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A B S T R A C T

There is an urgency to accelerate the innovation, development, and deployment of low-carbon industrial pro-
cesses. Reviewing existing insights into how to achieve rapid technological change may be useful to assist this
acceleration. Literature offers a set of approaches to model learning-by-doing and cost reductions, such as the
learning curve methodology. However, it is debated if it can accurately describe and project cost reductions for
low-carbon industrial processes. The goal of this work is threefold. First, to give more insight into what factors
may explain the speed of innovation and technological change of low-carbon energy technologies. Second, to
review existing approaches to model innovation and technological change of energy technologies and industrial
processes. Third, to devise a framework to study technological learning of industrial processes. This work pre-
sents three main outcomes. First, we report more than 30 barriers and drivers of technological change. Second,
we present a list of learning curve models and complementary methodologies to represent and/or explain these
barriers and drivers. Third, we propose a framework to model technological learning of low-carbon industrial
processes.

1. Introduction

Strategies to reduce greenhouse gas emissions need to be quickly
implemented in all economic sectors to achieve the net zero-emission
targets for 2050 implied by the Paris Agreement [1]. Low-carbon tech-
nologies in the electricity sector, such as solar PV and wind turbines, are
rapidly being deployed and thereby have experienced significant cost
reductions. However, the power sector is not yet on track to achieve a
successful energy transition. The industrial sector is running even
further behind, mainly due to the high cost of low-carbon processes,
which hinders quick deployment. Technologies for decarbonizing in-
dustry require assistance to boost their innovation process, reduce costs,
and achieve rapid deployment [1–3].

Given the current situation and the short time horizon to achieve the
industrial transition, there is an urgency to accelerate innovation and
technological change in industry and transform the existing energy
sector by implementing low-carbon technologies. A first step to accel-
erate innovation and technological change in industry might be to better
understand how these processes occur for low-carbon technologies in
the energy sector. If the factors that drive or hamper innovation are
identified, and their effect is understood, then it may be possible to

accelerate and give direction to the transition towards a sustainable
energy system [4,5].

Literature offers various methodologies to analyze technological
change. A learning curve (LC) is an approach used to quantitatively
describe and project the effects of learning on the costs of a technology.
A one-factor learning curve (OFLC) is obtained by plotting the cost per
unit produced (or any other chosen performance metric) against an
experience metric, for example, the cumulative installed capacity (CIC).
The OFLC approach assumes that the technology cost will decrease by a
certain percentage with each doubling of the experience metric. This
percentage is known as the learning rate (LR) [6–9].

LCs have been used to understand cost reductions of solar PV and
wind turbines but have not been widely used for studying industrial
processes. Applying the LC approach to analyze cost reductions of low-
carbon industrial processes is likely further complicated. This is due to
the large portfolio of options that may contribute to achieve industrial
decarbonization. For example, different improvements can be installed
in existing processes, new low-carbon feedstock and materials may be
used, or new low-carbon technologies may be implemented. To study
the technological change of a single process, consideration has to be
given to e.g., different technologies, functional units, development
stages, and unit sizes. Furthermore, data availability might be also an
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issue. If not enough historical performance and experience data is
available, other solutions might be needed to perform an LC analysis.
Additionally, the expansion capacity of energy intensive industrial
processes might be limited. This may hinder the application of LCs,
because if the experience parameter is not doubling, a mistaken
conclusion that the system is not learning might be drawn.

The aim of this work is threefold. The first goal is to conduct a
comprehensive literature review of the factors that may explain the
speed of innovation and technological change of low-carbon energy
technologies. As part of the review, a data analysis is performed to
provide more insight into the nature of technological change and eval-
uate the aptitude of LCs to represent it. The second goal of this work is to
draw a set of better practices for modelling innovation and technological
change, as well as to determine the adequacy of the LC approach to
represent technological innovation and learning. This is achieved by
finding existing methodologies to analyze innovation and technological
change of energy technologies, giving special attention to the LC
approach. The novelty of this research lies on the creation of a frame-
work to study technological learning of low-carbon industrial processes.
This framework can be applied to the large variety of industrial decar-
bonization options and can be used to identify the main potential
sources of cost reduction. This may give more insight into the actions to
be taken and goals to target to accelerate cost reductions.

Section 2 presents a conceptual survey of the current state-of-the-art
of the LC approach, as well as of the existing models in literature to
describe technological learning of energy technologies and industrial
processes. Section 3 reviews the existing literature on drivers and bar-
riers of innovation and technological change. Section 4 shows a data
analysis of existing learning rates of energy technologies and industrial
processes. Our overall results are presented in Section 5. A set of final
remarks and recommendations for future research is presented in Sec-
tion 6.

2. Conceptual review of the learning curve approach

A comprehensive review was conducted using Elsevier and Google
Scholar. Key words such as ‘learning curve’, ‘technological learning’,
‘technological change’, and ‘technological innovation’ were used to find
relevant studies from 2000 to 2023. The search included peer-reviewed
journal articles, as well as books and reports from the International
Energy Agency, and other relevant organizations. A total of 17 800
papers were found in Google Scholar. We first focused on the most
relevant and recent studies, as well as existing review articles [6,7,
9–22]. Most of these focus on gathering LRs from literature, summari-
zing the methodological limitations of OFLCs, presenting existing
methods to address such shortcomings, and addressing the application
of LRs in energy system models. Further review of work cited in the

initial set of papers extended our set of studies. Fig. 1 shows the various
efforts to review findings on the LC approach and its application for
modeling cost reductions of energy technologies.

2.1. The learning curve theory and previous reviews

While it is true that the OFLC can be a useful tool to quantitatively
evaluate technological change, literature reports several pitfalls to this
method. One of the criticisms made is the fact that it originates from
empirical observations and is not an actual principle [18]. Thus, its
reliability and capacity to properly explain and project the relationship
between performance and experience might be hindered. However, it
has been proven that in various cases, this relationship does apply to a
great number of technologies [23]. To test if there is indeed a correlation
between the variables under study, the correlation coefficient (R2) may
be calculated. This number can take values between 0 and 1. A higher R2

means that there is a strong correlation between the dependent and
independent variable [9]. Nevertheless, even if there is a statistical
correlation between the performance and experience, there might not be
any causality between these two variables.

Another recurrent criticism is that it assumes that all the cost re-
ductions are uniquely caused by experience gained by doing. There
might be other factors that cause or contribute to the observed cost re-
ductions [14]. Ignoring these, might result in the overestimation of the
learning effect (also known as the omitted variable bias). This means
that the LR is biased upwards, because there are other variables, which
are not considered in the model, but are in fact affecting the perfor-
mance [24]. Also, the fact that OFLCs are highly aggregated and
consider just one cost reduction factor, disregards other sources of
knowledge and experience, and hinders its ability to give insight into the
complex dynamics that occur in the learning process [21]. A possible
solution to address the aggregation issue of the OFLC is to use a
multi-factor LC (MFLC) or a multi-component LC (MCLC). Both are
extended models, which include various cost reduction factor-
s/components in order to better understand the different cost reduction
mechanisms [25]. A deeper explanation of these models is presented in
Section 2.2. Junginger et al. [23] recommend studying the causes of past
reductions and the possible future opportunities before building the LC.
Samadi [18] gives three suggestions to better model cost reductions.
First, to consider the different sources of cost reduction that can be
present. Second, to study individual learning systems by means of study
cases. Lastly, to consider if past learning also plays a role in observed
cost reductions. Moreover, Elia et al. [21] present a framework to give a
better idea of which factors should be considered for an LC model
depending on the technological development stage. Likewise, in order to
address the omitted variable bias, Santhakumar et al. [20] suggest using
logistic growth curves to include other cost reduction effects in the
model. They also advise to use bottom-up models to help identify and
better understand the existing cost reduction drivers.

Another frequent point of discussion is whether it is possible to as-
sume that the LR is a constant term or not [14]. There are multiple ex-
amples which show that the LR stays constant throughout the
technology’s development stages and consider it to be adequate to as-
sume a constant value. However, others state that because of market
saturation, the LR value may decrease as the technology matures. This is
because it might be more difficult to double the CIC once the market is
more saturated [11,23]. Ferioli and van der Zwaan [26] observe that the
LR may not be constant, because it depends on both, cost reductions and
technological growth trends. Also, they argue that the LC might only be
apt to model the initial technological development stages, when these
two trends have an exponential behavior. Moreover, the fact that in the
past, certain costs reductions have been observed, does not mean that
these will also occur in the future. As referred by Söderholm and
Sundqvist [27], using historical LRs to try to predict future cost re-
ductions might be a wrong practice. This is because new factors, which
might have a determining effect on the LR, may be ignored.

List of abbreviations

2FLC two-factor learning curve
CIC cumulative installed capacity
FIS functions of innovation system
FP formative phase
LBS learning-by-searching
LC learning curve
LBD learning-by-doing
LR learning rate
MCLC multi-component learning curve
MFLC multi-factor learning curve
OFLC one-factor learning curve
R&D research and development
TIS technology innovation system
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Variations of the LR between different technologies, but also among
the same technology type have been reported in literature [17]. Vari-
ability and uncertainty in the LR value may come from various sources.
First, uncertainty may arise from data recovered during the first years of
development, since the process is still not well stabilized. To address this
issue, Samadi [18] suggest making a conscious effort to find and include
reliable historical data. Additionally, Junginger and Louwen [9] make a
summary of the most common data availability issues and possible so-
lutions to consider. Second, when production cost data is unavailable,
market prices need to be used as proxy of the performance parameter. If
this happens, then the relationship between costs and prices during the
period under study must be discussed, and, if possible, one must correct
the values. The approach presented by the Boston Consulting Group
relating cost and prices during the first innovation stages might be used.
For a deeper explanation of this subject, referrer to Refs. [6,23] or [20].
Other sources of uncertainty and variability proposed in literature are:
the selected starting cost for a technology, the technological develop-
ment stage, the amount of data-points used, the use of different data-sets
and econometric techniques, the conceptualization of the learning sys-
tem (e.g. time boundaries, performance parameter, geographical area),
experience depreciation (also known as forgetting), cost reduction fac-
tors included in the model, and inflation or exchange rate used in the
analysis may also cause uncertainty and variability [27–29].

Söderholm and Sundqvist [27] present a set of recommendations to
select or determine a LR. First, to use a sensitivity analysis to test the
impact of using less observations from the data sample, and different
performance parameters. Then, to consider scale effects in the analysis,
as well as the effects of other cost reduction factors. Next, to check for
simultaneity in the LR estimations since diffusion and innovation are not
independent variables. Finally, to use a time trend test, to assess the
robustness of the results obtained. Weiss et al. [15] also make five
suggestions to have a reliable LR estimate. First, to use error margins of
the LR to show the results with uncertainty intervals. Second, to use
more data points to determine the LR. Third, to supplement the LC
approach with other tools to get qualitative information and confirm the
observed cost reductions and price dynamics. Fourth, to use and develop
more sophisticated models for describing the process of technological
learning. Finally, to use disaggregated cost indices to correct price and
cost estimates.

To address some of the OFLC pitfalls integrated frameworks have
been developed. For example, an analytical framework is presented by
Neij [10], which consist of three methods: LCs, bottom-up analysis, and
expert assessment. The first step is to determine a LR. Then, the

bottom-up analysis is used as a complementary tool to identify the
sources of cost reduction in the short, and midterm and give more
robustness to the LRs found. Finally, the expert assessment helps to give
more insight to expected long term cost reductions. As part of the
framework, uncertainty ranges of ±2 % and ±5 % are included for each
LR to account for small and large uncertainties, respectively. Santha-
kumar et al. [20] present a framework to model technological learning.
The first step is to identify the development stage of the new technology.
Depending on the development stage and the expected data availability,
a certain LC model is recommended to make the analysis. Additionally,
this framework also suggests three other methodologies, which can be
simultaneously applied to overcome the limitations of the LC method,
namely bottom-up cost modeling, technology diffusion curves, and
methods to qualitative describe technological learning. It is suggested to
further apply these approaches to test its limitations and uncertainties.

The LC can be modified to include the effects of previous experience
(Stanford-B model), automation (De Jong’s model), and forgetting,
among other effects [30,31]. The last refers to the decline in perfor-
mance that may happen over time. Some of the sources of forgetting
reported in literature are frequent interruptions in the production pro-
cess, the time these interruptions lasted, changes in the product’s
specifications, or knowledge depreciation [32,33]. Forgetting has been
modeled as a function of different factors, like worker’s previous expe-
rience, cumulative operation time, the learning rate, and the worker’s
performance after the learning process. These forgetting models are
mostly used in the industrial engineering and operations management
discipline. A more in-depth review of forgetting models can be found in
Ref. [34].

2.2. Modeling innovation and technological change of energy technologies

2.2.1. Two-factor and multi-factor learning curves
An alternative model to the OFLC is the two-factor LC (2FLC). The

goal of this approach is to better understand the individual effects from
learning-by-doing (LBD) and learning-by-searching (LBS). Equation (3)
shows the general representation of a 2FLC. Adding another factor to the
model reduces the omitted variable bias and better allocates the learning
effects. However, a multi-collinearity problem emerges, as both factors
(cumulative experience and knowledge stock) might also influence each
other.

Jamasb [35] presents an extended 2FLC. The independent variables
in this learning-diffusion model are cumulative R&D spending, cumu-
lative number of patents, and time. The dependent variables are both the

Fig. 1. Timeline of literature reviews on learning curves for energy technologies.
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unit cost of technology, and the cumulative installed capacity. This
model is then used to calculate the LBD and LBS rates of different energy
technologies. In some cases, the results obtained were not significant or
reasonable, thus the 2FLC was used instead.

The LC might also include additional factors other than the effect of
LBD, then it is known as a multifactor LC (MFLC). For example,
Söderholm and Sundqvist [27] study the cost reductions of wind power
in four European countries by fitting twelve different LC models with
multiple factors to the same data-set, and to a curtailed version of the
data-set. Gan and Li [36] model the cost of PV module cost as a function
of cumulative production, Si-prices, supply and demand imbalance, and
the market share of cheaper products. Penisa et al. [37] show a model
with two and four factors, which tries to improve the projection accu-
racy of future prices of Li-ion nickel manganese cobalt oxide battery
packs. The factors they consider are the cumulative battery demand, the
number of patents, the price of lithium, and the price of cobalt.

An MFLC results from the combination of the LC approach and the
Cobb-Douglas production function. By deriving the LC from economic
theories, Yu et al. [28] study the cost reduction of PV modules due to
LBD, LBS, scale effects, price of silicon, and price of silver. Also, Yao
et al. [29] use this approach to determine the LRs for different
low-carbon energy technologies: wind turbines, PV modules, as well as
geothermal, hydropower and biomass power plants.

C=Co

(
P
Po

)b(K
Ko

)r

(3)

in which:
K, Ko is the knowledge stock at different moments in time,
P, Po is the cumulative production at different moments in time,
C is the cost of one unit after the cumulative production P and with

knowledge stock K,
Co is the cost of one unit after the cumulative production Po and with

knowledge stock Ko r is the learning-by-searching index, and b is the
experience index.

2.2.2. Multi-component learning curve
The multi-component LC (MCLC), determines the cost of a technol-

ogy as the sum of the cost of its components, as shown in Equation (4).
One of the advantages of this method is that one can consider the fact
that each component learns at a different rate. Ferioli et al. [13] use this
principle to propose another model, which separates a technology into a
learning and a no-learning component. The later can be attributed to
elements that do not experience cost reductions (e.g., cost of materials,
management costs or financial costs), and serves as an asymptote as the
cost reductions do not occur indefinitely.

Rubin et al. [38] estimate the future costs for pulverized coal power
plants and natural gas combined cycle power plant with CO2 capture
systems. They use LRs from literature for each component (e.g. flue gas
desulfurization, pulverized coal boilers, oxygen production) to project
future costs as a function of CIC. Also, a sensitivity analysis is made to
study the effect of variable LRs, as well as the effect of lower financing
costs, higher fuel prices, lower component capacity estimates, among
others.

van den Broek et al. [39] study the technological learning of power
plants with carbon capture and storage. They present several LCs for
different performance metrics, including removal efficiency, power
plant availability, overall energy loss, and energy requirements for CO2
capture. Then the LRs are used together with projections of capacity
growth to determine future cost and performance metrics. Li et al. [40]
project the future cost reductions of integrated gasification combined
cycle power plants with carbon capture and storage. A LR is estimated
for different cost components: unit investment, fixed operational and
maintenance costs, fuel costs, cost of electricity, and CO2 avoidance cost.
Then these LR are joint in an MCLC to calculate the LR for the overall
energy system.

Knoope et al. [41] study integrated gasification combined cycle
power plants and Fischer-Tropsch synthesis plants with and without
carbon capture and storage. They account for a pre-learning stage. This
means that during the first doublings of the CIC, the costs might increase
due to up-scaling uncertainties, deficiencies in reliability and perfor-
mance, or problems with construction and operation. To validate the
results from the LC, they were compared with outcomes from a
bottom-up cost model. Nicodemus [42] asses the effect of policies on the
technological development of hydrogen production using solar power.
The technologies studied are solar PV modules, electrolyzers, concen-
trated solar power systems and thermochemical reactors. To model the
effect of policy support, the growth rate for each technology is used as a
proxy. They assume that more policy support would result in higher
technological growth rates.

Detz et al. [43] use MCLCs to project the costs of seven synthetic fuel
production routes. The current levelized cost of fuel is calculated and a
sensitivity analysis is done to determine the effect on the levelized cost
of fuel when different assumptions are made. Current CIC values, and
LRs for each component are either estimated or obtained from literature.
Then, to project future costs, three scenarios are envisioned. Böhm et al.
[44] build an MCLC to analyze technological learning of low maturity
technologies. They suggest using the cumulative production of the
overall system as the proxy for experience for all the components. They
also incorporate the term learning properties to model the fact that the
same component might have different LRs depending on some distinc-
tive properties. The effects of spillovers are also considered by changing
the scope of cumulative production (e.g. cumulative production of the
whole system vs. cumulative production of each component).

C=
∑n

i=1
Co,n

(
Pn

Po,n

)bn
(4)

in which:
C is the cost of component n after cumulative production Pn,
Co is the cost of component n after the cumulative production P,
Pn, Po, is the cumulative production of component n at different

moments in time, and bn is the experience index of component n.

2.2.3. Other models
Nemet [45] proposes a bottom-up cost model for PV modules. The

cost changes are modeled as a function of seven technical factors. He
found that changes in plant size, cell efficiency, and the cost of silicon
were the main factors contributing to observed cost reductions.

Another approach found in literature is the cybernetic theory, which
is developed by Wene [46]. It states that the LR can be predicted if the
learning system is modeled as a non-trivial machine. Once the learning
system and its environment reach a steady non-equilibrium state, the
learning system develops an eigen-behaviour, which is described by the
LC. Even if no learning is perceived because the observed data is to
scatter and the calculated LC does not have a good fit, this theory states
that the system is still internally learning.

Pan and Köhler [47] use a logistic curve to represent the techno-
logical change and to project expected cost reductions of wind power in
the UK. They conclude that this model is able to describe the cost re-
ductions in the early innovation stages, and that it is a better fit than the
OFLC. Likewise, they suggest studying the fitting process of the model to
the observed data. Ferioli and van der Zwaan [26] use exponential
equations to represent cost reductions and technological growth as
functions of time. They argue that joining these two models results in a
curve equivalent to an LC. The advantage is that one can get more in-
sights from this new approach as it takes into consideration the role of
time, growth rate, and productivity. Rivera-Tinoco et al. [48] determine
the LR of solid-oxide fuel cells by combining OFLCs with a bottom-up
cost model. This includes capital, energy, labor and materials costs.
Also, the effect of automation and economies of scale is considered. The
cost and capacity data are divided into three development stages (R&D,
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pilot, and early commercial stages), and a specific LR is calculated for
each one, as well as for all three stages together.

Trappey et al. [49] study the costs of wind power with a hierarchical
linear LC model. This representation models cost reductions at two
levels. At level 1, the relationship of CIC with installation costs, and at
level 2, the effect that other variables may have on the relationship
modeled in level 1. They report a better fit for the hierarchical linear LC
model than for the OFLC. Daugaard et al. [50] use the Stanford-B model
and an S-curve model to determine the effect of learning and economies
of scale in the optimal size of a bio-refinery. The result of this study is a
relationship between current costs and estimated LR and the optimal
future bio-refinery size.

Grafström and Lindman [51] develop a quantitative framework to
model the invention, innovation, and diffusion phases of technological
change of wind power in Europe. The framework also considers possible
effects that may rise from the interaction of these three stages. A total of
ten different model configurations are built, including several explana-
tory factors: the number of granted national and international patents,
knowledge depreciation, number of researchers per capita, annual
public R&D spending, feed-in tariffs, global and local CIC, investment
cost, steel price and natural gas price. Additionally, some disturbance
terms are used to represent the any influences of other non-considered
factors.

Elshurafa et al. [52] model cost reduction of balance of the system
costs of solar PV. They first use an OFLC. Then, they preset an enhanced
model in which the learning parameter is represented as a function of
the spot price of poly-silicon, steel index price, oil price, and consumer
price index. This makes it is possible to model a variable LR that depends
on different economic and market metrics.

Castrejon-Campos et al. [24] propose an integrative LC model, which
aims to explain different sources of learning and variables that may
affect technological costs. This model starts with defining technological
capital cost change as a function of two factors: experience and knowl-
edge stock. The experience term is further defined, and one can decide to
model the effect of only global experience, only local experience or a
combination of both. Additionally, the knowledge factor is described by
a function which accounts for the possible delays between R&D in-
vestments and actual knowledge creation and includes both an annual
knowledge depreciation and creation rate. This model is able to address
the omitted variable bias regarding the high level of aggregation of
OFLCs, because the experience parameter is further divided into
different factors.

2.3. Modeling innovation and technological change of industrial processes

As shown in the last section, various models have been developed to
analyze the cost reductions of energy technologies. The LC has also been
used to study technological change of several industrial processes. This
section summarizes the models found.

Lieberman [53], determines LRs for 37 chemical products by fitting
historical data. The performance parameter used is the average market
price of these chemicals. Different experience parameters are tested,
including time, cumulative industry output, cumulative industry ca-
pacity, annual rate of industry output, average scale of plant and rate of
new plant investment. The cumulative industry output and the cumu-
lative investment are the variables that best determine the cost reduc-
tion. He also reports that the slope of the LR steepens with higher R&D
expenses and capital intensity.

Clair [54] modeled OFLCs for low-density polyethylene, high-density
polyethylene, ethylene, polypropylene, polystyrene and polyvinyl
chloride. The value added per ton produced is used as performance
parameter, and the cumulative world production is the experience
parameter. The geographical boundaries were set to Western Europe
and USA.

Sinclair et al. [55] calculate OFLCs for 221 specialty chemicals by
fitting a OFLC to historical data. The performance parameter is the unit

manufacturing costs (labor and equipment costs). The experience
parameter is the time between the first batch and the current batch
produced, as well as the cumulative output. They report that the
observed cost reductions come from the small process improvements
that result from R&D efforts.

Crank et al. [56] estimate LCs for polyvinyl chloride, polypropylene,
and polyethylene in Germany from 1969 to 2002. As experience
parameter, the cumulative production is selected. As performance
parameter, the market prices are used as proxy for production costs. To
account for the effect of changing oil prices in the price of the polymers,
the relative oil prices are added as an additional regression variable.
Also, to account for relevant economic events that occur during the years
under study (e.g., oil crisis), a dummy variable is added. Simon [57] uses
the same methodology to analyze the cost reduction of four bulk poly-
mers including polyvinyl chloride, polyethylene, polypropylene, and
polystyrene.

Ramirez and Worrell [58] use an OFLC to analyze technological
development in energy efficiency for ammonia and urea production in
the US between 1961 and 2001. The specific energy consumption (SEC)
is the performance parameter, and the cumulative production is used as
experience parameter. The benefit of not using prices as performance
parameter is that market price variations have no impact on the analysis.
They also consider an asymptote to energy consumption, as the pro-
duction process has a minimum theoretical energy consumption. The
data used corresponds to average technologies and to the best available
technology.

Brucker et al. [59] uses OFLCs to analyze the energy efficiency im-
provements of energy-intensive industries, including pulp and paper
industry, as well as steel, cement, and aluminum production. They use
the specific energy consumption as performance parameter. To account
for reductions in specific energy consumption due to improvements in
operation conditions, the cumulative annual production is selected as
the experience parameter instead of the cumulative installed capacity.
Data from the best available technology was found in literature and used
to fit the model.

Vimmerstedt et al. [60] use an adapted LC model together with a
scenario model to study the effect of policy implementation in the bio-
fuel industry. They propose three adaptations to the OFLC. First, to
consider an asymptote for the performance parameter, which value
corresponds to that of a mature incumbent technology. Second, to ac-
count for various technical parameters together with costs, for example:
process yield, feedstock throughput capacity, investor risk premium,
access to debt financing. Third, to consider how the various technical
parameters behave during the multiple development stages.

Karali et al. [61] use the OFLC to analyze the cost developments of
energy efficient technologies for the iron and steel sector in the United
States. They develop 75 LCs by fitting historical data of 43 basic Oxygen
furnace production routes, and 32 electric arc furnace production
routes. The performance parameter is the cost of retrofitting the existing
facilities with the energy efficiency measures. The experience parameter
is the cumulative energy savings. The effect of market penetration on the
LR is also studied. They found an negative correlation between market
penetration level and the average LR. The LC model is then used
together with a linear optimization energy systems model to determine a
future cost-effective adoption of energy efficiency measures.

Wang et al. [62] use a mediating effect model to generate an envi-
ronmental MFLC. The effect of LBD, LBS, learning-by-importing, and
scale effects on air pollutants intensity in China is represented. The
proxies used are cumulative production (for LBD), number of patents
(for LBS), and the technology import expenditure (for
learning-by-importing). Also, three mediating variables are selected to
explain the indirect relationship between technological learning and air
pollutants intensity: energy efficiency, energy structure, and industrial
structure. Different tests are made to determine which variables are
indeed significant, and how they correlate with each other.

A cubic learning model is used to estimate a dynamic LR value for
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various industrial sub-sectors. It models the change in costs as a function
of cumulative output and is applied to several case studies [63–68]. All
the studies report a variable LR value and better fit for industrial pro-
duction data when using the cubic model instead of the OFLC.

Faber et al. [69] present a method to use LCs in techno-economic
assessments and life cycle analysis to project the economic an environ-
mental performance of emerging technologies. They propose to calcu-
late a composite LR considering the LRs for each system component, as
well as factors for process and project contingency and a factor for the
indirect cost of the plant. This methodology is then applied to study a
carbon capture and utilization system for a cement plant.

3. Literature on accelerating technological change

A first step to accelerate technological change might be to better
understand the innovation process. If the factors that may drive or
hamper the innovation process are identified, then it may be possible to
accelerate and give direction to the transition towards a sustainable
energy system [4,5]. Literature offers various methods and hypotheses
regarding the optimal conditions and settings to achieve quick innova-
tion, development, and deployment of new technologies. This section
summarizes the insights of the selected literature.

Different sources of learning are listed in literature [11,21,23]
including learning-by-searching (LBS), learning-by-interacting, lear-
ning-by-deployment, which can be further divided into
learning-by-doing (LBD), learning-by-using. Also, technological and
geographical spillover effects may affect the rate of technological
change. Cost reductions may also come from economies-of-scale, auto-
mation, market dynamics, and standardization of a product.

Some sources suggest that certain technological characteristics may
contribute to increase the development and diffusion rates. Both Wilson
et al. [70], and Sweerts et al. [71] propose that small unit size tech-
nologies are prone to faster learning rates than large scale technologies.
It has also been claimed that the speed of technological change depends
on the complexity of the innovation [72–74]. Furthermore, Malhotra
et al. [2] developed a topology to categorize technologies and try to
explain the source of different learning rates. They differentiate tech-
nologies in terms of the degree of customization and their design
complexity. Degree of customization refers to the extent to which new
technologies need to be adapted to the existing environment. Design
complexity is a measure of the number of elements in a technology and
the degree to which they interact with each other. Depending on the
characteristics of each technology, different policy approaches to drive
technological change are recommended.

Other studies assert that innovation characteristics such as relative
advantage, perceived appeal, usefulness, and ease of use, as well as
compatibility with the existing system, may increase the diffusion rate.
Two other characteristics that might drive innovation are trialability
and observability. Trialability refers to how easily a technology can be
tested before actually purchasing it. The term observability refers to the
degree to which the benefits of a new technology are made known.
Additionally, the high interdependence on other technologies and the
lack of required infrastructure, result in lower diffusion rates [75–77].

Kemp and Volpi [73] study the diffusion of different cleaner
manufacturing processes, such as pollution control technologies and
waste management techniques. They conclude that considering that the
more economically attractive a technology is, the faster it will diffuse is
an oversimplification of the complex innovation and learning process. In
reality, several endogenous and exogenous mechanisms influence the
diffusion of clean technology, including environmental regulation, the
market’s absorptive capacity, the technology’s characteristics, the
diffusion of competing technologies, the age of existing physical capital,
as well as the costs incurred, and benefits obtained by adopting the new
technology.

Moreover, when studying innovation from an economics point of
view, one might attribute the slow development and diffusion rates to

market failures [78–80]. These are commonly addressed by govern-
mental intervention by means of technology-push and market-pull pol-
icies. Technology-push policies are focused on developing new
knowledge to improve the design, materials, or production process. This
can be done by funding R&D efforts, grants, promoting knowledge ex-
change, supporting entrepreneurs, and giving opportunities to execute
demonstration projects. The market-pull policies aim to create demand
and new markets for the new technology. This can be done by means of
taxes, subsidies, targets and standards. However, further research is
required to set policy measures to effectively drive the innovation pro-
cess, as improperly designed measures could have the opposite effect
[35,81].

Innovation can also be studied from a systems perspective. By
analyzing the structure and interactions between the elements of the
technology innovation system (TIS), one can understand how the
development and deployment process occurs. This approach has been
used to study the innovation system of energy technologies [78,82,83]
and energy intensive process industries [84]. An extension of the sys-
tems approach is developed by Hekkert et al. [5]. This analytical
framework focuses on the dynamics of the TIS and lists seven different
activities that are present in a well performing system. These activities
are also called functions of innovation system (FIS). The FIS are entre-
preneurial activities, knowledge development, knowledge diffusion,
guidance of the search, market formation, mobilization of resources, and
creation of legitimacy. A similar approach was developed by van Alphen
et al. [85]. It focuses on studying technology transfer, and lists the
following functions: creating adaptive capacity, knowledge diffusion
through networks, demand articulation, creation of legitimacy, resource
mobilization, market formation, and entrepreneurial activities. Several
indicators can be used to map the presence or absence of each function,
which gives a more quantitative description of the TIS. For example, to
map the function knowledge development, one can look at the number
of R&D projects, number of patents, or investments made in R&D. Ex-
amples of more indicators to map the development of each function can
be found in Ref. [86], and [87].

Bento and Wilson [87] and Bento et al. [88] investigate the factors
that determine the duration of the formative phase (FP). This refers to
the period in which a new technology emerges/is applied until it is ready
to be mass commercialized. The average duration of the PF for energy
technologies is 22 years. It was found that new energy technologies
which are able to directly substitute an incumbent technology tend to
have a relative shorter FP, because available infrastructure, supply ca-
pacity and complementary technologies are readily available. On the
contrary, energy technologies with a smaller unit-scale do not neces-
sarily have a shorter FP. For example, the observed short duration of PF
for large-scale technologies like fluid catalytic cracking (4 years of FP)
and jets (7 years of FP) might be a result of stakeholders with low risk
aversion, as well as technology-push and market-pull initiatives. The
relationship between shorter PF and design complexity, faster
up-scaling, technology applications (e.g. end-use, transport technolo-
gies) has not been confirmed.

After studying the development and diffusion process of solar PV,
Nemet [89] presents a framework that shows how to successfully bring a
new energy technology to the market and proposes ways to speed up the
process. As part of the framework, three stages are proposed: creating a
technology, building a market, and making the technology cheaper.
First, new knowledge is created, and scientific understanding is acquired
by means of R&D and knowledge spillovers. In the case of PV, this
resulted in a better understanding of the photoelectric effect, improved
manufacturing processes, as well as new materials, designs and config-
urations. Second, demand starts to develop by means of niche markets in
which the technology can deliver a certain competitive advantage. The
fact that PV could have access to multiple high willingness-to-pay niche
markets, generated a demand for PV and reduced the need for policies to
drive technological change. Furthermore, because of the modular nature
of PV, it was easier to satisfy demands at different scales and for different
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niche markets. Likewise, multiple policies in different countries also
helped to create a demand and a stable global market. The last stage
focuses on reducing technology costs. Learning-by-doing played an
important role, as well as iterative up-scaling. This means that PV pro-
ducers gradually grew their production processes, while learning and
improving at every step. Finally, the fact that solar PV could develop for
50–60 years without facing system integration issues also benefited the
observed rate of cost reductions. To accelerate the process of bringing a
new technology to the market, Nemet proposes three types of initiatives.
First, technology-push strategies, focusing on driving R&D, having a
suitable workforce and developing legitimacy by means of public pro-
curement. Second, to drive knowledge distribution by promoting spill-
overs, knowledge exchange and access to data, reports and papers.
Lastly, to generate demand by focusing on having a robust market and
implementing policies that address the possible resistance to change
from existing stakeholders.

The following insights were derived regarding how to accelerate the
energy transition. First, during the initial innovation stages, it is advised
to slowly scale-up the technology, starting with small scale designs and
demonstration test. This gives more opportunity to develop experience,
and to divide risks and costs into different designs and projects. Second,
to manage the amount of public and private investments that go into
developing one prototype or demonstration project. This is to avoid
hindering the extent to which knowledge can be exchanged between
stakeholders, which has also been proven to contribute to learning and
knowledge creation. Third, to build legitimization by having an open
discussion about the risks and benefits of the technology with the
involved stakeholders. This will also help to manage expectations,
reduce risk perception, and promote cooperation. Fourth, guidance of
the search is the convergence of expectations and vision towards one
design or technology. If this selection is done too early in the develop-
ment process, the system may run the risk of technology lock-in. This
might slow down the development of other designs and technologies
that might have more learning opportunities and could be more quickly
developed. Further research is required to determine the effective timing
for a technology to converge in one design and for selecting the tech-
nologies that will be further developed. Fifth, while it is true that the
industrial transformation needs to be accelerated, the reality is that
technological change takes time. Trying to hurry the process might
generate multiple issues that were not predicted or might also hinder it.
Stakeholders need to have a holistic systemic view to generate an initial
plan and iterate form that once some results are obtained.

4. Factors determining technological learning rates

As part of the review, a data analysis is performed to provide more
insight into the nature of technological change and evaluate the aptitude
of OFLCs to represent it. A total of 519 LRs for energy technologies and

an additional 226 LRs for industrial processes were gathered from
literature. A file with the complete database is included in the Com-
plementary material.

4.1. Energy technologies

To determine which LR is the most probable to find, when studying
learning of energy technologies, the 519 found LRs were fitted to
different probability distribution functions. This was done by using the
fitter class form Python’s Scipy library. Ten probability distribution
functions are fitted to the data (Cauchy, chi squared, exponential,
exponential power, gamma, log-normal, normal, power law, Rayleigh,
and uniform), and the one with the lowest sum squared error is selected.
For the LRs for energy technologies, the probability with the best fit was
the log-normal distribution, with a mean μ = 15 % and standard devi-
ation σ = 11 % (See Fig. 2a). These values differ from the ones reported
by Ferioli et al. [13] for 22 different industrial sectors. They found a
normal distribution with average μ = 19 %, and standard deviation of σ
= 8 %. Also, the results obtained in this work differ from what is
observed in Weiss et al. [15]. They report a normal distribution with μ =

18 % and σ = 9 % for various energy demand technologies. A possible
reason for this discrepancy might be because, in this case, various types
of energy technology are considered, including storage, demand, as well
as large scale supply technologies like nuclear, coal and natural gas
power plants. According to Gallagher et al. [82] the innovation and cost
reductions rates in these types of energy technology are slower because
of the long lifetime of the capital stock, and the capital intensiveness of
large power plants: both of which causes a preference for incremental
innovation instead of radical innovation, which has more learning op-
portunities. Another reason might be the fact that not all the LRs found
are statistically significant. If just the values with an R2 ≥ 0.8 are
considered, the best fit is a chi2 distribution with a mean LR equal to 18
% and a σ = 11 % (See Fig. 2b). Likewise, the median of the statistically
significant data-set is 18 %, and closely approximates to the values
estimated for 26 different LRs for different energy technologies (be-
tween 16 and 17 %) [7].

Fig. 3 shows box-plots which depict the distribution of the 519 LRs
found. This includes various supply energy technologies, including nu-
clear, coal, and natural gas power plants, as well as wind turbines
(onshore and offshore), biomass power plants, solar PV (which includes
modules, cells, inverters, and balance of the system), hydropower plants,
solar thermal, marine energy (tidal and wave energy), and geothermal
power plants. Demand and storage technologies are included, as well as
fuel cells, and H2 production technologies. The box represents the 25
and 75 percentile and the line in the middle is the median for each en-
ergy technology. The median is preferred because it is a summary sta-
tistic immune to extreme values. As can be seen, there is variations
within and between the LRs of each energy technology.

Fig. 2. Frequency histogram and fitted distributions of learning rates for energy technologies.
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Table 1 shows the summary statistics of the LRs gathered for each
energy technology. The numbers inside the parenthesis correspond to
the number of data-point gathered for each energy technology. It also
reports the mean, standard deviation, the minimum and maximum
values, as well as the median. The energy technology with the highest
average LR is solar PV (21 %). As previously mentioned, solar PV has
experienced significant cost reductions, and is an example frequently
studied to get more insight into how to drive cost reduction rates and
achieve mass commercialization [89]. The next highest LRs correspond
to H2 production technologies (19 %) and energy demand technologies
(18 %). These learning rates might be similar because solar PV and H2
electrolysis have a similar unit size. Similarly, energy demand technol-
ogies are often modular appliances that can be easily produced and sold
globally. Doublings in their CIC occur typically more rapidly compared
to those of larger technologies, which might be more beneficial for LBD.

The two technologies with the lowest average LR are nuclear (− 5%)
and geothermal (5 %) power production. In the past nuclear energy has
suffered from diminished interest and interruptions in production,
which have been known to cause forgetting-by-not-doing (hence the
negative LR). Furthermore, Grübler and Wilson [83] estimated the
knowledge stock of nuclear energy and report a significant knowledge
depreciation due to diminished R&D investment. In the case of
geothermal energy, just one LR of 5 % was found. It is not easy to find a
cost reduction trend since the costs of this technology depend heavily on
the location of the project [29]. The lower LRs for these two energy

technologies can also be explained by their intrinsic characteristics
(large scale and location dependent).

Technologies that show the most variation in the LR are nuclear,
solar PV, and biomass. In the case of nuclear, variability may come from
sources not specified by the OFLC, such as stricter safety regulations,
lack of available locations to install power plants, and increase in labor
costs and commodity prices [18,90]. In the case of solar PV, the varia-
tion in LRs might come from the use of different performance metrics,
the selection of learning system boundaries, the fact that market prices
and not costs are used as proxy for performance or from other factors
which cannot be specified by the OFLC (e.g. plant size, module effi-
ciency, and the cost of silicon) [45]. Likewise, the variation the LRs
reported for biomass energy might come from the different learning
system boundaries, but also from the large variety of feedstocks and
technologies available [25].

To test and update empirical insights on technological cost reduc-
tion, as well as the ability of the OFLC to depict this process, several
hypotheses were formulated following different claims from literature.
These hypotheses are then tested using the gathered LRs for energy
technologies. First, the LRs were categorized depending on the tech-
nology’s typical unit size. For example, diodes and other small elec-
tronics, were classified in the less thanWatt category, while PVmodules,
refrigerators, microwaves and other demand technologies were cate-
gorized in theWatt group. LRs for PV balance of the system and batteries
for residential installations, as well as fuel cells, electrolysis systems, and
heat pumps were categorized in the kW group. PV power plants, and PV
balance of the system for utility scale, as well as onshore wind turbines
were allocated in the MW scale. Finally, hydropower plants, natural gas,
coal, nuclear and power plants were allocated in the GWmagnitude. The
results can be seen in Fig. 4. The negative relationship between cost and
experience is more noticeable in small-scale technologies than in large-
scale ones. This most likely has to do with the ease of learning via
iteration that small and modular technologies have [71]. In average
both technologies with a scale between < Watt and Watt have a LR
between 21 and 23 %, while a mean LR of 16 % and 11 % can be
observed for the kW and the MW scales, respectively. Finally, the lowest
average LR corresponds to the GW scale, with a mean LR of 8 %.
Upscaling nine orders of magnitude (from W to GW) results in a 12 %
reduction of the average LR.

Need for customization and design complexity might be factors
affecting the LR value. Energy technologies are categorized depending
on their need for customization and design complexity (see Fig. 5), as
described in Ref. [2]. In this case, the technologies categorized as Type 1
include: fuel cells, electrolyzer cells, PV modules, demand technologies,

Fig. 3. Box-plots for various energy technologies.

Table 1
Summary statistics of learning rates for different energy technologies in
percentages.

Energy technology Mean
(%)

Std. deviation
(%)

Min/Max
(%)

Median
(%)

Biomass (32) 15 12 2/58 13
Coal (18) 10 8 0/30 8
Demand-side (82) 17 9 3/41 16
Fuel cell (24) 17 10 − 2/38 18
Geothermal (1) 5 – 5 5
H2 production (9) 19 4 11/28 18
Hydropower (9) 7 9 − 1/24 5
Marine energy
(23)

12 3 5/18 12

Natural gas (15) 13 11 − 11/34 13
Nuclear (6) − 5 25 − 49/21 4
PV (153) 21 14 − 5/73 20
Solar thermal (8) 13 10 3/35 11
Storage (24) 15 7 − 1/30 15
Wind (115) 10 7 − 6/38 9
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and some storage technologies (Li-ion batteries for electronics and
electric vehicles and lead-acid batteries), as well as one LR for wind
technology (production of submarine high voltage DC cables). An
average LR of 21 % is found. On the other hand, Type 2 technologies
have an average LR of 12 %. The technologies included in this category
are wind turbines, concentrating solar thermal power, tidal and wave
energy, PV systems, PV balance of the system, as well as electrolyzer,
batteries, heat pumps and fuel cells on a system level. Finally, Type 3
technologies have an average LR of 10 %, and include: coal, nuclear and
natural gas power plants as well as biomass power plants, hydropower
plants, pumped hydro storage, and offshore wind farms. Type 1 tech-
nologies have, in average, a higher LR than the other categories. This
agrees with the results presented in Ref. [2] and in Ref. [18]. While this
categorization gives indeed a first approximation of an LR for a tech-
nology with certain characteristics, the need of customization and
design complexity are not the only factors that determine the cost
reduction rates. Therefore, not all the data-points are compliant with
this assumption, hence the variability found for each category. The
standard deviation for Type 1 technologies is 11 %, and for both Type 2
and Type 3 technologies 10 %.

Geographical spillovers may also influence the rate of technological
change and learning. Geographical spillovers refer to knowledge and
experience generated in one location, which may drive learning and cost
reductions in another place. Some studies suggest that all knowledge
and experience should be considered as a global good, due to worldwide
markets and information exchange [24]. Others propose that changes in
hardware costs are mainly subject to global learning, while imple-
mentation costs depend more on local learning [91]. To test the effect

that geographical location has on the average LR, and the ability of the
OFLC to depict geographical spillovers, the LR values were categorized
between three different geographical boundaries, depending on what
was reported in the original source. Local refers to LRs calculated for a
specific country, regional refers to a learning system encompassing
several neighboring countries, and global refers to a worldwide learning
system. As can be seen in Fig. 6, global LRs are higher than the regional
and local ones. The average LRs for the local scope is 15 %, for the
regional scope 13 % and for the global scope 20 %. This result agrees
with the proposition made in Ref. [91], that promoting local learning
may help speed the rate of cost reductions of low-carbon energy tech-
nologies. The categorization of the LRs depended on what was reported
in the original source, but most of the values were calculated with the
global CIC as experience parameter. To have a more realistic represen-
tation of the effects of geographical location in technological change, it
is important to properly separate the effect of local and global learning.

Literature presents a wide range of perspectives on the influence of
the innovation stage on the LR value. Kahouli-Brahmi [11] argues that
the LR value will vary at a certain stage of the technology life-cycle,
while Junginger et al. [23] state that the LR value tends to reduce as
the market starts to saturate, since it might be more difficult to double
the CIC. Rivera-Tinoco et al. [48] report LRs for three different devel-
opment stages of solid-oxide fuel cells. For the R&D stage, a LR of 16% is
reported, and values of 44 % and 12 % correspond to the pilot stage and
early commercial stage, respectively. Also, Grübler et al. [76] separate
the innovation process into six development stages: invention, innova-
tion, niche market commercialization, pervasive diffusion, saturation,
and senescence. They state that it is not possible to model the first two
stages with an OFLC. However, if the innovation stage is modeled with a
2FLC an LR of >50 % might be obtained. Ranges between 20 and 40 %
are reported for the niche market commercialization, and between 10
and 30 % for the pervasive diffusion stage. Finally, for the saturation,
and senescence stages, an LR of 0 % is suggested.

To test if it is possible to allocate a ’typical’ LR for each innovation
phase, the LRs for solar PV modules were categorized among the four
innovation stages: R&D, demonstration, market formation, and
commercialization. The LRs gathered are reported for a certain time
span, therefore a start and end date are known for each value. The
average between the star and end year was calculated. According to this
average year and the timeline of the development of solar PV modules
presented in Ref. [92], the following time allocation was done. First,
from the oldest average year (1974) to 1978, the LRs were categorized as
belonging to the R&D phase. Demonstration phase was determined to
start in 1979 and end in 1999, while the market formation phase starts
from 2000 and ends in 2009. Finally, the commercialization phase starts
in 2010 and is still going. Fig. 7 shows how the LR values were allocated.
There is just one point in the dataset that corresponds to the R&D phase

Fig. 4. LRs for energy technologies categorized by their characteristic unit size.

Fig. 5. LRs for energy technologies categorized by their need for customization
and design complexity.

Fig. 6. LRs for energy technologies categorized by geographical location.
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and has a value of 22 %. For the demonstration phase, the average LR is
22%, while for themarket formation stage, themean LR is 32%. Finally,
the mean LR for the commercialization stage is 45 %. No ’typical’ LR
could be found for a specific innovation stage, however, a trend can be
deduced. The average LR for the commercialization phase has the
highest value. This might be because the solar PV market is not yet
saturated or because during the commercialization stage, the technology
benefits form LBD, economies of scale, a growing market size, and the
need for new renewable electricity capacity. Also, the legitimacy that
has been attained during the last development stages, and the perceived
advantage of using PV instead of conventional technologies, may have
increased the consumers’ acceptance [89].

4.2. Industrial technologies

A review of LRs for the industry resulted in 226 LRs for different
industrial sectors. Fig. 8 shows a histogram with the values found as well
as the best-fit probability distribution function. The best fit is selected
with the fitter class in Python. A normal distribution with a mean of 11 %

and a standard deviation of 19 % is the one that best fits the data.
Fig. 9 shows the LRs found, which were categorized per industrial

sub-sector: food, beverages and tobacco; chemical and petrochemical
industry; machinery; paper, pulp and printing; cement and clinker; non-
ferrous metals; textile and leather; wood and wood products; non-
metallic minerals; iron and steel; transport equipment; and other sec-
tors. The box-plot shows the 25 and 75 percentile and the line in the
middle is the median for each industrial sub-sector. Most of the LRs
found for industry were calculated for an entire sector and not for a
specific technology by collecting historical cost and production data for
a specific country and fitting it to an OFLC model.

Table 2 shows the summary statistics found for each sub-sector. As
can be seen the sub-sector with largest average LR (25 %) is the one
denominated as others. Which includes manufacturing of optical in-
struments, photographic equipment, transformers and other equipment
for power distribution, as well as electronic and electrical equipment. An
explanation for these high LRs might be the fact that products are
modular, which gives more opportunity to get experience in the pro-
duction process. Also, the markets are quite dynamic and competitive,
therefore, continuous R&D investments are necessary to avoid these
technologies to become obsolete. The other sector with a high average
LR (23 %) is the manufacturing of trains, cars, trucks and other trans-
portation equipment. This relatively high mean value may be attributed
to the large market size and increasing demand. Lastly, the nonmetallic
minerals sector has the third largest average LR. This category includes
ceramic, clay, glass and brick production. In this case, some of these LRs
were calculated with the labor cost as proxy for performance. Therefore,
the effect of economic growth and improvements on the country’s
economic situation might be affecting the LR values.

One of the sub-sectors with the lowest average LR is machinery (1 %)
This sector includes the production of electrical, production and general-
purpose machinery. Most of these values are calculated for developing
countries, in which high-technology industry is not yet well developed.
Therefore, small or negative LRs are expected. An average LR of 5 % was
found for the iron and steel sector. The LRs reported correspond to
brownfield improvements to existing plants. This might be the reason
why the values are quite low, as they correspond to incremental inno-
vation, for which not much learning opportunities exist.

In regard to variability, the sectors with the highest standard devi-
ation are the food, beverages and tobacco (37 %) and the machinery (29
%) sectors, as well as the chemical and petrochemical sector (25 %). The
source of this variability might come from the different learning system
boundaries or from the fact that different technologies are included in
the same sector. Other sources of variability still need to be researched.

5. Results

5.1. Barriers and drivers of innovation and technological change

An overview of the drivers and barriers that might accelerate or
hinder the invention, development and deployment of new low-carbon
technologies, according to the reviewed literature is shown in Fig. 10.
These drivers and barriers are organized among different innovation
stages: R&D, demonstration, market formation and commercialization.
Depending on the technology under study, specific drivers and/or bar-
riers might be dominant in certain stages or might not be present at all.
This scheme is an oversimplification of the innovation process. Never-
theless, with this effort we try to bring some light into the complex
mechanisms behind technological change of low-carbon technologies.
Other barriers and drivers may be identified by carrying out bottom-up
engineering analyses, analyzing the innovation system or asking experts.

5.2. Modelling barriers and drivers of innovation and technological
change

The second result of these review is presented in Table 3. The 38

Fig. 7. LRs for solar PV modules allocated to different innovation phases.

Fig. 8. LRs for industrial processes (n = 226). Normal distribution with μ = 11
% and a σ = 19 %.
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barriers and drivers shown in Fig. 10 are enlisted in the first column. The
second column shows the various LC models found in literature that can
be used to depict the effect of each barrier/driver. No model found
means that this specific barrier/driver could not be found as a parameter
in a LC model. The third column enlists other tools, which may help
analyze in various degrees and manners, the effect of each driver and
barrier.

5.3. Framework to study technological change for industrial processes

Many options exist which may contribute to achieving industrial
decarbonization. For example, different brownfield improvements can
be applied, new low-carbon feedstocks and materials can be used, or
new low-carbon technologies can be implemented. However, the costs of
these new low-carbon options are generally high compared to the
benchmark options. A possible way to speed up industrial decarbon-
ization, might be to identify where the main cost reduction opportu-
nities are, and how to take full advantage of them. It is difficult to
generate one specific fit-for-all approach to study technological change
of each option in industry. This is because of the various decarbonization
options, the variety of processes and technologies in industry, and the
numerous factors that might be driving or hindering the speed at which

technological change occurs,
Considering the insights obtained in this literature review, we

develop a three-level framework aimed at studying learning and tech-
nological change of low-carbon industrial processes. Fig. 11 shows a
graphical representation of this framework. The Technology level refers
to a specific technology, for example, an electrolyzers, a gasifier, or a
Fischer-Tropsch synthesis reactor. The Process level refers to a set of
technologies that, together, are used in one chemical plant. For example,
biomass goes into a gasifier and syngas is produced. Then, this syngas
can be used as feedstock for a Fischer-Tropsch reactor to produce bio-
fuels. The System level refers to the political, social, and economic
environment that affect the rate of technological change.

The first step is to select the level one wants to study. Depending on
the goal, one can choose to focus on a single level, two levels, or on all of
them. At the Technology level the goal is to identify sources of cost
reduction thanks to technological improvements. For example, cost re-
ductions might come from improvements in selectivity, efficiency,
catalyst performance, economies of numbers etc. In the Process level, the
goal is to identify the potential cost reductions when two or more
technologies are used together in one industrial process. One might
determine which technology in the process has the largest potential of
technological improvements and cost reduction. Also, possible cost re-
ductions coming from economies of scale, synergies, heat integration,
by-product valorization, etc. might be analyzed. In the System level, the
goal is to model how financial, political, and social factors might have an
effect on the magnitude and rate of potential cost reductions. Investi-
gating all three levels, may give a clearer picture of what is driving or
hindering the innovation, development and deployment of new indus-
trial technologies.

The next step is to select the factors one wants to study. As shown in
Section 5.1, several factors might be driving or hindering the speed at
which technological change occurs. The graphical representation of the
framework provides a first guide on how the different factors can be
allocated to the three analysis levels. The differentiation of the levels
and selection of the factors that are included in the analysis will pri-
marily depend on the judgment of the researcher and the scope and level
of detail of the assessment.

Once the analysis level and the (most) relevant factors to study are
selected, Table 3 may be used to understand how the effect of these
factors has been analyzed before. Studying these examples, might pro-
vide guidelines for generating a dedicated model for the case under
study, selecting proxies for experience and performance, as well as un-
derstanding the level of data requirements and uncertainty that each
method entails.

Fig. 9. Box-plots of LRs for various industrial sectors.

Table 2
Summary statistics of learning rates for different industrial sectors in
percentages.

Industrial sector Mean
(%)

Std. deviation
(%)

Min/Max
(%)

Median
(%)

Cement and clinker (9) 9 12 − 14/27 13
Chemical and
petrochemical (41)

15 25 − 79/42 20

Food, beverages and
tobacco (17)

12 37 − 96/68 22

Iron and steel (82) 5 8 1/65 3
Machinery (9) 1 29 − 40/38 9
Non- metallic minerals
(12)

21 14 − 6/41 24

Non-ferrous metals (10) 14 15 − 14/33 14
Others (13) 25 24 − 14/85 22
Paper, pulp and printing
(12)

9 16 − 14/35 10

Textile and leather (10) 11 11 − 10/26 16
Transport equipment (4) 23 12 9/38 24
Wood and wood products
(7)

10 13 − 8/25 13
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The next step is to generate a model that projects future costs of the
technology/process under study. The methods to generate the model
will highly depend on the data availability. Fig. 12 shows the different
methods found on the review, and how these can be used in the three-
level framework. It also shows a rough approximation of the level of
data requirements, level of uncertainty and level of detail that

corresponds to each one.

6. Conclusions and recommendations

There is an urgency to accelerate technological change and transform
the existing energy and industrial system with the implementation of

Fig. 10. Drivers (+) and barriers (− ) of technological change for different innovation stages.
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Table 3
Methods to model 38 barriers and drivers that may determine technological change of low-carbon technologies. OFLC: one-factor learning curve, MCLC: multi-
component learning curve, MFLC: multi-factor learning curve, LR: learning rate, TIS: technological innovation system analysis, FIS: functions of innovation sys-
tems analysis. No model found means that a specific barrier/driver has not been used as a parameter in a LC model.

Barriers and drivers LC model Other tools

Age of existing infrastructure No models found TIS
Automation De Jong’s model Cost model that accounts for automation effects e.g., Rivera-Tinoco

et al. [48]
Availability of infrastructure and complementary
technology for system integration

MCLC with an LR for each complementary technology/
infrastructure element e.g., Böhm et al. [44]

TIS

Availability of knowledge infrastructure No models found TIS. Expert elicitation
Consistency of governmental support No models found Expert elicitation
Consumers acceptance No models found TIS
Creation of legitimacy No models found FIS
Degree of customization OFLC Expert elicitation
Demand articulation No models found TIS
Design complexity OFLC Expert elicitation
Diffusion of competing technologies MFLC with market share of competing technologies e.g.,

Gan and Li [36]
Net present value analysis to determine a portfolio of different
energy technologies considering the LR e.g., IEA [6]

Economies-of-scale MFLC with scale effects e.g., Söderholm and Sundqvist
[27]
MFLC derived from economic theories e.g., Yu et al. [28]

Cost model that accounts for scale-effects when calculating
investment cost or levelized cost e.g., Li et al. [93]; Detz et al. [43]

Entrepreneurial activities No model found FIS, TIS
Favorable financial conditions OFLC with financial indicators as performance

parameter e.g., Egli et al. [94]
FIS

Forgetting-by-not-
doing

OFLC with negative LR
2FLC considering depreciation of knowledge stock and lags between R&D expenditure and
knowledge creation e.g., Söderholm and Sundqvist [27]

Forgetting models e.g. Jaber [34]

Geographical spillovers New definition of experience which separates the effects of global and local learning e.g.,
Castrejon-Campos [24]
MFLC with both national and international experience e.g., Grafström and Lindman [51]

Mediating model effect with effect of learning by-importing
e.g., Wang et al. [62]

Guidance of the search No model found FIS, Expert elicitation
Learning-by-doing OFLC, MCLC, MFLC Mediating model effect e.g. Wang et al. [62]
Learning-by-interacting No model found TIS, FIS
Learning-by-searching 2FLC with cumulative number of patents as proxy for knowledge stock e.g., Mayer et al.

[95]
MFLC with patent counts as a dependent variable explained by exogenous variables e.g.,
Grafström and Lindman [51]

Mediating model effect e.g. Wang et al. [62]

Learning-by-using No model found TIS
Location MFLC with effect of capacity factor e.g., Yao et al. [29] Cost model with localization factor to represent local and

foreign plant costs e.g., Li et al. [93]
Cost model considering the capacity factor when calculating
levelized cost e.g., Detz et al. [43]

Market structure and
dynamics

MFLC with input prices as factor e.g., Penisia et al. [37]
LR is modeled as a function of different economic metrics e.g., Elshurafa et al. [52]
Hierarchical model with variables that may affect the cost reduction e.g., Trappey et al.
[49]
Add dummy variable to OFLC to account for changing prices e.g., Simon [57]

Sensitivity analysis for changing cost of material e.g., Detz
et al. [43]

Market-pull policies MFLC with feed-in-prices as endogenous variables e.g., Söderholm and
Sundqvist [27]
Technological growth rare as a proxy for policy support e.g., Nicodemus [42]

Policy intervention studies

Need for new capacity Model global production as a function of global demand e.g., Gan and Li [36] Scenarios with different cumulative annual growth rate e.g.,
Detz et al. [43]

Perceived competitive advantage/
Improved performance

Estimating learning for each cost variable e.g., Li et al. [40]
Apply LCs to different plant performance parameters e.g., van den Broek et al.
[39]

Cost model to identify technical factors that may reduce
costs e.g., Nemet [45]
Expert elicitation

Plant size Stanford-B model and the S-curve model to determine optimal plant size e.g.,
Daugaard et al. [50]

Cost model to determine how plant size affects costs e.g.,
Nemet [45]

Potential market size Model global demand as a function of endogenous variables (e.g., oil prices
and feed-in-tariffs) and observed cost reductions e.g., Gan and Li [36]

Diffusion models where cumulative capacity is a function of
several variables e.g., Grafström and Lindman [51]
Scenario analysis

Previous experience Stanford-B model TIS
R&D funding Stanford-B model

2FLC with effect of cumulative R&D expenditure e.g., Söderholm and
Sundqvist [27]
MFLC considering domestic public R&D expenditures as endogenous variable
e.g., Grafström and Lindman [51]

Expert elicitation

Stakeholders’ absorptive capacity New definition of experience that considers absorptive capacity of knowledge
spillovers e.g., Castrejon-Campos et al. [24]

Policy intervention studies

Standardization No model found Expert elicitation
Support to entrepreneurs No model found Policy intervention studies

Technological
spillovers

MCLC which considers the potential spillover effects from competing or parallel technology and component usage
and development e.g., Böhm et al. [44]
New definition of experience that accounts for spillovers e.g., Castrejon-Campos et al. [24]

Expert elicitation

Technology-push
policies

Learning-diffusion model e.g., Jamasb [35] Policy intervention studies
Scenarios

(continued on next page)
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new technologies, to avoid the worst effects of climate change. Insight
into how to achieve a rapid development and deployment of these new
technologies may be useful to promote the quick implementation of
sustainable industrial processes. The LC tool is an established method
used to describe the learning process, typically expressed in terms of cost
reductions. The LC approach has mainly been used and adapted to study
energy technologies. This has resulted in various new models that
attempt to better describe the observed cost reductions. However, the LC
method has not been widely used for industrial processes.

The first goal of this work was to give more insight into the factors
that may explain the rate of innovation and technological change of low-
carbon energy technologies. No less than 38 barriers and drivers of
innovation and technological change were found and categorized under
different innovation stages: R&D, demonstration, market formation, and
commercialization. This classification likely oversimplifies the innova-
tion process. Nevertheless, with this effort we try to shed some light into
the complex mechanisms behind technological change and cost re-
ductions of low-carbon technologies. Depending on the technology
under consideration, these factors might be dominant in certain inno-
vation stages or might not be present at all. Additional barriers and
drivers of cost reductions may be identified by analyzing the TIS, car-
rying out bottom-up engineering analyses or eliciting experts. Further
research is needed to determine the extent to which these factors
contribute to cost reductions of industrial processes.

As part of the review, we gathered and analyzed LRs from literature
to test existing empirical insights and understanding of the adequacy of
OFLCs to represent technological innovation and learning. The
following insights were obtained: (1) LRs for energy technologies follow
a log-normal distribution with μ = 15 % ± 11 %. However, a higher
mean LR is found if only the statistically significant data are used. This

highlights the necessity for implementing more rigorous reporting
standards for LRs, to avoid drawing misleading conclusions. (2) Up-
scaling the unit size of a technology by nine orders of magnitude re-
sults in a 12 % reduction of the average LR. (3) On average, energy
technologies with low degree of complexity and low need for custom-
ization learn faster. While this categorization gives indeed a first
approximation of an LR for a technology with certain characteristics, the
unit size, need of customization and design complexity are not the only
factors that determine the cost reduction rates. Further research is
needed to determine the extent to which other factors also play a role in
driving cost reductions. (4) Average global LRs are higher than local
ones. To have a more realistic representation of the effects of
geographical location in technological change, it is important to prop-
erly separate the effect of local and global learning. Further research is
necessary to develop methodologies for accurately modeling this effect.
(5) No specific LR for each innovation stage could be found. However, a
trend can be deduced. LRs at the commercial stage are higher than LRs in
the other innovation stages. Additional datapoints are necessary to
generate a more robust conclusion. Further research may focus on
finding the best method to model learning in the different innovation
stages. (6) For industry, most of the LRs that we found do not correspond
to a specific technology, but to a whole sub-sector. An average LR was
reported for each one, but relatively high variations were found. The
literature review revealed an absence of studies addressing the factors
influencing learning within these industrial sectors. The results of this
review highlight the need to develop deeper knowledge about what is
actually driving or hindering the cost reduction rate of industrial
processes.

The second goal of this work was to find a set of methods to model
innovation and technological change of low-carbon energy technologies

Table 3 (continued )

Testing opportunities No model found TIS
Trained work force MFLC derived from economic theories, including the cost of labor e.g., Yu et al. [28]

MCLC with cost of labor as a cost component e.g., Ferioli et al. [13]
MFLC with the number of researchers in the country as endogenous variable e.g., Grafström and Lindman [51]

FIS

Unit size OFLC Cost model with scale factor e.g., Detz
et al. [43]

Fig. 11. Framework to study technological learning of low carbon industrial processes.
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Fig. 12. Overview of methods found in this review, and how these might be applied in the three-level framework to study industrial processes. The level of data
requirement and uncertainty are shown in a stoplight format, where dark red means very high and dark green very low. (For interpretation of the references to colour
in this figure legend, the reader is referred to the Web version of this article.)
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and industrial processes. We examine 14 different methodologies for
modeling technological change, including patent analysis, FIS, techno-
logical innovation systems, and learning curve analysis, among others.
LC models for energy technologies are more sophisticated and can
determine if the barriers or drivers of technological change are statis-
tically significant to the observed cost reductions. The downside of some
of these models is the high data requirements to generate the LC. This
may specially be an issue for low-carbon industrial processes for which
empirical data might not be available. Most of the models that describe
technological change of industrial processes are OFLCs fitted to histor-
ical data. Various performance parameters are considered, for example,
average market prices, unit manufacturing costs, specific energy con-
sumption, process yield, access to financing, cost of retrofitting existing
facilities, or air pollutant intensity. In the case of experience, the proxies
explored in literature are cumulative production, cumulative capacity,
annual rate of industry output, average scale of the plant, rate of new
plant investment, and cumulative energy savings. A suggestion for
further research is to test if there are other experience proxies that might
be used, and to develop more sophisticated learning models for indus-
trial processes following the framework presented in this work.

The last goal of this work was to develop a framework to study
technological change of industrial processes. The three-level approach
that we propose can be used to identify if the main cost reduction po-
tential comes from the technology, the process, or system-related fac-
tors, and can be applied to the wide portfolio of industrial
decarbonization options. Applying the framework might give more
insight into the actions to be taken and goals to target to accelerate cost
reductions. A suggestion for further research is to apply this framework
to various study cases and evaluate its applicability and limitations, as
well as to determine how can it be improved. The lessons learned for
each case study might be useful to generate rules-of-thumb to model and
project future cost reductions of low-carbon processes that might
contribute to the transformation of industry.
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