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Abstract

Teams operating in high-risk environments, such emergency management,
require constant coordination adaptations to manage dynamic task
demands. However, training for such adaptations remains understudied. This
study used sliding window entropy to analyse emergency medical teams’
coordination before and after training, distinguishing two restructuring
phases: equilibrium (ordered coordination) and ataxia (disordered
coordination). High-performing teams transitioned between phases more
frequently and spent more time in equilibrium. During ataxia, they combined
standardised behaviours with proactive speaking-up and monitoring. Low-
performing teams showed less initiative. These findings underscore the need
for both restructuring and orderly coordination, offering valuable insights
for improving adaptive training approaches.
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Introduction

The complex and uncertain environments in which some teams and multi-
team systems operate, such as healthcare and emergency management,
require rapid adaptation in the face of disruptions and fast-changing task
demands. Lack of ability to adapt to the continuously changing circumstances
of such environments can have major repercussions (e.g., David & Schraagen,
2018; Roth, 2018). Coordination, defined as managing task-related interde-
pendencies to achieve shared objectives, enables teams to maintain control in
fast-changing environments by adapting their coordination behaviours and
harmonising actions towards unified objectives (Marks et al., 2001). In con-
trast, poor coordination can lead to redundant or conflicting actions, miscom-
munication, and task omissions, factors that can undermine performance and
threaten goal attainment (David & Schraagen, 2018; Fernandez Castelao
et al.,, 2013; van Eijndhoven et al., 2023). Understanding the process by
which coordination may facilitate or hinder adaptability is thus an important
step towards fostering adaptability in team training processes and enhancing
resilience in volatile environments.

Prior research highlights that effective teamwork relies on a combination
of stable and flexible temporal coordination patterns (Schad et al., 2016). In
routine and predictable situations, teams often follow stable, orderly coordi-
nation protocols or standard operating procedures (Howard-Grenville, 2005).
In contrast, when facing difficult or unforeseen circumstances, teams are
required to adjust and reorganise coordination to respond effectively to shift-
ing task requirements (Gorman & Cooke, 2010; Grote et al., 2018). By
dynamically adjusting their coordination, such as shifting between implicit or
explicit communication behaviours, teams can align their actions and main-
tain operations under fluctuating demands (David et al., 2024; Kolbe et al.,
2014). In dynamic environments, restructuring coordination has been found
to allow for temporary leadership shifts and expertise-based delegation,
ensuring that the most relevant knowledge is accessible and actionable at the
right time (Cooke et al., 2013; David et al., 2024). We therefore argue that
coordination restructuring, referring to the dynamic development, emer-
gence and adaptation of coordination patterns between teammates, is an
important mechanism of team resilience (David et al., 2024): the capacity of
teams to respond adaptively to external or internal stimuli and sustain perfor-
mance throughout team activity (Hancock et al., 2022; Woods, 2018, 2019).
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The current body of work in human factors, safety science, and complex
systems literature strongly emphasises the importance of an in-depth under-
standing of team dynamics and performance to mitigate risks (Cooke et al.,
2013; Summers et al., 2012). Within these fields, coordination has been rec-
ognised as a key enabler of critical team processes, such as collaborative
sensemaking, where team members collectively interpret unfolding informa-
tion to guide action (Albolino et al., 2007), and the development of shared
mental models through ongoing alignment with the environment (Decuyper
et al., 2010). However, while the critical role of coordination in shaping team
processes and performance is well established, much of the existing literature
has examined it as a relatively static construct, offering limited insight into its
temporal dynamics or adaptability (Anderson et al., 2021; Burke et al., 2006;
Fyhn et al., 2023). As a result, the dynamic nature of how coordination sup-
ports these processes remains underexamined.

For instance, it is still unclear at which moments throughout an event
teams benefit most from tightly coupled, information-rich exchanges versus
more loosely structured updates, or how the form and timing of these coordi-
nation shifts influence the effectiveness of collective interpretation of a con-
stantly changing situation. To uncover the mechanisms that enable teams to
adapt effectively despite volatile conditions, we need to temporally map and
understand the nuances of this restructuring in coordination.

The extant literature that has attempted to capture more dynamic attri-
butes of coordination has primarily focused on turn-taking patterns (David
& Schraagen, 2018; Grimm et al., 2023; Van den Oever & Schraagen,
2021). However, this focus tends to overlook the implicit and explicit infor-
mation and actions transmitted through those patterns, elements that are
essential to coordination itself, since they determine what is actually being
coordinated.

For example, research on turn-taking coordination patterns already high-
lights the positive effects of perturbation training on performance. Perturbation
training involves exposure to unforeseen circumstances and disruptions
throughout training that simulate the volatility of real life. Such training leads
to better performance under novel task conditions compared to traditional,
“procedural” training processes, where trainees are taught to follow a stan-
dardised procedure for each situation encountered (Gorman et al., 2010).
Moreover, perturbations have been found to lead to reorganisation of team
turn-taking patterns, with expert teams adapting faster than novice teams
(Gorman et al., 2019). This research marks important progress in using tem-
poral insights to understand coordination, suggesting that high-performing
teams possess a repertoire of adaptive mechanisms that they can utilise to
reorganise effectively.
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However, our knowledge remains limited with regard to what this reper-
toire of adaptive mechanisms includes, or how exposure to training over time
may affect the development of these mechanisms. While reorganisation is
recognised to be important, coordination restructuring, in terms of which
behavioural patterns change over time, or how they change remains poorly
understood. Bridging this gap can facilitate the development of tailored team
training programs and evaluation methods that target specific coordination
restructuring processes, ultimately promoting coordination restructuring
mechanisms that enhance team resilience.

In the current study, we aim to bridge this gap by unpacking the dynamic
nature of coordination restructuring in detail, before and after simulation
training. In doing so, we adopt a more holistic measurement of coordination
by assessing all layers of actor speaking, message transmitted (i.e., action or
information oriented), and mode of transmission (explicit or implicit) (David
et al., 2024; Kolbe et al., 2013). By using a temporal analysis approach of
information entropy, we examine both the composition of coordination
restructuring, referring to the behavioural changes that occur in the coordina-
tion behaviours, as well as the rhythm of coordination restructuring, that is,
the cycles of transitioning between order and disorder reflecting rigidity or
flexibility (Bartunek & Woodman, 2015), These dimensions of coordination
restructuring are explored before and after a series of training sessions for
emergency management teams. By capturing the nuanced changes in coordi-
nation, we can develop a more comprehensive understanding of team resil-
ience mechanisms, which is essential for informing the design of future
training programs aimed at enhancing performance through adaptive
training.

Coordination Restructuring and Team Resilience

Definitions of resilience vary greatly, with no single definition capturing all
its facets (Woods, 2015). Within the context of action teams and high-stakes
environments, there is a growing tendency to conceptualise resilience as a
process (Ketelaars et al., 2024; Patriarca et al., 2018), referring to the capabil-
ity to cope with challenging situations (Murphy et al., 2019; van der Kleij
et al., 2011). We adopt the definition of Hancock et al. (2022), viewing resil-
ience as “The capacity to change in response to conditions that push a system
beyond the boundaries of its effective stability and to establish a new, normal
state of operations beyond the initial operating parameters” (p. 256). Similar
conceptualisations of resilience, such as the definition of resilience by
Hollnagel (2022), underscore that resilience is not mere reactivity but requires
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continuous adaptation, whereby teams evolve through changing interactions
to maintain performance in the phase of disruptions.

Such definitions imply that the process of resilience should be viewed as
a dynamic temporal process of these adaptations, and the behavioural make-
up of team interactions. However, most existing resilience models adopt a
rigid view of how coordination dynamics can facilitate resilience. For exam-
ple, while switching from directive to more reciprocal patterns of coordina-
tion is considered an important attribute of teams coordinating under
uncertainty (Davison et al., 2012; Sherman & Keller, 2011), it remains
unclear when during an event reciprocal patterns are most useful, or zow pat-
terns of coordination change throughout an uncertain, stressful situation.
Although changes in coordination are considered important, the #aythm and
timing of these changes remain underexplored.

We follow the view that coordination restructuring, encompassing changes
in the rhythm and timing of coordination, is an important mechanism of team
resilience. Nuanced changes in coordination patterns throughout team activ-
ity can reflect a team’s capacity to navigate through disorder and to reach a
new state of stability according to the situational demands at play.

This perspective aligns with conceptualising teams as Complex Adaptive
Systems (CAS), which is especially important for understanding resilience
and coordination restructuring, as it provides a theoretically grounded way to
explain how adaptive capacity emerges under dynamic and evolving condi-
tions (Ramos-Villagrasa et al., 2018). CAS theory emphasises that collective
team behaviours are not just the sum of individual behaviours and actions but
should be viewed as the product of ongoing, reciprocal interactions among
interdependent team members embedded within a broader environment. A
core feature of CAS is that systems are characterised by nonlinearity, where
a small change in one part of the system can trigger large effects elsewhere.
CAS’s characterisation of teams as adaptive, but also complex and system-
based, also adheres to the idea of multi-stability, which is crucial for teams in
critical circumstances where teams can shift between multiple functional
states depending on contextual demands (Pype et al., 2018). Such properties
are especially relevant to resilience, which often requires moving the team
from one stable state to another in response to disruptions (Hancock, 2023).
Taking a CAS perspective, coordination restructuring is conceptualised as a
non-linear, emergent, self-organising process where team members con-
stantly modify patterns of interaction (Grote et al., 2018; Maynard et al.,
2015). By framing teams as CAS, we place focus on the relevance and impor-
tance of understanding the non-linear, emergent, self-organising processes,
such as coordination restructuring, that characterise these systems.
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In addition to the importance of viewing teams as CAS, other streams of
team literature have also shown that temporal coordination dynamics go
hand-in-hand with changes in important temporal team processes (Manser
et al., 2008; Marques-Quinteiro et al., 2019). Thus, the nuanced fluctuations
in coordination between team members may serve as empirical markers of
resilience as it unfolds in real time.

Building on this view, resilience is not only revealed in rare crises and
extreme events, but also in the nuanced changes that reflect the small disrup-
tions characterising normal work. In high-stakes environments such as emer-
gency response management, disruptions are part of everyday operations:
some are expected and form the routine content of work, while others are
unexpected, defined as incongruent with expectations based on event proba-
bilities and available information (Hancock et al., 2022). In these settings,
teams must regularly adjust and realign their coordination rhythm, timing,
and structure to sustain effective performance. Evidence shows that teams
that face unexpected conditions in training adapt more effectively than those
practising in simpler, more stable ones (Grote et al., 2018). Under such condi-
tions, where “almost nothing happens” (Hollnagel et al., 2021), performance
outcomes such as reduced time, fewer errors, and higher-quality work serve
as indicators of how effectively disruptions are managed.

A gap remains in understanding the relation between coordination restruc-
turing and performance outcomes, not only in terms of how they succeed or
collapse but regarding “normal work” performance outcomes, such as error
avoidance and overall quality of work.

Phases of Coordination Restructuring

To offer a temporal, comprehensive theoretical foundation of coordination
restructuring, we first distinguish between two phases in team coordination:
equilibrium and ataxia. Equilibrium' refers to states of orderly coordination
patterns, while ataxia, derived from the Greek word for “lack of order,”
denotes periods where new, less predictable behaviours emerge that do not
develop into recurring patterns, marking these phases as dominated by disor-
der. Similar distinctions in the literature of organisational learning already
point towards a dichotomy between exploration (i.e., search, variation, exper-
imentation) and exploitation (i.e., implementation, execution) (March, 1991).
Adaptive organisational systems are believed to navigate within the explora-
tion-exploitation trade-off, where “systems that engage in exploitation to the
exclusion of exploration are likely to find themselves trapped in suboptimal
stable equilibria” (March, 1991, p. 71). Such theoretical conceptualisations,
which still prevail in organisational literature (e.g., Berger-Tal et al., 2014;



David et al. 7

Coradi et al., 2015; Zhou et al., 2023), point to the importance of such phases
and the need for empirical research to capture and understand how phase
transitioning happens and what it actually means for performance.

Team research shows that during routine conditions, teams typically oper-
ate in equilibrium, relying on pre-established procedures and predictable
interaction patterns (Howard-Grenville, 2005). Yet when operational
demands change, such patterns may no longer suffice, requiring real-time
restructuring (Gorman & Cooke, 2010; Grote et al., 2018). This often initi-
ates a phase of ataxia, in which coordination becomes less predictable and
chaotic. Ataxia phases represent pivotal moments where new behaviours are
introduced and tested, an exploration required when facing uncertainty
(Waller et al., 2004; Woolley, 2009), initiating adaptations toward a new
equilibrium. Through this exploration, teams may, for instance, shift from an
equilibrium of centralised to one of decentralised communication to acceler-
ate information sharing (Barth et al., 2015) or reallocate roles to meet evolv-
ing needs (David et al., 2024). If, however, teams remain trapped in ataxia
without progressing toward a new equilibrium, coordination may disintegrate
altogether, sometimes with fatal consequences (David & Schraagen, 2018).

Coordination restructuring reflects the capacity to transition flexibly
between equilibrium and ataxia, ensuring team resilience as defined by
Hancock et al. (2022): extending beyond established operations into new
spaces of action that align with situational demands. Prolonged equilibrium
risks brittleness, as it impedes teams’ capacity to promptly address unex-
pected situations, limiting their ability to adapt beyond their familiar reper-
toire of coordination methods (Burke et al., 2006; Woods, 2018). Conversely,
prolonged ataxia without stabilisation undermines recovery. Therefore, it is
reasonable to assume that a rigid approach to coordination restructuring, indi-
cating a lower rhythm of restructuring (i.e., decreased recurrence of phase
transitioning), leads to decreased adaptability and increased risk of brittle-
ness. Effective transitioning between the two phases is therefore necessary
for team resilience. Figure 1 presents a conceptualisation of the two coordi-
nation restructuring phases.

Despite the importance of both phases, when studying the composition of
team coordination, research has predominantly focused on orderly phases to
understand team functioning, often neglecting ataxia phases or the examina-
tion of transitioning between equilibrium and ataxia (Grote et al., 2018).
Also, empirical methodologies often reduce coordination changes to a single
measure of overall team stability (e.g., Lyapunov A exponent calculation, see
Demir et al., 2019).

We aim to advance the understanding of coordination as a temporal mech-
anism by investigating the transitioning between equilibrium (order) and
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Equilibrium Phase Phase Ataxia Phase
Transitioning
recurring behaviours emergent behaviours
_—
orderly patterns — disorder

Figure |. Phases of coordination restructuring.

ataxia (disorder), measuring both the rhythm of restructuring (i.e., recurrence
of restructuring), and the nature of each phase through capturing their behav-
ioural composition (i.e., how restructuring is manifested in the behavioural
make-up of the different phases). Understanding the behavioural make-up of
each phase is particularly important as it enables us to capture the underlying
patterns guiding restructuring, thus allowing for the conceptualisation of
coordination restructuring as a mechanism of team resilience through tangi-
ble, real-life behavioural patterns. This approach links the theoretical concept
of coordination restructuring to its continuous empirical measurement,
addressing a longstanding gap in the team literature (Allen & Lehmann-
Willenbrock, 2024; Kozlowski & Chao, 2018; Lehmann-Willenbrock &
Hung, 2024).

Coordination Restructuring and Entropy

A promising analytic approach for modelling coordination restructuring is
entropy, a nonlinear dynamic systems technique from physics and informa-
tion theory that quantifies the degree of disorder or unpredictability in a sys-
tem (Shannon, 1948). Low entropy reflects stability and constraint among
system components, while high entropy signals variability and disorder
(Guastello, 2010, 2017). Because coordination restructuring is inherently
temporal, entropy is particularly suited to capturing shifts in team interaction
over time. Unlike linear methods, which assume fixed relationships and over-
look emergent processes (Gorman, 2014; Gorman et al., 2019), entropy is
sensitive to heterogeneity, variability, and self-organisation, making it well
aligned with investigating teams as CAS. Importantly, entropy offers a dis-
tinct advantage over other nonlinear approaches in its ability to detect phase
transitions, marking shifts between equilibrium and ataxia. In particular,
sliding-window entropy (described in detail in the methods section) enables
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mapping of these transitions in continuous time-series, identifying order-
disorder shifts as they unfold in real interaction (Kelso, 1990, 2021).

As a dynamical system approaches a phase transition, constraints of the
system begin to break down, exhibiting more disorder in its behaviour (i.e.,
higher entropy) (Stephen & Dixon, 2009; Wiltshire et al., 2018), by definition
positioning entropy peaks (i.e., significantly higher entropy values in the
time-series) as the means to identify phase transitions. Empirical evidence in
cognitive and team science supports the robustness of using entropy peaks to
identify phase transitions (Ricca et al., 2019; Stephen & Dixon, 2009;
Wiltshire et al., 2018). For instance, peaks have been associated with transi-
tions between problem-solving phases or the emergence of new communica-
tion patterns. However, prior work has largely examined specific
problem-solving stages and did not directly address the process of coordina-
tion restructuring, transitioning between phases of equilibrium and ataxia.

By capturing time-sensitive changes as behaviours unfold throughout
interaction, entropy allows for a nuanced understanding of how systems
evolve and restructure coordination. It provides a bottom-up approach that
avoids arbitrary phase segmentation, relying instead on actual, granular data
of team interactions (Guastello, 2017). In the present study, entropy thus
offers the means to empirically investigate and capture the complex concep-
tual nature of coordination restructuring.

Capturing Coordination Restructuring Through Coordination
Behaviours

The outcomes of an entropy time-series heavily depend on the data being
modelled. For example, research performed by Wiltshire et al. (2018) inves-
tigated the problem-solving phase transitioning (e.g., transitioning from a
“team knowledge sharing” phase to a “team process and plan regulation”
phase), by modelling problem-solving behaviours (e.g., “knowledge provi-
sion” or “situation request”) as these are exhibited in team interaction onto a
time-series. Similarly, Uitdewilligen and Waller (2018) identified different
phases of information-sharing and decision-making by modelling different
information-related behaviours (e.g., “fact-sharing” and “communicating
decisions,” and “commands”).

To effectively capture coordination restructuring, it is essential to adopt a
comprehensive approach to modelling coordination behaviours. Therefore,
we base our coding on the AMM Coordination Framework developed by
David et al. (2024), which provides a holistic perspective by considering
three key aspects: (a) actor, referring to who performs the behaviour, (b)
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message, the content being coordinated, such as instructing or requesting
information, and (c) mode, the nature of the coordinative act, either being
implicitly or explicitly. This framework enables us to capture coordination at
multiple layers that interconnect and dynamically change altogether, thereby
offering a nuanced understanding of coordination restructuring (see David
et al., 2024, for literature review on each layer).

Aim of the Study

Our review of the literature has identified two key research gaps that we
aim to address in this study. First, while research has identified that restruc-
turing in coordination patterns occurs during team activity, how this restruc-
turing occurs is yet to be understood. This limits our ability to fully
comprehend the adaptive mechanisms that drive team resilience and lead to
better performance outcomes. Second, the rhythm of coordination restruc-
turing, referring to the recurrence of transitioning between order and disor-
der, remains unexplored.

This study aims to holistically explore coordination restructuring and its
relation to performance following a temporal approach. We apply sliding
window entropy to video-coded coordination behaviours (capturing all
aspects of actors speaking, transmitted message, and mode of transmission)
of emergency management teams undertaking an 8-week training course. As
outlined in the methods section, the realistic environment in which our sam-
ple trained included all the technological equipment and stressors present in
real-life scenarios. Each team interacted with advanced medical equipment
and responded to dynamic, realistic triggers (e.g., unexpected influx of infor-
mation about the patient), mirroring the complexities of real-life emergency
situations, allowing us to investigate coordination restructuring over time,
under “normal work” conditions of emergency management teams. In this
way, we were able to capture coordination restructuring as a mechanism of
team resilience and relate it to team performance outcomes in a context com-
mon for action teams that operate in high-stakes environments.

We aim to explore the rhythm of coordination restructuring and its rela-
tion to performance before and after training (RQ1), captured by the entropy
peaks within the time-series. We also aim to examine the differences in the
composition of coordination restructuring between high and low perform-
ing teams (RQ2) by delving into the coordination behaviours displayed dur-
ing each phase.
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Method

Participants and Design

The study was performed on a secondary dataset from a study at the University
of Twente by Endedijk et al. (2018). It consisted of first-year MSc students
who enrolled in the course “Advanced Life Support (ALS),” part of the mas-
ter’s study program “Technical Medicine” at the University of Twente.
Throughout the ALS course, students were taught to diagnose and address a
patient in cardiac arrest. They also practised cardiopulmonary resuscitation
(CPR), using an advanced human patient simulator and engaging in scenarios
of different levels of complexity. The students were on average 22.4 years old
(SD=1.1), and 56% were female. The current analysis was performed on
nine teams, each consisting of four students, matched to their performance
scores and written informed consent for participation in the study. The study
received ethical approval from the Ethics Committee of the University of
Twente for both the first round and second round of data collection, including
from the teachers involved in the ALS course.

Procedure

The ALS course lasted a total of 8 weeks, aiming to teach students how to
proficiently conduct CPR. During the first lecture of the course, the students
were informed about the study. The study included five practice rounds and a
final assessment round. Each round lasted 20 min, during which the team was
introduced to a resuscitation scenario and instructed to save the patient. The
patient was a real-life dummy from CAE Healthcare (CAE HPS and
MetiMan) that had to be treated in a Simulated Intensive Care unit. These
simulated SICs are available for training in acute care. The rooms were
equipped with state-of-the-art monitoring and ventilation equipment from
Philips (MX 800, Respironics V680), which together with the mannequin,
created realistic training scenarios in acute care for specialists and teams. For
our analysis, we consider the first practice round (before training) and final
assessment round (after training) to capture the effect before and after train-
ing. Students were divided in teams of four, and each student was randomly
assigned one of four fixed roles: (a) team leader, tasked with overseeing task
distribution, monitoring team performance, creating a situational overview,
and managing patient handover; (b) medication nurse, in charge of drug
administrations and connecting devices; and (c¢) two CPR administrators,
handling chest compressions and airway management. Every student had the
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opportunity to practice each role at least once before the study started, ensur-
ing they were familiar with the responsibilities and expectations of each role.
Two teachers were present in every round. One teacher read out loud the
scenario to the students, and the other teacher rated team performance
throughout the scenario.

Materials

Scenarios. Teams were trained in simulated resuscitation scenarios of an
emergency medical response team. Hunziker et al. (2011) outlined in their
study on stress and team performance during simulated resuscitations that
Advanced Life Support (ALS) scenarios typically follow a defined sequence.
In line with their findings, the ALS scenarios began with a brief introduction
to the patient’s history by an instructor (lasting up to 905s), followed immedi-
ately by a resuscitation period where CPR was administered. The scenarios
concluded with a handover of the patient to another team or specialist. How-
ever, unlike the Hunziker study, most scenarios in our study ended with the
patient still in critical condition; the patient could breathe independently but
lacked a stable pulse or sinus rhythm. This made the handover phase at the
end particularly critical. On average, each scenario in the final assessment
lasted 21.6min (SD=2.9). For the practice rounds, scenarios were shorter,
with a mean duration of 13.3 min (SD=2.7).

Simulators and CPR Equipment. The practice sessions took place in two rooms,
a simulated Intensive Care Unit (ICU) and a simulated operating room (OR),
both situated at the Experimental Centre for Technical Medicine (ECTM) at
the University of Twente. Both rooms were equipped with either a Human
Patient Simulator (ICU) or a mobile METIman Patient Simulator (OR), an
Infinity patient monitor and a Philips defibrillator. The settings thus provided
a realistic yet controlled training environment, facilitating the simulation of
in-hospital cardiac arrest.

Recording Materials. The METIvision video and audio system was used for
the recording of the sessions. This system featured three cameras and micro-
phones strategically positioned on the ceiling of the simulation room to cap-
ture and document the entirety of the simulation events.

Team Performance Measure. To assess team performance, the validated Team
Performance four-item scale by Gibson et al. (2009) was employed, which
assessed the quantity and quality of teamwork outputs, in line with previous
operationalisations of team performance (Cohen & Ledford, 1994; Stewart &
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Barrick, 2000). The scale includes items on consistency of quality, effective-
ness, errors made and general performance. Items were rated by the two pri-
mary instructors of the course on a 7-point Likert scale ranging from 1 (very
inaccurate) to 7 (very accurate). The scale’s Cronbach’s alpha was 0.86
(Gibson et al., 2009), marking it highly reliable for measuring team perfor-
mance. Example items were “this team makes few mistakes” and “this team
shows high-quality work.” The primary course instructor trained on using the
scale and was given the definitions of each item and the scoring process.

Transcription and Coding

All videos were transcribed using the Atlas.ti software. Coding was per-
formed following the coding scheme of the AMM Framework (David et al.,
2024), thus denoting the actor speaking, the message transmitted and the
mode of coordination. Specifically, the actor speaking was simplified to
leader-follower to avoid over-complexification of the results, since the pri-
mary aim of this study was not to understand the specific roles of each of the
team members but rather to capture the differences in overall actor relation-
ships. This would also ensure robustness in the analysis (applying a four-
actor x fourteen-behaviours codebook would lead to fifty-six possible codes,
which would require a longer dataset for validity). For the message transmit-
ted, we categorised behaviours as either information-oriented or action-ori-
ented, and for the mode of coordination, we categorised them as either
explicit or implicit. The adopted codebook is presented in Table 1, alongside
definitions and example excerpts from the transcripts.

Coding was done using an Excel file, which included four columns with
the team identification number, the actor speaking, the utterance spoken, and
the assigned code. Utterances including two or more codes (e.g., an instruc-
tion followed by an information request) from the same actor were treated as
different codes and placed in the sequential order in which they were pre-
sented in the transcript. To ensure inter-rater reliability, two researchers per-
formed independent coding. One on the full dataset, and one on 50% of the
data. The overall inter-rater agreement was good (Cohen’s kappa=0.78;
Cohen, 1960).

Data Analysis

Data Preparation. To perform the entropy analysis, each code first needed to
be assigned an integer number. Code numbers ranged from 1 to 28, depend-
ing on whether the behaviour was exhibited by the leader of the team
(assigned numbers 1 to 14, each number for each code of Table 1) or one of
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the follower members (assigned numbers 15 to 28, each number for each
code of Table 1). Two Excel files were created, one for the First practice
round and one for the Final assessment round. Both files included two col-
umns, the Team ID (identifying the team number), and the Code ID, repre-
senting the behaviour exhibited by the team in a sequential order. Two
analysis rounds were performed, one for before training and one for after
training.

For the calculation of the entropy time-series and descriptive statistics, the
software R was used (R Core Team, 2021), and we followed the procedure
outlined by Wiltshire et al. (2018). The script was adjusted to the needs of the
current research. All subsequent analyses were performed with IBM SPSS
Statistics (Version 28; IBM Corp., 2021).

Sliding Window Entropy Analysis. Shannon information entropy is a measure of
the order versus disorder exhibited by a system, based on a set of discrete
states and associated probabilities for each state (Benslama & Mokhtari,
2017). The relative probability of a given coordination code, denoted as p,,
indicates the occurrence likelihood of each code. Higher entropy signifies
more disorder, while lower entropy corresponds to more order. The equation
(1) for Shannon entropy is:

->_p;xlog p, (1)
i=1

To capture fluctuations in the system’s state patterns over time, a sliding win-
dow calculation of entropy was employed, resulting in a continuous entropy
time-series. The sliding window technique involved partitioning the commu-
nication data into consecutive segments of fixed length, referred to as the
window size. Entropy values were then computed for each window to quan-
tify the degree of uncertainty or randomness in communication patterns
within that interval. By sliding the window along the time-series with a speci-
fied step size, we obtained a sequence of entropy values corresponding to
different segments of the data.
Below are the main steps carried out in the analysis.

Determining a Window Size. To establish an optimal window size for our
analysis, we employed the Average Mutual Information (AMI) metric across
the time-series of each team. AMI serves to quantify the statistical interde-
pendence between observations at various time lags, helping to quantify how
much information about a team’s behaviour at a given time is provided by
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observing its behaviour at previous time points. The point where the AMI
series exhibits its first local minimum signifies a decline in temporal depen-
dency between observations, indicating that subsequent behaviours are less
influenced by preceding actions.

Selecting this point as our window size allows us to capture pertinent tem-
poral dynamics while mitigating the impact of past observations that offer
diminishing informational value. By computing the AMI for each team’s
data, we determined the lag corresponding to the first local minimum in each
AMI series. Before training, the average lag for all teams was found to be 26
(8SD=20), indicating that a window size of 26 adequately captures relevant
temporal patterns. After training, the average window size was 21 (SD=10).

Entropy Calculation and Smoothing for Peak Identification. In the analysis
before training, we applied a window size of 26 and step size of 1 to calculate
entropy values for each team. Peak identification involved creating a binary
time-series (1=peak, 0=no peak) based on criteria for a variable to be con-
sidered a peak: the current entropy value must be higher than the preceding
(t + 1) and lower than the following (t — 1) entropy value (lead 1 and lag 1).
For each team, a window of size 26 was slid across the sequence of datapoints
with a step size of 1. In this way, the first entropy value was calculated for
the first 26 datapoints, the next value for datapoints 2 to 27, and so on, up to
the last possible window. Because the window size was 26, the last 25 time
points did not have enough subsequent points to form a complete window.
Thus, the length of the entropy time-series is reduced by 25, resulting in a
final length of N-25. Appendix A (Figure Al) includes a simplified visual
representation of sliding window entropy.

To enhance peak identification robustness, a moving average smoothing
algorithm was applied to the entropy time-series, serving to reduce noise and
highlight underlying trends by averaging out fluctuations within the data.
After testing a variety of window sizes from 5 to 26, and noting how the aver-
age peak proportion changed, we applied the smoothing procedure with a
window size of 7. The resulting continuous entropy time-series with an origi-
nal window of 26 and step size of 1, and smoothing window 7, resulted in an
entropy time-series of length N-31. The differences in entropy time-series
before and after smoothing can be seen in Figure 2.

Note that after training, the same procedure was followed, with original
window size 21, and moving window size of 11 for smoothing, resulting in
entropy time-series of length N-30.

The periods in-between peaks that remained present after smoothing, each
of varying length and entropy values, are referred to as epochs (Wiltshire
et al., 2018).
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a. Before smoothing
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Figure 2. Entropy times series, example from single team. Vertical lines represent
peak points: (a) original entropy time-series and (b) smoothed entropy time-series.

Randomised Average Peak Point Entropy. We conducted a randomised aver-
age peak point entropy analysis to establish a baseline for comparison. This
involved simulating expected entropy at peak points under random condi-
tions. By comparing the observed average peak point entropy with its ran-
domised counterpart, we assessed the significance of observed entropy
values. In other words, the randomised average peak point entropy served as
a reference point for evaluating the meaningfulness of the observed entropy
patterns. We then conducted a paired samples #-test to verify that observed
average peak point entropy values were lower than those of randomised aver-
age peak point entropy, validating the robustness of the peaks found.

Descriptive Statistics. We first calculated the median for team performance
scores before training (Median=2.5) and after training (Median=5.25) to
categorise teams as high-performing (equal to and above median) and low-
performing (below median). For both sessions, four teams were classified as
high-performing and five as low-performing.

Categorisation into Equilibrium and Ataxia Phases, Time-Series Plots and Behavioural
Anadlysis. To explore the rhythm and composition of coordination restructuring
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before and after the training, we first categorised epochs into equilibrium and
ataxia phases to be able to investigate how team shift between these two. We
used two criteria for this categorisation: the length of the epoch and its entropy
value. An epoch was considered an equilibrium phase if its length was greater
than the team’s average epoch length and its entropy value was lower than the
median entropy value in the observation period. Both criteria had to be met. For
an epoch to be classified as an ataxia phase, its length had to be shorter than the
average of all epochs. After our categorisation, we calculated the percentage of
the time-series spent in equilibrium phases by adding up all the datapoints that
constituted equilibrium phases in each time-series and dividing them by the
total datapoints of the time-series.

For the rhythm of coordination restructuring, we explored the proportion
of entropy peaks throughout the entropy-series, as these are indicators of
phase transitioning (i.e., point of maximum unpredictability or complexity in
the system and thus requiring the system to adapt; Kelso, 1990; Wiltshire
et al., 2018). Note that peak proportions do not necessarily mean higher dis-
order in the time-series. On the contrary, it is indicative of the ability to
restructure coordination from one phase to the next, as required by the envi-
ronmental stressors, without this equating to remaining in ataxia for long.

As a first step in exploring the rhythm of coordination restructuring, we
performed a visual analysis of the entropy-series for each team in a ranked
order from highest to lowest performance score. Visual analysis is a neces-
sary approach in phenomena that are highly complicated and highly variable
(Kyndt & Aerts, 2022), such as coordination restructuring. Visual inspections
of individual entropy time-series ensure that results are not only aggregated
into unified wholes, and that all individual peculiarities are examined. The
visual analysis enabled us to make some initial informed observations, which
were followed by subsequent analysis.

In addition to the visual analysis, we ran a general linear model (GLM)
with IBM SPSS Statistics (Version 28) to test the variable of peak proportion
as a predictor of team performance before and after training. We should note
that the GLM results should be interpreted with caution because of the low
sample size.

To distinguish between peak proportion as a reflection of coordination
restructuring and not of disorder, we also tested the relation between another
variable and performance before and after training, that of the percentage of
equilibrium (i.e., the percentage of the time-series that teammates spent in
equilibrium phases). Equilibrium is an indicator of orderly coordination,
where a higher percentage of time spent in equilibrium (i.e., time dominated
by predictable ordered patterns) reflects increased order of team behaviours
(i.e., predictable behaviour patterns). In other words, the higher the
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equilibrium percentage, the higher the orderly coordination. We also ran a
GLM for the equilibrium percentage variable to test the predictive power of
equilibrium percentage on performance before and after training.

To assess the composition of coordination restructuring, we calculated
relative frequencies of coordination behaviours at play during the equilib-
rium and during the ataxia phases of high and low performing teams. We
based the comparison of high and low-performing teams on the datasets of
teams after training, since after completing training, the teams should have
been sufficiently trained to demonstrate the necessary skills to adaptively
manage the situation.

Results

The total number of data points before training was 1,720 (mean number of
data points per observation period=213) and after training 3,940 (mean num-
ber of data points per observation period=452). The range of observed
entropy values in the first round was 1.67 to 2.72 (Mean=2.30, SD=0.19)
and for the final round 1.16 to 2.79 (Mean=2.20, SD=0.24). When examin-
ing the proportion of entropy peaks within the first found, 8.26% of the total
number of data points was classified as peaks in entropy based on our criteria
(prior to smoothing, the number of data points classified as peaks was
14.34%). For the final round, 5.54% of the total number of data points were
classified as peaks in entropy (prior to smoothing, that was 11.84%). The
proportion of peaks in the time-series ranged from 5.4% to 10.0% in the first
round and 4.3% to 6.0% in the final round. These descriptive statistics indi-
cate that each team exhibited robust peaks in their entropy time-series
because: (a) a substantial portion of the data points exhibit peaks, indicating
that peaks are not rare occurrences but are consistently present across the
dataset, (b) despite some variation between teams, every team displays a
notable proportion of peaks, indicating that their presence is a common char-
acteristic across different teams, and (c) after smoothing, which reduces noise
and decreases the number of detected peaks, around 6% to 8% of the data
points was still classified as peaks, suggesting that the peaks are not merely
noise but are meaningful features of the entropy time-series.

Rhythm of Coordination Restructuring and Performance, Before
and After Training
Figure 3 presents the time-series data for all nine teams, rank ordered by their

performance scores after training. Visual inspection of the final round reveals
a higher rhythm of entropy peaks for the high-performing teams (above the
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median split) compared to the low-performing teams (below the median
split). Additionally, these peaks are more evenly distributed throughout the
observation period for the high-performing teams. In contrast, low-perform-
ing teams seem to exhibit longer-lasting equilibrium periods that are pre-
sented right next to one another, suggesting increased rigidity. Once teams
enter ataxia, they either fail to reach equilibrium again (e.g., team 5) or take
a prolonged period to enter equilibrium again (e.g., team 1, team 3). Notably,
in the first round, the peaks for high-performing teams are denser at the
beginning of the time-series, whereas for low-performing teams, the peaks
are more evenly spaced throughout the period. This might indicate that exper-
imentation with coordination processes at the beginning of interaction
(through introducing ataxia) can help with developing better-suited team
coordination throughout interaction.

To further explore the rhythm of coordination restructuring and its rela-
tion to performance, we illustrate their relationship using scatter plots.
Figure 4 shows the relationship between peak proportion and team perfor-
mance before and after training. We see here that in both rounds, the peak
proportions positively correlate with the performance score. Teams that
score higher tend to have a higher percentage of peak proportions relative to
the observation period in their entropy time-series, and hence a heightened
restructuring rhythm.

The GLM analysis for peak proportion yielded significant results.
Specifically, before training, the overall model was statistically significant
(F(1,7)=6.07, p=.043, with an R>=.464), indicating that 46.4% of the vari-
ance in team effectiveness was explained by the model. Peak proportion was
a significant positive predictor of performance, 5=34.42, SE=13.97,
1(7)=2.46, p=.043, partial n?>=.464. After training, peak proportion was also
found to significantly predict performance. The overall model was significant
(F(1, 7)=6.80, p=.035, with an R?=.493), indicating that the model
accounted for 49.3% of the variance in team effectiveness. The regression
coefficient for peak proportion was statistically significant h=110.19,
SE=42.26, {(7)=2.61, p=.035, partial n?=.493.

Note that these results derive from a small sample size and should be
interpreted with caution. The scatterplots and GLM results indicate that
increased peak proportion leads to higher performance. This is also sup-
ported in the visual inspection, by the tendency of higher-performing teams
to display increased number peaks throughout their time-series (and thus
higher exploration). Interestingly, the variance explained before and after
training does not change as much, indicating that increased peak proportion
is as important of a predictor of higher performance levels before training as
it is after training.
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Figure 4. Relationship between peak proportion and performance score of every

team: (a) before training and (b) after training.

Note. The regression line (blue) shows a positive trend in the relationship, and the median
line (red) indicates the median performance score for separating between low and high-
performing teams.

When testing for the equilibrium percentage variable (see Figure 5), before
training, we see a slight negative relationship between equilibrium percentage
and performance, although this finding is not significant. The effect of per-
centage spent in equilibrium on performance was not statistically significant
(b=-0.29, SE=0.14, #(7)=—-2.04, p=.080, partial n?>=.213). After training,
however, this relationship shifts, indicating a significant positive relationship
between equilibrium phase percentage and performance. The overall model
after training was significant (F(1, 7)=4.17, p=.017 with R?>=.580), indicat-
ing that approximately 58% of the variance in performance was explained by
the model. This suggests that an increased amount of orderly coordination
leads to increased team performance. Equilibrium percentage was a signifi-
cant positive predictor of performance (h=0.29, SE=0.14, #7)=-2.04,
p=.017, 95% partial n*>=.373).
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Figure 5. Relationship between equilibrium phases (% of the time-series) and
performance score of every team: (a) before training and (b) after training.

Note. The regression line (blue) shows a positive trend in the relationship, and the median
line (red) indicates the median performance score for separating between low and high-
performing teams.

Combining the findings from our two variables measured after training, an
intriguing observation emerges: two seemingly contradictory trends coexist.
On the one hand, a higher peak proportion, indicative of restructuring rhythm,
is associated with better performance. On the other hand, a greater equilib-
rium percentage, reflecting orderly coordination, also correlates with
improved performance. This suggests that coordination restructuring is far
from being synonymous with disorder. Instead, heightened rhythm in coordi-
nation restructuring (i.e., transitioning and adapting coordination to task
demands) enhances performance outcomes. At the same time, an elevated
degree of order further boosts team performance, underscoring that effective
restructuring is intrinsically linked to orderly coordination.
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Figure 6. Behaviours (relative frequencies) of high-performing (blue) and low-
performing teams (red), for (a) equilibrium phases and (b) ataxia phases.

Comparing the results before and after training, it seems that while the
rhythm of coordination restructuring (peak proportions) remains important
before training, the amount of orderly coordination (equilibrium percentage)
during the initial stages of training is not as important before training as it is
after training.

Composition of Coordination Restructuring: Relative Frequencies
of Coordination Behaviours of High and Low-Performing Teams

Regarding the composition of coordination restructuring, we compared high
and low-performing teams in terms of the behavioural composition of their
equilibrium and ataxia phases (see Figure 6). The first notable difference con-
cerns the higher overall relational frequency in the behaviours of high-per-
forming teams in both phases, suggesting that specific behaviours dominate
the team activity more strongly than in low-performing teams, who display
lower overall relational frequencies, indicating a more dispersed use of
behaviours.

Further, in equilibrium phases, high-performing teams display increased
frequencies of implicit action coordination behaviours (e.g., monitoring, pro-
viding assistance) and explicit information coordination (e.g., information
evaluation) as compared to the low-performing teams. For low-performing
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teams, acknowledgement seems to dominate, possibly revealing an over-reli-
ance on leadership.

In ataxia phases, high-performing teams were found to maintain their use
of acknowledgement, indicating a tendency to maintain a standardised coor-
dination protocol even during periods of disorder, while low-performing
teams dropped from 17% to only 3% of acknowledgement behaviours.
Further, in ataxia, high-performing teams maintain high frequencies of giving
instructions, as compared to the low-performing teams, where instruction
behaviours drop to under 5%. This indicates that directive behaviours are
important to navigating through disorder. Lack of dominant behaviours indi-
cating initiative (e.g., speaking up, information talking to the room) in low-
performing teams as compared to high-performing teams may suggest a
decreased ability and willingness to use ataxia phases to explore, extend and
reconstruct their repertoire of behaviours and understanding of the situation.

Discussion

This study aimed to explore coordination restructuring in high and low-per-
forming teams before and after training by applying a sliding window entropy
technique. A sample of medical emergency teams was followed over the
course of an Advanced Life Support training for 8 weeks, enabling longitudi-
nal comparison of how the teams altered their coordination restructuring dur-
ing training, under “normal-work™ in a high-risk environment. Specifically,
we explored the rhythm of coordination restructuring and its relation to per-
formance before and after training, and the differences in the composition of
coordination restructuring between high and low-performing teams. Our
findings revealed that high-performing teams exhibited a higher proportion
of entropy peaks, indicating a greater rhythm of coordination restructuring,
which was significantly correlated with better performance outcomes. This
suggests that the more teams restructure, the better their performance.
Additionally, the percentage of time teams spent in equilibrium phases,
reflecting orderly coordination, showed a shift in its relationship with perfor-
mance, from a slight negative correlation before training to a significant posi-
tive relationship afterwards. This finding highlights the dual necessity of both
frequent dynamic coordination restructuring as well as overall maintenance
of orderly coordination in fostering high team performance. In other words,
while teams seem to benefit from their ability to frequently “break” existing
stable coordination patterns and enter a phase of disorder and exploration,
they also need to regain stability through entering a new equilibrium phase
quickly. Such findings provide empirical support to notions that order and
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disorder, and stability and flexibility strengthen each other (Grote et al., 2018;
Schraagen, 2011).

Furthermore, our analysis of the behavioural composition of equilibrium
and ataxia phases showed that high-performing teams demonstrate a concen-
trated use of behaviours, particularly implicit action coordination and explicit
information coordination during equilibrium phases, suggesting a more tar-
geted and efficient approach to coordination than low-performing teams. In
contrast, low-performing teams exhibited dispersed behaviours, reflecting
uncertainty and lack of targeted behavioural coordination. Notably, during
ataxia, high-performing teams sustained directive behaviours, like giving
instructions and maintaining acknowledgement behaviours, underscoring
their ability to adapt while adhering to standardised protocols (David et al.,
2024; Schraagen, 2011; Van den Oever & Schraagen, 2021). They also show
an increase in speaking-up, monitoring, and acknowledgement behaviours,
indicating a strong effort to rebuild situational awareness and coordination
(Sorensen & Stanton, 2015) and aligning with existing findings on the impor-
tance of exploratory coordination (Waller et al., 2004; Woolley, 2009). This
contrasts with low-performing teams, whose limited initiative and directive
actions may hinder their capacity for exploration and adaptation.

Theoretical Contributions

Our findings on the duality between increased rhythm of coordination
restructuring and prevalence of orderly coordination as predictors of perfor-
mance are in line with previous research suggesting that the interplay between
stability and flexibility is crucial for adaptive coordination (Grote et al., 2018;
Schraagen, 2011). This further aligns our empirical findings as a bridge to
understanding long-standing theoretical constructs such as adaptive coordi-
nation (Kleinman & Serfaty, 1998) that have been criticised for rarely indi-
cating what exactly adaptiveness consists of (Grote et al., 2018; Maynard
etal., 2015). Our findings indicate that the rhythm of coordination restructur-
ing is an important facet guiding team resilience in normal work conditions.
Further, the results on the composition of coordination restructuring offer
important insights into specific behavioural patterns that exist in equilibrium
and ataxia phases, as well as how differences in these patterns relate to per-
formance. These findings are crucial in clarifying the nature of adaptiveness
within coordination restructuring, marking it an important mechanism of
team resilience.

The utilisation of sliding window entropy measures to capture rhythm
changes further suggest that entropy-based measures can provide deeper
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insights into team functioning and resilience mechanisms (Ricca et al., 2019;
Wiltshire et al., 2018). Although recent research has begun applying sliding
window entropy to study dynamic changes in team communication (Engome
Tchupo & Macht, 2023; Ricca et al., 2019; Wiltshire et al., 2018), no study to
our knowledge has utilised entropy time-series to capture rhythm of coordi-
nation restructuring as this is manifested in the recurrence of phase transition-
ing between equilibrium and ataxia.

Importantly, our findings align with CAS theory, which conceptualises
teams as non-linear, multi-stable, and self-organising entities (Hancock,
2023; Pype et al., 2017; Ramos-Villagrasa et al., 2018). By examining how
teams oscillate between equilibrium and ataxia, we demonstrate how CAS
properties, such as emergent order, adaptation, and multi-stability, manifest
in real-time coordination processes. High-performing teams’ frequent transi-
tions between order and disorder, combined with purposeful behavioural pat-
terns, illustrate how adaptive capacity emerges and self-organises from
interdependent interactions rather than individual actions, reinforcing the
CAS perspective. Low-performing teams, in contrast, exhibit less structured
coordination and weaker behavioural alignment, reflecting reduced adaptive
capacity and less effective self-organisation.

Our results also point out that while before training the rhythm of orderly
coordination does not significantly correlate to performance, this changes
after training. These findings suggest that utilising orderly coordination and
transitioning between equilibrium and ataxia is learned through training, in
line with previous findings supporting that perturbation training increases
resilience (Gorman et al., 2019; Grimm et al., 2023). They further infer that
training at its initial stages should reinforce ataxia phases, to offer chances for
exploration, while training at later stages should promote increased orderly
coordination as well as increased transitioning between equilibrium and
ataxia.

Our findings align with the concept of metastability, used to define teams
that oscillate between stable coordination patterns and periods of instability,
and support previous views that such metastable coordination is optimal for
team performance (Demir et al., 2019; Gorman et al., 2012; Summers et al.,
2012; Uitdewilligen et al., 2018). Interestingly, beyond merely linking meta-
stability to performance as previous literature has done, we demonstrated
how this metastability manifests throughout the teams’ time-series, and how
order (equilibrium) and disorder (ataxia) interconnect. By doing so, we inte-
grated previous classifications of teams as metastable, rigid, or unstable
(Demir et al., 2019) into the temporal mechanism of coordination restructur-
ing, reflected in the phase transitions between equilibrium and ataxia.
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Through this research, we aim to offer a stepping stone to resolving the
paradox of “almost totally safe” systems (Amalberti, 2001; Reason, 2000).
Literature on system robustness emphasises preparing for disturbances by
modelling, understanding, and training for a wide range of possible scenarios
(Alderson & Doyle, 2010; Carlson & Doyle, 2002; Woods, 2018). However,
even with comprehensive modelling of numerous potential disturbances, the
possibility of an unforeseen scenario leading to system collapse remains.
Training teams for robustness by equipping them to handle only a handful of
disturbances may inadvertently increase the system’s vulnerability to other
types of events (Woods, 2015). Moving beyond merely modelling and train-
ing for a standardised set of possible event scenarios, as done in robust sys-
tem design practices (Woods, 2015, 2018), our methodological approach
views resilience as a process that is incorporated in normal work practices,
informing future training to emphasise system design for resilience.

As evidenced in the current findings, oscillations between order and disor-
der reflect the process of shifting from an established repertoire of behaviours
to a new one, based on the demands of the situation. This aligns with existing
theoretical views on resilience (Amalberti, 2001; Christian et al., 2017;
Hollnagel et al., 2021; Reason, 2000; Schraagen, 2011), and can further be
used to support the conceptual framework of startle and surprise (Landman
etal., 2017), which supports that training should involve the element of unex-
pectedness. Incorporation of unexpectedness in training helps avoid reflex-
ive, startle responses that disrupt logical and ongoing thought and reaction
processes. Rather, surprise is practised as a reaction, which involves the vio-
lation of expectations without blocking analytical cognitive processes.
Therefore, teams learn to react more deliberately by assessing the surprising
events and adjusting their behaviours accordingly. Sliding window entropy
measures can be used to empirically measure startle and surprise responses,
capturing the shifts in behavioural order and disorder that accompany such
moments.

Designing for resilience could potentially involve focusing on the rhythm
of transition between equilibrium and ataxia phases, and promoting the incor-
poration of particular behavioural patterns that support guided exploration
and help bounce back to equilibrium after ataxia. We therefore move from an
abstract reference to adaptive repertoire functions, to a measurable, specified
mechanism that can facilitate team resilience: coordination restructuring.

Practical Implications

In line with current findings, designing for resilience may include training
that focuses on helping teams navigate equilibrium and ataxia phases to
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enhance their adaptive responses, as this helps them to prepare for handling
disruptions. This aligns with the theoretical assertion that training should not
only build stable coordination skills but also foster the ability to dynamically
adjust coordination processes in response to evolving challenges (Grote
et al., 2018; Kolbe et al., 2014).

This dynamic adjustment is important because non-technical skills (NTS)
training, such as leadership and communication of inquiry, information shar-
ing, or evaluation of plans, has been found to improve CPR performance and
can help teams navigate effectively through these phases (Farquharson et al.,
2024). Randomised clinical trials have found that paying attention to such
non-technical skills and focusing on human instead of technical errors
resulted in the teams displaying more behaviours such as information sharing
or evaluation of plans during simulated resuscitations (Thomas et al., 2007,
2010). However, NTS training interventions remain sub-optimal, while most
resuscitation training typically emphasises adherence to standardised proto-
cols and focuses primarily on individual roles and stepwise execution of
resuscitation procedures (Hunziker et al., 2011). We suggest three key ways
in which team training processes can be adjusted to introduce this flexibility
in coordination:

Shifting Briefings from Checklists to Disruption Preparedness. Resilience-ori-
ented training can begin even before teams enter the simulation environment
of the emergency room, in pre-scenario briefings, by prioritising NTS and
highlighting coordination flexibility. Framing teamwork as a collaborative,
adaptive process rather than linear task execution helps teams anticipate the
need for exploration, joint problem-solving, and continual adjustment under
uncertainty (Klein et al., 2006; Kolbe et al., 2014). For instance, explicitly
discussing how communication structures may shift during disruption, or
how role boundaries might become temporarily blurred, primes teams to
approach coordination with a mindset of collective adaptability.

Training interventions that incorporate such elements of adaptability and
uncertainty preparedness have been associated with greater openness to feed-
back, increased team monitoring, and enhanced information exchange; all
core NTS components that are essential in resuscitation contexts (Farquharson
et al., 2024; Salas et al., 2008). Moreover, such briefing practices normalise
temporary coordination breakdowns, reduce cognitive load associated with
perceived failure, and facilitate rapid restructuring, enabling teams to balance
equilibrium and ataxia as natural parts of complex work (Grote et al., 2018).

Incorporating Perturbations in Training Scenarios to Practice Flexible Coordina-
tion. To cultivate resilience and promote adaptive coordination processes,
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simulation-based training should deliberately introduce perturbations, that is,
unexpected clinical changes, role ambiguity, conflicting goals, or communi-
cation failures, to challenge coordination structures (Gorman & Cooke, 2010;
Grimm et al., 2023). These perturbations can force teams to engage in
dynamic sensemaking and restructure their coordination patterns as needed.
This approach aligns with the view that adaptive expertise is cultivated not by
repetition of routine but by exposure to variability and uncertainty (Gorman
et al., 2010; Woods & Hollnagel, 2006). Perturbations allow teams to recog-
nise early signs of ataxia and engage in exploration behaviours (e.g., speak-
ing up, adjusting communication) to restore and change their functional
equilibrium, strengthening behavioural flexibility needed for resilience.

Evaluation, Feedback, and Debriefing using Coordination Metrics (Captured
through Sliding Window Entropy. As seen in this study, entropy analysis allows
for real-time mapping of coordination restructuring rhythm and quantifica-
tion of time spent in equilibrium. These metrics can serve as specific, mea-
surable feedback points following training, enabling instructors to highlight
areas for improvement, such as raising teams’ awareness of their coordina-
tion rhythm and balance in equilibrium. Feedback could also address behav-
iours aiding transitions from ataxia to equilibrium, such as implicit actions
(e.g., monitoring, providing assistance) and explicit information coordination
(e.g., information evaluation), which correlate with better performance, or
maintaining directive behaviours to navigate disorder and encourage domi-
nant behaviours (e.g., speaking up, sharing information) to support explora-
tion during ataxia phases.

Finally, effective NTS training requires evidence-based feedback and
debriefing, by capturing and discussing observable behaviours rather than
abstract items. For example, current NTS practices are evaluated based on
abstract checklist items such as “Is everyone adjusting to meet the demands
of the situation?” (Bearman et al., 2023). Based on our findings, evaluation
metrics could include quantifiable elements such as rhythm of restructuring,
proportion of entropy peaks, and time spent in equilibrium, allowing trainers
to set specific targets and evaluate performance empirically. For the incorpo-
ration of such metrics, more research would be required to focus on specific
entropy peak proportion “cut-offs” according to existing training procedures,
or a range of desired amount of time to be spent in equilibrium.

We note that the training received by the teams in this study was not
explicitly designed to support coordination restructuring as outlined in the
suggestions above. Based on our analysis, we argue that incorporating these
three adjustments in training processes could help all teams move beyond
rigid patterns and develop a stronger rhythm of coordination restructuring as
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they mature, a developmental trend observed only in some of the teams in the
current study.

Limitations and Future Research

Our study represents an initial effort to visualise the process of coordination
restructuring as a mechanism of resilience. Although our methodology pro-
vides a way to study coordination restructuring, our research findings and
quantitative results are drawn from a small sample of teams. To thoroughly
deconstruct coordination restructuring and the composition of equilibrium
and ataxia phases, data from a larger sample of teams is necessary. As our
research outlines the methodological steps, we encourage future researchers
to follow these steps to fully elucidate the rhythm and composition of coordi-
nation restructuring. Also, by utilising other digital tools (e.g., see David
et al., 2022 for a review), researchers can apply the AMM framework to
larger and more diverse samples to investigate coordination restructuring
more comprehensively. More robust findings can more comprehensively
inform design for resilience in training.

It is important to note that this study conceptualised coordination using the
AMM framework, which focuses on communication behaviours involving
the layers of actor, message, and mode of coordination. However, coordina-
tion can encompass a broader range of behaviours within these layers, includ-
ing non-verbal communication, such as interaction with technological
equipment (de Souza et al., 2024), as well as other actors, such as synthetic
agents (Demir et al., 2019; Lematta et al., 2019). Moreover, the multidisci-
plinary nature and versatility of entropy make it a valuable analysis method
applicable to a wide array of behaviours and actors. This makes entropy par-
ticularly useful for understanding complex human-human systems and
human-autonomy teaming. We encourage research to use sliding window
entropy to investigate coordination restructuring by incorporating additional
units of analysis.

With regards to the nature of our analysis, we identify a limitation in cap-
turing or mitigating the effects of other, potentially mediating variables. We
understand that performance improvements are not the only result of coordi-
nation restructuring but may also be influenced by factors such as prior expe-
rience, individual skill development, team composition, or contextual
conditions. While the current research adopted a team-level approach and
analysis, we acknowledge the importance of individual-level aspects that
might affect both training outcomes and team performance.
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Conclusion

This study advances the theoretical understanding of coordination restructur-
ing by emphasising the dual importance of rhythm in restructuring and main-
taining orderly coordination. It challenges traditional views that equate rigid
protocols with effective coordination, highlighting instead the importance of
maintaining stability, while still utilising moments of exploration of different
coordination patterns to meet changes in the task environment. Our study
provided a strong conceptualisation of coordination restructuring as a tempo-
ral mechanism for resilience, bridging temporal notions of rhythm (Bartunek
& Woodman, 2015; David et al., 2021) and changes in behavioural composi-
tion to its empirical investigation.
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o
Appendix A
a. Time |actor |utterance Code Code ID
000247 | Foliower |Let's wait anyway. |speakingup | 18
000258  |Leader |Atthe next interruption. Just intubate. |instruction | 1
000304 |Follower |Can that wait until after the hythm check? _|speakingup [ 17|
000304 |Leader [un, yes - ~|acknowledgement | 1|
000307 |Leader [ witl check ythm first [planning 2|
00:03:07 Follower Twenty actiontalkingtotheroom 25
00:03:10 .Leader .Prepave defibrillation and shock. ‘mslruclxon | 1
000317 |Follower Ives |acknowledgement | 19|
000320 |Follower ITen |actiontalkingtotheroom | 25
00:03:20 | Follower [Twenty |actiontalkingtotheroom [ 25|
00:03:39 | Follower |twenty-eignt, twenty-nine. thirty |actiontalkingtotheroom 25
b. 18, 1, 17, 11, 2| 25 1, 19, 25, 25 25,

Entropy estimate
Window 1 = 1.950265007
Window 2 = 2.179220476
Window 3 =2.185207171
Window 4 = 2.170377964
Window 5 = 2.271665884

Entropy esti

Window 1 Window 2 Window 3 Window 4 Window 6 Window 5 Window 6

Figure Al. Simplified visual representation of entropy time-series (adopted

by Wiltshire et al.,, 2018), with a window of 5 and step of |: (a) is a screenshot
excerpt from the coded transcripts, (b) represents the codes in the transcript in
order of appearance. A sliding window is applied every five codes, calculating the
entropy value for that window, before sliding one step to the right, calculating the
next entropy value, and (c) is a graphical representation of the entropy estimates of
all windows, creating an entropy time-series.



