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ARTICLE INFO ABSTRACT

Dataset link: https://zenodo.org/records/1580 Proper descriptions of the fatigue crack growth rate and direction are crucial for determining the residual
7377 fatigue life of metallic structures. In non-proportional multi-axial loading, the prediction of the fatigue crack
Keywords: growth direction is not trivial. This study evaluates the effect of different state-of-the-art crack growth direction
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criteria on the predicted crack paths by comparing the results with experiments with non-proportional load
done by others. The results are compared in terms of predicted angles at different experimental crack lengths
and cumulative predicted crack path. Based on this study, it is concluded that none of the studied criteria based
on linear elastic fracture mechanics is able to accurately predict the crack growth direction in non-proportional

loading for the general case. The mismatch of some cases studied is so large that these criteria cannot be used
in crack growth path prediction for an arbitrary, non-proportional load case.

1. Introduction

Fatigue is one of the most important failure mechanisms for metallic
structures under fluctuating loads. The fatigue life of a structure can
be divided into three phases: (1) Initiation of a crack from the un-
cracked structure (2) Stable crack growth from the initiated crack
and (3) final fracture of the remaining ligament [1]. In the stable
crack growth regime, determining the remaining fatigue life requires an
accurate description of the fatigue crack growth rate (FCGR) and FCGD.
Assuming linear elastic fracture mechanics (LEFM) and ignoring the
effect of the microstructure, the crack path for physically long cracks
under applied uniaxial loading is perpendicular to the direction of the
maximum principal stress. However, multi-axial loading is present in
most practical cases, such as notched geometries. Within multi-axial
loading, distinction is made between proportional and non-proportional
loading. Proportional loading is characterised by a constant orientation
of principal stress during a load cycle [2]. The crack driving force in
Mode-I and Mode-II mixed-mode (multi-axial) loading is often assessed
by combining the respective SIFs, K; and K;;, into an equivalent SIF,
K,,. Numerous expressions for K,, exist in literature, often determined
from experimental data, some have a preference for K;, and some
have a preference for K;; [3-5]. Several researchers studied fatigue
crack growth in proportional loading, focusing on Mode-I and Mode-
I load [6] or Mode-I and Mode-III load [7]. Two FCGDs compete in

proportional load, namely, perpendicular to the maximum principal
stress, and aligned with the maximum shear stress [8]. However, the
first direction usually dominates [9].

Determining the FCGD and FCGR in non-proportional mixed-mode
load appears non-trivial. Non-proportional load conditions arise in
several practical applications, such as coil springs in automotive [10]
and in rolling contact fatigue (RCF) in wheel-rail systems [11,12]. Most
experiments with non-proportional load aim at studying or predicting
FCGR [13-16] whereas a minority of studies aim at the FCGD [17,18].
Hereafter, a compilation is given of a few experimental lessons learned
on FCGD. A FCGD close to the plane perpendicular to the maximum
principal stress (range) is referred to as Mode-I dominated, and a FCGD
in a plane aligned with the maximum shear stress (range) is referred
to as Mode-II (or Mode-III) dominated, see Fig. 1(a). The effect of
cyclic Mode-II load with a constant Mode-I load on FCGD was studied
in [19,20]. Both studies showed that compression at the crack tip,
leads to contact between the crack faces. This resulted into a lower
FCGR and a more Mode-II dominated FCGD as compared to experi-
ments with a zero or positive Mode-I component. Bold [20] showed
that experiments with a static positive Mode-I component resulted
in small, coplanar, Mode-II crack growth (0.05mm to 0.1 mm) before
deviating to a Mode-I dominated FCGD, see Fig. 1(b). Similarly, Bonniot
et al. [21,22], investigated the FCGR in R260 rail steel subjected
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Unit vector in direction of fatigue crack
growth direction
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Trial functions limiting crack growth in
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tor components for unit load cases applied
in the x- and y-directions

Mode-I and Mode-II stress intensity fac-
tor for an infinitely small crack increment
around the crack-tip

Reference point used in finite element
simulation

Stress ratio

Distance to crack-tip

Plastic zone radius

Crack extensions steps i

Time within a load cycle

Thickness cruciform specimen (in crack
growth region, in clamping region)
Horizontal and vertical displacement of
point on a distance r from the crack tip
Horizontal and vertical displacement com-
ponents in finite element model
Horizontal and vertical displacement com-
ponents of reference points in finite ele-
ment model

Normalized plastic zone radius

Walker mean stress correction coefficient
Width of area used finite element simula-
tions

Axis in global coordinate system

Axis in coordinate system aligned with
crack tip

Crack path in Cartesian coordinates
Geometrical correction factors for Mode-I
and Mode-II

Crack increment

Stress intensity factor range including
Walker mean stress correction

Operators

4e
Qi
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Acronyms

DOF
FCGD
FCGR
FE

HP
LEFM
MERR
MPZR
MSSR
MTS
PICC
RCF
RICC
SEN(B)
SIF
VCCT
VCTD

Subscripts (multiple used)

Crack displacement used in (Mode-I, Mode-II,
total)

Fatigue crack growth direction angle in crack-
tip coordinate system

Fatigue crack growth direction angle in global
coordinate system

Biaxiality ratio of the stress intensity factor
ranges, AK;;/AK;

Biaxiality ratio between stress intensity factor
components, K;;/K;

Poisson’s ratio

Nominal stress perpendicular to crack front
Maximum principal stress

Stress components in a cylindrical coordinate
system with the origin at the crack-tip

Von Mises equivalent stress

Nominal shear stress along the crack front
Phase shift between F, and F, in a cruciform
specimen

Phase shift between K; and K,

Parameter governing locking in vector crack
tip displacement criterion

Experiment

Maximum during a cycle
Mean during a cycle
Minimum during a cycle

Range of variable «

Macaulay brackets

Variation of Macaulay brackets

Fluctuation of displacement used in vector
crack tip displacement

Degree of freedom

Fatigue crack growth direction
Fatigue crack growth rate

Finite element

Hourlier-Pineau

Linear elastic fracture mechanics
Maximum energy release rate
Minimum plastic zone radius
Maximum shear stress range
Maximum tangential stress
Plasticity induced crack closure
Rolling contact fatigue
Roughness induced crack closure
Single edge notched specimen in bending
Stress intensity factor

Virtual crack closure technique
Vector Crack Tip Displacement

to non-proportional load. They showed that a cyclic Mode-II load in

combination with a compressive cyclic Mode-I load led to longer Mode-

II crack growth compared to experiments with cyclic Mode-II load

combined with a tensile cyclic Mode-I load. The latter experiments
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(b)

Fig. 1. (a) Example of Mode-I and Mode-II dominated crack growth in a pure Mode-II load scenario. (b) Example of Mode-II crack growth before deviating to a Mode-I dominated

crack.

showed almost a completely Mode-I dominated FCGD. The FCGD also
depends on the relative magnitude of the Mode-I and Mode-II load com-
ponents. Otsuka et al. [23] conducted experiments on aluminium alloys
2017-T3 and 7075-T6 and showed that a Mode-II dominated FCGD
is observed if AK;;/AK; > 1.6, provided AK/; is sufficiently large to
generate crack growth. Crack growth in Mode-I direction was observed
if these conditions were not met. All tests were conducted with positive
Mode-I components. Zerres and Vormwald [24] concluded that the
FCGR in non-proportional mixed-mode loading depends on the mode-
mixity, i.e. the ratio between K;; and K, material properties affecting
cyclic plasticity and crack closure, applied load, and the specimen ge-
ometry. As the FCGD is related to the FCGR, the authors of the current
paper assume that the same influence parameters are important for the
FCGD. Doquet et al. [25] conducted experiments on tubular specimens
made of maraging steel, subjected to different non-proportional load
schemes. Evaluation of these experiments using elastic—plastic FE mod-
els again showed that there is competition between Mode-I dominated
and Mode-II FCGD. Most experiments showed straight crack growth,
aligning with predictions for those cases. However, the experiments
with a non-zero FCGD were not predicted well. Bonniot et al. [21,22]
experimentally investigated the effect of contact between the crack
faces on Mode-I/1I crack growth using thin-walled tubular specimens.
In several experiments they observed crack branching, in which the
crack splits in a co-planar crack in the Mode-II dominated FCGD
and a crack in the Mode-I dominated FCGD. Due to these branches,
they observed crack face shielding between the crack with a Mode-
I dominated FCGD and the crack with a Mode-II dominated FCGD,
effectively reducing the Mode-II SIF, depending on the mode-mixity.
Several criteria have been proposed to determine the FCGD, all orig-
inally developed for proportional load, such as the MTS criterion, [26,
27], the maximum energy release rate (MERR) [28], the maximum
shear stress range (MSSR) criterion [17,29] and the VCTD criterion.
The latter is extended in [17] to be used in non-proportional load
situations. These criteria will be elaborated in Section 3.1. Highsmith
[30] evaluated some of these FCGD criteria, showing that FCGD is not
solely defined by the Mode-I range and the Mode-II range but that there
is influence of the Mode-I and Mode-II mean SIF, which is material
dependent. He proposes a variation of the MTS criterion combined
with a Walker mean stress correction [31] for a better agreement with
experimental data compared to the original MTS. Amato et al. [32]
used the MTS criterion to predict crack growth in proportional and
non-proportional load. They evaluated single-edge notched specimens
made of high-strength steel (34CrNiMo6) subjected to cyclic tension
and cyclic torsion load [7]. They simulated crack growth using 3D FE
models to obtain SIFs and an incremental MTS criterion to evaluate
the FCGD. Simulations with fully reversed cyclic axial stress (R, = —1)
showed good agreement with the corresponding experimental results.
However, simulations with a stress ratio R, = 0 showed a large
deviation with the experiments. Infante-Garcia et al. [18] used the
extended FE method to determine the SIFs in biaxial non-proportional
load conditions, using several variations of the MTS criterion to predict

the FCGD and crack path. They showed that the variations studied had
a large influence on the predicted FCGD. Moreover, it is demonstrated
that, depending on the criterion used, a reasonable approximation of
the FCGD at a predefined crack length does not necessarily imply an
accurate prediction of the entire crack path. Doquet et al. [25], made a
distinction between Mode-I and Mode-II dominated crack growth by us-
ing two different damage criteria, allowing to calculate the theoretical
fatigue life of each direction separately and assuming the crack grows
in the direction of highest crack growth rate.

Infante-Garcia et al. [18] and Amato et al. [32] did not include the
effect of contact between the crack faces in their simulations. From
a mechanical point of view, contact could influence the effective SIF
and thereby potentially the FCGD. Therefore, distinction is made here
between the nominal SIF, which is the SIF related to the applied load
and ignoring the effects of contact and plasticity, and the effective SIF,
which is the part of the SIF beyond opening of the crack, which con-
tributes to fatigue crack growth [33]. Some mechanisms that influence
this effectiveness are given here. First, plasticity induced crack closure
(PICC) [33] occurs due to development of plasticity around the crack-
tip, reducing the effective Mode-I SIF. Several models are developed to
estimate the effect of PICC, such as the NASGRO model [34]. Secondly,
roughness induced crack closure (RICC) reduces the Mode-I SIF, in
case the roughness is of the same order of magnitude as the crack tip
opening displacement [35]. In the near-threshold regime, where this
displacement is small, RICC often results in zig-zag fracture paths [20,
25,31,36]. Depending on the closure level, this zig-zag pattern can lead
to a crack-tip sliding displacement, generating an effective Mode-II SIF
even in case of a nominal pure Mode-I load [37]. In pure Mode-II load
this zig-zag pattern can result in an additional effective AK; [37]. Fi-
nally, friction between the crack faces reduces the sliding displacement
and thereby reduces AK;;. In general, all three described effects, the
zig-zag pattern, friction, and crack-closure, are present in mixed-mode
load in load cases where crack face contact may happen. This leads
to a complex interaction between Mode-I and Mode-II. Several models
are developed to describe this interaction [38-40]. These models pro-
vide a qualitative description of the interaction between these effects.
However, quantifying this interaction appears too complex to-date.
The development of PICC depends on the crack tip constraint, which
is a function of the crack shape, geometry and material properties.
Hence there is a difference between plane strain and plane stress
situations. Capturing PICC requires non-linear FE models. None of the
above-mentioned non-proportional FCGD criteria account for PICC and
RICC. Pommier et al. [41-44] developed a FCGR framework accounting
for the effects of plasticity. The deformation and translation of the
plastic zone around the crack-tip is described in their model throughout
the complete load history, making a distinction between the elastic
and plastic SIF components. The model is based on elastic—plastic FE
models and can also be used to predict FCGR in variable amplitude
loading [41,44]. Their framework shows potential for FCGD prediction
assuming that the FCGR is indeed proportional to the development
of plasticity. However, extending Pommier’s framework to predict the
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Table 1

FCGD criteria considered within this research.
Method Ref:
Maximum tangential stress (MTS)? [26]
Maximum shear stress range (MSSR) [17]
Vector Crack Tip Displacement (VCTD)" [17]
Hourlier-Pineau (HP) [46]
Minimum plastic zone radius (MPZR)® [47]

2 Augmented with a Walker mean stress correction factor [30].

b In addition, to the original implementation, the authors of the current study propose
a variant.

¢ The criterion is developed for proportional load. The authors of the current study
implemented it for non-proportional load.

FCGD requires a relation between the development of plasticity and the
FCGD, which is currently not available.

Floros et al. [17] evaluated the FCGD using the VCTD criterion,
based on experimental data from the literature. Both linear elastic and
elastic—plastic material behaviour were considered. They concluded
that the VCTD applied with linear elasticity agrees better with the
experimental results. Dahlin and Olsson [45] used the MTS criterion
and a maximum tangential stress range criterion in combination with
elastic—plastic FE models to predict the FCGD. They demonstrated
that using elastic—plastic material behaviour provided more accurate
FCGD predictions compared to using linear elastic material behaviour.
However, there appears to be no criterion to differentiate between the
MTS and the maximum tangential stress range criterion. The studies
show that using elastic—plastic material behaviour does not necessarily
result in improved FCGD predictions compared to linear elastic material
behaviour. This is possibly due to the fact that the criteria are originally
developed for linear elasticity.

Up to the authors’ knowledge, a universal criterion for predicting
the FCGD for non-proportional mixed-mode load does not exists. The
goal of the current study is to evaluate existing FCGD criteria by
comparing the predicted crack paths to experimental crack paths from
non-proportional mixed-mode experiments described in the literature.
Crack growth simulations using linear elastic FE models of the exper-
iments are made to facilitate this evaluation. The FCGD criteria are
compared at different instances at specific experimental crack paths,
predicting solely an extension direction. In addition, they are applied
in crack growth simulations in which the cumulative crack path is
predicted. Table 1 lists the criteria considered in this study. These
criteria are selected as these are the most used criteria in the literature.
The MERR is not included in this comparison as it is strongly related
to the Hourlier-Pineau (HP) criterion. All criteria are based on LEFM.
Therefore, experiments are selected with an almost completely positive
K; through the entire cycle, in order to limit crack closure effects. The
reasoning is that any valid model should at least be able to predict this
simple case. Linear elastic material behaviour is used in this research
as all considered criteria in this research are all developed for or can
be applied without modification to linear elastic material. This also
reduces numerical complexity in crack growth simulations.

2. Applied experiments and FCGD criteria

This section gives the descriptions of the selected FCGD criteria and
of the selected non-proportional mixed-mode fatigue experiments used
to evaluate the criteria. In general, K; and K;; for a crack length a are
related to the nominal stress field by:

K,)=c®)Y, (@ \ra, K;@)=1®Y,(a)\ra 6

in which o is the stress perpendicular to the crack front and 7 is the
nominal shear stress along the crack front, both quantities defined for
the uncracked condition. Y, and Y, are geometric correction factors.
The stress field in the vicinity of the crack front can be approximated
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by the first order Westergaard stress field solutions [48] in terms of a
polar coordinate system defined at the crack tip, see Fig. 2(a):

) 30, .o, .30,
o, (0,,r,1) 5cos 5 —cos ==, —5sin = +3sin =¢
1 0, 30, .0, a0 || Kr®
oy (0..7,1) | = 3cos ¥ +cos 5¢,  —3sin = —3sin == X
t
t0 (0ort)] VP sin % gsin 2 0y 3e0p e | K11
o (Ocs T sin £ +sin =<, cos cos =
(2)

in which o,,04 and 7,4 are the stress components in cylindrical coor-
dinates and 7 € (0, 1) is the normalised time during a cycle. A cycle in
non-proportional load is defined as the smallest, fully repetitive load
sequence, see Fig. 3. All criteria are written in terms of SIFs of an
infinitely small crack increment from the crack tip [48], see Fig. 2(b):

K7 (Gc?’)] - Vo [‘79 (ec’r’l):| _ [ Arr(6.), A (6.) ] |:Kl ®

K7, (0..1) 79 (0c11) A (00) . Aprr (6] [ Kip ()
3
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Arg(6,) = % <3cos %‘ + cos %)
Apgr (6,) = % <—3sin %C —3sin 3§C>
Ay (6.) = i <sin % + sin 3§C> @

6 36
A (6.) = ZIL <cos 76 +3cos TC)

Most FCGD criteria do not depend on the absolute load level, but
on the mode-mixity, described by the biaxiality ratio A:

K, (1.6)

A(1,6,) =
(1.0) K7 (1,6,)

)
A load sequence is defined as proportional if A is constant. Similarly,
the biaxiality range is defined as:
Al = 4Ky

AK,

(6)

The remainder of this section elaborates different experiments and
criteria using these concepts.

2.1. Experimental data

The experimental data considered in this study are obtained from
literature. Experiments were selected based on the specimen type and
the applied load. The research focuses on cruciform specimens, e.g
Fig. 4, as these allow for complete decoupling between Mode-I and
Mode-II load, and the specimens can be modelled in a 2D FE analysis.
The K; component should be positive through the entire load cycle
and crack path, to minimize crack closure effects. Another prerequisite
is that the experimental crack path is known. Experiments showing
significant crack branching are omitted as it is assumed that interaction
between the cracks cannot be captured by any of the FCGD criteria.
Two experimental sources are chosen based on these selection criteria.
Both experimental setups are such that the direction of the far-field
principal stresses is constant through the test and therefore the far-
field stresses remain proportional. However, the local stresses near the
crack tip, which drive the FCGD, do not remain proportional. Due to
the similitude principle, the local stress field describes the SIF evolution
independent of the far field stresses.

2.1.1. Biaxial load with phase shifts

Wolf et al. [14,15] measured the FCGR in high alloy austenitic
stainless steel (X5CrMnNil6-7-7) cruciform specimens, focusing on the
effect of load phase shift on the crack growth rate. Fig. 4(a) shows a
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(b)

Fig. 2. Crack tip and coordinate system for an infinitely small, rotated crack increment. (a) Polar coordinate system and corresponding stress components (b) infinitely small crack

increment from the crack-tip.

Fig. 3. Example load sequence with indication of cycle.
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Fig. 4. Cruciform specimen [15,49]: (a) Front view of geometry, dark area indicating
the measurement area with thickness ¢, and width W,, (b) Cross-section of 3D
geometry (c) Cross-section of 2D geometry, approximation of 3D geometry with equal
dashed area.

schematization of the used geometry. The slots are included to facilitate
the decoupling of the two loading directions. The specimen is connected
to the testing machine through a bolted connection, which is not shown
in Fig. 4. Fig. 4(b) shows the cross-section of the specimen (Fig. 4(c)
will be introduced later). A detailed technical drawing of this specimen
is shown in [49]. A diagonal starter notch of length 24, is machined
from a hole in the centre.

Wolf et al. [15] studied the effect of a phase shift in several experi-
ments. In the current research, the focus is on two experiments, namely
a biaxial load with a 22.5° phase shift, denoted with Experiment I, and
a varying phase shift, denoted with Experiment II. These experiments
are chosen because they resulted in non-straight crack paths without
branching of the cracks. For Experiment I, the applied load consists of
two stages, namely, an in-phase biaxial load stage resulting in a pure

Mode-I load at the crack tip, followed by a load stage with a phase shift
of ¢ =22.5°, corresponding to 7/16, see Fig. 5(a). Fig. 5(b) shows the
corresponding K; and K;; directly before and after the change in load
phase shift. The phase shift between K; and K;;, ¢, is a function of
the phase shift of the applied load, ¢, the crack length, and the FCGD.
The phase shift and the biaxiality ratio at the change in load phase
are ¢px = 90° degrees and 44 = 0.22, respectively. Fig. 6(a) shows the
experimental crack path [15], where subscript 0 indicates the end of the
pre-crack and the subscript 1 indicates the change in load phase. The
experiment is indicated by the superscript. The figure shows an abrupt
and significant change in FCGD at al’ , even for the small biaxiality ratio.
Thereafter, the FCGD gradually changes with increasing crack length.
As both crack tips in the experiment show a similar FCGD as a function
of crack size, the current study evaluates one crack tip.

Experiment II starts with an in-phase biaxial load resulting in a
pure Mode-I load, similar as Experiment I. Subsequently, incremental
phase shifts of ¢ = —15° degrees were applied until a final phase
shift of ¢ = —90°. Each load stage consists of a crack extension of
approximately 4 = 2mm. Fig. 6(b) shows the experimental crack
path [15] with the indicated stages where the occurrence of the change
in load shift and its value are also indicated. The FCGD changes at each
stage but remains approximately constant within a stage. The crack
paths originating from each side of the machined notch show a similar
trend.

2.1.2. Biaxial load with different load paths

Fremy et al. [42,43], Fremy [50] evaluated the effect of load paths
on fatigue crack growth behaviour of stainless steel using cruciform
specimens, see Fig. 7. Contrary to the experiments from [15], the
specimens did not contain slots. In the experiments, the load was
applied on all sides and controlled in such a way that the specimen
remains centred throughout the load cycle. Therefore, no slots are
needed. An initial notch of length 2a, = 30 mm was inserted in each
specimen.

Fremy et al. [42] conducted mixed Mode-I and II experiments and
mixed Mode-I and III experiments. The current study considers three of
the mixed Mode-I and II experiments. All experiments have the same
SIF ranges, but different load sequences, see Fig. 8. A positive Mode-
I SIF is used to ensure crack opening at the start of the experiments,
whereas the Mode-II SIF is fully reversed. Each specimen was pre-
cracked to 2a, = 34mm before applying the mixed-mode load. The
experiment results in different FCGR and different crack paths, visu-
alized in [42]. Fig. 9 provides the FCGD obtained from a combination
of photos and additional descriptions in [42]. Experiment A and B show
co-planar crack growth for the first 1 mm crack extension. At a,, after
approximately 1 mm of crack extension, the crack in the Experiment A
“in-phase” changes direction with 6, ~ 40deg. Experiment B “square”
shows a smaller deviation angle, 6, ~ 10deg. A possible explanation
provided by the authors from the current paper, for the sudden change
in experimental FCGD is that the crack grows outside of the plastic zone
of the pre-cracking procedure at crack size a,. The plasticity influences
crack closure and therefore the effective stress intensity factors are
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different before and after the crack size a,. However, further research
is needed to substantiate this hypothesis. Experiment C “cross” shows
co-planar crack growth throughout the entire crack path.

2.2. Fatigue crack growth direction criteria

This section describes the FCGD criteria defined in Table 1, which
are used in this paper to model experiments described in Section 2.1.

2.2.1. Maximum tangential stress criterion

The MTS criterion is the most used criterion describing the FCGD in
proportional load [26] and the direction in final fracture [51]. The MTS
criterion states that the crack propagates in the direction perpendicular
to the highest tangential stress ¢,, assuming a polar coordinate system
defined at the crack-tip, described mathematically by the angle that
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Fig. 7. Geometry used for Experiment A-C biaxial. Geometry based on [42]. All
dimensions are in mm.
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Fig. 8. Visualization of different loading paths in [42] all having the same K, and
K,, ranges: (a) Experiment A: “In-phase” (b) Experiment B: “Square” (c) Experiment

C: “Cross”.

satisfies the following two conditions:

0 02
% % <0 %)

o, o0

c
In proportional load the angle of maximum tangential stress is equal

to the angle in which the shear stress, 7, is zero. Combining Eq. (1),
Eq. (2), and Eq. (7), this results in a predicted crack growth angle for
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proportional load:

3K ) + \/[K, o] +8 [k, 0 [k 0]
[k, 0] +9[K;; 0]

(8

0, (t) = —arccos

for proportional load 6, () is independent of time and evaluation of the
direction is straightforward.

The MTS criterion is not uniquely defined in non-proportional load
since it predicts a different angle for every time instance in the cycle.
To account for the maximum SIF and the range of SIF, K,,,, and 4K re-
spectively, Highsmith [30] introduced a correction proposed by Walker
for Mode-I fatigue crack growth. The predicted FCGD angle, 6,, is the
angle which maximizes the weighted product of the maximum SIF for
an infinitely small increment, K] o and the maximum corresponding
SIF range, AK:

6, = argmax [AK,wa (06)]
v ) ©)
AKp, (00) = [K e (00)] - [4K] (0)]

with

AKr( C) Imax( C) K;mm (00)

Imax( C) [<K ( c’ ))] (10)
K; ,min (90) = mrln [<Kl (00’ t)>]

In which (¢) = (+ + |+]) /2 are Macaulay brackets and w, is a material
constant [30], with value between zero and unity.

2.2.2. Maximum shear stress range

In some cases of RCF, Mode-II crack growth is observed without
branching towards a Mode-I crack [20]. The plane of maximum shear
stress corresponds to a co-planar direction in pure Mode-II, there-
fore Floros et al. [17] defined a criterion assuming that the FCGD aligns
with the plane of maximum shear stress range, 4r,,. Hence, the angle
is defined as the angle that should satisfy the following conditions:
047, 0?4,

=0, —"? <0 11
20, 062 an

Contrary to Eq. (8), a simple closed form solution does not exist. There-
fore, this criterion is numerically evaluated, and the predicted angle is
based on the SIF solutions for an infinitely small crack increment using
Eq. (1).
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2.2.3. Vector crack tip displacement

The VCTD criterion predicts the direction of crack growth based on
the displacement crack driving force. Li [52] developed this criterion
for proportional load. The direction of crack growth for proportional
load is given by:

. Abpy
0. = arcsin 5 12)

where 45;; and A5 are the magnitude of the shear and total crack
displacement ranges, respectively, see Fig. 10. A first order approxi-
mation of the displacement field around the crack tip is given by the
Westergaard solutions [48,53]. Using this approximation, the following
relation between SIF and crack tip displacement at a distance r from the
crack tip is for Mode-I:

srin=vtr)-v ()
vt () =—uvT ()

13)
6y (r) = 8E£,l é
and similarly for Mode-II:
S () =u" () —u (r)
ut (r)=—u"(r) a4
8, (F) = KII ﬂ

in which u* (r) = u (r, 0, = iﬂ') and vt (r) = v (r, 0, = ill’), see Fig. 10,
and E' = E for plane stress and E’ = E/(1 — v?) for plane strain.

Assuming that the direction of the Mode-I crack extension is co-
planar with the original crack and that a Mode-II shear displacement
leads to a Mode-II crack extension under 45 degrees, the total crack
displacement, 46 is given by:

45 = \/452 + 2452 + 245,45, (15)

Floros et al. [17,54] extended the VCTD to non-proportional load using
an incremental evaluation of the VCTD. This led to the following
expression of the resultant crack displacement:

S = \/(5, O +2(8; 1) |5, 0] +2[5,; 0] (16)

the Macaulay brackets ensure contributions of only positive Mode-I dis-
placements. The components &, (t) and &, (t) describe the fluctuation
of the crack displacement. Following [17], this fluctuation is described
by subtracting the mean displacements from the crack displacement
components:

5,(t) =6, (1)— 0.5 [mtax (8 () +min (5 (t))]
i a7
5, (1) =68, (1)-05 [m}ax (817 () +min (57 (z))]

By excluding the mean displacement, any permanent crack opening, for
example resulting from plastic deformation, is disregarded in predicting
the FCGD. The total vectorial crack increment, Aa, for the evaluated
load cycle is calculated as the maximum of the modulus of the two
trial crack growth increments, da* and Aa™:

Aa* = / <d(S ® > fEme@ (18)

where & () is the unit vector in the FCGD, 6y.rp (1), at a specific in-
stance of time, calculated with Eq. (19). This vectorial crack increment
describes the crack extension in a local Cartesian coordinate system
with an origin at the crack tip:

e = [COS (8ucra ) Su1 (’)) 19)

sin (Oyerq (1) 5 (1)

Essentially, this limits the crack growth to the increments in which
the total crack displacement is increasing. The trial functions f* (¢)

] , with 6,,.,, (t) = arcsin <
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Fig. 10. Displacement definitions used in VCTD [52], &, is unit vector in the FCGD:(a) Pure mode-I load (b) Pure mode-II load (c) Mixed-mode load.

and f~ (r) describe crack growth in respectively positive and negative
direction with respect to the crack-tip:

. 51(0)
1, 6;;(®) =0 2>
= { 10 200r ZUoT 2w

, otherwise
(20)

= 5;(t)
< el >
= {1’ A

0, otherwise

in which y « 1 is a parameter describing locking in Mode-II crack
growth, preventing crack growth in reversed shear load when the crack
faces are in contact. Finally, the FCGD is determined by the direction
of the total crack increment,

é
0, = arctan < 0 > @n
eeyxr
in which &, (r) is the unit vector in the predicted FCGD
Aa éG x!
6, =—2 & =|" (22)
*7 lldal " [ég,y,]

The reader is referred to [17] for a comprehensive background of the
methodology. Eq. (16) does not distinguish between crack opening
due to plastic deformation and crack opening due to a positive static
nominal Mode-I load. Therefore, deviating from the implementation
in [17], an additional model variation is proposed here, referred to as
VCTD*. Therefore Eq. (16) is replaced by:

- —2 — . -
5@t = \/(5, ®) +2(6; ) |8, O] +2[5;; (z)]2 (23)

in which (-) is a variation on the Macaulay bracket

(51—(0):{5,@) if 6,>0 24)

0 otherwise

This implies that the Mode-I displacement fluctuation (5}) contributes
to the effectiveness of the cycle, if the total Mode-I displacement (6;)
is positive, hence when the crack faces are open, by either plastic
deformation or by a nominally applied Mode-I SIF. It is assumed
that, if the VCTD method correctly describes the crack growth process
in non-proportional load, reality is between the original VCTD and
VCTD*.

2.2.4. Hourlier-Pineau criterion

Hourlier and Pineau [46] developed a criterion assuming that the
FCGD is in the direction in which the SIFs of an infinitesimally small
crack increment gives the highest FCGR. The highest FCGR corresponds
to the highest equivalent SIF range. Following the methodology of [5],
this is calculated with:

Ak, (6.) = ([aK; (0] + (epraK;, (0))) (25)

where ¢;; is a material constant, typically in the range 0.5-2 and
should be tuned to experimental data. Subsequently the FCGD angle

is predicted with:

6, = argmax [AK:q (Gc)] (26)
()

4

2.2.5. Minimum plastic zone radius

Golos and Wasiluk [47], Wasiluk and Golos [55] developed the
minimum plastic zone radius (MPZR). This criterion assumes that the
FCGD aligns with the minimum theoretical plastic zone radius around
the crack tip. This is described by the angle that satisfies the following
conditions:
W _. PW
00, 962

-n<60,<nm 27)

in which W is the plastic zone radius normalized to the crack length.
Since the crack length is constant during evaluation, this is the same as

oy 0 i 0 0 (28)
=0, > -n<6,<
9, 062 Elesn

in which r, is an estimate for the plastic zone radius. Applying a von
Mises yield criterion allows for estimating the elastic—plastic boundary.
The von Mises yield criterion in cylindrical coordinates for plane stress
conditions is given by:

- 2 2
oy = \/Grzr — G0, + 0, + 377 29

Substituting Eq. (2) into Eq. (29) defines the elastic—plastic boundary
based on the von Mises criterion for plane stress conditions [56]:

2 0, .5 0.
rp (0,.1) =A [ [K; (0] cos? 7‘ (1 + 3sin’ E‘)

+ K; () Ky ()sin 6, (3cos 6, — 1) (30)

+ [Kyp (t)]2 <3+sin2% (l —9cos? %)) ]

in which A = 1 /(meis) is constant and is therefore omitted in the
minimization. The criterion as developed by Wasiluk and Golos [55]
is applicable for proportional load. In the current study, a proposal for
non-proportional load is made, in which the shape of the plastic zone
remains constant and is determined solely by the biaxiality ratio, 4,
in proportional load. The plastic zone radii scale with the magnitude
of applied load, but the minimum radius remains at the same angle. In
non-proportional load, the shape changes due to the changing biaxiality
ratio. It is proposed to create an envelope of the plastic zone field
during a load cycle. Assuming no interaction in plasticity between the
different time steps, the plastic zone radii envelope ryex is described
by:

ry @ (6.) = max [r, (0,.7)] (31)

Subsequently, by combining Egs. (28) and (31) the FCGD angle is
predicted with:

0, = argﬁmin [r;"“" (90)] (32)
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Fig. 11. Overview of the FCGD comparison scheme between experiment and prediction, blue: Comparison at specific experimental crack sizes; red: Incremental crack growth with

predicted FCGD (a) Visualization (b) Flowchart.

3. Methodology

Fig. 11 shows the methodology used to evaluate the FCGD criteria.
The crack driving forces are evaluated using the FE method. Two
types of comparison with these criteria are carried out per experiment,
namely, an incremental crack growth path in which the FCGD along the
complete predicted crack path is compared to the experimental results
(shown in blue in Fig. 11) and a comparison at specific crack sizes in the
experiment (shown in red in Fig. 11). Vector x describes the crack path
as a series of points x’ = [x;, y;] with x and y the cartesian coordinates
according to Fig. 11(a). Based on these vectors, the angle in the global
coordinate system is determined with:

i+l _ i
i~ an-! (XY
Gg = tan (le . ) (33)
The corresponding angle in the crack tip coordinate system is:
i _ i _ pi-l
0l =0, -0 (34

Similarly, the crack length, a, at a specific increment i is defined as the
sum of the Euclidean distances between the different instances:

ai=Z\/(Xi_xi—l)2+(yi_yi—l)2 (35)

3.1. Numerical model

Linear elastic FE models are used to derive SIFs given the geom-
etry of the specimen and the load. The FE models are created in
Abaqus [57]. All simulations files are added as supplementary material
(https://zenodo.org/records/15807377). The cruciform specimens are
idealized in 2-dimensional representations. To account for the non-
uniform thickness in Experiment I and II, 2D elements with different
thicknesses are assigned to different areas, similar as [15]. The mea-
surement width, w,, is approximated assuming an equal area between
the real, 3D, cross-section with the fillet and the 2D cross-section,
indicated with the dashed area in Fig. 4(b) and Fig. 4(c). Comparison
of the stress distribution and SIFs with a 3D FE model of the real
geometry including the fillets shows that this 2D model gives a good
approximation of the SIF values. The specimens in Experiment A, B
and C have a uniform thickness and therefore all elements have the
same (unit) thickness. The sides of the specimens are connected to the
machine using a combination of bolts and clamps in all experiments.
This is modelled by coupling the displacement of the edges of the
specimen to reference points. On the left edge, only the translational
degree of freedom (DOF) u, is coupled to the corresponding DOF of
the reference point u,,. Similarly, u, is coupled to U,, on the bottom
edge. The loads F, and F, are applied to the top and right edge,

respectively. The displacements of these reference points are coupled
to the displacements components of the nodes of that specific edge
and these edges are prevented to rotate. Due to these coupling con-
straints, the right edge and top edge are prevented from contracting in
respectively the vertical and horizontal direction, whereas the left and
bottom edges are free to contract. Because of the slots, this asymmetric
boundary condition has negligible influence on the calculated SIFs. For
Experiment A, B and C the boundary conditions are symmetric, see Fig.
7. An initial crack with size 2a is inserted by duplicating the nodes
and removing the connectivity between them. Quadratic quadrilateral
plane stress elements are used with a full integration scheme. The
mesh is refined to a mesh size of 0.1 mm in the vicinity of the crack
tip and along the crack front. The mesh size is gradually increased to
2mm outside this region to reduce the computational effort. A mesh
sensitivity study on the calculated SIFs has been performed to establish
these values. Fig. 12 shows an example of the mesh. A linear elastic
isotropic material model is used, and the simulations are geometrically
linear, assuming small deformations and rotations. For a sharp crack,
the theoretical strain field at the crack tip in a FE model becomes
singular. Using quadratic elements, this singularity is approximated by
translating the mid side nodes to quarter point position close to the
crack tip [58,59]. For every crack instance two unit load cases, F,
and F, are simulated. Subsequently, superposition is used to calculate
the SIF values at different time instances, to reduce the numerical
complexity,

K, (1) = k; o F, () + = k; ,F, (1)
Ky (1) =k Fe @+ =k F, (1)

(36)

inwhich k; ., ky p, kpy r, and k1, represent the Mode I and Mode II
stress intensity factor components for unit load cases applied in the x-
and y directions, respectively. In this study the SIF, is computed using
the VCCT. In VCCT the SIFs are calculated by assuming that the energy
required to advance the crack with a small increment is the same as the
energy required to close the crack for the same increment, see [60-62].
The current implementation of the VCCT method has been validated in
previous work [63].

3.2. Comparison fatigue crack growth direction

For the evaluation of the FCGD at individual instances in time,
separate FE models are created with the crack path at the time in-
stance following from the experiment xzxp. The crack growth extension
direction 6, can be predicted in a post processing step.

A numerical procedure is used to calculate the FCGD angle. Depend-
ing on the criteria a quantity is maximized, (e.g. 4K; . in the MTS
criterion, see Eq. (9)) or minimized (e.g. R;}"”X in the MPZR criterion, see
Eq. (32)). For some combinations of criterion, geometry and load, two
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Fig. 12. Visualization of mesh in FE model used in Experiment I, red line indicates
crack front. Inlet shows structured mesh used for VCCT method.

minima or maxima with approximately the same value are obtained for
this quantity. Therefore, a threshold is set to avoid instability between
the two approximately equal maxima or minima, as follows. If the
difference between two local extremes is smaller than 1 %, they are both
considered as potential FCGDs. It is assumed that non-homogeneous
material behaviour results in a larger deviation than this threshold of
1 %.

3.3. Comparison of the crack path

An initial crack is inserted in the FE model for the comparison of the
complete crack path, xgw 4> where superscript 0 indicates the starting
crack in the experiment xgxp, which is the crack dimension at the start
of the evaluation, in this example at a,. A crack extension angle 6. ,,,,
for the current increment is predicted using the considered criteria.
Subsequently, the crack path is updated using this predicted angle and
a fixed crack increment 4a. The sensitivity of the FCGD to 4a will be
demonstrated later in this paper. The updated crack is inserted in the
FE model and the procedure is repeated. The crack path prediction is
stopped after a predefined number of steps. The predicted crack path is
compared to the experimental crack path in terms of FCGD as a function
of crack extension steps, s;. A new set of FE models is used for every
FCGD criterion.

3.4. Validation

In order to validate the FE model and the FCGD prediction al-
gorithm, the results of the incremental crack growth procedure are
compared to those of an experiment with proportional load from Mi-
randa et al. [64]. This experiment is a crack growth test using a
SEN(B) with a hole, see Fig. 13(a). Because of the hole, there is a
proportional mixed-mode load at the crack-tip, in which the biaxiality
changes continuously with crack length. A 2D plane stress FE model of
the SEN(B) specimen is created. The load and boundary conditions are
applied at single nodes. A linear elastic material model is used with
E = 205000MPa and v = 0.3. The FCGD is predicted using the MTS
criterion, see Eq. (10), with w, = 1 which corresponds to Eq. (8).
Two different crack increments Aa are used. Fig. 13(b) shows the
experimental crack path together with the predicted crack paths using
the methodology described in Section 3.3. The figure shows that the
predicted crack path is in good agreement with the experimental data
and is independent of the crack increment. Because each experiment is
unique, the presentation of the prediction differs per experiment.
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4. Results

The predicted FCGD of the experiments outlined in Section 2.1 is
presented in this section. The FCGD criteria introduced in Section 2.2
are assessed using the methodology from Section 3. Contrary to the
validation case described in Section 3.4, in which the stress field
changes spatially, the cruciform specimen used in the experiments in
Section 2.1 are designed such that the stress field in the measurement
area is approximately constant. Therefore, the crack path prediction
results are presented in terms of FCGD angle as function of crack
extensions steps.

4.1. Biaxial load with phase shifts

This section compares the crack path predicted with the considered
criteria with the results of the experiments of [14,15] reported in Sec-
tion 2.1.1. The FE model introduced in Section 3.1 has a measurement
area with a width of w,;, = 143mm and a nominal thickness, 7;, =
2mm, see Fig. 4. The outside area including the slots has a thickness,
t,; = 12mm. The experimental crack path is smoothened by fitting two
fourth-order polynomial functions through the crack path for each of
the two load stages, before adding it to the FE models. A linear elastic
material model is used with E = 192000 MPa and v = 0.24 [14].

4.1.1. Experiment I: Fatigue crack growth direction

Fig. 14(a) shows the SIF, normalized with the square root of the
crack length, over one load cycle at different experimental crack
lengths. This normalization excludes the increase in SIF due to the
increase in crack length and allows to show the change in SIF caused by
the change in FCGD. The Mode-I SIF, K;, is almost independent of the
crack size, despite of the change in FCGD and the accompanying shift
in SIF phase. The range of K;; decreases with increasing crack length.
Initially, the Mode-II is fully reversed (K .., = 0) and a negative
K[ mean develops as the crack advances. The maximum plastic zone
size is estimated with Eq. (30), using 6, = 0 and o, = 252MPa [15].
The ratio between the crack length and the calculated maximum plastic
zone size estimated using Eq. (30) is between 5.5 and 7.0, depending on
the crack length. The authors consider this ratio to be just large enough
for the small scale yielding conditions that are a prerequisite of LEFM.
Fig. 14(b) shows the phase change in SIF, ¢ and the biaxiality range
A4 as function of the crack length. The latter increases to approximately
0.25 in the first mm crack growth after the application of the load phase
change. Subsequently, this ratio reduces significantly with increasing
crack length due to the reduction in K;;. As a result, the crack is Mode-
I dominated towards the end of the experiment. The phase shift ¢
increases from ¢y = 90° at al’ to approximately ¢, = 120° at aé and it
remains almost constant thereafter.

Fig. 15 shows the predicted FCGD angle in the global coordinate
system following the methodology of Section 3.2. As indicated in Sec-
tion 2.1.1 the experiment results in an abrupt change in crack direction.
The jump in 6, at al’ is approximately —18° to §, = 27° at the change
in load phase, indicated with af. Subsequently, the angle decreases and
stabilizes at approximately 6, = 7°.

For the MTS criterion, three values for w, are used, namely, 0.1,
0.5 and 0.9 mm, to show the sensitivity of the FCGD to this parameter.
Similarly, two parameters are used for the HP criterion, namely, one
favouring Mode-I crack growth (C;; = 0.9) and one favouring Mode-
I crack growth (C;; = 1.2). The MSSR criterion results in two angles
with approximately the same maximum shear stress range, shown by
the dashed curves. The FCGD prediction just after the load change at
a]’ is strongly influenced by the K; component as the K;; is zero at
the peak and trough of K;. The MTS, HP and MPZR criteria predict
co-planar crack growth at ;. This is due to the resulting SIF phase
shift, ¢ = 90°, in combination with the low AK;; range. However,
non-zero FCGD angles are predicted at larger crack lengths. Fig. 16
elaborates this difference between zero and non-zero crack tip angles,
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Fig. 13. Experimental crack path [64]: (a) SEN(B) Specimen, load configuration, experimental crack path and FE boundary conditions, all dimensions in mm (b) Predicted crack
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Fig. 17. Predicted FCGD angle for different crack growth criteria for Experiment I as function of crack extension steps. For definition a; see Fig. 15.
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(left figures) and a contribution of K;; (middle figures). Fig. 16(a) and I component dominates the maximum K;. Simulations with the MTS
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criterion show that a Mode-II range of approximately 80 % of the Mode-
I range would be needed to change the angle predicted for this phase
shift ¢ = 90°. Contrary, for aé, the middle figure in Fig. 16(b) shows
that the region of maximum A; ;;K;; shifts in time. Consequently, at
aé, the maximum of K/ occurs at non-zero 6, even for the relatively
small value of AA. Note that the ratio between K ;",’” and K}'™* influences
the predicted FCGD in addition to the change in phase shift. This ratio is
not displayed in the figure. The above derivation is conducted for the
MTS criterion with a Walker coefficient of 0.0. Similar results follow
for other Walker coefficients and for the HP and MPZR criterion. In
the second load stage, a > a{ , the MTS criteria predict larger angles
than the experiment with a marginal influence of the Walker coefficient
w,. Similarly, the HP criteria predict larger angles than the experiment.
This implies that the MTS and HP criteria underestimate the effect of
the Mode-II component. The MPZR predicts similar angles as the MTS
criterion for this experiment.

The VCTD and VCTD* criteria predict a change in direction at the
change in load phase. The FCGD angle of the VCTD* criterion agrees
better with the experiment than the VCTD criterion. The difference
in FCGD between these two criteria stems from a contribution of the
Mode-I displacement during the whole cycle in the VCTD* criterion,
thereby giving a larger contribution of Mode-I crack growth.

4.1.2. Experiment I: Crack path

Fig. 17 shows the FCGD angle as a function of the crack extension
steps s; starting at the crack length at the onset of the phase change,
a]’ . An increment size Az = 0.5mm is used in these simulations. The
FCGD angle of the experiment gradually changes between 0, = 7°
and 6, = 28° in the interval a! < a < ag, indicated with the dashed
lines. Note that the crack driving forces, 4K;, AK;; and ¢, hardly
change in this interval. Because Fig. 15 shows that the influence of w, is
limited, here only w, = 0.5 is adopted for the MTS criterion. Similarly,
¢yp = 0.7 is used for the HP criterion. The HP, MPZR and MTS criteria
predict an approximately equal and constant FCGD, independent of
number of steps. In the first increment, the crack deflects towards the
direction corresponding to the angle that maximizes the corresponding
quantity (See Eq. (9), Eq. (25) and (31)). After this first increment,
there is little influence of the geometry and the FCGD angle remains
approximately constant. However, the predicted FCGD angle by these
three criteria, 6, = 45°, corresponding to the orientation of the initial
notch, is significantly larger than experimental value. Fig. 15 shows
that the MSSR criterion predicts two equally likely angles for the first
step, indicated in Fig. 17 by two curves. After the first increment, only
a single FCGD angle is predicted in every step.

The VCTD, VCTD*, and MSSR criteria predict a FCGD which reduces
with increasing number of crack extension steps, s;. These criteria
predict a FCGD that results in contact between the crack faces at
the crack tip after a certain number of steps at certain part of the
cycle. This is indicated with the filled symbols. Since contact between
the crack faces is not included in the current modelling framework,
the simulations are stopped after the corresponding increment. The
resulting FCGD according to the VCTD, VCTD* and MSSR criteria
depends on the number of simulated increments. Therefore, evaluation
of the FCGD at a specific instance of time, as shown in Fig. 15, does
not necessarily indicate the final predicted FCGD.

Fig. 18 shows the effect of the crack increment 4a on the FCGD.
Three different increment sizes are used. Obviously, the HP criterion
shows no influence of the crack increment as the predicted FCGD
is straight and remains constant after the first step. Therefore, these
simulations are stopped after respectively 12, 14 and 30 increments.
The FCGD calculated with the VCTD* criterion is independent on the
increment size for the first nine steps, but it differs for s; > 9. The
difference arises because the total crack extension becomes large with
respect to the initial crack and the crack driving forces change. The
simulations with 4¢ = 0.lmm and 4a¢ = 0.2mm predict crack face
contact at respectively 12 and 14 steps. However, the VCTD* criterion
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Fig. 18. Influence crack extension increment Aa on crack angle as function of crack
extension steps for Experiment I. For definition of 4/ and a! see Fig. 15.

with Ae = 1.0mm shows a different trend, where, K; remains positive
until the end of the simulation. This becomes evident from Fig. 19(a)
which shows K; as function of s;. Fig. 19(b) shows the corresponding
predicted crack paths. This clearly shows that if the predicted crack is
large compared to the initial crack, it passes into the fourth quadrant
(x*, y™) causing the different trend. The VCTD and MSSR criteria shows
a similar trend, in which the predicted FCGD does not depend on the
increment size but is does depend on the number of crack extension
steps, s;. This is in agreement with [65] where, they modelled an
example of RCF using two increment sizes.

4.1.3. Experiment II: Fatigue crack growth direction

Fig. 20(a) shows the evolution of SIF during a single cycle for
several crack lengths for Experiment II. These crack lengths correspond
to the load phase changes shown in Fig. 20(b). The applied load phase
shift, ¢, decreases with increasing crack length. The biaxiality range
first increases to approximately 0.4 at ¢ = —45°, and thereafter, the
further decrease of ¢ results in a decrease of 44. The graphs show that
the applied load phase changes between ¢, = 0° and ¢ = —90° and
that the phase shift in SIF changes between approximately ¢, = —50°
and ¢y = —90°. The ratio between crack length and the plastic zone
is estimated between 6.5 and 7.5 for Experiment II. The authors hence
assume the prerequisite of LEFM to be met.

Fig. 21 shows the FCGD in Experiment II. The crack path in this
study is linearized within each stage. The experiment has an angle of
0, ~ 41° at the start of the first stage. Therefore, despite of the zero
phase load shift, a small Mode-II component arises in this stage. The
MTS, MPZR and the HP criteria predict a FCGD angle close to 6, = 45°,
because of this small Mode-II component. The predicted angles using
these criteria are smaller than the experimental angles in the other load
stages. Hence, these criteria underestimate the influence of Mode-II on
the FCGD for this experiment.

The VCTD* criterion is closest to the experimental result. However,
the abrupt changes in direction between the load stages are not cap-
tured. Similar to Experiment I, the MSSR criterion predicts two angles,
this is due to the relatively small Mode-II component. Both angles
disagree with the experimental angles. The MPZR criterion predicts
angles similar to the MTS criterion, also in disagreement with the
experiment.
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Fig. 20. SIFs for several instances for Experiment II: (a) K; and K;; as function of time (b) Phase difference and biaxiality range as function of crack length.

4.1.4. Experiment II: Crack path

Fig. 22 shows the predicted FCGD for Experiment II. The crack
growth simulations start at a{ ! the first load stage with non-proportional
load. A crack increment of 4a = 0.5 mm is used. Four simulation steps
are made because this corresponds to 2mm crack extension, which is
approximately equal to the experimental crack extension between a{ 1

and a;’. The experimental FCGD is constant between a{’ and a]'.

The MTS, HP and MPZR criteria again predict an approximately
equal and constant FCGD. The FCGD angle with respect to the global
coordinate system, 6,, predicted by the MTS and HP criteria is smaller
than the experiment. The VCTD predicts an angle 6, which increases
with an increasing number of steps, diverging from the predicted
experimental angle. The VCTD* criterion predicts an increasing angle
with an increasing number of extension steps. The final crack length
after four increments is relatively close to the experimental FCGD.

Fig. 23(a) shows the effect of crack increment size for the MTS, HP,
VCTD* and MSSR criteria. The simulations are performed for the stage
between aj’ and a’, as in this stage all criteria predict non-zero angles,
see Fig. 21. The experimental FCGD is constant in this stage. Like
Experiment I the MTS and the MPZR criteria predict an approximately
constant FCGD independent of the crack increment size. However,

the angle is significantly smaller than the experimental value. The
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HP criterion predicts an angle which is again relatively independent
of the increment size. After 10 crack extension steps, the maximum
difference in 6, is 5°. The VCTD criterion predicts a similar FCGD for
both increment sizes in the first two crack extension steps. However,
the angle is significantly larger than in the experiment. The VCTD*
criterion predicts a FCGD that is also approximately independent of
crack increment size. As in Experiment I, the FCGD predicted by the
VCTD*, is closer to the experimental value compared to the VCTD
criterion. The MSSR criterion is closest to the experimental value for the
first crack increment. However Fig. 21 shows that the VCTD* criterion
is closer to the experimental values over the entire crack path.

Prediction of the crack path not only requires an estimate of the
FCGD, but also the FCGR. Therefore, for the simulations shown in Fig.
23 the FCGR is estimated. Wolf et al. [14] measured the FCGR in the
different stages of the experiment, showing that the data correspond to
a Paris law [66] with a slope parameter m = 2.40:

da

v =C (4K,,) 37)

The equivalent SIF, Kegs is calculated according to Wolf et al. [14].

K; ()

) (38)

K, ()= +%\/[K, O] +4[cr K 0]
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with C;; = 1.155, and:
Ko™ = max [K7 (1)]

K" = min [K*7 (1) (39)

— gmax _ g-min
AK,, = K™ — K

Fig. 23(b) shows the predicted FCGR using the Paris law fitted to the
experimental data as a function of the crack extension between ag I and
the current crack tip a/!. The FCGR is normalized with the FCGR at
aé’ . The experiment initially shows an approximately constant FCGR.
This is a result of the change in FCGD angle from 6, = 66° to 6, = 91°.
As expected, the experiment shows an increasing FCGR with increasing
crack length. The MTS, HP and MPZR criteria also predict an increase in
FCGR. The VCTD and VCTD* criteria both predict a decrease in FCGR
with increasing crack length. After two increments, the FCGR is reduced
with approximately 30 %. If this reduction would continue, this would
imply that the crack would arrest, which is not seen in the experiments.
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4.2. Biaxial load with different load paths

This section compares the results of the crack path predicted with
the different FCGD criteria with the results of the experiments of [42]
reported in Section 2.1.2. Fig. 7 shows the geometry used in the
analyses. A linear elastic material model is used with E = 193 000 MPa
and v 0.3 [42]. Because of the limited information provided in
the original source, the crack paths are described by linear segments
between g, a; and a,.

4.2.1. Experiments A-C: Fatigue crack growth direction

Fig. 24 shows the evolution of K; versus K;; for three different
crack lengths, namely, the length after pre-cracking, a,, the length after
1 mm of mixed-mode crack growth, a,, corresponding to the point of
crack deflection in Experiment A and B, and the length after 2 mm
of mixed-mode crack growth, a,. The inserts show the corresponding
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Fig. 24. K, vs K,, for specific crack lengths of Experiments A-C, inset shows corresponding experimentally measured crack orientation: (a) Experiment A “in-phase” (b) Experiment

B “square” (c) Experiment C “cross”.

crack orientations. Conflicting information is given in [42,43] con-
cerning the applied loads and the SIFs. The current FE simulations
give relations between loads and SIFs that differ from the parametric
relations given in [42,43], but which correspond with some graphs
provided in [42]. Moreover, the relations of the current FE simula-
tion agree reasonably with those in [67], in which similar specimens
were analysed by the research group of [42,43]. The ratio between
the provided SIFs in [67] and the calculated SIFs in this study are
virtually independent of the crack length. Therefore, the current au-
thors assume their modelling approach to be corrected and the SIFs
in the current study are scaled to match the presented SIF history of
AK = 10MPa ﬂ [42] for an initial crack length a,. The ratio between
the crack length and the maximum plastic zone size, calculated with
Eq. (30) and o,s = 352MPa [68], is larger than 30 for Experiment
A,B and C, conforming to small scale yielding condition so that LEFM
can be used. The load is in phase for Experiment A “in-phase”, hence
explaining the straight lines in the plot. However, the ratio between
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K; and K;; changes significantly after the change in FCGD. The Mode-
I SIF range increases and the Mode-I mean SIF reduces, resulting
in a negative Mode-I component during a part of the cycle. In the
evaluation, it is assumed that there is full contact in compression hence
K; is taken equal to O in this region. The effect of this simplification
is assumed negligible because it applies to a small fraction of the
complete cycle only (< 4%). Both the Mode-II mean SIF and SIF range
reduce significantly between the original orientation of the crack and
the orientation after 1 mm of mixed-mode crack growth. The crack
changes towards a Mode-I dominated crack. Experiment B “square”
shows a slight increase in Mode-I and Mode-II SIF range after the first
millimetre of mixed-mode crack growth. The cyclic Mode-I and Mode-
II SIFs are initially decoupled, i.e. XK = o if % # 0 and vice
versa. However, a small interaction between the modes is observed
after the directional change of the crack a > af . Experiment C “cross”
shows a small increase in AK; and AK,;; with increasing crack size.
The Mode-I mean SIF increases whereas the Mode-II mean SIF remain
approximately constant. Similar to Experiment B the cyclic Mode-I and
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Fig. 25. Predicted crack extension angles for different crack growth criteria for Experiment A-C: (a) Experiment A “in-phase”, crack tip coordinate system (b) Experiment B
“square”, crack tip coordinate system (c) Experiment C “cross”, crack tip coordinate system (d) Experiment A “in-phase”, global coordinate system (e) Experiment B “square”,

global coordinate system (f) Experiment C “cross” global coordinate system.

Mode-II SIFs are decoupled, but contrary to Experiment B “square”, the
range in one direction is applied at the mean SIF in the other direction.
Fig. 25 shows the predicted FCGD using different criteria as a
function of the experimental crack length. Fig. 25(a—c) shows the FCGD
angle in the crack-tip coordinate system and Fig. 25(d—f) shows the
corresponding angle in the global coordinate system. As the crack
paths are linearized, a single non-zero FCGD angle is displayed in this
figure, indicating the change in the experimental crack path at af
and af. The predicted FCGD between g, and @, remains constant for
each of the criteria because the SIFs remain approximately constant.
It is observed that the HP and MTS criteria predict a FCGD angle
close to the experimental FCGD angle between a'l4 and a;. On the
contrary, the FCGD between a(/)* and af is not predicted well. Again,
the MPZR criterion predicts similar angles as the MTS criterion. The
VCTD criterion predicts a FCGD angle of zero degree for Experiment
A “in-phase”. This is a consequence of the subtraction of the mean
displacement. The VCTD* predicts a small negative angle after a;‘.
The MTS, HP, and the MSSR criteria do not predict a unique angle
for the first three crack extensions in Experiment B “square”, which

is a result of the zero mean K,;. Consequently, two maxima of K} =

occur for two angles, corresponding to K; = 15MPa+y/m and K;; =
#5MPay/m, at times denoted as r* and r~. These are the times of
maximum K} (6..1), see Eq. (3).

Fig. 26(a) shows the individual components of K} for the two time
instances at af. Fig. 26(b) shows the same data for a crack length of
a = 18.25 mm, just after af . Two competing effects occur at this crack
size, namely, K, (r*) > K; (") which leads to a preference of r+ and
Ap Ky () > AppKpp (1) which leads to a preference of ¢~. In this
specific example, the first effect is stronger and the predicted angle is
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therefore uniquely defined corresponding to ¢*. The above evaluation
is done for w, = 0, however, a similar evaluation can be made for
NON-Zero w,.

All criteria except MPZR predict non-straight crack growth for the
initial phase of Experiment B. The straight crack predicted by the MPZR
criterion is a consequence of the decoupling of Mode-I and Mode-II. Fig.
27(a) shows the theoretical plastic zone, calculated with Eq. (30), at
the two previously defined time instances and a crack length af. The
minimum of the envelope occurs at zero degrees, however, the local
plastic zone size of both time steps is minimal at approximately +30°.
The MPZR criterion predicts a small positive 6, after the change in ex-
perimental FCGD angle. This agrees reasonably with the experimental
results. The HP criterion underestimates the FCGD angle significantly,
see Fig. 25(b) and (e).

Most criteria predict straight crack growth for Experiment C “cross”,
which is in line with the experimental results. However, the MTS
criterion with w, = 0.9 predicts a non-zero angle of approximately
69° see Fig. 25c and f. To demonstrate the cause of this, Fig. 27(b)
shows the Mode-I SIF range including Walker correction, 4AK; ., as a
function of the crack extension angle. The MTS criterion is based on
maximization of AK; ., see Section 2.2.1. The figure shows that there
are three local maxima at 6, = 0° and 6, ~ +69°, for the three evaluated
Walker constants. The largest of these three local maxima depends on
the Walker constant.

In conclusion, none of the criteria is able to accurately predict the
FCGD for all three experiments.
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5. Discussion
5.1. Fatigue crack growth direction

Different FCGD criteria result in a large envelope of predicted
angles. The MTS, HP and MPZR criteria predict similar angles for most
of the studied experiments. These predicted angles strongly depend on
the SIF phase shift. It is shown that a SIF phase shift of approximately
90°, with a small to moderate Mode-II component (44 < 0.8), results
in straight crack growth prediction (for example the FCGD angle at af
in Fig. 15 and the FCGD angle at o{ in Fig. 21). However, they do
not comply with the experimental results. On the other hand, FCGD
predictions with larger AK;; components (for example, the start of
Experiment B “square”, Fig. 25b) showed the opposite behaviour. In
these cases, the MTS and HP criteria predict non-zero FCGD angles
whereas the experiment shows straight crack growth [42]. Since [42]
applied discrete load changes instead of a continuous (e.g. sinusoidal)
signal, the phase shift is undefined. However, one could consider
Experiment B as subjected to ¢, = 90°, see Fig. 28(a). Experiment B
can then be compared to Experiment I, which for a just larger than a{ is
also subjected to ¢, = 90°, see Fig. 14(b). The mean Mode-I SIF is equal
to the Mode-I SIF range in Experiment B, whereas it is approximately
equal to half the Mode-I SIF range in Experiment I. More importantly,
the biaxiality range, 44 in Experiment B equals 1.0, whereas 44 ~ 0.2
for Experiment I. Fig. 28(b) shows the effect of the biaxiality ratio on
the FCGD using the MTS criterion for ¢ = 90° and different Walker
coefficients. For Experiment B, it can be seen that for any non-zero
Walker coefficient a non-zero FCGD angle is predicted. A zero Walker
coefficient gives §, = 0, in line with Experiment B at a(‘f. However,
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this does not explain the change in FCGD at af’. For Experiment-I a

zero FCGD angle is predicted if 44 < 0.8, independent of the Walker
coefficient. Hence, using the MTS criterion, there is no unique Walker
coefficient able to correctly predict the FCGD of both experiments.

The MSSR criterion often predicts two angles with the same max-
imum shear stress (see Eq. (11)). Further research could be done to
define an additional condition distinguishing between these angles. The
VCTD criterion predicts a larger change in FCGD than most experi-
ments. The VCTD* criterion predicts a smaller change in FCGD than
the VCTD as the contribution of the Mode-I displacement is increased,
which reduces the influence of the Mode-II displacements. Literature
shows that the VCTD criterion can predict FCGD of some specific
non-proportional experiments [54], showing its potential.

The current research is based on LEFM and linear elastic FE models.
Therefore, the focus is on experiments with a positive K; over the
complete cycle, to minimize plasticity effects such as crack closure.
However, crack closure is also found for low but positive K; values in
literature [69,70]. Therefore, it is possible that part of the discrepancy
between experimental and predicted FCGD is attributed to the effect
of crack closure. Both PICC and RICC have an effect on the effective
SIFs. The effect on the effective Mode-II SIF is unknown. A consequence
of the assumed linear elastic material behaviour is that the stress
history does not influence the predicted FCGD, which simplified the
evaluation of the chosen criterion significantly. Incorporating the effect
of plasticity in a FCGD prediction is therefore crucial, but complex.
The method developed by Pommier et al. [41-44] accounts for plas-
ticity effects and aims to predict the FCGR. Through experiments, it is
anticipated that the FCGD can be calibrated using their elastic—plastic
crack driving force. However, dedicated experiments are required for
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this purpose. It is suggested to first conduct proportional mixed-mode
experiments at various biaxiality ratios. In the analysis, the plasticity
developed due to pre-cracking needs to be considered to better under-
stand the sudden change in FCGD in Experiments A-C. Subsequently,
the non-proportional tests can be evaluated to provide more insight in
the underlying mechanisms driving the crack under non proportional
conditions.

The current evaluation is limited to constant amplitude load, al-
ready showing big challenges. In variable amplitude load, the effect
of plasticity is more complex. In addition, evaluations of variable
amplitude load require the value of the threshold of the SIF range.
This value is not available for a given mode-mixity. Therefore, we
expect that predicting the FCGD in variable amplitude load is even
more difficult.

5.2. Crack path

Prediction of the crack path requires predictions of the FCGR and
FCGD. Because modelling every individual cycle in a crack growth
simulation using the FE method is not feasible, a step-wise approach
is often used in which the crack is extended incrementally. To be able
to use a FCGD criterion in such a framework, it should be independent
of the increment size. This independency is shown in Fig. 13(b) for
proportional load. For non-proportional load, if the crack extension is
small with respect to the initial notch and the nominal stress remains
approximately constant, it is shown that for some criteria the predicted
crack path is dependent on the crack increment size, but the predicted
FCGD is independent on the number of crack extensions steps, meaning
that the predicted FCGD after i steps is approximately constant, see Fig.
23(a). In contrast to the proportional validation case Section 3.4, the
simulations shown in Section 4 all have an (approximately) constant
nominal stress field throughout the crack growth, ignoring any bound-
ary effects. Therefore, for the first few crack extension steps the same
FCGD is predicted independent of the crack increment size. Based on
the simulations it is shown that the MTS, HP and MPZR criteria predict
a FCGD which maximizes the governing quantity in the first step. After
that, the FCGD remains approximately constant. Hence, an unambigu-
ous FCGD results for these criteria. For the VCTD, VCTD* and MSSR
criteria, however, the predicted FCGD changes with each extension
step. Hence, there is no unique FCGD, and an additional condition is
required to define the final FCGD. Such a condition is currently lacking.
In some simulations, the crack extends in such a way that a negative K
arises during part of the cycle. In the current framework the simulation
is then terminated. Expanding the simulations by including contact

—K; --- Krr(¢x =90°)
—— K (Exp. B) --- K1 (Exp. B)
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will alter the SIF evolution and thereby the FCGD which would enable
continuing the simulation. However, defining contact in a mixed mode
testing is a study on its own. Another extension would be to relate
the SIFs with the FCGR. By assuming a fixed number of cycles per
crack increment, for every simulation step a different crack increment
is determined based on the SIF evolution. This would require a FCGR
applicable to non-proportional mixed-mode load which is currently not
available.

5.3. Design of experiments

Fatigue crack growth experiments are often designed to measure the
FCGR instead of the FCGD. This was also the case in the experiments
elaborated in this research. The sudden changes in the loading phase
in Experiment I and Experiment II resulted in changes in the plasticity
around the crack-tip, which are not captured by any of the used FCGD
criteria. In Experiments A, B and C these changes were also present.
An additional challenge in this second set of experiments is the lack
of high quality photos to accurately measure the crack path. It is
therefore recommended to conduct more mixed-mode fatigue crack
growth experiments that also focus on FCGD.

In practice, some types of structures, for example rails and bridges,
are subjected to repetitive load with approximately constant non-
proportionality (i.e. constant ¢g) throughout the lifetime. In experi-
ments this is not always the case, for example in Experiment I and II,
see Figs. 14(b) and 20(b). Any change in load sequence will change the
development of plasticity around the crack tip and therefore influence
the FCGR and FCGD. This makes such tests difficult to interpret. Pre-
cracking in mixed mode tests is usually done in Mode-I, hence an
unavoidable change in load sequence is present. It is recommended
to conduct experiments with constant non-proportionality in which
the pre-crack SIF range is as small as possible, to limit this plastic-
ity development. Additionally, to investigate the effect of plasticity,
it recommended to conduct experiments with either different speci-
men thicknesses or with different grades (different yield and tensile
strengths). Thicker specimen lead to a more plane-strain state, which
results in less effect of plasticity compared to a plane stress state in
thin specimens. Similarly, high-strength material develops less crack
tip plasticity compared to low strength material. Finally, it is proposed
to conduct series of experiments where a single loading parameter, such
as the biaxiality range 44 or the load phase shift ¢, is varied between
the tests, to obtains its influence.

All experiments carried out on non-proportional load are unique,
i.e. no repetitive experiments have been found. Hence, it is not known

16c| [°]
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Fig. 28. (a) Idealization of Experiment B “square” as continuous (sinusoidal) signal with ¢, =90° (b) Influence of biaxiality ratio 44 on FCGD angle using the MTS criterion.
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if the crack paths and possibly branching shown in the experiments are
a consistent trend or that it is a random process, e.g. related to the local
microstructure. Evaluation of the crack-paths on both sides of the initial
notch in a cruciform specimen could already give some indication for
this. Multiple experiments carried out in the same conditions would
give more insight into crack path variation.

6. Conclusions and outlook

This paper evaluates several fatigue crack growth direction (FCGD)
criteria based on linear elastic fracture mechanics by comparing pre-
dicted directions with non-proportional experimental data from two
literature sources [15,42]. The stress intensity factors (SIFs) of the
experiments are determined using the virtual crack closure technique
method, for which the finite element (FE) method is employed. The
FCGD criteria are evaluated in two ways, namely, comparing them at
individual instances along the experimentally obtained crack path, and
comparing crack paths. An incremental crack growth scheme is used,
for the latter evaluation, in which the crack path is updated with finite
increments. Based on performed analyses, the following conclusions are
made:

None of the studied FCGD criteria is able to correctly predict
the complete crack paths of the non-proportional experiments of
study. The predicted FCGD of some criteria depend on the number
of crack extension steps.

A good estimation of the FCGD at a specific crack length does
not ensure that the complete crack path is predicted correctly. A
small deviation in the angle can lead to a large cumulative error
when predicting the complete crack path.

Although it is not the focus of this study, it appears that an
accurate prediction of the fatigue crack growth rate for non-
proportional mixed mode load is important to predict the com-
plete crack path.

The prediction of the FCGD at individual crack lengths depends
on discretization of the crack path in the FE model.

More experimental research for specific cases, for example non-
proportional mixed-mode tests with different biaxiality ratios,
could lead to additional understanding of the underlying mech-
anism. In these experimental programs, it is also important to do
repetitive experiments quantifying the scatter in crack paths.
The development of elastic—plastic FE models could lead to a
better understanding of the interaction between the different
fatigue crack growth modes. Currently, because of the lack of
understanding, this elastic—plastic interaction is not included in
the studied prediction models.
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