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HIGHLIGHTS

e Combination of observation and CTM-based source apportionments for PM;.
o Ability to apportion secondary PM and PM from long-range transport.

o Oxygenated OA is the major OA component even in an urban area.

o Improvements needed for the simulation of secondary OA in winter.

o Emissions of EC from biomass burning are overpredicted.

ABSTRACT

Particulate matter (PM) significantly impacts urban air quality and public health, making the quantification of its source contributions crucial for effective air quality
management. In this work, we investigate the origins of organic aerosol (OA) and elemental carbon (EC) in an urban environment by synthesizing results from in situ
observational analyses (receptor modeling) and chemical transport modeling. This study focused on the city of Barcelona, Spain, during a summer and a winter
period in 2019, using measurement data from an aerosol chemical speciation monitor (ACSM), an Aethalometer, and analyses of filter samples along with source-
resolved predictions from the chemical transport model (CTM) PMCAMXx. Results refer to PM; (PM finer than 1 pm). Oxygenated OA (OOA) was the dominant source
of OA during both periods with contributions ranging from 63 % of PM; OA in winter to 80 % in summer. During summer, most of it originated from sources outside
Barcelona such as wildfires, biogenic sources, as well as sources outside Europe. PMCAMX significantly underpredicted OOA during wintertime, suggesting that the
model is lacking both processes that produce secondary OA (SOA) during periods of low photochemical activity and the corresponding emissions of organic pol-
lutants. Biomass burning OA (BBOA) emitted far away from the city and its conversion to SOA either due to nighttime or aqueous chemistry could explain part of the
missing OOA. Hydrocarbon-like OA (HOA) ranged from 8 to 14 % of the OA in both periods, peaking during morning and evening rush hours. The primary OA (POA)
emissions from transportation during winter may be underestimated in the emission inventory. Cooking OA (COA) was also a significant source (11 % of total PM;
OA) and it needs to be added to the current European emission inventories. Fresh BBOA was a small component of OA during summer and higher during winter. The
PM; EC levels were found to be dominated by local sources during both seasons. Among these sources, fossil fuel combustion was the most important contributor,
accounting for approximately 74 % of the total EC. This highlights the strong influence of traffic and other fossil fuel-related activities on EC concentrations in
Barcelona, regardless of season.

This study demonstrates the value of integrating observational data (and receptor modelling) with chemical transport modeling to more accurately identify the
sources of carbonaceous PM in urban environments. Such combined approaches are essential for developing effective mitigation strategies tailored to seasonal and
local emission patterns, ultimately supporting improved air quality management.
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E. Siouti et al.
1. Introduction

PM has significant impacts on air quality, human health, climate
change, and visibility (IPCC, 2021; WHO, 2024). Fine particles (those
finer than 1 or 2.5 pm, PM; and PM3 5) are especially harmful as they can
penetrate deep into the respiratory system, contributing to numerous
health issues. Exposure to high PM; 5 concentrations has been associated
with increased respiratory and cardiovascular morbidity and premature
mortality, but also with neurodegenerative issues and cancer (WHO,
2024). At the same time, PM influences the Earth's radiative balance by
absorbing and scattering sunlight and by acting as cloud condensation
nuclei (Seinfeld and Pandis, 2016).

Carbonaceous PM includes organic and elemental carbon (OC and
EC, respectively). These particles enter the atmosphere either through
direct emission, primarily from incomplete combustion of fossil fuels,
biomass burning and biogenic activity, or through secondary formation
during the oxidation of organic vapors. OA often constitutes a signifi-
cant, and in some cases dominant, fraction of submicron PM across
diverse environments (Jimenez et al., 2009). EC is chemically inert and
emitted into the atmosphere as a primary pollutant. EC absorbs light
contributing significantly to atmospheric warming (Bond and Berg-
strom, 2006; IPCC, 2021).

Given the complexity and environmental significance of carbona-
ceous PM, advanced instrumentation and receptor modeling (RM) tools
have become essential for characterizing its composition and sources. In
recent years, the Aerosol Mass Spectrometer (AMS) has been widely
used in field studies, offering detailed insights into the chemical
composition of atmospheric aerosols (DeCarlo et al., 2008; Drewnick
et al., 2005; Jayne et al., 2000; Jimenez et al., 2009). A decade later, Ng
et al. (2011) developed the Aerosol Chemical Speciation Monitor
(ACSM), which is based on AMS technology but designed for more
cost-effective long-term monitoring of non-refractory submicron aerosol
composition. The ACSM has been used in conjunction with RMs (mainly
Positive Matrix Factorization, PMF) to determine the sources of OA
(Chen et al., 2022; Petit et al., 2014; Zografou et al., 2022).

The Aethalometer absorption measurements at seven wavelengths
can be used to apportion black carbon (BC) to liquid and solid fuel
combustion (Liu et al., 2018, 2021; Sandradewi et al., 2008). The term
equivalent BC (eBC) is used when the mass concentration of BC is ob-
tained from filter absorption photometers including the aethalometer.
The measurement of eBC is based on a conversion factor (the Mass
Absorption Cross Section, MAC) used to convert the measured absorp-
tion (at 880 nm from Aethalometers) to BC mass concentration (Petzold
et al., 2013).

Other EC and OC source apportionment methods include 'C radio-
carbon analysis, the PMF model that utilizes trace elements to identify
sources, Chemical Mass Balance (CMC), the macro-tracer method and
various specialized RMs (Briggs and Long, 2016; Kumar et al., 2024;
Zotter et al., 2014).

Chemical transport models are often used in combination with
various methods to trace the origins of particulate matter. One of the
most straightforward methods is known as the "zero-out" or "brute-force"
approach (Koo et al., 2009; Park et al., 2003). This method involves
running the CTM several times, each time eliminating emissions from a
specific source category. Although effective, it is computationally
demanding due to the need for multiple model simulations, one for each
targeted source. Other methods used include the decoupled direct
method (DDM), which computes the first-order sensitivity of pollutant
concentrations to perturbations in input parameters, representing the
linear response of the system, and the source-oriented external mixture
(SOEM), which extends the DDM approach by computing second-order
sensitivities. Developed by Wagstrom et al. (2008), the Particle Source
Apportionment Technology (PSAT) algorithm is used in combination
with CTMs to estimate the source contributions to PM components (Koo
et al., 2009; Siouti et al., 2025; Skyllakou et al., 2017).

The main advantage of the RMs is that they do not depend on
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emission estimates, and they usually do not require detailed meteoro-
logical fields and process descriptions. On the other hand, they have
limitations, such as their low spatial representativeness, and their
inability usually to quantify the sources of secondary inorganic and
organic aerosols. CTMs have several advantages, such as high spatial
coverage and the ability to predict effects of specific air quality policy
actions accounting for non-linear processes. However, they also have
major limitations starting with the accuracy and completeness of the
emission inventories, and the uncertainties in the simulation of atmo-
spheric chemical and physical processes. Our hypothesis in this work is
that combining RMs and CTMs can result in improved source
apportionment.

There are several studies focusing on the urban area of Barcelona (NE
Spain), investigating OA and eBC sources using RM-based source
apportionment techniques. Mohr et al. (2012) reported that COA was
the dominant primary component contributing 17 % to total OA at an
urban background site in Barcelona during March 2009. HOA accounted
for 16 % of total OA, while BBOA associated with heating and agricul-
tural waste burning contributed 11 %. The remaining 55 % of total OA
was attributed to SOA. Via et al. (2021) investigated the sources of PM;
at the same urban background site in Barcelona, Palau Reial, during two
periods: May 2014-May 2015 and September 2017-October 2018. They
found that OOA (largely attributed to SOA) accounted for 57-70 % of
PM; OA, HOA contributed 12-19 %, COA 14-18 %, and BBOA 4-6 %.
Similar findings for August-September 2013 were reported from Min-
guillon et al. (2016), where COA was the dominant primary component
(17 %) of total OA, while SOA contributed 73 %, and HOA the remaining
10 %. For eBC, a source apportionment analysis conducted in the same
site using an aethalometer model indicated that 84 % of eBC was due to
traffic and 16 % due to residential and commercial biomass combustion
sources (Savadkoohi et al., 2023).

Modeling studies predicting air quality in Barcelona using CTMs are
limited, and none has specifically examined the sources of the OA and
EC in the area. Soret et al. (2014) utilized the CMAQ model at
high-spatial resolution (1 x 1 kmz) over Barcelona and Madrid to assess
potential air quality improvements resulting from different fleet elec-
trification scenarios. Benavides et al. (2019) applied the
CALIOPE-Urban v0.1 system, which is based on CMAQ, to estimate the
NO; concentrations in Barcelona, but source apportionment was not
included in their work.

The integration of results from RM and CTM to better understand the
sources of OA and EC in urban areas has received little attention. In this
study, we conducted a more detailed analysis focused on Barcelona,
selected as a pilot city due to the availability of comprehensive mea-
surements. Results from RMs and CTM were combined to provide
detailed insights into the sources of OA and EC, and to identify potential
contributors to discrepancies between CTM predictions and observa-
tional data. We applied the PMCAMx CTM with the source-
apportionment PSAT algorithm, along with the method developed in
Siouti et al. (2025) for the source apportionment of aerosol transported
from outside the simulated urban area, in combination with advanced
instrumentation, to estimate both local and transported sources of the
major PM components in the city of Barcelona during a summer and
winter month.

2. PMCAMx description and application
2.1. Model description

This study uses the three-dimensional chemical transport model
PMCAMx (Particulate Matter Comprehensive Air quality Model with
extensions) (Fountoukis et al., 2011; Tsimpidi et al., 2010) to simulate
the air pollution levels in Barcelona, Spain. At each simulation step, the
process begins with the addition of emissions from all contributing
sources. This is followed by simulation of vertical and horizontal
advection, chemical transformations, dispersion in all directions, and
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removal through dry and wet deposition. To model the changes in
aerosol mass size distribution and composition, a 10-bin sectional
aerosol approach (size range from 30 nm to 40 pum) is employed, based
on the method of Gaydos et al. (2003), assuming that all particles in each
size bin have the same composition. An extended SAPRC mechanism
(Carter, 2000) was used for gas-phase chemistry, which involves 217
reactions and 114 species (including 16 radicals and 76 gases). For
aerosol chemistry, the bulk equilibrium approach was applied to parti-
tion inorganic and secondary organic compounds between the gas and
particle phases (Capaldo et al., 2000). Aqueous-phase chemistry was
simulated using the Variable Size Resolution Model of Fahey and Pandis
(2001). Dry deposition was simulated using the methodology of Wesely
(2007) and Slinn and Slinn (1980), whereas for wet deposition a scav-
enging model for aerosol and gases was applied (Seinfeld and Pandis,
2016). The approach of Tambour and Seinfeld (1980) was employed to
model aerosol particle coagulation. Organic aerosol evolution was
modeled using the Volatility Basis Set (VBS) approach. The 1-D VBS
method (Donahue et al., 2006) was used for both primary and secondary
OA, considering them semi-volatile and chemically reactive. The
organic components were simulated using 8 volatility bins ranging from
saturation concentration of 107! to 10° pg m~> at 298 K. The parame-
terization used follows the work of Tsimpidi et al. (2010).

2.2. Model application

In this study a summer (July 1-31) and a winter period (January 18
to February 28) during 2019 were simulated. PMCAMx was applied over
Europe with a 36 x 36 km? spatial resolution focusing on the urban area
of Barcelona using three nested grids with increasing spatial resolution
(12x12,3x3and1 x 1 km?). The outer European domain, which had the
lower spatial resolution (36 x 36 km?), extended over an area of 5400 x
5832 km? (Fig. 1). The inner domain, which is the high-resolution
domain, covers a region of 72 x 72 km? for the city using 1 x 1 km?
spatial resolution. The other two intermediate grids of 12x12 and 3 x 3
km? resolution were centered on the city. In the vertical, 14 layers were
used for each of the modeling domains. A rotated polar stereographic
map projection was used.

The Weather Research and Forecasting (WRF) mesoscale numerical
prediction model (Skamarock et al., 2019) was applied to produce
meteorological data for these periods by using the same gridded do-
mains as PMCAMx. WRF output was used for both the 36 x 36 km?
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European domain and the innermost 1 x 1 km? domain. For the inter-
mediate nested domains with resolutions of 12 x 12 km?and 3 x 3 km?,
meteorological data were generated through interpolation based on a
zooming approach. Additional information can be found in Siouti et al.
(2022, 2024).

2.2.1. Emissions

Anthropogenic emissions were obtained from the CAMS-REG-v4 in-
ventory, developed by the Netherlands Organization for Applied Sci-
entific Research (TNO), with a spatial resolution of 0.05° x 0.1°
characterized as “area” and “point” sources (Kuenen et al., 2022). This
inventory organized emissions into twelve categories, including indus-
trial processes, electricity generation, road and off-road transport,
shipping and aviation, residential activities, fugitive and solvent sour-
ces, waste burning, agriculture, and agricultural burning. It accounts for
key air pollutants such as SO2, NOy, volatile organic compounds (VOCs),
NHs, CO, PM; (PM finer than 10 pm), and PMj 5. Intermediate volatility
organic compounds (IVOCs) are included in the emissions and are
assumed to be equal to 1.5 times the primary organic aerosol emissions
(Tsimpidi et al., 2010) Emissions from major “point” sources like in-
dustry, heating plants, airports, and waste processes were allocated to
their respective grid cells. Additional details are available in Siouti et al.
(2025).

To produce high-resolution emission data for the inner domain, the
original TNO inventory was downscaled using the UrbEm method and
tool (Ramacher et al., 2021). UrbEm combines the CAMS emissions data
with carefully selected high-resolution spatial proxies that correspond to
each emission sector. This tool enables the creation of emission in-
ventories for any European region or city at a specified resolution. In this
study, the UrbEm output was normalized and used to redistribute the
TNO emissions onto a 1 x 1 km? grid, preserving the total emission
quantities. The daily emissions for the high-resolution domain are
summarized in Table 1 for the two periods.

Biogenic and marine emissions are also accounted for in the model.
The MEGAN v3 algorithm (Guenther et al., 2012; 2020) is applied to
generate hourly, gridded biogenic emissions for both the European and
urban domain. It estimates emissions for 201 individual gas-phase
compounds, which are subsequently grouped into 27 modeled species,
including isoprene, monoterpenes, and sesquiterpenes. For marine
aerosol sources, the model incorporates size-resolved sea-salt and ma-
rine organic particles. The O'Dowd distribution (O'Dowd et al., 2008) is
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Fig. 1. (a) The European domain with the low-spatial resolution of 36 x 36 km? and (b) the nested domains focusing on the high-resolution urban area of Barcelona.

The study site of Palau Reial is also shown.
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used for sea-salt and organic aerosols with diameters up to 1 pm, while
the Monahan distribution (Monahan et al., 1986) is applied for larger,
super-micrometer sea-salt particles.

2.3. Model evaluation

The mean bias (MB), fractional bias (FBIAS), mean error (ME) and
fractional error (FERROR) were used for the evaluation of model per-
formance of OA, EC and their sources. The evaluation metrics are given
by the following equations:

1 1
MB:NZ(P,-fo,») ME:NZ|P,»701-|
i=1 i=1

n . .
FERROR:EZ [P O
N & (

(P — Oy)
— Pi-'roi)

FBIAS =
(Pi + Oi)

@

i=1

where N is the total number of measurements, P; is the predicted con-
centration and O; is the corresponding measured concentration of the
evaluated species.

Based on Morris et al. (2005) PM model performance for hourly
average values is considered excellent for FBIAS < +15 % and FERROR
< 435 %, good for FBIAS < +30 % and FERROR < +50 %, average for
FBIAS< +60 % and FERROR < +75 %, while there are fundamental
problems in the modeling system for higher FBIAS and FERROR.

3. Measurements

PM; non-refractory components were measured using an ACSM with
a Quadrupole spectrometer (Q-ACSM, Aerodyne Research Inc.), oper-
ating at a time resolution of 30 min and unit mass spectral resolution.
For this study, the periods, subject to instrument measurements avail-
ability, ranged from January 18-28 and February 3-28 for winter, and
July 1-31 to represent summer. The measurements were carried out in
Palau Reial, (41° 23'01500" N, 02° 07'00500” E; 80 m a.s.l.), an urban
background site in the NW of Barcelona. The site is located 200 m away a
major road (Avenue Diagonal) and near a residential area. The Q-ACSM
was connected to a 2.5 um cutoff with a flow rate of 3 L min~ ! sampling
through a Nafion drier maintaining RH<40 %. The ACSM had an in-
ternal sample flow rate of 0.08 L min~!. Concentrations of OA, sulfate,
nitrate, ammonium, and chloride were estimated using the fragmenta-
tion table of Allan et al. (2004) and ammonium nitrate and ammonium
sulfate calibration values (RF = 5.1 10’11, RIEnug = 4.35, RIEgo4 =
0.67). Collection efficiency (Middlebrook et al., 2012), air beam, and ion
transmission corrections were applied. Data acquisition and treatment
software versions 1.6.0.0 and 1.6.1.1 were implemented in Igor Pro
(Wavemetrics, Inc.). An intercomparison of the total NR-PM; and the
sum of the concentrations of its individual components measured with
co-located independent instrumentation was conducted to ensure the
quality of the measurements (COST-COLOSSAL, 2019).

OA source apportionment was conducted using the multilinear

Table 1
Daily PM; emissions (tn) for the high-resolution domain during the summer and
winter periods.

Emissions (tn d’l) Summer Winter
EC (total) 2 6.4
EC (biomass burning) 0.65 5
EC (fossil fuel) 1.3 1.2
EC other 0.15 0.2
OA (total in VBS) 5 14
OA (biomass burning) 1.35 10.4
Sulfate 0.12 0.14
Crustal 3.3 4.4
Sodium 0.2 0.5
Chloride 0.32 0.75
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engine (ME-2) (Paatero, 1999). The OA matrices were limited to 12-120
Th in the spectral range. The Source Finder software (SoFi, Datalystica
Ltd., Canonaco et al., 2021) and the protocol established by Chen et al.
(2022) were used to determine OA sources. Profile anchors extracted
from winter unconstrained solutions were used as a priori knowledge in
ME-2. The final ME-2 solution identified five OA sources in winter: HOA,
COA, BBOA, less oxidized oxygenated OA (LO-OOA), and more oxidized
oxygenated OA (MO-OOA) and four sources in summer, excluding
BBOA.

In this study, the filter absorption photometer used was the Aethal-
ometer (model AE33, Magee Scientific). The Aethalometer was chosen
because it enables the estimation of fossil fuel and biomass burning
combustion sources applying the aethalometer source apportionment
approach (Sandradewi et al., 2008). The AE33 measures light attenua-
tion across seven wavelengths (370, 470, 520, 590, 660, 880, and 950
nm) on an aerosol-loaded filter tape. The AE33 converts optical ab-
sorption coefficients to eBC mass concentrations using a nominal MAC of
7.77 m? g~ at 880 nm. Filter loading effect is corrected in real time
through built-in dual-spot algorithm (Drinovec et al., 2015). eBC values
were corrected using the methodology described in Savadkoohi et al.
(2023, 2024) to ensure accurate mass concentration estimates.

Furthermore, daily PM; samples were collected in the study period in
one out four days collected by a high volume MCV sampler (30 m®> h™})
for PM; chemical speciation analyses (Querol et al., 2001). Moreover,
OC and EC analyses were carried out using a Sunset thermo-optical
analyzer and the EUSSAR-2 protocol (Cavalli et al., 2010).

4. Results
4.1. Summertime OA and its sources

During the summer period, total PM; OA had an average measured
concentration of 2.7 pg m~2 equal to the predicted value. The average
diurnal profile of measured total PM; OA and its predicted sources in
summer are shown in Fig. 2a. According to the measurements, OA
peaked from 9:00 to 11:00 LT, due to increasing OOA levels (Fig. S1).
During this period, the model underpredicted OA, likely due to a missing
or underestimated source or process.

Sources outside the Barcelona area dominated the total PM; OA,
contributing 85 % of the total, according to the PMCAMXx predictions
(Fig. 3a). 25 % of the transported OA originated from wildfires, 23 %
from sources outside Europe, 22 % from biogenic and marine sources,
11.6 % from industry and fugitives and solvents, 8 % from agriculture
and waste burning and 5.3 % from combustion. Smaller contributions
came from road transport (2 %), shipping (1.7 %), non-road trans-
portation (1.2 %), and aviation (0.2 %). Local sources had lower con-
tributions, with 3.8 % of the total PM; OA from road transport, 3.3 %
from agriculture and waste burning, 2.6 % from industry and fugitives
and solvents, 1.7 % from shipping and 1.7 % from biogenic and marine
sources. Contributions from combustion, off-road traffic, and aviation
were all below 1 %.

4.1.1. Evaluation including comparison with PMF results

OOA accounted for 80 % of the total PM; OA during the summer,
based on ACSM measurements. The average measured OOA concen-
tration was 2.2 ug m >, while the corresponding predicted CTM's con-
centration was approximately 2.5 pg m~>. Fractional bias (<35 %) and
fractional error (<50 %) also indicated a good model performance for
this source (Table 2). Throughout the day, both measured and predicted
OOA showed a similar diurnal pattern, reflecting that most OOA origi-
nates from transport outside Barcelona rather than local sources (Fig. 4).
A peak was observed in the measurements during the morning hours
(9:00-11:00 LT), which may be related to entrainment from upper at-
mospheric layers or local production.

Sources outside Barcelona were the dominant source of OOA during
summer (92 %) based on PMCAMx. Transported OOA was primarily
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Fig. 2. Average diurnal profiles of measured and predicted OA during (a) summer and (b) winter period in Palau Reial. The predicted sources of OA are also shown.

attributed to wildfires (22 %), sources outside Europe (21 %), marine
and biogenic sources (19 %), industry and fugitives and solvents (10.4
%) and agriculture and waste burning (8.5 %). Additional contributions
included domestic combustion (4 %), road transport (4 %), shipping (2
%), non-road transportation (1 %), and aviation (0.1 %).

HOA was measured to contribute 9 % to the total PM; OA with an
average concentration of 0.25 pg m~3 (Table 2). Measurements had a
peak at 9:00 LT probably due to local transportation, which was
underpredicted by the model. This finding indicates the potential un-
derestimation of local transportation sources during this morning period
(Fig. 4).

while the current emission inventory is missing that source. Measured
COA peaked during the morning, lunch and dinner hours (Fig. S1).
Hourly concentrations of the contributions of OA sources as well as their
mass spectra are presented in Figs. S2 and S3.

4.2. Summertime EC and its sources

The average PM; EC concentration was 0.64 pg m > for predictions
and 0.7 pg m~2 for eBC measurements. During the day, the EC peaked
during the morning, at 9:00 LT, up to 1.2 pg m~° and it began to rise
again after 20:00 LT (Fig. 5a). During the rest of the day, average EC

The dominant HOA sources were predicted to be local agricultural

and waste burning processes (36 % of HOA), local road transportation
(29 %), sources outside Barcelona (16 %), shipping (10 %), industry (5
%), and non-road transportation (3 %). 98 % of the sources outside
Barcelona were due to marine and biogenic sources, and the remaining
due to aviation.

Fresh BBOA was not detected by the ACSM measurements during this

period. This finding was consistent with PMCAMx that predicted that
total BBOA was below 1 % of total OA (0.02 pg m3).

Cooking OA contributed 11 % to total PM; OA in summer, with an

average concentration of 0.3 pg m~° according to the ACSM analyses,

concentrations remained lower. Based on model predictions, peaks in
concentration during the morning and night were due to road transport.
Most of the predicted EC was attributed by the CTM to local road
transport (42 %) on average (Fig. 3a). Transported EC from other areas
contributed 25 % to the total EC in summer, and local shipping
accounted for 13 %. Other significant local sources included combustion
and agricultural and waste burning processes, each contributing 8 % to
the total EC. Transported EC was mainly due to combustion (44 %),
sources outside Europe (40 %) and wildfires (15 %), with a lower
contribution from industry and fugitives and solvents (2 %).
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Table 2

Metrics for hourly averaged PM; OA components comparing PMCAMx pre-
dictions and measurements during the summer and winter periods at Palau
Reial.

Predicted  Measured  FBIAS FERROR MB ME
gm™)  (ugm>) (%) (%) (Hg (vg
m~3) m3)
Summer
COA - 0.3 - - - -
HOA 0.21 0.25 -3 60 —0.04 0.15
OO0A 2.46 2.2 12 42 0.21 0.95
BBOA 0.02 - - - - -
Winter
COA - 0.8 - - - -
HOA 0.3 1 —46 > +75 —0.6 0.7
O0A 1.8 4.4 -73 > +75 -2.6 2.7
BBOA 0.2 0.8 > £75 > 75 —0.57 0.6

4.2.1. Evaluation including comparison with aethalometer source
apportionment

Fossil fuel combustion, mainly from road traffic, was identified by
RM as the dominant source of eBC in summer. Analysis of aethalometer

data showed an average measured concentration of 0.52 pg m >,
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corresponding to a 74 % contribution. The diurnal profile exhibited a
morning peak at 09:00 LT and another in the early evening (Fig. 6a). In
contrast, PMCAMx underpredicted EC from this source, with an average
concentration of 0.38 ug m3.

Biomass burning contributed 26 % of the total eBC, with an average
measured concentration of 0.17 pg m™°. The diurnal profile showed two
peaks, one in the morning and another in the afternoon (Fig. 6b). In
comparison, the CTM underpredicted EC from this source, estimating an
average concentration of 0.05 pg m > -about three times lower than the
value obtained from aethalometer measurements (RM). Hourly metrics
are presented in Table 3.

4.3. Wintertime OA and its sources

During wintertime, the model seriously underpredicted total OA
during the whole day (Fig. 2b). The average measured concentration of
PM; OA was 7 ug m ™ and the predicted value was 2.3 pg m 3. Measured
peaks were mainly attributed to OOA (mostly SOA) (Fig. S1).

The predicted OA was mainly due to transport from outside Barce-
lona (79 %) (Fig. 3b). Most of this was related to sources outside Europe
(28.5 %), wood combustion (26 %), wildfires (9.4 %), and marine and
biogenic sources (7.2 %). From the local sources, 10.6 % was attributed
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Fig. 4. Average diurnal profile of predicted and measured (a) OOA, (b) HOA in Palau Reial during the summer and winter period.
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Fig. 5. Average diurnal profile of predicted EC and measured eBC in Palau Reial during the (a) summer and (b) winter period. Predicted local sources are also

presented for both periods.

to wood combustion inside the city, 4 % to road transportation and 4 %
to agriculture and waste burning processes.

4.3.1. Evaluation including comparison with PMF results

The ACSM suggested that 63 % of the total PM; OA was due to OOA
during this period, with an average concentration of 4.4 pg m~>, while
the model predicted 1.8 pg m~> (Table 2). The relatively flat average
diurnal profiles indicated that a lot of it was probably due to transport
from outside the Barcelona area (Fig. 4).

The model predicted that almost all OOA was due to transport from
outside Barcelona (98 %) with most of it originating from outside
Europe (51 %). The remaining was predicted to be due to domestic wood
combustion (11.5 %), biogenic and marine sources (11 %), wildfires (10
%), industry and fugitives and solvents (4.3 %), agriculture and waste
burning (3.7 %), initial conditions (2.8 %), road transport (1.8 %),
shipping (0.9 %), domestic combustion from other fuels (0.5 %) and
non-road transport (0.5 %). The rest comes from local sources.

HOA was identified as the second most important source of OA,
contributing 14 % of the total PM; OA with an average concentration of
1 pg m~3. However, the CTM underpredicted HOA concentrations by a
factor of three (Fig. 4).

In winter, COA was measured at 0.8 pg m~3, representing 11 % of the
total PM; OA according to ACSM data. This source was missing from the
current model application, highlighting its potential importance. COA
concentrations peaked during the morning, lunch, and dinner hours
(Fig. S1).

Fresh BBOA was detected by the ACSM only during the second part of
the winter period, in February. PMCAMx predicted an average BBOA
concentration of 0.2 pg m~3, while the measured average during this

time was 0.8 pg m™>, accounting for 11 % of the total PM; OA. BBOA
was consistently underpredicted throughout the entire period (Fig. 4).

4.3.2. Biomass burning

Fresh BBOA was detected only during the second winter period with
an average concentration of 0.5 pg m~>, whereas the predicted fresh
BBOA was two times lower on average during the same period. How-
ever, fresh BBOA can age in the atmosphere both during the summer and
the winter and may be detected as OOA by the ACSM.

Potassium (K) is often used as a tracer of biomass burning; however,
it can also originate from other atmospheric sources, such as sea salt and
mineral dust. Sea-salt K concentrations were calculated using the ap-
proaches of Lai et al. (2007) and Cao et al. (2016) relying on measured
sodium (Na) concentrations (Kgeasait = 0.0355 x Nageq.sai) and Four-
tziou et al. (2017) baseed on magnesium (Mg) concentrations (Ksea salt =
0.3082 x Mgszefi_salt). Both methods indicated that sea-salt K levels
remained below 0.02 pg m~2 during all winter days (Table S2), sug-
gesting that almost all the K came from sources other than sea salt. The
contribution of dust to K concentrations was assessed by using measured
calcium (Ca) concentrations. The dust-related K (Kius) was calculated
with equation Kus=0.2 x Ca (Falkovich and Schkolnik, 2004; Ho et al.,
2003; Kchik et al., 2015; Wang et al., 2006; Zhang et al., 2010). The
calculated Kdyus; was found to be less than 0.04 pg m~2 on all winter days
(Table S2). Since the sea-salt and the dust K™ concentrations were
quantified, the biomass burning potassium was calculated according to:
Kifp=K - Kiea-salt - Kdust- The PMy 5 biomass burning K* concentration for
each winter day is shown in Table S1, ranging from 0.02 to 0.14 pg m 3.

The BBOA:K" ratio has been widely used in previous research to
estimate BBOA concentrations and emissions, with reported values
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Fig. 6. Average diurnal profile of predicted EC and measured eBC from (a) fossil fuel and (b) biomass burning combustion in Palau Reial during the summer period.

Table 3
Metrics for hourly averaged PM; EC predicted and eBC measured concentrations
of during the summer and winter periods.

Average Average FBIAS FERROR MB ME
predicted measured (%) (%) (pg (pg
(ngm?) (ngm?) m™?) m™3)
Summer
ECg 0.38 0.52 -29 59 —0.14 0.29
EC,,  0.05 0.17 >+75 >+75 —0.12 0.13
Winter
ECg 0.52 0.8 -35 70 —0.27 0.5
EC,,  0.53 0.3 43 73 0.23 0.3

ranging from 5 to 100, depending on combustion conditions and the
degree of atmospheric aging (Zotter et al., 2014). In this study, we used
an average BBOA:K" ratio of 20, as suggested by Seinfeld and Pandis
(2016), to estimate wintertime BBOA concentrations. Using the mean
daily PM, 5 biomass burning K" concentrations, we calculated daily
average BBOA levels ranging from 0.4 to 2.8 pg m > (Table 4). If we
consider the full range of BBOA:K" ratios reported in the literature
(5-100), the estimated average daily BBOA concentrations could vary
between 0.1 and 14 pg m 3. This analysis suggests that there could be
significant amounts of aged BBOA present in the area during the winter
and they could explain part of the OOA that is underpredicted by the
model. Given the relatively low photochemical activity during this
period nighttime oxidation of BBOA could be a key route for SOA for-
mation (Kiendler-Scharr et al., 2016; Kodros et al., 2022; Tiitta et al.,
2016).

4.4. Wintertime EC and its sources

The average CTM predicted PM; EC concentration was 1.7 pg m™>
and the average measured eBC was 1.1 pg m > for the period of available
measurements. During the day, the predicted EC had a peak during the
morning, at 9:00 LT and another one during the evening, at 20:00 LT due
to road transport and domestic wood combustion (Fig. 5b). Measure-
ments indicated similar behavior during the day, but the nighttime
measured and predicted peaks had a 2-h difference.

CTM simulated EC was on average driven by local domestic wood
combustion (41 %), local road transport (24 %), with additional con-
tributions from outside Barcelona (27 %), local agriculture and waste
burning (3 %) and local shipping (3 %). 68 % of the transported EC was
related to domestic wood combustion, 26 % to sources outside Europe, 3
% to domestic combustion from other fuels (coal, liquid, gas) and the
remaining due to wildfires and non-road transportation.

4.4.1. Evaluation including comparison with aethalometer source
apportionment
According to results from RM, fossil fuel (mostly road traffic) was the

Table 4
Daily estimated concentrations of PM; BBOA during the winter period.

Date BBOA (g m™>) BBOA (g m™>)
(for BBOA: Kgj,=20) (lower — upper limit)
January 6, 2019 1.8 0.45-9
January 14, 2019 2 0.5-10
January 18, 2019 2.6 0.65-13
January 22, 2019 2.8 0.7-14
January 26, 2019 1.6 0.4-8
January 30, 2019 0.4 0.1-2
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dominant source of eBC during wintertime based on the analysis of the
aethalometer data with an average measured concentration of 0.8 pg
m~ and a contribution of 73 %. The diurnal trend showed a morning
peak at 09:00 LT and another one early in the evening (Fig. 7a). EC levels
from this source were underpredicted by the model, by a factor of 1.5, on
average, indicating that emissions from these sources probably need to
be revised. Hourly metrics are provided in Table 3.

eBC from biomass burning contributed 27 % of the total eBC based
on the analysis of the measurements, with an average measured con-
centration of 0.3 pg m~>. Two peaks were observed, one in the morning
and another in the afternoon (Fig. 7b). However, the CTM significantly
overpredicted EC from biomass burning, estimating an average con-
centration of 0.53 pg m~> -almost two times higher than the value
derived from aethalometer measurements-RM.

The current emission inventory assumes an EC to OC ratio of 2:3 for
biomass burning in winter, which likely leads to an overestimation of EC
emissions from this source. Revising this ratio is necessary to align with
experimental studies indicating that EC often constitutes only 5-10 % of
total biomass burning emissions (Kodros et al., 2020).

5. Sensitivity tests
5.1. Transportation

HOA concentrations were underestimated during the morning and
evening rush hours, with this underprediction being more pronounced
in winter. This suggests a need to revise the HOA daily emission profile,
particularly by increasing emissions during these peak traffic periods.
The results of a sensitivity test, in which we doubled the HOA emissions,
are presented in Fig. S4. During the summer, the average HOA con-
centration increased from 0.21 to 0.25 pg m >, whereas in winter it rose
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from 0.30 to 0.4 pg m >. However, the morning and nighttime peaks
show no notable improvement, indicating that actual HOA emissions are
likely more than twice those estimated in the current emissions in-
ventory. This is also reflected in the average concentrations of PM; total
and primary OA across the entire urban domain, which show no sig-
nificant changes after doubling the HOA emissions (Fig. S5).

5.2. Cooking

Based on ACSM measurements, cooking was identified as a signifi-
cant source of OA in the city during both summer and winter periods,
contributing approximately 11 % of total PM; OA in each season. To
assess the potential influence of underestimated cooking emissions, a
sensitivity test was conducted by incorporating an additional 1140 kg
d~! of COA emissions for the whole modeling domain. This value is
consistent with Siouti et al. (2021), who estimated that COA emissions
can be up to 2.5 times higher than primary OA emissions included in the
current emission inventory. The spatial distribution of COA emissions
(Fig. S6) was based on the high-resolution population distribution (http
s://ec.europa.eu/eurostat/web/gisco/geodata/grids). As a result,
model predictions for the summer period indicate that COA contributes
12 %, hydrocarbon-like OA 14 %, oxygenated OA 73 % and BBOA 1 % to
the total PM; OA in Palau Reial in Barcelona. The average COA con-
centration predicted after the added emissions was equal to 0.38 pg m >
and the concentration in the measurement site was 0.3 pg m >, sug-
gesting that out estimated COA emissions are reasonable at least as a
first guess. Average ground concentrations of PM; total and primary OA
before and after the addition of COA emissions were also presented in
Fig. S7, indicating the importance of this source for the urban domain.
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Fig. 7. Average diurnal profile of predicted EC and measured eBC from (a) fossil fuel and (b) biomass burning combustion in Palau Reial during the winter period.
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6. Conclusions

During the summer, oxygenated organic aerosol was the dominant
source of PM; OA in Barcelona. Most of this originated from sources
outside the city, including wildfires, biogenic and marine sources as well
as transport from regions outside Europe. The next largest contributor
was COA, although this source was not included in the current emission
inventory. HOA was the third most important OA component and, ac-
cording to the model, was primarily attributed to transportation and to
local agriculture.

During winter, OOA was surprisingly the dominant source of PM; OA
and was seriously underestimated by the model. Based on potassium (K)
measurements, aged BBOA could explain a significant fraction of the
discrepancy between measurements and predictions. This indicates that
regional biomass burning sources are underestimated in the used
emission inventory and at the same time there are one or more impor-
tant processes converting the fresh BBOA to SOA effectively during pe-
riods of low photochemical activity. Nighttime and aqueous phase
chemistry are both good candidates. Fresh BBOA contributed 11 % to
the total PM; OA, but it was underpredicted by the model, probably
again due to the underestimation of this source in the emission in-
ventory. Local transportation was the second most important source of
OA during wintertime (14 %), but it was also underpredicted by the
model by a factor of four during peak hours. Cooking was an important
source also in winter (11 %), but it is missing from the emission in-
ventories. Emissions of approximately 1100 kg d ! of COA are needed to
account for this significant missing source in the model.

The dominant source of EC was fossil fuel (mostly road traffic)
combustion (73-74 % of total EC) with lower contribution from biomass
burning for both periods. The existing emission inventory appears to
overestimate EC from biomass burning during winter and to underesti-
mate this source during summer, while it underestimates the trans-
portation contribution for both periods.

Differences between modeled and measured concentrations may
arise from missing or underestimated emission sources, unaccounted
reaction mechanisms such as nighttime chemistry of BBOA, or the need
for improved representation of secondary formation processes. In
addition, inaccuracies in meteorological predictions may also contribute
to these differences.

Accurate model predictions of PM concentrations and their sources,
combined with high-quality measurements, are essential for under-
standing pollution origins in urban areas. In addition, back-trajectory
analysis could be helpful to better understand the potential source
areas of the pollutants transported to Barcelona. Integrating measure-
ments with modeling enables the identification of sources, including
those that are difficult to measure or not directly observed through
monitoring. This comprehensive approach supports the development of
effective policies to reduce emissions and improve air quality.
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