleted files
& 0Bof0Bused 2 folders 1378

£ Files settings

Figure 5: Screenshot of the SURF Research Drive

Hugging Face

Hugging Face is a platform that provides a wide range of tools and resources for natural
language processing (NLP) and machine learning. It offers an extensive collection of pre-
trained models, datasets, and libraries that facilitate the development and deployment of NLP
applications. Hugging Face is known for its user-friendly interface and active community,
making it easier for researchers and developers to collaborate and share their work.

GPT-NL uses Hugging Face as a source for several public datasets. The datasets were
downloaded using git-Ifs. Example commands to download a dataset from Hugging Face look
like this:

git Ifs install
git clone https://huggingface.co/datasets/coastalcph/multi_eurlex /projects/0/pris0986/wp12/raw/multi-eu
rlex

What happens to the data in the Datasource
Inbox?

In accordance with the folder structure defined in the data folder structure documentation, data
received in the Datasource Inbox are automatically and securely transferred to the following
directory within the GPT-NL project space on Snellius:

/projects/0/prjs0986/wp12/raw/

This automated transfer ensures that all ingested datasets are consistently stored in the
designated raw data repository, from which the extraction framework can directly access and
process them.

Access to this directory is strictly controlled and limited to authorized members of relevant work
packages. Furthermore, the retention of partner-contributed data within this folder is time-
bound, in compliance with contractual and data management requirements.

For details on the file formats used by different data sources and the corresponding extractor
implementations, refer to the Data Source Extractors Section.

) TNO Public 15/95

) TNO Public) GPTNL-DEL-4001

2.3

2.3.1
2.3.11

Data Source Extractors

Once a dataset is received in the inbox and transferred to the appropriate folder within the local
Snellius curation directory, the GPT-NL data extraction system initiates a modular processing
framework. This framework transforms the data sources into a unified tabular structure and
stores them in Parquet format. The resulting dataset serves as the foundational input for
subsequent curation operations.

The architecture of the data source extractors employs a plugin-based design pattern, allowing
new data sources to be integrated easily while ensuring consistency and reliability across the
system.

Modules used at each extractor are versioned (in the repository) and automatically evaluated
before application using a CI/CD pipeline. That is to ensure reproducibility of the data extraction
in the future. Logging is produced to identify errors and warning messages during the extraction
and help in the debug of modules. However, if an extraction process is successful and no errors
occurred, logged files are discarded, as they do not contain information about the process itself.
Example, there is no performance measurements at this stage. The reason for that is that the
extraction phase is likely to be performed very few times and is not particularly computing
intensive.

Extractors also determine the granularity or size of the text chunks extracted. For some
datasources, a chunk of extracted text corresponds to a paragraph. In other sources, a chunk
of extracted text is the full content of a document, e.g., all chapters of a book in one long textual
stream. That creates data entries in the extracted data that may vary a lot on their sizes. This
is kept like that by design and eventually adjusted later in the process only when necessary. In
other words, the extraction process does not automatically chunk the extracted information.

In certain cases, the unzip and extract stages are combined into a single streaming process.
This approach is used for very large datasets containing numerous files, as the Snellius cluster
imposes limits on the number of files (inodes) per user. The streaming workflow allows
processing data on the fly, thereby avoiding storage exhaustion and improving efficiency.

For most datasets, the download and unzip operations are automated and defined in .job
scripts. When these steps are not present, data were downloaded or decompressed manually,
or the dataset size allowed direct command-line handling. The extract operation is consistently
implemented in extract[-*].job files.

The following section provides a detailed analysis of the extraction framework, its architectural
components, and implementation details.

Extraction framework - Core Components

Base Extractor Framework (extractor.py)

The heart of the system is the abstract Extractor class that defines the common interface
and workflow for all data extraction operations. This has a few features:

Set the input and output directories.

Set the UID: the unique identifier for the dataset extraction run. If not set manually, a
random one is generated. Manual setting is useful for parallel processing.

-

Custom derivations of the Extractor class defines behaviour. The process will be explained
later in this section. Extractors return a DataFrame structure with the obligatory fields (e.g.,
text, id) per row, and eventually other fields with optional information. That is dependent on

) TNO Public 16/95

) TNO Public) GPTNL-DEL-4001

the availability of this information in the current dataset. When ingesting tabular format (e.g.,
from open datasets in HuggingFace), it is sufficient to indicate a relationship between the fields
of the dataframe and the corresponding fields in the source table (e.g., ‘info’ -> ‘text’). For data
extractors for which it is not easy to establish this relationship, a DataFrame should override
the get_data_docs() method, which returns an iterable of dictionaries, each containing a text
field (obligatory) and optional metadata fields.

2.3.1.2 Extractor Implementations

The system includes specialized extractors for various data formats and
sources, each inheriting from the base Extractor class. The format-based ones
are listed here:

Class Data format Datasets extracted
CodebookExtractor Codebook CenterData (ixt part)
CSVExtractor CsVv Movisie, BNR and Woogle
JsonlExtractor JSON Lines Common Crawl, DPC and KPN
JsonlZipstreamExtractor Compressed JSON | ANP

Lines
OrtExtractor Orthographic tran- | JASMIN 1.0 and CGNAnn 2.0.3

scription (*.ort)

ParquetExtractor Parquet Belgian Journal, Common Cor-
pus, Danish PD, English PD,
French PD Books, Germn PD
Newspapers, German PD, LoC
PD Books, Spanish PD Books,
Spanish PD Newspapers, Swe-
dish PD, TEDEUTenders, and
YouTube-Commons

PdfExtractor PDF Tweede Kamer, Auditdienst Rijk,
HBO and CenterData (pdf part)

SqliteExtractor SQLite databases NDP print and NDP web

XmlExtractor Generic XML DAESO 1.0 and CorpusMid-

delnederlands 1.0

XmlaltoExtractor ALTO XML Noord-Hollands Archief and
Zeeuws Archief

XmlpageExtractor PAGE XML Utrechts Archief

These are the specialized extractors for specific datasets:

Datasets extracted

AmericanStoriesExtractor American Stories
CorpuscoderingExtractor CorpusGysseling 1.0
CulturaxExtractor Cultura X (NL part)

) TNO Public 17/95

) TNO Public) GPTNL-DEL-4001

2.3.1.2.1

DANSExtractor
DNBExtractor
EuropeanParliamentExtractor
FryskeAkademyExtractor
ICTRechtExtractor
KBExtractor
KBOpenKrantenExtractor
LassylLargeExtractor
MultiEurlexExtractor
NationaalArchiefExtractor
NaturalisExtractor

NTVGExtractor

OpenraadsinformatieExtractor

PblExtractor

OfficieleBekendmakingenExtractor

DANS

DNB

European Parliament

Fryske Akademy

ICTRecht

Koninklijke Bibliotheek

Koninklijke Bibliotheek Open Kranten
LASSY Large 7.0

MultiEURLEX

Nationaal Archief

Naturalis

Nederlands Tijdschrift voor Geneeskunde
Officiéle Bekendmakingen

Open Raadsinformatie

Planbureau voor de Leefomgeving

RechtspraakExtractor Rechtspraak

WaarbenijijnuExtractor Waarbenijij.nu

WikidataExtractor Wikidata

WikiwijsExtractor Wikiwijs
Adding New Extractors

Adding or customizing an extractor is simple.

We show the main steps involved with a simplified

example of the PDF extractor below. Code that outputs the progress is omitted. We provide
additional comments in this example code explaining intermediate steps.

First, we inherit from the base Extractor class and implement the get_data_docs() method
or override get_df() for DataFrame-based processing.

import gc

from collections.abc import Generator

from pathlib import Path

from gptnl_data_extraction.extractor import DataDoc, Extractor

from gptnl_data_extraction.utils import read_pdf

class PdfExtractor(Extractor):

def filter_input_files(self, files: list[Path]) -> list[Path]:
return [path for path in files if path.match("**/*.pdf")]

def get_data_docs(self, files: list{Path]) -> Generator[/ist{DataDoc], None, None]:

datadocs =]
for file in files:

) TNO Public

18/95

) TNO Public) GPTNL-DEL-4001

already extracting only the textual information of a pdf.
This can obviously only be used for typical, well-formed pdfs.
text = read_pdf(file)
if len(text) == 0:
continue

In this case, we decide to make the title equal to its filename.
Details on this implementation are set in “'main.py".
title = self.filename_to_title_mapper(file)

Format into DataDoc so it can be processed.

For this extractor, only text and title are extracted from the sources.

datadocs.append(
DataDoc(
title=title,
text=text,
)
)

Sometimes, we control the size of extracted elements
Avoiding saves at each entry make it more efficient
But memory overhauls must be avoided.

if len(datadocs) >= 2000: # Not too many, to avoid memory issues.

yield datadocs

Clear memory.

del datadocs|[:]

gc.collect()

datadocs =]
yield datadocs

Note that this approach still uses the concepts of connecting, parsing, and formatting as
explained in the more generic architectural view. However, the composition of these activities
can be freely designed on case-by-case within this method. This procedure gives more

freedom to the extraction team to deal with the diversity of formats as they come.

Second, we write unit tests for the new extractor to confirm it works. Unit tests are important in
this context to automate the validation of the extraction phase and future reproducibility. A
couple of documents randomly sampled from the datasource are used to validate the operation.

file: gptnl_data_extraction/pdf_extractor/tests/test_pdf_extractor.py
from pathlib import Path

import pandas as pd

from gptnl_data_extraction.extractor import DatasetMetadata

from gptnl_data_extraction.pdf_extractor import PdfExtractor

this_dir = Path(__file__).resolve().parent

def test_pdf_extractor():

) TNO Public

input_dir = this_dir

output_path = this_dir / "test_output.parquet"
dataset_name = "Example"

dataset_url = "https://example.com"

license = "MIT"

title0 = "0d54f080-dca2-4c89-a68d-705889424127 .pdf"
title1 = "34af8277-28b4-41c9-a998-8ff0ba335820.pdf"
content_prelude0 = "Tweede Kamer der Stat"
content_prelude1 ="16% Hernieuwbare ener"

job = PdfExtractor(

"extraction-test",

DatasetMetadata(dataset_name, dataset_url, license),
).set_io(input_dir, output_path)

19/95

) TNO Public) GPTNL-DEL-4001

2.3.1.2.2

job.process()
df = pd.read_parquet(output_path)

assert df["dataset_name"][0] == df["dataset_name"][7] == dataset_name
assert df["dataset_url"][0] == df["dataset_url"][1] == dataset_url

assert df["dataset_license"]|[0] == df["dataset_license"][1] == license
assert dff"license"]|[0] == dff"license"][7] == license

assert dff"title"][0] == titleO

assert dff"title"][1] == title1

assert dff"text"][0][: len(content_prelude0)] == content_prelude0

assert dff"text"][7][: len(content_prelude1)] == content_prelude1

Third, we configure dataset metadata and any format-specific parameters and add the job
configuration to main.py registry. The registry ensures the whole process can be launched
from a central place in using a single mechanism. Once an extractor is registered, the team
can launch it by its name, e.g., below tweedekamer.

file: gptnl_data_extraction/main.py

PdfExtractor(
"tweedekamer”,
DatasetMetadata(
name="Tweede Kamer",
url="https://opendata.tweedekamer.nl/",
license="public-domain",

),

).set_filename_to_title_mapper(lambda file: file.stem) # Just take the filename without extension.

Fourth, we create corresponding SLURM .job files for cluster execution. Parameters are set
depending on dataset sizes, expected computing availability, etc. Note that the mechanism on
the jobs is always the same: running the extract module. The module receives as a parameter
the specific extractor (e.g., tweedekamer) to be used.

#!/bin/bash

#SBATCH --job-name extr-tweedekamer

#SBATCH --nodes=1

#SBATCH --ntasks=1

#SBATCH --time=2-00:00:00

#SBATCH --output=output/slurm-%j-extract-tweedekamer.out
#SBATCH --mem=5GB

Jinit_snellius.sh
poetry run extract tweedekamer \
--input /projects/0/prjs0986/wp12/raw/tweedekamer \
--output-path [projects/0/prjs0986/wp12/extracted/tweedekamer/tweedekamer.parquet

Running an Extractor
You can now run an extractor from the command line using the extract script. The general
usage is:

> poetry run extract -i <input> -o <output_path> <job_name>

The job_name corresponds to the name of the dataset as defined in main.py. The -i and -0
flags specify the input and output directories, respectively.

) TNO Public 20/95

) TNO Public) GPTNL-DEL-4001

2.3.1.3 Jobs

Jobs ensure the steps described above are run on the Snellius cluster. Every extractor has one
or more job files: if it is a file type extractor, there will be job files for each dataset. If it is a
dataset extractor, there will be a single job file for the dataset (per step).

Per dataset, you can run the entire extraction process by starting these jobs in order (examples
from the CenterData dataset (pdf part)):

5. download[-*].job (if needed)

#!/bin/bash

#SBATCH --job-name dl-centerdata

#SBATCH --time=1:00:00

#SBATCH --output=output/slurm-%j-download-centerdata.out
#SBATCH --cpus-per-task=1

#SBATCH --ntasks=1

#SBATCH --mem=5GB

rclone copy \
"RD:GPT-NL (Projectfolder)/CenterData" \
/projects/0/prjs0986/wp12/raw/centerdata

6. unzip[-*].job (if needed)

#!/bin/bash

#SBATCH --job-name unzip-centerdata

#SBATCH --time=00:05:00

#SBATCH --output=output/slurm-%j-unzip-centerdata.out
#SBATCH --nodes=1

#SBATCH --ntasks=1

#SBATCH --cpus-per-task=1

#SBATCH --mem=0.5GB

#SBATCH --partition=rome

DIR=/projects/0/prjs0986/wp12/raw/centerdata

FILES=(
"${DIR}/Centerdata_Codebook_1.tar"
"${DIR}/Centerdata_Codebook_2.tar"
"${DIR}/Centerdata_Publications.tar"

)

for FILE in "${FILES[@]}"; do
tar -xvf"$FILE" -C "$DIR/"
done

7. extract[-*].job

#!/bin/bash

#SBATCH --job-name extr-centerdata

#SBATCH --nodes=1

#SBATCH --ntasks=1

#SBATCH --time=01:30:00

#SBATCH --output=output/slurm-%j-extract-centerdata.out
#SBATCH --mem=5GB

#SBATCH --cpus-per-task=1

Jinit_snellius.sh
poetry run extract centerdata-pdf \
--input /projects/0/prjs0986/wp12/raw/centerdata \
--output-path /projects/0/prjs0986/wp12/extracted/centerdata/centerdata-pdf.parquet

) TNO Public 21/95

) TNO Public) GPTNL-DEL-4001

2314

2.3.2

2.4

241

Some extraction jobs are designed to be run in parallel. These are array jobs and are clearly
described in the job file itself. Sometimes individual, parallel extraction jobs failed due to
memory limits, so run_parallel_job.sh is provided to help re-run individual array jobs that
failed. This retains the UID that is associated with one extraction run.

Data Processing Utilities

Several utility functions support data processing tasks, including:
[0 Previewing a parquet file.
poetry run preview <input_file> [<num_entries>]

*

[J Combining multiple parquet files into one. If you use * in file_mask, surround

file_mask with double quotes to avoid shell expansion.
poetry run combine <file_mask> <output_file>
01 Reducing a parquet file to only a few entries.

poetry run reduce <input_file> <output_file> <num_entries>

Additional information

Details of the extraction repository organization and its operation can be found in the Data
folder structure and Code Organization section in this document.

Curation Input Format

The output of the extraction phase is a dataset with a standardized structure and storage
format. This section specifies the formal definition and role of this dataset within the GPT-NL
data processing workflow.

Definition

EXTRACTED dataset (GPT-NL Input Dataset): A harmonized
data product generated by the extraction framework. It consolidates
heterogeneous external datasets into a uniform tabular structure
and standardized storage format suitable for subsequent curation
and analysis.

Role in the System

1 End Point of the Extraction Phase: The EXTRACTED dataset constitutes the final
output of the data extraction phase. It represents the fully processed and normalized
version of all input datasets ingested from external sources.

01 Starting Point of the Curation Phase: The same dataset serves as the primary in-
put to the data curation phase, providing a consistent basis for further quality assur-
ance, enrichment, and transformation steps.

) TNO Public 22/95

) TNO Public) GPTNL-DEL-4001

The EXTRACTED dataset defines the standard input format for all downstream components in
the GPT-NL pipeline. This structure is also employed for the sample datasets described in the
preceding section, ensuring alignment and interoperability across the extraction and curation
phases. It is also worth to mention that the final curation format (after the curation phase) is
just an extension of the data structure defined here — this extension includes further annotation
aggregated during the curation process.

2.4.2 Extracted Data Structure and Storage Format

The data extracted from source datasets during the data exiraction phase are organized into a
standardized tabular structure, as shown below:

text title source author license dataset_name dataset_url dataset_license extraction_uid extraction_time extra

lorem lorem lorem lorem lorem lorem lorem lorem lorem lorem lorem

Each table adhering to this schema is stored in the GPT-NL extracted database in the
.parquet format. All extracted datasets share this internal structure, ensuring interoperability
and consistency across data sources.

2.4.2.1 Rationale for Using the Parquet Format

The .parquet format was selected due to its efficiency, flexibility, and compatibility with large-
scale data processing systems:

00 Columnar Storage Efficiency: Parquet stores data by columns rather than by rows,
enabling more effective compression and faster access to specific attributes. This is
particularly advantageous for analytical and distributed workloads, such as those ex-
ecuted during the data curation phase.

[0 Compression and Encoding: Parquet supports several built-in compression and
encoding algorithms (e.g., Snappy, GZIP), which reduce storage footprint while im-
proving read and write performance.

01 Self-Describing Schema: Each Parquet file includes an embedded schema defini-
tion, facilitating data validation, discovery, and schema evolution. This feature simpli-
fies versioning and maintenance when dataset structures evolve over time.

[0 Optimized for Distributed Processing: Parquet integrates natively with distributed
data processing frameworks such as Apache Spark, Hive, and Presto, supporting
scalable, parallelized data transformations and queries across large datasets.

1 Cross-Platform and Language Interoperability: The format is widely supported
across programming environments, including Python, Java, and R, ensuring com-
patibility with diverse analytical and machine learning workflows.

Overall, the use of Parquet provides a robust and scalable foundation for managing extracted
datasets in GPT-NL, balancing storage efficiency, accessibility, and long-term maintainability.

2.4.3 Explanation of data structure fields

In the following, we describe the format fields in detail:

text[sc:String] : Content from the document parsed (text). That is a textual infor-
mation relevant for the work. No limitations on the character set used nor the size of
this field. It should be simply a textual extraction one datasource document. The cu-
ration pipeline and its steps will, when necessary, normalize this text to a well defined

) TNO Public 23/95

) TNO Public) GPTNL-DEL-4001

) TNO Public

format. This is discussed in the curation pipeline phase, not here. This field is obliga-
tory and must be non-empty.

title[sc:String] : The title of the document extracted. This field is obligatory, but it can
be left as an empty string if the title is not known or attributed. In many cases, the title
is an urn that uniquely identifies the document where the text was extracted.

source[sc:String] : an identifier for the source where the document is found in string
format. In some cases, this source is recorded as a url. Sources may contain several
documents. Field is obligatory, and its value is always non-empty.

author[sc:String] : The author(s) of the document. Field may be an empty string, if
author not know.

license[sc:String] : The license attributed to the document. Document licenses can
be different from the source license.

dataset_name[sc:String] : The name or title of the external dataset (or source) con-
taining the document. This field identifies the dataset within the GPT-NL raw set
(original sources). It is never empty.

dataset-url[sc:String] : The source’s URL from which the dataset (not the docu-
ment) was obtained. This helps trace the origin of the data. It can be empty if the
content is not known.

dataset_license[sc:String] : The license under which the dataset is distributed
(e.g., CC-BY, MIT, proprietary). This field indicates usage rights and restrictions. The
referred license is about the source, not the document. If the document license dif-
fers, it is captured in the field license. It can be empty if the content is not known.

extraction_uid[sc:String] : Universal Unique /Dentifier (ID). In GPT-NL we adopt
the ULID specification. ULID is the acronym for Universally Unique Lexicograph-
ically Sortable Identifier. The specification is an alternative to the UUID standard. We
propose the use of the ULID formats for some reasons:

o Itis 128-bit compatible with UUID (so, it can be used where UUID is).

o Canonically encoded as a 26-character string, as opposed to the 36-charac-

ter UUID

o ltis case-insensitive.

o Avoids some of the data fragmentation problems created by UUIDs in very

large data (such as the ones we have).

o Itis lexicographically sortable — not so important for our work, though, but

handy for data operations.

o An example of a ULID is 01ARZ3NDEKTSV4RRFFQ69G5FAV
Additionally, we append a suffix to the UID fields: _gpt_nl. This suffix can be easily
eliminated but allow us to distinctly identify UID’s generated and used in GPT-NL'’s
project and datasets.

This is an extraction identifier, such that all the entries (rows) are marked with the
same UID generated during the extraction phase. It allows us to identify accurately
which extraction run produced the entries in this dataset.

extraction_time[sc:string] : Timestamp (datetime) for the data extraction expressed

in UTC format. This is a used, universal, date-time format supported by almost any
library.

24/95

) TNO Public) GPTNL-DEL-4001

0 Anexample of a timestamp in UTC format looks like 2010-11-12T13:14:15Z
o We use a UTF-8 string format to represent the UTC timestamp.

O extra[sc:struct] : This field is a container for other tables. The structure format within
this field is not defined. It can be custom according to the needs of the extraction
phase. The curation process is not encouraged to use these fields; they are allowed
in here to register additional metadata information collected during the extraction
phase.

An example of such data record in a JSON frame would be:

[
{

"text" : "Historie van mejuffrouw Sara Burgerhart Betje Wolff en Aagje Deken GEBRUIKT EXEMPLA
AR exemplaar universiteitsbibliotheek Leiden, signatuur: 1282 D 11 en D 12 ALGEMENE OPMERKING
EN Dit bestand is, met een aantal hierna te noemen aanpassingen, een diplomatische weergave van Hi
storie van mejuffrouw Sara Burgerhart uit",

"title" : "Historie van mejuffrouw Sara Burgerhart",

"source" : "https://dbnl.org/tekst/wolf016hist01_01",

"author" : "Aagje Deken",

"license" : "CC-BY",

"dataset_name": "OpenDutchNews",

"dataset_url": "https://data.opendutchnews.nl/archive/2025",

"dataset_license": "CC-BY 4.0",

"extraction_uid": "01JV89ZPKHECDV65A1891EJOWO0_gptnl",

"extraction_time": "2025-10-07T09:15:232",

"extra": {

"language": "nl",
"source_type": "news articles",
"notes": "Includes regional news from 2023-2025"

}

}
1

2.4.3.1 General policy for missing data

The fields described above are all obligatory in the final format — however, some of them are
allowed to be empty. When the proper content of a field is not known, or for some reason
cannot be recorded, its value should be an empty string (not a NULL element).

2.4.4 Formal Format Description

In the data science and machine learning communities, it is standard practice to describe
dataset structures using a formal schema specification. For this purpose, GPT-NL adopts the
Croissant schema, developed and maintained by the MLCommons and Hugging Face
communities. The metadata used in this project follows the conventions and structure defined
by this schema.

The Croissant specification provides a standardized, machine-readable framework for
describing datasets. It defines key dataset components such as:

01 Entities: Logical groupings of related data elements or records.
[J Features: Individual attributes or variables describing each entity.

0 Relationships: Links between entities, enabling representation of structured or hier-
archical data.

01 Metadata: Descriptive information about the dataset’s provenance, licensing, author-
ship, and usage constraints.

This scheme facilitates interoperability between dataset repositories and tools by offering a
consistent method for expressing dataset content and structure. Its growing adoption in the

) TNO Public 25/95

) TNO Public) GPTNL-DEL-4001

large language model (LLM) community further supports long-term compatibility,
discoverability, and integration with emerging data curation and benchmarking frameworks.

The Croissant schema for the EXTRACTED dataset is:

"@type": "sc:Dataset",
"name": "gpt_nl_uncurated_dataset",
"description": "The uncurated dataset contains data after the extraction stage. No stage of the curatio
n pipeline is applied yet. This dataset is the starting point of the curation pipeline.",
"license": "All rights reserved. License to be defined.",
"url": "https://example.com/dataset <TO BE DEFINED>",
"distribution": [
{
"@type": "cr:FileObject",
"@id": "unique_id of the dataset",
"name": "name.pdf",
"contentUrl"; "data/name.pdf",
"encodingFormat": "text/csv"
}
I
"recordSet": [
{
"@type": "cr:RecordSet",
"name": "gpt_nl_uncurated_recordset",
"description": "Minimal record of the uncurated dataset.",

"field": [
{
"@type": "cr:Field",
"name": "uid",

"description": "The unique _id of the data record.",
"dataType": "sc:String",
"references": {
"fileObject": {
"@id": "unique_id of the data record "

"extract": {
"column": "uid"
}
}
3
{
"@type": "cr:Field",
"name": "text",

"description": "The third column contains the data record",
"dataType": "sc:String",
"references": {

"fileObject": {
"@id": "name.pdf"
"extract": {
"column": "text"
1
}
3
{

"@type": "cr:Field",
"name": "meta",
"description": "Metadata associated with each record.",
"dataType": "sc:struct",
"field" : [
{

) TNO Public 26/95

) TNO Public) GPTNL-DEL-4001

"@type": "cr:Field",
"name": "source",
"description": "A human readable identifier.",

"dataType": "sc:String",
"references": {

"fileObject": {
"@id": "name.pdf"
"extract": {
"column": "source"
}
}
3
{

"@type": "cr:Field",

"name": "source_url",

"description": "A human readable identifier.",
"dataType": "sc:URL",

"references": {

"fileObject": {
"@id": "name.pdf"
"extract": {
"column": "source_url"
}
}
2
{

"@type": "cr:Field",
"name": "timestamp”,
"description": "Timestamp of the datasource.",
"dataType": "sc:Timestamp",
"references": {
"fileObject": {
"@id": "name.pdf"

"extract": {
"column": "timestamp"
}
}
}

"’references": {
"fileObject": {
"@id": "name.pdf"
"éxtract": {

"column": "meta"

2.5 Code Organization and Data Folders

The primary codebase supporting the extraction phase is maintained in the
Data Extraction Repository. This section describes the organization of the

) TNO Public 27/95

) TNO Public) GPTNL-DEL-4001

repository and the related efforts to make it publicly accessible as an open-
source resource.

In addition, two main data directories are central to managing the datasets and operational
outputs of this phase:

1 /<project-root>/wp12/raw — containing the raw input data; and

1 /<project-root>/wp12/extracted — containing the datasets produced
through the extraction process.

The overall structure and organization of these directories are described in
detail in the following subsections.

2.5.1 Data Extraction Repository

The Data Extraction Repository contains data extraction modules for the GPT-NL project.
These modules convert raw data files into various formats and from various sources, provided
by partners as well as data sets available under open licenses, into a structured format used
by the entirety of the data curation pipeline.

The function of the extraction repository is to have a centralized location for data ingestion jobs
and extractor implementations. Extraction involves opening data sets, often stored in large
(numbers of) files, in an efficient manner, parsing relevant material from them, and writing
chunks of data sets while adhering to a specification of the data. This avoids challenges
surrounding unstructured data in later stages of the pipeline.

The extraction repository provides uncurated data sets in a columnar format, which may then
be inspected using helper scripts (some of which are also in this repository), passed through
some stages of a pipeline for initial curation and eventually used as the source of truth for
further curation practices. Through data extraction, the data set contains not only rows of text
that belongs in one document, section, or paragraph, but also the associated title, source,
author, license, and source identifiers belonging to the document and data set. This makes it
possible to track and manage this additional metadata smoothly during later stages.

== data-extraction OWatch 0 ~ ¥ Fork v Y star 0
main ~ ¥ 1Branch © 0Tags Q Gotofile t Addfile - [EERETI About &
Extracting data from raw sources into
& karimelassal Merge branch ‘feat/readd-tests' into ‘main’ @3 structured GPT-NL format

gptnl_data_extraction 00 Readme
output

scripts

[.editorconfig
O gitattributes
O .gitignore
O gitlab-ciyml Initial coj components of data extraction
[READMEmd Cen!
Packages
[init_snellius.sh
O poetry.lock Publs
O pyprojecttoml Readd test for DNB extractor, initial generator script 3 months ago

Contributors 2

Figure 6: Extraction repository on GitHub

) TNO Public 28/95

) TNO Public) GPTNL-DEL-4001

2.5.1.1

2.51.2

2.5.1.3

2.5.2

The data extraction repository is located on TNO’s internal GitLab as well as mirrored to
GitHub.

Structure

The following folders and files are essential during development on the ex-
traction repository:

01 gptnl_data_extraction/: Contains the extractors, base interfaces and utilities. Each ex-
tractor consists of an implementation in Python to convert raw data from files into
chunks of spec-compliant Parquet files, jobs to download the files from external
sources, start the extraction, and finally tests to demonstrate the working of the extrac-
tor.

scripts/: Shell scripts to start jobs for multiple extractors.

poetry.toml: Contains metadata about the repository and the scripts that can be run
using poetry run.

-

Key Responsibilities

Obtaining raw data sets.

Extraction of data from raw data files.

Writing chunks that conform to a project-wide, accessible standard.

[

Open-Sourcing Notes

The data extraction repository works closely with raw data, which means that we have some
considerations when making this repository open source. We have removed some personally
identifying information of contributors, such as email addresses in job scripts, but we keep a
notice of points of contact and authors clearly available in the repository.

The tests demonstrate whether an extractor is correctly able to write rows of data from its
respective raw format. Previously, these tests used a small sample of a data set for each of the
extractors. In the open-source version of the repository, samples obtained from
private/proprietary data sets have been replaced with synthetic data sets, using randomly
generated text, fields and metadata like timestamps and URLs. This ensures continued testing
capabilities while assuring that we do not violate licenses of the data sets which were made
available to the project.

Data Folders

The data management framework relies on a structured directory hierarchy to ensure
traceability, reproducibility, and efficient data handling throughout the extraction and curation
pipeline. The primary folders are as follows:

0 /project-root/data/raw: Contains the raw data received directly from external data sup-
pliers. These files may vary in format, size, and type. Decompression may be required
for compressed data sources.

01 /project-root/data/extracted: Contains the datasets that have been processed and

transformed from the raw data into the standardized format required for the curation

pipeline (as specified in curation-input-format.md).

/project-root
L /data

': /README.md # Description of the folder structure and references to this documentation.
/raw

) TNO Public 29/95

) TNO Public) GPTNL-DEL-4001

2.5.21

25.2.2

— /source_001

'E received_data_file.zip
README.md # Source and data format description, processing notes.
—— /source_002

—— /source_100

— /extracted

— /source_001

'E data00001.parquet
data99999.parquet

—— /source_002

—)gou rce_100

Raw Data Folder

The raw data directory contains the original data as received from the various data suppliers.
The content may include files in diverse formats and sizes, depending on the source. When
necessary, a decompression step should be performed to prepare the files for further
processing.

Best practices for managing raw data include:

[0 Retaining the original files in their received form. Retention is time boxed.

0 Including a README.md file in each data source folder to document the source, for-
mat, and any preprocessing steps applied.

01 Setting dataset-specific access permissions to ensure compliance with privacy and
security requirements.

[0 Restricting write access for non-extraction team members to preserve data integrity.

/project-root
L /data
L— /raw

/source_001
received_data_file.zip

README.md # Source and data format description, processing notes.
/source_002

/source_100

Extracted Data

The extracted data directory contains datasets generated from the raw sources through the
extraction process. These datasets serve as standardized inputs for subsequent curation tasks.

Key requirements and recommendations for managing extracted data include:

01 Storing data in Parquet format as specified in curation-input-format.md.

[Applying dataset-level access permissions to protect sensitive content and ensure data
security.

01 Restricting write access for non-extraction personnel to maintain dataset consistency.

0 Structuring data into multiple smaller Parquet files (typically between 128 MB and 1
GB each) to facilitate parallel processing. For smaller datasets (a few gigabytes),
fewer, larger files may be preferred; for larger datasets (hundreds of gigabytes or
more), a greater number of smaller files improves processing efficiency.

) TNO Public 30/95

) TNO Public) GPTNL-DEL-4001

/project-root
L— /data
L— /extracted
/source_001

E data00001.parquet
aéta99999.parquet
L— /source_001_samples
/source_002

};ource_1 00

) TNO Public

31/95

) TNO Public) GPTNL-DEL-4001

3.1

Architecture and Design of the
Data Curation Phase

Data Curation Process

The GPT-NL data curation phase is organized as a sequence of modular pro-
cessing stages, each dedicated to a specific aspect of data quality. Instead of
a single monolithic cleaning pass, the pipeline divides curation into discrete
stages, including normalization, language filtering, heuristic quality filtering, PII
masking, toxicity removal, and deduplication. By progressing through these fo-
cused phases, the pipeline addresses each quality dimension while maintain-
ing clear separation of concerns. This design makes it easy to understand how
and why the data is transformed at each step, and it allows each stage to be
configured, inspected, and rerun independently without disrupting the overall
flow.

To realize this design, the GPT-NL Curation Pipeline Phase was guided by a set of core
architectural requirements. The system needed to balance transparency, scalability, and
robustness while supporting large volumes of data processing. These requirements shape the
structure of the following sections: the first two chapters focus on the logical architecture, how
modularity, metadata logging, and extensibility are achieved, while the third focuses on the
execution architecture, on how the system scales, and on HPC infrastructure.

In practice, this meant developing a framework that could:

01 Support modular, stage-based execution, reflecting the independent and auditable
phases of the curation design. Each processing step should run as a self-contained
module with clearly defined inputs and outputs, enabling transparent inspection, ver-
sion control, and easy reruns.

[0 Enable fine-grained metadata tracking throughout all transformations. Every
change to the dataset, whether filtering, masking, or enrichment, must be traceable
through structured metadata, ensuring that data lineage and provenance can be re-
constructed at any point.

1 Allow custom extension of the curation modules. The architecture must remain
open and extensible, allowing researchers to integrate new filters or models that ad-
dress language- or domain-specific needs without disrupting the overall flow.

1 Handle massive parallelism on HPC infrastructure such as SURF’s Snellius
SLURM cluster. The system must distribute workloads efficiently across numerous
compute nodes to process terabyte-scale datasets within reasonable timeframes.

00 Provide robust fault tolerance and resumable execution, critical for long-running
jobs. Failures or node interruptions should not invalidate an entire curation run. In-
stead, stages should be reproducible from well-defined checkpoints.

) TNO Public 32/95

) TNO Public) GPTNL-DEL-4001

3.1.1

Independent Processing Stages

A foundational design requirement for the GPT-NL curation phase was that each processing
stage should operate independently and produce a clearly defined new version of the dataset.
Rather than modifying data in place or chaining transformations in a black box, the system
must create an explicit boundary between stages: each phase reads from a prior output and
emits its own result. This requirement ensures that the pipeline is not just functional, but
transparent. The curators can clearly inspect how the data evolves across the pipeline.

By persisting the full output of each phase, the system must enable:

00 Reproducibility, by ensuring that every version of the dataset is traceable and not over-
written by later processing.

0 Auditability, by allowing teams to examine the exact inputs, outputs, and decisions
made at every step.

01 Stage execution, where individual stages can be re-executed in isolation, e.g., to test
a different threshold or fix an issue, without requiring upstream stages to be repeated
unnecessarily.

Crucially, the architecture should enforce logging at each phase, not just of what is retained,
but also of what is removed. For every discarded item, the pipeline should record why it was
filtered (e.g., “low average word length” or “toxic language”) along with sufficient context to
evaluate that decision later. These logs must be structured in a way that allows the evaluation
team to verify whether removals were justified, and whether any filtered data should be
reconsidered.

This design also reflects a core commitment to iterative refinement. Filters and thresholds are
often imperfect at first. Therefore, the architecture must preserve not only the clean outputs but
also the removed data from each stage in a recoverable form. This allows us to later reprocess
just the discarded subset with updated parameters. This significantly reduces compute costs
and accelerates experimentation.

In sum, treating curation as a series of isolated, reproducible phases, each of which generates
a complete and versioned output, is not an implementation detail, it is a core architectural
decision. It underpins our ability to scale, experiment safely, collaborate across teams.

) TNO Public 33/95

) TNO Public) GPTNL-DEL-4001

EmmEEEEEEEEE-E-E S EE__—___E_E,E e e --—

Data Curation Phase

After STAGE I: Text Normalization
Extraction
and Data
Splitting) X | Normalization
Extracted Dataset nput Dete Module
Mutates Strings Stage II: Heuristic Quality

Filtering

After Text
Normalization Language Detection
? Input Data Heuristic Filters

Modules

\

Dataset after Stage |

Updates Metadata

Input Data

Curated Dataset 'LPreparation for Training

Filtered Data

Filters Database STAGE III: Pll Detection and Masking
After
Heuristic
L and f PlI Detection and
a[_f‘iﬁ:ffe Dataset after Stage Il Input Data Masking
Module
Heuristic
Filt Filtered Dat:
M elta?jrasta b Updates Metadata
Mutates Strings
STAGE IV: Toxicity Filtering
After (S
removing PIl | Dataset after Stage Il Toxicity Filtering
/] Module
I
. \ J
1 PIl Removal
1 Metadata Updates Metadata
1 Mutates Strings
I STAGE V: Deduplication
1 After
| removing
1 toxicity o
i Dataset after Stage IV Input Data Deduplication Module
1
I Toxicity
1 Filtering
1 Metadata
1 Filters Database
1 After
| removing
] duplicate
i rows Dataset after Stage V Dataset Evaluation and
1
1
1
1
1

Figure 7: Overview Data Curation pipeline

) TNO Public 34/95

) TNO Public) GPTNL-DEL-4001

3.1.2

Stages for Different Quality Dimensions

Having defined the independent stage structure of the GPT-NL curation pipeline, this section
details the specific quality dimensions that each stage addresses. Each phase focuses on a
single transformation goal so that every aspect of dataset quality can be evaluated, improved,
and documented in isolation.

Together, these stages ensure that the curated corpus is linguistically clean, representative of
the intended languages, free of personal data, and safe for downstream model training. For
each quality dimension, different modules or models can be evaluated and swapped in,
allowing experimentation and optimization without altering the overall pipeline structure.

Each phase is scoped to one transformation or evaluation goal:

[Data Splitting: Splits large .parquet files into a set of files with more typical sizes.
Useful for controlling data flow and SW worker distribution during the curation. Also,
large files tend to create problems on the OS side (writing problems, cluttering disk
access, memory overload). This stage is not a data processing step but rather an ad-
justment of file sizes. It is included though in almost all the datasets, unless the dataset
itself is already small.

00 Text Normalization (Normalization-Pipeline.md): Standardizes formatting across the
dataset by unifying Unicode characters, normalizing punctuation, and cleaning up
whitespace. It consists of three sequential components: FTFYFormatter, Punctua-
tionFormatter, and WhitespaceFormatter. This stage does not modify metadata
and purely transforms text for consistent downstream processing.

01 Language Detection (Language-Detector.md): Tags each document with a predicted
language and confidence score, and removes any texts not in the desired set (e.g.,
non-Dutch or non-English). It enriches each entry’s metadata with language and lan-
guage_score, following the Croissant format.

0 Heuristic Quality Filtering (Heuristic-Filters.md): Applies rule-based filters to assess
document quality, removing entries with excessive repetition, malformed formatting, or
other low-quality traits. This stage appends heuristic statistics to both retained and re-
moved data, aiding downstream evaluation and analysis.

0PIl Detection and Masking (Pll.md): Identifies and masks personally identifiable in-
formation (e.g., names, emails, organizations) using the PrivateAl module. It preserves
text structure and records metadata about detected entities and replacements.

0 Toxicity Filtering (Harmful-language-Toxicity.md, Harmful-language-Negating-
Bias.md): Detects and removes harmful, toxic, or biased content using ML-based clas-
sifiers. Filtered or modified entries are annotated with toxicity scores, labels, and span-
level metadata.

01 Deduplication (Deduplication.md): Removes duplicate or near-duplicate documents
using a multi-step min-hash—based procedure: signature generation, similarity bucket-
ing, cluster creation, and final filtering. It reduces redundancy across datasets without
altering text or metadata and is applied per dataset rather than globally.

Each phase enriches the dataset or improves its quality in an isolated, inspectable way.
Metadata generated during earlier phases is preserved and extended by later ones—for
example, a document might accumulate a language label, quality metrics, masked entities, and
a toxicity score. This cumulative metadata trail provides full visibility into how and why data was
curated at each step.

) TNO Public 35/95

) TNO Public) GPTNL-DEL-4001

The following table summarizes the impact of each stage on metadata, string mutation, and

filtering.
Stages Updates Mutates Filters Da-
Metadata Strings tabase
Unicode Normalization Filters X X
Language Detectors X
Heuristic Filters X
Pll Detection X
Harmful Language Detector X
Deduplication X X

3.1.3 Design for Scalable Execution

From the very beginning, the GPT-NL curation pipeline was designed with scalability at its core.
Processing massive amounts of data requires efficient distribution of work across high-
performance computing (HPC) resources. To achieve this, each stage of the pipeline is built to
be parallelizable, ensuring that datasets can be split into hundreds of shards—each processed
by a separate task within an SLURM job array. This approach allows the system to handle
massive throughput, isolate faults (so a single failed shard can be retried independently), and
balance load dynamically, as tasks begin execution as soon as compute nodes become
available.

Each stage in the pipeline is also designed with independent resource configurations tailored
to its specific requirements. Lightweight stages, such as normalization, can run efficiently on
standard CPU nodes, while computationally heavier stages like Pll masking may require GPU
nodes and longer runtimes. These settings—number of tasks, memory, time limits, and
hardware specifications—are defined in YAML configuration files that serve as the single
source of truth for how a curation run is executed.

Versioning these configurations is critical to ensuring the pipeline’s robustness and
transparency. It allows every curated dataset to be traced back to the exact configuration that
produced it, provides clear documentation for auditing and decision-making, and facilitates
comparison between pipeline versions—highlighting how changes such as adjusted thresholds
or newly added stages affect results.

In essence, the combination of shard-level parallelism and declarative, versioned configuration
makes the GPT-NL pipeline both highly scalable and fully reproducible. This foundation
supports not only efficient execution but also transparent governance and continuous
improvement at scale.

3.1.4 Conclusion

With these architectural requirements defined, the next step is to select a framework that
supports this scalable, configurable, and auditable design. The following section compares
Datatrove and Data-Juicer, two candidate frameworks for implementing the curation pipeline,
and explains the rationale behind our choice.

) TNO Public 36/95

) TNO Public) GPTNL-DEL-4001

3.2 Comparison of Data Preprocessing

Frameworks

Following the architectural requirements outlined in the Data Curation Phase, the next step
was to identify a framework that could translate these design principles into a practical
implementation. The GPT-NL pipeline required a data processing system that could support
modular, stage-based execution, ensuring that each phase of curation remained
independent, auditable, and transparent. It also needed to enable fine-grained metadata
tracking across all transformations to allow full reconstruction of data lineage and provenance.
To maintain flexibility, the framework had to allow custom extensions for different quality
dimensions, accommodating both general and Dutch-specific modules. In terms of execution,
it had to handle massive parallelism on HPC infrastructure such as SURF’s SLURM cluster,
while providing robust fault tolerance and resumable execution to safeguard long-running
jobs. Finally, because the pipeline operates on sensitive national-level data, the chosen
framework needed to ensure security compliance and data governance throughout the
workflow.

Two frameworks emerged as the most viable candidates: Datatrove (developed by Hugging
Face) and Data-Juicer (developed by Alibaba). Both offer modular pipelines and distributed
execution, but they differ in complexity, integration flexibility, and metadata handling. The
following table summarizes the comparative analysis.

The following table summarizes the comparison between Datatrove and Data-Juicer across

key criteria.

Datatrove

Data-Juicer

Criteria

Pipeline Struc-
ture

Data Reader
Support

Heuristic Fil-
tering

Deduplication

Provides a flexible pipeline capable of sequen-
tially reading data files, applying multiple opera-
tions (read, write, filter), and saving
intermediate outputs. Each segment produces a
new dataset version, automatically appends
metadata, and stores removed data separately
for auditability. [Well-structured and trans-
parent design.

Supports multiple input formats out-of-the-box:
- Hugging Face datasets - IPC - CSV -
JSONL - Parquet - WARC [Broad native
compatibility ensures seamless integration with
large-scale corpora and web archives.

Includes a rich set of built-in heuristic modules:
- Gopher rules - C4 rules - Regexrules -
CodeParrot rules (custom implementation) [
Extensive modular filtering capabilities with
strong alignment to academic and HF stand-
ards.

Offers several deduplication methods: - Min-
Hash filter - Bloom filter - Exact string - Exact
substring [Comprehensive options for preci-
sion and auditability. [Currently slower on
very large datasets (hours), though determinis-
tic and reproducible.

Follows a similar stage-based ar-
chitecture to Datatrove, with mod-
ular reading, filtering, and writing
steps. Slightly less emphasis
on metadata management and
traceability.

Supports: - Hugging Face (lim-
ited) - CSV - JSON - Parquet -
Text [Automatically selects
loaders based on the most com-
mon file extension, which can be
problematic when handling mixed-
format datasets.

Provides Gopher rules and com-
mon text cleaning utilities (e.g., re-
move HTML tags, IPs, links,
emails). Offers good coverage
but less modular and less custom-
izable than Datatrove.

Implements: - MD5 hash - Min-
HashLSH - SimHash B Very
fast deduplication (seconds)

) TNO Public

37/95

) TNO Public) GPTNL-DEL-4001

Language De-
tection

Scalability

Ease of Use

Extensibility
(Custom Fil-
ters)

Documenta-
tion and De-
veloper
Support

Security and
Data Govern-
ance

Additional
Notes

Uses FastText with project-specific extensions
to detect Dutch and English. [Integrated fil-
tering ensures language consistency and full
metadata traceability.

[Excellent SLURM integration and proven
performance on HPC clusters. [Local paral-
lel execution requires Linux (not a target use
case).

@ Smooth user experience, widely adopted in
the Hugging Face ecosystem. [Strong log-
ging and resume functionality for long-running
processes. [l PyPI version still maturing;
GitHub version recommended.

[Highly flexible — custom modules (e.g., Pl
detection, harmful-language filters) can be inte-
grated with minimal boilerplate. Designed for re-
search extensibility.

Documentation could be expanded, but
codebase is clean and intuitive to extend. [
Clear logging and structured metadata simplify
debugging and development.

[Developed and maintained by the Hugging
Face community, ensuring transparent open-
source governance and full local execution. No
external API calls are required, making it suita-
ble for handling sensitive or confidential data.

B Provides detailed logs summarizing filtering
statistics (e.g., number of records removed,
time per step). [Transparent and auditable
workflow aligned with GPT-NL design princi-
ples. [Does not offer easy configuration for
filters via YAML by default.

Uses FastText for English/Chi-
nese detection (configurable).
Functional but less configurable
for multilingual European corpora.

[Integrates with SLURM and
[supports Ray for distributed
processing. Less tested at
scale in public HPC research en-
vironments.

More complex installation due
to numerous dependencies. [l

PyPI version also incomplete;
best used via GitHub.

Allows custom filters, though
implementation requires more
complex configuration. Documen-
tation provides examples but lim-
ited modularity.

[Comprehensive documenta-
tion with detailed developer guide.

Framework complexity slightly
higher and codebase harder to
navigate.

B Several components make
API calls to Alibaba Cloud serv-
ers by default, which raises poten-
tial compliance and privacy
concerns in restricted or national-
level research environments.

@ Provides configuration files for
parameter tuning. [Includes
tools to evaluate document quality
and token counts. Interface
for visualizing filtering impact is
less integrated.

Legend: 2 Strong feature,

feature. |

Moderate feature, Y Weak

3.2.1 Decision

After a thorough comparison of Datatrove and Data-Juicer, Datatrove showed it to best meet
the needs and requirements of the GPT-NL project. This decision follows directly from the
design rationale described in the Data Curation Phase. The modular, auditable, and stage-
based structure envisioned in the architecture aligns seamlessly with Datatrove’s execution
model. Each GPT-NL curation stage can be mapped directly to a Datatrove pipeline stage,
allowing independent execution, versioning, and metadata tracking. The latest Datatrove
release includes components such as the FineWebQuality Filter and C4Badword Filter, which
address many of GPT-NL’s processing needs. Its Document structure-storing text, id, and
metadata- matches GPT-NL’s requirement for accumulating contextual metadata across

) TNO Public 38/95

) TNO Public) GPTNL-DEL-4001

3.3

stages, ensuring full traceability of transformations. The framework’s native integration with
SLURM provides large-scale parallelism and fault-tolerant execution on HPC environments like
SURF’s Snellius cluster. In addition, Datatrove’s lightweight, Pythonic interface enables rapid
customization and the development of new filters without modifying the core codebase. Finally,
due to stringent data governance and cybersecurity requirements, Datatrove’s open-source
and fully auditable nature ensures compliance with TNO and SURF’s infrastructure security
standards, making it the most reliable and transparent choice for implementing the GPT-NL
curation pipeline.

In contrast, while Data-Juicer provides a wide range of built-in features and solid
documentation, its design introduces several drawbacks for the GPT-NL context. The
framework’s heavier dependency footprint and partial reliance on cloud-oriented components,
including API calls to Alibaba servers, raise security and compliance concerns for use in
restricted research environments. Moreover, its higher complexity and less transparent
metadata handling make it less aligned with the modular, auditable, and HPC-based design
required by GPT-NL.

Therefore, Datatrove was chosen as the processing backbone for the GPT-NL data
curation pipeline. It provides the optimal balance between flexibility, reproducibility,
performance, and maintainability—allowing the team to implement the architectural principles
of the GPT-NL curation framework effectively and securely.

Pipeline and Modules Repositories

The GPT-NL data curation framework is built around a modular architecture that separates
responsibilities across multiple repositories. Instead of keeping all logic in a single monolithic
codebase, the system is split into two coordinated parts, the Modules Repository and the
Pipeline Repository, that communicate via a Private PyPIl package registry. This separation
ensures maintainability, scalability, and clear version control, while also enabling collaborative
development across teams.

This approach follows the TNO coding principles, which emphasize modularity, testability,
reusability, and transparent workflows:

Principle How this applies to us

Readability Each module focuses on a single responsibility, making it easier to
understand and maintain.

Documentation Documentation stays close to the code it describes, improving clar-
ity and long-term usability.

Reproducibility Versioning modules independently allows pipeline runs to be repro-
duced precisely, even years later.

Reusability Self-contained modules can be reused across pipelines and pro-
jects without modification.

Testability Modules can be tested in isolation, enabling safe iteration without
breaking the full pipeline.

Shareability Isolated modules make open-sourcing straightforward once the pro-
ject is ready.

Reviewability Code reviews become simpler when changes are limited to specific
modules rather than a monolithic codebase.

) TNO Public 39/95

) TNO Public) GPTNL-DEL-4001

3.3.1

Although this split introduces some development overhead, the long-term benefits outweigh
the cost. The architecture remains clear, versioned, and easy to evolve, especially as GPT-NL
grows, and new components are added. The repositories involved are:

Repository Description

Pipeline Defines the orchestration logic: the order of stages,
how they run, how data flows between them, and how
tasks are executed on HPC infrastructure.

Modules Contains isolated, self-contained data processing
modules, each implementing a specific task such as
normalization or PII detection.

Private PyPl index Acts as the bridge between the two repositories by
hosting all module versions used by the pipeline.

Historically, both the pipeline and modules lived in a single monolithic repository (e.g., the
original Normalization repository), but that structure made it too easy to break reproducibility.
The current architecture solves this by enforcing strict separation between development
(modules) and execution (pipeline).

The Modules Repository: Focused, Reusable

Components

The Modules Repository contains all individual building blocks used throughout the GPT-NL
data curation pipeline. Each module is designed as a small, focused, and independently
versioned component that implements a specific transformation, normalization, filtering rule, or
analysis step. By keeping modules isolated and strictly separated from the pipeline itself, we
ensure that development remains agile, reproducible, and scalable. When a module improves,
whether through refined heuristics, expanded Pll detection, or new filtering logic, no change is
required in the pipeline code. The pipeline simply locks a specific version from the private PyPI
index, ensuring that past experiments can always be reproduced exactly.

This architectural choice avoids the pitfalls that come from mixing pipeline and module
development in a single repository. If they lived together, it would be tempting to reference
modules locally, bypassing proper versioning and breaking portability. Instead, each module is
self-contained, lives in its own folder, and follows the interface defined by HuggingFace
Datatrove’s PipelineStep. The pipeline, located in a separate repository, acts only as an
orchestrator that chains together whichever module versions are required for a particular
curation configuration.

[0 CA4 Filters: The C4 Filters module applies the heuristics described in the Colossal
Cleaned Common Crawl (C4) paper. It removes low quality or boilerplate web con-
tent by enforcing linguistic signals such as terminal punctuation, minimum word
counts, and minimum sentence counts. It also excludes pages containing templated
text such as “lorem ipsum”, curly braces that suggest code snippets, cookie notifica-
tions, or “Javascript” boilerplate. Additional checks remove lines with excessively
long words. Together these heuristics help eliminate the most common forms of
noisy web text. See the original paper: https://imir.org/papers/volume21/20-074/20-

074.pdf.

1 FineWeb: The FineWeb filters build upon the heuristics used in HuggingFace’s Fin-
eWeb dataset. The rules overlap with C4 but are tuned more aggressively toward
high quality web corpora. Lines without punctuation, lines with fewer than three
words, pages with fewer than five sentences, and pages containing structural

) TNO Public 40/95

) TNO Public) GPTNL-DEL-4001

) TNO Public

artifacts are removed. More information: https://huggingface.co/spaces/Hugging-
FaceFW/blogpost-fineweb-v1.

FTFY: The FTFY module applies Unicode normalization and encoding repair based
on the FTFY library. Its purpose is to clean up messy Unicode text that often arises
from mis-encoded web pages, script conversions, or scraping artifacts. Documenta-
tion: https://ftfy.readthedocs.io/en/latest/.

Gopher Modules: The Gopher filters draw inspiration from the data quality rules de-
scribed in DeepMind’s Gopher work. They apply structural and statistical checks to
detect unnatural, non-linguistic, or synthetic documents. These checks include sym-
bol density, average word length, word count, the presence of stop words, and fre-
quency of structural tokens such as bullet characters.

LLM Processing: The LLM Processing module provides an interface for sending text
through a selected language model during the curation pipeline. Users can specify a
model and prompt and receive the LLM generated output.

Machine Translation: This module wraps machine translation utilities using Hug-
gingFace models, currently centred on the large google/madlad400-10b-mt model.
The module is mainly used for converting multilingual input into Dutch.

NordicPile: The NordicPile filters enforce minimum thresholds for factors such as
document length, average line length, and average word length, and they limit the
proportion of digit only content. These heuristics catch types of low quality text that
often slip through other filters. Based on: https://arxiv.org/pdf/2303.17183.

Pll: The Pll module identifies and formats Personally Identifiable Information. It de-
tects structured numeric identifiers including phone numbers, IBANs, passport num-
bers, and account numbers, as well as names and organizations. The module
integrates with PrivateAl for more advanced detection and supports masking to re-
place detected PIl with normalized placeholders.

Punctuation Formatter: This module normalizes a broad range of Unicode punctua-
tion into standard ASCII style punctuation. It unifies quotation marks, dashes, ellip-
ses, and other variations that would otherwise fragment token distributions.

Quality Analysis: The Quality Analysis module evaluates text quality using perplex-
ity scores derived from KenLM language models. High perplexity may indicate unnat-
ural, repetitive, or incoherent text.

Regex Formatter: The Regex Formatter applies pattern-based substitution, cleanup
of boilerplate artifacts, format normalization, and other transformations through regu-
lar expressions.

TNO Filters: The TNO Filters module consists of custom quality heuristics adapted
to the needs of the GPT-NL project. These filters focus online level and paragraph
level structure such as enforcing minimum and maximum lengths and evaluating av-
erage line statistics. Inspired by the DataJuicer framework: https://github.com/mod-
elscope/data-juicer.

Toxic Language Detection: This module filters out toxic or harmful content using
models such as IMSyPP/hate_speech_nl and tomh/toxigen_hatebert. It detects hate
speech, harassment, and other forms of harmful language.

Whitespace Formatter: The Whitespace Formatter normalizes all whitespace char-
acters to the standard Unicode space (U+0020). It replaces tabs, irregular spacing,

41/95

) TNO Public) GPTNL-DEL-4001

3.3.2

unusual separators, and non-breaking spaces. Every module in this repository is
published to a private PyPI index with semantic versioning.

When the pipeline is executed, it installs the versions specified in its configuration. Older
versions remain fully accessible so that historical pipelines and experiments never break. By
separating modules from the pipeline, the GPT-NL project achieves a balance between
flexibility and stability. Module development can proceed rapidly and independently, while the
pipeline remains a clean and deterministic definition of how those modules are assembled.

The Pipeline Repository: Orchestrating the
Workflow

The Pipeline Repository provides an orchestration layer that connects all components of the
GPT-NL data curation process. While the Modules Repository manages the detailed
processing logic, the pipeline defines how data flows from raw input to curated output, which
module versions are used, how stages are configured, and how these stages are executed
across HPC systems.

A key idea behind this design is the strict separation between orchestration and processing.
The pipeline itself performs no filtering or transformation; each stage delegates its core logic to
a versioned module imported from the private PyPI registry. This keeps the pipeline stable and
ensures that improvements in individual modules do not require changes in pipeline code.

Pipeline runs are fully defined through YAML configuration files, which act as declarative
blueprints for a workflow. These files describe the sequence of stages, the exact module
versions to use, stage-specific parameters, and the structure of input and output folders.
Because configuration files are versioned, curated datasets can always be linked back to the
exact settings that produced them.

The pipeline is designed to scale naturally to high-performance computing (HPC) clusters.
For large datasets, it expands each stage into parallel tasks, configures SLURM resource
requirements, and generates job scripts. This includes CPU/GPU allocation, memory settings,
batching strategies, and job dependencies. Logs and intermediate data are stored predictably,
supporting monitoring and debugging of long-running workloads.

Beyond execution, the pipeline integrates with tools for analysing energy usage, supports
parquet validation, and enables dataset quality comparisons. A structured changelog records
major adjustments such as module version updates or the introduction of new stages, ensuring
a clear history of how the workflow evolves.

Together, these features make the Pipeline Repository the operational backbone of GPT-NL'’s
data curation framework: responsible for workflow design, reproducibility, scalability, and
structured execution.

) TNO Public 42/95

) TNO Public) GPTNL-DEL-4001

3.3.3 Understanding the Architecture

Develop
and
Iterate

/ MODULES \

Repository

[Wﬂ] Prot:g;mg &;ZYL]
Fineweb T:gzg::zn Ragex

Filter
(5] (pumamper] [roce] Publish

Filter Versioning

Version 1.0

Private
PiPY
Registry

Version 1.1

Contains

Version 2.0

=

Schedule
and
Launch

/ PIPELINE \ Import

Repository

SLURM
Script

Data Splitting Pll Pipeline Configuration

Import Filters Creates

Adjust Input Parameters

i\ Import
Packaged Job
(Serialized Python
Object)

The diagram above illustrates how the distinct parts of the GPT-NL curation framework
connect. It shows the full life cycle of a module: how it is developed, published, integrated into
the pipeline, and executed at scale on Snellius. Each part has a clear role, and the arrows
represent the flow of both code and data.

Normalization Harmful Language Define
Adjust SLURM Parameters

Heuristic Filters Deduplication

\d

Figure 8: Overview Pipeline and Modules repository

The process begins in the Modules Repository, where components such as filters, formatters,
translators, or quality evaluators are developed and evaluated. Once a module reaches a
stable state, it is published to the Private PyPI Registry with a version number, which becomes
the authoritative source for the pipeline.

The Pipeline Repository imports these modules by name and version. The YAML
configuration file specifies the sequence of stages, the module versions to use, and the
resource requirements for running the workflow. The pipeline acts as the blueprint, tying all
modules and configurations together.

From this configuration, the pipeline generates a packaged job with the selected modules and
settings. It also produces the corresponding SLURM script, which defines how the job should
run on Snellius, including parallelization strategy, memory limits, CPUs, GPUs, and
dependencies. These scripts are submitted to the HPC system, which schedules and launches
tasks at scale.

Finally, the data flows through the system stage by stage, with each stage applying
transformations defined by its module. Because module versions and pipeline configurations
are pinned, the resulting dataset is fully traceable. Anyone can reconstruct the exact
environment and processing logic used in any past run.

) TNO Public 43/95

) TNO Public) GPTNL-DEL-4001

3.3.4 Conclusion

The separation of the Modules Repository and the Pipeline Repository is a deliberate
architectural choice. The modules define what is done — the individual transformations, filters,
and analyzes. The pipeline defines how these components are executed — their order,
configuration, and scaling across HPC infrastructure.

Together, they form a future-proof ecosystem that supports rapid development, transparent
versioning, and large-scale execution. As GPT-NL evolves, this structure ensures that new
processing steps or improvements can be integrated cleanly without disrupting the entire
system.

3.4 Curation Stages in Datatrove

This page explains how GPT-NL data curation stages are implemented using Datatrove,
building on the modular repository structure described in Pipeline Modularization and leading
toward the execution logic explained in Executing a Pipeline.

It focuses on how each curation stage maps to Datatrove components, how configurations are
defined through YAML files, and what parameters can be customized per stage.

The YAML configuration, in conjunction with the Python package jsonargparse, plays a
significant role in defining the structure of the pipeline stages. This design ensures maximum
flexibility and ease of use. The objective is to provide users with full control over pipeline
execution through the YAML file, including the ability to specify which stages to run, which
modules to activate within each stage, and the corresponding input parameters and threshold
values. Below you can find an overview of the example .yaml file, showing how the distinct
stages are invoked, and how the input arguments of each stage are accessed through the file:

stages:
- stage: data_splitting
input_folder: fest-data/0. raw
hpc_n_tasks: "1"
hpc_time: "00:20:00" # should take max 4.86h
hpc_partition: "genoa"
- stage: string_normalization
ParquetReader:
For more information about the reader https://github.com/huggingface/datatrove/blob/v0.3.0/src/da
tatrove/pipeline/readers/parquet.py
paths_file: "null" # If define specific parquet file is used instead of a whole folder
limit: "-1" # Defines the number of documents to run the pipeline on
skip: "0" # Skip the first n documents
recursive: "false" # if recursive is set to true glob_patterns needs to be set to null (internal bug...)
glob_pattern: "*parquet"
shuffle_files: "false”
hpc_n_tasks: "4"
hpc_time: "00:20:00" # should take max 4.86h
hpc_partition: "genoa"”
FTFYFormatter:
normalization: "NFC"
- stage: heuristic_filtering
hpc_n_tasks: "4"
hpc_time: "00:20:00" # should take max 4.86h
hpc_partition: "genoa”
LanguagefFilter:
languages: [
"en", # English
"nl", # Dutch
"da", # Danish

) TNO Public 44/95

) TNO Public) GPTNL-DEL-4001

"sv", # Swedish
"af", # Afrikaans
"fy", # Frisian

"de", # German

1
language_threshold: "0.65"
backend: "ft176"
NordicPileQualityFilter:
max_digit_fraction: "0.2"
min_n_char: "50"
min_mean_med_char: "9"
min_mean_med_word: "2.1"
GopherQualityFilter:
min_doc_words: "null"
max_doc_words: "null"
min_avg_word_length: "null"
max_avg_word_length: "null"
max_symbol_word_ratio: "0.1"
max_bullet_lines_ratio: "0.9"
max_ellipsis_lines_ratio: "0.3"
max_non_alpha_words_ratio: "0.8"
min_stop_words: "2"
GopherRepetitionFilter:
dup_line_frac: "0.35"
dup_para_frac: "0.35"
dup_line_char_frac: "0.2"
dup_para_char_frac: "0.2"
top_n_grams: [[2, 0.25], [3, 0.23], [4, 0.21]]
dup_n_grams:
115, 0.20], [6, 0.19], [7, 0.18], [8, 0.17], [9, 0.16], [10, 0.15]]
- stage: pii_masking
hpc_time: "04:00:00"
hpc_partition: gpu_a100
hpc_reservation: gpt-nl
hpc_n_tasks: "4" # Number of data trove tasks with split up files
hpc_gpus: "1"
hpc_cpus_per_task: "16" # Need 16 cores (per private Al GPU instance - actually needs 64 but CPU
affinity warnings can be ignored with GPU instance)
#hpc_mem_per_cpu_gb: "1" # 120/128 = 0.9375
hpc_mem_per_cpu_gb: "4" # Need 64GB ram per private Al instance, 64/16 = 4
Start multiple containers with different ports and wait healthy containers
PlI_PrivateAl_TNO:
chunk_pool_workers: 32 # Number of workers for chunks
doc_pool_workers: 76 # Number of workers for documents
request_batch_size: 64 # Chunks of the same document to be sent in the same request to PAI
batch_size: 16 # Documents to handle in the same batch
api_endpoint: "http://localhost:808{CUDA_VISIBLE_DEVICES}/" # Template for endpoint per GPU i
nstance (uses task array index and comma-separated indexes from CUDA_VISIBLE_DEVICES)
replacement_type: "MARKER" # GPU instance does not support SYNTHETIC
synthetic_replacement_chance: 7.00 # Replace 100% of markers with own synthetic data
synthetic_replacement_locale: "nl-NL" # Depending on the dominant language use : English en-GB,
Dutch nl-NL
- stage: toxic_language_detection
hpc_partition: gpu_h100
hpc_reservation: gpt-n/
hpc_gpu: "1"
hpc_time: "00:20:00" # should take max 4.86h
hpc_cpus_per_task: "4" # h100: 1/4 node = 16 cores + 1 GPU + 180 GIB
hpc_mem_per_cpu_gb: "15"
hpc_n_tasks: "4"
- stage: deduplication
hpc_n_tasks: "4"
hpc_partition: "genoa"

) TNO Public 45/95

) TNO Public) GPTNL-DEL-4001

3.4.1

3.4.11

Types of arguments:

0 hpc_*: Arguments prefixed with hpc* correspond to HPC configuration parameters that
are essential for integration with the SLURM workload management framework. For
more information on the hpc_* arguments, please read Executing a Pipeline.

0 rest: All parameters that do not begin with the hpc_ prefix are specific to the modules
within each stage.

By using the YAML configuration file together with the jsonargparse library, it is possible not
only to adjust individual parameters but also to enable or disable specific modules or module-
specific filters. This can be achieved by assigning a value of NULL to the corresponding
parameter or by setting the entire module to NULL.

The provided YAML file illustrates that each stage defines both the execution of the curation
process and the set of modules to be included. The following sections provide a detailed
explanation of the construction and design principles of the Stage module.

Integration of DataTrove in the Stage class

The Datatrove framework forms the core of the curation pipeline. It defines the implementation
and execution of filters and formatters — referred to here as modules — and governs how
these modules are orchestrated within a pipeline, whether locally or on an HPC cluster.
Consequently, when defining stages, it is essential to align with the Datatrove structure to
ensure optimal integration and interoperability within the pipeline.

Structure of the Stage class

Each GPT-NL curation stage is implemented as an independent Datatrove stage, wrapped in
a base Stage class. These stages correspond directly to the conceptual architecture outlined
in the Data Curation Phase — such as normalization, language filtering, PIl masking, and
deduplication, but are now instantiated and configurable within the Datatrove framework.

Each stage:

0 Is implemented in a separate Python class (in gptnl_data_curation_pipe-
line/stages/).

[0 Each stage regroups all the corresponding modules. For example, the heuristic filtering
stage consolidates multiple filtering mechanisms, including the LanguageFilter, Nor-
dicPileFilter, and GopherQualityFilter, among others. Similarly, the normalization stage
comprises several formatting modules such as FTFYFormatter, PunctuationFormatter,
and WhitespaceFormatter.

1 Defines which Datatrove components (readers, filters, writers) are executed.

71 Supports both local and HPC execution modes through the Stage base class.

00 The system is fully configurable through YAML parameters. Leveraging the Python
library jsonargparse, both the input of submodules within a stage and the parameters
of the stage itself are readily accessible and modifiable. This approach ensures a high
degree of flexibility in YAML-based configuration, allowing precise control over stage-
level and module-level settings.

01 The Stage class encapsulates the modules, their input parameters, and the HPC-spe-
cific parameters to construct a Datatrove Pipeline executor (local or hpc), as illustrated
in the mock code below. In this example, stage spec contains all modules to be

) TNO Public 46/95

) TNO Public) GPTNL-DEL-4001

executed along with their initialization arguments. Additional input arguments for the
PipelineExecutor—such as those for LocalPipelineExecutor or SlurmPipelineExecu-
tor—are parameters specific to the pipeline configuration. For the SLURM-based ex-
ecutor, invoking executor.run() generates an SLURM script that includes all necessary
parameters required by the SLURM workload management framework. Furthermore,
all modules are serialized into a pickle file, which can subsequently be accessed and
loaded independently on multiple nodes. This enables parallel data curation across the
cluster while ensuring that all nodes utilize identical module configurations. Each stage
generates its own Slurm script. Within a .yaml file, the stages run in separate scripts,
each with a dependency that ensures it waits for the previous stage’s script to complete
successfully.

def run_stage(
self,
job_name: str | None = None,
pipeline_config_path: str| None = None,
depending_slurm_jobs: SlurmPipelineExecutor | None = None,
) -> None | SlurmPipelineExecutor:
stage_spec = self.get_stage_spec()
if not os.path.exists(self.logs_folder):
os.makedirs(self.logs_folder)
if pipeline_config_path:
copyfile(
src=pipeline_config_path, dst=self.logs_folder / "pipeline_config.yam!"

with open(self.logs_folder /"stage params.yaml", "w") as f:
yaml.dump(vars(self), f)

if self.processing_type == ProcessingType.local:

executor = LocalPipelineExecutor(
pipeline=stage_spec,
logging_dir=str(self.logs_folder),
workers=-17,
tasks=17,
)
executor.run()
else:
venv_path = Path(__file_).parents[7] /"venv" /"bin" /"activate"

ifjob_name is None:
job_name = self.__class__._ _name__

sbatch_args = self.get_sbatch_args()

executor = SlurmPipelineExecutor(
job_name=job_name,
pipeline=stage_spec,
tasks=self.hpc_n_tasks,
cpus_per_task=self.hpc_cpus_per_task,
mem_per_cpu_gb=self.hpc_mem_per_cpu_gb,
time=self.hpc_time,
workers=-17,
logging_dir=str(self.logs_folder),
slurm_logs_folder=str(self.slurm_logs_folder),
sbatch_args=sbatch_args,
randomize_start_duration=3,
partition=self.hpc_partition,
mail_type=self.mail_type,
mail_user=self.mail_user,

) TNO Public 47/95

) TNO Public) GPTNL-DEL-4001

depends=depending_slurm_jobs,
tasks_per_job=1,
max_array_size=30001,

)

This correction is necessary because the initialization of qos in the
constructor does not work (bug in DataTrove).

executor.qos = None

return executor

Furthermore, each stage spec list is wrapped by the Datatrove ParquetReader and
ParquetWriter modules to handle the reading and creation of Parquet databases. For each
module in the yaml file, the reader and writer module can be explicitly defined with overwriting
input arguments.

def set_up_modules(self, args: Namespace):

"""Construct the modules
args = self.set_up_base_module(args)

First, add the Parquet reader
if "ParquetReader" in self._base_module:
parquet_reader_module = self._base_module['ParquetReader"]
self.active_modules.append(
parquet_reader_module["cls"](
**vars(args.get("ParquetReader", Namespace()))
)
)

Then, add the modules from _set_up_modules
self._set_up_modules(args)

Finally, add the Parquet writer
if "ParquetWriter" in self._base_module:
parquet_writer_module = self._base_module["'ParquetWriter"]
args["ParquetWriter"].output_folder = str(self.output_folder)
self.active_modules.append(
parquet_writer_module["cls"](
**vars(args.get("ParquetWriter", Namespace()))
)
)

where the ParrquetReadr and ParquetWriter can take the following arguments:

class ParquetReader(BaseDiskReader):

) TNO Public

"""Read data from Parquet files.

Will read each batch as a separate document.

Args:

data_folder: a str, tuple or DataFolder object representing a path/filesystem
paths_file: optionally provide a file with one path per line (without the "data_folder prefix) to read.
limit: limit the number of documents to read. Useful for debugging
skip: skip the first n rows
batch_size: the batch size to use (default: 1000)
read_metadata: if True, will read the metadata (default: True)
file_progress: show progress bar for files
doc_progress: show progress bar for documents
adapter: function to adapt the data dict from the source to a Document.

Takes as input: (self, data: dict, path: str, id_in_file: int | str)

self allows access to self.text_key and self.id_key

48/95

) TNO Public) GPTNL-DEL-4001

Returns: a dict with at least a "text" and "id" keys

text_key: the key containing the text data (default: "text").

id_key: the key containing the id for each sample (default: "id").

default_metadata: a dictionary with any data that should be added to all samples' metadata

recursive: whether to search files recursively. Ignored if paths_file is provided

glob_pattern: pattern that all files must match exactly to be included (relative to data_folder). Ignor
ed if paths_file is provided

shuffle_files: shuffle the files within the returned shard. Mostly used for data viz. purposes, do not u
se with dedup blocks

class ParquetWriter(DiskWriter):
"""Write data to Parquet files.

Args:
output_folder: a str, tuple, or DataFolder object representing the output path/filesystem.
output_filename: optional custom filename for the output file. Defaults to "${rank}.parquet".
compression: compression algorithm to use. Options: "snappy", "gzip", "brotli", "Iz4", "zstd". Default
: "snappy".
adapter: function to adapt the data dict from a Document to the Parquet format.
Takes as input: (self, data: dict)
Returns: a dict suitable for writing to Parquet.
batch_size: number of rows per batch when writing. Default: 1000.
expand_metadata: if True, expands metadata fields into separate columns. Default: False.
max_file_size: maximum size of each output file in bytes. Default: 5GB.
schema: optional schema definition for the Parquet file. If None, inferred from data.

Additional wrappers for filters or mappers are also defined. We discuss them in the Section
DataTrove wrappers for Filters and Formatters.

3.4.1.2 Standardized HPC-parameters for the Stage class

The parameters of the Stage class define how the curation step is executed by including the
following arguments. For detailed information on HPC-related parameters, refer to Executing
a Pipeline.

processing_type: ProcessingType
"""Type of processing: local or on the hpc.

input_folder: Path
"""Path to the data input directory."""

output_folder: Path
"""Path to the data output directory."™"

logs_folder: Path
"""Path to the logs directory.

slurm_logs_folder: Path
"""Path to the slurm logs directory.

hpc_n_tasks: int
"""Total number of tasks to run on HPC (comply with execution time limit)""

hpc_time: str
"""Time limit for job"™

hpc_partition: str

) TNO Public 49/95

) TNO Public) GPTNL-DEL-4001

hpc_cpus_per_task: int
hpc_mem_per_cpu_gb: int
hpc_gpus: int
hpc_reservation: str| None
hpc_exclude: str| None
hpc_nice: int | None
hpc_ear: bool

mail_type: str
BEGIN, END

mail_user: str | None

env_commands: str

3.4.2 Stage Overview and Subcomponents
Below, each GPT-NL curation stage is listed with:

Purpose — what the stage does.
Datatrove/External/Created components used — readers, filters, models, writers.
Configurable parameters — expected YAML fields.

3.4.2.1 Data Splitting

Description: DataSplittingStage is a processing stage that takes a directory of Parquet files
and splits them into smaller Parquet files based on configurable constraints. Its primary
purpose is to manage file sizes and optionally break down very large rows into smaller chunks
for easier handling.

O O O

File Splitting by Size: You can specify a target maximum file size (max_file_size). The stage
uses this value to decide when to start writing to a new file. Note that this is not an exact limit
because the size check occurs before writing a batch of rows. If files exceed the target size,
reducing batch_size helps improve alignment with the limit.

Row Splitting: If rows are very large, you can split them into smaller chunks using
line_chunk_size. This performs simple string chunking (which may truncate words at
boundaries) to reduce row length and improve file size control.

Batch Control: The batch_size parameter determines how frequently data is written to disk.
Smaller batch sizes lead to more frequent size checks and better adherence to the target file
size.

) TNO Public 50/95

) TNO Public) GPTNL-DEL-4001

File Size Margin: Because size checks happen before writing a batch, actual file sizes can
exceed the target by a margin proportional to line_length * batch_size. For example, with very
long rows and large batch sizes, the overshoot can be significant.

Use Cases:

Preparing large datasets for distributed processing by splitting them into manageable chunks.
Reducing memory and storage overhead when dealing with extremely large rows. Controlling
output file sizes for downstream systems that have size constraints.

Components: Datatrove ParquetReader, Datatrove ParquetWriter
Config Parameters:
- ‘'max_file_size’: int

"""Maximum size per split file."""

- "line_chunk_size’: int | None
"""Number of characters to split the input rows into shorter rows. If None, no splitting of rows is done.

- "batch_size™: int
"""How frequently to write to disk (and check file size, affecting file size margin).

code: In this case, the ParquetReader and ParquetWriter are overridden because their input
arguments need to be specified each time in the YAML file.

def get_stage_spec(self):

reader = ParquetReader(
data_folder=str(self.input_folder),
file_progress=True,
doc_progress=True,
Logs may be present in a subdirectory of self.input_folder.
As all input files are in the root of self.input_folder,
we prevent log files being read by ParquetReader by setting recursive to False
recursive=False,
glob_pattern="*.parquet",
text_key="text",
id_key="extraction_uid",

)

writer = ParquetWriter(
output_folder=str(self.output_folder),
max_file_size=self.max_file_size,
batch_size=self.batch_size,
expand_metadata=True,
adapter=gptnl_parquet_writer_adapter,

)

if self.line_chunk_size is not None:
return |
reader,
TextChunkerStep(chunk_size=selfline_chunk_size),
writer,
]
else:
return |
reader,
writer,

]

) TNO Public 51/95

) TNO Public) GPTNL-DEL-4001

3.4.2.2 Text Normalization

Description: StringNormalizationStage is a processing stage designed to normalize and clean
text data by applying a sequence of formatting modules. It ensures that text is standardized for
downstream tasks such as NLP or data analysis. The stage uses an ordered set of formatters,
each responsible for a specific aspect of normalization:

Components:

0 FTFYFormatter
[0 PunctuationFormatter
0 WhitespaceFormatter

Config Parameters:

FTFYFormatter:
normalization: "NFC" # Unicode normalization form. Options: [NFC', 'NFKC', 'NFD', 'NFKD']

PunctuationFormatter:

punctionation_unicode: dict[old_string, new_string] # Mapping of Unicode punctuation to normalized A
SCII equivalents. # Default mapping includes common replacements: # Chinese/Japanese punctuation
— Western equivalents # Curly quotes — straight quotes # Special symbols — standard characters

default: {

"Mt # Chinese comma — comma

", ":".", # Chinese period — period

", ":"", # |deographic comma — comma

.+ ", # Double low quote — double quote
e 4 Right double quote — double quote
w4 Left double quote — double quote
"«": "™, # Left angle quote — double quote
"»": "™, # Right angle quote — double quote
"1 "™, # Full-width quote — double quote
"] ":™, # Closing quote — double quote
" I":™ # Opening quote — double quote
" {":", # Opening angle quote — double quote
") ":"™, # Closing angle quote — double quote
"o # Acute accent — apostrophe
:"", # Ratio sign — colon
: """ # Full-width colon — colon
""" # Full-width question mark — question mark
et # Full-width exclamation — exclamation
" (":"(", # Full-width left parenthesis — (

") ":")", # Full-width right parenthesis —)
"ot # Full-width semicolon — semicolon
""" # En dash — hyphen

"""t # Em dash — spaced hyphen

. "t # Full-width period — period + space
:"~", # Full-width tilde — tilde

e # Right single quote — apostrophe
"L # Ellipsis — three dots

—":"." # Heavy dash — hyphen

" (":"<", # Opening angle bracket — <

") ":">" # Closing angle bracket — >

" [":"[", # Opening bracket — [

"] ":"]", # Closing bracket —]

"9%": "%", # Full-width percent — percent
"p-":"-" # Bullet arrow — hyphen

) TNO Public 52/95

) TNO Public) GPTNL-DEL-4001

WhitespaceFormatter:
Various_whiteSPACE: dict[str] # Set of whitespace characters to normalize. If not provided, defaults to

default: { " n’ "\U200b", "II’ u", "II’ lv{ch:J]u’ non }

Code:
class StringNormalizationStage(Stage):

def __init__ (self):
super().__init__()
self._modules = OrderedDict(
{
"FTFYFormatter": {
"cls": FTFYFormatter,
"default": {"normalization": "NFC"},
b
"PunctuationFormatter": {"cls": PunctuationFormatter, "default": {}},
"WhitespaceFormatter": {
"cls": WhitespaceFormatter,
"default": {},
b
}
)

3.4.2.3 Heuristic Filtering Stage

Description: In this case, the heuristic filtering stage does include all the heuristic filters such
as the Gopher rules, Nordic Pile but also the LanguageFilter. The aim of this stage is to remove
any data points that do not fulfill the criteria set by the heuristic filters/language filter.

Components:
[J LanguageFilter
01 GopherQualityFilter
[0 GopherRepetitionFilter

1 NordicPileQualityFilter
Config Parameters:

LanguagefFilter:
languages: # Languages to Keep
[
"en", # English
"nl", # Dutch
"da", # Danish
"sv", # Swedish
"af", # Afrikaans
"fy", # Frisian
"de", # German
1
language_threshold: "0.65" # Minimum confidence score for language detection
backend: "ft176" # Language detection model to use (FastText 176 languages)

NordicPileQualityFilter:
max_digit_fraction: "0.2" # Maximum fraction of digits allowed in the text
min_n_char: "50" # Minimum number of characters required in a document
min_mean_med_char: "9" # Minimum average median character length per line
min_mean_med_word: "2.1" # Minimum average median word length per line

) TNO Public 53/95

) TNO Public) GPTNL-DEL-4001

GopherQualityFilter:
min_doc_words: "null" # Minimum number of words in a document (null = no limit)
max_doc_words: "null" # Maximum number of words in a document (null = no limit)
min_avg_word_length: "null" # Minimum average word length (null = no limit)
max_avg_word_length: "null" # Maximum average word length (null = no limit)
max_symbol_word_ratio: "0.1" # Maximum ratio of symbol-only words
max_bullet_lines_ratio: "0.9" # Maximum ratio of bullet-point lines
max_ellipsis_lines_ratio: "0.3" # Maximum ratio of lines containing ellipses (...)
max_non_alpha_words_ratio: "0.8" # Maximum ratio of words without alphabetic characters
min_stop_words: "2" # Minimum number of stop words required in the document

GopherRepetitionFilter:

dup_line_frac: "0.35" # Maximum fraction of duplicate lines allowed
dup_para_frac: "0.35" # Maximum fraction of duplicate paragraphs allowed
dup_line_char_frac: "0.2" # Maximum fraction of duplicate characters in lines
dup_para_char_frac: "0.2" # Maximum fraction of duplicate characters in paragraphs
top_n_grams: [[2, 0.25], [3, 0.23], [4, 0.21]] # Thresholds for top repeated n-grams (n, max ratio)
dup_n_grams: [

[5, 0.20],

[6, 0.19],

[7,0.18],

[8,0.17],

[9, 0.16],

[10, 0.15],

] # Thresholds for duplicate n-grams (n, max ratio)

Code:

class HeuristicFilteringStage(Stage):

def _init__ (self):

super().__init__()
self._modules = OrderedDict(

"LanguagefFilter": {
"cls": LanguageFilter,
"default": {

"languages": [
"en", # English
"nl", # Dutch
"da", # Danish
"sv", # Swedish
"af", # Afrikaans
"fy", # Frisian
"de", # German

]
h
}

"NordicPileQualityFilter": {
"cls": NordicPileQualityFilter,
"default": {},

3

"GopherQualityFilter": {

"cls": GopherQualityFilter,

"default": {

"min_doc_words": None,
"max_doc_words": None,
"min_avg_word_length": None,
"max_avg_word_length": None,
"max_symbol_word_ratio": 0.7,
"max_bullet_lines_ratio": 0.9,
"max_ellipsis_lines_ratio": 0.3,

) TNO Public 54/95

) TNO Public) GPTNL-DEL-4001

"max_non_alpha_words_ratio": 0.8,
"min_stop_words": 2,

2

GopherRepetitionFilter": {
"cls": GopherRepetitionFilter,
"default": {

"top_n_grams": [[2, 0.25], [3, 0.23], [4, 0.21]],
"dup_n_grams": [

[5, 0.20],

[6, 0.19],

[7,0.18],

[8,0.17],

[9, 0.16],

[70, 0.15],

}

3.4.2.4 PIl Masking

Description: The PIl (Personally Identifiable Information) module is designed to detect and
handle sensitive information in text data. Its primary goal is to identify entities such as names,
addresses, phone numbers, email addresses, and other personal identifiers, and then apply
configurable strategies to protect privacy.

Components:
PIl_PrivateAl_TNO

Config Parameters:

PrivateAlFormatter:
category: " # Category for the formatter (skipped in defaults)
api_endpoint: "http://localhost:8080/" # API| endpoint for PrivateAl service
replacement_type: "SYNTHETIC" # Replacement strategy (synthetic data generation)
entity _grouping_window: 4500 # Window size for grouping detected entities
entity types: [] # Entity types to detect (skipped in defaults)
check_public_figure: true # \Whether to check for public figures
record_processed_entities: true # \Whether to record processed entities
request_batch_size: 7 # Number of requests per batch
chunk_pool_workers: 32 # Number of workers for chunk processing
doc_pool_workers: 32 # Number of workers for document processing
api_endpoint_attempt_delay: 70 # Delay between API retry attempts (seconds)
max_api_endpoint_attempts: 5 # Maximum number of API retry attempts
verbose: false # Enable verbose logging
validator: null # Optional validator function
public_figure_csv_files: [] # List of CSV files for public figures
synthetic_replacement_strategies: {} # Strategies for synthetic replacements
synthetic_replacement_locale: "nl-NL" # Locale for synthetic replacements
synthetic_replacement_chance: 1.0 # Probability of applying synthetic replacement

Code:
class PlIMaskingStage(Stage):
def __init__ (self):
super().__init__()
self._modules = OrderedDict(

"PII_PrivateAl_TNO": {

) TNO Public 55/95

) TNO Public) GPTNL-DEL-4001

3.4.2.5

"cls": PII_PrivateAl_TNO,

"default": {
"api_endpoint": "http://localhost:8080/",
"replacement_type": "SYNTHETIC",
"entity_grouping_window": 4500,
"check_public_figure": True,
"record_processed_entities": True,
"request_batch_size": 1,

h

"skip": {"entity_types", "category"},
h

}

)

Output: Pll replaced with synthetic placeholders; metadata stores entity type and position.

Harmful and Toxic Content Filtering

Description: The ToxicLanguageDetection module is designed to identify and flag toxic or
offensive language in text data. It leverages pre-trained models specialized for detecting hate
speech and offensive content in both Dutch and English.

Components:
ToxicLanguageDetection
Config Parameters:

ToxicLanguageDetection:

threshold: 0.995 # The toxicity score above which a chunk is toxic
max_chunk_length: 256 # Maximum length of a text chunk to process at once
device: null # Device to run the model on (e.g., "cpu" or "cuda")
supported_languages:

- "nl" # Dutch

-"en" # English
nitk_language_map:

nl: "dutch” # Mapping for NLTK language processing

en: "english"
model_label_map:
nl:

LABEL_O: "Acceptable"
LABEL_1: "Inappropriate"
LABEL_2: "Offensive"
LABEL_3: "Violent"

en:
LABEL_0: "Acceptable"
LABEL_1: "Toxic"

Code:

class ToxicLanguageDetectionStage(Stage):

def __init__(self):
super().__init_ ()
self._modules = OrderedDict(

"ToxicLanguageDetection": {
"cls": ToxicLanguageDetection,
"default"; {

"threshold": 0.995,

) TNO Public 56/95

) TNO Public) GPTNL-DEL-4001

"max_chunk_length": 256,

Output Metadata: Adds toxicity_score and category labels.

3.4.2.6 Deduplication

Description: The Deduplication Stage is responsible for identifying and removing duplicate or
near-duplicate items from the dataset. This process ensures data quality and reduces
redundancy before downstream tasks such as indexing or analysis. Because deduplication
involves computing hashes, comparing n-grams, and processing large volumes of data, it is
typically the longest-running stage in the pipeline. To improve efficiency and fault tolerance,
this stage is split into multiple sub-stages/SLURM scripts, each handling a portion of the

workload.

Stage 1: Signature Generation

[R

Component: ParquetReader — MinhashDedupSignature
Function: Reads input files and computes MinHash signatures for each document.

Parallelization: Runs as multiple tasks (self.hpc_n_tasks), each processing a subset
of files.

Output: Stores signatures in intermediate/signatures.

Stage 2: Bucket Assignment

0 B R O R O

Component: MinhashDedupBuckets

Function: Groups signatures into hash buckets for efficient duplicate detection.
Parallelization: Number of tasks equals num_buckets from minhash_config.
Output: Buckets saved in intermediate/buckets.

Dependency: Starts after Stage 1 finishes.

Stage 3: Clustering

O I B R O A

Component: MinhashDedupCluster

Function: Combines bucket results to identify clusters of duplicates.
Parallelization: Single task (global clustering).

Output: IDs of duplicates stored in intermediate/remove_ids.
Dependency: Starts after Stage 2.

Stage 4: Filtering

-

O O O

Component: ParquetReader — MinhashDedupFilter — ParquetWriter

Function: Reads original data and removes duplicates, keeping one representative
per cluster.

Parallelization: Same number of tasks as Stage 1 for consistency.
Output: Deduplicated dataset + exclusion list in intermediate/removed.
Dependency: Starts after Stage 3.

Components (Datatrove):

) TNO Public

I O B |

MinhashDedupSignature
MinhashDedupBuckets
MinhashDedupCluster
MinhashDedupFilter

57/95

) TNO Public) GPTNL-DEL-4001

Config Parameters:

DeduplicationStage:
Number of hash buckets used to group similar items.
More buckets reduce collisions but increase memory usage.
num_buckets: 74

Number of hash values stored per bucket.
Higher values improve granularity but use more memory.
hashes_per_bucket: 8

Size of n-grams used for hashing.
Larger n-grams capture more context but may miss small changes.
n_grams: 5

Whether to use 64-bit hashes instead of 32-bit.
Improves uniqueness and reduces collisions at the cost of memory.
use_64bit_hashes: frue

Code:

class DeduplicationStage(Stage):

bit_precision: int
"""Whether to use 64-bit hashes for the Minhash config. Better precision means fewer false
positives (collisions)."™"

def __init__ (self):
""Initialize the pipeline stage.

Args:
default_intermediate_folder (str, optional): default folder to use for intermediate resul
ts. Defaults to "".

super().__init__()
self._modules = OrderedDict(

"MinhashConfig": {
"cls": MinhashConfig,
"default"; {
"num_buckets": 14,
"hashes_per_bucket": 8,

"n_grams": 5,
}7
}
}
)

Execution: Multi-step process (signature — buckets — cluster — filter) using sequential
HPC jobs.
Output:

[J deduplicated_output/ — final dataset.
[0 removed/ — duplicates excluded.
[J logs/ — Datatrove and Slurm logs.

) TNO Public 58/95

) TNO Public) GPTNL-DEL-4001

3.4.2.7 LLMProcessingStage

Description: This module defines a pipeline stage called LLMProcessingStage, which is
designed to process text using a Large Language Model (LLM) as part of a data curation
workflow. The stage begins with a RowSplitter that splits long text rows into smaller segments
for easier processing. Next, RegexFilter removes unwanted patterns such as numeric
sequences, file extensions, or certain keywords that indicate irrelevant content. After filtering,
a RowCombiner can merge previously split rows into coherent units if needed. The core of the
stage is the LLMProcessingStep, which uses a specified LLM model (in this case,
microsoft/phi4) and a predefined prompt to rewrite or combine sentences into a fluent and
grammatically correct paragraph in Dutch without adding new information. Finally, a
LanguageFilter ensures that only texts in the desired languages (Dutch and English) pass
through, based on a confidence threshold.

Components:
0 LanguageFilter (Datatrove)
01 RegexFilter (Datarove)
00 LLMProcessingStep

1 RowSplitterOrCombiner
Config Parameters:

RegexFilter:
regex_exp: "your-regex-here" # Regex expression used to filter rows
exclusion_writer: null # Optional writer for excluded documents

LanguagefFilter:
languages: ['nl", "en"] # List of languages to keep; None for all
language_threshold: 0.65 # Minimum confidence score to accept a document
exclusion_writer: null # Optional writer for excluded documents
backend: "ft176" # Language detection backend; options: ft176 or glotlid
label_only: false # If true, only adds language label without filtering
keep_top_pairs_threshold: -7 # Keep pairs with score above this; -1 disables

LLMProcessingStep:
model_name: "microsoft/phi4" # Name of the LLM model to use (e.g., microsoft/phi4, gpt-4)
prompt: "Your prompt text here" # Prompt text provided to the LLM for processing
max_tokens: null # Maximum tokens for output; defaults len(input_text)/3 if null
temperature: 0.1 # Sampling temperature; lower values make more deterministic
batch_size: 10 # Number of items processed per batch
use_chat_template: frue # Whether to apply chat template formatting
debug_mode: false # Enable debug mode for verbose logging

RowSplitterOrCombiner:

split: true # Whether to split rows (true) or recombine them (false)

separator: "\n" # Delimiter used for splitting or combining rows

identifier_metadata_field: "row_splitter_id" # Metadata field name for tracking splits; removed during re
combination

Code:

class LLMProcessingStage(Stage):
"""Use LLM to process text"™"

def __init__ (self):
super().__init_ ()
self._modules = OrderedDict(

"RowSplitter": {
"cls": RowSplitterOrCombiner,

) TNO Public 59/95

) TNO Public) GPTNL-DEL-4001

"default": {
"split": True,
h

RegexFilter": {
"cls": RegexFilter,
"default": {
"regex_exp": r'(Nd° {3)I(\.(\Ww{2,4))|(V\w+\w+)|(WorldCat)|(Wikikids)",

}

2

RowCombiner": {
"cls": RowSplitterOrCombiner,
"default": {
"split"; False,
|3
}

"LLMProcessingStep": {
"cls": LLMProcessingStep,
"default": {

"model_name": "microsoft/phi4",

"prompt": "Given the following sentences, produce a fluent and coherent paragraph that
contains all the information in the sentences. Do not generate any information that is not in the sentence
s. Ensure that the paragraph is grammatically and syntactically correct in Dutch. Do not produce any ad
ditional text, only the paragraph.\nSentences:\n{text}\n\nParagraph:\n",

h
}

"LanguagekFilter": {
"cls": LanguageFilter,
"default": {
"languages™: ["nl", "en"],
"language_threshold": 0.65,

}

3.4.2.8 MachineTranslation

Description: The MachineTranslation module is typically designed to translate text from one
language to another within a data processing pipeline. Its main purpose is to ensure multilingual
datasets are normalized into a target language for downstream tasks such as analysis, training,
or curation.

Components:

RegexFormatter
ParquetWriter
LanguageFilter
ExtraFieldFilterStep
RegexFormattedRowsParquetWriter
TranslatorStep
1 SplittedRowsCombiner
Config Parameters:

s [B

RegexFormatter:
pattern: ['your-pattern-here"] # List of regex patterns to match
repl: ['"] # Replacement strings for each pattern; defaults to empty string
flags: [re. DOTALL] # Regex flags applied during matching; defaults to DOTALL

LanguageFilter:

) TNO Public 60/95

) TNO Public) GPTNL-DEL-4001

languages: ['nl", "en"] # List of languages to keep; None for all
language_threshold: 0.65 # Minimum confidence score to accept a document
exclusion_writer: null # Optional writer for excluded documents

backend: "ft176" # Language detection backend; options: ft176 or glotlid
label_only: false # If true, only adds language label without filtering
keep_top_pairs_threshold: -7 # Keep language pairs with score above; -1 disables

ExtraFieldFilterStep:
extra_field_name: "your_field_name" # Name of the extra metadata field to check
allowed_values: ['value1", "value2"] # List of allowed values for the field
raise_when_field_missing: true # Raise an error if the field is missing
keep_when_field_missing: false # Keep the document the field is missing
exclusion_writer: null # Optional writer for excluded documents

TranslatorStep:
model_name: "ModelSpace/GemmaXx2-28-9B-v0.1" # Name of the translation model to use
use_vllm: true # Whether to use vLLM for inference
chunk_mode: "characters" # options: characters or tokens
chunk_size: 1024 # Size of each chunk for processing
batch_size: 128 # Number of chunks processed per batch
stop_at: null # Optional limit on items to process; null for no limit
batch_stop_at: null # Optional limit on batches; null for no limit
dry_run: false # If true, runs without performing actual translation
source_language: null # Source language; null for auto-detection
destination_language: "Dutch" # Target language for translation

SplittedRowsCombiner: # No inpit parameters

class MachineTranslation(Stage):
"""Translates into Dutch, splitting text into smaller chunks."""
def __init__(self):

super().__init__()
self._modules = OrderedDict(

"RegexFormatter"; {

"cls": RegexFormatter,
"default": {

"pattern”: [
r"\b(\w+)\s+\1\s+\1(\s+\7)*\b",
r"\s?\[[a-zA-Z&;_a-iA-U\s]J{0,15})\]",

],

"repl": [r"\1", "],
"flags": [re.DOTALL, re.S],

h
}

"RegexFormattedRowsParquetWriter": {
"cls": ParquetWriter,
"default": {"expand_metadata": True, "output_folder": "},

2

"ExtraFieldFilter": {
"cls"; ExtraFieldFilterStep,
"default": {
"extra_field_name"; ["original_language"],
"allowed_values": ["en"],

) TNO Public 61/95

) TNO Public) GPTNL-DEL-4001

"raise_when_field_missing": True,
"keep_when_field_missing": False,

2

ranslatorStep": {

"cls": TranslatorStep,

"default"; {
"chunk_size": 1024,
"batch_size": 32,
"stop_at": None,
"batch_stop_at": None,
"dry_run": False,

2

PostlLanguageFilter": {
"cls": LanguageFilter,
"default"; {
"languages": ["'nl"],
"language_threshold": 0.65,
3
2

"SplittedRowsCombiner": {"cls": SplittedRowsCombiner, "default": {}},

}

}

}
)

3.4.2.9 Extending with New Stages
To implement a new stage:

1. Create a new class in gptnl_data_curation_pipeline/stages/.

Inherit from Stage.

Define Datatrove operations in get_stage spec() or override run_stage() if multi-step.
Add the stage to stages in run_pipeline.py.

Update documentation and YAML schema accordingly.

S

3.4.3 DataTrove Wrappers for Filters and Formatters

Besides the wrappers and custom classes discussed above, we also defined special wrappers
for filters and formatters and targeting specific cases. In the following we explain how that was
implemented. If you want to add new operations such as heuristic filters and Pll mappers, you
must follow a specific structure to integrate your operations into the Datatrove pipeline.
Fortunately, it is straightforward. You just need to adhere to the following templates.

3.4.3.1 Filters

The most important aspect is that your Filter operation class needs to have a method called
filter, which takes a data point, also known as a “Document”. From this Document, you can
access all the information attached to that data point (ID, metadata, text). The filter function
should return False if it fails a certain filter or True if it passes all the filters.

i. Very important: Do not define a method called run. BaseFilter already has a method run
defined, which internally handles how the data points are accessed. Only overwrite the method
if you know exactly what you are doing! 4

) TNO Public 62/95

) TNO Public) GPTNL-DEL-4001

Put in src/operators/heuristic_filters/

from datatrove.data import Document
from datatrove.pipeline filters.base_filter import BaseFilter
from datatrove.pipeline.writers.disk_base import DiskWriter

class TemplateFilter(BaseFilter):
name ="& Template quality filter"
_requires_dependencies = ["python package"]

def __init_ (
self,

exclusion_writer: DiskWriter = None,

Filter to apply tempalte's quality heuristic rules.
Reference: https://example.pdf

Args:
template_arg_1:
template_arg_2:

exclusion_writer:

super().__init__(exclusion_writer)
self.template_arg_1 = template_arg_1
self.template_arg_2 = template_arg_2

def filter(self, doc: Document) -> bool | tuple[bool, str]:

You must have a filter function defined!!!

Args:
doc: Applies the heuristics rules to decide if a document should be REMOVED

Returns: False if sample.text does not pass any of the the heuristic tests

from your_python_package import word_tokenize

text = doc.text
words = word_tokenize(text)
n_words = len(words)

words < min_doc_words or words > max_doc_words
if n_words < self.template_arg_1:

return False, "failed_filter 1"
if wrods not in selftemplate_arg_2:

return False, "failed_filter 2"

) TNO Public

63/95

) TNO Public) GPTNL-DEL-4001

3.4.3.2 PIll Mappers

3.5

In comparison to the filters, the PIll operations class needs to have a method called format
which takes at least a text string. The most important aspect is that the function returns the
modified text.

i. Very important: Do not define a method called run. BaseFilter already has a method run
defined, which internally handles how the data points are accessed. Only overwrite the
method if you know exactly what you are doing! 4

Put in src/operators/pii_mappers/

from datatrove.pipeline.formatters.base import BaseFormatter
from datatrove.pipeline.fromatters.pii import PlIReplacer

class TemplatePlIFormatter(BaseFormatter):
Replaces a certain string in the document text.
Args:
remove_emails: Replace email addresses
remove_ips: Replace IP addresses only_remove_public_ips: by default we only replace public (an
d thus PII) IPs

name =" Template PII"

def __init_ (
self,
remove_emails: bool = True,
email_replacement: tuple[str, ...] | str = ("email@example.com", "firstname.lastname@example.org

super().__init__()
self.remove_emails = remove_emails

self.emails_replacer = PlIReplacer(
r"\b[A-Za-z0-91#3%&"*+/=2"_“{|}~-]+(?:\.[A-Za-z0-91#$% &"“+/=2"_“{|}~-]+)*@(?:(?:[A-Za-z0-9](?:[

r"A-Za-z0-9-]*[A-Za-z0-9]) \.)+[A-Za-z0-9)(?:[A-Za-z0-9-]*[A-Za-z0-9]) ?|\[(?:(?: 25[0-5]| 2[0-4][0-9]
I

r"01]2[0-9][0-9]?)\.){3}(?:25[0-5]| 2[0-4][0-9]|[01]?[0-9][0-9] ?|[A-Za-z0-9-]*[A-Za-z0-9]:)]) ",

email_replacement,

)

def format(self, text: str) -> str:
if self.remove_emails:
text = self.emails_replacer.replace(text)
if self.remove_ips:
text = self.ip_replacer.replace(text)
return text

Executing a Pipeline

) TNO Public 64/95

) TNO Public) GPTNL-DEL-4001

3.5.1

Total Tasks

Task 1

Parquet File 1.1
Parquet File 1.2

Parquet File 1.3

Pipeline Configuration HPC Node 1

Number of CPUs per task

Data Source Task 2 y
Memary per CPU restes tasks SR |y Ditroues
Parquet File 1 Input Number of GPUS per task (shfvr:'f)gedaza ParquetFile21 | [SLURM Scheduler HPC Node 2

Parquet File 2 Memory of GPUs Number of Files/ | | PaTavet File 2.2

Number of Tasks
Parquet File 3 Number of Tasks umber Parquet File 3.3

Maximum HPC Time %
Packaged Job HPC Node N
Input Data Location (Serialized Python
" Task 3 Object)
Output Data / Logs Location . F———

HPC Partition / Reservation

o

*+..| | Parquet File 3.2

Parquet File 3.3

Figure 9: Overview execution and parallelization

This Section explains how a GPT-NL curation stage is executed from the moment data enters
the system until all outputs and logs are produced on the HPC cluster. Rather than listing
technical parameters in isolation, the goal here is to give a coherent narrative that ties together
the design choices introduced in the previous documents: modular processing stages, YAML-
driven configuration, and the separation between the pipeline repository and the modules’
repository. Execution is where these ideas become concrete—where configuration turns into
action and data begins its journey through curated transformation steps to produce the GPT-
NL training corpus.

The execution architecture is intentionally built around transparency. Every operation—how
files are grouped, how tasks are created, how SLURM schedules work, and how failures are
isolated—follows the same design principles that shape the earlier phases of the system. The
pipeline is meant to be observable: you should be able to understand what happened, why it
happened, and how it can be reproduced.

From Input Files to Executable Units

Each stage begins in a physical place: a folder containing Parquet files. These files represent
the current version of the dataset, already processed by the previous stage. When the pipeline
reads this folder, Datatrove transforms the set of files into parallelizable units called shards. A
shard is nothing more than a subset of the input files. The reason for this design is simple:
Datatrove reads and processes whole Parquet files; it does not split them internally. This means
the granularity of parallelism is determined by the number and size of the files you provide. As
an example:

0 If you have 512 files and configure 128 tasks, the system will create ~128 shards of
about 4 files each.

[0 Each shard is then passed to a dedicated task that executes the chosen stage’s logic
(e.g., normalization).

01 These tasks are designed to be parallel; thus they do not depend on each other and
can run simultaneously.

This approach has key advantages:

) TNO Public 65/95

) TNO Public) GPTNL-DEL-4001

3.5.2

01 Scalability: In our example, processing 128 shards in parallel is dramatically faster
than processing them sequentially.

0 Fault Isolation: If one task fails because of a corrupted file or out-of-memory error, it
does not impact the others, only that task (alongside its input shard) must be rerun.

[1 Efficient Resource Utilization: Tasks can be scheduled and executed as soon as re-
sources are available, instead of waiting for a single long process to finish.

A crucial consideration is shard uniformity. All shards should contain roughly the same amount
of data; otherwise, one large shard (a “straggler”) may finish far later than the others, delaying
the entire stage. For this reason, it is generally recommended to store data within many smaller
Parquet files rather than a few very large ones. The pipeline itself does not split individual files
across shards, so file granularity directly affects parallelism and runtime balance. It is, however,
possible to split parquet files into smaller ones using a special stage called data splitting.

The YAML Configuration as the Execution Contract

In earlier documents, the YAML configuration was introduced as the blueprint that defines the
pipeline logically. During execution, this YAML file becomes a contract: every resource request,
every module parameter, every input and output path originates from this file. The pipeline does
not contain hard-coded decisions; it reads, respects, and enforces whatever the YAML
declares.

The YAML then specifies how the stage should behave on the HPC system: which partition to
use, how much memory each task needs, whether GPUs are required, and how long the stage
is allowed to run. These parameters map directly to SLURM’s scheduling interface. The
pipeline converts YAML keys into sbatch arguments, so that the user can tune HPC behavior
entirely through configuration rather than code.

The same YAML also specifies module parameters. These values—thresholds, language lists,
model names, syntactic rules—shape the actual processing performed by the modules. In other
words, the YAML simultaneously defines the logical transformation and the physical execution
environment. This tight coupling between description and execution enables full reproducibility.

Below is a simplified example of a GPT-NL pipeline configuration:

stages:

- stage: data_splitting
input_folder: test-data/0. raw
hpc_n_tasks: "1"
hpc_time: "00:20:00"
hpc_partition: "genoa”

- stage: string_normalization
ParquetReader:

paths_file: "null"

limit: "-1"

skip: "0"

recursive: "false"

glob_pattern: "*parquet”

shuffle_files: "false"
hpc_n_tasks: "4"
hpc_time: "00:20:00"
hpc_partition: "genoa"
FTFYFormatter:

normalization: "NFC"

- stage: heuristic_filtering

) TNO Public 66/95

) TNO Public) GPTNL-DEL-4001

hpc_n_tasks: "4"
hpc_time: "00:20:00" # should take max 4.86h
hpc_partition: "genoa"
LanguageFilter:
languages: [
"en", # English
"nl", # Dutch
"da", # Danish
"sv", # Swedish
"af", # Afrikaans
"fy", # Frisian
"de", # German

1
language_threshold: "0.65"
backend: "ft176"
NordicPileQualityFilter:
max_digit_fraction: "0.2"
min_n_char: "50"
min_mean_med_char: "9"
min_mean_med_word: "2.1"
GopherQualityFilter:
min_doc_words: "null"
max_doc_words: "null"
min_avg_word_length: "null"
max_avg_word_length: "null"
max_symbol_word_ratio: "0.1"
max_bullet_lines_ratio: "0.9"
max_ellipsis_lines_ratio: "0.3"
max_non_alpha_words_ratio: "0.8"
min_stop_words: "2"
GopherRepetitionFilter:
dup_line_frac: "0.35"
dup_para_frac: "0.35"
dup_line_char_frac: "0.2"
dup_para_char_frac: "0.2"
top_n_grams: [[2, 0.25], [3, 0.23], [4, 0.21]]
dup_n_grams:
115, 0.20], [6, 0.19], [7, 0.18], [8, 0.17], [9, 0.16], [10, 0.15]]
- stage: pii_masking
hpc_time: "04:00:00"
hpc_partition: gpu_a100
hpc_reservation: gpt-nl
hpc_n_tasks: "4" # Number of data trove tasks with split up files
hpc_gpus: "1"
hpc_cpus_per_task: "16" # Need 16 cores (per private Al GPU instance - actually needs 64 but CPU
affinity warnings can be ignored with GPU instance)
#hpc_mem_per_cpu_gb: "1" # 120/128 = 0.9375
hpc_mem_per_cpu_gb: "4" # Need 64GB ram per private Al instance, 64/16 = 4
Start multiple containers with different ports and wait for healthy containers
env_commands: "for gpu in ${{CUDA_VISIBLE_DEVICES//,/ }}; do CUDA_VISIBLE_DEVICES=$gpu
apptainer run --nv --contain --pwd /app --env PAl_PORT=$((gpu+SLURM_ARRAY_TASK_ID+8080)) --
env PAI_TRITON_HTTP_PORT=$((gpu+SLURM_ARRAY_TASK_ ID+SLURM_ARRAY_TASK_MAX+8
089)) /projects/0/prjs0986/wp13/private-ai/private_ai_gpu.sif & done; sleep 40"
PII_PrivateAl_TNO:
chunk_pool_workers: 32 # Number of workers for chunks
doc_pool_workers: 16 # Number of workers for documents
request_batch_size: 64 # Chunks of the same document to be sent in the same request to PAI
batch_size: 16 # Documents to handle in the same batch
api_endpoint: "http://localhost:808{CUDA_VISIBLE_DEVICES}/" # Template for endpoint per GPU i
nstance (uses task array index and comma-separated indexes from CUDA_VISIBLE_DEVICES)
replacement_type: "MARKER" # GPU instance does not support SYNTHETIC
synthetic_replacement_chance: 7.00 # Replace 100% of markers with own synthetic data
synthetic_replacement_locale: "nl-NL" # Depending on the dominant language use : English en-GB,

) TNO Public 67/95

) TNO Public) GPTNL-DEL-4001

- stage: foxic_language_detection
hpc_partition: gpu h100
hpc_reservation: gpi-n/
hpc_gpu: "1"
hpc_time: "00:20:00"
hpc_cpus_per_task: "4"
hpc_mem_per_cpu_gb: "15"
hpc_n_tasks: "4"

- stage: deduplication
hpc_n_tasks: "4"
hpc_partition: "genoa"

The first part of the YAML file (not included in example) defines global execution rules that
apply to the entire pipeline:

processing_type — Determines where the pipeline runs: local (on a single machine)
or HPC (distributed across the cluster).

input_from_previous_output — Ensures that each stage automatically uses the out-
put of the previous stage as its input, chaining them into a continuous workflow.

output_folder_template — Defines a structured naming pattern for storing results,
using variables such as {stage_idx} (stage index) and {stage_name} (stage name).
This makes outputs traceable and reproducible.

logs_folder and slurm_logs_folder — Specify where runtime logs and SLURM
scheduler logs are saved. These logs are essential for debugging, performance anal-
ysis, and auditing.

hpc_exclude — Allows you to exclude specific compute nodes (e.g., those reserved
for other jobs) from being used.

Together, these settings define the execution environment and output structure for the entire

run.

The stages section is the core of the YAML file. It defines which steps the pipeline will execute,
in which order, and with which parameters. Each stage corresponds to a processing module
(e.g., normalization, filtering, PII removal) and typically includes three categories of
configuration:

1.

) TNO Public

Execution Parameters — These determine how the stage runs on the HPC:
o hpc_n_tasks: Number of tasks (shards) into which the data will be spilit.
0 hpc_time: Maximum runtime for the stage.
o hpc_partition: Which partition (or queue) on the cluster to use.

o hpc_gpus, hpc_cpus_per_task, hpc_mem_per_cpu_gb: Hardware require-
ments for GPU or CPU tasks.

I/0 and Input Settings - These specify where the data comes from and where results
should be written. For example, input_folder points to the raw dataset for the first stage.

Module-Specific Parameters - These configure how the processing logic behaves. For
instance:

o FTFYFormatter.normalization sets the Unicode normalization mode.

68/95

) TNO Public) GPTNL-DEL-4001

3.5.3

o LanguageFilter.languages defines which languages to keep and the minimum
detection score.

o PIl_PrivateAl_TNO.synthetic_replacement_locale specifies the locale for syn-
thetic PII generation.

By combining these three layers, the YAML precisely defines not only what happens at each
stage but also how it should happen.

In many ways, the YAML file is the single source of truth for a pipeline run. It encapsulates:

01 The logical sequence of curation stages.
01 The physical execution environment (resources, partitions, runtime limits).
[0 The parallelization strategy (number of tasks, shards, workers).

The operational metadata (paths, logs, monitoring, and notifications).

Because of this, the YAML file is archived with the output dataset itself, ensuring that anyone
reviewing the results in the future can reproduce the exact same run, down to the number of
tasks and normalization parameters used. This traceability is crucial for research, quality
assurance, and future iterations of the GPT-NL project.

Task Orchestration with SLURM

Once shards and tasks are defined, execution is delegated to SLURM, the workload manager
responsible for distributing jobs across the HPC cluster. SLURM ensures that each task runs
on an appropriate node with the requested resources and that tasks are efficiently queued and
scheduled.

The pipeline does not submit each task separately. Instead, it creates an SLURM job array, a
single job with many elements, each representing one task. SLURM then assigns these tasks
to available nodes and CPUs, launching new tasks as resources become free.

Here’s how this orchestration works in practice:

1. Job Array Creation: The pipeline packages the code, configuration, and shard infor-
mation for each task and bundles them into a job array.

2. Scheduling: SLURM reads the resource requests from the YAML and places tasks in
a queue, scheduling them as soon as CPUs, memory, and GPUs become available.

3. Execution: Each task runs independently on its assigned shard. If 128 workers are
allowed, 128 tasks run in parallel. When one finishes, the next queued task begins.

4. Completion and Monitoring: Once all tasks complete, SLURM marks the job array as
finished. Logs and metrics from each task are collected for analysis.

The distinction between tasks and workers is key. “Tasks” refers to the total number of work
units, while “workers” is the number of tasks that can run concurrently. It is common to configure
more tasks than workers, especially on shared HPC infrastructure, where the total number of
available cores is limited. SLURM will automatically queue and execute tasks in waves,
ensuring efficient resource utilization.

) TNO Public 69/95

) TNO Public) GPTNL-DEL-4001

3.5.4

3.5.5

3.5.6

Fault Tolerance, Logging, and Reproducibility

One of the defining properties of this execution architecture is that each shard is processed
independently. If a single task encounters an out-of-memory error or a corrupted file, only that
task fails; the rest continue normally. Datatrove writes comprehensive logs for each shard,
capturing statistics such as how many documents were filtered, which modules triggered
removals, and how the data evolved. SLURM writes scheduler logs for each task, containing
stdout, stderr, error traces, and resource usage information.

When a stage is rerun, Datatrove automatically skips shards that completed successfully and
retries only the ones that failed. This avoids the inefficiency of restarting an entire stage from
scratch. The combination of precise logging and idempotent tasks makes it straightforward to
diagnose failures, reproduce results, and maintain a clear history of execution.

These logs become part of the dataset’s provenance. Anyone reviewing a curated dataset can
trace exactly how it was produced, which stage transformed it, which shard processed it, and
what parameters were applied. This level of transparency is essential for auditing and for
maintaining trust in a national-scale language model pipeline.

Why This Architecture Scales

The SLURM-based execution model integrates principles that allow the GPT-NL pipeline to
scale without architectural changes:

0 Parallelism by sharding enables hundreds of tasks to run simultaneously, limited
only by available hardware.

0 Job arrays compact thousands of potential submissions into a single manageable
entity, reducing scheduler overhead and simplifying monitoring.

00 Declarative configuration via YAML ensures complete reproducibility and traceabil-
ity of every run.

1 ldempotent shard processing makes failures cheap to recover from, improving ro-
bustness on very large datasets.

0 Flexible resource management allows each stage to request precisely the CPUs,
memory, and GPUs it needs, adapting to datasets of different sizes and different
computational characteristics.

This structure has already proven capable of processing hundreds of gigabytes of text

efficiently. Scaling to larger corpora typically requires only adjusting the number of shards or

increasing the allowed runtime—never changing the architecture itself.

Conclusion

The execution layer brings together all core principles of the GPT-NL curation framework. The
modular stages defined in the pipeline repository, the versioned modules in the modules’
repository, and the YAML configuration converge into a unified workload that SLURM can
distribute across the HPC cluster. The result is a system that remains fully transparent,
reproducible, fault-tolerant, and scalable.

Execution is not a black box but a carefully orchestrated, inspectable process where every
input, task, log, and output have a clear place and purpose. This guarantees that curated
datasets are not only high quality, but also trustworthy—each one backed by a clear and
auditable record of how it was produced.

) TNO Public 70/95

) TNO Public) GPTNL-DEL-4001

3.6

3.6.1

Code Organization and Data Folders

The primary codebases supporting the curation phases are maintained in the
Pipeline Repository and the Modules Repository. This section describes the
repository organization and the efforts to make it publicly accessible as an
open-source resource.

In addition, one main data directory is central to managing the datasets and operational
outputs of this phase:

1 /<project-root>/wp12/curated — containing the raw input data; and

The structure of these directories is described in the following subsection.

Data Folders

The data management framework relies on a structured directory hierarchy to
ensure traceability, reproducibility, and efficient data handling throughout the
extraction and curation pipeline. The primary folders are as follows:

1 /<project-root>/data/curated: Contains the curated datasets produced af-
ter the different stages of the curation pipeline.

1 ~/data-curation-pipeline/pipeline-configs: Contains the YAML configuration
files used to define and execute curation pipelines. This folder corre-
sponds to the pipeline-configs directory in the Curation Pipeline Reposi-

fory.

/project-root
L— /data
/README.md # Description of the folder structure and references to this documentation.
/curated
|— Ipipeline{run_idx}_{yaml_filename}_ {previous_commit_shorthash}
stage_{stage_idx}_{stage_name}
logs/
slurm_logs/
data00001.parquet

aéta99999.parquet

.s't.age_6_toxic_language_detection
—— /pipeline00023_test-run_2b69608

L /pipeline99999_full-dataset_9dff500

~/data-curation-pipeline/
L— /pipeline-configs
test-pl.yaml

H‘LJII-finaI-ﬁnaI-finaI.yamI

) TNO Public 71/95

) TNO Public) GPTNL-DEL-4001

3.6.2

3.6.3

15.1.1 Curation Data Folders and Run Logs

The curated data directory contains the outputs produced by executing the curation pipelines.
This directory also includes logs and metadata associated with each pipeline execution.

Each curation run is stored in a versioned folder that captures both the pipeline configuration
and the corresponding commit hash, ensuring traceability and reproducibility of pipeline runs.
A single folder contains all stages for a given pipeline run, a design choice that prioritizes
version control over per-stage access management.

/project-root

L— /data

L— Jcurated
|— /pipeline{run_idx} {yaml_filename} {previous_commit_shorthash}
stage_{stage_idx}_{stage_name}
logs/
slurm_logs/
data00001.parquet

aéta99999.parquet

.s't.age_6_toxic_language_detection
—— /pipeline00023_test-run_2b69608

L /pipeline99999_ full-dataset_9dff500

Where:

{run_idx} is incremented for each pipeline execution.

{yaml_filename} denotes the configuration file used for the run.
{previous_commit_shorthash} refers to the abbreviated commit hash of the config-
uration version in the version control system.

01 All modifications must be committed prior to execution to ensure reproducibility and
traceability.

[N

15.1.2 Pipeline Configurations

The pipeline configuration directory contains the YAML files used as inputs for the curation
pipelines. These configurations define the sequence, parameters, and operational settings for
each curation run.

Best practices include:

01 Maintaining all configuration files under version control, preferably within the Curation
Pipeline Repository.

01 Using descriptive filenames, as these are embedded in the output directory names of
corresponding pipeline runs.

0 Including timestamps or unique identifiers in filenames when multiple configuration

variants exist, to facilitate differentiation and traceability.

~/data-curation-pipeline/
/pipeline-configs

IE /test-pl.yaml
H‘LJII-finaI-ﬁnaI-finaI.yamI

) TNO Public 72/95

) TNO Public) GPTNL-DEL-4001

3.6.4 Pipeline Repository

The pipeline repository is responsible for providing high-quality text data as a curated training
set of a large language model. This involves the tasks of orchestrating a number of pipeline
steps or stages which apply filters and modify data in order to remove bad quality, harmful
language or personally identifying information. The pipeline also contains the execution logic
to transform a raw data set into this quality data, including configuration for each filter and
operational parameters such as time limits and resource reservations.

Development in the pipeline repository focuses on building these pipeline configurations using
modules from the [modulesrepository](#modules-repository). The reason for the split
between the pipeline and modules repository is that we want to keep the data curation
modules isolated, small and easy to use. In the pipeline, we will want to specify which version
of the module we want to use, by tagging the dependency with the known working version. By
keeping the two separate, we avoid promotion of local referencing, which goes against the
goals of versioning and modular reusability.

The pipelines developed in the repository are meant to be run on an SLURM cluster, particularly
focused on the architecture of Snellius with its differentiated partitions for short jobs and
specific, resource-heavy jobs.

«= data-curation-pipeline ©Watch 0 v ¥ Fork 0 v | T str0 o~
B man = 1 15mneh © 0Tag Q ot t About

Python framework to run the curation

%= |helwerd Merge branch ‘fix/readme-header' into ‘main’ @@ 820690 - 2 weeks ago 9 5 Commits modules on HPC/SLURM environment.

gptnl_data_curation_pipeline Added all the files 2 weeks ago 0 Readme

A Activity
helper-scripts Added all the files 2 weeks ago
E Custom properties
pipeline-configs Added all the files 2 weeks ago ¢% 0stars
[CHANGELOG.md Added all the files swesksago | O Owalching
% 0 forks
[DATASET_DEPLOYMENT.md Added all the files 2 weeks ago
[READMEmd Include standard open source header in README.md 2 weeks ago Releases
No releases published
D) init_snellius.sh Added all the files 2 weeks ago clesses pubine
O poetry.lock Added all the files 2 weeks ago Packages
O poetry.toml Added all the files 2 weeks ago No packages published
[post_install.py Added all the files 2 weeks ago

Contributors 2

O pyproject.tom! Added all the files 2 weeks ago y

Pipeline repository on GitHub.

The pipeline repository is located on TNO’s internal GitLab as well as mirrored to GitHub.

3.6.4.1 Structure
The following folders and files are essential during development on the pipeline repository:

[0 gptnl_data_curation_pipeline/: Contains the scripts that allow starting a DataTrove
based pipeline.

O helper-scripts/: Contains additional scripts to inspect and validate output formats of
the pipeline and perform delivery of a completed data set.

0 pipeline-configs/: Contains YAML files which configure the pipelines to run in an
SLURM cluster using DataTrove-based stages.

0 pyproject.toml: Contains metadata about the repository, the module dependencies
with its tagged versions and the scripts that can be run using poetry run ...

) TNO Public 73/95

) TNO Public) GPTNL-DEL-4001

3.6.4.2 Key Responsibilities

[0 Orchestrating stages by preparing input and output data folders, determining which
stages are needed and splitting up stages if necessary.

1 Starting SLURM jobs for all the relevant stages.
[1 Tracking configurations for data sets to manage resources and allowing reusability
while bookkeeping a record of pipelines.

3.6.4.3 Open-Sourcing Notes

3.6.5

In order to open-source this repository, we have cleaned up the configuration files to not contain
personal information of the contributors (such as email addresses). Instead, authors will be
added in a notice as part of the repository alongside the README and license files.

We open-source the pipeline configuration as an indicator of how to perform dataset curation
on an HPC system similar to Snellius. We considered not providing the configuration because
it is of limited use on other types of clusters. While local running is supported, it is not optimized
for stage runs. Additionally, certain information may become clear about the (partially
proprietary) input data sets and the quality of them. However, this contribution does not contain
the data sets themselves. Moreover, other channels of the GPT-NL project will include separate
details of the data sets provided by partners. As such, pipeline configurations are a standalone
contribution of the curation and cluster development team for pipeline construction, highlighting
our work in streamlining this effort.

The documentation has been standardized and includes detailed information on filters and
configuration examples, to allow reuse in setting up pipelines for other data sets similarly.

The repository makes use of the modules obtained from a PyPI registry. We hosted this registry
at TNO services, but for an open-source variant we also have the modules available in the
public PyPI index. This means that we remove tokens used to obtain the packages.

Modules Repository

The data curation modules repository contains modules for the curation pipeline, which filter,
transform, reformat or otherwise process rows of text (usually referred to as documents) from
data sets. The modules are meant to be reusable and focused on a specific modification task
as part of a pipeline stage.

Development in the module repository focuses on building these small, isolated modules to be
reused from within the pipeline repository. The reasons for keeping the two portions separate
are also mentioned in that section. In the modules, we keep track of versions of the modules
that become available, thus allowing running pipelines with a known working, tested version.
By keeping the two separate, we avoid promotion of local referencing, which goes against the
goals of versioning and modular reusability.

Keeping the modules together in one repository helps with focusing development resources,
code quality and publication effort. Initially, we use a private PyPI registry to store tagged
versions of each module, and this infrastructure becomes usable for local runs as well as
SLURM installations, in our case the Snellius HPC. During our open-source efforts, the private
registry is replaced with a public PyPl package index, reflecting the approach used during
development and first milestones of our curation efforts.

) TNO Public 74/95

) TNO Public) GPTNL-DEL-4001

= data-curation-modules OWatch 0 v ¥ Fok 0 v | ¥ Star 0 ~

¥ main ~ ¥ 1Branch © 0Tags Q Go to file t <> Code ~ About

Python modules used for the curation of

- “1-init- /' 9 ¢ 552e31d - last montl Y i
&= Ihelwerd Merge branch '1-init-repository’ into ‘main’ &8 52e31d - last month) 4 Commiits a GPT-NL text corpus
) c4_filters Init repo 2 months ago 0 Readme
A~ Activity
fineweb_quality_filter Init repo 2 months ago
&) Custom properties
) ftfy_formatter Init repo 2 months ago v% O stars
ity fi ® 0 watching
B gopher_quality_filter Init repo 2 months ago 9
% 0forks
B8 gopher_repetition_filter Init repo 2 months ago
B9 llm_processing Init repo 2 months ago Releases
! s No releases published
machine_translation Init repo 2 months ago
) nordicpile_quality_filter Init repo 2 months ago Packages
B pii_mappers Init repo 2 months ago No packages published
B punctuation_formatter Init repo 2 months ago
Languages
I quality_analysis Init repo 2 months ago
® Ppython 525 © Jupyter Notebook 47.5
| regex_formatter Init repo 2 months ago
B tno_quality_filter Init repo 2 months ago
B toxic_language_detection Init repo 2 months ago
| whitespace_formatter Init repo 2 months ago
[.editorconfig Add configuration files last month
O .gitignore Add configuration files last month
[.pre-commit-config.yaml Add configuration files last month
[README.md Init repo 2 months ago
[run_commands_for_all_modules.py Init repo 2 months ago

Modules repository on GitHub

The curation modules repository is located on TNO’s internal GitLab as well as mirrored to
GitHub.

3.6.5.1 Structure

Each module is stored in its own folder in the curation modules repository. They are integrated
as plugins of the curation pipeline, built using HuggingFace’s Datatrove module. Simply put,
they implement and conform to the same schema as a PipelineStep defined by Datatrove.

Typically, a module consists of the following:

0 A folder with the actual source code of the module, which can be further split out into
public interfaces (with normal folders and file names) as well as private interfaces
(stored in folders and files that start with an underscore).

0 A pyproject.toml file indicating the module’s metadata, dependency packages and
code style practices.

0 A brief README.md describing its use and development notes.
Additionally, the module may have the following folders:

[tests: A number of test files to validate the workings of the module.
1 data: A sample (publishable) data set to test the workings of the module.

3.6.5.2 Key Responsibilities

0 Implementation of filters and other transforms as pipeline stages.

) TNO Public 75/95

) TNO Public) GPTNL-DEL-4001

Testing of modules to ensure proper implementation of concepts discussed during
development iterations.

Tracking versions of each module.
Publication of modules to PyPI registries.

-

3.6.5.3 Open-Sourcing Notes

3.6.6

The modules should all be suitable for release as open-source libraries without a particular
preference on which of them would be prioritized first, as they are all part of the same
repository. Technically, each module can be published individually on a public index, but this
only obscures the work, and we instead intend to make every component open-source at the
same time.

For improvement of code quality, we keep some standards related to linting and code
complexity, as well as trying out Sigrid Cl for tracking maintainability issues of the code.

The modules are a good showcase of how we implement our own filters based on research
material and make use of interfaces of external providers, for example for personally identifying
information.

Open-Source Strategy

GPT-NL promises to be as open and transparent as possible. Although the models and data
sets may not be completely available under a permissive license, we publish the code that
resulted in a trained, curated model.

For the publication of the code, we target GitHub, as this is where the open-source community
is at its largest. For this purpose, we have geared internal policies and configurations of
repositories and CI/CD pipelines to keep open-source in mind and perform mirroring of
development work that went through internal review and approval processes from GitLab to
GitHub.

Code review is enforced through protected branches, merge request templates, review
resolution, mandatory approvals and successful Cl pipelines.

We make sure that our repositories are clean of internal information, secret credentials such
as registry access tokens, and copies of data sets which are not suitable for publication under
the permissive license scheme. Contributors have to sign off on these restrictions in open-
sourced repositories, with checklists that include these validation steps. For legacy repositories
where development may have taken place without this merge request flow, we perform code
cleanup by resolving any outstanding merge requests and removing instances of data that are
not suitable for publishing. Next, we copy the current state of the repository to an open-source
variant, archive the old repository for historic logging purposes, and set up the mirroring on the
new, open-source repository.

One part of the cleanup involves tracking which repositories have useful material for
publication. Some code is barely used, outdated or in a format that is not suitable for reuse,
such as a one-time Python notebook. Inclusions of forks should be instead brought to review
at the upstream open-source repository for inclusion in the wider community. This means that
initial readiness checks and administrative changes do not encompass all development time
spent on making the repository open-source.

We intend to only publish code under a permissive license with clear clauses related to
patents, in our case Apache 2.0. We further aim to not include any dependencies that are
under more restrictive licenses, such as proprietary code or GPL libraries. In some cases,
proprietary code such as those from NVIDIA may be used after review from legal teams.

) TNO Public 76/95

) TNO Public) GPTNL-DEL-4001

Quality standards should be maintained, including consistent documentation, reuse of
README templates, and code style checks (e.g., linters, Cl pipelines).

) TNO Public 77/95

) TNO Public) GPTNL-DEL-4001

4 Appendices

This chapter provides a collection of technical reference materials, including
hardware specifications, detailed software stack evaluations, assessment re-
sults, and formal data and model format definitions. These resources support
the system architecture activities but are too detailed to include in the main
body of the document.

Each section in this chapter consolidates essential technical information on topics related to
the system architecture work. They serve as reference points for the main sections of the
report, offering detailed substantiation for their content.

The following appendices are included:
[0 GPT-NL data curation at SURF’s HPC Snellius
0 Assessing and monitoring energy at the curation and training pipeline
[0 SW Stacks and Framework for GPT-NL
[0 Croissant Format for Curation datasets

4.1 Assessing and Monitoring Energy at the
Curation and Training Pipeline

The data curation and training phases of large language models (LLMs) are highly
computational and demand substantial energy resources. Measuring energy consumption
during these stages is essential for transparency, efficiency, and sustainability in model
development. This focus is particularly relevant for GPT-NL, which is committed to a fair and
transparent development cycle for LLMs.

Accurate energy profiling helps identify energy-intensive operations, optimize resource usage,
and reduce the environmental footprint of large-model training. In addition, systematic energy
monitoring provides valuable benchmarks for comparing model architectures, training
strategies, and hardware configurations in terms of their energy efficiency.

For GPT-NL, understanding the energy cost of both data curation and pre-training is a strong
requirement. The data curation process—encompassing large-scale data collection, cleaning,
and filtering—can be as energy-intensive as the training phase itself. Quantifying the energy
impact of these operations promotes the responsible use of computational infrastructure and
supports the adoption of best practices for sustainable Al development. Given current
milestones and budget constraints, GPT-NL focuses on measuring and reporting energy
consumption rather than implementing optimization strategies. This approach ensures
alignment with the project’s goals of transparency and open knowledge sharing.

To achieve this, GPT-NL employs the EAR software library to measure and analyse energy
consumption throughout its data curation and training pipeline. In this section, we discuss
generic information on the EAR library and later the status of our energy assessment with this
tool.

) TNO Public 78/95

) TNO Public) GPTNL-DEL-4001

4.1.1 The EAR Software Framework

EAR (Energy Aware Runtime) software library is an energy management and energy
monitoring framework designed to measure, analyze, and optimize energy consumption in
high-performance computing (HPC) environments. EAR integrates seamlessly with cluster
management systems and parallel job schedulers (such as the SLURM system used at
Snellius) to provide per-job and per-node energy metrics. It collects real-time data from
hardware energy counters and exposes this information through an API and visualization tools,
allowing developers and system administrators to monitor consumption at multiple levels of
granularity.

At its core, EAR employs a hierarchical architecture that separates monitoring, analysis, and
control components. The EAR Daemon runs at the system level, collecting energy data from
the hardware sensors and performance counters. This data is then processed by the EAR
Library, which can be linked to applications to provide fine-grained, application-level
measurements. EAR also supports adaptive power management, dynamically adjusting
frequency and power limits to balance performance and energy efficiency.

In addition to monitoring, EAR provides an analytics layer that stores energy metrics in a central
database for post-processing. This layer enables statistical analysis, trend detection, and
comparison across workloads. EAR’s modular design allows it to be extended to new
architectures and integrated into complex workflows, making it a suitable choice for measuring
energy consumption in large-scale Al training systems such as GPT-NL.

4.1.2 Use of EAR in GPT-NL

GPT-NL utilized the EAR system to measure energy consumption during both the data curation
and pre-training stages. The necessary steps are well documented in the Snellius EAR
Introduction Website. However, in practice, enabling the EAR monitoring system sometimes
introduced instability in the SLURM job scheduler. This issue was particularly noticeable in
long-running jobs, such as extended data processing or full training epochs. As a result, for
certain extensive data curation and training runs, the EAR-based energy monitoring had to be
disabled to ensure uninterrupted execution.

To address these limitations, GPT-NL is developing an alternative measure-and-estimate
system that remains based on EAR but focuses on shorter, controlled runs. These shorter
measurements are then used to fit an estimation model that predicts the total energy
consumption for longer jobs. This hybrid approach balances measurement accuracy with
system reliability, ensuring that energy tracking does not compromise training throughput.

At the time of writing, this energy estimation approach is still in validation and results for the
curation stages of each dataset were still being compiled. The GPT-NL team will publish these
results in a dedicated report after analysis, contributing to transparent and reproducible
reporting of LLM development’s environmental cost.

) TNO Public 79/95

) TNO Public) GPTNL-DEL-4001

4.2

4.2.1

4211

4.2.1.1.1

4.2.1.1.2

4.21.2

4.2.1.2.1

4.2.1.2.2

GPT-NL data curation at SURF’s HPC
Snellius

Snellius serves as the national supercomputer managed by SURF for the Dutch high-perfor-
mance computing (HPC) community. Designed to support both academic and industrial re-
search, Snellius delivers cutting-edge, heterogeneous computing capabilities—from CPU-
only nodes leveraging AMD’s Rome and Genoa architectures to GPU-accelerated configura-
tions with NVIDIA A100 and H100 devices. This system plays a pivotal role in enabling large-
scale, data-intensive simulations, machine learning applications, and scientific computing
across the Netherlands. With robust SLURM-based job scheduling, flexible partitioning, and
precise accounting in System Billing Units (SBUs), Snellius empowers users to maximize com-
putational throughput while maintaining transparency and efficiency—making it a corner-
stone of Dutch HPC infrastructure.

Hardware Configuration Overview
These are the key Snellius Partitions used in GPT-NL project.

Standard nodes

rome (alias thin)

Node type: Thin compute nodes (tcn)

CPU: AMD Rome, 128 cores/node

Memory: 224 GiB usable RAM/node

Allocation granularity: 1/8 node = 16 cores + 28 GiB RAM

g
Node type: Thin compute nodes (tcn)

CPU: AMD Genoa, 192 cores/node

Memory: 336 GiB usable RAM/node

Allocation granularity: 1/8 node = 24 cores + 42 GiB RAM
Main usage in GPT-NL: Tests, development, and data curation

D
3
N ¢ I I R O |

GPU-Accelerated Partitions

gpu_A100

Node type: GPU compute nodes (gcn)

CPU: Intel Xeon Platinum 8360Y, 72 cores/node

Memory: 480 GiB RAM/node

GPU: 4 x NVIDIA A100 (40 GB each)

Allocation granularity: 1/4 node = 18 cores + 1 GPU + 120 GiB RAM

Main usage in GPT-NL: Tests, development, model training and data curation

I I A B R O A

gpu_H100

Node type: GPU compute nodes (gcn)
CPU: AMD EPYC 9334, 64 cores/node
Memory: 720 GiB RAM/node

[

) TNO Public 80/95

) TNO Public) GPTNL-DEL-4001

GPU: 4 x NVIDIA H100 (94 GiB each)

Allocation granularity: 1/4 node = 16 cores + 1 GPU + 180 GiB RAM

Main usage in GPT-NL: Tests, development, model training and data curation. Most
of the pre-training and fine-tuning phases used the gpu_H100 partition with exclusive
reservations of up to 22 nodes for longer training batches.

These configurations enable flexible, high-performance computing suitable for a wide range
of scientific and engineering applications, reflecting Snellius’s role as a versatile and
advanced national HPC asset.

O O O

) TNO Public 81/95

) TNO Public) GPTNL-DEL-4001

SW Stacks and Framework for GPT-NL

The following tables summarize and compare several SW stacks and Al-Frameworks that
can be used for the data curation, training, and execution phases of the LLM created in GPT-
NL.

4.3

The sections are separated for the different focal activities:

[0 SW stacks and frameworks for the Data Creation phase

1 SW stacks and frameworks for LLM Training

[0 Support SW and frameworks for implementation in Snelius
[Other support SW

At the end of this section, we include a list of references for the tools and SW packages in the
comparison.

4.3.1 Training Software

PyTorch

Mi-
crosoft
Deep-
Speed
(comm)

HuggingFace NVidia NeMo TensorFlow

Framework for | Umbrella term for Deep Generative Al Framework for Unified pro-
machine learn- | transformers (Frame- | learning | framework for machine learn- | cessing and utili-
ing work for machine optimi- | dataset cura- ing (direct alter- | zation of NVIDIA
learning, extends zation tion, machine native to GPUs
| PyTorch/Tensor- frame- learning training | PyTorch)
Z Flow/JAX), [datasets] | work for | and distributing
Y (https://hugging- distrib- | inference in an
o face.co/docs/da- uted end-to-end
-_E tasets/index) training | fashion
-‘é (Creating, loading, and in-
° sharing of datasets as | ference
° well as preparing for
x ML training), acceler-
ate (Wrapper of
PyTorch distributed
machine learning algo-
rithms) and more

) TNO Public

82/95

) TNO Public) GPTNL-DEL-4001

General description

Licensing

Primary

Dependen-

From Wikipe-
dia: PyTorch is
a machine
learning library
based on the
Torch library,
used for appli-
cations such as
computer vision
and natural lan-
guage pro-
cessing,
originally devel-
oped by Meta
Al and now part
of the Linux
Foundation um-
brella. It is rec-
ognized as one
of the two most
popular ma-
chine learning
libraries, offer-
ing free and
open-source
software re-
leased under
the modified
BSD license.
PyTorch pro-
vides two high-
level features:

PyTorch

No specific li-
censing model.
Redistribution
and use in
source and bi-
nary forms, with
or without modi-
fication, are
permitted pro-
vided that the
some condi-
tions are met.
See License file

It’s an open source
data science and ma-
chine learning plat-
form. It acts as a hub
for Al experts and en-
thusiasts—like a
GitHub for Al. You can
browse and use mod-
els created by other
people, search for and
use datasets. Itis
therefore NOT the
same nature as
PyTorch because it is
not a programming li-
brary per se. It is inter-
esting as a repository
of possibly available
models and modules.

Hugqging Face

Licenses in Hugging
Face are particular to
the models and mod-
ules you use. So a
case-by-case review is
needed depending on
what we import for
use.

Depends on models to
be imported.

NVIDIA NeMo
Framework is
an end-to-end,
cloud-native
framework to
build, custom-
ize, and deploy
generative Al
models any-
where. It allows
researchers
and model de-
velopers to
build their own
neural network

From Wikipe-
dia: TensorFlow
is a free and
open-source
software library
for machine
learning and ar-
tificial intelli-
gence. It can be
used across a
range of tasks
but has a partic-
ular focus on
training and in-
ference of deep

From Wikipedia:
CUDA (Compute
Unified Device
Architecture) is a
proprietary and
closed-source
parallel compu-
ting platform and
application pro-
gramming inter-
face (API) that
allows software to
use certain types
of graphics pro-
cessing units

architectures neural networks. | (GPUs) for gen-
using reusable | Its flexible archi- | eral-purpose pro-
components tecture allows cessing, an
called Neural for the easy de- | approach called
Modules ployment of general-purpose
(NeMo). It in- computation computing on
cludes training | across a variety | GPUs (GPGPU).
and inferencing | of platforms CUDA is a soft-
frameworks, (CPUs, GPUs, | ware layer that
guardrailing TPUs), and from | gives direct ac-
toolkits, data desktops to cess to the GPU’s
curation tools, | clusters of serv- | virtual instruction
and pretrained | ers to mobile set and parallel
models, offering | and edge de- computational el-
enterprises an | vices. ements for the
easy, cost-ef- execution of com-
fective, and fast pute kernels.
way to adopt
generative Al.
Deep Nvidia NeMo TensorFlow CUDA
Speed
Apache | Apache 2.0 Apache 2.0 Proprietary and
2.0 closed-source
(NVidia)
Full list of de- Full list of de-
pendencies. pendencies and
(Python wheels | discussion here
or rpm pack-
ages)

4.3.2 Optimization for Snellius

General Description

REINERS

) TNO Public

83/95

) TNO Public) GPTNL-DEL-4001

EasyBuild.io | EasyBuild is a software build and installation | SURF is familiar with the use of
framework that allows you to manage (sci- | this package. Mostly important for
entific) software on High Performance Com- | the deployment at the HPC.
puting (HPC) systems in an efficient way.

Best practices for Data Formats in Deep Learning (SURF pages!!!)

4.3.3 Negative Recommendations

0 Do not use TensorFlow :

o0 The ML community seems to be more PyTorch oriented, with better support
and documentation.

o TensorFlow was/is historically more complicated to use, older technology,
only later adopted graph execution. More cumbersome.

00 Do not use NVidia NeMo (weak recomendation):

o NeMo offers a end-to-end platform for all stages (curation and training). That
sounds interesting, but we get dependent on NVidia.

o Corporative solution, probably involve extra costs

Interesting to be investigated if we want to build a more final commercial
product

o Not open source
o Strong dependency to NVidia
1 Prefer Parquet over HDF5:

(o]

o HDF5 is not memory mapped, which may imply less performance
o HDF5 is a standard for scientific data, but strong on numeric

4.3.4 Positive Recommendations
Use PyTorch :

o Large community, largely accepted, and well documented.
o Many packages we intend to use (e.g. Data-Juicer) has PyTorch as depend-
ency.
For storage, go for Parquet with Apache Arrow and PySpark on top:

o Parquet is a very performant storage format, concurrent, and largely used in
LLM

o Apache Arrow is for fast in-memory data processing
Apache Parquet for efficient on-disk storage

o PySpark has modes to merge columnar data (expanding of data structure)
on the fly. [3:57 PM] Apache Spark’s is good for distributed data processing

o Alternative to PySpark here would be to use Ray

[e]

01 Build of SW deployments/configuration in Snellius:

o We follow here the recommendation of SURF: EasyBuild.io
o No objections

) TNO Public 84/95

) TNO Public) GPTNL-DEL-4001

4.3.5 References

) TNO Public

0
0
g

EasyBuild.io
Nvidia NeMo GitHub

Gruener, R., Cheng, O., and Litvin, Y. (2018) Introducing Petastorm: Uber ATG’s

Data Access Library for Deep Learning
QCon.ai 2019: “Petastorm: A Light-Weight Approach to Building ML Pipelines”.

85/95

) TNO Public) GPTNL-DEL-4001

4.4 Croissant Format During Curation

This Appendix details how the croissant format is updated after each stage.
[String Normalization

o Format remains the same. No changes in table format.

[J Language Detector

"@type": "sc:Dataset",

"name": "gpt_nl_curated_dataset",

"description": "The curated dataset contains data after the heuristic stage.",
"license™: "All rights reserved. License to be defined.",

"url": "https://example.com/dataset <TO BE DEFINED>",

"distribution": [

"@type": "cr:FileObject",

"@id": "unique_id of the dataset",
"name": "name.pdf",
"contentUrl": "data/name.pdf",
"encodingFormat": "text/csv"

}

I,
"recordSet": [

"@type": "cr:RecordSet",
"name": "gpt_nl_curated_recordset",
"description": "Record set of the curated dataset.",

"field": [

"@type": "cr:Field",
"name": "uid",
"description": "The unique_id of the data record. Use an ULID string representation followed by the '_gpt_nl' su
ffix.",
"dataType": "sc:String",
"references": {
"fileObject": {
"@id": "unique_id of the data record <DO NOT KNOW WHAT THIS IS. FIX LATER>"

"éxtract": {
"column": "uid"
}
}
2

"@type": "cr:Field",
"name": "text",
"description": "The third column contains the raw text of the data record",
"dataType": "sc:String",
"references": {
"fileObject": {
"@id": "name.pdf"

"extract": {
"column™; "text"
}
}
2
{

"@type": "cr:Field",

"name": "meta",

"description": "Metadata associated with each record.",
"dataType": "sc:struct",

"field": [

{
"@type": "cr:Field",

"name": "source",

) TNO Public 86/95

) TNO Public) GPTNL-DEL-4001

"description": "A human readable identifier for the data source.",
"dataType": "sc:String",
"references": {
"fileObject": {
"@id": "name.pdf"

"extract": {

"column": "source"

}
}
2
{
"@type": "cr:Field",
"name": "source_url",
"description": "A human readable identifier for the data source.",
"dataType": "sc:URL",
"references": {
"fileObject": {
"@id": "name.pdf"
b
"extract": {

"column™: "source_url"

}
}
1

"@type": "cr:Field",
"name": "timestamp”,
"description": "Timestamp of the datasource extraction. String representing a datetime UTC timestamp.",
"dataType": "sc:Timestamp",
"references": {
"fileObject": {
"@id": "name.pdf"

"extract": {
"column™: "timestamp"
1
}
2
{
"@type": "cr:Field",
"name": "language”,
"description": "Language of the text.",
"dataType": "sc:String",
"value": "nl"

"@type": "cr:Field",

"name": "language_score",

"description": "Score indicating the confidence of the language detection.",
"dataType": "sc:Float64",

"value": 0.8238464593887329

0 Quality Filters

"@type": "sc:Dataset",

"name": "gpt_nl_curated_dataset",

"description": "The curated dataset contains data after the heuristic stage.",
"license™: "All rights reserved. License to be defined.",

"url"; "https://example.com/dataset <TO BE DEFINED>",

"distribution": [

"@type": "cr:FileObject",
"@id": "unique_id of the dataset",

) TNO Public 87/95

) TNO Public) GPTNL-DEL-4001

"name": "name.pdf",
"contentUrl": "data/name.pdf",
"encodingFormat": "text/csv"

}

’recordSet": [

]

"@type": "cr:RecordSet",

"name": "gpt_nl_curated_recordset",
"description": "Record set of the curated dataset.",
"field": [

"@type": "cr:Field",
"name": "uid",
"description": "The unique_id of the data record. Use an ULID string representation followed by the '_gpt_nl' su
ffix.",

"dataType": "sc:String",
"references": {

"fileObject": {

"@id": "unique_id of the data record <DO NOT KNOW WHAT THIS IS. FIX LATER>"

"extract": {
"column"; "uid"
}
}
2
{
"@type": "cr:Field",
"name"; "text",
"description": "The third column contains the raw text of the data record”,
"dataType": "sc:String",
"references": {
"fileObject": {
"@id": "name.pdf"
b
"extract": {
"column™: "text"
}
}
2
{
"@type": "cr:Field",
"name": "meta",
"description": "Metadata associated with each record.",
"dataType": "sc:struct",
"field": [

"@type": "cr:Field",
"name": "source",
"description": "A human readable identifier for the data source.",
"dataType": "sc:String",
"references": {
"fileObject": {
"@id": "name.pdf"

"extract": {

"column™: "source”
}
}
b
{
"@type": "cr:Field",
"name": "source_url",
"description": "A human readable identifier for the data source.",
"dataType": "sc:URL",
"references": {
"fileObject": {
"@id": "name.pdf"
b
"extract": {

"column"; "source_url"

) TNO Public 88/95

) TNO Public) GPTNL-DEL-4001

"@type": "cr:Field",
"name": "timestamp",
"description": "Timestamp of the datasource extraction. String representing a datetime UTC timestamp.",
"dataType": "sc:Timestamp",
"references": {
"fileObject": {
"@id": "name.pdf"
2
"extract": {
"column": "timestamp"
1
}
2
{

"@type": "cr:Field",

"name": "alpha_words_ratio",

"description": "Ratio of alpha words in the text.",
"dataType": "sc:Float64",

"value": 0.928030303030303

"@type": "cr:Field",

"name": "avg_word_length",

"description": "Average length of words in the text.",
"dataType": "sc:Float64",

"value": 4.780487804878049

"@type": "cr:Field",

"name": "bullet_lines_ratio",

"description": "Ratio of bullet lines in the text.",
"dataType": "sc:Float64",

"value": 0.013157894736842105

"@type": "cr:Field",

"name": "digit_char_ratio",

"description": "Ratio of digit characters in the text.",
"dataType": "sc:Float64",

"value": 0.0006934812760055479

"@type": "cr:Field",

"name": "dup_line_char_frac",

"description": "Fraction of duplicate line characters.",
"dataType": "sc:Float64",

"value": 0.0

"@type": "cr:Field",

"name": "dup_line_frac",

"description": "Fraction of duplicate lines.",
"dataType": "sc:Float64",

"value": 0.0

"@type": "cr:Field",
"name": "dup_n_grams",
"description": "List of duplicate n-grams.",
"dataType": "sc:List",
"value": [

[5.0, 0.0],

[6.0, 0.0],

[7.0, 0.0],

[8.0, 0.0],

[9.0, 0.0],

[10.0, 0.0]

) TNO Public 89/95

) TNO Public) GPTNL-DEL-4001

"@type": "cr:Field",

"name": "dup_para_char_frac",

"description": "Fraction of duplicate paragraph characters.",
"dataType": "sc:Float64",

"value": 0.0

"@type": "cr:Field",

"name": "dup_para_frac",

"description": "Fraction of duplicate paragraphs.",
"dataType": "sc:Float64",

"value": 0.0

"@type": "cr:Field",

"name": "ellipsis_lines_ratio",
"description": "Ratio of lines with ellipses.",
"dataType": "sc:Float64",

"value": 0.0

"@type": "cr:Field",

"name": "ellipsis_ratio",

"description": "Ratio of ellipses in the text.",
"dataType": "sc:Float64",

"value": 0.0

"@type": "cr:Field",

"name": "hash_ratio",

"description": "Hash ratio of the text.",
"dataType": "sc:Float64",

"value": 0.0

"@type": "cr:Field",

"name": "language”,

"description": "Language of the text.",
"dataType": "sc:String",

"value": "nl"

"@type": "cr:Field",

"name": "language_score",

"description": "Score indicating the confidence of the language detection.",
"dataType": "sc:Float64",

"value": 0.8238464593887329

"@type": "cr:Field",

"name": "mean_med_char",

"description": "Mean median character length.",
"dataType": "sc:Float64",

"value": 16.355263157894736

"@type": "cr:Field",

"name": "mean_med_word",

"description": "Mean median word length.",
"dataType": "sc:Float64",

"value": 3.736842105263158

"@type": "cr:Field",

"name": "n_char",

"description": "Number of characters in the text.",
"dataType": "sc:Int64",

"value": 1194

) TNO Public

90/95

) TNO Public) GPTNL-DEL-4001

"@type": "cr:Field",

"name": "n_non_symbol_words",
"description": "Number of non-symbol words.",
"dataType": "sc:Int64",

"value": 246

"@type": "cr:Field",

"name": "stop_words_count",

"description": "Count of stop words in the text.",
"dataType": "sc:Int64",

"value": 69

"@type": "cr:Field",
"name": "top_n_grams",
"description": "List of top n-grams.",
"dataType": "sc:List",
"value": [
[2.0, 0.01525659],
[3.0, 0.02357836],
[4.0, 0.01317614]
I
}

,references": {
"fileObject": {

"@id": "name.pdf"
1

J

xtract": {
"column": "meta"

[Identification and removal of personal information

"@type": "sc:Dataset",

"name": "gpt_nl_curated_dataset",

"description": "The curated dataset contains data after the heuristic stage.",
"license™: "All rights reserved. License to be defined.",

"url"; "https://example.com/dataset <TO BE DEFINED>",

"distribution": [

"@type": "cr:FileObject",
"@id": "unique_id of the dataset",
"name": "name.pdf",
"contentUrl"; "data/name.pdf",
"encodingFormat": "text/csv"
}
I,
"recordSet": [
"@type": "cr:RecordSet",
"name": "gpt_nl_curated_recordset",

"description": "Record set of the curated dataset."
"field": [

"@type": "cr:Field",

"name": "uid",

"description": "The unique_id of the data record. Use an ULID string representation followed by the '_gpt_nl' su

ffix.",
"dataType": "sc:String",
"references": {

) TNO Public 91/95

) TNO Public) GPTNL-DEL-4001

"fileObject": {
"@id": "unique_id of the data record <DO NOT KNOW WHAT THIS IS. FIX LATER>"

"extract": {
"column"; "uid"
}
}
2
{
"@type": "cr:Field",
"name"; "text",
"description": "The third column contains the raw text of the data record”,
"dataType": "sc:String",
"references": {
"fileObject": {
"@id": "name.pdf"
b
"extract": {
"column™: "text"
}
}
2
{
"@type": "cr:Field",
"name": "meta",
"description": "Metadata associated with each record.",
"dataType": "sc:struct",
"field": [

"@type": "cr:Field",
"name": "source",
"description": "A human readable identifier for the data source.",
"dataType": "sc:String",
"references": {
"fileObject": {
"@id": "name.pdf"

"extract": {

"column™: "source”
}
}
b
{
"@type": "cr:Field",
"name": "source_url",
"description": "A human readable identifier for the data source.",
"dataType": "sc:URL",
"references": {
"fileObject": {
"@id": "name.pdf"
13
"extract": {

"column": "source_url"
}
}
3
{
"@type": "cr:Field",
"name"; "timestamp",
"description": "Timestamp of the datasource extraction. String representing a datetime UTC timestamp.",
"dataType": "sc:Timestamp",
"references": {
"fileObject": {
"@id": "name.pdf"

"extract": {
"column™: "timestamp"

) TNO Public 92/95

) TNO Public) GPTNL-DEL-4001

) TNO Public

"@type": "cr:Field",

"name": "entity_types",
"description": "List of entity type names.",

"dataType": "sc:String",

"value": ['PERSON", "ORG", "LOCATION", "...

"@type": "cr:Field",

"name": "entity_type_counts",
"description": "Count of each entity type.",
"dataType": "sc:Int64",

"value": [123, 45, 67, ".."]

"@type": "cr:Field",
"name": "failed_chunks",

"description": "Chunks that failed during processing.",

"dataType™: "sc:Int64",
"value": [5, 12, 19]

"@type": "cr:Field",

"name": "not_removed_entities",

"description": "Entities that were not removed.",

"dataType™: "sc:String",
"value": ["entity1", "entity2", "..."]

"@type": "cr:Field",
"name": "not_removed_entity_counts",

"description": "Counts of not removed entities.",

"dataType": "sc:Int64",
"value": [3, 7, "..."]

"@type": "cr:Field",

"name": "processed_entities",
"description": "Processed entity names.",
"dataType™: "sc:String",

"value": ["entityA", "entityB", "..."]

"@type": "cr:Field",

"name"; "processed_entity counts",

"description": "Counts of processed entities.",

"dataType™: "sc:Int64",
"value": [10, 20, "..."]

"@type": "cr:Field",
"name": "processed_entity _types",
"description": "Types of processed entities.",

"dataType": "sc:String",
"value": ['ORG", "PERSON", "..."]

"@type": "cr:Field",
"name": "processed_entity replacements”,

"description": "Replacement values for processed entities.",

"dataType™": "sc:String",
"value": ['[REDACTED]", "[MASKED]", "..."]

Harmful Language

93/95

) TNO Public) GPTNL-DEL-4001

{
"@type": "sc:Dataset",
"name": "gpt_nl_curated_dataset",
"description": "The curated dataset contains data after the heuristic stage.",
"license™: "All rights reserved. License to be defined.",
"url": "https://example.com/dataset <TO BE DEFINED>",
"distribution": [

"@type": "cr:FileObject",

"@id": "unique_id of the dataset",
"name": "name.pdf",
"contentUrl": "data/name.pdf",
"encodingFormat": "text/csv"

}

",recordSet": [

"@type": "cr:RecordSet",

"name": "gpt_nl_curated_recordset",
"description": "Record set of the curated dataset."
"field": [

"@type": "cr:Field",
"name": "uid",
"description": "The unique_id of the data record. Use an ULID string representation followed by the '_gpt_nl' su
ffix.",
"dataType": "sc:String",
"references": {
"fileObject": {
"@id": "unique_id of the data record <DO NOT KNOW WHAT THIS IS. FIX LATER>"

"extract": {
"column™: "uid"
1
}
3
{

"@type": "cr:Field",
"name": "text",
"description": "The third column contains the raw text of the data record”,
"dataType": "sc:String",
"references": {
"fileObject": {
"@id": "name.pdf"
3
"extract": {
"column™; "text"
}
}
2
{

"@type": "cr:Field",

"name": "meta",

"description": "Metadata associated with each record.",
"dataType": "sc:struct",

"field": [

"@type": "cr:Field",
"name": "source",
"description": "A human readable identifier for the data source.",
"dataType": "sc:String",
"references": {
"fileObject": {

"@id": "name.pdf"

"extract": {
"column™: "source”

) TNO Public 94/95

) TNO Public) GPTNL-DEL-4001

"@type": "cr:Field",
"name": "source_url",
"description": "A human readable identifier for the data source.",
"dataType": "sc:URL",
"references": {

"fileObject": {

"@id": "name.pdf"
}

xtract": {

"column": "source_url"
}
}
2
{
"@type": "cr:Field",
"name": "timestamp",
"description": "Timestamp of the datasource extraction. String representing a datetime UTC timestamp.",
"dataType": "sc:Timestamp",
"references": {
"fileObject": {
"@id": "name.pdf"
b
"extract": {
"column™: "timestamp"

"@type": "cr:Field",

"name": "toxic_sentences",

"description": "Sentences identified as toxic based on prediction label and score threshold.",
"dataType": "sc:String",

"value": [

"This is a toxic sentence.",

"Another harmful statement.",

1

"@type": "cr:Field",

"name"; "toxic_sentence_start_indices",

"description": "Start indices of toxic sentences in the original text.",
"dataType™": "sc:Int64",

"value": [15, 102, "..."]

"@type": "cr:Field",
"name": "toxic_labels",
"description": "Explainable labels assigned to toxic sentences.",

"dataType": "sc:String",
"value": ["Hate Speech"”, "Insult", "..."]

"@type": "cr:Field",

"name": "toxicity _scores",

"description": "Confidence scores for toxicity predictions.",
"dataType": "sc:Float64",

"value": [0.91, 0.87,"..."]

) TNO Public 95/95

