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A B S T R A C T

Geothermal energy plant operations are significantly influenced by uncertainties in key parameters and pro
cesses, including the variability heating demand in the built environment compared to the more stable demand in 
horticulture, necessitating a robust framework for real-time decision-making. This paper introduces a novel 
robust optimization framework to enhance geothermal plant performance under uncertain heating demand. The 
proposed method integrates a genetic algorithm with a geothermal plant simulator, optimizing dual objectives: 
emission reduction and profit maximization. Operational constraints are incorporated via penalties in the 
objective function. The approach identifies distinct control strategies for each objective, effectively capturing 
varying operational behaviors and demonstrating adaptability to different performance goals. Results from the 
numerical case study indicate that, under the considered modelling assumptions, robust optimization delivers 
more resilient and effective control strategies across all considered realizations of uncertain heat demand 
compared to deterministic optimization. For a fixed daily heat demand, the robust approach achieved a 5.9 % 
reduction in emissions and a 1.4 % increase in profit compared to the best deterministic scenario. These findings 
underscore the potential of robust optimization in addressing uncertainties and improving the operational ef
ficiency of geothermal energy plants.

1. Introduction

Geothermal energy plays an increasingly important role in the en
ergy transition and offers a sustainable and reliable solution for decar
bonizing heating and cooling in buildings, industrial processes, and 
agriculture [1]. Its widespread availability beneath the Earth’s surface 
makes it a promising alternative to fossil fuels, with the potential to 
significantly reduce greenhouse gas emissions. The deployment of 
geothermal energy faces challenges such as high upfront costs, inte
gration into heating and cooling networks, and operational challenges 
which currently supply less than 2 % of Europe’s demand [2,3]. Despite 
an extensive operational experience in geothermal plants, characterized 
by a steep learning curve with ongoing operational knowledge acqui
sition, the sector is still in an emerging phase. The operation of 
geothermal plants is often associated with several challenges caused by 
the complex geothermal production behavior [4] and geothermal fluid 
compositions [5]. Operators require support to make effective decisions 

in managing geothermal plants, as complex fluid compositions and 
reservoir behaviors demand continuous monitoring and precise adjust
ments. Decision-support tools and predictive models can assist operators 
by providing insights into optimal operational strategies, helping to 
maintain system stability and maximize energy production under 
varying conditions.

Uncertainties in geothermal operation significantly impact the effi
ciency, reliability, and economic feasibility of the energy system [6,7]. 
These uncertainties arise from various sources, including unpredictable 
geological and reservoir conditions [8], variations in geothermal fluid 
composition [9], and performance of equipment [10]. Such factors can 
alter the thermal output and energy yield, challenging operators to 
maintain optimal performance. Additionally, uncertainties in demand 
and energy prices add layers of complexity to operational planning. One 
of the main goals of the geothermal plant operation is to supply the heat 
demand efficiently and sustainably either to the greenhouses, buildings 
or districts. The daily and seasonal variability in the heat demand [11] 
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can impose more challenges to the operational and production decisions 
in the geothermal plants. In the context of built environment, next to the 
variability of the heat demand, the uncertainties in the heat demand can 
have a large impact on the operational excellence [12,13] and CO2 
footprint of the energy supply. This unpredictability necessitates robust 
strategies to optimize system performance under uncertain conditions, 
such as adaptive controls, predictive maintenance, and scenario-based 
planning, ensuring that geothermal systems remain cost-effective and 
resilient while maximizing energy extraction.

Optimization methods can be used to maximize the geothermal 
production performance by optimizing different types of decision and 
control variables such as the change in the geothermal production and 
the use of auxiliary components while adhering to operational con
straints [14]. Due to the presence of various control parameters and 
constraints, this results in a high-dimensional, non-convex, and con
strained optimization problem. In addition, the optimization process 
should be conducted with consideration of the inherent uncertainties 
that arise from the limited knowledge on the variability of the processes 
and heat demand.

These uncertainties can impact design and operational decisions in 
the geothermal plants. Such practices are broadly studied and demon
strated in the petroleum industry [15,16] and started to get more 
attention in the geothermal industry. We have performed a literature 
review to survey available studies in the geothermal plants for design 
and operation optimization. For such a literature survey, the ground 
source heat pump systems were excluded due to the difference in the 
type and mechanisms of these systems, scale, and interaction with 
geothermal reservoirs. In addition, the literature for both direct-use and 
power production applications were collected. A summary of the 
available literature, up to current date, can be found in Table 1.

One of the initial findings was that most current studies and litera
ture focus on using optimization for the design and operation of 
geothermal plants dedicated to power production. Recently, a few 

studies have also addressed optimization under uncertainties for the 
design of both direct-use and power production geothermal plants. 
Additionally, long-term production strategies under uncertainty in 
geothermal plants have been explored [7,17]. However, to the authors 
knowledge, no studies to date have examined the operational optimi
zation of direct-use geothermal plants under uncertainties.

This paper aims to highlight the impact of demand uncertainties on 
the operation and control of geothermal plants for direct-use (heating) 
applications which have not be studied in literature. Its primary 
contribution lies in demonstrating a robust optimization approach for 
controlling geothermal plants with various operational strategies and 
objectives under uncertainty. The paper is organized as follows: first, the 
case study is introduced, including a description of the numerical 
simulator (details provided in Annex 1). Next, the mathematical opti
mization problem is formulated, encompassing objective functions, 
constraints, and the employed optimization algorithm, which is applied 
to the case study. Subsequently, the results of the robust optimization for 
different objective functions are presented and discussed. Finally, the 
paper concludes with key findings and suggestions for future research. 
To the best of the authors’ knowledge, this is the first study to address 
uncertainty in the control and optimization of geothermal plants for 
short-term operational decisions. The methods proposed in this study 
are considered novel in this context.

2. Physical system modeling assumption

In order to demonstrate the optimization under uncertainty on the 
operational decisions of geothermal plants, an example of low-enthalpy 
hydrothermal geothermal plant was selected. The schematic of a 
geothermal plant which is used in this study is shown in Fig. 1. Each 
geothermal plant can have different components and equipment; in 
Fig. 1 a relatively detailed geothermal plant is sketched which was 
inspired by a real geothermal plant in the Netherlands. The geothermal 
plant consists of a primary system and the secondary system. The 
different components in the primary side of the geothermal plant 
contain the geothermal wells (producer: hot side and injector: cold side), 
gas-liquid separator, filters, heat exchangers, electrical submersible 
pump (ESP) and injection booster pump. On the secondary side, 
different auxiliary equipment such as a gas dryer, gas boiler and a 
combined heat and power (CHP) unit is installed.

In the primary system, the geothermal production facility consisted 
of a producer and an injector well. In this paper, the reservoir pressure is 
considered to be 240 bars with the productivity index (PI) of 10 m3/ 
(bar.h). The wells are vertical and have the depth of 2000 m (the Dutch 
geothermal gradient varies between 31 and 35 ◦C/km) which enables 
the production temperature of 70–80 ◦C. The geothermal brine has a 
high salt content of 200 kppm (NaCl equivalent) with an assumed 
density of 1180 kg/m3, the specific heat capacity of 4.2 kJ/(kg.C), dy
namic viscosity of 0.35 mPa s and the temperature dependency of the 
fluid properties is not considered in this case study. The geothermal fluid 
is produced with associated gas with a gas-liquid ratio of 0.5 Nm3/m3, 
(N denotes the normal condition at the temperature of 0 ◦C and pressure 
of 101.325 kPa). The majority of the produced gas is assumed to be 
methane and CO2. The actual volume of the produced gas will depend on 
the production rate and the wellhead pressure. Most of the Dutch wells 
are being operated at a slightly elevated pressures to keep the CO2 dis
solved in the brine solution and minimize the calcium carbonate scaling 
[38]. Geothermal fluid is being produced in production well assisted by 
an ESP. The ESP installation depth of 650 m and the tubing size of 0.15 
m. A gas-liquid separator is installed to separate the by-produced gas 
from the brine and control the top-side pressure of the geothermal well. 
The brine will go through a set of filters, and then a heat exchanger to 
transfer the heat from the geothermal brine to the secondary side of the 
plant. The colder brine will be injected into the geothermal reservoir 
through an injector well.

On the secondary side, the separated gas will be dried and will be fed 

Table 1 
List of available literature for employing numerical optimization for the design 
and operation of geothermal plants for both direct-use (heating) and power 
production applications, note that ground-source heat pumps were excluded 
from the overview.

Reference Application Phase Uncertainty

Direct- 
use

Power Design/ 
Planning

Operation

[18]; ✕ ✓ ✓ ✕ ✕
[19];
[20];
[21];
[22];
[23];
[14]

[24] ✕ ✓ ✓ ✓ ✕

[25]; ✕ ✓ ✕ ✓ ✕
[26];
[27];
[28];
[29];
[30];
[31];

[6]; ✕ ✓ ✓ ✕ ✓
[32]

[33]; ✓ ✕ ✓ ✕ ✓
[34];
[35]

[17]; ✕ ✓ ✕ ✓ ✓
[7]

[36] ✓ ✓ ✕ ✓ ✕

[37] ✓ ✕ ✕ ✓ ✕
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into the gas boiler or a CHP unit for providing additional heat and 
power. The additional heat can be combined with the thermal energy 
extracted from the geothermal brine to be supplied to the demand side 
(district heating grid, space heating or a greenhouse). The additional 
power generated in a CHP can be used to power the electrical equipment 
in the geothermal plant, such as ESP and injection pumps. The CHP, in 
this case, will work with the produced gas from the geothermal doublet, 
denoted by qgas,geo, and additional gas which can be taken from the gas 
grid, denoted by qgas,grid. Part of the total gas (qgas) will be fed into the 

boiler (uqgas) and the rest will be fed to the CHP unit 
(
(1 − u) qgas), see 

Fig. 1. In addition to delivering electricity to pumps the CHP may heat a 
part of the cooled down fluid stream qs that is divided among the CHP 
((1 − v)qs) and the Heat exchanger (vqs). The fractions u and v are 
control variables of which its values to be derived so to maximize a 
chosen objective. Other control variables of the plant are the ESP fre
quency f esp, the producer’s well head pprod

wh , the amount of gas qgas,grid 

taken from the gas grid, and qs which is the flow rate of the fluid in the 
secondary system. The parallel integration of geothermal heat and CHP 
in this case study reflects actual configurations observed at operational 
sites for which process data were available. While a series connection at 
the highest temperature could be more optimal from an exergetic 
perspective, the chosen setup ensures the case study remains represen
tative of a real-world layout.

An in-house developed solver was used for solving the primary and 
secondary system in the example geothermal plant. Since, the produc
tion in the primary system of geothermal plants is pressure driven, the 
solver is based on nodal analysis. Nodal analysis is a systematic method 
used for subsurface production systems to simulate and optimize pro
duction systems by evaluating inflow and outflow across each compo
nent, from reservoir to surface equipment with a broad application area 
from well performance prediction to artificial lift design to equipment 
sizing [39].

To briefly explain the steps used by solver to simulate the geothermal 
plant; 

1) Determine the flow rate qp of the primary system using nodal analysis 
between the producer well, ESP and near wellbore (reservoir). This 
calculation involves the components describing vertical lift 

performance (VLP) of the producer, ESP and inflow performance 
relation (IPR) of the aquifer.

2) Calculate all downstream components and nodal pressures for the 
primary system. The bottom hole and wellhead pressures of the 
injector is calculated give the flowrate qp calculated through the IPR 
and the injector’s VLP.

3) Calculate the intake temperature Tp
in of the heat exchanger at the 

primary system given a measured temperature, in this case the 
reservoir temperature (no heat loss is assumed in the geothermal 
plant)

4) Calculate the discharge temperatures Tp
out and Ts

out with input Tp
in,T

s
in 

and the flow rate qs of the secondary system.
5) Calculate the downstream temperatures of the system using Tp

out and 
Ts

out , calculated in 5. Auxiliary components in the secondary side, will 
provide additional heat or power based on the proposed control 
settings (meaning the value of the control variables used in a model 
evaluation).

The solver is written in python, the nodal analysis resulting in a root- 
finding problem for the flowrate qp is solved through a bisection method 
using the root_scalar method from the scipy.optimize python library. A 
detailed description of the models used for different components can be 
found in the Annex section. In addition, a detailed description of the 
solver and the model is presented by Ref. [37].

For the primary side of the geothermal plant, except for the wells, no 
pressure loss is considered. The plant components, e.g. filter, heat 
exchanger, separator, CHP and boiler are simulated using fast-to- 
evaluate steady-state models (further explained in Annex 1). For the 
filter and separator model, a pressure and temperature drop between 
intake and discharge can be provided. For the heat exchanger a steady- 
state counterflow model is used based on the NTU-method. The boiler 
model sets the water heat rate equals to the power generated by the gas 
fuel with an efficiency factor (assumed to be 0.8). For the CHP model we 
assume that 1/3 of the power generated by the fuel is converted to 
electricity and the remaining power is used for the heat generation. The 
calorific value of the gas entering the boiler and/or CHP is 50 MJ/kg.

Fig. 1. Schematic of the geothermal plant and its components including both primary and secondary systems.
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3. Methodology

In this section the methodology of the problem is described. Fig. 2
illustrates the workflow of the proposed optimization framework for the 
geothermal plant operation under demand uncertainty. This flowchart 
provides a visual representation of the sequential steps involved in our 
framework, facilitating a comprehensive understanding of its operation. 
The process initiates with the definition of initial control settings and a 
geothermal plant model. Separately, the demand uncertainty needs to be 
defined in terms of its probability distribution function or any descrip
tion that can be used by the optimization algorithm for the propagation 
and evaluation of these uncertainties. Based on the initial or proposed 
control settings, the objective function is evaluated over all possible 
demand realizations, and the corresponding objective values are ob
tained. These values are then utilized by the optimization algorithm to 
determine optimal control strategies. The process iterates until the 
termination criteria are met, at which point the final optimal results are 
determined.

Mathematically, the control problem is formulated as a two-stage 
scenario-based stochastic optimization (SBSO) problem. In this frame
work, the decisions in the first stage correspond to the “here and now” 
decisions, which are common across all scenarios. In contrast, the de
cisions in the second stage are “wait-and-see” decisions, optimized for 
each individual scenario. A standard approach in SBSO for a risk-neutral 
decision-maker is to optimize the expected value of the objective func
tion, averaged across all scenarios [40].

SBSO serves as a general framework that accommodates various risk- 
handling strategies. In a risk-neutral setting, the objective function is 
typically formulated to optimize the expected value across all scenarios 
[42]. Alternatively, risk-averse approaches include chance-constrained, 
CVaR-based, or robust optimization formulations [41], depending on 
how uncertainty is treated in the objective and constraints.

In this study, we adopt a robust optimization strategy within the 
SBSO framework. Specifically, the control problem is solved by identi
fying a single set of control variables that performs best under the worst- 
case scenario among all considered realizations of the uncertain heat 
demand. This approach yields a solution that is robust, meaning it en
sures system performance even under the most adverse demand condi
tions but can be suboptimal for every individual realization [16,42,43]. 
Due to the specific nature of the geothermal case study, no first-stage 
(pre-commitment) decisions are required in advance, allowing for the 
decoupling of the problem across scenarios. As such, the optimization 
focuses solely on second-stage decisions, control set-points that directly 
affect system operation.

In the following sections, the optimization problem, objective func
tion, and associated constraints are described. The optimization algo
rithm returns optimized control values for adjusting the operation of the 
geothermal plant (so called the control set-points) that optimizes the 
chosen objective function. Key performance indicators (KPIs) are eval
uated for the plant operated using these control set-points. Following the 
description of the optimization problem, the formulation of the opti
mization problem under uncertainty, using SBSO, is provided. Finally, 
the optimization algorithm, its parameters, and termination criteria are 
presented.

3.1. Optimization problem

In the operation of a geothermal doublet plant, the objective may be 
to maximize profits and/or minimize emissions while adhering to 
operational constraints. In the present case study, a total of six control 
variables are considered, which already presents significant challenges 
for manual optimization. This section formalizes the optimization 
problem. Prior to this, a list of global key performance indicators (KPIs) 
for the example plant, which are subject to optimization, is presented. 
These KPIs are computed by the simulation model for each proposed 
control action. In the description of the KPIs below, the superscript “el” 
denotes electric power, while “s’’refers to variables in the secondary 
system, as shown in Fig. 1.

The KPI’s related to power [MW] are: 

• Eplant = qsρCw
(
Ts

out − Ts
in
)

represents the thermal power generated by 
the plant, where 
o Cw: specific heat capacity of water [J/(kg K)],
o ρ: water density [kg/cm3],
o qs: flow rate [m3/s],
o Ts

out : outlet temperature of the secondary system [K],
o Ts

in: inlet temperature of the secondary system [K]
• Etotal = Eplant − Eel

esp − Eel
boosterpump + Eel

chp, represents the net generated 
power. This accounts for power consumption of pumps and power 
generation by the CHP component.

• Eel
net = − Eel

esp − Eel
boosterpump + Eel

chp, represents the electricity surplus. If 
non-negative, the CHP can supply all electricity required for the 
plant.

The total emission KPI [kg/h of CO2 equivalent]: 

• Mtotal = Mesp + Mboosterpump + Mboiler + Mchp, represents the total CO2 
emission.

To calculate the emission terms for the pumps (ESP and booster 
pump), their power consumption is determined based on the pump head 

Fig. 2. Schematic of the optimization workflow. It starts with an initial guess x0 

of the control. In an iterative process the optimizer calculates improved control 
until the objective function improvement is below a tolerance ϵ > 0, i.e. |J(xk) −

J(xk− 1)|/J(xk− 1) < ϵ.
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and flow rate, along with an emission factor associated with the power 
source. The emission terms for the boiler and CHP are based on the 
amount of natural gas consumed by these components. Detailed for
mulations for these emissions are provided in the component modeling 
Annex 1.

The total profit KPI [€]: 

• Ctotal = cheatEplant (x) − celEel
net(x) − cCO2 Mtotal(x) − cgasqgas,grid repre

sents the total costs, where 
o cheat : price of the heat [€/GJ]
o cCO2 : price of CO2 [€/tonne]
o cgas: price of the gas [€/MMBtu]
o cel: price of the electricity [€/MWh]

A geothermal plant has several control variables, which, for the case 
study example, are identified as follows: 

• Wellhead pressure of the producer pprod
wh

• ESP frequency f esp

• Flow rate of gas from the grid qgas,grid

• Gas flow fraction u ∈ [0,1]
• Water flow fraction v ∈ [0,1] of the secondary system
• Flow rate qs at secondary system

To simplify, these control variables are grouped in a control vector x 
defined by: 

x=
(

f esp, pprod
wh , qgas,grid, qs, u, v

)
. (1) 

The feasible control space, defined by the control variable upper and 
lower bounds, is denoted by Ω.

We consider two KPI’s for optimization: minimizing the total emis
sion Mtotal and maximizing the total profit Ctotal. Both optimization 
problems are formulated as follows: 
{

min
x∈Ω

J(x) | h(x)=0, g(x)≤ 0
}

, (2) 

where objective function J defined by J(x) = Mtotal(x) for emission 
minimization and J(x) = − Ctotal(x) for profit maximization (note that 
maximizing profit (Ctotal) is equivalent to minimizing − Ctotal).

The constraints are expressed in vector notation as follows: 

h = 0: equality constraints hi(x) = 0, i = 1,…,m,
g ≤ 0: inequality constraints gi(x) = 0, i = 1,…,n

Here, m and n denote the number of equality and inequality con
straints, respectively. Specific constraints used in the study include: 

• A minimum outlet temperature for the secondary system, Ts
out ≥ Tmin

out
• A constraint on the wellhead pressure to prevent scaling and mineral 

precipitation, pprod
wh > pscaling.

For the case study example, pscaling and Tmin
out are set to 4 bars and 

50 ◦C, respectively.

3.2. Optimization under uncertainty

In a geothermal plant, there are several sources of uncertainty arising 
from different origins, such as the properties of the fluid and reservoir, as 
well as the variability in energy demand. In our modeling approach, for 
instance, uncertainty in reservoir properties is reflected in the produc
tivity index (PI) of the inflow performance relation. With deterministic 
optimization, fixed values are assigned to uncertain parameters, and the 
optimization problem is solved as described in the previous section. This 
approach provides an optimal control strategy based on somewhat 

arbitrary parameter values. Ideally, the resulting optimal control should 
be tested to evaluate its performance across other realizations of the 
uncertain parameters. However, this workflow is cumbersome and does 
not guarantee an acceptable solution. The stochastic optimization 
framework outlined above, including both SBSO and robust optimiza
tion methods, addresses this issue. It aims to identify a control policy 
that performs well across all realizations of the uncertain parameters. 
Robust optimization methods, in particular, ensure feasibility under all 
possible realizations of the uncertain parameters by considering their 
worst-case scenarios [35,44].

To outline the stochastic optimization approach, we assume that 
uncertainties are represented by a set of realizations r = (r1, r2,…, rm)

with the associated probabilities ω = (ω1,ω2,…,ωM), where the prob
abilities satisfy 

∑M
i=1ωi = 1. For equiprobable realizations ωi = 1/M, i =

1,…,M.
The evaluation of the objective function J, as described above, de

pends not only on the control vector x but also on a chosen realization, 
say ri. The expected value of the objective function can then be written 
as: 

J(x)=
∑M

i=1
ωi . J(x, ri) (3) 

The stochastic optimization framework focuses on maximizing the 
expected objective function value J(x), as opposed to optimizing J(x, ri)

for a single arbitrary realization ri, as is done in deterministic optimi
zation. As outlined above, in the case of SBSO, the optimal control policy 
is determined for each scenario by optimizing the expected objective 
value across all scenarios. This approach differs from focusing on a 
single solution that performs best under the worst-case scenario. While 
this approach ensures feasibility and conservatism, it can lead to sub
optimal performance in scenarios other than the worst case, thereby 
sacrificing some efficiency in favor of robustness. When heat demand is 
considered as one of the uncertainties, the objective function (per sce
nario) J(x, ri) is augmented with a penalty term to account for the 
mismatch between the heat supplied (Eplant) and the heat demand 
(Edemand). For the emission minimization case, the augmented objective 
function takes the form: 

J(x, ri)=Mtotal(x, ri) + P (x, ri) (4) 

Where P denotes the penalty term for constraint violations. For the case 
study presented in this paper, the constraint violation term is expressed 
as: 

P (x, ri)= c1
⃦
⃦Eplant(x, ri) − Edemand(ri)

⃦
⃦+

{ c2,

0,
if pprod

wh ≤ pscaling

otherwise

+

{ c3,

0,
if Ts

out < Tmin
out

otherwise

(5) 

where ‖ ⋅‖ is the Euclidian norm, c1, c2, c3 > 0 are penalty factors and 
Edemand(ri) is the demand profile associated to realization ri. Likewise, for 
the profit optimization Mtotal(x, ri) is replaced by − Ctotal(x, ri). Penalty 
factors are introduced in the objective function to enforce key opera
tional constraints, such as temperature limits, pressure thresholds, and 
demand-supply alignment. The magnitude of the penalty factors in
fluences how strictly these constraints are enforced during optimization 
and can affect the resulting optimal solution by prioritizing feasibility 
over performance. Therefore, the choice of penalty factors is problem- 
specific and can be fine-tuned to achieve an appropriate balance be
tween constraint satisfaction and optimization performance. Note that if 
heat demand is the only source of uncertainty to be considered, then ri 
represents a single realization of the demand profile. In that case, the 
augmented objective function takes the following form: 

J(x, ri)=Mtotal(x) + P (x, ri) (6) 

This formulation is efficient because the evaluation of emissions and 
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generated power is independent of heat demand. Additionally, it re
duces computational time, as the simulation is performed for each 
proposed control setting, key performance indicators (KPIs) are 
retrieved, and the simulation output is evaluated using the defined 
augmented objective function. In this case, we assume that the heat 
demand (Edemand) is uncertain, with an expected value E(Edemand) and a 
known variance. Consequently, the list of constraints remains un
changed, except for the demand-supply constraint, which is reformu
lated to account for the uncertain demand as follows: 

Edemand(ri)=E(Edemand) + Ẽdemand(ri) (7) 

3.3. Optimization algorithm

In this study, Genetic Algorithm (GA) was used for optimization. GA 
is a population-based optimization algorithm inspired by Darwin’s 
theory of evolution and biological operators such as selection, crossover, 
and mutation. The process begins with a diverse set of randomly 
generated solutions, forming an initial population. The next step, known 
as reproduction and inheritance, involves individuals in the population 
producing offspring and passing on their characteristics through a pro
cess similar to genetic recombination. The algorithm evaluates each 
solution’s fitness based on how well it solves the problem at hand. So
lutions with higher fitness scores have a greater chance of being selected 
as parents for the next generation. This cycle of reproduction, inheri
tance, and selection repeats over multiple generations. With each iter
ation, the population tends to improve as fitter individuals are more 
likely to survive and pass on their traits [45,46].

The process terminates based on imposed conditions such as reach
ing a maximum number of generations, the highest fitness remaining 
unchanged in successive iterations, or manual termination. This 
approach allows GAs to efficiently explore large solution spaces and find 
globally optimal or near-optimal solutions, particularly in cases where 
traditional optimization methods may struggle due to complex or non- 
linear problem landscapes [47].

The geothermal plant is modeled using an in-house developed solver 
[37]. A key characteristic of this modeling approach is its high accuracy. 
However, this comes with a limitation: the solver does not provide ac
cess to gradients. This restriction, in turn, limits the applicability of 
gradient-based algorithms, such as interior-point methods. To address 
this challenge, a meta-heuristic approach, such as the GA, can be 
employed. GA is a better choice in this context because it is gradient-free 
and has a strong capability to converge to a solution effectively. One of 
the main disadvantages of GA is the tuning of the optimizer parameters 
to ensure computational efficiency and convergence of the method. The 
GA optimization employed in this case study is based on the parameters 
in Table 2.

4. Results

In the first test, the results of the optimization under uncertainty for 

both objective functions for one fixed heat demand is shown. For this 
test, a fixed demand value of 6 MW is used, and the uncertainty is 
assumed with a standard deviation of 5 % from the nominal value. For 
all the cases in the result section, the realizations of uncertain demand 
are assumed to be equiprobable.

The penalty factors used in the objective function (Equation (5)) 
were set to 1000, 100, and 10 for c1, c2, and c3, respectively. The se
lection was through an iterative tuning process to ensure numerical 
stability and to appropriately enforce constraint violations. Although no 
formal sensitivity analysis was conducted, the chosen values were found 
to provide a suitable balance between penalizing constraint violations 
and allowing the optimizer to explore feasible solution spaces. The 
optimization algorithm enforces lower and upper bounds on all control 
variables (as stated in Equation (1)), defined as follows: f esp ∈ [30,70],
pprod

wh ∈ [2,20], qgas,grid ∈ [0,100], qs ∈ [20,150], u∈ [0,100], v∈ [0,100].
Using genetic algorithm (GA), the optimization tracked the pro

gression of fitness values across multiple generations, reflecting how 
well the system met each objective over time. Additionally, GA allowed 
for the evolution of six selected control variables, whose adjustments 
over generations reveal how different parameter combinations 
contribute to achieving the desired objectives. This analysis provides 
insights into the trade-offs between environmental and economic goals 
and highlights the control variables’ role in balancing these objectives.

To present the initial results, a comparison for the fitness values and 
the evolution of control variables across generations for both objectives: 
minimizing emissions and maximizing profit are shown in Fig. 3. The 
impact of proposed control for both objective functions on the power 
generated from the geothermal doublet, plant and the net electricity 
power consumption is shown in Fig. 4. This result demonstrates that the 
algorithm effectively devised distinct control strategies tailored to each 
objective function. By optimizing separately for emission reduction and 
profit maximization, the GA was able to explore distinct control path
ways that aligned with each objective, confirming its capability to adapt 
the control variables in response to varying optimization goals. The 
resulting emission for the emission minimization objective achieved a 
substantial reduction of 70 % compared to the emission of the profit 
maximization objective.

The reduction in emissions under the emission-focused objective was 
achieved primarily through reduced gas usage in the gas boiler, u value 
was to 53 % for the emission objective compared to 99.7 % for the profit 
objective function. By further analyzing the contribution to the pro
duced power in Fig. 4, it can be seen that for the same plant power (to 
meet the uncertain heat demand), a higher production from geothermal 
doublet was proposed to minimize the emission. Higher profit objective 
leads to a higher utilization of the gas in the boiler which gives a higher 
emission. In a different observation, for the emission minimization 
objective, it can be observed that the net electricity consumption was 
turned to be positive, meaning that the fraction of the utilized gas in CHP 
could provide more electricity to the system than it is required which 
was sufficient for the produced geothermal power. By tracking these 
outcomes, we can illustrate how GA balances environmental and eco
nomic objectives and observe how each set of control variables adapts to 
prioritize emission reduction or profit maximization over successive 
generations.

Since the price can have an impact on the optimum operation (profit 
maximization or emission minimization) from the geothermal plant, a 
list of scenarios were performed by varying the prices aiming at opti
mizing the profit. These price ranges are used solely for sensitivity 
analysis to evaluate the effect of different pricing conditions, and are not 
intended to represent short-term fluctuating prices for gas, CO2, or heat. 
For the scenarios a fixed heating demand of 6.0 MW was used. A total of 
90 scenarios were performed by varying the prices in the following 
ranges, CO2 [60–300] €/tonne, heat [20− 100] €/GJ, and electricity 
[30–90] €/MWh. These scenarios were ran for a fixed assumed gas price 
(2.5 €/MMBtu). The results of different scenarios for profit 

Table 2 
Configuration and parameters of the GA optimization employed in the study.

Parameters/ 
Configuration

Value/Method

Objective function (for 
day-ahead)

Minimizing the expected value of the emission
Maximizing the expected value of profit

Population size 50
Selection operation Elitism
Cross over probabilities 70 %
Mutation probabilities 20 %
Mutation range Based on a uniform distribution between the lower and 

upper bound specified for each gene
Maximum number of 

generations
100

Termination criteria Maximum generation to be reached
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maximization are shown in Fig. 5. The resulting emission from the profit 
maximization are shown in Fig. 6. The contour plots were made based on 
normalized profit, by considering the maximum profit made in all the 
optimized cases.

In the scenario analysis performed, a strong influence of heat price 
on profit maximization was observed. Scenarios with high electricity 
prices tended to yield higher profits, primarily because the optimal so
lution involved electricity production within the geothermal plant, 
generating a surplus beyond what was needed to sustain plant opera
tions. Interestingly, CO2 price showed a relatively low impact on prof
itability, suggesting that even with higher CO2 costs, optimal solutions 
could still be achieved (Fig. 6). As previously described, high profits 
were associated with increased emissions which aligns with the contour 

plot of emissions for optimized profit cases.
The absence of a clear optimum point in the contour plot highlights 

the necessity for heuristic algorithms, such as GA, to effectively navigate 
the complex, multi-dimensional landscape of this optimization problem. 
It should be noted that these results are highly dependent on the specific 
plant configuration, pricing structure, and underlying properties, and no 
generic conclusions are intended.

The next problem was based on day-ahead production optimization 
with a prediction horizon of 24 h. Among the prices varied in the pre
vious sensitivity analysis, only electricity has an hourly profile, which is 
incorporated in this section to reflect day-ahead market conditions. An 
example heating demand profile was generated with a maximum un
certainty of 5 % around the mean value of demand which is uniformly 
distributed (Fig. 7). The variability of the heating demand through the 
day was made in such a way that it corresponds to the heating demand in 
actual district heating grids [48]. It should be noted that such profiles, 
including both electricity prices and heat demand, can be influenced by 
weather conditions. While weather-driven prediction models are not 
considered in this paper, they can be readily integrated as boundary 
conditions or scenarios within the optimization framework. Both 
objective functions, targeting expected emission minimization and 
profit maximization, were evaluated on the same example of uncertain 
heating demand.

In other studies, heat demand is often modeled or forecasted using 
weather data and time-related features to improve the accuracy of 
operational planning [36]. Such forecasting-based approaches are 
valuable for proactive control but were not within the scope of this 
study, which focuses on optimizing control strategies based on given 
demand profiles. As earlier explained, the realizations in the uncertainty 
space of the heating demand are all treated to be equiprobable due to the 
choice of uniform distribution for the uncertainty. In this case, 50 re
alizations (24 h profile) were made which corresponds to a chance of 2 
% for each profile to occur. The constraint to meet the heat demand at 
each hour, as a part of the augmented objective function, is still in place 

Fig. 3. Evolution of fitness values and control variables across generations for objectives of (top) minimizing total emissions and (bottom) maximizing profit. For 
profit maximization the following fixed prices were assumed cCO2, = 60 €/tonne, cel = 150 €/MWh, cheat = 30 Euros €/GJ, and cgas = 2.5 €/MMBtu.

Fig. 4. Comparison of energy produced by the geothermal doublet (Edoublet), 
geothermal plant (Eplant), and the net electricity consumption (Eel

net) across two 
objective functions. The bars represent the respective values for each metric in 
MW; the objective functions were distinguished by different color and patterns.
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to prevent underproduction. For the maximization of profit, the heat, 
CO2 and gas price during the next day was assumed to be constant with 
the values of 50 €/GJ, 100 €/tonne, and 2.5 €/MMBtu, respectively. An 

electricity profile price was assumed for the day-ahead market based on 
data obtained from market data available on EPEX SPOT and that is 
shown in Fig. 7.

Fig. 5. 2D contour plot of optimum normalized profit based on scenarios varying CO2, heat and electricity price for a fixed demand, in this case 6.0 MW. The left plot 
shows the impact of CO2 and electricity price, and the right plot shows the impact of electricity and heat price.

Fig. 6. 2D contour plot of optimum normalized emission based on scenarios varying CO2, heat and electricity price for a fixed demand, in this case 6.0 MW. The left 
plot shows the impact of CO2 and electricity price, and the right plot shows the impact of electricity and heat price.

Fig. 7. Thermal power demand profile over time, mean and sampled demand values are plotted, based on 50 uniformly distributed random samples (yellow lines). 
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

P. Shoeibi Omrani et al.                                                                                                                                                                                                                       Renewable Energy 257 (2026) 124805 

8 



The resulting control settings for all the control parameters for both 
optimization problems are shown in Fig. 8. The optimization results 
indicate a variation in control settings across the two objective functions 
examined. The optimized control variables, comparing the two optimi
zation problems, exhibit only minor differences in the range that they 
were explored. The notable distinction can be found in the fraction u of 
the gas to the gas boiler and gas flow qgas,grid from the grid for the 
emission and profit objectives. For the case with minimizing emission, 
more gas is routed to CHP to produce electricity for the usage of the 
pumps in the geothermal plant, however for the profit maximization 
case study, the optimum settings were in a higher usage of the gas (both 
from the geothermal plant and grid) in the gas boiler for supplying the 
heat. It is important to note that the variation in the geothermal well
head pressure of the production well and ESP frequency are coupled, 
and multiple combinations of these control variables can lead to the 
same production rate in the geothermal plant. To further improve the 
control algorithm and avoid this redundancy issue in the control set
tings, it is recommended to penalize the number of changes in the 
control parameters over the time horizon to avoid large step changes 

proposed by the optimization algorithm.
While the control strategy allows hourly updates, we acknowledge 

that rapid changes (such as those observed in Fig. 8) may not reflect the 
gradual control adjustments typically applied in practice. Such sudden 
load changes can impact the integrity of the equipment and lead to long- 
term reservoir challenges. In field applications, some control variables, 
such as ESP frequency, are often adjusted progressively over a longer 
period rather than through sudden changes, depending on the manu
facturer’s specifications and the amplitude of the change. Although 
dynamic system constraints are not explicitly modeled in this study, they 
can be incorporated in future work to reflect more realistic operational 
behavior.

The total day-ahead emission for the case of maximizing the profit 
leads to a significantly higher emission, see Fig. 9, by 87.5 % increase 
mainly driven by the higher utilization of the gas from the geothermal 
brine and grid. For the profit objective, the optimum control that min
imizes emissions will lead to a 2.7 % lower profit compared to the 
control settings leading to the maximum profit. Since the majority of the 
supplied heat is provided by the geothermal plant, the impact of mini
mizing emission on the profit generated during the operation is minute. 

Fig. 8. Optimal control settings for all the control variables, including wellhead pressure of the geothermal production well, ESP frequency, fraction of the gas to the 
boiler (u), fraction of the water to the heat exchanger (v), gas flow rate from the grid, and the flow rate of the water in the secondary loop, for both emission 
minimization and profit maximization objective function.
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It is shown in Fig. 9 that the contribution of the geothermal well pro
duction for both objective functions remains high and not significantly 
changed, and the main components that are impacted to achieve the 
desired objectives are the utilization of the gas from the grid and elec
tricity production in CHP. It should be noted that the results in this 
section depend on the gas, CO2, heat and electricity price chosen in the 
profit objective function.

Robust optimization is proposed as a rigorous approach to ensure 
optimal control for a geothermal plant under heat demand uncertainty. 
In order to demonstrate the added value of robust optimization, its so
lution xopt is compared to the solutions xopt

i , i = 1,…,50, of the deter
ministic optimization performed on every individual realization (total of 
50) from the uncertainty space. Under the assumption of equiprobable 
realizations, the optimal control solution xopt that performs well across 
all realizations was achieved by optimizing the expected objective 
function. In Fig. 10 the expected objective function values J

(
xopt

i
)
, i = 1,

…,50 are shown together with J(xopt) with J the averaged (over the 
realizations) emission. As expected, the robust optimization approach 
led to the best overall performance in terms of expected objective 
function improvement, that is, J(xopt) ≤ J

(
xopt

i
)
, i = 1,…,50. The figure 

shows also that control obtained through deterministic optimization 
may result in a much higher expected objective function value indi
cating an inferior performance for other realizations. Similar observa
tion can be made for the case of maximizing profits of which the results 
are shown in Fig. 10 b). In conclusion, the control strategies obtained by 

robust optimization for both objective functions, show more resilient 
and robust performance across all considered realization of uncertain 
heat demand, whereas deterministic optimization can perform poorly 
for certain realizations, as implied by Fig. 10. For the emission mini
mization the objective function of robust optimization was found to be 
191.5 while the best realization led to the objective function of 180.2 in 
which the robust optimization has a 5.9 % improvement in the objective 
function, demonstrating its effectiveness in handling the uncertainties 
inherent in geothermal plant control. For the profit maximization, only a 
minute increase of 1.4 % was found for the robust optimization 
compared to the best of all the realizations. However, we emphasize that 
even though in the latter case the increase is small performing deter
ministic optimizations for all realizations and taking the control that 
results in highest expectation objective function value is not a reliable 
substitute of the robust optimization approach.

5. Conclusions

Uncertainties in various parameters and processes of geothermal 
energy production can significantly impact the optimal control of 
geothermal plants. These uncertainties, arising from diverse sources and 
varying over time, necessitate a systematic approach to integrate them 
into the operational decision-making processes of geothermal plants. 
This paper introduces a novel stochastic optimization-based control 
policy designed to optimize the operation of geothermal plants under 

Fig. 9. The hourly (top) geothermal production rate and (bottom) total CO2 emission for the day-ahead production optimization shown for minimizing emission and 
maximizing profit case study.
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heating demand uncertainty. The proposed stochastic optimization 
framework aims to optimize the expected objective function across all 
scenarios. In an ex-post analysis, the optimal policy for the worst-case 
realization is determined, yielding a robust solution. When the worst- 
case scenario policy is applied universally across all scenarios, it re
sults in a solution that is more conservative and risk averse. Despite its 
reduced efficiency, the robust solution is chosen as the preferred control 
policy due to its enhanced reliability under uncertainty.

The optimization method supports several critical control and 
operational parameters in the plant, including geothermal wellhead 
pressure, electric submersible pump frequency (which impacts the 
production rate of geothermal wells), the distribution of gas to the boiler 
and combined heat and power units, the allocation of liquid to the heat 
exchanger, the flow rate of gas from the grid (to address demand-supply 
mismatches), and the flow rate of the secondary fluid connected to the 
heat demand. A Genetic Algorithm was employed to solve the optimi
zation problem, incorporating two objective functions: minimizing 
emissions and maximizing profit. Operational constraints were inte
grated into the framework by penalizing violations in the objective 
function.

The results demonstrated the robustness and effectiveness of the 
proposed optimization approach in managing geothermal plant opera
tions. The robust optimization method provided a control strategy 
capable of performing well across all uncertainty realizations. 
Conversely, deterministic optimization, which does not account for 
uncertainties, was shown to lead to suboptimal operation. Optimizing 
control based on a single realization resulted in inferior solutions for 
other scenarios, highlighting the importance of incorporating un
certainties into the optimization process.

While the proposed approach offers a robust methodology for 
addressing uncertainties in geothermal plant operations, a more 
comprehensive case study would be required to fully explore its po
tential. For example, uncertainties related to fluid composition and 
equipment degradation, which can significantly influence optimal con
trol settings, were not included in the current formulation. Additionally, 
the anticipated increase in electrification of energy infrastructure, 
including the adoption of heat pumps and its interplay with electricity 
pricing, represents a critical area for future investigation.

To further enhance the practicality of the proposed workflow, future 
work should focus on improving the computational efficiency of the 
optimizer. This could involve incorporating gradient-based optimization 
methods or exploring alternative strategies, such as adaptive mutation 
techniques (e.g., Ref. [49]), to enable real-time production optimization. 
For future work, transient models to simulate the dynamic response and 
behavior of the system can be implemented and additional constraints 
can be introduced to limit the load changes in the system and the 
magnitude of control actions, such as variations in ESP frequency and 
wellhead pressures, to further align with operational practices. 
Geothermal energy has a low environmental footprint; however, in 
reservoirs with accompanying gases, CO2 emissions may occur during 
production. Research on CO2-neutral gas utilization [50] and its impact 
on optimal operational strategies can be further studied. Finally, the 
validation of the proposed control strategies on field cases is recom
mended for future studies.
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Nomenclature

Symbol

c1,c2, c3 Penalty factors for constraints’ violation [− ]
cCO2 Price of CO2 [€/tonne]
cel Price of the electricity [€/MWh]
cgas Price of the gas from the grid [€/MMBtu]
cheat Price of the heat [€/GJ]
Ctotal Total profit [€]
Cw Specific heat capacity of water [J/(kg.K)]
Edemand Thermal energy demand [MW]
Eplant Thermal power generated by the plant [MW]
Etotal The net generated thermal power subtracting the power consumption [MW]
Eel

net Electricity surplus [MW]
M CO2 emission [kg/s of CO2 equivalent]
p Pressure [bar]
P Penalty term for constraint violation
q Fluid flow rate [m3/s]
T Temperature [C]
u Gas flow fraction [− ]
v Water flow fraction in the secondary system [− ]
x Control vector
Abbreviations
CHP Combined heat and power
ESP Electrical Submersible Pump
GA Genetic Algorithm
PI Productivity Index
SBSO Scenario-based Stochastic Optimization
VLP Vertical lift performance
Superscript
el Electric power
geo Geothermal production in the primary system
gas,geo Gas from the geothermal doublet
gas, grid Gas from the grid
p Primary system
s Secondary system
Subscript
boosterpump Booster pump on the geothermal injection side (primary system)
in Inlet (refers to any component)
net Net power generated/consumed
out Outlet (refers to any component)
w Water
wh wellhead

Annex 1. Modelling approach for the geothermal plant

The equations for the different components of the geothermal plant are described in this section.

VLP-IPR relation

For solving the rate of the producer well incorporating an ESP, a procedure known as nodal analysis needs to be performed. The geothermal 
production is a pressure-driven system and the pressure on several nodes of the system together with the resistance between the nodes will determine 
the production rate. The system consists of five pressure nodes from subsurface to surface: Pres (reservoir pressure), Pbh (bottomhole pressure), Pesp,in 
(suction pressure of ESP), Pesp,out (discharge pressure of ESP) and Pwh (wellhead pressure).

The inflow performance relation is used to relate two of the pressure nodes, Pres and Pbh given a production rate q using a linear relation using the 
productivity index (PI) 

qp =PI⋅(Pres − Pbh) (8) 
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Given the wellhead pressure Pwh and a production rate qp, the vertical lift performance curves of the upper (above the ESP) and lower part of the 
well and the ESP pressure drop the bottomhole pressure Pbh can be derived. The nodal analysis calculates the flowrate qp so that the Pbh of the well 
calculation and the inflow performance relation is equal. Its solution is denoted by qp ,with superscript p to refer to the primary system, see Fig. 1.

Due to different pipe diameters in the completion, the pressure drop equation needs to be integrated over the full length of the pipe. The vertical lift 
performance (VLP) estimation in the producer well is divided into two sections, upstream (from bottomhole to the inlet of ESP) and downstream (from 
discharge of ESP to wellhead) of the ESP. The pressure drop equation is as follows 

dP
dl

=

(

g sin(θ)+
fc

2Dh
|um|um

)
(
αgρg + αlρl

)
− αgρgug

dug

dx
− αlρlul

dul

dx
, (9) 

In which l is the length along the tubing or pipe, Dh is the hydraulic diameter of the pipe, θ is the inclination of the pipe, and g is gravitational 
acceleration. In the formulation, the hold-up is denoted as α, density as ρ and superficial velocity as u, with the subscripts g and l stands for gas and 
liquid phase. Since, multiphase flow in the production tubing or casing is expected, mixture velocity (um) is used for the pressure drop calculations, 
which is defined as 

um =αgug + αlul (10) 

The friction coefficient (fc) used for the pressure drop calculation is [51]: 

fc =

[

1.14 − 2 log
(

ε
Dh

+
21.25
Re0.9

)]− 2

(11) 

where ε is the tubing/casing roughness and Re is the Reynolds number.
The ESP hydraulic performance model is a fit function to the suppliers’ provided pump curves from which the ESP head can be estimated based on 

the production rate and pump frequency fesp: 

Δp=
(

pesp,out − pesp,in

)
= F

(
qp, fesp

)
(12) 

Heat exchanger

The heat exchanger model describes the relationship between the input and output temperatures of the primary and secondary fluid streams, based 
on flow rates and heat transfer dynamics. Mathematically, the model is expressed by a function Fhex: Tp

out ,Ts
out = Fhex

(
Tp

in,Ts
in, qp, qs, v). The output 

temperatures depend on the input temperatures, flow rates of the primary (qp) and secondary (vqs) systems, and heat transfer coefficient. The output 
temperatures are given by 

Tp
out =Tp

in −
h

Cwqp,T
s
out = Ts

in +
h

Cwvqs (13) 

where h = e hmax represents the heat transfer rate, and hmax = cmin
⃒
⃒Tp

in − Ts
in
⃒
⃒ is the maximum possible heat transfer. The effectiveness, ϵ, depends on 

the configuration of the heat exchanger, parallel or counterflow which is calculated using the following formulas, respectively: 

• For parallel flow:

ϵ=
1 − e− NTU(1+cr)

1 + cr
(14) 

• For counter plate

ϵ=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

NTU
1 + NTU

, if cr = 1

1 − e− NTU, if cr < 0.01

1 − e− NTU(1+cr)

1 − cre− NTU(1+cr)
, otherwise

(15) 

Here the key parameters are: NTU = H/cmin, cr = cmin/cmax, cp = ρqpCw, cs = ρvqsCw, cmax = max(cp,cs), cmin = min(cp, cs)

where H is the heat transfer coefficient and Cw is the specific heat capacity of water. This model effectively captures the thermodynamic behavior of 
the heat exchanger, accounting for heat transfer limitations, flow rate effects, and configuration-specific performance through the non-dimensional 
effectiveness (ϵ) and number of transfer units (NTU). It provides a robust framework for analyzing and optimizing heat exchanger performance in both 
parallel and counterflow configurations.

Gas boiler

The gas boiler model describes its role in delivering higher temperatures when a geothermal doublet is insufficient. The relationship governing the 
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gas boiler is expressed as 

Tblr,out ,Mblr = Fblr
(
Tblr,in, qp, qs, u, v

)
, (16) 

where Tblr,in = Thex,out . The outlet temperature of the gas boiler is given by 

Tblr,out =Tblr,in +
Eboiler

Cwvρqs (17) 

Here Eboiler is the thermal power provided by the boiler, calculated as 

Eboiler = ηblrHuqgas, (18) 

with the following definitions. 

• ηblr: the efficiency factor of the gas boiler (typically ηblr = 0.8),
• H: calorific value of the gas ≈ 50 MJ/m3

• qgas : gas flow rate (
[
m3 /s

]
) ,

• u ∈ [0,1]: gas flow fraction

The CO2 emission, Mblr [kg/s], from the gas boiler is given by 

Mblr = egas Huqgas (19) 

with egas [kg/J] is the gas emission factor. This model captures the thermodynamic and environmental behavior of the gas boiler, accounting for its 
efficiency, thermal power output, and emissions. It ensures accurate modeling of the boiler’s contribution to heat delivery, as well as the associated 
fuel consumption and CO2 emissions. The integration of parameters such as the calorific value (H) and gas flow fraction (u) allows for the flexible 
operation of the boiler while maintaining realistic energy and environmental constraints.

CHP (combined heat and power)

The CHP model describes its ability to simultaneously generate heat and electricity using natural gas as a fuel source. The governing relationship 
for the CHP system is given as: 

Tchp,out ,Echp,Mchp = Fchp

(
Tchp,in, qgas, qs, u, v

)
, (20) 

with Tchp,in = Ts
in. The total generated power Pchp produced by the CHP can be written as: 

Pchp = ηchpH(1 − u)qgas, (21) 

with a typical efficiency of ηchp = 0.8. In order to calculate the generated heat and electricity from the CHP the following assumption was used; 
Eel

chp =
1
3Pchp the power for electricity, Echp =

2
3Pchp the power for the heat. The outlet temperature of the CHP is calculated as: 

Tchp,out =Tchp,in +
Echp

Cw(1 − v)ρqs (22) 

The CO2 emission, Mchp [kg/s], from the CHP system is given by 

Mchp = egas H (1 − u) qgas (23) 

with egas [kg/J] being the gas emission factor. This model effectively captures the thermodynamic and environmental characteristics of the CHP 
system, detailing its ability to convert natural gas into both thermal energy and electricity with a defined efficiency. The integration of key parameters 
such as gas flow fraction (u) and flow rates ensure accurate modeling of its operational performance and associated CO2 emissions. By separating 
power generation into heat and electricity components, the model provides a detailed framework for optimizing CHP utilization in energy systems.

ESP

This model is built upon manufacturer-provided correlations that relate the pump head, Δp =
(

pesp,in − pesp,out

)
, to the flowrate qp and pump 

frequency fesp. The correlations are often found in the pump curves and enable the prediction of pump performance under varying operating con
ditions. The relationship was fitted by using a polynomial regression calibrated on pump curve data.

The required pump power, Eel
esp [W], is calculated as: 

Eel
esp =

qpΔp.
ηesp

, (24) 

where a typical efficiency of the ESP is assumed to be ηesp = 0.65. This relation highlights the dependence of pump power requirement on the 
operational settings and efficiency, as defined by the pump performance curves.

The CO2 emission, Mesp [kg/s], is given by 

Mesp = eel Eel
esp (25) 

with eel [kg/J] the electricity emission factor. In case electric power from the CHP is used for the ESP then the CO2 emission must be corrected: 
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Mesp = eel

(
Eel

esp − min
(

Eel
chp, E

el
esp

))
(26) 

Booster pump

The required pump power Eel
boosterpump [W]: 

Eel
boosterpump =

qPΔp
ηbpump

,Δp=
(

pbpump,in − pbpump,out

)
(27) 

The emission Mboosterpump [kg/s]: 

Mboosterpump = eel Eel
boosterpump (28) 

with eel [kg/J] the electricity emission factor for the pump power consumption.

References

[1] IEA, Geothermal Power, IEA, Paris, 2021. https://www.iea.org/reports/geotherma 
l-power.

[2] G. Goetzl, D. Milenic, C. Schiflechner, Geothermal-DHC, European research 
network on geothermal energy in heating and cooling networks. Proceedings 
World Geothermal Congress 2020+1, Reykjavik, Iceland, 2021.

[3] G. Goetzl, J. Chicco, C. Schifflechner, J. Figueira, G. Tsironis, A. Zajacs, Pathways 
to better integrate geothermal energy at its full technological scale in European 
heating and cooling networks, Eur. Geol. 54 (2022).

[4] L. Wasch, R. Creusen, F. Eichinger, T. Goldberg, C. Kjoller, S. Regenspurg, 
T. Mathiesen, P. Shoeibi Omrani, V. van Pul-Verboom, Improving geothermal 
system performance through collective knowledge building and technology 
development, in: European Geothermal Congress 2019, 2019.

[5] J.D.D. Ocampo-Díaz, B. Valdez-Salaz, M. Shorr, M.I. Sauceda, N. Rosas-González, 
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