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ABSTRACT

Working memory (WM) enables temporary retention of task-relevant information for imminent use. Increases in visual WM load

are accompanied by elevated contralateral delay activity (CDA) and EEG alpha-band power. While most WM research focuses

on the visual domain, it remains unknown whether similar EEG responses also reflect WM load in the auditory domain. Using

EEG, we set out to establish such neural markers of auditory WM load. Participants memorized the pitches of 1-4 pure tones

presented to one ear, with 1-4 identical distractor tones presented to the other ear. Behaviorally, auditory WM capacity plateaued
between set sizes two and three. Unlike for visual WM, auditory WM load was not reflected in lateralized EEG responses. This
shows that the CDA is a vision-specific rather than domain-general neural marker of WM load. Applying multivariate pattern

analyses on the delay activity revealed that auditory WM load is reflected in patterns of alpha-band oscillations. Surprisingly,

a temporal generalization analysis revealed that the alpha patterns reflecting specific load conditions changed throughout the

maintenance period (despite load being inherently constant), revealing dynamic coding of auditory WM load.

1 | Introduction

Working memory (WM) is a limited-capacity system that al-
lows us to temporarily hold several representations accessible in
service of other mental tasks (Cowan 1998). Commonly, not all
task-relevant information is available in one location or at a sin-
gle moment, which requires us to temporarily retain informa-
tion in mind. For instance, we may memorize a phone number
for subsequent dialing or remember a list of ingredients while
grocery shopping. WM functions as our central information
storage-and-processing structure (Cowan et al. 2005), which en-
ables us to interact with the world over space and time.

So far, Baddeley and Hitch (1974) proposed probably the most
influential WM model, which comprises three components:
(1) a visuo-spatial sketchpad for storage of visual information;
(2) a phonological loop for storage of auditory information; (3)

a central executive that regulates the content of the active por-
tion of WM. Years later, Baddeley (2000) added a fourth com-
ponent, the episodic buffer, that binds features from different
sources together into multidimensional objects. According to
Baddeley's model, the storage of WM is modality-specific, with
a visuo-spatial sketchpad for visual information and a phono-
logical loop for auditory information. Indeed, previous studies
have provided evidence that visual and auditory WM may rely
on at least partly distinct structures that produce dissociable
neural responses (Lefebvre et al. 2013; Pratt et al. 1989; also see
Scimeca et al. 2018 for sensory recruitment hypothesis).

Given the (at least partly) modality-specific nature of WM, it
is reasonable to use modality-specific stimuli to study visual
WM and auditory WM separately. Yet, most WM studies to date
focused on the visual modality, for instance the color, orienta-
tion, spatial location, etc. of visual items (Carlisle et al. 2011;

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2025 The Author(s). Psychophysiology published by Wiley Periodicals LLC on behalf of Society for Psychophysiological Research.

Psychophysiology, 2025; 62:¢70210
https://doi.org/10.1111/psyp.70210

10f18


https://doi.org/10.1111/psyp.70210
https://doi.org/10.1111/psyp.70210
mailto:
https://orcid.org/0000-0001-9728-1272
mailto:y.yuan@uu.nl
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fpsyp.70210&domain=pdf&date_stamp=2025-12-15

Diamantopoulou et al. 2011; Harrison and Tong 2009;
Li and Saiki 2015; Luria and Vogel 2011; Schurgin 2018).
Correspondingly, studies have found evidence for the existence
of a “magic number four,” the observation that visual working
memory capacity is severely limited to an average of four items
in young adults (Cowan 2010). By recording electroencephalo-
grams (EEG), Luck and Vogel (1997) identified a neural marker
of visual WM load and named it Contralateral Delay Activity
(CDA). Specifically, they presented a symmetric visual array in
which the left and right side differed in features and instructed
the participants to memorize the objects in only one hemifield.
In this bilateral change-detection paradigm, information pre-
sented on both sides was perceptually processed, but informa-
tion presented in only one hemifield was subsequently retained
in WM. Interhemispheric difference waves were calculated for
each set-size condition by subtracting the ipsilateral activity
from the contralateral activity. By doing so, any nonspecific,
bilateral Event-Related Potentials (ERPs) were removed. This
approach thus allows isolating the neural activity specifically
related to the encoding and maintenance of the memorized
objects. A large negative-going voltage over the contralateral
hemisphere (relative to the memorized hemifield) was observed,
located primarily over posterior parietal and lateral occipital
electrodes. Moreover, the amplitude of the CDA varied with
visual WM load, as it increased between set sizes of one, two,
and three items, and then leveled off at the group's average ca-
pacity limit of about three items (Vogel and Machizawa 2004).
Interestingly, the existence of lateralized responses to set size
(such as the CDA) implies that visual WM is inherently spatially
organized.

Another neural marker of visual WM has been observed in the
frequency domain, particularly in the alpha band, although stud-
ies have reported contradictory results regarding its modulation
direction. For instance, Jensen et al. (2002) have shown that
the power of oscillations in the alpha-band (8-12Hz) over the
posterior and central EEG channels tracks visual memory load
during the maintenance period. Such increases in alpha band
power during WM maintenance are widely accepted as reflect-
ing functional disengagement or inhibition of task-irrelevant vi-
sual inputs to protect the task-relevant information maintained
in WM (Bonnefond and Jensen 2012; Roux and Uhlhaas 2014;
Tuladhar et al. 2007; Wianda and Ross 2019). In contrast, a
number of studies have reported attenuated alpha oscillations in
sensory areas that are mnemonically relevant, suggesting that
alpha decreases may support the recruitment of these areas for
perceptual WM retention (Fukuda et al. 2015; van Ede 2018).
Taken together, several neural markers of WM load have been
established in the visual domain, some of which are lateralized
(capitalizing on the spatial organization of visual WM) and some
of which are not.

Surprisingly, much less is known about auditory WM com-
pared to visual WM. In the current study, we define auditory
WM as the maintenance of acoustic properties of sound stimuli,
such as the pitch, duration, timbre, and amplitude (following
Lefebvre et al. 2013). It should be noted that the maintenance
of verbal information is not necessarily the same as auditory
WM. Studies have found that the maintenance of verbal and
of purely acoustic material share relatively few characteristics
(Deutsch 1970; Williamson et al. 2010). In the studies focusing

on the maintenance of acoustic properties, the auditory WM ca-
pacity found in tasks using pure tones was around 2-3 (Alunni-
Menichini et al. 2014; Li et al. 2013; Prosser 1995). Lefebvre
et al. (2013) set out to identify the neural marker of auditory
short-term memory. Contrasting the univariate EEG response
during the maintenance period between the memory task and a
control task revealed a sustained negative-going voltage over the
central-frontal electrodes that scaled with auditory WM load.
This negativity was identified as a neural marker of auditory
WM and named the sustained anterior negativity (SAN). In a
follow-up study, Alunni-Menichini et al. (2014) showed that the
amplitude of SAN increased in negativity from 2 to 4 items and
then leveled off from 4 to 8 items. Thus, they established the SAN
as an index of brain activity specifically reflecting the amount of
information (load) maintained in auditory WM. In these studies
investigating auditory WM, however, stimulus presentation was
not lateralized, unlike typical visual WM studies measuring lat-
eralized responses (CDA). Thus, it remains unknown whether
lateralized responses that hinge on the inherently spatial orga-
nization of WM (akin to the CDA for visual WM) can also be ob-
served for auditory WM load. On the one hand, it is reasonable to
assume that the visual CDA reflects an enhanced representation
of the contralateral spatial location where the memorized items
are stored (e.g., Klaver et al. 1999; Talsma et al. 2001), suggesting
a modality-specific neural marker for visual WM alone. On the
other hand, if the CDA reflects a more abstract form of work-
ing memory representation, the lateralized CDA-like responses
should also be observed in auditory working memory tasks.

Other studies, focusing on the frequency domain of the EEG
response, have found that alpha oscillations (8-12Hz) are also
a sensitive marker for auditory WM load (Kaiser et al. 2007;
Leiberg et al. 2006; Luo et al. 2005; van Dijk et al. 2010). For in-
stance, Leiberg et al. (2006) found monotonic increases in spec-
tral amplitude as a function of memory load for the alpha band
over right frontal sensors during the delay period. Similarly, van
Dijk et al. (2010) also found a left-lateralized (left temporal re-
gions) increase in 5-12Hz during the maintenance of pitches,
compared to a non-memory control task. Alpha-band oscilla-
tions can therefore be considered to reflect the maintenance of
auditory information. Earlier work has interpreted alpha-band
oscillatory responses to either reflect the top-down control of
WM representations (Leiberg et al. 2006) or the inhibition of
task-irrelevant neural processes (van Dijk et al. 2010). Either
way, alpha-band oscillatory responses are closely related to the
maintenance of auditory information (for a review, see Wilsch
and Obleser 2016), and may therefore track auditory WM load.

Recently, multivariate pattern analysis (MVPA) has been ad-
vocated in the study of higher-order brain states, as it is more
sensitive to pick up on complex scalp patterns of neural activ-
ity, compared to univariate methods (Kikumoto and Mayr 2018;
Peelen and Downing 2023). While most WM decoding studies
have focused on visual representations, less is known about the
maintenance of auditory stimulus features. A handful of mul-
tivariate fMRI studies have shown that auditory information
(e.g., frequency, location, etc.) can be decoded in auditory cor-
tex, inferior frontal cortex, precentral cortex, and superior pa-
rietal lobule (for a review, see Kaiser 2015). Moreover, we are
not aware of any study using multivariate analyses to investigate
executive properties (such as load) of auditory WM. Thus, in the
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present study, we set out to uncover the spatio-temporal patterns
of EEG activity relating to auditory WM load.

Considering the large knowledge gap between what we know
about visual WM and auditory WM, it seems imperative to
study auditory WM via various methods (especially multivar-
iate methods) used in visual WM literature. Moreover, previ-
ous studies into auditory WM have only used binaural stimuli,
where potential lateralized (i.e., contralateral-minus-ipsilateral)
responses akin to the CDA would remain unnoticed. It there-
fore remains unknown whether the CDA is a modality-specific
neural marker for visual WM or whether it is a supra-modal neu-
ral marker that also reflects auditory WM load. In the current
study, we aimed to identify load-dependent neural markers of
auditory WM by recording EEG signals. Specifically, we asked
two research questions, namely, (1) whether auditory WM load
is reflected in lateralized neural responses, akin to the CDA
for visual WM load, and (2) whether we could identify non-
lateralized load-dependent neural markers of auditory WM,
using multivariate pattern analyses.

To address these questions, we conducted an auditory delayed
change-detection task (e.g., Rouder et al. 2011) while recording
EEG. On each trial, participants memorized a tone sequence
comprising 1, 2, 3, or 4 pure tones differing in pitch, thus yielding
four set sizes. Importantly, this auditory change-detection task
was combined with a dichotic listening task (e.g., Hugdahl 2011),
whereby the to-be-memorized tone sequence was presented to
one ear, while a to-be-ignored distractor sequence was presented
to the other ear. Participants were instructed to memorize the
tones presented to one ear while ignoring the tones presented
to the other ear. After a delay period, a probe sound was pre-
sented to the attended ear, with a distractor presented to the un-
attended ear. Participants were required to indicate whether the
probe was present or absent in the memory tone sequence. This
dichotic listening approach allowed us to isolate load-dependent
and hemisphere-specific EEG responses during the delay period
of the auditory WM task. By doing so, we could compute the
contralateral-minus-ipsilateral response differences and com-
pare these between set-size conditions to identify potential lat-
eralized load-dependent neural markers of auditory WM (akin
to the CDA).

We analyzed the EEG data using both univariate and multivar-
iate methods (EEG and decoding), investigating lateralized and
non-lateralized responses in the time and frequency domain.
EEG responses are retrieved from the maintenance period when
participants held varying numbers of pitches (i.e., set-sizes) in
auditory WM. For behavioral performance, we expected that the
estimation of WM capacity should increase with set-size, level-
ing off at the WM capacity limit. For the univariate EEG results,
we focused on lateralized responses, namely the CDA responses
and lateralized alpha oscillations, based on previous visual
WM studies (Jensen et al. 2002; Vogel and Machizawa 2004).
If auditory WM is also reflected in lateralized responses, the
contralateral-minus-ipsilateral univariate responses and alpha-
band power should scale with auditory WM set-size (until it
levels off at the WM capacity limit). For multivariate pattern
analysis, we focused on decoding scalp patterns of alpha-band
(8-12Hz) power, based on previous findings that alpha was
closely related to auditory WM (Leiberg et al. 2006; Wilsch and

Obleser 2016). If the patterns of alpha oscillation during the
maintenance period indeed track auditory WM load, the alpha
oscillation patterns should be distinguishable between load con-
ditions up to the group-level capacity limitations but fail to dif-
ferentiate among conditions that exceeded this limit, as reflected
in the auditory WM capacity calculated by the behavioral data.

To preface the results, we found that auditory WM load was not
reflected in lateralized responses, neither in the time nor in the
frequency domain. This implies that the CDA is a vision-specific
rather than a domain-general marker of WM load. Our decoding
results showed that patterns of alpha-band oscillations during
the maintenance period reflected auditory WM load. Moreover,
the alpha patterns associated with specific load conditions were
changing throughout the maintenance period, which suggests
that auditory WM load is reflected in dynamic—rather than
static—neural population codes. Mirroring the behavioral data
that the auditory WM capacity is around 2 tones, these load-
specific EEG responses allowed us to distinguish between load
conditions within, but not beyond, the group-level capacity lim-
itations. We thus consider scalp patterns of alpha band power as
a novel neural marker for auditory WM load.

2 | Materials and Methods
2.1 | Participants

To determine the required sample size for a main effect of set-
size in our within-participants design, a sample size estimation
was performed in G*power software (Faul et al. 2009). This sug-
gested that at least 19 participants were required for 85% power
to observe a medium effect size (Cohen's f=0.3) with a repeated
measure ANOVA (a =0.05). The medium effect size was in-
ferred based on (1) a general benchmark that is often used when
effect sizes are a priori unknown, (2) the neural effect sizes in-
ferred from Vogel and Machizawa (2004), and (3) one of our pi-
loting behavioral experiment with the same design but having
set-size 1, 2, 3, 4, 5, and 6. A total of 27 participants were tested
(18 participants reported their gender as female, 9 as male; mean
age=22.41years, SD=1.91, range=19-25years). We stopped
testing after enough participants (>19) met our inclusion crite-
ria for the EEG analyses (for details, see the EEG recording sec-
tion below). Six participants were excluded due to excessive EEG
artifacts (>25%). Thus, EEG data of 21 participants were ana-
lyzed. All participants reported normal or corrected-to-normal
vision and normal hearing (as tested with a pre-experiment au-
diogram). They signed informed consent and received money or
course credits for their participation. The study protocols were
approved by the faculty ethics committee (FETC) of Utrecht
University (number 18-048 van der Stoep).

2.2 | Apparatus and Stimuli

The experiments were conducted in a dimly lit lab and con-
trolled using Matlab 2018a. Participants were seated with their
heads positioned in a chin rest to keep their viewing distance
at a fixed 60cm in front of a 27-in. monitor. The auditory stim-
uli were played through 3M E-A-RTONE Insert Earphone 3A
(100hm).
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The auditory stimuli consisted of 25 pure tones with differ-
ent frequencies and white noises, each lasting for 200ms. All
sounds were generated in Matlab 2018a, sampled at 96kHz. The
frequencies of the 25 target pure tones ranged from 125Hz to
8.1kHz with a 19% increase in between tones (125, 149, 177, 211,
251,298, 355,422, 503,598,712,847,1008,1200, 1428, 1699, 2021,
2406, 2863, 3407,4054, 4824, 5740, 6831, 8129 Hz), which should
be distinguishable for naive listeners (Ahissar et al. 2006). The
lowest (125Hz) and highest (8129 Hz) frequencies from this set
of pure tones were used as distractors, while the remaining 23
pure tones were used as the set of target stimuli. Linear ramps of
25ms were applied both to the beginning and the end of tones to
prevent auditory pop artifacts. Participants were able to slightly
adjust the volume to a subjectively comfortable level at the start
of the WM tasks. Sounds were on average presented at 60dB (A).

2.3 | Procedure
2.3.1 | Pitch Discrimination Task

To make sure that participants could distinguish different pure
tones, a behavioral pitch discrimination task was conducted be-
fore the main auditory WM task. In this pitch discrimination
task, each of the 25 pre-generated pure tones was paired with
itself, yielding 25 same-frequency trials. In addition, 23 pure
tones (except for the lowest and highest ones) were paired with
their one-step higher or lower neighbors, yielding 46 different-
frequency trials. Finally, the lowest tone was paired with its
one-step higher neighbor, and the highest tone with its one-
step lower neighbor, yielding 2 additional different-frequency
trials. This resulted in a total of 73 trials (pairs), consisting of
25 same-frequency and 48 different-frequency trials. On each
trial, one pair of tones was presented bilaterally and sequen-
tially. Participants were required to indicate whether the two
tones were the same or different. All pairs were presented once.
Accuracies in the task for all participants were higher than 85%
(M=97.2%, SD =2.86%, range = 89%-100%), indicating that par-
ticipants could distinguish the different tones; therefore, no par-
ticipants were excluded based on this criterion.

2.3.2 | Auditory WM Task

After the pitch discrimination task, participants performed the
auditory WM task during EEG recording. In this WM task, a 4
(set-size: 1, 2, 3, vs. 4)x 2 (attended side: Left vs. Right) within-
participants design was adopted. At the beginning of each trial,
participants were always given instructions to remind them of
which side to attend to. They were required to memorize the
pitches of a sound sequence presented on the attended side,
while ignoring the sound sequence presented on the unattended
side. The manipulation of the to-be-attended side was blocked,
while set-size varied randomly from trial to trial. The order of
blocks was counterbalanced across participants.

On each trial, a fixation cross appeared at the center of the
screen for 1000 ms, after which two different sound sequences
were presented separately to each ear. These two sequences
were presented simultaneously, comprised the same number of
pure tones, but differed in pitch. The sound sequence consisted

of four sounds, separated by inter-sound intervals. Each sound
was either a pure tone or a white noise burst, depending on the
experimental condition. The duration of the pure tones, the
white noise, and the inter-tone intervals was 200ms, yielding
a sound sequence that consistently lasted for 1400 ms. For the
attended side, the last one (set-size 1), two (set-size 2), three (set-
size 3), or four (set-size 4) sounds were randomly sampled with-
out replacement from the predefined set of 23 target pure tones,
and participants were required to memorize the exact pitches of
these pure tones. White noise bursts were used to fill up the se-
quence where no pure tone was presented (i.e., in set sizes below
4; see Figure 1). For the unattended side, the last one (set-size
1), two (set-size 2), three (set-size 3), or four (set-size 4) sounds
consisted of distractor sounds. The distractor sound was either
the lowest (125Hz) or the highest frequency (8.1 kHz) from the
predefined distractor set of pure tones (with equal probability)
and was repeated once (in set-size 1 condition), twice (in set-size
2 condition), three times (in set-size 3 condition), or four times
(in set-size 4 condition), matching the number of pure tones on
the attended side. Similarly to stimulus presentation in the at-
tended side, white noise bursts were used to fill up the sequence
of pure tones in the unattended side (i.e., in set sizes below 4).
After the presentation of the sound sequence, a maintenance
period of 2000ms followed, during which participants had to
hold the pitches in memory (1-4 target sounds). Finally, after the
maintenance period, two sounds were presented for 200 ms, sep-
arately to the attended and unattended side. The probe sound on
the attended side was the test sound, which could either be pres-
ent (50% trials) or absent (50% trials) in the memorized sound
sequence. On target-present trials, the probe sound was ran-
domly selected from the memorized sound sequence with equal
probability. On target-absent trials, a tone from the memorized
sound sequence was similarly selected but substituted with an
adjacent pure tone (i.e., one step higher or one step lower in the
pre-generated target set of 23 pure tones). The sound on the un-
attended side was the same distractor that was presented in the
original sound sequence (125Hz or 8.1kHz). After the offset of
the probe sound, participants were required to indicate as ac-
curately as possible whether the probe sound on the attended
side was present or absent in the memorized sound sequence
while ignoring the sound on the unattended side. After the re-
sponse (present vs. absent), the next trial started (see Figure 1).
Overall, participants completed a total of 416 trials divided into
eight blocks: two practice blocks of 16 trials each, followed by six
experimental blocks of 64 trials each.

2.4 | EEG Recording

EEG was recorded at a sample rate of 2048 Hz from 32 standard
electrode sites placed according to the international 10/20 sys-
tem using a BioSemi EEG system. Six additional EXG flat-type
electrodes were used to record horizontal and vertical eye move-
ments and provide mastoid references. During the experiment,
participants were instructed to fixate on the center of the mon-
itor and try not to make horizontal or vertical eye movements.

The offline analysis of EEG data was performed using Matlab
2022a (https://www.mathworks.com/) and eeglab 14.1.2b
(Delorme and Makeig 2004). For pre-processing, EEG data
were first re-referenced to the average of all 32 channels. Then
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FIGURE1 | Schematic depiction of the task. Two different sound sequences were presented separately and simultaneously to each ear, whereby

the participant was instructed to attend one side and ignore the other. On the attended side, the last 1, 2, 3, or 4 sounds (depending on the set-size)

of the sequence were pure tones of different frequencies that participants were instructed to memorize. On the unattended side, the last 1, 2, 3, or 4

sounds in the sequence consisted of the same (lowest or highest pitched) pure tone, which participants could ignore. On both sides, the remaining

(3, 2, or 1) sounds consisted of white noise. After a 2s delay, during which participants maintained 1, 2, 3 or 4 sounds in memory, a probe sound was
presented to the attended side while the to-be-ignored tone was presented to the other side. Participants were required to indicate whether the probe

sound was present or absent in the memorized sound sequence.

a 0.01-40Hz band-pass filter and a 50Hz notch filter were ap-
plied to remove high frequency noise and electromagnetic radi-
ation from the environment. After the filtering, EEG data were
down-sampled to 256 Hz to speed up computation. Then, an
infomax independent component analysis (ICA) algorithm (Bell
and Sejnowski 1995) was applied to correct the signal for eye
movement artifacts. The SASICA plugin was used to automati-
cally identify the artifact component (Chaumon et al. 2015). On
average, 1 independent component was rejected per participant
(SD=0.71, range =0-2).! Furthermore, the EEG signals were
segmented into 5500ms epochs (=1000 to 4500 ms relative to
the onset of the sound sequence) separately for each attended
side and set-size condition. The interval of 0-200ms prior to
the onset of the sound sequence served as baseline. Finally, if
the voltage value at any time point in the epoch on any of the
32 channels exceeded +200uV, this epoch was excluded from
further analysis. Six participants were excluded because an ex-
cessive number (>25%) of EEG epochs were removed (i.e., volt-
ages exceeding +200uV). The average epoch rejection rate of
the remaining participants was 6.40% of all trials (SD=6.67%,
range =0%-24.7%).>

2.5 | Behavioral Data Analyses

Accuracy rate and working memory capacity K were calculated
separately for each participant in each experimental condition
(Equation 1; Rouder et al. 2011). In the equation, K is WM capac-
ity, N is the number of items in the memory sequence (set-size),

and H and F are the observed hit rates and false alarms in Set-
size N condition, respectively. Moreover, participants whose ac-
curacy and/or WM capacity K exceeded £3 SD of the group mean
were identified as outliers and removed. The +3 SD threshold
is commonly used in EEG and behavioral research to identify
outliers that may reflect misunderstanding, disengagement,
or atypical strategies (Berger and Kiefer 2021; Mohanathasan
et al. 2024). In the present study, this criterion led to the exclu-
sion of data from one participant.

K=Nx(H-F) )

Bayesian repeated measures analyses of variance (RM ANOVASs)
were conducted separately for mean accuracy and mean auditory
WM capacity K with factors Set-size (1, 2, 3, vs. 4) and Attended
side (Left vs. Right) using JASP 0.17.3.0 (JASP Team 2024). The
default priors were applied while the seed value was consis-
tently set to 1 for repeatability. Moreover, effects were evaluated
across matched models (Math6t 2017), by comparing models
containing the factor of interest to equivalent models without
this factor. This approach provides an “Inclusion Bayes Factor”
(BF,,.)), which reflects the amount of evidence for or against the
specific (main or interaction) effect of interest. We followed the
guidelines suggested by Kass and Raftery (1995) for the interpre-
tation of Bayes factors. Specifically, BFs larger than 3 signified
substantial (or more) evidence in favor of the effect; BFs between
0.3 and 3 signified no conclusive evidence in favor of or against
the effect; BFs smaller than 0.3 signified substantial (or more)
evidence against an effect.
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2.6 | EEG Data Analyses

For EEG data analyses, we aimed to answer the following two
questions: (1) Is auditory WM load reflected in lateralized neural
responses, akin to the CDA for visual WM load? (2) Can we iden-
tify non-lateralized load-dependent neural markers of auditory
WM? To answer question 1, we computed the lateralized (i.e.,
contralateral minus ipsilateral) EEG response amplitude and the
lateralized alpha-band (8-12Hz) power evoked in the four dif-
ferent set-size conditions. For question 2, we applied multivari-
ate decoding to patterns of alpha-band power across the scalp, as
measured during the maintenance period. The focus on alpha-
band over other frequency bands followed from previous studies
showing a close relationship between alpha oscillations and WM
maintenance (Leiberg et al. 2006; Wilsch and Obleser 2016). All
data analyses were performed in Matlab with Fieldtrip toolbox
(Oostenveld et al. 2011; Donders Institute for Brain, Cognition
and Behavior, Radboud University, the Netherlands). See http://
fieldtriptoolbox.org and MVPA-light toolbox (Treder 2020).

2.6.1 | Lateralized Responses in Time
and Frequency Domain

To test whether there is an overall lateralized (CDA-like) re-
sponse (reflecting the instruction to either memorize tones
on the left or the right side), contralateral and ipsilateral
EEG responses were averaged across all set-size conditions.
Then a cluster-based permutation test (paired f) (Maris and
Oostenveld 2007) was conducted to test for a difference be-
tween the contralateral and ipsilateral EEG responses during
the maintenance period (1400-3400ms relative to the onset of
the sound sequence). This permutation test was performed on
all lateralized electrodes to assess which timepoints exhibit a
CDA-like response to auditory WM load. The permutation test
consisted of four steps: (1) Paired-sample ¢-tests were used to test
at each time point and each electrode whether the contralateral
and ipsilateral responses differed at the group level. (2) Clusters
were defined as contiguous time points for which the t-test was
significant (p <0.05) at least at one electrode. Then, for each of
these clusters, the t-values were summed to obtain a cluster-level
t mass. (3) We constructed a null distribution of cluster-level ¢
mass values by randomly swapping the condition label (contra-
lateral or ipsilateral) across trials for each participant, and then
calculating the maximum cluster-level t mass at the group level.
Importantly, labels were swapped for an entire trial (i.e., time-
series) rather than timepoint-by-timepoint, to preserve autocor-
relations between timepoints in the null data. By repeating this
procedure 1000 times, we obtained a null distribution of maxi-
mum cluster-level t mass values. (4) Finally, we computed p val-
ues for each of the clusters in the observed data by computing the
fraction of permuted data sets containing ¢ mass values at least
as extreme as that of each observed cluster (using a two-tailed
alpha=0.05). For each significant cluster, we also reported the
averaged Cohen's d over a rectangular region covering the clus-
ter as effect size (Meyer et al. 2021). We considered channels to
exhibit a CDA-like response whenever channels yielded a signif-
icant lateralized response throughout the entire cluster.

To test whether the CDA-like response scaled with set-size,
we followed the same procedure as above, but for each set-size

condition individually. Another cluster-based permutation test
was conducted to compare the lateralized responses across
four set-size conditions during the maintenance period (1400-
3400ms relative to the onset of the sound sequence). This per-
mutation test was performed on all lateralized electrodes to
assess during which timepoints and for which electrodes the
CDA-like response scales with set-size.

A similar approach was followed to test for lateralized load-
dependent responses in the time-frequency domain (alpha
power). Instead of using the raw (i.e., voltage) EEG responses,
a time-frequency analysis was performed first, using 7-cycle
Morlet wavelet decomposition (i.e., mf,o,=7; Roach and
Mathalon 2008) for frequencies ranging between 4 and 30Hz
in 1Hz steps. The Morlet filtering was performed by convolving
single-trial EEG epochs from each scalp electrode with complex
Morlet wavelets. A 7-cycle Morlet wavelet was used in this anal-
ysis to provide a good tradeoff between time and frequency res-
olution. The decomposition was performed on 5.5s EEG epochs
after the pre-processing described above, ranging from —1000 to
4500 ms relative to the onset of the sound sequence. After Morlet
wavelet decomposition of the trials was performed, oscillatory
power was calculated, by taking the square of the modulus of
the resulting complex number. Each trial was baseline cor-
rected using a decibel (dB) normalization, with the —200-0ms
window before onset of the sound sequence serving as base-
line. Following the approach of previous studies, we focused
on the power in the alpha frequency band (8-12Hz) (Leiberg
et al. 2006; Wilsch and Obleser 2016).

Cluster-based permutation testing (following the same proce-
dures as above) was performed to test for the existence of a later-
alized alpha response and to test whether this lateralized alpha
response scales with set-size.

2.6.2 | EEG Decoding Analyses

The goal of the decoding analyses was to test for the existence
of non-lateralized EEG responses that scale with auditory WM
load. Compared to univariate approaches, multivariate decod-
ing is more sensitive to uncover differences between conditions
as it leverages the scalp distribution of neural signals, allowing
for the detection of discriminable patterns that may not be evi-
dent in individual electrodes (Peelen and Downing 2023). Here,
we set out to classify different load conditions based on the scalp
distribution of alpha-band power, using the MVPA-light toolbox
(Treder 2020) in Matlab.

We performed two distinct MVPAs to test whether we could
distinguish the patterns of activity evoked by different set-size
conditions. First, we trained classifiers to differentiate between
set-size conditions by performing timepoint-by-timepoint de-
coding (i.e., training and testing the classifier on data from
the same timepoint within a trial). Six different decoding
comparisons (set-size 1 vs. 2, 1vs. 3,1vs. 4,2vs.3,2vs. 4,3
vs. 4) were performed separately for each time point from the
onset of the sound sequence to the end of the maintenance
period. Second, we conducted a temporal generalization anal-
ysis, whereby classifiers were trained and tested on all possi-
ble combinations of timepoints. This temporal generalization
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analysis allowed us to identify whether the neural response
to auditory WM load was stable over time or was dynamically
changing during the maintenance period. Here as well, we
conducted six different decoding comparisons (set-size 1 vs. 2,
1vs.3,1vs.4,2vs.3,2vs. 4,3vs. 4). Finally, for both analyses,
we also performed a searchlight analysis. The significant de-
coding accuracy for each electrode in the searchlight analysis
would inform us of which electrodes are most informative to
distinguish between set-size conditions.

2.6.2.1 | Decoding: Timepoint-By-Timepoint Classifica-
tion. Totestwhetherscalp patternsofalphaoscillationstracked
auditory WM load, we conducted a timepoint-by-timepoint
decoding analysis, ranging from the start of stimulus encoding
to the end of the maintenance period, using electrodes as fea-
tures. To obtain the mean alpha-band power, the data was first
down-sampled over time by averaging every five consecutive
time points (20 ms) without overlap. Then the data was z-scored,
and data from each set of 5 consecutive trials within the same
set-size condition were averaged to improve the signal-to-noise
ratio. This resulted in 35 compound “trials” (samples) on aver-
age (SD=2.62, range =28-38) that could be used for our decod-
ing analyses.

We used linear SVM classifiers with a leave-one-trial-out cross-
validation procedure to decode between set sizes. Taking set size
1 vs. 2 as an example, we performed classification analyses to
investigate whether the scalp pattern of alpha-band power could
distinguish between set size 1 and 2 conditions. Above-chance
classification would imply that the patterns of alpha-band power
were load-dependent. Specifically, for a given timepoint, and on
each cross-validation iteration, one compound trial (i.e., the av-
erage of 5 trials) was drawn from the set size 1 or 2 condition.
The remaining compound trials were then used to train a linear
SVM classifier to distinguish between activity evoked in set size
1 and set size 2 conditions. This classifier was then tested on
the trial that was left out of the training procedure. To keep the
number of training examples equal between the two conditions,
a random selection of trials was removed from the condition
with more trials. The classification was performed repeatedly
until each compound trial was used to test the classifier once,
thus yielding one classifier outcome per compound trial. These
classifier outcomes were averaged to yield a single decoding ac-
curacy score for a given participant and a given timepoint. This
procedure was repeated for every timepoint of a trial, and for
every participant, and for classifying between each of six possi-
ble pairs of set size condition. In a final step, decoding accuracies
from all six classification pairs were averaged (per timepoint) to
obtain an overall classification performance for set size.

2.6.2.2 | Decoding: Temporal Generalization. To test
whether the specific patterns of alpha-band power reflect-
ing the different set-size conditions were stable or dynamic
(i.e., varying over time), we performed a temporal general-
ization decoding approach. The procedure was identical to
that of the timepoint-by-timepoint decoding described above,
with the exception that the linear SVM trained at one time
point was not only tested on the same time point at which
it was trained, but also tested on all other time points (King
and Dehaene 2014). Thus, the temporal generalization analy-
ses resulted in a 2-dimensional matrix of decoding accuracies,

wherein each timepoint in a trial is used for training and for test-
ing the classifier. If the pattern of alpha-band power reflecting
specific set-sizes is dynamically changing over time, significant
decoding should be found only along the diagonal line (which
is the same data as the timepoint-by-timepoint classification
analysis described above). If the alpha oscillation pattern under-
lying classification performance is stable throughout the delay
interval, significant decoding should not only be found along
the diagonal line, but also spread over all combinations of train-
ing and testing times during the maintenance period, resulting
in a square-like shape of significant decoding performance.

2.6.2.3 | Decoding: Statistics. To test for significance
in the timepoint-by-timepoint decoding analysis, we followed
the same cluster-based permutation approach as described
for the lateralized univariate responses above. In this case,
cluster-based permutation tests were applied to compare decod-
ing accuracy against chance level (0.5 for binary classification).
The cluster-level t mass was computed across one dimension (i.e.,
timepoints within a trial). This permutation test was performed
for each of the six set-size comparisons as well as the average
of all set-size conditions. For the temporal generalization anal-
ysis, the same cluster-based permutation approach was used,
except that the cluster-level t mass was now computed across
two dimensions (i.e., train and test timepoints within a trial).

2.6.2.4 | Decoding: Searchlight Analyses. To identify
which electrodes were most informative for distinguishing
between set-size conditions, we conducted an independent
searchlight analysis across all significant decoding time points
during the maintenance period. The rationale was that elec-
trodes can only be considered informative when decoding accu-
racy is significantly above chance. Specifically, for the set-size 1
vs. 2, 1vs. 3,and 1 vs. 4 comparisons, we defined for each elec-
trode a cluster consisting of its neighboring electrodes. Instead
of using the entire scalp pattern, we used these local clusters
as features and performed timepoint-by-timepoint decoding as
well as temporal generalization analyses for each participant
and each significant time point. Decoding accuracies were then
averaged across the significant set-size comparisons and across
the significant decoding time points within the maintenance
period. Finally, group-level topographies of decoding accu-
racy were obtained by averaging electrode-wise accuracies
across participants. This procedure yielded two topographic
maps showing which electrodes better distinguished between
different set-size conditions during the maintenance period,
separately for timepoint-by-timepoint and temporal generaliza-
tion decoding.

To test which electrodes were most informative for distinguish-
ing between set-size conditions, we performed a permutation
test. On each of 1000 permutations, we randomly shuffled the
searchlight decoding accuracy across electrodes for each par-
ticipant and each significant time point, and then applied the
exact same analysis steps as described above for the observed
data. For each electrode, we then computed the proportion of
permutations containing any searchlight decoding accuracy at
least as high as the searchlight decoding accuracy for that elec-
trode in the observed data. These proportions were interpreted
as p-values that implicitly account for multiple comparisons (i.e.,
across electrodes).

Psychophysiology, 2025

7 of 18

85U80| 7 SUOLIWIOD AIEaID) 3|qedl|dde au3 Aq peuienob are Sa|oile YO ‘@SN JO S3|N1 o} ARIq1TBUIIUO A8|IAR UO (SUO I IPUOD-PUE-SWLBY/W0D" A3 1M Afe.d 1 BUI|UO//SANU) SUORIPUOD PUe Swie | 8U88s *[520z/zT/zz] Uo Ariqiauliuo AB|IMm 'Sty ouL Aq 0TZ0L dASA/TTTT 0T/10p/woo As|im Areiqipuljuo//sdny WOl papeoiumoq ‘ZT ‘520z ‘9868691T



Accuracy

—~
Q

-

*

*

*

Prop. correct

Set-size

K
(number of items)

WM capacity

*

—~
O
~
%
%
©

Set-size
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3 | Results
3.1 | Behavioral Data

For accuracy, we found decisive evidence (BF,,; = 7.85 X 10%%)
in favor of a main effect of Set-size (Figure 2a). Subsequent pair-
wise analyses provided overwhelming evidence that accuracy
differed between all set-size conditions (all BF;,, > 2.59 X 10°),
showing that accuracy dropped dramatically as the set-size in-
creased. This indicates that the manipulation of auditory WM
load was successful. We found no evidence for a main effect of
Attended side (BF;,,; =0.73), and substantial evidence against an
interaction of Set-size and Attended side (BF;,,; =0.14). Thus,
accuracy did not systematically depend on left versus right pre-
sentation of the memory array.

For working memory capacity, we also found decisive evi-
dence (BF,,,, = 2.68 x 10%) in favor of a main effect of Set-size
(Figure 2b). In follow-up analyses, we found evidence that WM
capacity was lower in Set-size 1 than in Set-sizes 2, 3, and 4 (all
BF,,,; > 2.52 x 10%), and that WM capacity was lower in Set-size
2 than in Set-size 3 (BF;,; =76.87). We found no conclusive
evidence that WM capacity differed between Set-sizes 2 and 4
(BF;,,; =1.47), and we found evidence against a difference in
WM capacity between Set-sizes 3 and 4 (BF,,; =0.15). Finally,
we found no conclusive evidence for a main effect of Attended
side (BF;,; =0.41), and we found evidence against an interaction

of Set-size and Attended side (BF;,,; =0.09).

Together, these behavioral results demonstrate that estimated
WM capacity initially increased as the set-size increased, but
then leveled off when set-size (the number of items to be memo-
rized) reached 3, and the corresponding WM capacity K equaled
about 2 items. The relatively low capacity for auditory WM is
largely consistent with previous studies (Alunni-Menichini
et al. 2014; Li et al. 2013; Prosser 1995), in which researchers
also found the maximum capacity of auditory WM was 2.8, 2.9,
and 2 pure tones, respectively. Importantly, this plateau estab-
lishes that the ceiling of auditory WM capacity (in the present

experimental setting) is somewhere between two and three
pitches of pure tones, and indicates that our higher set-size con-
dition(s) exceeded capacity limitations.

3.2 | Lateralized Univariate Responses

To test whether auditory working memory load was reflected
in lateralized neural responses, akin to the CDA for visual WM
load, we calculated interhemispheric differences for each set-
size condition for both mean univariate responses (time domain)
and mean alpha-band power (frequency domain) during the
maintenance interval. Two cluster-based permutation tests were
performed to test (1) whether an overall lateralized response is
observed during the maintenance period, reflecting the side of
the attended memory items, and (2) whether this putative later-
alized response scales with set-size.

Testing for a lateralized response across set-sizes in the time do-
main revealed a significant cluster across the whole maintenance
period (between 1400 and 3400ms after stimulus onset), with
stronger contralateral compared to ipsilateral activity (t-mass
= —6.80 x 10°, p<0.01). The average effect size over a rectan-
gular region spanning 10 channel pairs and 1400-3400ms was
d=-0.59. This negative difference waves confirms the existence
of a CDA-like response during the maintenance interval, indicat-
ing the validity of our attention manipulation (Figure 3a). This
lateralized response, however, did not differ between set-size
conditions (no significant clusters were observed), suggesting
that auditory WM load is not reflected in lateralized responses.

Conducting the same two analyses with alpha-band power
(in the frequency domain) revealed no significant clusters
(Figure 3c); neither when collapsing across set sizes, nor when
testing for differences between set sizes.

In sum, substantial lateralized responses were found in the time
domain, reflecting which side was attended for the memory task.
This demonstrates that our attention manipulation (attend left
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FIGURE3 | Lateralized (contralateral minus ipsilateral) response, and its topographical distribution. (a) Left: Grand average lateralized response
in the time domain data averaged across all set-size conditions and all electrodes, shown from baseline (—0.2 ms) until the end of retention (3.4s). The
shaded areas depict the standard error of the mean. The vertical dashed lines indicate (from left to right) the onset of the tone sequence, the onset of
the maintenance period, and the end of the maintenance period. The horizontal purple line indicates a significant lateralized effect (deviating from
0) collapsed across all four set-size conditions. Right: The topographical maps depict the magnitude of the overall lateralized effect (t-value) averaged
across four set-size conditions during the time window with significant lateralized effects. Electrodes where these effects are significant are marked
with an * (if any). (b) Left: Lateralized responses in the time domain data measured in the set-size 1 (red), 2 (blue), 3 (green), and 4 (black) conditions,
averaged across all electrodes. Right: The topographical maps depict the magnitude of the set-size effect (F-value) averaged across four set-size con-
ditions during the time window with significant lateralized effects. Panel (c, d) depict the same as panel (a, b), but for lateralized alpha-band power.

or attend right) was successful. However, we found no evidence
that auditory WM load was reflected in lateralized responses,
neither in the time nor in the frequency domain, suggesting that
the CDA is a modality-specific marker for visual WM load rather
than a supra-modal marker.

3.3 | Alpha-Band Power Decoding
3.3.1 | Timepoint-By-Timepoint Classification

We set out to test whether WM load could be decoded from
scalp patterns of EEG alpha-band oscillations. To this end, we
trained a linear SVM classifier to distinguish between patterns
of alpha-band power evoked by different set-size conditions. For
this first decoding analysis, the classifier was trained and tested
using data from the same time point in a trial (i.e., timepoint-
by-timepoint decoding), ranging from the onset of the memory
sequence to the end of maintenance period. The results of the
cluster-based permutation test showed that, overall, set-size
could be reliably decoded from alpha-band power from around
450ms after the onset of the memory sequence, until around
3000ms, thereby covering most of the encoding and mainte-
nance period (1 cluster, p<0.001, d,,,,, = 0.78; see Figure 4).
The independent searchlight analyses showed that the centro-
parietal electrodes were most informative to the decoding of

auditory WM load during the maintenance periods. Thus, au-
ditory WM load can be decoded from scalp patterns of alpha-
band power.

We then investigated for each pair of set-size conditions in-
dividually, whether they evoked discriminable scalp patterns
of alpha-band power (i.e., 1 vs. 2, 1 vs. 3, 1vs. 4,2vs. 3,2
vs. 4, and 3 vs. 4). As can be seen in the six smaller panels of
Figure 4, significant decoding during the maintenance period
was found for the set-size 1 versus 2 (1300-1750ms; 1 cluster,
p<0.001, d,,,,, = 0.71), set-size 1 versus 3 (1400-2200ms, and
2300-3000ms; 2 clusters, both p<0.01, d,,,,,,, = 0.66 and 0.60),
and set-size 1 versus 4 (1400-2650ms, and 2850-3050 ms; 2
clusters, both p<0.05, d,,., =0.78and 0.74). A visualiza-
tion of alpha power patterns during the maintenance period
is shown in Figure 5. These results showed that patterns of
alpha-band oscillations during the maintenance period can
distinguish between set-sizes of 1 and higher, but not between
set-sizes of 2 and higher (which are above the group-level ca-
pacity estimations).

3.3.2 | Temporal Generalization

In a final set of analyses, we set out to test whether the scalp
patterns of alpha-band power reflecting auditory WM load are
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FIGURE4 | Timepoint-by-timepoint decoding of scalp patterns of alpha-band (8-12Hz) power. All panels depict decoding accuracy (y-axis) as a

function of time (x-axis). The big panel depicts decoding accuracy averaged across all six pairwise comparisons (i.e., main effect set-size), which are

depicted individually in the surrounding smaller panels. Bold blue lines indicate significant above chance (50%) decoding, based on cluster-based

permutation testing to account for multiple comparisons. The vertical dashed-purple lines split time into the encoding and maintenance periods.

The topographical map depicts the most informative sites for distinguishing between set-size conditions during the maintenance period, based on

a separate searchlight analysis. Electrodes with significant information for distinguishing between set-size conditions are marked with an *. In the

small panels, the blue squares indicate the target tones, while the blurred squares indicate the white noise.

Patterns of alpha power during maintenance
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FIGURE 5 |
during the maintenance period for set-size 1, 2, 3, and 4 conditions.
Each row corresponds to one set-size condition, and each column shows
a topographic map averaged over a 200-ms time window within the
maintenance period.

stable, or vary dynamically over the course of the maintenance
period. To this end, we performed temporal generalization anal-
yses, whereby linear SVM classifiers were trained and tested on

data from all possible combinations of timepoints (thus yielding
a 2D decoding matrix, instead of a time-series). When consid-
ering all set-sizes together, we replicated the finding that set-
size can be decoded from scalp patterns of alpha-band power
during the maintenance period (from 400 to 3400ms, 1 cluster,
p<0.001, d,,.,, = 0.25). Importantly, the present analysis also
shows that significant set-size decoding (depicted in black in
Figure 6) is way more prevalent on-diagonal than off-diagonal,
indicating that the specific pattern of alpha-band power associ-
ated with different set-sizes varies over the course of the main-
tenance period.

These findings are largely confirmed when considering the six set-
size comparisons in isolation. As shown in the six smaller panels,
temporal generalization decoding during the maintenance period
revealed significant decoding for set-sizes 1 versus 2 (1400-1950 ms;
1700-3200ms, 2 clusters, both p<0.05, d, .., = 0.46 and 0.36), 1
versus 3 (1400-3250ms, 1 cluster, p<0.001, d,,,,,,, = 0.38), and set-
size 1 versus 4 (1450-3350ms, 1 cluster, p<0.001, d,,,,,, = 0.38).
Again, no significant decoding performance was found for set-
sizes 2 versus 3, 2 versus 4, and 3 versus 4, thus mirroring the re-
sults of the timepoint-by-timepoint decoding analysis.

In sum, we found that scalp patterns of alpha-band power
during the maintenance period reflect auditory WM load, with
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FIGURE6 | Temporal generalization decoding of scalp patterns of alpha-band (8-12 Hz) power. The big panel depicts decoding accuracy averaged
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data point corresponds to a classification analysis performed with training data from one time point (x-axis) and tested on another time point (y-axis).
Black data points in each plot indicate significant above chance (50%) decoding, based on cluster-based permutation testing to account for multiple
comparisons. The dashed-purple lines split time into encoding and maintenance periods. The topographical map depicts the most informative sites
for distinguishing between set-size conditions during the maintenance period, based on a separate searchlight analysis. Electrodes with significant

information for distinguishing between set-size conditions are marked with an *.

centro-parietal electrodes being most informative to distinguish
between set sizes. These load-specific EEG responses allowed us
to distinguish between load conditions up to the group-level ca-
pacity limitations, but not between load conditions exceeding this
limit, as established from the behavioral data (i.e., around K=2).
Interestingly, the specific patterns of alpha-band power that re-
flected specific set-size conditions evolved dynamically across the
maintenance period, suggesting the dynamic coding of auditory
WM load.

4 | General Discussion

In the present study, we set out to investigate whether auditory
WM load is reflected in lateralized neural responses, akin to
the CDA for visual WM load. We further attempted to iden-
tify other (non-lateralized) load-dependent neural markers of
auditory WM, using multivariate pattern analysis (MVPA). To
these aims, we recorded EEG while participants were holding
the pitches of 1, 2, 3, or 4 tones in WM for a subsequent audi-
tory recognition task. The behavioral results showed that au-
ditory WM capacity plateaued between two and three tones.
Two key findings emerged from the analyses of EEG data.
First, although we identified a lateralized (CDA-like) response

during the maintenance period, this response did not scale
with set-size; neither in the time nor in the frequency (alpha
oscillation) domain. Thus, we found no evidence that WM load
was reflected in lateralized responses. Second, using MVPA,
we found that scalp patterns of alpha-band power during the
maintenance period reflected auditory WM load. These load-
specific EEG responses were mostly confined to bilateral
centro-parietal channels, and allowed us to distinguish be-
tween set-size conditions up until—but not above—group level
capacity limitations (i.e., about 2 items, based on the behav-
ioral data). Interestingly, we also found that the scalp patterns
of alpha-band power reflecting specific auditory WM were not
stable across the maintenance period. Instead, these patterns
dynamically changed across the maintenance period, with pat-
terns evoked at the start of the maintenance period barely gen-
eralizing to patterns at the end of the interval, and vice versa.
In short, our results show that dynamic scalp patterns of alpha-
band power can be used as a novel neural marker of auditory
WM load. In the following sections, we will first discuss what
it means that (unlike for visual WM load) auditory WM load is
not reflected in lateralized responses. Then, we will elaborate
on the scalp patterns of alpha power that were shown to track
auditory WM load, and discuss what they tell us about the neu-
ral coding of auditory WM.
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4.1 | No Lateralized Responses to Auditory
WM Load

In the current study, we identified a lateralized univariate
response during the WM delay, akin to the CDA for visual
WM. Control analyses indicated that the observed lateral-
ized response is unlikely to be driven by eye movements (see
Supporting Information S1 for more details). Unlike the CDA,
however, we found no evidence that the lateralized response
to auditory WM was modulated by load, neither in the time
nor in the frequency domain. That is, whereas the amplitude
of the CDA increases when visual WM load increases, the lat-
eralized responses to auditory WM load observed in our study
did not differ between load conditions. This raises the ques-
tion of why auditory WM load is not reflected in lateralized re-
sponses, while visual WM load is, even when both require the
maintenance of lateralized sensory input? We approach this
question from a cognitive, an anatomical, and a functional
perspective.

From a cognitive perspective, our results can be framed in
the context of the multi-component model of WM, proposed
by Baddeley and Hitch (1974). The absence of a lateralized
response to auditory WM load suggests that the CDA, as ob-
served for visual WM, may reflect load in the visuo-spatial
sketchpad specifically, rather than load in the domain-general
central executive or episodic buffer. Thus, although regulating
the quantity of information in WM (i.e., load) may be regarded
as an executive process, sustained neural responses tracking
visual WM load (i.e., the CDA) may instead be more sensory-
like and depend on the specific content that is maintained in
WM. This may explain why neural markers of WM load are
not so much observed in frontal electrodes—that are typi-
cally associated with executive processes—but tend to arise in
sensory-specific processing regions. That is, the CDA is typi-
cally most pronounced in posterior electrodes for visual WM,
and we found neural responses tracking auditory WM load
(scalp patterns of alpha power, discussed below) to arise pre-
dominantly around centro-parietal electrodes. Accordingly,
different modalities may rely on qualitatively distinct storage
mechanisms. However, as our data are restricted to the audi-
tory modality, further cross-modal investigations are needed
to directly assess this distinction.

From an anatomical perspective, the differences between vi-
sual and auditory WM may be due to the difference in the vi-
sual and auditory processing pathways, leading from sensory
receptors to the cortex. For the visual pathway, due to the optic
chiasm, items presented in the left hemifield are projected to
the right primary visual cortex, whereas items presented in
the right hemifield are projected to the left primary visual cor-
tex (De Moraes 2013; Rodieck 1979). Thus, these hemisphere-
specific responses during stimulus encoding may foster a
difference between contralateral and ipsilateral responses
during the WM delay, when items on one side are to be re-
membered while items on the other side are to be ignored. In
the case of auditory processing, however, the input to each ear
is first extensively processed and combined subcortically, be-
fore being projected to the left and right primary auditory cor-
tex (Pickles 2015). Specifically, the superior olivary complex
receives information from both contralateral and ipsilateral

ears to support sound localization. Then the auditory infor-
mation is projected to both contralateral and ipsilateral sides
of the superior colliculus (Hackney 1987), before projecting
to the primary auditory cortices. Thus, for the auditory path-
way, tones presented via the left or right ear activate both the
left and right auditory cortex, albeit with a bias toward the
contralateral auditory cortex (Lipschutz et al. 2002; Woldorff
et al. 1999). This slight contralateral dominance in auditory
processing might explain the overall lateralized responses
that we observed during the WM delay. Importantly, however,
contralateral dominance is much weaker in auditory process-
ing than in visual processing because auditory input from
both ears is largely integrated subcortically (Schwartz 1992).
This reduced lateralization during auditory processing may
explain the absence of a load-dependent modulation in later-
alized responses for auditory WM load.

From a functional perspective, the reason for why we did not
find a lateralized response to auditory WM load might stem
from the different organizational principles of auditory com-
pared to visual information. In visual WM tasks, visual infor-
mation is processed via spatial coding, while in auditory WM
tasks, auditory information may be processed predominantly
through temporal coding. For instance, while it is known that
observers use spatial location as an organizational principle
to help maintain visual information (even if the spatial loca-
tion is irrelevant for the task at hand (Arora et al. 2025; van
Ede et al. 2019)), several studies have shown that auditory spa-
tial information only has an effect on working memory and
perception when space is relevant for the task at hand (Klatt
et al. 2018a, 2018b). In the current study, the spatial location
of the to-be-memorized array was irrelevant for the auditory
WM recognition task. In contrast to the spatial organization
observed during the maintenance of visual WM items, the
maintenance of auditory WM items (such as pitches of pure
tones) may be organized within a temporal reference frame, by
iterating through the different items over time. This interpre-
tation fits well with the classical example of the phonological
loop (the auditory counterpart of the visuo-spatial sketchpad)
as the repetition of sequences of items over time, such as the
digits of a to-be-memorized phone number. In this case, at
any given timepoint (in a singular brain area), although load
may influence the overall system state, the number of items
concurrently represented in working memory at each point in
time is always 1. If auditory WM items are indeed segregated
over time rather than over space, then their location is un-
likely to be encoded or retained, and thus a lateralized neural
response to load would not be expected to scale with set-size.
The finding that our neural markers of auditory WM load
(scalp patterns of alpha oscillations) appear to change over
the course of the maintenance period (see below) is very much
in line with this idea of temporal coding. Following the same
line of reasoning, we also consider it unlikely that presenting
sounds from different horizontal locations within the same
hemifield would produce lateralized ERP responses that scale
with set-size.

Another possible explanation is that participants may have
perceptually grouped the sequential tones into a melodic
structure, thereby reducing the item-specific set-size effect.
However, our task design discouraged such strategies by
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using single-tone probes, and previous studies observed load-
dependent ERP effects under similar sequential presentations.
Moreover, behavioral results revealed a capacity plateau at
around two items, consistent with item-based working mem-
ory. Thus, while we cannot fully rule out melodic encoding, it
is unlikely to be the sole factor underlying the null ERP load
effect.

Notably, given the similarity between our paradigm and the
original SAN studies (Alunni-Menichini et al. 2014; Lefebvre
et al. 2013), we examined whether auditory working memory
load was reflected in non-lateralized neural responses during
the maintenance period. To this end, we tested for differences
between set sizes using both univariate ERP responses and
multivariate decoding of scalp voltage patterns (see Supporting
Information S1 for more details). In short, during the encod-
ing period, we observe clearly distinct EEG responses to target
pure tones compared to white noise distractors, which were
also reflected in the distinct time windows of significant decod-
ing across set-size comparisons (e.g., 1 vs. 4, compared to 3 vs.
4). Although a sustained anterior negative wave was observed
during the maintenance period, both univariate and multivar-
iate analyses revealed that EEG responses during the delay
were not reliably modulated by set size. Thus, non-lateralized
responses did not scale with set size in the current study.

Taken together, the absence of both lateralized and non-
lateralized ERP set-size effects during the maintenance period
suggests that, at least in the present paradigm, ERP activity did
not reflect abstract non-spatial working memory representa-
tions. This interpretation is consistent with the view that previ-
ously reported lateralized effects (such as CDA) may be tied to
spatially specific, sensory-like storage mechanisms (e.g., Klaver
et al. 1999; Talsma et al. 2001).

4.2 | Alpha Patterns Reflecting Auditory WM Load

In recent years, multivariate pattern analysis has become in-
creasingly prominent in working memory research, provid-
ing sensitive measures of internal memory states beyond what
univariate ERPs can reveal. A growing body of recent visual
WM studies has shown that multivariate EEG decoding also
provides a sensitive and reliable measure of visual working
memory load (Adam et al. 2020; Jones, Diaz, et al. 2024; Jones,
Thyer, et al. 2024; Thyer et al. 2022; Yu and Lau 2024; Yu and
Lau 2025; see Awh and Vogel 2025, for review). Notably, a recent
cross-modal study demonstrated that both visual and auditory
WM load can be decoded from broadband EEG signals (Suplica
et al. 2025). Our decoding findings contribute to this growing
body of literature by focusing on auditory WM, showing that
auditory WM load can be decoded from scalp patterns of alpha-
band activity, and that these load-related patterns change dy-
namically during the maintenance interval.

First, using both timepoint-by-timepoint decoding and tem-
poral generalization decoding, we found that scalp patterns of
alpha-band power during the delay period allowed distinguish-
ing between individual load conditions up until WM capacity
limitations (set-size 1 vs. 2, 1 vs. 3, 1 vs. 4). In contrast, patterns
of alpha-band power during maintenance could not distinguish

between load conditions that exceeded capacity limitations
based on the behavioral results (set-size 2 vs. 3, 2 vs. 4, 3 vs. 4).
The correspondence between these behavioral results and de-
coding results further substantiates that patterns of alpha-band
power specifically reflect auditory WM load. The differences
in alpha-band power patterns between load conditions might
reflect content-invariant differences in executive demands: for
instance, competition between items or switching from one item
to another during the delay, which scales with the number of
tones held in working memory (Leiberg et al. 2006). The more
tones held in memory, the more resources had to be allocated
over areas where representations of the to-be-memorized stim-
uli are presumably stored. Importantly, the topographical maps
reveal that alpha power patterns were most pronounced in the
set-size 1 condition, but their overall amplitude decreased with
increasing WM load (set-size 2-4), indicating an overall atten-
uation of alpha activity as more items were held in working
memory. This decrease is consistent with recent accounts that
interpret attenuated alpha activity as reflecting stronger recruit-
ment of task-relevant sensory areas for mnemonic retention and
attentional prioritization (Fukuda et al. 2015; van Ede 2018).
Notably, previous studies have also found alpha power increase
with working memory load. In these studies, the role of alpha
oscillations is interpreted to reflect top-down inhibition of task-
irrelevant sensory input and/or task-irrelevant neural processes
(Kaiser et al. 2007; van Dijk et al. 2010; Wilsch and Obleser 2016).
Most of the studies, however, compared responses in a memory
task to that of a non-memory control task and found stronger
alpha-band power in the memory task. Therefore, during the
maintenance period in the memory task, participants had to
inhibit irrelevant information for successful retention while
participants did not need to do so in the non-memory control
task. In the current study, we instead compared different load
conditions. In these different load conditions, the number of to-
be-remembered items (presented to the attended side) varied,
but the number of to-be-ignored distractor items (presented to
the unattended side) was constant. The set-size of the distrac-
tors, therefore, did not covary with the set-size of the memory
items. As such, the differences in scalp patterns of alpha-band
power between set-size conditions reflect WM load, rather than
distractor inhibition. Thus, our findings reveal the role of alpha
oscillations in the maintenance of information in auditory WM.

Second, the absence of generalization between the encoding and
maintenance period (in our temporal generalization analyses)
indicates that our significant decoding during the maintenance
period specifically reflects maintenance-related processes,
rather than residual signals from the encoding period. Focusing
on the maintenance period, our temporal generalization analy-
ses suggest that the scalp patterns of alpha-band power associ-
ated with specific WM loads are not stable over time, but change
over the course of the maintenance period. One possible inter-
pretation of this is that auditory WM load is inherently repre-
sented through dynamic coding (akin to visual WM content; see
Stokes 2015). In the context of load, changing neural representa-
tions may also reflect the interplay, over time, between sensory
regions involved in maintenance and frontal regions involved
in executive processes. Another potentially related possibility
could be that participants were maintaining the different pitches
sequentially (i.e., as they were presented). In this scenario, the
changing patterns of alpha-band power associated with specific
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load conditions may reflect the duration of the sequence or the
number of consecutive items in a sequence. It should be noted,
though, that in the later stages of the delay period, we did ob-
serve some off-diagonal decoding, indicating some temporal
generalization of the load-specific responses. This may either
reflect smearing out of the load-specific responses as they de-
synchronize over time, or it may reflect the stabilization of the
memory content into a format that is relevant for the upcoming
test (the timing of which was predictable). During most of the
delay period, however, decoding of individual load conditions
was substantially more pronounced on the diagonal compared
to the off-diagonal. We therefore conclude that, overall, patterns
of alpha-band power reflecting auditory WM load change dy-
namically during the maintenance period. Future research is
needed to understand what cognitive processes or storage mech-
anisms underlie these dynamics.

Finally, if neural markers of WM load (such as scalp patterns
of alpha-band power) are modality specific, they would be ex-
pected to mostly involve sensory processing regions. Indeed,
we found that bilateral centro-parietal electrodes were most
distinguishable to the decoding of auditory WM load during
the maintenance periods, rather than posterior or frontal elec-
trodes in visual working memory studies. Previous studies
have shown the involvement of temporo-parietal regions, in-
cluding auditory cortex and supramarginal gyrus, in auditory
WM (Gaab et al. 2003; Grimault et al. 2014; Koelsch et al. 2009).
Consistently, here the searchlight analyses revealed that pat-
terns in bilateral centro-parietal were most distinguishable
across set-sizes in classification. This is in line with the sensory
recruitment hypothesis (Gayet et al. 2018; Katus et al. 2015;
Scimeca et al. 2018; Silvanto and Soto 2012), which has been
more extensively studied in visual WM and proposes that the
same neural populations that represent sensory features during
perception are also recruited during WM maintenance, thereby
reducing cortical redundancy.

Taken together, our decoding results identified alpha-band pat-
terns as a neural marker of auditory working memory load, re-
flected in reduced alpha activity. Such decreases are commonly
interpreted as stronger sensory recruitment, which is consis-
tent with our searchlight analyses showing that centro-parietal
channels were most informative in distinguishing set-size
conditions. This interpretation is also in line with accounts of
temporal coding (e.g., rehearsal) in auditory working memory,
in which repeating tones are thought to be maintained within
auditory cortical areas. Moreover, our temporal generalization
results revealed dynamically changing load-related patterns,
further supporting the view that auditory WM relies on tempo-
rally coded rehearsal of pure tones within auditory cortex, in
line with the sensory recruitment hypothesis.

4.3 | Limitations

One may argue that the capacity of auditory WM is relatively
low (around 2 tones) in the current study. However, this rela-
tively low capacity is largely consistent with previous studies
(Alunni-Menichini et al. 2014; Li et al. 2013; Prosser 1995), in
which researchers also found the maximum capacity of auditory
WM was 2.8, 2.9, and 2 pure tones, respectively. It should be

noted that calculations of WM capacity are estimates, and do not
reflect perfect measurement of WM capacity. Indeed, capacity
estimates should theoretically remain constant across set-size
conditions, but the estimate of WM capacity K is known to vary
when large differences in set-size are used (Rouder et al. 2011).
Thus, it is unclear whether auditory WM capacity in our study
should be estimated to be around 2 items (the actual capacity
estimate K) or at ~3-4 items (the set-size conditions at which the
capacity estimate K started to plateau). Could the challenging
dichotic presentation tasks employed in our study have reduced
capacity estimates? Studies using binaural stimulation typically
show that observers can ignore the unattended auditory stream
with little to no effort, yielding virtually no interference to the
processing of the attended auditory stream (Alho et al. 1994;
Carpenter et al. 2002). Thus, the use of binaural stimulation is
unlikely to have substantially reduced capacity estimations in
our study. Taken together, the present behavioral results cannot
be taken to reflect a universal auditory WM capacity limit, but
they do demonstrate the relatively low capacity as compared to
(for instance) visual WM in similar task designs.?

Another potential limitation is that we manipulated the to-be-
attended side in a block-wise rather than trial-wise manner.
The majority of visual WM studies reporting CDA effects used
trial-wise cueing, which could be argued to enhance lateralized
responses. We opted for a block design to minimize confusion
in our challenging dichotic auditory task, following extensive pi-
loting. Importantly, however, earlier work has reported reliable
visual CDA effects using blocked designs (e.g., Katus et al. 2015),
suggesting that CDA components can be successfully elicited
and measured under blocked conditions. Thus, it seems unlikely
that the absence of CDA effects in the current study is solely due
to the blocked design.

A final limitation concerns statistical power for detecting set-size
differences in lateralized ERP responses. According to Ngiam
et al. (2021), although our sample size and trial numbers (N=21;
~96 trials per set-size condition) provide high power to detect
the presence of an overall lateralized ERP response, substan-
tially more participants and trials are needed to robustly detect
set-size effects. Their simulations indicate that approximately
390 clean trials per condition with 25 participants are needed
to detect a difference in visual CDA amplitude between set-size
2 and set-size 4 conditions. Thus, we interpret our findings as
yielding no evidence for lateralized load effects, rather than pro-
viding evidence for the absence. Future studies with more power
are needed to detect potential small but reliable CDA-like differ-
ences across set-size conditions in the auditory domain.

5 | Conclusion

In conclusion, we observed two main findings in the current
study. First, we found no evidence that auditory WM load is
reflected in lateralized responses—neither in the time nor in
the frequency domain. This implies that CDA-like responses
as observed for visual WM load are vision-specific rather than
domain-general markers of WM load. The lack of location-
specific response further suggests that auditory WM is not
inherently spatially organized, as is the case for visual WM.
Second, using multivariate pattern analyses, we found that scalp
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patterns of alpha-band power during the maintenance period
reflect auditory WM load. Interestingly, patterns of alpha-band
power reflecting specific load conditions were changing dynam-
ically over the course of the maintenance period, revealing that
(1) principles of dynamic neural population coding—which is
known to underly the storage of WM content—may also be ex-
tended to executive WM processes, and (2) auditory WM may
be inherently temporally organized, reflecting the repetition of
information streams over time.
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Endnotes

LA more strict criterium (eye movement correction plus ADJUST)
did not change the lateralized ERPs and alpha power results (see
Supporting Information S1 for more details).

2The grand-average ERP responses in all eight conditions can be found
in Supporting Information S1.

3Unlike tasks where verbal labeling is possible, which can greatly in-
crease WM capacity, participants in the present study could not rely on
such a strategy. This may have contributed to the observed relatively
low capacity estimates.
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Supporting Information

Additional supporting information can be found online in the
Supporting Information section. Figure S1: An example of one partici-
pants’ frontal channel data before and after ICA and eye-movement cor-
rection, both at the single-trial level (a) and across the entire recording
(b). Figure S2: Lateralized (contralateral minus ipsilateral) responses,
and their topographical distributions. (a) Left: Grand-average lateral-
ized responses in the time-domain data averaged across all set-size con-
ditions and all electrodes, shown from baseline (—0.2 ms) until the end
of retention (3.4s). The shaded areas depict the standard error of the
mean. The vertical dashed lines indicate (from left to right) the onset of
the tone sequence, the onset of the maintenance period, and the end of
the maintenance period. The horizontal purple line indicates a signifi-
cant lateralized effect (deviating from 0) when collapsing across all four
set-size conditions. Right: the topographical maps depict the magnitude
of the overall lateralized effect (t-value) averaged across four set-size
conditions during the time window with significant lateralized effects.
Electrodes where these effects are significant are marked with an * (if
any). (b) Left: lateralized responses in the time-domain data measured
in the Set-size 1 (red), 2 (blue), 3 (green), and 4 (black) conditions, av-
eraged across all electrodes. Right: The topographical maps depict the
magnitude of the set-size effect (F-value) averaged across four set-size
conditions during the time window with significant lateralized effects.
Panel (c) and (d) depict the same as Panel (a, b), but for lateralized alpha-
band power. Figure S3: The grand average ERPs across participants
for all 8 conditions (2 attend-side * 4 set-size) from —1s until the end of
retention (3.65s), separated into frontal (Fpl, Fp2, AF3, AF4, F7, F3, Fz,
F4, F8, FC5, FC1, FC2, FC6) and posterior (CP5, CP1, CP2, CP6, P7,
P3, Pz, P4, P8, PO3, PO4, 01, Oz, 02) electrode clusters. The vertical
dashed lines indicate (from left to right) the onset of the tone sequence,
the onset of the maintenance period, and the end of the maintenance
period. Figure S4: Non-lateralized responses, and their topographical
distributions (averaged across the delay), separately for the set-size 1,
2, 3, and 4 conditions. Left: Non-lateralized responses in the time do-
main data measured in the set-size 1 (red), 2 (blue), 3 (green), and 4
(black) conditions. The vertical dashed lines indicate (from left to right)
the onset of the tone sequence, the onset of the maintenance period,
and the end of the maintenance period. Right: The four topographical
maps depict the magnitude of the non-lateralized responses in set-size
1, 2, 3, and 4 conditions during the maintenance period. Figure S5:
Timepoint-by-timepoint decoding of scalp voltage patterns. All panels
depict decoding accuracy (y-axis) as a function of time (x-axis). The big
panel depicts decoding accuracy averaged across all six pairwise com-
parisons (i.e., main effect of set-size), which are shown individually in
the surrounding smaller panels. Bold blue lines indicate significant
above chance (50%) decoding, based on cluster-based permutation tests
to account for multiple comparisons. The vertical dashed-purple lines
split time into the encoding and maintenance periods. In the small pan-
els, the blue squares indicate the target tones, while the blurred squares
represent the white noise.
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