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 A B S T R A C T

Proper descriptions of the fatigue crack growth rate and direction are crucial for determining the residual 
fatigue life of metallic structures. In non-proportional multi-axial loading, the prediction of the fatigue crack 
growth direction is not trivial. This study evaluates the effect of different state-of-the-art crack growth direction 
criteria on the predicted crack paths by comparing the results with experiments with non-proportional load 
done by others. The results are compared in terms of predicted angles at different experimental crack lengths 
and cumulative predicted crack path. Based on this study, it is concluded that none of the studied criteria based 
on linear elastic fracture mechanics is able to accurately predict the crack growth direction in non-proportional 
loading for the general case. The mismatch of some cases studied is so large that these criteria cannot be used 
in crack growth path prediction for an arbitrary, non-proportional load case.
1. Introduction

Fatigue is one of the most important failure mechanisms for metallic 
structures under fluctuating loads. The fatigue life of a structure can 
be divided into three phases: (1) Initiation of a crack from the un-
cracked structure (2) Stable crack growth from the initiated crack 
and (3) final fracture of the remaining ligament [1]. In the stable 
crack growth regime, determining the remaining fatigue life requires an 
accurate description of the fatigue crack growth rate (FCGR) and FCGD. 
Assuming linear elastic fracture mechanics (LEFM) and ignoring the 
effect of the microstructure, the crack path for physically long cracks 
under applied uniaxial loading is perpendicular to the direction of the 
maximum principal stress. However, multi-axial loading is present in 
most practical cases, such as notched geometries. Within multi-axial 
loading, distinction is made between proportional and non-proportional 
loading. Proportional loading is characterised by a constant orientation 
of principal stress during a load cycle [2]. The crack driving force in 
Mode-I and Mode-II mixed-mode (multi-axial) loading is often assessed 
by combining the respective SIFs, 𝐾𝐼  and 𝐾𝐼𝐼 , into an equivalent SIF, 
𝐾𝑒𝑞 . Numerous expressions for 𝐾𝑒𝑞 exist in literature, often determined 
from experimental data, some have a preference for 𝐾𝐼 , and some 
have a preference for 𝐾𝐼𝐼  [3–5]. Several researchers studied fatigue 
crack growth in proportional loading, focusing on Mode-I and Mode-
II load [6] or Mode-I and Mode-III load [7]. Two FCGDs compete in 
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proportional load, namely, perpendicular to the maximum principal 
stress, and aligned with the maximum shear stress [8]. However, the 
first direction usually dominates [9].

Determining the FCGD and FCGR in non-proportional mixed-mode 
load appears non-trivial. Non-proportional load conditions arise in 
several practical applications, such as coil springs in automotive [10] 
and in rolling contact fatigue (RCF) in wheel–rail systems [11,12]. Most 
experiments with non-proportional load aim at studying or predicting 
FCGR [13–16] whereas a minority of studies aim at the FCGD [17,18]. 
Hereafter, a compilation is given of a few experimental lessons learned 
on FCGD. A FCGD close to the plane perpendicular to the maximum 
principal stress (range) is referred to as Mode-I dominated, and a FCGD 
in a plane aligned with the maximum shear stress (range) is referred 
to as Mode-II (or Mode-III) dominated, see Fig.  1(a). The effect of 
cyclic Mode-II load with a constant Mode-I load on FCGD was studied 
in [19,20]. Both studies showed that compression at the crack tip, 
leads to contact between the crack faces. This resulted into a lower 
FCGR and a more Mode-II dominated FCGD as compared to experi-
ments with a zero or positive Mode-I component. Bold [20] showed 
that experiments with a static positive Mode-I component resulted 
in small, coplanar, Mode-II crack growth (0.05mm to 0.1mm) before 
deviating to a Mode-I dominated FCGD, see Fig.  1(b). Similarly, Bonniot 
et al. [21,22], investigated the FCGR in R260 rail steel subjected
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Nomenclature

Symbols

𝐚± Trial vectorial crack increment used in 
vector crack tip displacement criterion

𝐚 Vectorial crack increment used in vector 
crack tip displacement criterion

𝑎 Crack length
𝑎∙𝑖 Crack length with identifier i, for experi-

ment ∙
𝑎𝑛 Notch length
𝐴∙,∙ Coefficients in the relation between 𝐾 and 

𝐾𝑟

𝑐𝐼𝐼 Mode-II coefficient in Hourlier-Pineau cri-
terion

𝐞̂𝜃 Unit vector in direction of fatigue crack 
growth direction

𝐸,𝐸′ Regular and Effective Young’s modulus
𝑓+, 𝑓− Trial functions limiting crack growth in 

vector crack tip displacement criterion
𝐹𝑥, 𝐹𝑥 Applied load in 𝑥-direction and 𝑦-direction 

in cruciform specimen
𝐾𝐼 , 𝐾𝐼𝐼 Mode I and Mode-II stress intensity factor
𝐾𝑒𝑞 Equivalent stress intensity factor
𝑘𝐼,𝐹𝑥 , 𝑘𝐼,𝐹𝑦 , 𝑘𝐼𝐼,𝐹𝑥 , 𝑘𝐼𝐼,𝐹𝑦 Mode I and Mode II stress intensity fac-

tor components for unit load cases applied 
in the x- and 𝑦-directions

𝐾𝑟
𝐼 , 𝐾𝑟

𝐼𝐼 Mode-I and Mode-II stress intensity fac-
tor for an infinitely small crack increment 
around the crack-tip

𝑝 Reference point used in finite element 
simulation

𝑅 Stress ratio
𝑟 Distance to crack-tip
𝑅𝑝 Plastic zone radius
𝑠𝑖 Crack extensions steps 𝑖
𝑡 Time within a load cycle
𝑡𝑖𝑛, 𝑡𝑜𝑢𝑡 Thickness cruciform specimen (in crack 

growth region, in clamping region)
𝑢±, 𝑣± Horizontal and vertical displacement of 

point on a distance 𝑟 from the crack tip
𝑢𝑥, 𝑢𝑦 Horizontal and vertical displacement com-

ponents in finite element model
𝑢𝑝𝑥, 𝑢𝑝𝑦 Horizontal and vertical displacement com-

ponents of reference points in finite ele-
ment model

𝑊 Normalized plastic zone radius
𝑤𝑐 Walker mean stress correction coefficient
𝑤2𝑑 Width of area used finite element simula-

tions
𝑥, 𝑦 Axis in global coordinate system
𝑥′, 𝑦′ Axis in coordinate system aligned with 

crack tip
𝐱𝐠 Crack path in Cartesian coordinates
𝑌𝜎 , 𝑌𝜏 Geometrical correction factors for Mode-I 

and Mode-II
𝛥𝑎 Crack increment
𝛥𝐾𝐼,𝑤𝑐 Stress intensity factor range including 

Walker mean stress correction
2 
𝛿𝐼 , 𝛿𝐼𝐼 , 𝛿 Crack displacement used in (Mode-I, Mode-II, 
total)

𝜃𝑐 Fatigue crack growth direction angle in crack-
tip coordinate system

𝜃𝑔 Fatigue crack growth direction angle in global 
coordinate system

𝛥𝜆 Biaxiality ratio of the stress intensity factor 
ranges, 𝛥𝐾𝐼𝐼∕𝛥𝐾𝐼

𝜆 Biaxiality ratio between stress intensity factor 
components, 𝐾𝐼𝐼∕𝐾𝐼

𝜈 Poisson’s ratio
𝜎 Nominal stress perpendicular to crack front
𝜎1 Maximum principal stress
𝜎𝑟, 𝜎𝜃 , 𝜏𝑟𝜃 Stress components in a cylindrical coordinate 

system with the origin at the crack-tip
𝜎𝑦𝑠 Von Mises equivalent stress
𝜏 Nominal shear stress along the crack front
𝜙𝐹 Phase shift between 𝐹𝑥 and 𝐹𝑦 in a cruciform 

specimen
𝜙𝐾 Phase shift between 𝐾𝐼  and 𝐾𝐼𝐼
𝜓 Parameter governing locking in vector crack 

tip displacement criterion
Subscripts (multiple used)

𝑒𝑥𝑝 Experiment
𝑚𝑎𝑥 Maximum during a cycle
𝑚𝑒𝑎𝑛 Mean during a cycle
𝑚𝑖𝑛 Minimum during a cycle
Operators

𝛥∙ Range of variable ∙
⟨∙⟩ Macaulay brackets
⟨∙⟩ Variation of Macaulay brackets
∙̃ Fluctuation of displacement used in vector 

crack tip displacement
Acronyms

DOF Degree of freedom
FCGD Fatigue crack growth direction
FCGR Fatigue crack growth rate
FE Finite element
HP Hourlier-Pineau
LEFM Linear elastic fracture mechanics
MERR Maximum energy release rate
MPZR Minimum plastic zone radius
MSSR Maximum shear stress range
MTS Maximum tangential stress
PICC Plasticity induced crack closure
RCF Rolling contact fatigue
RICC Roughness induced crack closure
SEN(B) Single edge notched specimen in bending
SIF Stress intensity factor
VCCT Virtual crack closure technique
VCTD Vector Crack Tip Displacement

to non-proportional load. They showed that a cyclic Mode-II load in 
combination with a compressive cyclic Mode-I load led to longer Mode-
II crack growth compared to experiments with cyclic Mode-II load 
combined with a tensile cyclic Mode-I load. The latter experiments 
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Fig. 1. (a) Example of Mode-I and Mode-II dominated crack growth in a pure Mode-II load scenario. (b) Example of Mode-II crack growth before deviating to a Mode-I dominated 
crack.
showed almost a completely Mode-I dominated FCGD. The FCGD also 
depends on the relative magnitude of the Mode-I and Mode-II load com-
ponents. Otsuka et al. [23] conducted experiments on aluminium alloys 
2017-T3 and 7075-T6 and showed that a Mode-II dominated FCGD 
is observed if 𝛥𝐾𝐼𝐼∕𝛥𝐾𝐼 > 1.6, provided 𝛥𝐾𝐼𝐼  is sufficiently large to 
generate crack growth. Crack growth in Mode-I direction was observed 
if these conditions were not met. All tests were conducted with positive 
Mode-I components. Zerres and Vormwald [24] concluded that the 
FCGR in non-proportional mixed-mode loading depends on the mode-
mixity, i.e. the ratio between 𝐾𝐼𝐼  and 𝐾𝐼 , material properties affecting 
cyclic plasticity and crack closure, applied load, and the specimen ge-
ometry. As the FCGD is related to the FCGR, the authors of the current 
paper assume that the same influence parameters are important for the 
FCGD. Doquet et al. [25] conducted experiments on tubular specimens 
made of maraging steel, subjected to different non-proportional load 
schemes. Evaluation of these experiments using elastic–plastic FE mod-
els again showed that there is competition between Mode-I dominated 
and Mode-II FCGD. Most experiments showed straight crack growth, 
aligning with predictions for those cases. However, the experiments 
with a non-zero FCGD were not predicted well. Bonniot et al. [21,22] 
experimentally investigated the effect of contact between the crack 
faces on Mode-I/II crack growth using thin-walled tubular specimens. 
In several experiments they observed crack branching, in which the 
crack splits in a co-planar crack in the Mode-II dominated FCGD 
and a crack in the Mode-I dominated FCGD. Due to these branches, 
they observed crack face shielding between the crack with a Mode-
I dominated FCGD and the crack with a Mode-II dominated FCGD, 
effectively reducing the Mode-II SIF, depending on the mode-mixity.

Several criteria have been proposed to determine the FCGD, all orig-
inally developed for proportional load, such as the MTS criterion, [26,
27], the maximum energy release rate (MERR) [28], the maximum 
shear stress range (MSSR) criterion [17,29] and the VCTD criterion. 
The latter is extended in [17] to be used in non-proportional load 
situations. These criteria will be elaborated in Section 3.1. Highsmith 
[30] evaluated some of these FCGD criteria, showing that FCGD is not 
solely defined by the Mode-I range and the Mode-II range but that there 
is influence of the Mode-I and Mode-II mean SIF, which is material 
dependent. He proposes a variation of the MTS criterion combined 
with a Walker mean stress correction [31] for a better agreement with 
experimental data compared to the original MTS. Amato et al. [32] 
used the MTS criterion to predict crack growth in proportional and 
non-proportional load. They evaluated single-edge notched specimens 
made of high-strength steel (34CrNiMo6) subjected to cyclic tension 
and cyclic torsion load [7]. They simulated crack growth using 3D FE 
models to obtain SIFs and an incremental MTS criterion to evaluate 
the FCGD. Simulations with fully reversed cyclic axial stress (𝑅𝜎 = −1) 
showed good agreement with the corresponding experimental results. 
However, simulations with a stress ratio 𝑅𝜎 = 0 showed a large 
deviation with the experiments. Infante-García et al. [18] used the 
extended FE method to determine the SIFs in biaxial non-proportional 
load conditions, using several variations of the MTS criterion to predict 
3 
the FCGD and crack path. They showed that the variations studied had 
a large influence on the predicted FCGD. Moreover, it is demonstrated 
that, depending on the criterion used, a reasonable approximation of 
the FCGD at a predefined crack length does not necessarily imply an 
accurate prediction of the entire crack path. Doquet et al. [25], made a 
distinction between Mode-I and Mode-II dominated crack growth by us-
ing two different damage criteria, allowing to calculate the theoretical 
fatigue life of each direction separately and assuming the crack grows 
in the direction of highest crack growth rate.

Infante-García et al. [18] and Amato et al. [32] did not include the 
effect of contact between the crack faces in their simulations. From 
a mechanical point of view, contact could influence the effective SIF 
and thereby potentially the FCGD. Therefore, distinction is made here 
between the nominal SIF, which is the SIF related to the applied load 
and ignoring the effects of contact and plasticity, and the effective SIF, 
which is the part of the SIF beyond opening of the crack, which con-
tributes to fatigue crack growth [33]. Some mechanisms that influence 
this effectiveness are given here. First, plasticity induced crack closure 
(PICC) [33] occurs due to development of plasticity around the crack-
tip, reducing the effective Mode-I SIF. Several models are developed to 
estimate the effect of PICC, such as the NASGRO model [34]. Secondly, 
roughness induced crack closure (RICC) reduces the Mode-I SIF, in 
case the roughness is of the same order of magnitude as the crack tip 
opening displacement [35]. In the near-threshold regime, where this 
displacement is small, RICC often results in zig-zag fracture paths [20,
25,31,36]. Depending on the closure level, this zig-zag pattern can lead 
to a crack-tip sliding displacement, generating an effective Mode-II SIF 
even in case of a nominal pure Mode-I load [37]. In pure Mode-II load 
this zig-zag pattern can result in an additional effective 𝛥𝐾𝐼  [37]. Fi-
nally, friction between the crack faces reduces the sliding displacement 
and thereby reduces 𝛥𝐾𝐼𝐼 . In general, all three described effects, the 
zig-zag pattern, friction, and crack-closure, are present in mixed-mode 
load in load cases where crack face contact may happen. This leads 
to a complex interaction between Mode-I and Mode-II. Several models 
are developed to describe this interaction [38–40]. These models pro-
vide a qualitative description of the interaction between these effects. 
However, quantifying this interaction appears too complex to-date. 
The development of PICC depends on the crack tip constraint, which 
is a function of the crack shape, geometry and material properties. 
Hence there is a difference between plane strain and plane stress 
situations. Capturing PICC requires non-linear FE models. None of the 
above-mentioned non-proportional FCGD criteria account for PICC and 
RICC. Pommier et al. [41–44] developed a FCGR framework accounting 
for the effects of plasticity. The deformation and translation of the 
plastic zone around the crack-tip is described in their model throughout 
the complete load history, making a distinction between the elastic 
and plastic SIF components. The model is based on elastic–plastic FE 
models and can also be used to predict FCGR in variable amplitude 
loading [41,44]. Their framework shows potential for FCGD prediction 
assuming that the FCGR is indeed proportional to the development 
of plasticity. However, extending Pommier’s framework to predict the 
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Table 1
FCGD criteria considered within this research.
 Method Ref:  
 Maximum tangential stress (MTS)a [26] 
 Maximum shear stress range (MSSR) [17] 
 Vector Crack Tip Displacement (VCTD)b [17] 
 Hourlier-Pineau (HP) [46] 
 Minimum plastic zone radius (MPZR)c [47] 
a Augmented with a Walker mean stress correction factor [30].
b In addition, to the original implementation, the authors of the current study propose 
a variant.
c The criterion is developed for proportional load. The authors of the current study 
implemented it for non-proportional load.

FCGD requires a relation between the development of plasticity and the 
FCGD, which is currently not available.

Floros et al. [17] evaluated the FCGD using the VCTD criterion, 
based on experimental data from the literature. Both linear elastic and 
elastic–plastic material behaviour were considered. They concluded 
that the VCTD applied with linear elasticity agrees better with the 
experimental results. Dahlin and Olsson [45] used the MTS criterion 
and a maximum tangential stress range criterion in combination with 
elastic–plastic FE models to predict the FCGD. They demonstrated 
that using elastic–plastic material behaviour provided more accurate 
FCGD predictions compared to using linear elastic material behaviour. 
However, there appears to be no criterion to differentiate between the 
MTS and the maximum tangential stress range criterion. The studies 
show that using elastic–plastic material behaviour does not necessarily 
result in improved FCGD predictions compared to linear elastic material 
behaviour. This is possibly due to the fact that the criteria are originally 
developed for linear elasticity.

Up to the authors’ knowledge, a universal criterion for predicting 
the FCGD for non-proportional mixed-mode load does not exists. The 
goal of the current study is to evaluate existing FCGD criteria by 
comparing the predicted crack paths to experimental crack paths from 
non-proportional mixed-mode experiments described in the literature. 
Crack growth simulations using linear elastic FE models of the exper-
iments are made to facilitate this evaluation. The FCGD criteria are 
compared at different instances at specific experimental crack paths, 
predicting solely an extension direction. In addition, they are applied 
in crack growth simulations in which the cumulative crack path is 
predicted. Table  1 lists the criteria considered in this study. These 
criteria are selected as these are the most used criteria in the literature. 
The MERR is not included in this comparison as it is strongly related 
to the Hourlier-Pineau (HP) criterion. All criteria are based on LEFM. 
Therefore, experiments are selected with an almost completely positive 
𝐾𝐼  through the entire cycle, in order to limit crack closure effects. The 
reasoning is that any valid model should at least be able to predict this 
simple case. Linear elastic material behaviour is used in this research 
as all considered criteria in this research are all developed for or can 
be applied without modification to linear elastic material. This also 
reduces numerical complexity in crack growth simulations.

2. Applied experiments and FCGD criteria

This section gives the descriptions of the selected FCGD criteria and 
of the selected non-proportional mixed-mode fatigue experiments used 
to evaluate the criteria. In general, 𝐾𝐼  and 𝐾𝐼𝐼  for a crack length 𝑎 are 
related to the nominal stress field by: 
𝐾𝐼 (𝑡) = 𝜎 (𝑡) 𝑌𝜎 (𝑎)

√

𝜋𝑎, 𝐾𝐼𝐼 (𝑡) = 𝜏 (𝑡) 𝑌𝜏 (𝑎)
√

𝜋𝑎 (1)

in which 𝜎 is the stress perpendicular to the crack front and 𝜏 is the 
nominal shear stress along the crack front, both quantities defined for 
the uncracked condition. 𝑌𝜎 and 𝑌𝜏 are geometric correction factors. 
The stress field in the vicinity of the crack front can be approximated 
4 
by the first order Westergaard stress field solutions [48] in terms of a 
polar coordinate system defined at the crack tip, see Fig.  2(a): 
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(2)

in which 𝜎𝑟, 𝜎𝜃 and 𝜏𝑟𝜃 are the stress components in cylindrical coor-
dinates and 𝑡 ∈ (0, 1) is the normalised time during a cycle. A cycle in 
non-proportional load is defined as the smallest, fully repetitive load 
sequence, see Fig.  3. All criteria are written in terms of SIFs of an 
infinitely small crack increment from the crack tip [48], see Fig.  2(b): 
[
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with coefficients: 
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+ 3 cos
3𝜃𝑐
2

)

(4)

Most FCGD criteria do not depend on the absolute load level, but 
on the mode-mixity, described by the biaxiality ratio 𝜆: 

𝜆
(

𝑡, 𝜃𝑐
)

=
𝐾𝑟
𝐼𝐼

(

𝑡, 𝜃𝑐
)

𝐾𝑟
𝐼
(

𝑡, 𝜃𝑐
) (5)

A load sequence is defined as proportional if 𝜆 is constant. Similarly, 
the biaxiality range is defined as: 

𝛥𝜆 =
𝛥𝐾𝐼𝐼
𝛥𝐾𝐼

(6)

The remainder of this section elaborates different experiments and 
criteria using these concepts.

2.1. Experimental data

The experimental data considered in this study are obtained from 
literature. Experiments were selected based on the specimen type and 
the applied load. The research focuses on cruciform specimens, e.g 
Fig.  4, as these allow for complete decoupling between Mode-I and 
Mode-II load, and the specimens can be modelled in a 2D FE analysis. 
The 𝐾𝐼  component should be positive through the entire load cycle 
and crack path, to minimize crack closure effects. Another prerequisite 
is that the experimental crack path is known. Experiments showing 
significant crack branching are omitted as it is assumed that interaction 
between the cracks cannot be captured by any of the FCGD criteria. 
Two experimental sources are chosen based on these selection criteria. 
Both experimental setups are such that the direction of the far-field 
principal stresses is constant through the test and therefore the far-
field stresses remain proportional. However, the local stresses near the 
crack tip, which drive the FCGD, do not remain proportional. Due to 
the similitude principle, the local stress field describes the SIF evolution 
independent of the far field stresses.

2.1.1. Biaxial load with phase shifts
Wolf et al. [14,15] measured the FCGR in high alloy austenitic 

stainless steel (X5CrMnNi16-7-7) cruciform specimens, focusing on the 
effect of load phase shift on the crack growth rate. Fig.  4(a) shows a 
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Fig. 2. Crack tip and coordinate system for an infinitely small, rotated crack increment. (a) Polar coordinate system and corresponding stress components (b) infinitely small crack 
increment from the crack-tip.
Fig. 3. Example load sequence with indication of cycle.

Fig. 4. Cruciform specimen [15,49]: (a) Front view of geometry, dark area indicating 
the measurement area with thickness 𝑡𝑖𝑛 and width 𝑊2𝐷 (b) Cross-section of 3D 
geometry (c) Cross-section of 2D geometry, approximation of 3D geometry with equal 
dashed area.

schematization of the used geometry. The slots are included to facilitate 
the decoupling of the two loading directions. The specimen is connected 
to the testing machine through a bolted connection, which is not shown 
in Fig.  4. Fig.  4(b) shows the cross-section of the specimen (Fig.  4(c) 
will be introduced later). A detailed technical drawing of this specimen 
is shown in [49]. A diagonal starter notch of length 2𝑎𝑛 is machined 
from a hole in the centre.

Wolf et al. [15] studied the effect of a phase shift in several experi-
ments. In the current research, the focus is on two experiments, namely 
a biaxial load with a 22.5◦ phase shift, denoted with Experiment I, and 
a varying phase shift, denoted with Experiment II. These experiments 
are chosen because they resulted in non-straight crack paths without 
branching of the cracks. For Experiment I, the applied load consists of 
two stages, namely, an in-phase biaxial load stage resulting in a pure 
5 
Mode-I load at the crack tip, followed by a load stage with a phase shift 
of 𝜙𝐹 = 22.5◦, corresponding to 𝑡∕16, see Fig.  5(a). Fig.  5(b) shows the 
corresponding 𝐾𝐼  and 𝐾𝐼𝐼  directly before and after the change in load 
phase shift. The phase shift between 𝐾𝐼  and 𝐾𝐼𝐼 , 𝜙𝐾 , is a function of 
the phase shift of the applied load, 𝜙𝐹 , the crack length, and the FCGD. 
The phase shift and the biaxiality ratio at the change in load phase 
are 𝜙𝐾 = 90◦ degrees and 𝛥𝜆 = 0.22, respectively. Fig.  6(a) shows the 
experimental crack path [15], where subscript 0 indicates the end of the 
pre-crack and the subscript 1 indicates the change in load phase. The 
experiment is indicated by the superscript. The figure shows an abrupt 
and significant change in FCGD at 𝑎𝐼1 , even for the small biaxiality ratio. 
Thereafter, the FCGD gradually changes with increasing crack length. 
As both crack tips in the experiment show a similar FCGD as a function 
of crack size, the current study evaluates one crack tip.

Experiment II starts with an in-phase biaxial load resulting in a 
pure Mode-I load, similar as Experiment I. Subsequently, incremental 
phase shifts of 𝜙𝐹 = −15◦ degrees were applied until a final phase 
shift of 𝜙𝐹 = −90◦. Each load stage consists of a crack extension of 
approximately 𝛥𝑎 = 2mm. Fig.  6(b) shows the experimental crack 
path [15] with the indicated stages where the occurrence of the change 
in load shift and its value are also indicated. The FCGD changes at each 
stage but remains approximately constant within a stage. The crack 
paths originating from each side of the machined notch show a similar 
trend.

2.1.2. Biaxial load with different load paths
Fremy et al. [42,43], Fremy [50] evaluated the effect of load paths 

on fatigue crack growth behaviour of stainless steel using cruciform 
specimens, see Fig.  7. Contrary to the experiments from [15], the 
specimens did not contain slots. In the experiments, the load was 
applied on all sides and controlled in such a way that the specimen 
remains centred throughout the load cycle. Therefore, no slots are 
needed. An initial notch of length 2𝑎𝑛 = 30mm was inserted in each 
specimen.

Fremy et al. [42] conducted mixed Mode-I and II experiments and 
mixed Mode-I and III experiments. The current study considers three of 
the mixed Mode-I and II experiments. All experiments have the same 
SIF ranges, but different load sequences, see Fig.  8. A positive Mode-
I SIF is used to ensure crack opening at the start of the experiments, 
whereas the Mode-II SIF is fully reversed. Each specimen was pre-
cracked to 2𝑎0 = 34mm before applying the mixed-mode load. The 
experiment results in different FCGR and different crack paths, visu-
alized in [42]. Fig.  9 provides the FCGD obtained from a combination 
of photos and additional descriptions in [42]. Experiment A and B show 
co-planar crack growth for the first 1mm crack extension. At 𝑎1, after 
approximately 1mm of crack extension, the crack in the Experiment A 
‘‘in-phase’’ changes direction with 𝜃𝑐 ≈ 40 deg. Experiment B ‘‘square’’ 
shows a smaller deviation angle, 𝜃𝑐 ≈ 10 deg. A possible explanation 
provided by the authors from the current paper, for the sudden change 
in experimental FCGD is that the crack grows outside of the plastic zone 
of the pre-cracking procedure at crack size 𝑎1. The plasticity influences 
crack closure and therefore the effective stress intensity factors are 
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Fig. 5. Visualization of applied load in Experiment I [15]: (a) Load as function of time (b) SIF values directly before and after the change in load phase shift and the SIF phase 
shift, 𝜙𝐾 , for the cycle with 𝜙𝐹 = 22.5◦ as function of time.
Fig. 6. Visualization of experimental crack paths [15]: (a) Experiment I, (b) Experiment 
II.

different before and after the crack size 𝑎1. However, further research 
is needed to substantiate this hypothesis. Experiment C ‘‘cross’’ shows 
co-planar crack growth throughout the entire crack path.

2.2. Fatigue crack growth direction criteria

This section describes the FCGD criteria defined in Table  1, which 
are used in this paper to model experiments described in Section 2.1.

2.2.1. Maximum tangential stress criterion
The MTS criterion is the most used criterion describing the FCGD in 

proportional load [26] and the direction in final fracture [51]. The MTS 
criterion states that the crack propagates in the direction perpendicular 
to the highest tangential stress 𝜎𝜃 , assuming a polar coordinate system 
defined at the crack-tip, described mathematically by the angle that 
6 
Fig. 7. Geometry used for Experiment A-C biaxial. Geometry based on [42]. All 
dimensions are in mm.

Fig. 8. Visualization of different loading paths in [42] all having the same 𝐾𝐼 and 
𝐾𝐼𝐼 ranges: (a) Experiment A: ‘‘In-phase’’ (b) Experiment B: ‘‘Square’’ (c) Experiment 
C: ‘‘Cross’’.

satisfies the following two conditions: 

𝜕𝜎𝜃
𝜕𝜃𝑐

= 0,
𝜕2𝜎𝜃
𝜕𝜃2𝑐

< 0 (7)

In proportional load the angle of maximum tangential stress is equal 
to the angle in which the shear stress, 𝜏𝑟,𝜃 is zero. Combining Eq. (1), 
Eq. (2), and Eq. (7), this results in a predicted crack growth angle for 
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Fig. 9. Experimental crack paths of Experiments A-C [42].

proportional load: 

𝜃𝑐 (𝑡) = − arccos

⎛

⎜

⎜

⎜

⎝

3
[

𝐾𝐼𝐼 (𝑡)
]2 +

√

[

𝐾𝐼 (𝑡)
]4 + 8

[

𝐾𝐼 (𝑡)
]2 [𝐾𝐼𝐼 (𝑡)

]2

[

𝐾𝐼 (𝑡)
]2 + 9

[

𝐾𝐼𝐼 (𝑡)
]2

⎞

⎟

⎟

⎟

⎠

(8)

for proportional load 𝜃𝑐 (𝑡) is independent of time and evaluation of the 
direction is straightforward.

The MTS criterion is not uniquely defined in non-proportional load 
since it predicts a different angle for every time instance in the cycle. 
To account for the maximum SIF and the range of SIF, 𝐾𝑚𝑎𝑥 and 𝛥𝐾 re-
spectively, Highsmith [30] introduced a correction proposed by Walker 
for Mode-I fatigue crack growth. The predicted FCGD angle, 𝜃𝑐 , is the 
angle which maximizes the weighted product of the maximum SIF for 
an infinitely small increment, 𝐾𝑟

𝐼,𝑚𝑎𝑥 and the maximum corresponding 
SIF range, 𝛥𝐾𝑟

𝐼 : 

𝜃𝑐 = argmax
𝜃𝑐

[

𝛥𝐾𝐼,𝑤𝑐
(

𝜃𝑐
)

]

𝛥𝐾𝐼,𝑤𝑐
(

𝜃𝑐
)

=
[

𝐾𝑟
𝐼,𝑚𝑎𝑥

(

𝜃𝑐
)

](1−𝑤𝑐 )
⋅
[

𝛥𝐾𝑟
𝐼
(

𝜃𝑐
)]𝑤𝑐

(9)

with 
𝛥𝐾𝑟

𝐼
(

𝜃𝑐
)

= 𝐾𝑟
𝐼,𝑚𝑎𝑥

(

𝜃𝑐
)

−𝐾𝑟
𝐼,𝑚𝑖𝑛

(

𝜃𝑐
)

𝐾𝑟
𝐼,𝑚𝑎𝑥

(

𝜃𝑐
)

= max
𝑡

[

⟨𝐾𝑟
𝐼
(

𝜃𝑐 , 𝑡
)

⟩

]

𝐾𝑟
𝐼,𝑚𝑖𝑛

(

𝜃𝑐
)

= min
𝑡

[

⟨𝐾𝑟
𝐼
(

𝜃𝑐 , 𝑡
)

⟩

]

(10)

In which ⟨∙⟩ = (∙ + |∙|) ∕2 are Macaulay brackets and 𝑤𝑐 is a material 
constant [30], with value between zero and unity.

2.2.2. Maximum shear stress range
In some cases of RCF, Mode-II crack growth is observed without 

branching towards a Mode-I crack [20]. The plane of maximum shear 
stress corresponds to a co-planar direction in pure Mode-II, there-
fore Floros et al. [17] defined a criterion assuming that the FCGD aligns 
with the plane of maximum shear stress range, 𝛥𝜏𝑟𝜃 . Hence, the angle 
is defined as the angle that should satisfy the following conditions: 
𝜕𝛥𝜏𝑟𝜃
𝜕𝜃𝑐

= 0,
𝜕2𝛥𝜏𝑟𝜃
𝜕𝜃2𝑐

< 0 (11)

Contrary to Eq. (8), a simple closed form solution does not exist. There-
fore, this criterion is numerically evaluated, and the predicted angle is 
based on the SIF solutions for an infinitely small crack increment using 
Eq. (1).
7 
2.2.3. Vector crack tip displacement
The VCTD criterion predicts the direction of crack growth based on 

the displacement crack driving force. Li [52] developed this criterion 
for proportional load. The direction of crack growth for proportional 
load is given by: 

𝜃𝑐 = arcsin
(

𝛥𝛿𝐼𝐼
𝛥𝛿

)

(12)

where 𝛥𝛿𝐼𝐼  and 𝛥𝛿 are the magnitude of the shear and total crack 
displacement ranges, respectively, see Fig.  10. A first order approxi-
mation of the displacement field around the crack tip is given by the 
Westergaard solutions [48,53]. Using this approximation, the following 
relation between SIF and crack tip displacement at a distance 𝑟 from the 
crack tip is for Mode-I: 
𝛿𝐼 (𝑟) = 𝑣+ (𝑟) − 𝑣− (𝑟)

𝑣+ (𝑟) = −𝑣− (𝑟)

𝛿𝐼 (𝑟) =
8𝐾𝐼
𝐸′

√

𝑟
2𝜋

(13)

and similarly for Mode-II: 
𝛿𝐼𝐼 (𝑟) = 𝑢+ (𝑟) − 𝑢− (𝑟)

𝑢+ (𝑟) = −𝑢− (𝑟)

𝛿𝐼𝐼 (𝑟) =
8𝐾𝐼𝐼
𝐸′

√

𝑟
2𝜋

(14)

in which 𝑢± (𝑟) = 𝑢
(

𝑟, 𝜃𝑐 = ±𝜋
) and 𝑣± (𝑟) = 𝑣

(

𝑟, 𝜃𝑐 = ±𝜋
)

, see Fig.  10, 
and 𝐸′ = 𝐸 for plane stress and 𝐸′ = 𝐸∕(1 − 𝜈2) for plane strain.

Assuming that the direction of the Mode-I crack extension is co-
planar with the original crack and that a Mode-II shear displacement 
leads to a Mode-II crack extension under 45 degrees, the total crack 
displacement, 𝛥𝛿 is given by: 

𝛥𝛿 =
√

𝛥𝛿2𝐼 + 2𝛥𝛿2𝐼𝐼 + 2𝛥𝛿𝐼𝛥𝛿𝐼𝐼 (15)

Floros et al. [17,54] extended the VCTD to non-proportional load using 
an incremental evaluation of the VCTD. This led to the following 
expression of the resultant crack displacement: 

𝛿 (𝑡) =
√

⟨

𝛿𝐼 (𝑡)
⟩2 + 2

⟨

𝛿𝐼 (𝑡)
⟩

|

|

𝛿𝐼𝐼 (𝑡)|| + 2
[

𝛿𝐼𝐼 (𝑡)
]2 (16)

the Macaulay brackets ensure contributions of only positive Mode-I dis-
placements. The components 𝛿𝐼 (𝑡) and 𝛿𝐼𝐼 (𝑡) describe the fluctuation 
of the crack displacement. Following [17], this fluctuation is described 
by subtracting the mean displacements from the crack displacement 
components: 

𝛿𝐼 (𝑡) = 𝛿𝐼 (𝑡) − 0.5
[

max
𝑡

(

𝛿𝐼 (𝑡)
)

+ min
𝑡

(

𝛿𝐼 (𝑡)
)

]

𝛿𝐼𝐼 (𝑡) = 𝛿𝐼𝐼 (𝑡) − 0.5
[

max
𝑡

(

𝛿𝐼𝐼 (𝑡)
)

+ min
𝑡

(

𝛿𝐼𝐼 (𝑡)
)

] (17)

By excluding the mean displacement, any permanent crack opening, for 
example resulting from plastic deformation, is disregarded in predicting 
the FCGD. The total vectorial crack increment, 𝜟𝒂, for the evaluated 
load cycle is calculated as the maximum of the modulus of the two 
trial crack growth increments, 𝜟𝒂+ and 𝜟𝒂−: 

𝜟𝒂± = ∫

⟨

d𝛿 (𝑡)
d𝑡

⟩

𝑓± (𝑡) 𝐞̂ (𝑡) (18)

where 𝐞̂ (𝑡) is the unit vector in the FCGD, 𝜃𝑉 𝐶𝑇𝐷 (𝑡), at a specific in-
stance of time, calculated with Eq. (19). This vectorial crack increment 
describes the crack extension in a local Cartesian coordinate system 
with an origin at the crack tip: 

𝐞̂ (𝑡) =
[

cos
(

𝜃𝑣𝑐𝑡𝑑 (𝑡)
)

sin
(

𝜃𝑣𝑐𝑡𝑑 (𝑡)
)

]

, with 𝜃𝑣𝑐𝑡𝑑 (𝑡) = arcsin
(

𝛿𝐼𝐼 (𝑡)
𝛿 (𝑡)

)

(19)

Essentially, this limits the crack growth to the increments in which 
the total crack displacement is increasing. The trial functions 𝑓+ 𝑡
( )
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Fig. 10. Displacement definitions used in VCTD [52], 𝐞̂𝜃 is unit vector in the FCGD:(a) Pure mode-I load (b) Pure mode-II load (c) Mixed-mode load.
and 𝑓− (𝑡) describe crack growth in respectively positive and negative 
direction with respect to the crack-tip: 

𝑓+ (𝑡) =

{

1, 𝛿𝐼𝐼 (𝑡) ≥ 0 or 𝛿𝐼 (𝑡)
|

|

𝛿𝐼𝐼 (𝑡)||
≥ 𝜓

0, otherwise

𝑓− (𝑡) =

{

1, 𝛿𝐼𝐼 (𝑡) ≤ 0 or 𝛿𝐼 (𝑡)
|

|

𝛿𝐼𝐼 (𝑡)||
≥ 𝜓

0, otherwise

(20)

in which 𝜓 ≪ 1 is a parameter describing locking in Mode-II crack 
growth, preventing crack growth in reversed shear load when the crack 
faces are in contact. Finally, the FCGD is determined by the direction 
of the total crack increment, 

𝜃𝑐 = arctan
( 𝑒𝜃,𝑦′
𝑒𝜃,𝑥′

)

(21)

in which 𝐞̂𝜃 (𝑡) is the unit vector in the predicted FCGD 

𝐞̂𝜃 =
𝜟𝒂

‖𝜟𝒂‖
, 𝐞̂𝜃 =

[

𝑒𝜃,𝑥′

𝑒𝜃,𝑦′

]

(22)

The reader is referred to [17] for a comprehensive background of the 
methodology. Eq. (16) does not distinguish between crack opening 
due to plastic deformation and crack opening due to a positive static 
nominal Mode-I load. Therefore, deviating from the implementation 
in [17], an additional model variation is proposed here, referred to as 
VCTD*. Therefore Eq. (16) is replaced by: 

𝛿 (𝑡) =

√

⟨

𝛿𝐼 (𝑡)
⟩
2
+ 2

⟨

𝛿𝐼 (𝑡)
⟩

|

|

𝛿𝐼𝐼 (𝑡)|| + 2
[

𝛿𝐼𝐼 (𝑡)
]2 (23)

in which ⟨⋅⟩ is a variation on the Macaulay bracket 
⟨

𝛿𝐼 (𝑡)
⟩

=

{

𝛿𝐼 (𝑡) if 𝛿𝐼 > 0
0 otherwise

(24)

This implies that the Mode-I displacement fluctuation (𝛿𝐼 ) contributes 
to the effectiveness of the cycle, if the total Mode-I displacement (𝛿𝐼 ) 
is positive, hence when the crack faces are open, by either plastic 
deformation or by a nominally applied Mode-I SIF. It is assumed 
that, if the VCTD method correctly describes the crack growth process 
in non-proportional load, reality is between the original VCTD and 
VCTD*.

2.2.4. Hourlier-Pineau criterion
Hourlier and Pineau [46] developed a criterion assuming that the 

FCGD is in the direction in which the SIFs of an infinitesimally small 
crack increment gives the highest FCGR. The highest FCGR corresponds 
to the highest equivalent SIF range. Following the methodology of [5], 
this is calculated with: 

𝛥𝐾∗
𝑒𝑞
(

𝜃𝑐
)

=
(

[

𝛥𝐾∗
𝐼
(

𝜃𝑐
)]2 +

(

𝑐𝐼𝐼𝛥𝐾
∗
𝐼𝐼

(

𝜃𝑐
))2

)0.5
(25)

where 𝑐𝐼𝐼  is a material constant, typically in the range 0.5–2 and 
should be tuned to experimental data. Subsequently the FCGD angle 
8 
is predicted with: 
𝜃𝑐 = argmax

𝜃𝑐

[

𝛥𝐾∗
𝑒𝑞
(

𝜃𝑐
)

]

(26)

2.2.5. Minimum plastic zone radius
Golos and Wasiluk [47], Wasiluk and Golos [55] developed the 

minimum plastic zone radius (MPZR). This criterion assumes that the 
FCGD aligns with the minimum theoretical plastic zone radius around 
the crack tip. This is described by the angle that satisfies the following 
conditions: 
𝜕𝑊
𝜕𝜃𝑐

= 0, 𝜕2𝑊
𝜕𝜃2𝑐

> 0 − 𝜋 ≤ 𝜃𝑐 ≤ 𝜋 (27)

in which 𝑊  is the plastic zone radius normalized to the crack length. 
Since the crack length is constant during evaluation, this is the same as 

𝜕𝑟𝑝
𝜕𝜃𝑐

= 0,
𝜕2𝑟𝑝
𝜕𝜃2𝑐

> 0 − 𝜋 ≤ 𝜃𝑐 ≤ 𝜋 (28)

in which 𝑟𝑝 is an estimate for the plastic zone radius. Applying a von 
Mises yield criterion allows for estimating the elastic–plastic boundary. 
The von Mises yield criterion in cylindrical coordinates for plane stress 
conditions is given by: 

𝜎𝑦𝑠 =
√

𝜎2𝑟𝑟 − 𝜎𝜃𝜃𝜎𝑟𝑟 + 𝜎
2
𝜃𝜃 + 3𝜏2𝑟𝜃 (29)

Substituting Eq. (2) into Eq. (29) defines the elastic–plastic boundary 
based on the von Mises criterion for plane stress conditions [56]: 

𝑟𝑝
(

𝜃𝑐 , 𝑡
)

=𝐴
[

[

𝐾𝐼 (𝑡)
]2 cos2

𝜃𝑐
2

(

1 + 3 sin2
𝜃𝑐
2

)

+ 𝐾𝐼 (𝑡)𝐾𝐼𝐼 (𝑡) sin 𝜃𝑐
(

3 cos 𝜃𝑐 − 1
)

+
[

𝐾𝐼𝐼 (𝑡)
]2
(

3 + sin2
𝜃𝑐
2

(

1 − 9 cos2
𝜃𝑐
2

)) ]

(30)

in which 𝐴 = 1∕(2𝜋𝜎2𝑦𝑠) is constant and is therefore omitted in the 
minimization. The criterion as developed by Wasiluk and Golos [55] 
is applicable for proportional load. In the current study, a proposal for 
non-proportional load is made, in which the shape of the plastic zone 
remains constant and is determined solely by the biaxiality ratio, 𝜆, 
in proportional load. The plastic zone radii scale with the magnitude 
of applied load, but the minimum radius remains at the same angle. In 
non-proportional load, the shape changes due to the changing biaxiality 
ratio. It is proposed to create an envelope of the plastic zone field 
during a load cycle. Assuming no interaction in plasticity between the 
different time steps, the plastic zone radii envelope 𝑟𝑚𝑎𝑥𝑝  is described 
by: 
𝑟𝑚𝑎𝑥𝑝

(

𝜃𝑐
)

= max
𝑡

[

𝑟𝑝
(

𝜃𝑐 , 𝑡
)]

(31)

Subsequently, by combining Eqs.  (28) and (31) the FCGD angle is 
predicted with: 
𝜃𝑐 = argmin

[

𝑟𝑚𝑎𝑥𝑝
(

𝜃𝑐
)

]

(32)

𝜃𝑐
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Fig. 11. Overview of the FCGD comparison scheme between experiment and prediction, blue: Comparison at specific experimental crack sizes; red: Incremental crack growth with 
predicted FCGD (a) Visualization (b) Flowchart.
3. Methodology

Fig.  11 shows the methodology used to evaluate the FCGD criteria. 
The crack driving forces are evaluated using the FE method. Two 
types of comparison with these criteria are carried out per experiment, 
namely, an incremental crack growth path in which the FCGD along the 
complete predicted crack path is compared to the experimental results 
(shown in blue in Fig.  11) and a comparison at specific crack sizes in the 
experiment (shown in red in Fig.  11). Vector 𝒙 describes the crack path 
as a series of points 𝒙𝒊 = [𝑥𝑖, 𝑦𝑖] with 𝑥 and 𝑦 the cartesian coordinates 
according to Fig.  11(a). Based on these vectors, the angle in the global 
coordinate system is determined with: 

𝜃𝑖𝑔 = tan−1
(

𝑦𝑖+1 − 𝑦𝑖

𝑥𝑖+1 − 𝑥𝑖

)

(33)

The corresponding angle in the crack tip coordinate system is: 
𝜃𝑖𝑐 = 𝜃𝑖𝑔 − 𝜃

𝑖−1
𝑔 (34)

Similarly, the crack length, 𝑎, at a specific increment 𝑖 is defined as the 
sum of the Euclidean distances between the different instances: 

𝑎𝑖 =
𝑖

∑

1

√

(

𝑥𝑖 − 𝑥𝑖−1
)2 +

(

𝑦𝑖 − 𝑦𝑖−1
)2 (35)

3.1. Numerical model

Linear elastic FE models are used to derive SIFs given the geom-
etry of the specimen and the load. The FE models are created in 
Abaqus [57]. All simulations files are added as supplementary material 
(https://zenodo.org/records/15807377). The cruciform specimens are 
idealized in 2-dimensional representations. To account for the non-
uniform thickness in Experiment I and II, 2D elements with different 
thicknesses are assigned to different areas, similar as [15]. The mea-
surement width, 𝑤2𝐷, is approximated assuming an equal area between 
the real, 3D, cross-section with the fillet and the 2D cross-section, 
indicated with the dashed area in Fig.  4(b) and Fig.  4(c). Comparison 
of the stress distribution and SIFs with a 3D FE model of the real 
geometry including the fillets shows that this 2D model gives a good 
approximation of the SIF values. The specimens in Experiment A, B 
and C have a uniform thickness and therefore all elements have the 
same (unit) thickness. The sides of the specimens are connected to the 
machine using a combination of bolts and clamps in all experiments. 
This is modelled by coupling the displacement of the edges of the 
specimen to reference points. On the left edge, only the translational 
degree of freedom (DOF) 𝑢𝑥 is coupled to the corresponding DOF of 
the reference point 𝑢𝑝𝑥. Similarly, 𝑢𝑦 is coupled to 𝑈𝑝𝑥 on the bottom 
edge. The loads 𝐹  and 𝐹  are applied to the top and right edge, 
𝑥 𝑦
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respectively. The displacements of these reference points are coupled 
to the displacements components of the nodes of that specific edge 
and these edges are prevented to rotate. Due to these coupling con-
straints, the right edge and top edge are prevented from contracting in 
respectively the vertical and horizontal direction, whereas the left and 
bottom edges are free to contract. Because of the slots, this asymmetric 
boundary condition has negligible influence on the calculated SIFs. For 
Experiment A, B and C the boundary conditions are symmetric, see Fig. 
7. An initial crack with size 2𝑎 is inserted by duplicating the nodes 
and removing the connectivity between them. Quadratic quadrilateral 
plane stress elements are used with a full integration scheme. The 
mesh is refined to a mesh size of 0.1mm in the vicinity of the crack 
tip and along the crack front. The mesh size is gradually increased to 
2mm outside this region to reduce the computational effort. A mesh 
sensitivity study on the calculated SIFs has been performed to establish 
these values. Fig.  12 shows an example of the mesh. A linear elastic 
isotropic material model is used, and the simulations are geometrically 
linear, assuming small deformations and rotations. For a sharp crack, 
the theoretical strain field at the crack tip in a FE model becomes 
singular. Using quadratic elements, this singularity is approximated by 
translating the mid side nodes to quarter point position close to the 
crack tip [58,59]. For every crack instance two unit load cases, 𝐹𝑥
and 𝐹𝑦 are simulated. Subsequently, superposition is used to calculate 
the SIF values at different time instances, to reduce the numerical 
complexity, 
𝐾𝐼 (𝑡) = 𝑘𝐼,𝑥𝐹𝑥 (𝑡) + = 𝑘𝐼,𝑦𝐹𝑦 (𝑡)

𝐾𝐼𝐼 (𝑡) = 𝑘𝐼𝐼,𝑥𝐹𝑥 (𝑡) + = 𝑘𝐼𝐼,𝑦𝐹𝑦 (𝑡)
(36)

in which 𝑘𝐼,𝐹𝑥 , 𝑘𝐼,𝐹𝑦 , 𝑘𝐼𝐼,𝐹𝑥  and 𝑘𝐼𝐼,𝐹𝑦  represent the Mode I and Mode II 
stress intensity factor components for unit load cases applied in the x- 
and 𝑦 directions, respectively. In this study the SIF, is computed using 
the VCCT. In VCCT the SIFs are calculated by assuming that the energy 
required to advance the crack with a small increment is the same as the 
energy required to close the crack for the same increment, see [60–62]. 
The current implementation of the VCCT method has been validated in 
previous work [63].

3.2. Comparison fatigue crack growth direction

For the evaluation of the FCGD at individual instances in time, 
separate FE models are created with the crack path at the time in-
stance following from the experiment 𝒙𝒊𝒆𝒙𝒑. The crack growth extension 
direction 𝜃𝑐 can be predicted in a post processing step.

A numerical procedure is used to calculate the FCGD angle. Depend-
ing on the criteria a quantity is maximized, (e.g. 𝛥𝐾𝐼,𝑤𝑐 in the MTS 
criterion, see Eq. (9)) or minimized (e.g. 𝑅𝑚𝑎𝑥𝑝  in the MPZR criterion, see 
Eq. (32)). For some combinations of criterion, geometry and load, two 

https://zenodo.org/records/15807377
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Fig. 12. Visualization of mesh in FE model used in Experiment I, red line indicates 
crack front. Inlet shows structured mesh used for VCCT method.

minima or maxima with approximately the same value are obtained for 
this quantity. Therefore, a threshold is set to avoid instability between 
the two approximately equal maxima or minima, as follows. If the 
difference between two local extremes is smaller than 1%, they are both 
considered as potential FCGDs. It is assumed that non-homogeneous 
material behaviour results in a larger deviation than this threshold of 
1%.

3.3. Comparison of the crack path

An initial crack is inserted in the FE model for the comparison of the 
complete crack path, 𝒙𝟎𝒎𝒐𝒅 , where superscript 0 indicates the starting 
crack in the experiment 𝒙𝟎𝒆𝒙𝒑, which is the crack dimension at the start 
of the evaluation, in this example at 𝑎0. A crack extension angle 𝜃𝑐,𝑚𝑜𝑑
for the current increment is predicted using the considered criteria. 
Subsequently, the crack path is updated using this predicted angle and 
a fixed crack increment 𝛥𝑎. The sensitivity of the FCGD to 𝛥𝑎 will be 
demonstrated later in this paper. The updated crack is inserted in the 
FE model and the procedure is repeated. The crack path prediction is 
stopped after a predefined number of steps. The predicted crack path is 
compared to the experimental crack path in terms of FCGD as a function 
of crack extension steps, 𝑠𝑖. A new set of FE models is used for every 
FCGD criterion.

3.4. Validation

In order to validate the FE model and the FCGD prediction al-
gorithm, the results of the incremental crack growth procedure are 
compared to those of an experiment with proportional load from Mi-
randa et al. [64]. This experiment is a crack growth test using a 
SEN(B) with a hole, see Fig.  13(a). Because of the hole, there is a 
proportional mixed-mode load at the crack-tip, in which the biaxiality 
changes continuously with crack length. A 2D plane stress FE model of 
the SEN(B) specimen is created. The load and boundary conditions are 
applied at single nodes. A linear elastic material model is used with 
𝐸 = 205 000MPa and 𝜈 = 0.3. The FCGD is predicted using the MTS 
criterion, see Eq. (10), with 𝑤𝑐 = 1 which corresponds to Eq. (8). 
Two different crack increments 𝛥𝑎 are used. Fig.  13(b) shows the 
experimental crack path together with the predicted crack paths using 
the methodology described in Section 3.3. The figure shows that the 
predicted crack path is in good agreement with the experimental data 
and is independent of the crack increment. Because each experiment is 
unique, the presentation of the prediction differs per experiment.
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4. Results

The predicted FCGD of the experiments outlined in Section 2.1 is 
presented in this section. The FCGD criteria introduced in Section 2.2 
are assessed using the methodology from Section 3. Contrary to the 
validation case described in Section 3.4, in which the stress field 
changes spatially, the cruciform specimen used in the experiments in 
Section 2.1 are designed such that the stress field in the measurement 
area is approximately constant. Therefore, the crack path prediction 
results are presented in terms of FCGD angle as function of crack 
extensions steps.

4.1. Biaxial load with phase shifts

This section compares the crack path predicted with the considered 
criteria with the results of the experiments of [14,15] reported in Sec-
tion 2.1.1. The FE model introduced in Section 3.1 has a measurement 
area with a width of 𝑤2𝐷 = 143mm and a nominal thickness, 𝑡𝑖𝑛 =
2mm, see Fig.  4. The outside area including the slots has a thickness, 
𝑡𝑜𝑢𝑡 = 12mm. The experimental crack path is smoothened by fitting two 
fourth-order polynomial functions through the crack path for each of 
the two load stages, before adding it to the FE models. A linear elastic 
material model is used with 𝐸 = 192 000MPa and 𝜈 = 0.24 [14].

4.1.1. Experiment I: Fatigue crack growth direction
Fig.  14(a) shows the SIF, normalized with the square root of the 

crack length, over one load cycle at different experimental crack 
lengths. This normalization excludes the increase in SIF due to the 
increase in crack length and allows to show the change in SIF caused by 
the change in FCGD. The Mode-I SIF, 𝐾𝐼 , is almost independent of the 
crack size, despite of the change in FCGD and the accompanying shift 
in SIF phase. The range of 𝐾𝐼𝐼  decreases with increasing crack length. 
Initially, the Mode-II is fully reversed (𝐾𝐼𝐼,𝑚𝑒𝑎𝑛 = 0) and a negative 
𝐾𝐼𝐼,𝑚𝑒𝑎𝑛 develops as the crack advances. The maximum plastic zone 
size is estimated with Eq. (30), using 𝜃𝑐 = 0 and 𝜎𝑦𝑠 = 252MPa [15]. 
The ratio between the crack length and the calculated maximum plastic 
zone size estimated using Eq. (30) is between 5.5 and 7.0, depending on 
the crack length. The authors consider this ratio to be just large enough 
for the small scale yielding conditions that are a prerequisite of LEFM. 
Fig.  14(b) shows the phase change in SIF, 𝜙𝐾 and the biaxiality range 
𝛥𝜆 as function of the crack length. The latter increases to approximately 
0.25 in the first mm crack growth after the application of the load phase 
change. Subsequently, this ratio reduces significantly with increasing 
crack length due to the reduction in 𝐾𝐼𝐼 . As a result, the crack is Mode-
I dominated towards the end of the experiment. The phase shift 𝜙𝐾
increases from 𝜙𝐾 = 90◦ at 𝑎𝐼1 to approximately 𝜙𝐾 = 120◦ at 𝑎𝐼2 and it 
remains almost constant thereafter.

Fig.  15 shows the predicted FCGD angle in the global coordinate 
system following the methodology of Section 3.2. As indicated in Sec-
tion 2.1.1 the experiment results in an abrupt change in crack direction. 
The jump in 𝜃𝑔 at 𝑎𝐼1 is approximately −18◦ to 𝜃𝑔 = 27◦ at the change 
in load phase, indicated with 𝑎𝐼1 . Subsequently, the angle decreases and 
stabilizes at approximately 𝜃𝑔 = 7◦.

For the MTS criterion, three values for 𝑤𝑐 are used, namely, 0.1, 
0.5 and 0.9mm, to show the sensitivity of the FCGD to this parameter. 
Similarly, two parameters are used for the HP criterion, namely, one 
favouring Mode-I crack growth (𝐶𝐼𝐼 = 0.9) and one favouring Mode-
II crack growth (𝐶𝐼𝐼 = 1.2). The MSSR criterion results in two angles 
with approximately the same maximum shear stress range, shown by 
the dashed curves. The FCGD prediction just after the load change at 
𝑎𝐼1 is strongly influenced by the 𝐾𝐼  component as the 𝐾𝐼𝐼  is zero at 
the peak and trough of 𝐾𝐼 . The MTS, HP and MPZR criteria predict 
co-planar crack growth at 𝑎1. This is due to the resulting SIF phase 
shift, 𝜙𝐾 = 90◦, in combination with the low 𝛥𝐾𝐼𝐼  range. However, 
non-zero FCGD angles are predicted at larger crack lengths. Fig.  16 
elaborates this difference between zero and non-zero crack tip angles, 
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Fig. 13. Experimental crack path [64]: (a) SEN(B) Specimen, load configuration, experimental crack path and FE boundary conditions, all dimensions in mm (b) Predicted crack 
path using MTS criterion for two crack size increments, for clarity 𝑥 and 𝑦-axis are not scaled equally.

Fig. 14. SIFs for several instances for Experiment I: (a) 𝐾𝐼 and 𝐾𝐼𝐼 as function of time for different crack lengths (in mm) (b) Phase difference and biaxiality range as function 
of crack length.

Fig. 15. Predicted crack extension angles for different crack growth criteria for Experiment I as function of the crack length.
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Fig. 16. Contribution of 𝐾𝐼 and 𝐾𝐼𝐼 on 𝐾𝑟 for infinitely small crack extension around crack-tip, left: Mode-I contribution to 𝐾𝑟
𝐼 middle: Mode-II contribution to 𝐾𝑟

𝐼 , black lines 
denote zero contour, right: Total 𝐾𝑟

𝐼 , see Eq. (3). (a) Results corresponding to a crack length 𝑎𝐼1 . (b) Results corresponding to a crack length 𝑎𝐼2 .
Fig. 17. Predicted FCGD angle for different crack growth criteria for Experiment I as function of crack extension steps. For definition 𝑎𝐼3 see Fig.  15.
𝜃𝑐 . The figure shows the components of 𝐾𝐼,𝑟 (see Eqs.  (3) and (4)) as a 
function of 𝜃𝑐 during a cycle. The SIF for an infinitely small increment 
around the crack-tip 𝐾𝐼,𝑟 (right figures) consists of a contribution of 𝐾𝐼
(left figures) and a contribution of 𝐾𝐼𝐼  (middle figures). Fig.  16(a) and 
12 
(b) corresponds to crack length 𝑎𝐼1 and 𝑎𝐼2 respectively. For 𝑎𝐼1 , due to 
the phase shift 𝜙𝐾 = 90◦, the region of maximum 𝐴𝐼,𝐼𝐾𝐼  corresponds to 
a region where 𝐴𝐼,𝐼𝐼𝐾𝐼𝐼  is approximately zero. Therefore, the Mode-
I component dominates the maximum 𝐾𝑟

𝐼 . Simulations with the MTS 
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criterion show that a Mode-II range of approximately 80% of the Mode-
I range would be needed to change the angle predicted for this phase 
shift 𝜙𝐾 = 90◦. Contrary, for 𝑎𝐼2 , the middle figure in Fig.  16(b) shows 
that the region of maximum 𝐴𝐼,𝐼𝐼𝐾𝐼𝐼  shifts in time. Consequently, at 
𝑎𝐼2 , the maximum of 𝐾𝑟

𝐼  occurs at non-zero 𝜃𝑐 even for the relatively 
small value of 𝛥𝜆. Note that the ratio between 𝐾𝑚𝑖𝑛

𝐼𝐼  and 𝐾𝑚𝑎𝑥
𝐼𝐼  influences 

the predicted FCGD in addition to the change in phase shift. This ratio is 
not displayed in the figure. The above derivation is conducted for the 
MTS criterion with a Walker coefficient of 0.0. Similar results follow 
for other Walker coefficients and for the HP and MPZR criterion. In 
the second load stage, 𝑎 > 𝑎𝐼1 , the MTS criteria predict larger angles 
than the experiment with a marginal influence of the Walker coefficient 
𝑤𝑐 . Similarly, the HP criteria predict larger angles than the experiment. 
This implies that the MTS and HP criteria underestimate the effect of 
the Mode-II component. The MPZR predicts similar angles as the MTS 
criterion for this experiment.

The VCTD and VCTD* criteria predict a change in direction at the 
change in load phase. The FCGD angle of the VCTD* criterion agrees 
better with the experiment than the VCTD criterion. The difference 
in FCGD between these two criteria stems from a contribution of the 
Mode-I displacement during the whole cycle in the VCTD* criterion, 
thereby giving a larger contribution of Mode-I crack growth.

4.1.2. Experiment I: Crack path
Fig.  17 shows the FCGD angle as a function of the crack extension 

steps 𝑠𝑖 starting at the crack length at the onset of the phase change, 
𝑎𝐼1 . An increment size 𝛥𝑎 = 0.5mm is used in these simulations. The 
FCGD angle of the experiment gradually changes between 𝜃𝑔 = 7◦

and 𝜃𝑔 = 28◦ in the interval 𝑎𝐼1 ≤ 𝑎 ≤ 𝑎𝐼3 , indicated with the dashed 
lines. Note that the crack driving forces, 𝛥𝐾𝐼 , 𝛥𝐾𝐼𝐼  and 𝜙𝑘 hardly 
change in this interval. Because Fig.  15 shows that the influence of 𝑤𝑐 is 
limited, here only 𝑤𝑐 = 0.5 is adopted for the MTS criterion. Similarly, 
𝑐𝐼𝐼 = 0.7 is used for the HP criterion. The HP, MPZR and MTS criteria 
predict an approximately equal and constant FCGD, independent of 
number of steps. In the first increment, the crack deflects towards the 
direction corresponding to the angle that maximizes the corresponding 
quantity (See Eq.  (9), Eq. (25) and (31)). After this first increment, 
there is little influence of the geometry and the FCGD angle remains 
approximately constant. However, the predicted FCGD angle by these 
three criteria, 𝜃𝑔 = 45◦, corresponding to the orientation of the initial 
notch, is significantly larger than experimental value. Fig.  15 shows 
that the MSSR criterion predicts two equally likely angles for the first 
step, indicated in Fig.  17 by two curves. After the first increment, only 
a single FCGD angle is predicted in every step.

The VCTD, VCTD*, and MSSR criteria predict a FCGD which reduces 
with increasing number of crack extension steps, 𝑠𝑖. These criteria 
predict a FCGD that results in contact between the crack faces at 
the crack tip after a certain number of steps at certain part of the 
cycle. This is indicated with the filled symbols. Since contact between 
the crack faces is not included in the current modelling framework, 
the simulations are stopped after the corresponding increment. The 
resulting FCGD according to the VCTD, VCTD* and MSSR criteria 
depends on the number of simulated increments. Therefore, evaluation 
of the FCGD at a specific instance of time, as shown in Fig.  15, does 
not necessarily indicate the final predicted FCGD.

Fig.  18 shows the effect of the crack increment 𝛥𝑎 on the FCGD. 
Three different increment sizes are used. Obviously, the HP criterion 
shows no influence of the crack increment as the predicted FCGD 
is straight and remains constant after the first step. Therefore, these 
simulations are stopped after respectively 12, 14 and 30 increments. 
The FCGD calculated with the VCTD* criterion is independent on the 
increment size for the first nine steps, but it differs for 𝑠𝑖 > 9. The 
difference arises because the total crack extension becomes large with 
respect to the initial crack and the crack driving forces change. The 
simulations with 𝛥𝑎 = 0.1mm and 𝛥𝑎 = 0.2mm predict crack face 
contact at respectively 12 and 14 steps. However, the VCTD* criterion 
13 
Fig. 18. Influence crack extension increment 𝛥𝑎 on crack angle as function of crack 
extension steps for Experiment I. For definition of 𝑎𝐼1 and 𝑎𝐼3 see Fig.  15.

with 𝛥𝑎 = 1.0mm shows a different trend, where, 𝐾𝐼  remains positive 
until the end of the simulation. This becomes evident from Fig.  19(a) 
which shows 𝐾𝐼  as function of 𝑠𝑖. Fig.  19(b) shows the corresponding 
predicted crack paths. This clearly shows that if the predicted crack is 
large compared to the initial crack, it passes into the fourth quadrant 
(𝑥+, 𝑦−) causing the different trend. The VCTD and MSSR criteria shows 
a similar trend, in which the predicted FCGD does not depend on the 
increment size but is does depend on the number of crack extension 
steps, 𝑠𝑖. This is in agreement with [65] where, they modelled an 
example of RCF using two increment sizes.

4.1.3. Experiment II: Fatigue crack growth direction
Fig.  20(a) shows the evolution of SIF during a single cycle for 

several crack lengths for Experiment II. These crack lengths correspond 
to the load phase changes shown in Fig.  20(b). The applied load phase 
shift, 𝜙𝐹 , decreases with increasing crack length. The biaxiality range 
first increases to approximately 0.4 at 𝜙𝐹 = −45◦, and thereafter, the 
further decrease of 𝜙𝐹  results in a decrease of 𝛥𝜆. The graphs show that 
the applied load phase changes between 𝜙𝐹 = 0◦ and 𝜙𝐹 = −90◦ and 
that the phase shift in SIF changes between approximately 𝜙𝐾 = −50◦

and 𝜙𝐾 = −90◦. The ratio between crack length and the plastic zone 
is estimated between 6.5 and 7.5 for Experiment II. The authors hence 
assume the prerequisite of LEFM to be met.

Fig.  21 shows the FCGD in Experiment II. The crack path in this 
study is linearized within each stage. The experiment has an angle of 
𝜃𝑔 ≈ 41◦ at the start of the first stage. Therefore, despite of the zero 
phase load shift, a small Mode-II component arises in this stage. The 
MTS, MPZR and the HP criteria predict a FCGD angle close to 𝜃𝑔 = 45◦, 
because of this small Mode-II component. The predicted angles using 
these criteria are smaller than the experimental angles in the other load 
stages. Hence, these criteria underestimate the influence of Mode-II on 
the FCGD for this experiment.

The VCTD* criterion is closest to the experimental result. However, 
the abrupt changes in direction between the load stages are not cap-
tured. Similar to Experiment I, the MSSR criterion predicts two angles, 
this is due to the relatively small Mode-II component. Both angles 
disagree with the experimental angles. The MPZR criterion predicts 
angles similar to the MTS criterion, also in disagreement with the 
experiment.
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Fig. 19. Crack paths using the VCTD* criterion for Experiment I, for different crack extension increments 𝛥𝑎. (b) Maximum and minimum Mode-I SIF. (b) Crack path.
Fig. 20. SIFs for several instances for Experiment II: (a) 𝐾𝐼 and 𝐾𝐼𝐼 as function of time (b) Phase difference and biaxiality range as function of crack length.
l 
4.1.4. Experiment II: Crack path
Fig.  22 shows the predicted FCGD for Experiment II. The crack 

growth simulations start at 𝑎𝐼𝐼1 , the first load stage with non-proportiona
load. A crack increment of 𝛥𝑎 = 0.5mm is used. Four simulation steps 
are made because this corresponds to 2mm crack extension, which is 
approximately equal to the experimental crack extension between 𝑎𝐼𝐼1
and 𝑎𝐼𝐼2 . The experimental FCGD is constant between 𝑎𝐼𝐼1  and 𝑎𝐼𝐼2 .

The MTS, HP and MPZR criteria again predict an approximately 
equal and constant FCGD. The FCGD angle with respect to the global 
coordinate system, 𝜃𝑔 , predicted by the MTS and HP criteria is smaller 
than the experiment. The VCTD predicts an angle 𝜃𝑔 which increases 
with an increasing number of steps, diverging from the predicted 
experimental angle. The VCTD* criterion predicts an increasing angle 
with an increasing number of extension steps. The final crack length 
after four increments is relatively close to the experimental FCGD.

Fig.  23(a) shows the effect of crack increment size for the MTS, HP, 
VCTD* and MSSR criteria. The simulations are performed for the stage 
between 𝑎𝐼𝐼3  and 𝑎𝐼𝐼4 , as in this stage all criteria predict non-zero angles, 
see Fig.  21. The experimental FCGD is constant in this stage. Like 
Experiment I the MTS and the MPZR criteria predict an approximately 
constant FCGD independent of the crack increment size. However, 
the angle is significantly smaller than the experimental value. The 
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HP criterion predicts an angle which is again relatively independent 
of the increment size. After 10 crack extension steps, the maximum 
difference in 𝜃𝑔 is 5◦. The VCTD criterion predicts a similar FCGD for 
both increment sizes in the first two crack extension steps. However, 
the angle is significantly larger than in the experiment. The VCTD* 
criterion predicts a FCGD that is also approximately independent of 
crack increment size. As in Experiment I, the FCGD predicted by the 
VCTD*, is closer to the experimental value compared to the VCTD 
criterion. The MSSR criterion is closest to the experimental value for the 
first crack increment. However Fig.  21 shows that the VCTD* criterion 
is closer to the experimental values over the entire crack path.

Prediction of the crack path not only requires an estimate of the 
FCGD, but also the FCGR. Therefore, for the simulations shown in Fig. 
23 the FCGR is estimated. Wolf et al. [14] measured the FCGR in the 
different stages of the experiment, showing that the data correspond to 
a Paris law [66] with a slope parameter 𝑚 = 2.40: 

d𝑎
d𝑁

= 𝐶
(

𝛥𝐾𝑒𝑞
)𝑚 (37)

The equivalent SIF, 𝐾𝑒𝑞 , is calculated according to Wolf et al. [14]. 

𝐾 (𝑡) =
𝐾𝐼 (𝑡) + 1

√

[

𝐾 (𝑡)
]2 + 4

[

𝐶 𝐾 (𝑡)
]2 (38)
𝑒𝑞 2 2 𝐼 𝐼𝐼 𝐼𝐼
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Fig. 21. Predicted crack extension angles for different crack growth criteria for Experiment II as function of the crack length.
Fig. 22. Predicted FCGD angle for different crack growth criteria for Experiment II as function of crack extension. (a) Overview (b) Zoomed-in.
with 𝐶𝐼𝐼 = 1.155, and: 

𝐾𝑚𝑎𝑥
𝑒𝑞 = max

𝑡

[

𝐾𝑒𝑞 (𝑡)
]

𝐾𝑚𝑖𝑛
𝑒𝑞 = min

𝑡

[

𝐾𝑒𝑞 (𝑡)
]

𝛥𝐾𝑒𝑞 = 𝐾𝑚𝑎𝑥
𝑒𝑞 −𝐾𝑚𝑖𝑛

𝑒𝑞

(39)

Fig.  23(b) shows the predicted FCGR using the Paris law fitted to the 
experimental data as a function of the crack extension between 𝑎𝐼𝐼3  and 
the current crack tip 𝑎𝐼𝐼𝑐 . The FCGR is normalized with the FCGR at 
𝑎𝐼𝐼3 . The experiment initially shows an approximately constant FCGR. 
This is a result of the change in FCGD angle from 𝜃𝑔 = 66◦ to 𝜃𝑔 = 91◦. 
As expected, the experiment shows an increasing FCGR with increasing 
crack length. The MTS, HP and MPZR criteria also predict an increase in 
FCGR. The VCTD and VCTD* criteria both predict a decrease in FCGR 
with increasing crack length. After two increments, the FCGR is reduced 
with approximately 30%. If this reduction would continue, this would 
imply that the crack would arrest, which is not seen in the experiments.
15 
4.2. Biaxial load with different load paths

This section compares the results of the crack path predicted with 
the different FCGD criteria with the results of the experiments of [42] 
reported in Section 2.1.2. Fig.  7 shows the geometry used in the 
analyses. A linear elastic material model is used with 𝐸 = 193 000MPa
and 𝜈 = 0.3 [42]. Because of the limited information provided in 
the original source, the crack paths are described by linear segments 
between 𝑎0, 𝑎1 and 𝑎2.

4.2.1. Experiments A-C: Fatigue crack growth direction
Fig.  24 shows the evolution of 𝐾𝐼  versus 𝐾𝐼𝐼  for three different 

crack lengths, namely, the length after pre-cracking, 𝑎0, the length after 
1 mm of mixed-mode crack growth, 𝑎1, corresponding to the point of 
crack deflection in Experiment A and B, and the length after 2 mm 
of mixed-mode crack growth, 𝑎 . The inserts show the corresponding 
2
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Fig. 23. Influence crack extension increment 𝛥𝑎 in Experiment II: (a) Predicted crack path (b) Crack angle as a function of crack length.
Fig. 24. 𝐾𝐼 vs 𝐾𝐼𝐼 for specific crack lengths of Experiments A-C, inset shows corresponding experimentally measured crack orientation: (a) Experiment A ‘‘in-phase’’ (b) Experiment 
B ‘‘square’’ (c) Experiment C ‘‘cross’’.
crack orientations. Conflicting information is given in [42,43] con-
cerning the applied loads and the SIFs. The current FE simulations 
give relations between loads and SIFs that differ from the parametric 
relations given in [42,43], but which correspond with some graphs 
provided in [42]. Moreover, the relations of the current FE simula-
tion agree reasonably with those in [67], in which similar specimens 
were analysed by the research group of [42,43]. The ratio between 
the provided SIFs in [67] and the calculated SIFs in this study are 
virtually independent of the crack length. Therefore, the current au-
thors assume their modelling approach to be corrected and the SIFs 
in the current study are scaled to match the presented SIF history of 
𝛥𝐾 = 10MPa

√

m [42] for an initial crack length 𝑎0. The ratio between 
the crack length and the maximum plastic zone size, calculated with 
Eq. (30) and 𝜎𝑦𝑠 = 352MPa [68], is larger than 30 for Experiment 
A,B and C, conforming to small scale yielding condition so that LEFM 
can be used. The load is in phase for Experiment A ‘‘in-phase’’, hence 
explaining the straight lines in the plot. However, the ratio between 
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𝐾𝐼  and 𝐾𝐼𝐼  changes significantly after the change in FCGD. The Mode-
I SIF range increases and the Mode-I mean SIF reduces, resulting 
in a negative Mode-I component during a part of the cycle. In the 
evaluation, it is assumed that there is full contact in compression hence 
𝐾𝐼  is taken equal to 0 in this region. The effect of this simplification 
is assumed negligible because it applies to a small fraction of the 
complete cycle only (< 4%). Both the Mode-II mean SIF and SIF range 
reduce significantly between the original orientation of the crack and 
the orientation after 1mm of mixed-mode crack growth. The crack 
changes towards a Mode-I dominated crack. Experiment B ‘‘square’’ 
shows a slight increase in Mode-I and Mode-II SIF range after the first 
millimetre of mixed-mode crack growth. The cyclic Mode-I and Mode-
II SIFs are initially decoupled, i.e. 𝜕𝐾𝐼𝐼𝜕𝑡 = 0 if 𝜕𝐾𝐼𝜕𝑡 ≠ 0 and vice 
versa. However, a small interaction between the modes is observed 
after the directional change of the crack 𝑎 > 𝑎𝐵1 . Experiment C ‘‘cross’’ 
shows a small increase in 𝛥𝐾𝐼  and 𝛥𝐾𝐼𝐼  with increasing crack size. 
The Mode-I mean SIF increases whereas the Mode-II mean SIF remain 
approximately constant. Similar to Experiment B the cyclic Mode-I and 
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Fig. 25. Predicted crack extension angles for different crack growth criteria for Experiment A-C: (a) Experiment A ‘‘in-phase’’, crack tip coordinate system (b) Experiment B 
‘‘square’’, crack tip coordinate system (c) Experiment C ‘‘cross’’, crack tip coordinate system (d) Experiment A ‘‘in-phase’’, global coordinate system (e) Experiment B ‘‘square’’, 
global coordinate system (f) Experiment C ‘‘cross’’ global coordinate system.
Mode-II SIFs are decoupled, but contrary to Experiment B ‘‘square’’, the 
range in one direction is applied at the mean SIF in the other direction.

Fig.  25 shows the predicted FCGD using different criteria as a 
function of the experimental crack length. Fig.  25(a–c) shows the FCGD 
angle in the crack-tip coordinate system and Fig.  25(d–f) shows the 
corresponding angle in the global coordinate system. As the crack 
paths are linearized, a single non-zero FCGD angle is displayed in this 
figure, indicating the change in the experimental crack path at 𝑎𝐴1
and 𝑎𝐵1 . The predicted FCGD between 𝑎0 and 𝑎1 remains constant for 
each of the criteria because the SIFs remain approximately constant. 
It is observed that the HP and MTS criteria predict a FCGD angle 
close to the experimental FCGD angle between 𝑎𝐴1  and 𝑎𝐴2 . On the 
contrary, the FCGD between 𝑎𝐴0  and 𝑎𝐴1  is not predicted well. Again, 
the MPZR criterion predicts similar angles as the MTS criterion. The 
VCTD criterion predicts a FCGD angle of zero degree for Experiment 
A ‘‘in-phase’’. This is a consequence of the subtraction of the mean 
displacement. The VCTD* predicts a small negative angle after 𝑎𝐴2 .

The MTS, HP, and the MSSR criteria do not predict a unique angle 
for the first three crack extensions in Experiment B ‘‘square’’, which 
is a result of the zero mean 𝐾𝐼𝐼 . Consequently, two maxima of 𝐾𝑟

𝐼,𝑚𝑎𝑥
occur for two angles, corresponding to 𝐾𝐼 = 15MPa

√

m and 𝐾𝐼𝐼 =
±5MPa

√

m, at times denoted as 𝑡+ and 𝑡−. These are the times of 
maximum 𝐾𝑟

𝐼
(

𝜃𝑐 , 𝑡
)

, see Eq. (3).
Fig.  26(a) shows the individual components of 𝐾𝑟

𝐼  for the two time 
instances at 𝑎𝐵1 . Fig.  26(b) shows the same data for a crack length of 
𝑎 = 18.25mm, just after 𝑎𝐵1 . Two competing effects occur at this crack 
size, namely, 𝐾𝐼

(

𝑡+
)

> 𝐾𝐼 (𝑡−) which leads to a preference of 𝑡+ and 
𝐴𝐼,𝐼𝐼𝐾𝐼𝐼 (𝑡−) > 𝐴𝐼,𝐼𝐼𝐾𝐼𝐼

(

𝑡+
) which leads to a preference of 𝑡−. In this 

specific example, the first effect is stronger and the predicted angle is 
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therefore uniquely defined corresponding to 𝑡+. The above evaluation 
is done for 𝑤𝑐 = 0, however, a similar evaluation can be made for 
non-zero 𝑤𝑐 .

All criteria except MPZR predict non-straight crack growth for the 
initial phase of Experiment B. The straight crack predicted by the MPZR 
criterion is a consequence of the decoupling of Mode-I and Mode-II. Fig. 
27(a) shows the theoretical plastic zone, calculated with Eq. (30), at 
the two previously defined time instances and a crack length 𝑎𝐵1 . The 
minimum of the envelope occurs at zero degrees, however, the local 
plastic zone size of both time steps is minimal at approximately ±30◦. 
The MPZR criterion predicts a small positive 𝜃𝑐 after the change in ex-
perimental FCGD angle. This agrees reasonably with the experimental 
results. The HP criterion underestimates the FCGD angle significantly, 
see Fig.  25(b) and (e).

Most criteria predict straight crack growth for Experiment C ‘‘cross’’, 
which is in line with the experimental results. However, the MTS 
criterion with 𝑤𝑐 = 0.9 predicts a non-zero angle of approximately 
69◦ see Fig.  25c and f. To demonstrate the cause of this, Fig.  27(b) 
shows the Mode-I SIF range including Walker correction, 𝛥𝐾𝐼,𝑤𝑐 , as a 
function of the crack extension angle. The MTS criterion is based on 
maximization of 𝛥𝐾𝐼,𝑤𝑐 , see Section 2.2.1. The figure shows that there 
are three local maxima at 𝜃𝑐 = 0◦ and 𝜃𝑐 ≈ ±69◦, for the three evaluated 
Walker constants. The largest of these three local maxima depends on 
the Walker constant.

In conclusion, none of the criteria is able to accurately predict the 
FCGD for all three experiments.
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Fig. 26. Individual components of 𝐾𝑟
𝐼 for Experiment B ‘‘square’’. (a) At crack length 𝑎𝐵1 = 18mm (b) at crack length 𝑎 = 18.25mm, just larger than 𝑎𝐵1 .
Fig. 27. Effects of crack tip plasticity in Experiments B ‘‘square’’ and C ‘‘cross’’ (a) Evaluation of plastic zone size at two time steps and a crack length 𝑎 = 18mm for Experiment 
B ‘‘square’’. (b) Influence of Walker constant 𝑤𝑐 on predicted FCGD angle in the MTS criterion for Experiment C ‘‘cross’’.
5. Discussion

5.1. Fatigue crack growth direction

Different FCGD criteria result in a large envelope of predicted 
angles. The MTS, HP and MPZR criteria predict similar angles for most 
of the studied experiments. These predicted angles strongly depend on 
the SIF phase shift. It is shown that a SIF phase shift of approximately 
90◦, with a small to moderate Mode-II component (𝛥𝜆 < 0.8), results 
in straight crack growth prediction (for example the FCGD angle at 𝑎𝐼1
in Fig.  15 and the FCGD angle at 𝑎𝐼𝐼1  in Fig.  21). However, they do 
not comply with the experimental results. On the other hand, FCGD 
predictions with larger 𝛥𝐾𝐼𝐼  components (for example, the start of 
Experiment B ‘‘square’’, Fig.  25b) showed the opposite behaviour. In 
these cases, the MTS and HP criteria predict non-zero FCGD angles 
whereas the experiment shows straight crack growth [42]. Since [42] 
applied discrete load changes instead of a continuous (e.g. sinusoidal) 
signal, the phase shift is undefined. However, one could consider 
Experiment B as subjected to 𝜙𝐾 = 90◦, see Fig.  28(a). Experiment B 
can then be compared to Experiment I, which for 𝑎 just larger than 𝑎𝐼1 is 
also subjected to 𝜙𝐾 = 90◦, see Fig.  14(b). The mean Mode-I SIF is equal 
to the Mode-I SIF range in Experiment B, whereas it is approximately 
equal to half the Mode-I SIF range in Experiment I. More importantly, 
the biaxiality range, 𝛥𝜆 in Experiment B equals 1.0, whereas 𝛥𝜆 ≈ 0.2
for Experiment I. Fig.  28(b) shows the effect of the biaxiality ratio on 
the FCGD using the MTS criterion for 𝜙𝐾 = 90◦ and different Walker 
coefficients. For Experiment B, it can be seen that for any non-zero 
Walker coefficient a non-zero FCGD angle is predicted. A zero Walker 
coefficient gives 𝜃 = 0, in line with Experiment B at 𝑎𝐵 . However, 
𝑐 0
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this does not explain the change in FCGD at 𝑎𝐵1 . For Experiment-I a 
zero FCGD angle is predicted if 𝛥𝜆 < 0.8, independent of the Walker 
coefficient. Hence, using the MTS criterion, there is no unique Walker 
coefficient able to correctly predict the FCGD of both experiments.

The MSSR criterion often predicts two angles with the same max-
imum shear stress (see Eq. (11)). Further research could be done to 
define an additional condition distinguishing between these angles. The 
VCTD criterion predicts a larger change in FCGD than most experi-
ments. The VCTD* criterion predicts a smaller change in FCGD than 
the VCTD as the contribution of the Mode-I displacement is increased, 
which reduces the influence of the Mode-II displacements. Literature 
shows that the VCTD criterion can predict FCGD of some specific 
non-proportional experiments [54], showing its potential.

The current research is based on LEFM and linear elastic FE models. 
Therefore, the focus is on experiments with a positive 𝐾𝐼  over the 
complete cycle, to minimize plasticity effects such as crack closure. 
However, crack closure is also found for low but positive 𝐾𝐼  values in 
literature [69,70]. Therefore, it is possible that part of the discrepancy 
between experimental and predicted FCGD is attributed to the effect 
of crack closure. Both PICC and RICC have an effect on the effective 
SIFs. The effect on the effective Mode-II SIF is unknown. A consequence 
of the assumed linear elastic material behaviour is that the stress 
history does not influence the predicted FCGD, which simplified the 
evaluation of the chosen criterion significantly. Incorporating the effect 
of plasticity in a FCGD prediction is therefore crucial, but complex. 
The method developed by Pommier et al. [41–44] accounts for plas-
ticity effects and aims to predict the FCGR. Through experiments, it is 
anticipated that the FCGD can be calibrated using their elastic–plastic 
crack driving force. However, dedicated experiments are required for 
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this purpose. It is suggested to first conduct proportional mixed-mode 
experiments at various biaxiality ratios. In the analysis, the plasticity 
developed due to pre-cracking needs to be considered to better under-
stand the sudden change in FCGD in Experiments A-C. Subsequently, 
the non-proportional tests can be evaluated to provide more insight in 
the underlying mechanisms driving the crack under non proportional 
conditions.

The current evaluation is limited to constant amplitude load, al-
ready showing big challenges. In variable amplitude load, the effect 
of plasticity is more complex. In addition, evaluations of variable 
amplitude load require the value of the threshold of the SIF range. 
This value is not available for a given mode-mixity. Therefore, we 
expect that predicting the FCGD in variable amplitude load is even 
more difficult.

5.2. Crack path

Prediction of the crack path requires predictions of the FCGR and 
FCGD. Because modelling every individual cycle in a crack growth 
simulation using the FE method is not feasible, a step-wise approach 
is often used in which the crack is extended incrementally. To be able 
to use a FCGD criterion in such a framework, it should be independent 
of the increment size. This independency is shown in Fig.  13(b) for 
proportional load. For non-proportional load, if the crack extension is 
small with respect to the initial notch and the nominal stress remains 
approximately constant, it is shown that for some criteria the predicted 
crack path is dependent on the crack increment size, but the predicted 
FCGD is independent on the number of crack extensions steps, meaning 
that the predicted FCGD after 𝑖 steps is approximately constant, see Fig. 
23(a). In contrast to the proportional validation case Section 3.4, the 
simulations shown in Section 4 all have an (approximately) constant 
nominal stress field throughout the crack growth, ignoring any bound-
ary effects. Therefore, for the first few crack extension steps the same 
FCGD is predicted independent of the crack increment size. Based on 
the simulations it is shown that the MTS, HP and MPZR criteria predict 
a FCGD which maximizes the governing quantity in the first step. After 
that, the FCGD remains approximately constant. Hence, an unambigu-
ous FCGD results for these criteria. For the VCTD, VCTD* and MSSR 
criteria, however, the predicted FCGD changes with each extension 
step. Hence, there is no unique FCGD, and an additional condition is 
required to define the final FCGD. Such a condition is currently lacking. 
In some simulations, the crack extends in such a way that a negative 𝐾𝐼
arises during part of the cycle. In the current framework the simulation 
is then terminated. Expanding the simulations by including contact 
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will alter the SIF evolution and thereby the FCGD which would enable 
continuing the simulation. However, defining contact in a mixed mode 
testing is a study on its own. Another extension would be to relate 
the SIFs with the FCGR. By assuming a fixed number of cycles per 
crack increment, for every simulation step a different crack increment 
is determined based on the SIF evolution. This would require a FCGR 
applicable to non-proportional mixed-mode load which is currently not 
available.

5.3. Design of experiments

Fatigue crack growth experiments are often designed to measure the 
FCGR instead of the FCGD. This was also the case in the experiments 
elaborated in this research. The sudden changes in the loading phase 
in Experiment I and Experiment II resulted in changes in the plasticity 
around the crack-tip, which are not captured by any of the used FCGD 
criteria. In Experiments A, B and C these changes were also present. 
An additional challenge in this second set of experiments is the lack 
of high quality photos to accurately measure the crack path. It is 
therefore recommended to conduct more mixed-mode fatigue crack 
growth experiments that also focus on FCGD.

In practice, some types of structures, for example rails and bridges, 
are subjected to repetitive load with approximately constant non-
proportionality (i.e. constant 𝜙𝐾 ) throughout the lifetime. In experi-
ments this is not always the case, for example in Experiment I and II, 
see Figs.  14(b) and 20(b). Any change in load sequence will change the 
development of plasticity around the crack tip and therefore influence 
the FCGR and FCGD. This makes such tests difficult to interpret. Pre-
cracking in mixed mode tests is usually done in Mode-I, hence an 
unavoidable change in load sequence is present. It is recommended 
to conduct experiments with constant non-proportionality in which 
the pre-crack SIF range is as small as possible, to limit this plastic-
ity development. Additionally, to investigate the effect of plasticity, 
it recommended to conduct experiments with either different speci-
men thicknesses or with different grades (different yield and tensile 
strengths). Thicker specimen lead to a more plane-strain state, which 
results in less effect of plasticity compared to a plane stress state in 
thin specimens. Similarly, high-strength material develops less crack 
tip plasticity compared to low strength material. Finally, it is proposed 
to conduct series of experiments where a single loading parameter, such 
as the biaxiality range 𝛥𝜆 or the load phase shift 𝜙𝐹 , is varied between 
the tests, to obtains its influence.

All experiments carried out on non-proportional load are unique, 
i.e. no repetitive experiments have been found. Hence, it is not known 
Fig. 28. (a) Idealization of Experiment B ‘‘square’’ as continuous (sinusoidal) signal with 𝜙𝐾 = 90◦ (b) Influence of biaxiality ratio 𝛥𝜆 on FCGD angle using the MTS criterion.
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if the crack paths and possibly branching shown in the experiments are 
a consistent trend or that it is a random process, e.g. related to the local 
microstructure. Evaluation of the crack-paths on both sides of the initial 
notch in a cruciform specimen could already give some indication for 
this. Multiple experiments carried out in the same conditions would 
give more insight into crack path variation.

6. Conclusions and outlook

This paper evaluates several fatigue crack growth direction (FCGD) 
criteria based on linear elastic fracture mechanics by comparing pre-
dicted directions with non-proportional experimental data from two 
literature sources [15,42]. The stress intensity factors (SIFs) of the 
experiments are determined using the virtual crack closure technique 
method, for which the finite element (FE) method is employed. The 
FCGD criteria are evaluated in two ways, namely, comparing them at 
individual instances along the experimentally obtained crack path, and 
comparing crack paths. An incremental crack growth scheme is used, 
for the latter evaluation, in which the crack path is updated with finite 
increments. Based on performed analyses, the following conclusions are 
made:

• None of the studied FCGD criteria is able to correctly predict 
the complete crack paths of the non-proportional experiments of 
study. The predicted FCGD of some criteria depend on the number 
of crack extension steps.

• A good estimation of the FCGD at a specific crack length does 
not ensure that the complete crack path is predicted correctly. A 
small deviation in the angle can lead to a large cumulative error 
when predicting the complete crack path.

• Although it is not the focus of this study, it appears that an 
accurate prediction of the fatigue crack growth rate for non-
proportional mixed mode load is important to predict the com-
plete crack path.

• The prediction of the FCGD at individual crack lengths depends 
on discretization of the crack path in the FE model.

• More experimental research for specific cases, for example non-
proportional mixed-mode tests with different biaxiality ratios, 
could lead to additional understanding of the underlying mech-
anism. In these experimental programs, it is also important to do 
repetitive experiments quantifying the scatter in crack paths.

• The development of elastic–plastic FE models could lead to a 
better understanding of the interaction between the different 
fatigue crack growth modes. Currently, because of the lack of 
understanding, this elastic–plastic interaction is not included in 
the studied prediction models.
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