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Geothermal energy plant operations are significantly influenced by uncertainties in key parameters and pro-
cesses, including the variability heating demand in the built environment compared to the more stable demand in
horticulture, necessitating a robust framework for real-time decision-making. This paper introduces a novel
robust optimization framework to enhance geothermal plant performance under uncertain heating demand. The
proposed method integrates a genetic algorithm with a geothermal plant simulator, optimizing dual objectives:
emission reduction and profit maximization. Operational constraints are incorporated via penalties in the
objective function. The approach identifies distinct control strategies for each objective, effectively capturing
varying operational behaviors and demonstrating adaptability to different performance goals. Results from the
numerical case study indicate that, under the considered modelling assumptions, robust optimization delivers
more resilient and effective control strategies across all considered realizations of uncertain heat demand
compared to deterministic optimization. For a fixed daily heat demand, the robust approach achieved a 5.9 %
reduction in emissions and a 1.4 % increase in profit compared to the best deterministic scenario. These findings
underscore the potential of robust optimization in addressing uncertainties and improving the operational ef-

ficiency of geothermal energy plants.

1. Introduction

Geothermal energy plays an increasingly important role in the en-
ergy transition and offers a sustainable and reliable solution for decar-
bonizing heating and cooling in buildings, industrial processes, and
agriculture [1]. Its widespread availability beneath the Earth’s surface
makes it a promising alternative to fossil fuels, with the potential to
significantly reduce greenhouse gas emissions. The deployment of
geothermal energy faces challenges such as high upfront costs, inte-
gration into heating and cooling networks, and operational challenges
which currently supply less than 2 % of Europe’s demand [2,3]. Despite
an extensive operational experience in geothermal plants, characterized
by a steep learning curve with ongoing operational knowledge acqui-
sition, the sector is still in an emerging phase. The operation of
geothermal plants is often associated with several challenges caused by
the complex geothermal production behavior [4] and geothermal fluid
compositions [5]. Operators require support to make effective decisions

in managing geothermal plants, as complex fluid compositions and
reservoir behaviors demand continuous monitoring and precise adjust-
ments. Decision-support tools and predictive models can assist operators
by providing insights into optimal operational strategies, helping to
maintain system stability and maximize energy production under
varying conditions.

Uncertainties in geothermal operation significantly impact the effi-
ciency, reliability, and economic feasibility of the energy system [6,7].
These uncertainties arise from various sources, including unpredictable
geological and reservoir conditions [8], variations in geothermal fluid
composition [9], and performance of equipment [10]. Such factors can
alter the thermal output and energy yield, challenging operators to
maintain optimal performance. Additionally, uncertainties in demand
and energy prices add layers of complexity to operational planning. One
of the main goals of the geothermal plant operation is to supply the heat
demand efficiently and sustainably either to the greenhouses, buildings
or districts. The daily and seasonal variability in the heat demand [11]

This article is part of a special issue entitled: Geothermal heating-cooling published in Renewable Energy.
* Corresponding author. Environmental Technology, Wageningen University & Research, Bornse Weilanden, Wageningen, the Netherlands.

E-mail address: pejman.shoeibiomrani@tno.nl (P. Shoeibi Omrani).

https://doi.org/10.1016/j.renene.2025.124805

Received 17 December 2024; Received in revised form 10 August 2025; Accepted 20 November 2025

Available online 21 November 2025

0960-1481/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


https://orcid.org/0000-0002-6937-097X
https://orcid.org/0000-0002-6937-097X
https://orcid.org/0000-0003-4791-6510
https://orcid.org/0000-0003-4791-6510
mailto:pejman.shoeibiomrani@tno.nl
www.sciencedirect.com/science/journal/09601481
https://www.elsevier.com/locate/renene
https://doi.org/10.1016/j.renene.2025.124805
https://doi.org/10.1016/j.renene.2025.124805
http://creativecommons.org/licenses/by/4.0/

P. Shoeibi Omrani et al.

can impose more challenges to the operational and production decisions
in the geothermal plants. In the context of built environment, next to the
variability of the heat demand, the uncertainties in the heat demand can
have a large impact on the operational excellence [12,13] and COy
footprint of the energy supply. This unpredictability necessitates robust
strategies to optimize system performance under uncertain conditions,
such as adaptive controls, predictive maintenance, and scenario-based
planning, ensuring that geothermal systems remain cost-effective and
resilient while maximizing energy extraction.

Optimization methods can be used to maximize the geothermal
production performance by optimizing different types of decision and
control variables such as the change in the geothermal production and
the use of auxiliary components while adhering to operational con-
straints [14]. Due to the presence of various control parameters and
constraints, this results in a high-dimensional, non-convex, and con-
strained optimization problem. In addition, the optimization process
should be conducted with consideration of the inherent uncertainties
that arise from the limited knowledge on the variability of the processes
and heat demand.

These uncertainties can impact design and operational decisions in
the geothermal plants. Such practices are broadly studied and demon-
strated in the petroleum industry [15,16] and started to get more
attention in the geothermal industry. We have performed a literature
review to survey available studies in the geothermal plants for design
and operation optimization. For such a literature survey, the ground
source heat pump systems were excluded due to the difference in the
type and mechanisms of these systems, scale, and interaction with
geothermal reservoirs. In addition, the literature for both direct-use and
power production applications were collected. A summary of the
available literature, up to current date, can be found in Table 1.

One of the initial findings was that most current studies and litera-
ture focus on using optimization for the design and operation of
geothermal plants dedicated to power production. Recently, a few

Table 1

List of available literature for employing numerical optimization for the design
and operation of geothermal plants for both direct-use (heating) and power
production applications, note that ground-source heat pumps were excluded
from the overview.

Reference  Application Phase Uncertainty
Direct- Power  Design/ Operation
use Planning
[18]; X v v X X
[19%;
[20];
[21];
[22];
[231;
[14]
[24] X v v v X
[25]; x v x v X
[26];
[27];
[28];
[291;
[30];
[31];
[6]; X v v X v
[32]
[33]; v X v X v
[34];
[35]
[17]; X v x v v
[71
[36] v v X v X
[37] v X X v X
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studies have also addressed optimization under uncertainties for the
design of both direct-use and power production geothermal plants.
Additionally, long-term production strategies under uncertainty in
geothermal plants have been explored [7,17]. However, to the authors
knowledge, no studies to date have examined the operational optimi-
zation of direct-use geothermal plants under uncertainties.

This paper aims to highlight the impact of demand uncertainties on
the operation and control of geothermal plants for direct-use (heating)
applications which have not be studied in literature. Its primary
contribution lies in demonstrating a robust optimization approach for
controlling geothermal plants with various operational strategies and
objectives under uncertainty. The paper is organized as follows: first, the
case study is introduced, including a description of the numerical
simulator (details provided in Annex 1). Next, the mathematical opti-
mization problem is formulated, encompassing objective functions,
constraints, and the employed optimization algorithm, which is applied
to the case study. Subsequently, the results of the robust optimization for
different objective functions are presented and discussed. Finally, the
paper concludes with key findings and suggestions for future research.
To the best of the authors’ knowledge, this is the first study to address
uncertainty in the control and optimization of geothermal plants for
short-term operational decisions. The methods proposed in this study
are considered novel in this context.

2. Physical system modeling assumption

In order to demonstrate the optimization under uncertainty on the
operational decisions of geothermal plants, an example of low-enthalpy
hydrothermal geothermal plant was selected. The schematic of a
geothermal plant which is used in this study is shown in Fig. 1. Each
geothermal plant can have different components and equipment; in
Fig. 1 a relatively detailed geothermal plant is sketched which was
inspired by a real geothermal plant in the Netherlands. The geothermal
plant consists of a primary system and the secondary system. The
different components in the primary side of the geothermal plant
contain the geothermal wells (producer: hot side and injector: cold side),
gas-liquid separator, filters, heat exchangers, electrical submersible
pump (ESP) and injection booster pump. On the secondary side,
different auxiliary equipment such as a gas dryer, gas boiler and a
combined heat and power (CHP) unit is installed.

In the primary system, the geothermal production facility consisted
of a producer and an injector well. In this paper, the reservoir pressure is
considered to be 240 bars with the productivity index (PI) of 10 m3/
(bar.h). The wells are vertical and have the depth of 2000 m (the Dutch
geothermal gradient varies between 31 and 35 °C/km) which enables
the production temperature of 70-80 °C. The geothermal brine has a
high salt content of 200 kppm (NaCl equivalent) with an assumed
density of 1180 kg/m3, the specific heat capacity of 4.2 kJ/(kg.C), dy-
namic viscosity of 0.35 mPa s and the temperature dependency of the
fluid properties is not considered in this case study. The geothermal fluid
is produced with associated gas with a gas-liquid ratio of 0.5 Nm3/m3,
(N denotes the normal condition at the temperature of 0 °C and pressure
of 101.325 kPa). The majority of the produced gas is assumed to be
methane and CO3. The actual volume of the produced gas will depend on
the production rate and the wellhead pressure. Most of the Dutch wells
are being operated at a slightly elevated pressures to keep the CO; dis-
solved in the brine solution and minimize the calcium carbonate scaling
[38]. Geothermal fluid is being produced in production well assisted by
an ESP. The ESP installation depth of 650 m and the tubing size of 0.15
m. A gas-liquid separator is installed to separate the by-produced gas
from the brine and control the top-side pressure of the geothermal well.
The brine will go through a set of filters, and then a heat exchanger to
transfer the heat from the geothermal brine to the secondary side of the
plant. The colder brine will be injected into the geothermal reservoir
through an injector well.

On the secondary side, the separated gas will be dried and will be fed
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Fig. 1. Schematic of the geothermal plant and its components including both primary and secondary systems.

into the gas boiler or a CHP unit for providing additional heat and
power. The additional heat can be combined with the thermal energy
extracted from the geothermal brine to be supplied to the demand side
(district heating grid, space heating or a greenhouse). The additional
power generated in a CHP can be used to power the electrical equipment
in the geothermal plant, such as ESP and injection pumps. The CHP, in
this case, will work with the produced gas from the geothermal doublet,
denoted by ¢8*¢%, and additional gas which can be taken from the gas
grid, denoted by q8%€™. Part of the total gas (qgs) will be fed into the

boiler (uggyqs) and the rest will be fed to the CHP unit ((1 — U) Ggqs), SEC

Fig. 1. In addition to delivering electricity to pumps the CHP may heat a
part of the cooled down fluid stream ¢* that is divided among the CHP
((1 — v)q°) and the Heat exchanger (vq*). The fractions u and v are
control variables of which its values to be derived so to maximize a
chosen objective. Other control variables of the plant are the ESP fre-

quency fP, the producer’s well head pﬁ/md, the amount of gas g&®€
taken from the gas grid, and g° which is the flow rate of the fluid in the
secondary system. The parallel integration of geothermal heat and CHP
in this case study reflects actual configurations observed at operational
sites for which process data were available. While a series connection at
the highest temperature could be more optimal from an exergetic
perspective, the chosen setup ensures the case study remains represen-
tative of a real-world layout.

An in-house developed solver was used for solving the primary and
secondary system in the example geothermal plant. Since, the produc-
tion in the primary system of geothermal plants is pressure driven, the
solver is based on nodal analysis. Nodal analysis is a systematic method
used for subsurface production systems to simulate and optimize pro-
duction systems by evaluating inflow and outflow across each compo-
nent, from reservoir to surface equipment with a broad application area
from well performance prediction to artificial lift design to equipment
sizing [39].

To briefly explain the steps used by solver to simulate the geothermal
plant;

1) Determine the flow rate ¢” of the primary system using nodal analysis
between the producer well, ESP and near wellbore (reservoir). This
calculation involves the components describing vertical lift

performance (VLP) of the producer, ESP and inflow performance
relation (IPR) of the aquifer.

2) Calculate all downstream components and nodal pressures for the
primary system. The bottom hole and wellhead pressures of the
injector is calculated give the flowrate ¢P calculated through the IPR
and the injector’s VLP.

3) Calculate the intake temperature T}, of the heat exchanger at the
primary system given a measured temperature, in this case the
reservoir temperature (no heat loss is assumed in the geothermal
plant)

4) Calculate the discharge temperatures T5,, and T
and the flow rate ¢* of the secondary system.

5) Calculate the downstream temperatures of the system using T, and
T; > calculated in 5. Auxiliary components in the secondary side, will

provide additional heat or power based on the proposed control

settings (meaning the value of the control variables used in a model
evaluation).

.« With input T9 | T%,

The solver is written in python, the nodal analysis resulting in a root-
finding problem for the flowrate gP is solved through a bisection method
using the root_scalar method from the scipy.optimize python library. A
detailed description of the models used for different components can be
found in the Annex section. In addition, a detailed description of the
solver and the model is presented by Ref. [37].

For the primary side of the geothermal plant, except for the wells, no
pressure loss is considered. The plant components, e.g. filter, heat
exchanger, separator, CHP and boiler are simulated using fast-to-
evaluate steady-state models (further explained in Annex 1). For the
filter and separator model, a pressure and temperature drop between
intake and discharge can be provided. For the heat exchanger a steady-
state counterflow model is used based on the NTU-method. The boiler
model sets the water heat rate equals to the power generated by the gas
fuel with an efficiency factor (assumed to be 0.8). For the CHP model we
assume that 1/3 of the power generated by the fuel is converted to
electricity and the remaining power is used for the heat generation. The
calorific value of the gas entering the boiler and/or CHP is 50 MJ/kg.
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3. Methodology

In this section the methodology of the problem is described. Fig. 2
illustrates the workflow of the proposed optimization framework for the
geothermal plant operation under demand uncertainty. This flowchart
provides a visual representation of the sequential steps involved in our
framework, facilitating a comprehensive understanding of its operation.
The process initiates with the definition of initial control settings and a
geothermal plant model. Separately, the demand uncertainty needs to be
defined in terms of its probability distribution function or any descrip-
tion that can be used by the optimization algorithm for the propagation
and evaluation of these uncertainties. Based on the initial or proposed
control settings, the objective function is evaluated over all possible
demand realizations, and the corresponding objective values are ob-
tained. These values are then utilized by the optimization algorithm to
determine optimal control strategies. The process iterates until the
termination criteria are met, at which point the final optimal results are
determined.

Mathematically, the control problem is formulated as a two-stage
scenario-based stochastic optimization (SBSO) problem. In this frame-
work, the decisions in the first stage correspond to the “here and now”
decisions, which are common across all scenarios. In contrast, the de-
cisions in the second stage are “wait-and-see” decisions, optimized for
each individual scenario. A standard approach in SBSO for a risk-neutral
decision-maker is to optimize the expected value of the objective func-
tion, averaged across all scenarios [40].

Initial control x,
k=0

l«
v

Evaluate the objective
function for the proposed
controlfor each realization
rp:J(xen), i=1,..M

A 4
Calculate the mean
objective function: J (x)

An improved control is
calculated xj, = Xpew

Converged?
no

Output optimal result

Fig. 2. Schematic of the optimization workflow. It starts with an initial guess xo
of the control. In an iterative process the optimizer calculates improved control
until the objective function improvement is below a tolerance ¢ > 0,i.e. [J(xx) —
Te1)|/T0x 1) < e
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SBSO serves as a general framework that accommodates various risk-
handling strategies. In a risk-neutral setting, the objective function is
typically formulated to optimize the expected value across all scenarios
[42]. Alternatively, risk-averse approaches include chance-constrained,
CVaR-based, or robust optimization formulations [41], depending on
how uncertainty is treated in the objective and constraints.

In this study, we adopt a robust optimization strategy within the
SBSO framework. Specifically, the control problem is solved by identi-
fying a single set of control variables that performs best under the worst-
case scenario among all considered realizations of the uncertain heat
demand. This approach yields a solution that is robust, meaning it en-
sures system performance even under the most adverse demand condi-
tions but can be suboptimal for every individual realization [16,42,43].
Due to the specific nature of the geothermal case study, no first-stage
(pre-commitment) decisions are required in advance, allowing for the
decoupling of the problem across scenarios. As such, the optimization
focuses solely on second-stage decisions, control set-points that directly
affect system operation.

In the following sections, the optimization problem, objective func-
tion, and associated constraints are described. The optimization algo-
rithm returns optimized control values for adjusting the operation of the
geothermal plant (so called the control set-points) that optimizes the
chosen objective function. Key performance indicators (KPIs) are eval-
uated for the plant operated using these control set-points. Following the
description of the optimization problem, the formulation of the opti-
mization problem under uncertainty, using SBSO, is provided. Finally,
the optimization algorithm, its parameters, and termination criteria are
presented.

3.1. Optimization problem

In the operation of a geothermal doublet plant, the objective may be
to maximize profits and/or minimize emissions while adhering to
operational constraints. In the present case study, a total of six control
variables are considered, which already presents significant challenges
for manual optimization. This section formalizes the optimization
problem. Prior to this, a list of global key performance indicators (KPIs)
for the example plant, which are subject to optimization, is presented.
These KPIs are computed by the simulation model for each proposed
control action. In the description of the KPIs below, the superscript “el”
denotes electric power, while “s’’refers to variables in the secondary
system, as shown in Fig. 1.

The KPI’s related to power [MW] are:

Epiane = ¢°pCuw (TS, —T5,) represents the thermal power generated by
the plant, where

o C,: specific heat capacity of water [J/(kg K)],

o p: water density [kg/cm3],

o ¢': flow rate [m3/s],

o T;,: outlet temperature of the secondary system [K],

o T;: inlet temperature of the secondary system [K]

® By = Eplant - Eﬁip - E; ;

boosterpump E‘éip, represents the net generated
power. This accounts for power consumption of pumps and power
generation by the CHP component.

o B = — B, — B comump + Echyy T€presents the electricity surplus. If
non-negative, the CHP can supply all electricity required for the

plant.
The total emission KPI [kg/h of CO, equivalent]:

® Mot = Mesp + Mpoosterpump + Mboiter + Merp, Tepresents the total CO,
emission.

To calculate the emission terms for the pumps (ESP and booster
pump), their power consumption is determined based on the pump head
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and flow rate, along with an emission factor associated with the power
source. The emission terms for the boiler and CHP are based on the
amount of natural gas consumed by these components. Detailed for-
mulations for these emissions are provided in the component modeling
Annex 1.

The total profit KPI [€]:

L4 Ctotal = CheatEplant (x) - CelEfllet(x) - CCOthotal (x) - Cgasqgm"grid
sents the total costs, where
O Cpeqr: price of the heat [€/GJ]
0 cco,: price of CO2 [€/tonne]
0 Cgqs: price of the gas [€/MMBtu]
0 c: price of the electricity [€/MWh]

repre-

A geothermal plant has several control variables, which, for the case
study example, are identified as follows:

rod

e Wellhead pressure of the producer p!;

e ESP frequency f*?

e Flow rate of gas from the grid ¢

¢ Gas flow fraction u € [0,1]

e Water flow fraction v € [0, 1] of the secondary system
e Flow rate ¢° at secondary system

To simplify, these control variables are grouped in a control vector x
defined by:

x= (£ Pt . g’ u,v). )

The feasible control space, defined by the control variable upper and
lower bounds, is denoted by Q.

We consider two KPI's for optimization: minimizing the total emis-
sion M,y and maximizing the total profit Cyy. Both optimization
problems are formulated as follows:

{I)r(leiéu(x) | h(x)=0,g(x)<0 }, (&)

where objective function J defined by J(x) = Myq(x) for emission
minimization and J(x) = —Cyqi(x) for profit maximization (note that
maximizing profit (Cyq) is equivalent to minimizing — Cioeqr)-

The constraints are expressed in vector notation as follows:

Here, m and n denote the number of equality and inequality con-
straints, respectively. Specific constraints used in the study include:

e A minimum outlet temperature for the secondary system, T, > Tmn

e A constraint on the wellhead pressure to prevent scaling and mineral

e rod
precipitation, pﬁ,h > Pscaling-

For the case study example, pgcqing and T™Mn are set to 4 bars and
50 °C, respectively.

3.2. Optimization under uncertainty

In a geothermal plant, there are several sources of uncertainty arising
from different origins, such as the properties of the fluid and reservoir, as
well as the variability in energy demand. In our modeling approach, for
instance, uncertainty in reservoir properties is reflected in the produc-
tivity index (PI) of the inflow performance relation. With deterministic
optimization, fixed values are assigned to uncertain parameters, and the
optimization problem is solved as described in the previous section. This
approach provides an optimal control strategy based on somewhat
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arbitrary parameter values. Ideally, the resulting optimal control should
be tested to evaluate its performance across other realizations of the
uncertain parameters. However, this workflow is cumbersome and does
not guarantee an acceptable solution. The stochastic optimization
framework outlined above, including both SBSO and robust optimiza-
tion methods, addresses this issue. It aims to identify a control policy
that performs well across all realizations of the uncertain parameters.
Robust optimization methods, in particular, ensure feasibility under all
possible realizations of the uncertain parameters by considering their
worst-case scenarios [35,44].

To outline the stochastic optimization approach, we assume that

uncertainties are represented by a set of realizations r = (r1,r2,...,Tm)
with the associated probabilities ® = (w1, w2, ..., wm), where the prob-
abilities satisfy Z?ﬁlwi = 1. For equiprobable realizations w; =1/M,i =
1,...,M.
The evaluation of the objective function J, as described above, de-
pends not only on the control vector x but also on a chosen realization,
say r;. The expected value of the objective function can then be written
as:

J(x)= Z?;wi J(x,1) ©)]

The stochastic optimization framework focuses on maximizing the
expected objective function value J(x), as opposed to optimizing J(x, ;)
for a single arbitrary realization r;, as is done in deterministic optimi-
zation. As outlined above, in the case of SBSO, the optimal control policy
is determined for each scenario by optimizing the expected objective
value across all scenarios. This approach differs from focusing on a
single solution that performs best under the worst-case scenario. While
this approach ensures feasibility and conservatism, it can lead to sub-
optimal performance in scenarios other than the worst case, thereby
sacrificing some efficiency in favor of robustness. When heat demand is
considered as one of the uncertainties, the objective function (per sce-
nario) J(x,r;) is augmented with a penalty term to account for the
mismatch between the heat supplied (Eyq,) and the heat demand
(Edemana)- For the emission minimization case, the augmented objective
function takes the form:

J(x,1;) = Myorat (%, 1) + P(x,17) @
Where .7 denotes the penalty term for constraint violations. For the case

study presented in this paper, the constraint violation term is expressed
as:

~ Ca, l'prmd §P i
«%(X, T'i) =C !lf’:pla,,,;(.)(7 ri) _Edemand(ri)” + { 2 wh scaling

0, otherwise )
{C31 Lf ’If)ut < T‘:)'IIJT
0,  otherwise
where || || is the Euclidian norm, c;,c3,c3 > 0 are penalty factors and

Edemand(ri) is the demand profile associated to realization r;. Likewise, for
the profit optimization My (X, ;) is replaced by —Cioq(X, 7). Penalty
factors are introduced in the objective function to enforce key opera-
tional constraints, such as temperature limits, pressure thresholds, and
demand-supply alignment. The magnitude of the penalty factors in-
fluences how strictly these constraints are enforced during optimization
and can affect the resulting optimal solution by prioritizing feasibility
over performance. Therefore, the choice of penalty factors is problem-
specific and can be fine-tuned to achieve an appropriate balance be-
tween constraint satisfaction and optimization performance. Note that if
heat demand is the only source of uncertainty to be considered, then r;
represents a single realization of the demand profile. In that case, the
augmented objective function takes the following form:

J(%, 1) = Myprar (%) + 2(x,17) (6)

This formulation is efficient because the evaluation of emissions and
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generated power is independent of heat demand. Additionally, it re-
duces computational time, as the simulation is performed for each
proposed control setting, key performance indicators (KPIs) are
retrieved, and the simulation output is evaluated using the defined
augmented objective function. In this case, we assume that the heat
demand (Egenang) is uncertain, with an expected value E(Egemqnq) and a
known variance. Consequently, the list of constraints remains un-
changed, except for the demand-supply constraint, which is reformu-
lated to account for the uncertain demand as follows:

a(ri) )

Edemand (i) = E(Edemana) + Ea

3.3. Optimization algorithm

In this study, Genetic Algorithm (GA) was used for optimization. GA
is a population-based optimization algorithm inspired by Darwin’s
theory of evolution and biological operators such as selection, crossover,
and mutation. The process begins with a diverse set of randomly
generated solutions, forming an initial population. The next step, known
as reproduction and inheritance, involves individuals in the population
producing offspring and passing on their characteristics through a pro-
cess similar to genetic recombination. The algorithm evaluates each
solution’s fitness based on how well it solves the problem at hand. So-
lutions with higher fitness scores have a greater chance of being selected
as parents for the next generation. This cycle of reproduction, inheri-
tance, and selection repeats over multiple generations. With each iter-
ation, the population tends to improve as fitter individuals are more
likely to survive and pass on their traits [45,46].

The process terminates based on imposed conditions such as reach-
ing a maximum number of generations, the highest fitness remaining
unchanged in successive iterations, or manual termination. This
approach allows GAs to efficiently explore large solution spaces and find
globally optimal or near-optimal solutions, particularly in cases where
traditional optimization methods may struggle due to complex or non-
linear problem landscapes [47].

The geothermal plant is modeled using an in-house developed solver
[371. A key characteristic of this modeling approach is its high accuracy.
However, this comes with a limitation: the solver does not provide ac-
cess to gradients. This restriction, in turn, limits the applicability of
gradient-based algorithms, such as interior-point methods. To address
this challenge, a meta-heuristic approach, such as the GA, can be
employed. GA is a better choice in this context because it is gradient-free
and has a strong capability to converge to a solution effectively. One of
the main disadvantages of GA is the tuning of the optimizer parameters
to ensure computational efficiency and convergence of the method. The
GA optimization employed in this case study is based on the parameters
in Table 2.

4. Results

In the first test, the results of the optimization under uncertainty for

Table 2

Configuration and parameters of the GA optimization employed in the study.
Parameters/ Value/Method
Configuration

Objective function (for Minimizing the expected value of the emission

day-ahead) Maximizing the expected value of profit
Population size 50
Selection operation Elitism
Cross over probabilities 70 %
Mutation probabilities 20 %

Based on a uniform distribution between the lower and
upper bound specified for each gene
Maximum number of 100

generations
Termination criteria

Mutation range

Maximum generation to be reached
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both objective functions for one fixed heat demand is shown. For this
test, a fixed demand value of 6 MW is used, and the uncertainty is
assumed with a standard deviation of 5 % from the nominal value. For
all the cases in the result section, the realizations of uncertain demand
are assumed to be equiprobable.

The penalty factors used in the objective function (Equation (5))
were set to 1000, 100, and 10 for cj, ¢y, and c3, respectively. The se-
lection was through an iterative tuning process to ensure numerical
stability and to appropriately enforce constraint violations. Although no
formal sensitivity analysis was conducted, the chosen values were found
to provide a suitable balance between penalizing constraint violations
and allowing the optimizer to explore feasible solution spaces. The
optimization algorithm enforces lower and upper bounds on all control
variables (as stated in Equation (1)), defined as follows: f*P € [30,70],

J{l’d €12,20], ¢## €[0,100], ¢° € [20,150], u € [0,100], v € [0,100].

Using genetic algorithm (GA), the optimization tracked the pro-
gression of fitness values across multiple generations, reflecting how
well the system met each objective over time. Additionally, GA allowed
for the evolution of six selected control variables, whose adjustments
over generations reveal how different parameter combinations
contribute to achieving the desired objectives. This analysis provides
insights into the trade-offs between environmental and economic goals
and highlights the control variables’ role in balancing these objectives.

To present the initial results, a comparison for the fitness values and
the evolution of control variables across generations for both objectives:
minimizing emissions and maximizing profit are shown in Fig. 3. The
impact of proposed control for both objective functions on the power
generated from the geothermal doublet, plant and the net electricity
power consumption is shown in Fig. 4. This result demonstrates that the
algorithm effectively devised distinct control strategies tailored to each
objective function. By optimizing separately for emission reduction and
profit maximization, the GA was able to explore distinct control path-
ways that aligned with each objective, confirming its capability to adapt
the control variables in response to varying optimization goals. The
resulting emission for the emission minimization objective achieved a
substantial reduction of 70 % compared to the emission of the profit
maximization objective.

The reduction in emissions under the emission-focused objective was
achieved primarily through reduced gas usage in the gas boiler, u value
was to 53 % for the emission objective compared to 99.7 % for the profit
objective function. By further analyzing the contribution to the pro-
duced power in Fig. 4, it can be seen that for the same plant power (to
meet the uncertain heat demand), a higher production from geothermal
doublet was proposed to minimize the emission. Higher profit objective
leads to a higher utilization of the gas in the boiler which gives a higher
emission. In a different observation, for the emission minimization
objective, it can be observed that the net electricity consumption was
turned to be positive, meaning that the fraction of the utilized gas in CHP
could provide more electricity to the system than it is required which
was sufficient for the produced geothermal power. By tracking these
outcomes, we can illustrate how GA balances environmental and eco-
nomic objectives and observe how each set of control variables adapts to
prioritize emission reduction or profit maximization over successive
generations.

Since the price can have an impact on the optimum operation (profit
maximization or emission minimization) from the geothermal plant, a
list of scenarios were performed by varying the prices aiming at opti-
mizing the profit. These price ranges are used solely for sensitivity
analysis to evaluate the effect of different pricing conditions, and are not
intended to represent short-term fluctuating prices for gas, CO2, or heat.
For the scenarios a fixed heating demand of 6.0 MW was used. A total of
90 scenarios were performed by varying the prices in the following
ranges, COy [60-300] €/tonne, heat [20—100] €/GJ, and electricity
[30-90] €/MWh. These scenarios were ran for a fixed assumed gas price
(2.5 €/MMBtu). The results of different scenarios for profit
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Fig. 4. Comparison of energy produced by the geothermal doublet (Eqoublet),
geothermal plant (Epjang), and the net electricity consumption (Efl’e[) across two
objective functions. The bars represent the respective values for each metric in
MW; the objective functions were distinguished by different color and patterns.

maximization are shown in Fig. 5. The resulting emission from the profit
maximization are shown in Fig. 6. The contour plots were made based on
normalized profit, by considering the maximum profit made in all the
optimized cases.

In the scenario analysis performed, a strong influence of heat price
on profit maximization was observed. Scenarios with high electricity
prices tended to yield higher profits, primarily because the optimal so-
lution involved electricity production within the geothermal plant,
generating a surplus beyond what was needed to sustain plant opera-
tions. Interestingly, CO2 price showed a relatively low impact on prof-
itability, suggesting that even with higher CO; costs, optimal solutions
could still be achieved (Fig. 6). As previously described, high profits
were associated with increased emissions which aligns with the contour

plot of emissions for optimized profit cases.

The absence of a clear optimum point in the contour plot highlights
the necessity for heuristic algorithms, such as GA, to effectively navigate
the complex, multi-dimensional landscape of this optimization problem.
It should be noted that these results are highly dependent on the specific
plant configuration, pricing structure, and underlying properties, and no
generic conclusions are intended.

The next problem was based on day-ahead production optimization
with a prediction horizon of 24 h. Among the prices varied in the pre-
vious sensitivity analysis, only electricity has an hourly profile, which is
incorporated in this section to reflect day-ahead market conditions. An
example heating demand profile was generated with a maximum un-
certainty of 5 % around the mean value of demand which is uniformly
distributed (Fig. 7). The variability of the heating demand through the
day was made in such a way that it corresponds to the heating demand in
actual district heating grids [48]. It should be noted that such profiles,
including both electricity prices and heat demand, can be influenced by
weather conditions. While weather-driven prediction models are not
considered in this paper, they can be readily integrated as boundary
conditions or scenarios within the optimization framework. Both
objective functions, targeting expected emission minimization and
profit maximization, were evaluated on the same example of uncertain
heating demand.

In other studies, heat demand is often modeled or forecasted using
weather data and time-related features to improve the accuracy of
operational planning [36]. Such forecasting-based approaches are
valuable for proactive control but were not within the scope of this
study, which focuses on optimizing control strategies based on given
demand profiles. As earlier explained, the realizations in the uncertainty
space of the heating demand are all treated to be equiprobable due to the
choice of uniform distribution for the uncertainty. In this case, 50 re-
alizations (24 h profile) were made which corresponds to a chance of 2
% for each profile to occur. The constraint to meet the heat demand at
each hour, as a part of the augmented objective function, is still in place
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to prevent underproduction. For the maximization of profit, the heat, electricity profile price was assumed for the day-ahead market based on
CO, and gas price during the next day was assumed to be constant with data obtained from market data available on EPEX SPOT and that is
the values of 50 €/GJ, 100 €/tonne, and 2.5 €/MMBtu, respectively. An shown in Fig. 7.
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The resulting control settings for all the control parameters for both
optimization problems are shown in Fig. 8. The optimization results
indicate a variation in control settings across the two objective functions
examined. The optimized control variables, comparing the two optimi-
zation problems, exhibit only minor differences in the range that they
were explored. The notable distinction can be found in the fraction u of
the gas to the gas boiler and gas flow ¢&€™ from the grid for the
emission and profit objectives. For the case with minimizing emission,
more gas is routed to CHP to produce electricity for the usage of the
pumps in the geothermal plant, however for the profit maximization
case study, the optimum settings were in a higher usage of the gas (both
from the geothermal plant and grid) in the gas boiler for supplying the
heat. It is important to note that the variation in the geothermal well-
head pressure of the production well and ESP frequency are coupled,
and multiple combinations of these control variables can lead to the
same production rate in the geothermal plant. To further improve the
control algorithm and avoid this redundancy issue in the control set-
tings, it is recommended to penalize the number of changes in the
control parameters over the time horizon to avoid large step changes
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proposed by the optimization algorithm.

While the control strategy allows hourly updates, we acknowledge
that rapid changes (such as those observed in Fig. 8) may not reflect the
gradual control adjustments typically applied in practice. Such sudden
load changes can impact the integrity of the equipment and lead to long-
term reservoir challenges. In field applications, some control variables,
such as ESP frequency, are often adjusted progressively over a longer
period rather than through sudden changes, depending on the manu-
facturer’s specifications and the amplitude of the change. Although
dynamic system constraints are not explicitly modeled in this study, they
can be incorporated in future work to reflect more realistic operational
behavior.

The total day-ahead emission for the case of maximizing the profit
leads to a significantly higher emission, see Fig. 9, by 87.5 % increase
mainly driven by the higher utilization of the gas from the geothermal
brine and grid. For the profit objective, the optimum control that min-
imizes emissions will lead to a 2.7 % lower profit compared to the
control settings leading to the maximum profit. Since the majority of the
supplied heat is provided by the geothermal plant, the impact of mini-
mizing emission on the profit generated during the operation is minute.
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Fig. 8. Optimal control settings for all the control variables, including wellhead pressure of the geothermal production well, ESP frequency, fraction of the gas to the
boiler (u), fraction of the water to the heat exchanger (v), gas flow rate from the grid, and the flow rate of the water in the secondary loop, for both emission

minimization and profit maximization objective function.
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Fig. 9. The hourly (top) geothermal production rate and (bottom) total CO, emission for the day-ahead production optimization shown for minimizing emission and

maximizing profit case study.

It is shown in Fig. 9 that the contribution of the geothermal well pro-
duction for both objective functions remains high and not significantly
changed, and the main components that are impacted to achieve the
desired objectives are the utilization of the gas from the grid and elec-
tricity production in CHP. It should be noted that the results in this
section depend on the gas, CO», heat and electricity price chosen in the
profit objective function.

Robust optimization is proposed as a rigorous approach to ensure
optimal control for a geothermal plant under heat demand uncertainty.
In order to demonstrate the added value of robust optimization, its so-
lution x%* is compared to the solutions x**,i =1, ...,50, of the deter-
ministic optimization performed on every individual realization (total of
50) from the uncertainty space. Under the assumption of equiprobable
realizations, the optimal control solution x%" that performs well across
all realizations was achieved by optimizing the expected objective

function. In Fig. 10 the expected objective function values J(x{*"),i=1,

...,50 are shown together with J(x!) with J the averaged (over the
realizations) emission. As expected, the robust optimization approach
led to the best overall performance in terms of expected objective
function improvement, that is, J(x®) < J(x{*"),i = 1,...,50. The figure
shows also that control obtained through deterministic optimization
may result in a much higher expected objective function value indi-
cating an inferior performance for other realizations. Similar observa-
tion can be made for the case of maximizing profits of which the results
are shown in Fig. 10 b). In conclusion, the control strategies obtained by

10

robust optimization for both objective functions, show more resilient
and robust performance across all considered realization of uncertain
heat demand, whereas deterministic optimization can perform poorly
for certain realizations, as implied by Fig. 10. For the emission mini-
mization the objective function of robust optimization was found to be
191.5 while the best realization led to the objective function of 180.2 in
which the robust optimization has a 5.9 % improvement in the objective
function, demonstrating its effectiveness in handling the uncertainties
inherent in geothermal plant control. For the profit maximization, only a
minute increase of 1.4 % was found for the robust optimization
compared to the best of all the realizations. However, we emphasize that
even though in the latter case the increase is small performing deter-
ministic optimizations for all realizations and taking the control that
results in highest expectation objective function value is not a reliable
substitute of the robust optimization approach.

5. Conclusions

Uncertainties in various parameters and processes of geothermal
energy production can significantly impact the optimal control of
geothermal plants. These uncertainties, arising from diverse sources and
varying over time, necessitate a systematic approach to integrate them
into the operational decision-making processes of geothermal plants.
This paper introduces a novel stochastic optimization-based control
policy designed to optimize the operation of geothermal plants under
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heating demand uncertainty. The proposed stochastic optimization
framework aims to optimize the expected objective function across all
scenarios. In an ex-post analysis, the optimal policy for the worst-case
realization is determined, yielding a robust solution. When the worst-
case scenario policy is applied universally across all scenarios, it re-
sults in a solution that is more conservative and risk averse. Despite its
reduced efficiency, the robust solution is chosen as the preferred control
policy due to its enhanced reliability under uncertainty.

The optimization method supports several critical control and
operational parameters in the plant, including geothermal wellhead
pressure, electric submersible pump frequency (which impacts the
production rate of geothermal wells), the distribution of gas to the boiler
and combined heat and power units, the allocation of liquid to the heat
exchanger, the flow rate of gas from the grid (to address demand-supply
mismatches), and the flow rate of the secondary fluid connected to the
heat demand. A Genetic Algorithm was employed to solve the optimi-
zation problem, incorporating two objective functions: minimizing
emissions and maximizing profit. Operational constraints were inte-
grated into the framework by penalizing violations in the objective
function.

The results demonstrated the robustness and effectiveness of the
proposed optimization approach in managing geothermal plant opera-
tions. The robust optimization method provided a control strategy
capable of performing well across all uncertainty realizations.
Conversely, deterministic optimization, which does not account for
uncertainties, was shown to lead to suboptimal operation. Optimizing
control based on a single realization resulted in inferior solutions for
other scenarios, highlighting the importance of incorporating un-
certainties into the optimization process.
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While the proposed approach offers a robust methodology for
addressing uncertainties in geothermal plant operations, a more
comprehensive case study would be required to fully explore its po-
tential. For example, uncertainties related to fluid composition and
equipment degradation, which can significantly influence optimal con-
trol settings, were not included in the current formulation. Additionally,
the anticipated increase in electrification of energy infrastructure,
including the adoption of heat pumps and its interplay with electricity
pricing, represents a critical area for future investigation.

To further enhance the practicality of the proposed workflow, future
work should focus on improving the computational efficiency of the
optimizer. This could involve incorporating gradient-based optimization
methods or exploring alternative strategies, such as adaptive mutation
techniques (e.g., Ref. [49]), to enable real-time production optimization.
For future work, transient models to simulate the dynamic response and
behavior of the system can be implemented and additional constraints
can be introduced to limit the load changes in the system and the
magnitude of control actions, such as variations in ESP frequency and
wellhead pressures, to further align with operational practices.
Geothermal energy has a low environmental footprint; however, in
reservoirs with accompanying gases, CO, emissions may occur during
production. Research on COq-neutral gas utilization [50] and its impact
on optimal operational strategies can be further studied. Finally, the
validation of the proposed control strategies on field cases is recom-
mended for future studies.
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Nomenclature

Symbol

€1,C2,C3 Penalty factors for constraints’ violation [—]
cco, Price of CO, [€/tonne]

Cel Price of the electricity [€/MWh]

Cas Price of the gas from the grid [€/MMBtu]
Cheat Price of the heat [€/GJ]

Cotal Total profit [€]

Cw Specific heat capacity of water [J/(kg.K)]
Edemand Thermal energy demand [MW]

Eptant Thermal power generated by the plant [MW]
Etotal The net generated thermal power subtracting the power consumption [MW]
Ef[’e . Electricity surplus [MW]

M CO; emission [kg/s of CO, equivalent]

p Pressure [bar]

7 Penalty term for constraint violation
Fluid flow rate [m®/s]

q

T Temperature [C]

u Gas flow fraction [—]

Y Water flow fraction in the secondary system [—]
x Control vector

Abbreviations

CHP Combined heat and power

ESP Electrical Submersible Pump

GA Genetic Algorithm

PI Productivity Index

SBSO Scenario-based Stochastic Optimization

VLP Vertical lift performance

Superscript

el Electric power

geo Geothermal production in the primary system
gas,geo Gas from the geothermal doublet

gas, grid Gas from the grid

p Primary system

s Secondary system

Subscript

boosterpump Booster pump on the geothermal injection side (primary system)
in Inlet (refers to any component)

net Net power generated/consumed

out Outlet (refers to any component)

w Water

wh wellhead

Annex 1. Modelling approach for the geothermal plant
The equations for the different components of the geothermal plant are described in this section.
VLP-IPR relation

For solving the rate of the producer well incorporating an ESP, a procedure known as nodal analysis needs to be performed. The geothermal
production is a pressure-driven system and the pressure on several nodes of the system together with the resistance between the nodes will determine
the production rate. The system consists of five pressure nodes from subsurface to surface: P (reservoir pressure), P, (bottomhole pressure), Peg in
(suction pressure of ESP), Peg, or (discharge pressure of ESP) and P, (wellhead pressure).

The inflow performance relation is used to relate two of the pressure nodes, Py and Py, given a production rate q using a linear relation using the
productivity index (PI)

qp:PI'(Presfpbh) (8)

12
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Given the wellhead pressure P,; and a production rate ¢?, the vertical lift performance curves of the upper (above the ESP) and lower part of the
well and the ESP pressure drop the bottomhole pressure Py, can be derived. The nodal analysis calculates the flowrate g? so that the Py, of the well
calculation and the inflow performance relation is equal. Its solution is denoted by ¢? ,with superscript p to refer to the primary system, see Fig. 1.

Due to different pipe diameters in the completion, the pressure drop equation needs to be integrated over the full length of the pipe. The vertical lift
performance (VLP) estimation in the producer well is divided into two sections, upstream (from bottomhole to the inlet of ESP) and downstream (from
discharge of ESP to wellhead) of the ESP. The pressure drop equation is as follows

dp . . du du
a- (g sin(0) + 2);3;1 \umlum> (agpg +aipy) — agpgugag - azpzuzal , (©)]

In which [ is the length along the tubing or pipe, Dy, is the hydraulic diameter of the pipe, 0 is the inclination of the pipe, and g is gravitational
acceleration. In the formulation, the hold-up is denoted as a, density as p and superficial velocity as u, with the subscripts g and [ stands for gas and
liquid phase. Since, multiphase flow in the production tubing or casing is expected, mixture velocity (u,) is used for the pressure drop calculations,
which is defined as

Un = Oglly + U (10)

The friction coefficient (f,) used for the pressure drop calculation is [51]:

2
fo= {1,14leog(i+21'25>} an

Dy | Re%?

where ¢ is the tubing/casing roughness and Re is the Reynolds number.
The ESP hydraulic performance model is a fit function to the suppliers’ provided pump curves from which the ESP head can be estimated based on
the production rate and pump frequency feg,:

8p = (Pepout = Pein) =F(¢ S (12)

Heat exchanger

The heat exchanger model describes the relationship between the input and output temperatures of the primary and secondary fluid streams, based
on flow rates and heat transfer dynamics. Mathematically, the model is expressed by a function Fex: Thyy, TSy = Fhex (Th, TS» @7, ¢°,v). The output
temperatures depend on the input temperatures, flow rates of the primary (¢”) and secondary (vq°*) systems, and heat transfer coefficient. The output

temperatures are given by

=T —

out — “in Cw qp7

T;

=T +— 13
out in T vaqs 13)

where h = e hpqy represents the heat transfer rate, and hpg, = cmm}T‘;’n —-T3, | is the maximum possible heat transfer. The effectiveness, ¢, depends on
the configuration of the heat exchanger, parallel or counterflow which is calculated using the following formulas, respectively:

e For parallel flow:
1— e—NTU(1+c,)

eZTCr 14

e For counter plate

NIU e =1
1+NTU ™ "
€= 1—¢e ™MV ifc, < 0.01 (15)

1— e—NTU(1+cr)

1 ce NUiay otherwise

Here the key parameters are: NTU = H/Cmin, ¢ = Cmin/Cmax>s & = pqPCw, ¢ = pvq°Cy, Cmax = max(c?,c’), Cmin = min(cP,c®)

where H is the heat transfer coefficient and C,, is the specific heat capacity of water. This model effectively captures the thermodynamic behavior of
the heat exchanger, accounting for heat transfer limitations, flow rate effects, and configuration-specific performance through the non-dimensional
effectiveness (¢) and number of transfer units (NTU). It provides a robust framework for analyzing and optimizing heat exchanger performance in both
parallel and counterflow configurations.

Gas boiler

The gas boiler model describes its role in delivering higher temperatures when a geothermal doublet is insufficient. The relationship governing the

13
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gas boiler is expressed as

Toirout» Moir = Foir (Totrin, @, @, U, V), (16)

where Tprin = Thexour- The outlet temperature of the gas boiler is given by

E; -
Tblr,out = Tblr,in + % (17)
wVpq

Here Epy, is the thermal power provided by the boiler, calculated as
Ebuiler = ”berquasv (18)
with the following definitions.
o 1y, the efficiency factor of the gas boiler (typically 7, = 0.8),
e H: calorific value of the gas ~ 50 MJ/m>
® Qg - gas flow rate ([m® /s]) ,
e u € [0,1]: gas flow fraction
The CO, emission, My [kg/s], from the gas boiler is given by
My = €gas Hquas (19)

with ey, [kg/J] is the gas emission factor. This model captures the thermodynamic and environmental behavior of the gas boiler, accounting for its
efficiency, thermal power output, and emissions. It ensures accurate modeling of the boiler’s contribution to heat delivery, as well as the associated
fuel consumption and CO; emissions. The integration of parameters such as the calorific value (H) and gas flow fraction (u) allows for the flexible
operation of the boiler while maintaining realistic energy and environmental constraints.

CHP (combined heat and power)

The CHP model describes its ability to simultaneously generate heat and electricity using natural gas as a fuel source. The governing relationship
for the CHP system is given as:

Tchp,out; Echp7 Mchp = Fchp (Tchp,im qga57 qx7 u, V) 3 (20)
with Ty in = T;,. The total generated power P, produced by the CHP can be written as:
PChP = ”cth(l - u)qgﬂsv (21)

with a typical efficiency of 54, = 0.8. In order to calculate the generated heat and electricity from the CHP the following assumption was used;
Eﬁﬁlp = % .y the power for electricity, E, = %Pchp the power for the heat. The outlet temperature of the CHP is calculated as:

Eanp
T, = nt+—"—"—— 22
chp.out chp.in + Cw(l — V)[)qs ( )
The CO; emission, My, [kg/s], from the CHP system is given by
My = €ges H (1 —U) Ggqs (23)

with eg [kg/J] being the gas emission factor. This model effectively captures the thermodynamic and environmental characteristics of the CHP
system, detailing its ability to convert natural gas into both thermal energy and electricity with a defined efficiency. The integration of key parameters
such as gas flow fraction (u) and flow rates ensure accurate modeling of its operational performance and associated CO, emissions. By separating
power generation into heat and electricity components, the model provides a detailed framework for optimizing CHP utilization in energy systems.

ESP

This model is built upon manufacturer-provided correlations that relate the pump head, Ap = (Ppespin 7pesp_ou[>, to the flowrate ¢ and pump
frequency fesp. The correlations are often found in the pump curves and enable the prediction of pump performance under varying operating con-
ditions. The relationship was fitted by using a polynomial regression calibrated on pump curve data.

The required pump power, Egép [W], is calculated as:

Bl :q"Ap<7 24

esp

Ui esp

where a typical efficiency of the ESP is assumed to be 7,y = 0.65. This relation highlights the dependence of pump power requirement on the
operational settings and efficiency, as defined by the pump performance curves.
The CO, emission, M., [kg/s], is given by

1
Mesp =€l Ezsp

(25)

with ey [kg/J] the electricity emission factor. In case electric power from the CHP is used for the ESP then the CO, emission must be corrected:

14
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Moy e (L, —min ( £5,.£5,))

Booster pump
The required pump power Egb o, [WI:
7’Ap
bi;osterpump = Ap = (pbpump,in _pbpwnp,out)
”bpump

Mbo

The emission Myooserpump [Kg/S]:

_ 1
osterpump = €el Ele;oosterpump

Renewable Energy 257 (2026) 124805

(26)

(27)

(28)

with ey [kg/J] the electricity emission factor for the pump power consumption.
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