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A B S T R A C T

As workplaces become increasingly complex, manufacturing companies must adopt technologies that not only 
fulfill customer requirements but also prioritize high-quality jobs for production workers. Assistance systems are 
gaining popularity because they can enhance manufacturing performance and support sufficient job quality. 
However, there is a lack of detailed insights into the application-specific impact of the systems. This study 
classifies the use of assistance systems in manufacturing, deriving characteristic archetypes and mapping their 
impacts through a systematic review of existing literature. Analyzing 56 cases from 40 studies using descriptive 
and cluster analysis, four main archetypes are identified: (1) manually operated physical execution support for 
routine assembly tasks, (2) automatically operated and adaptable visual task guidance for routine assembly tasks, 
(3) automatically operated and adaptive visual support for non-routine diagnostics tasks, and (4) automatically 
operated and adaptive physical execution support for routine assembly. Findings suggest that these archetypes 
offer potential benefits and risks for job quality and manufacturing performance. However, their successful use 
requires careful consideration of role division, task execution capabilities, task support capabilities, and long- 
term impacts. The current literature on assistance systems needs more longitudinal empirical studies to pro
vide clear guidance for both researchers and industry practitioners.

1. Introduction

As customer demands increase, manufacturers adopt smart tech
nologies to enhance overall equipment effectiveness (OEE) (Frank et al., 
2019). However, this results in increasingly complex and demanding 
workplaces for sections of production workers (Eurofound, 2021; Parker 
and Grote, 2022), which can potentially lead to reduced mental health 
and performance (Humphrey et al., 2007). This situation may affect the 
skills gap in Europe (Eurofound, 2021; European Commission, 2023), 
especially if smart technology overlooks workers’ needs. This scenario 
fuels Industry 5.0 (I5.0) in the manufacturing industry, which promotes 
integrating advanced digital technologies while prioritizing job quality 
(Breque et al., 2021). Job quality includes employment factors like work 
organization, wages, security, flexibility, skills development, and 
engagement that enhance job satisfaction and well-being (Green, 2013). 
Smart technologies are expected to mainly impact job quality’s work 
organization aspects (Parker and Grote, 2022; Waschull et al., 2017). 
Thus, manufacturing organizations should prioritize production 

workers’ needs and capabilities regarding work organization and smart 
technology to improve job quality and OEE.

Mark et al. (2021c) define assistance systems as “technical systems 
that support the specific needs of production workers in the execution of 
manufacturing tasks such as assembly, decision-making, or mainte
nance” (p. 228). These systems help compensate for production workers’ 
skill gaps, reduce mental and physical work demands, and promote 
learning (Longo et al., 2017; Romero et al., 2016a, 2016b). Conse
quently, these aspects of job quality are linked to decreased absenteeism 
and turnover intentions, alongside enhancements in performance, 
well-being, and job satisfaction (Humphrey et al., 2007). Studies also 
highlight the potential of assistance systems to improve manufacturing 
outcomes (Mark et al., 2021c; Oestreich et al., 2020; Romero et al., 
2016b). Overall, assistance systems appear advantageous in the context 
of I5.0 and are defined in this study as technical systems that interact 
directly with production workers, facilitating a new way for performing 
tasks that either reduce work demands or enhance workers’ capabilities, 
thereby contributing to improved overall performance within the 
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manufacturing system.
Assistance systems are promising, yet understanding which smart 

technologies offer specific manufacturing benefits is limited (Di Pas
quale et al., 2022; Mark et al., 2022; Pagliosa et al., 2021). Scholars have 
highlighted the importance of technology applications, technological 
design and capabilities (Segura et al., 2021), impact on manufacturing 
performance (Di Pasquale et al., 2022), and job quality (Bal et al., 2021). 
However, a comprehensive understanding of these four factors is lack
ing. In addition, while user experience (UX) can provide valuable in
sights into the alignment between technology and users’ needs, few 
studies focus on UX in human-machine interaction (Bechinie et al., 
2024). Overall, the challenges of effective assistance system use stem 
from the limited understanding of application-specific impacts on OEE 
and job quality.

To guide practitioners aiming to adopt assistance systems, Mark et al. 
(2022) developed a matchmaking methodology for identifying suitable 
assistance systems for task support that fit the needs and capabilities of 
the production worker. However, the overview is merely a higher-level 
data catalogue, and the parameters considered by Mark et al. (2022) do 
not consider the work organization. This is a significant gap since work 
organization can enhance or constrain the functionalities and usability 
of an assistance system. This limitation hinders a meaningful analysis of 
an assistance system’s true value in a specific application (Kleineberg 
et al., 2017; Pacaux-Lemoine et al., 2017; Virmani and Salve, 2021). 
Additionally, job quality is often not addressed, resulting in an incom
plete mapping of the impacts of an assistance system. This highlights the 
need for an assistance system categorization that includes the capabil
ities and applications, along with the impact on job quality and OEE, to 
provide a more comprehensive view of their effects.

This study tackles this challenge by identifying assistance sys
tem archetypes in manufacturing applications and mapping their 
impact on OEE and job quality through a systematic literature re
view (SLR). It aims to support more effective use of manufacturing 
assistance systems through an overview of archetypes with their capa
bilities, use, benefits, and points of attention. Consequently, this study 
addresses two key questions: How can the literature be categorized into 
application-level archetypes of assistance systems? Which assistance 
system archetypes lead to what impact on job quality and OEE?

To answer the research questions, this paper focuses on assistance 
capabilities and application as design variables. Job quality and OEE are 
integrated as outcome variables, while UX is considered a potential 
influencing factor. The resulting scope of this paper is visualized in 
Fig. 1.

The remainder of this paper is structured as follows. Section 2 de
scribes a theoretical framework for analyzing the archetypes of assis
tance systems in manufacturing and their impact on OEE and job 
quality. Section 3 details the methodology for the SLR. Section 4 pre
sents the results of the SLR. Furthermore, section 5 discusses the im
plications of these results and suggests avenues for future research. 
Finally, section 6 concludes this research.

2. Theoretical framework

This chapter provides the theoretical basis for categorizing assistance 
systems and their manufacturing applications, as well as the variables 
for mapping the impact on job quality and OEE.

2.1. Design and capabilities

In this study, the characteristics of assistance system capabilities are 
categorized based on (1) type of assistance, (2) functionality types, (3) 
human-machine interface, (4) form of information input, (5) form of 
information output, and (6) level of assistance adaptability. Type of 
assistance refers to the enhancement and augmentation of the specific 
capabilities of production workers that an assistance system aims to 
provide.

The type of assistance can be categorized into sensorial, cognitive, 
and physical (Romero et al., 2016b). To provide such assistance, the 
systems can have observation, orientation, decision-making, and action 
functions (Osinga, 2007). Sensorial support utilizes observation func
tions, including data collection and information feedback, to aid pro
duction workers in gathering and processing data from their 
environment (Osinga, 2007; Romero et al., 2016a). Romero et al. 
(2016a) classify observation functions as: ‘(a) the physical ability to 
collect data (by vision, smell, sound, touch, vibration), and (b) the se
lective perception where a small percentage of the data enters 
short-term memory for processing’ (p. 7). Examples include position 
tracking systems and RGB cameras for data collection, as well as 
warning lights and haptic gloves for feedback (Mark et al., 2021c). 
Sensorial information is crucial for supporting cognitive tasks such as 
orientation and decision-making, requiring production workers to filter 
relevant information for these tasks (Simon and Frantz, 2003). Cognitive 
assistance enhances workers’ capabilities in these orientation and 
decision-making tasks, such as perceiving, memorizing, deciding, plan
ning, and diagnosing through technology (Romero et al., 2016a). For 
instance, a cognitive assistance system can supply digital work in
structions for novice workers (Mark et al., 2021c). Finally, physical tasks 
involve ‘any bodily movements produced by skeletal muscles that 
require energy expenditure’ (Romero et al., 2016a, p. 6). Assistance 
systems offer physical support with action functions (e.g., handling, 
moving, assembling), non-functional properties (e.g., speed, strength, 
precision, dexterity), tailored to maturity and expertise levels (Romero 
et al., 2016a).

The morphology of the assistance system can be further categorized 
through the human-machine interface (HMI) that the assistance sys
tem uses. A unimodal design means that a specific channel is available 
for receiving information, primarily visual, and another for entering 
information, mostly manual. Multimodal interfaces, however, consider 
various input and output modalities such as text and image data 
(Hinrichsen et al., 2016; Späker et al., 2021). The form in which the 
information is entered into the assistance system can be manually via 
actuators, verbally via voice control, gesturing via a tracking system, or 
automatically via sensors (Hinrichsen et al., 2016). Additionally, the 
system’s output can be visual, optical, auditory, or via physical 
movements (based on Hinrichsen et al., 2016; Späker et al., 2021). 

Fig. 1. The scope of this paper.
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Finally, the extent to which the assistance system can adapt its assis
tance can vary in fixed, customized, adaptable, and adaptive assistance 
(Wandke, 2005).

Adaptability levels derive from three possibilities for adapting an 
assistance system: by the designer, the user, or the system itself. Adap
tation can occur beforehand or in real time. Fixed assistance provides 
the same support for all users, while customized assistance is optimized 
for a specific context, task, and user group during the design phase. 
Adaptable assistance systems adjust according to user preferences, tasks, 
and situations. Lastly, adaptive assistance systems automatically adjust 
based on the user, task, and situation (Wandke, 2005).

2.2. Manufacturing application

In this section, the application of the assistance system is specified 
through the following characteristics: (1) type of manufacturing process, 
(2) function of the manufacturing process, (3) type of supported task, (4) 
function of the assistance system, (5) level of automation, (6) range of 
support, (7) capabilities for task execution, and (8) capabilities for task 
support.

Manufacturing process types can be manual or automated. Manual 
processes refer to a set of tasks that production workers execute inde
pendently, without assistance from automated systems. Automated 
processes involve machinery and technology that perform tasks or can 
be utilized to perform tasks with minimal human intervention. 
Manufacturing processes (manual and automated) are categorized into 
single, batch, and mass manufacturing (Oberhausen and Plapper, 2015). 
These processes serve specific functions, which include machining, 
assembling, finishing, testing, packing, forming, casting/molding, and 
other operations (adopted from Wemmerlov and Johnson, 1997). Types 
of supported tasks within these operations can be further classified into 
routine manual, non-routine manual, routine cognitive, and non-routine 
cognitive tasks (Cimini et al., 2023). Assistance systems can utilize 
these functions to support ergonomics, physical execution, sensorial 
monitoring, work instruction guidance, decision support, and di
agnostics support.

As the worker and the assistance system jointly execute tasks, they 
are mutually dependent on what the other party does over a sustained 
sequence of actions (Johnson et al., 2014). These joint activities can be 

divided into monitoring, generating, selecting, and implementing roles. 
Implementation indicates which party executes the chosen action whilst 
monitoring, generating, and selection roles support the execution of the 
task (Endsley and Kaber, 1999). Level of automation refers to the 
extent to which these roles are automated by assistance systems 
(Endsley and Kaber, 1999). Higher levels of automation can result in 
unwanted changes in social and psychological (both emotional and 
cognitive) demands on users, if not appropriately managed (Patel et al., 
2018). For instance, both parties require greater interaction capabilities 
to jointly execute tasks (Johnson et al., 2014). Endsley and Kaber (1999)
identified ten levels of automation ranging from manual operations to 
full automation. Following the definition of this study, an assistance 
system should at least support the production worker in one of the four 
functions of a task, and the production worker should always remain in 
control of the selection role of a task. This means that level two (action 
support) up to level seven (rigid system) are adopted to exemplify the 
extent to which the assistance system automates certain tasks through its 
assistance. Furthermore, it is then specified if the range of support 
provided by the deployed assistance system entails a partial part or the 
total of the specified task (Hinrichsen et al., 2016; Späker et al., 2021).

To assess if the chosen level of automation and range of support is a 
suitable application, insights into the capabilities for effective execution 
and support of the joint activities are required. The capabilities for task 
execution are the abilities to perform the task of interest and are 
categorized as I can do it all, I can do it all but my reliability is <100 %, I 
can contribute but need assistance, I cannot do it (Johnson et al., 2014). 
The capabilities for task support are the necessary observability, pre
dictability, and directability functionalities to support the activity 
execution in the chosen task (Johnson et al., 2014). These capabilities 
are categorized as my assistance could improve efficiency, my assistance 
could improve reliability, my assistance is required, and I cannot pro
vide assistance (Johnson et al., 2014). Overall, this set of categories 
provides input on whether the current task division is fitting to the 
mutual dependencies between the worker and the assistance system. If 
not, this could potentially lead to a negative impact of assistance systems 
on job quality and OEE (Johnson et al., 2014).

In summary, Table 1 offers the analysis framework for categorizing 
the design and capabilities of the assistance system and the context in 
which it is applied.

Table 1 
Categorization framework for analyzing assistance systems in manufacturing.
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2.3. Overall equipment effectiveness

OEE evaluates the effectiveness of manufacturing equipment by 
identifying production losses related to performance, quality, and 
availability (Muchiri and Pintelon, 2008). In this study, it not only in
dicates the equipment’s effectiveness but also reflects the production 
worker’s effectiveness in the manufacturing process. Consequently, 
performance, quality, and availability losses are supplemented by met
rics from the ISO, 2014 standard, which suggests 34 industry-neutral 
KPIs relevant for either manual, automated, or both production types. 
Table 2 summarizes these metrics, illustrating how each metric in
fluences OEE according to its definitions.

2.4. Job quality

Work organization factors affecting job quality are structured 
through task division, detailing how and why tasks are executed. This 
process, called work design, can be analyzed using work design char
acteristics encompassing: motivational characteristics (individual job 
components), social characteristics (interactional components), and 

work context characteristics (contextual components) (Eurofound, 
2017; Hart, 2006; Hart and Staveland, 1988; Humphrey et al., 2007). To 
assess the impact on job quality, this study lists definitions of the 
included work design variables and their effect on job quality indicators 
such as worker attitudes and well-being in Table 3 below (Cazes et al., 
2015).

2.5. User experience

This study characterizes UX through the affective, emotional, effec
tive, efficient, and satisfaction-related results of production workers’ 
interactions with assistance systems (Sauer et al., 2020). While 
frequently utilized, the user-centered approach of UX methods compli
cates their universal application. Nevertheless, narrower concepts have 
been identified as partial indicators of UX (Laugwitz et al., 2008; Sauer 
et al., 2020). This research assesses system usability (Brooke, 1996), 
ease of use (Venkatesh and Bala, 2008), usefulness (Venkatesh and Bala, 
2008), and satisfaction with technology (Demers et al., 2002) as specific 
concepts that contribute to UX.

Table 2 
Overall Equipment Effectiveness metrics and their effect (based on ISO 22400:2014).

Metric Description Effect on OEE

Availability Availability rate Proportion of total production time a machine can be used. Increase
Major stoppage time Total time during which manufacturing is interrupted by a major machine malfunction lasting over 10 min. Reduce
Equipment failure downtime Total unplanned downtime due to equipment failure. Reduce
Replacement time Total downtime due to routinely replacing equipment. Reduce
Set-up time The time required to change a process or a machine from one product or operation to another. Reduce

Performance Cycle time Total time between the start and end of the manufacturing processes. Reduce
Idle time Total time when manufacturing is not occurring without a malfunction as a cause. Reduce
Minor stoppage time Total time during which manufacturing is interrupted by a minor temporary malfunction of the machine. Reduce
Task completion time Total time spent on a manufacturing task. Reduce
Productivity Manufactured product quantity over a specified period. Increase
Productivity variance Variance and distribution in time spent on a task. Reduce

Quality Quality variance Variance and distribution of errors made in a task. Reduce
Quality rate Percentage of products failing to meet quality requirements due to faulty task execution. Reduce
Error rate Percentage of errors made by production workers affecting product quality. Reduce

Table 3 
Work design characteristics and their effect on Job Quality (JQ) indicators.

Variable Definition Effect on 
JQ

Motivational 
characteristics

Work scheduling autonomy The freedom to control the schedule and timing of work. Increase1

Work methods autonomy The freedom to control which methods and procedures are utilized. Increase1

Decision-making autonomy The freedom to make decisions at work. Increase1

Skill variety The knowledge and skills necessary to perform a job. Increase1

Task variety The degree to which an individual performs various tasks at work. Increase1

Task significance The extent to which a job impacts others’ lives. Increase1

Task identity The extent to which an individual can complete a whole piece of work. Increase1

Feedback from the job The extent to which a job imparts information about an individual’s performance. Increase1

Information processing The extent to which the job necessitates an incumbent to focus on and manage information. Varying1

Job complexity The extent to which a job is multifaceted and difficult. Varying1

Specialization The extent to which the job requires specific knowledge and skills. Varying1

Problem solving The extent to which a job requires producing unique solutions or ideas. Varying1

Perceived cognitive task load The extent to which mental and perceptual activities are perceived as demanding, complex, and 
exacting.

Reduce23

Social characteristics Interdependence The extent to which a job depends on others’ work. Increase1

Feedback from others The extent to which other organisational members provide performance information. Increase1

Social support The extent to which a job provides opportunities for assistance and advice from supervisors or co- 
workers.

Increase1

Interaction outside the 
organization

The extent to which a job requires communication with people external to the organisation. Increase1

Work context 
characteristics

Physical demands The amount of physical activity or effort necessary for a job. Reduce123

Work conditions The extent to which factors like health hazards, temperature, and noise in the work environment are 
perceived as satisfactory.

Increase1

Note. Indication of sources: 1 Humphrey et al. (2007), 2 Andersen et al. (2016), 3 Hertzum (2022).
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3. Methodology

An SLR methodology was adopted to identify assistance system ar
chetypes and their impact on job quality and OEE (Page et al., 2021a, 
2021b).

3.1. Search strategy

To execute the SLR, the scope and keywords were determined using a 

thesaurus, experts, and a scoping search to avoid missing important 
synonyms. To meet the study’s goal, the search strategy should consider 

smart technology, its application, the user, the manufacturing context, 
and an outcome measure. Five scoping searches were conducted in 
Scopus with these terms: (1) assistance systems, (2) task support, (3) 
production worker, (4) manufacturing, and (5) performance indicator. 
Results from these scoping searches were used to subsequently refine 
keywords into synonyms, narrower and broader terms. These synonyms, 
narrower and broader terms were further refined by checking with a 
thesaurus and experts. This led to the application of the following 
Boolean operations.

Fig. 2 shows keyword co-occurrence in the search string using 
VOSviewer (Van Eck and Waltman, 2023). The lines indicate related 

((TITLE-ABS-KEY (“assistance system” OR “human centered technology” OR “human centric technology” OR “exoskeleton” OR “cobot” OR 
“robot” OR “collaborative robot” OR “chair support system” OR “smart glasses” OR “augmented reality” OR “virtual reality” OR “mixed reality” 
OR “smart watch” OR “smart glove” OR “big data” OR “data analytics” OR “smart wearable” OR “artificial intelligence” OR “machine learning” 
OR “internet of things” OR “sensor” OR “IoT” OR “cloud” OR “intelligent personal assistant” OR “smart personal assistant” OR “automated 
guided vehicle” OR “3D printing” OR “additive manufacturing” OR “digital twin” OR “Industry 4.0″ OR “smart technology” OR “Industry 5.0″ OR 
“cyber physical system”) AND TITLE-ABS-KEY (“manufacturing cell” OR “fabrication cell” OR “production cell” OR “machine cell” OR “work 
cell” OR “robotic cell” OR “machining cell” OR “welding cell” OR “assembly cell” OR “cellular manufacturing” OR “workstation” OR 
“manufacturing”) AND TITLE-ABS-KEY (“production worker” OR “operator” OR “technician” OR “worker”) AND TITLE-ABS-KEY (“operator 
support” OR “task support” OR “task assistance” OR “operator assistance” OR “digital support” OR “digital assistance” OR “cognitive assistance” 
OR “cognitive support” OR “sensorial assistance” OR “sensorial support” OR “physical assistance” OR “physical support” OR “sensor-based 
assistance” OR “sensor-based support” OR “sensor based assistance” OR “sensor based support” OR “decision support” OR “digital working 
instructions” OR “dwi” OR “projection-based assistance” OR “projection based assistance” OR “projection-based support” OR “projection based 
support” OR “remote assistance” OR “remote support” OR “laser support” OR “human-robot collaboration” OR “operator 4.0″ OR “operator 5.0″ 
OR “smart working” OR “human-machine collaboration” OR “human-technology collaboration” OR “augmentation”) AND TITLE-ABS-KEY 
(“manufacturing performance” OR “performance indicator” OR “KPI” OR “defect rate” OR “takt time” OR “first pass yield” OR “productiv
ity” OR “cycle time” OR “first time through rate” OR “process variation” OR “task time” OR “waste reduction” OR “load time” OR “changeover 
time” OR “distance covered” OR “error reduction” OR “accessibility” OR “technology utilization rate” OR “energy efficiency” OR “resource 
efficiency” OR “OEE” OR “overall equipment effectiveness” OR “machine utilization” OR “throughput time” OR “makespan” OR “cognitive 
load” OR “worker safety” OR “worker health” OR “workload” OR “incident rate” OR “job satisfaction” OR “skills” OR “competencies” OR 
“expertise” OR “employability” OR “quality rate” OR “mental demand” OR “physical demand”)))

Fig. 2. Co-occurrence map of identified keywords.
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concepts in the search strings, and their proximity suggests a strong 
co-occurrence. Four clusters emerge: assistance systems (green), 
manufacturing applications of assistance systems (yellow), industrial 
paradigms (red), and human-machine paradigms (blue).

The search string was used to query relevant databases. Scopus, Web 
of Science, and IEEE Xplore were chosen for their focus on organiza
tional design science and industrial manufacturing engineering. Other 
databases were excluded because they were irrelevant or had limited 
added value.

3.2. Selection process

This step followed the Preferred Reporting Items for Systematic Re
views and Meta-Analyses (PRISMA) to select relevant articles (Page 
et al., 2021a, 2021b). Steps included (1) removing duplicates, (2) ab
stract screening to eliminate irrelevant articles, and (3) full-text 
screening to exclude studies that did not meet the inclusion criteria. 
The review criteria were that the article: 

1. Had full text available in English;
2. Was published between 2015 and 2024 (ten years);
3. Was peer reviewed.
4. Concerned production workers. Production workers are defined as 

‘those who are directly involved in the execution of operational processes 
of manufacturing’;

5. Focused on assistance systems in a manufacturing setting. 
Manufacturing is defined as ‘the conversion of raw materials into 
physical products by production workers’;

6. Described technology that fulfilled the criteria of an assistance sys
tem, as defined in this study;

7. Categorized assistance systems, or made it possible to categorize 
assistance systems;

8. Contained results that describe the effect that an assistance system 
has on job quality and/or OEE;

9. Specified the effect of an assistance system compared to a situation 
without an assistance system.

A log, available upon request, was maintained for all full-text 
screened articles, indicating which inclusion criteria were met and 
which were not. This evaluation resulted in 40 articles being selected for 
analysis. Fig. 3 provides a visual representation of the selection process.

3.3. Data extraction and analysis

The SLR used deductive coding to analyze selected articles. The study 
used Tables 1–3 as a codebook to categorize the capabilities, applica
tions, and impact of assistance systems in an Excel file (available upon 
request). Several studies featured multiple assistance systems with 
distinct capabilities and applications, resulting in 56 cases identified 
from 40 studies. See Table 4 for a selection of relevant sample 
characteristics.

A hierarchical and k-means analysis determined assistance system 

archetypes and their characteristics based on capabilities and applica
tion variables. The range of support, capabilities for task execution, 
capabilities for task support, and the type of manufacturing process were 
excluded due to missing values. Categorical variables were one-hot 
encoded according to the predefined analysis framework (using IBM 
SPSS). To enable comparability with other variables, two ordinal vari
ables were converted into Z-scores. Furthermore, four clusters were 
identified using hierarchical cluster analysis with Ward’s method and 
Euclidean distance measure. The number of clusters was chosen based 
on the dendrogram in Fig. 4, aiming to maximize the clusters’ robustness 
and minimize heterogeneity within the clusters. Finally, the values were 
grouped into four clusters using k-means cluster analysis.

To assess the impact of assistance systems on job quality and OEE, 
ordinal variables were encoded into a three-point scale: ‘-1’ and ‘1’ 

Fig. 3. Review process of the systematic literature review.

Table 4 
Sample distribution.

Descriptive variable Categories Proportion of sample (n =
56)

Type of study Experimental study 46 (82,1 %)
Case study 10 (17,9 %)

Participants Test subjects 37 (66.1 %)
Production workers 19 (33,9 %)

Type of manufacturing 
process

Described 19 (33,9 %)
Not described 37 (66,1 %)

Capabilities for task 
execution

Described 24 (42,9 %)
Not described 32 (57,1 %)

Capabilities for task support Described 21 (37,5 %)
Not described 35 (62,5 %)

OEE - Availability Measured 4 (7,1 %)
Not measured 52 (92,9 %)

JQ – Social work 
characteristics

No variable 
measured

56 (100 %)

User experience Measured 10 (17,9 %)
Not measured 46 (82,1 %)

Fig. 4. Dendrogram for identifying the number of archetypes.
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indicate ‘decreases’ or ‘increases’ respectively, while ’0′ shows no sig
nificant effects. Similarly, ordinal UX variables were encoded on a five- 
point scale where ‘0’ to ‘5’ respectively refer to low, low/moderate, 
moderate, moderate/high, and high scores. Next, averages, standard 
deviations, and case counts were utilized to map the impact of each 
archetype. For an outcome category to be recognized as significant in the 
mapping, it must have at least five cases linked to a specific archetype. 
Significant results were subsequently examined at the variable level, 
showing each category’s proportions of outcome variables and standard 
deviation. A case count of five indicates noteworthy outcomes at the 
variable level.

4. Results

Results indicate insights aligned with this paper’s two goals: (1) 
assistance system archetypes in manufacturing applications, and (2) 
mapping their impact on job quality and OEE.

4.1. Deriving assistance system archetypes in manufacturing applications

Four assistance system archetypes emerge from the SLR, namely (1) 
Manually operated physical execution support for routine assembly 
tasks, (2) automatically operated and adaptable visual task guidance for 
routine assembly tasks, (3) automatically operated and adaptive visual 
support for non-routine diagnostics tasks in inspection/testing pro
cesses, and (4) automatically operated and adaptive physical execution 
support for routine assembly tasks. Archetypes 2 and 3 predominantly 
provide cognitive assistance, and archetypes 1 and 4 provide physical 

support. Archetypes 2 and 3 have similar capabilities, apart from the 
differing adaptability levels they can offer. Most notably, the main dif
ference lies in the application, as archetype 2 is applied for task guidance 
and routine assembly tasks, whilst archetype 3 assists with non-routine 
diagnostics in inspection and testing processes. Moreover, archetypes 1 
and 4 have similar application domains but differ in capabilities. 
Archetype 1 provides fixed action support and requires manual opera
tion, and archetype 4 accommodates adaptable action support due to its 
observation, orientation, and decision functionalities.

Although sensorial assistance is identified as a separate assistance 
type in the literature, they are infrequently researched and commonly 
integrated with cognitive or physical assistance systems. More specif
ically, observation functionalities are regularly integrated with assis
tance systems’ orientation, decision-making, and action functionalities. 
Additionally, these capabilities are combined with the ability to auto
matically administer information through sensors and an increased level 
of adaptability of the assistance systems. Finally, support for non-routine 
manual tasks or workplace ergonomics does not come forth in one of the 
four archetypes. Table 5 summarizes the four assistance system arche
types with their respective capabilities and applications.

4.2. Mapping the impact of assistance systems archetypes on OEE and job 
quality

This study found no articles that examined how assistance systems 
influence the social attributes of jobs. Furthermore, the cases evaluating 
UX indicators for any specific archetype were limited to no more than 
five. Consequently, Fig. 5 illustrates how the four types of assistance 

Table 5 
Assistance system archetypes in manufacturing applications.

Archetype 1 Archetype 2 Archetype 3 Archetype 4

# of cases 12 26 7 11
Studies (Bosch et al., 2016; Bouillet et al., 

2023; Gervasi et al., 2022; Gualtieri 
et al., 2020; Lagomarsino et al., 
2023; Mouhib et al., 2024; Moyon 
et al., 2018; Puttero et al., 2024; 
Zigart et al., 2023)

(Blattgerste et al., 2017; Bosch et al., 
2020; Brizzi et al., 2017; Eder et al., 
2020; Funk et al., 2015a; Funk et al., 
2017; Mark et al., 2021b; Papetti 
et al., 2023; Riedel et al., 2021; 
Schuster et al., 2021; Simões et al., 
2021; Smith et al., 2020; Syberfeldt 
et al., 2015; Techasarntikul et al., 
2020; Tong et al., 2024; Yang et al., 
2020; Wilschut et al., 2019)

Eimontaite et al. (2022); Hoerner 
et al., 2023; Mietkiewicz and 
Madsen, 2024; Park et al. (2020); 
Papavasileiou et al. (2024); Traub 
et al. (2018); Vukicevic et al. 
(2019)

(Bettoni et al., 2020; Chan et al., 
2022; Chu and Liu, 2023; 
Huysamen et al., 2018; Kim et al., 
2019; Lagomarsino et al., 2023; 
Murali et al., 2020; Pérez et al., 
2020; Puttero et al., 2024)

Feature Design and capabilities
Assistance type Physical Cognitive Cognitive Physical
Functionalities Act Observe 

Orient 
Decide

Observe 
Orient 
Decide

Observe 
Orient 
Decide 
Act

HMI Unimodal Multimodal Multimodal Multimodal
Input type Manual Automatic Automatic Automatic
Output type Physical movement Visual/optical Visual/optical Physical movement
Adaptability 
level

Moderately low [-,86] Moderate [-,25] High [1,16] Moderately high [,79]

Feature Manufacturing application
Man. Process 
function

Assembly Assembly Inspection/testing Assembly

Supported task 
type

Routine manual Routine cognitive Non-routine cognitive Routine manual

Function of 
assistance 
system

Physical execution support Work instructions guidance Diagnostics support Physical execution support

Automation 
level

Low [-1,55] Moderately high [0,44] High [1,07] Moderate [-,03]

Note. Adaptability and automation levels indicate how the value deviates from the variable mean.
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systems affect the availability, performance, and quality of 
manufacturing equipment, along with the motivational and work 
context characteristics of a job.

Archetypes 1 and 4 positively affect work context features. While 
archetype 4 consistently enhances performance, the effect of archetype 
1 is positive but inconsistent. Variability in archetype 1’s performance 
outcomes may arise from different studies and their specific outcome 
variables. For instance, Bouillet et al. (2023) found negative impacts on 
idle time and productivity, while other studies showed positive out
comes in cycle time (Gualtieri et al., 2020) and task completion time 
(Puttero et al., 2024). Furthermore, archetype 1 shows potential risk for 
motivational work characteristics as the cognitive demands, frustration 
levels, and temporal demands tend to increase.

Archetypes 2 and 3 seem to have a slight positive effect on quality. 
Notably, although both archetypes have similar capabilities, their effect 
on performance differs (mean difference = 0,8). Archetype 2 shows a 
slight increase in performance, whilst archetype 3 shows convincing 
evidence for a performance increase. This performance increase is 
typically achieved through task completion time reductions. A closer 
look at the underlying variables for archetype 2’s varying effects on 
performance shows that the effects on task completion time raise 
questions about the underlying reasons. Moreover, archetype 2 shows 
varying, yet negative average effects on motivational work character
istics and varying effects on work context characteristics. This indicates 
a risk of increasing mental demands and frustration among workers who 
use archetype 2. Finally, the varying yet mostly positive effects of 
archetype 2 are present at the predominant outcome variable ‘error 
rate’.

Further analysis reveals outcome variables by category. First, task 
completion time is commonly used as a performance variable. Second, 
variables that stem from the NASA TLX are the most used indicators for 
motivational and work context outcomes. Finally, error rates serve as 
the main measure for OEE quality in archetype 2. Findings on variable- 
level outcomes of assistance system archetypes can be found in Table 6
below, and a summary of the findings is given in Table 7.

Fig. 5. The impact of assistance system archetypes on job quality and OEE categories. 
Note. The size of the bells indicates the number of cases studied for the outcome category of interest.

Table 6 
Variable-level outcomes of assistance system archetypes.

Archetype Variable n Proportion Mean effect SD

Archetype 1 Task completion time 4 50,00 % 0,50 0,58
Cycle time 2 25,00 % 1,00 0,00
Productivity 1 12,50 % − 1,00 ​
Idle time 1 12,50 % − 1,00 ​
Subtotal OEE – performance 8 100 % ​ ​
Frustration level 4 36,36 % − 0,25 0,50
Stress level 1 9,09 % − 1,00 ​
Mental workload 6 54,55 % − 0,33 0,52
Subtotal JQ – motivation 11 100 % ​ ​
Temporal demands 4 23,53 % 0,00 0,00
Physical demands 8 47,06 % 0,63 0,52
Subtotal JQ – work context 12 100 % ​ ​

Archetype 2 Task completion time 21 87,50 % 0,10 0,77
Cycle time 1 4,17 % 1,00 ​
Productivity 2 8,33 % 0,50 0,71
Subtotal OEE – performance 24 100,00 % ​ ​
Error rate 20 86,96 % 0,45 0,76
Task success 2 8,70 % 0,50 0,71
Product quality 1 4,35 % 0,00 ​
Subtotal OEE – quality 23 100,00 % ​ ​
Frustration level 9 33,33 % − 0,33 0,71
Mental workload 12 44,44 % − 0,42 0,79
Task complexity 3 11,11 % 0,00 0,00
Feedback from the job 3 11,11 % 1,00 0,00
Subtotal JQ – motivation 27 100,00 % ​ ​
Temporal demands 9 42,86 % − 0,33 0,71
Physical demands 12 57,14 % 0,00 0,85
Subtotal JQ – work context 21 100,00 % ​ ​

Archetype 3 Task completion time 3 50,00 % 1,00 0,00
Cycle time 1 16,67 % 1,00 ​
Productivity 2 33,33 % 1,00 0,00
Subtotal OEE – performance 6 100,00 % ​ ​

Archetype 4 Task completion time 3 42,86 % 0,67 0,58
Cycle time 1 14,29 % 1,00 ​
Productivity 3 42,86 % 1,00 0,00
Subtotal OEE – performance 7 100,00 % ​ ​
Physical demands 5 100,00 0,80 0,45
Subtotal JQ – work context 5 100,00 % ​ ​
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5. Implications and future research

This study addresses the limited understanding of the application- 
specific impacts of assistance systems by mapping four archetypes in 
manufacturing and their impact on OEE and job quality. The following 
discussion highlights key points for scholars and practitioners to consider.

5.1. Implications for theory and manufacturing scholars

Selecting the right assistance technology for the preferred way of 
working and work requirements of the production workers remains an 
open challenge for manufacturing scholars (Mark et al., 2021a, 2022). 
While some studies report job quality improvements (e.g., Huysamen 
et al., 2018) or better manufacturing performance (e.g., Funk et al., 
2015a), others show declines in job quality (e.g., Lagomarsino et al., 
2023) or manufacturing performance (e.g., Bouillet et al., 2023). These 
findings align with other reviews indicating outcomes vary by context 
(Bal et al., 2021; Di Pasquale et al., 2022). For instance, Funk et al. 
(2015b) found that the benefits of augmented reality were greater the 
more steps each task had. However, a trend can be observed when 
looking at the more consistent positive results that emerge from assis
tance systems with high adaptability capabilities. These results make 
sense as customized, adaptable, and adaptive assistance counter the ‘one 
size fits all’ approach of fixed assistance and are more tailored towards 
addressing the unique capabilities and needs of the production worker in 
a given context (Wandke, 2005). Thus, this study notably confirms the 
importance of the manufacturing context and reveals the potentially 
more consistent positive job quality and OEE outcomes associated with 
assistance systems that exhibit high levels of adaptability.

Another key implication for manufacturing scholars is the 
application-specific categorization of four assistance system archetypes. 
In alignment with earlier research (Yang and Plewe, 2016), task support 
in manual processes such as assembly and inspection/testing seems most 

common. Researchers should, however, also note that although other 
application domains such as workplace ergonomics, sensorial moni
toring, and decision support are regularly described as promising 
(Bechinie et al., 2024; König and Winkler, 2025; Mark et al., 2021c), no 
robust clusters were found regarding these assistance system functions. 
Similarly, non-routine assembly tasks are identified as promising ap
plications of assistance systems (Gan et al., 2023), yet did not emerge 
from the analysis. These outcomes show the modest number of 
comparative studies executed for these specific fields of application. In 
summary, manufacturing scholars could expand their research on the 
assistance system archetypes for manual processes and the observed lack 
of comparative studies in other applications.

Manufacturing scholars should note the sample bias in experimental 
comparative studies (82,1 %) and test subjects (66.1 %) versus case 
studies (17,9 %) and production workers (33,9 %). Mark et al. (2021c)
emphasized the need for more case studies with specific user groups. 
This study’s findings align with that need, revealing it was often 
impossible to determine the manufacturing process type (66,1 %), UX 
(82,1 %), task execution capabilities (57,1 %), and task support capa
bilities for the application (62,5 %). Thus, it remains unclear if the 
assistance system effectively supported user-specific needs (Johnson 
et al., 2014). This study reaffirms this critical gap in existing literature.

5.2. Limitations and avenues for future research

The insights indicate limitations and promising research avenues. 
Addressing methodological challenges in the state-of-the-art literature 
on assistance systems’ outcomes is essential. This study mainly incor
porated comparative experimental studies supplemented by compara
tive case studies. By utilizing longitudinal studies, researchers could 
gain a more detailed and nuanced insight into the outcomes. For 
example, such studies may illustrate significant initial increases while 
revealing a later learning curve that may heighten stress and frustration 

Table 7 
Overview of assistance system archetypes and their impact.

Archetype 1: Fixed physical support for 
routine tasks in assembly

Archetype 2: Adaptable visual task 
guidance for routine tasks in assembly

Archetype 3: Adaptive visual 
diagnostics support for non-routine 
tasks in inspection/testing

Archetype 4: Adaptive physical 
support for routine tasks in assembly

Examples

Cap- 
abilities

• Unimodal, and manually operated
• Fixed support

• Automatic input and various 
operation types

• Adaptability varies

• Automatic input and manual 
operation

• Adaptive support

• Automatic input and various 
operation types

• Adaptive support
Positive 

effects
• Work context (M = 0,63, SD = 0,52);
• Performance (0,43, SD = 0,79).

• Error rate reduction (M = 0,45, SD 
= 0,76);

• Performance (M = 1, SD = 0,00). • Work context (M = 0,80 SD =
0,45);

• Performance (M = 0,86, SD =
0,38).

Risks • Can increase mental demands 
(M = -0,33, SD = 0,52)

• Limited variable-level 
evidence.

– • TCT effect (M = 0,10, SD = 0,77) 
and physical demands effect (M =
0,00, SD = 85) vary

• temporal demands (M = − 0,33, SD 
= 0,71);

• Mental demands (M − 0,33, SD =
0,71) and frustration levels (M =
− 0,42, SD = 0,79).

• Limited use cases found for this 
archetype.

• Limited variable-level evidence.
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or decreased performance over time (Jaber, 2016; Wilschut et al., 2019). 
Additionally, longitudinal research could shed light on the usage of skills 
and opportunities for skill development, which are thought to mediate 
the beneficial effects of high-quality work organization on workers’ 
well-being (Holman and Wall, 2002). These factors might be overlooked 
in comparative studies. Longitudinal studies should ideally be con
ducted with production workers to address their unique needs. Addi
tionally, the sample varied in outcome variables and participant types, 
complicating cross-study comparisons, which presents another research 
opportunity for scholars comparing assistance system impacts.

The study’s findings on the four assistance system archetypes open 
new research questions. Future studies could explore additional arche
types, including sensorial monitoring, decision-support, and workplace 
ergonomics functions of assistance systems, as well as support for non- 
routine manual tasks. Moreover, although this study followed a 
rigorous systematic procedure (following Page et al., 2021a, 2021b), the 
search strategy and case selection are limited by the authors’ subjective 
assessments. Thus, enriching the analysis framework and dataset would 
enhance comprehensiveness. Additionally, enriching the dataset would 
enable variable-level outcome analysis of the archetypes, which con
tributes to addressing methodological challenges and clarifying con
tradictory results.

The varying impact of assistance system archetypes requires more 
empirical research to enhance understanding of decisive contextual 
variables. While worker and assistance system capabilities were 
considered in mapping outcomes, the description in the sample lacked 
sufficient details to determine them for the task of interest. As worker 
skills are an important contextual factor (Nair et al., 2024), scholars 
could explore whether the fit between assistance systems and worker 
capabilities affects outcomes. Including UX indicators like usability 
could further refine this analysis. This study did not incorporate UX 
indicators due to insufficient sample sizes, despite their importance for 
aligning user needs with assistance system applications (ISO, 2019; 
Sauer et al., 2020). Additionally, the lack of availability and social work 
outcome assessments in evaluating assistance systems warrants deeper 
investigation, as both categories are vital indicators of respectively OEE 
and job quality (Eurofound, 2017; Muchiri and Pintelon, 2008).

Finally, researchers should explore application-specific approaches 
to adopting human-centric assistance systems. The literature already 
offers design rules and approaches for human-centric technology 
adoptions (De Sitter et al., 1997; Gualtieri et al., 2020; ISO, 2019; Oeij 
et al., 2017; Rega et al., 2025). However, this study, again (Mark et al., 
2021c), highlights the absence of case studies that provide hands-on 
guidance for applying these principles and design rules within the spe
cific, work-related context of manufacturing organizations. Scholars can 
fill this gap by conducting human-centric design studies that utilize 
existing frameworks and implement these in the specific manufacturing 
context.

5.3. Implications for manufacturing practitioners

Manufacturing professionals can integrate two types of assistance 
systems to provide physical execution assistance for workers in routine 
assembly operations. Although results are limited, investing in devel
oping observation, orientation, and decision functionalities can be 
worthwhile when offering physical execution support, allowing the 
assistance to be more adaptive. This is due to manually operated phys
ical execution support systems that pose risks by increasing workers’ 
mental demands, which can consequently decrease their job quality 
(Humphrey et al., 2007). Similar risks are highlighted for visual task 
guidance systems in routine assembly operations. These systems can be 
adapted and operated in multiple ways, typically possessing observa
tion, orientation, and decision functionalities. Although practitioners 
might consider this to improve error rates, the potentially increased 
physical, temporal, and mental demands present a risk for workers and 
the achievement of sustainable system-level goals (Andersen et al., 

2016; Hertzum, 2022). Prior research shows the context-specific effects 
of increased work demands and reduced resources on various individual 
workers (Parker, 2003). Therefore, this study further underscores the 
necessity for manufacturing professionals to consider the specific needs 
of users, not only concerning the application of the technology but also 
in their work design.

Another important observation is the promising performance im
provements that adaptive visual support seems to offer for non-routine 
diagnostics tasks in inspection/testing processes. The use cases from 
Hoerner et al. (2023) and Traub et al. (2018) could provide guidance on 
the design and implementation of effective assistance systems for sup
port of non-routine diagnostic tasks.

6. Conclusion

This unique study offers an archetypal overview of the impact of 
assistance systems on job quality and OEE in manufacturing applica
tions, which scholars can build upon. Cognitive assistance archetypes 
are distinct in supporting routine work guidance tasks in assembly and 
non-routine diagnostic tasks in inspection and testing processes. Phys
ical support archetypes are applied in routine assembly but have distinct 
capabilities. The study shows that the contradicting impact of the ar
chetypes on job quality and OEE may be influenced by the differences in 
the capabilities of the assistance system archetype. Scholars could better 
understand the underlying reasons for the contradictory results by 
assessing the fit between the role division of the worker and the assis
tance system and their respective capabilities. Methodological varia
tions, such as longitudinal research and case studies utilizing a coactive 
design method, could serve as viable approaches to address the gap 
identified in the comparative study sample of this SLR. Finally, more 
research is needed on social characteristics and the availability of pro
duction equipment to enhance the comprehensive understanding of 
assistance systems on job quality and OEE.

In conclusion, while assistance systems offer various potential ben
efits for job quality and OEE, their successful use requires careful 
consideration of worker capabilities, assistance system capabilities, ap
plications, and long-term deployment effects. This study enriches the 
existing literature on assistance systems and can serve as a foundational 
basis for the needed further longitudinal empirical testing to provide 
application-specific insights and guidance to scholars.
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Funk, M., Bächler, A., Bächler, L., Kosch, T., Heidenreich, T., Schmidt, A., 2017. Working 
with Augmented Reality? A long-term Analysis of in-situ Instructions at the 
Assembly Workplace, pp. 222–229.

Funk, M., Kosch, T., Greenwald, S.W., Schmidt, A., 2015b. A Benchmark for Interactive 
Augmented Reality Instructions for Assembly Tasks, pp. 253–257.

Gan, Z.L., Musa, S.N., Yap, H.J., 2023. A review of the high-mix, low-volume 
manufacturing industry. Appl. Sci. 13 (3), 1687.

Gervasi, R., Mastrogiacomo, L., Franceschini, F., 2022. Human-robot collaboration in a 
repetitive assembly process: a preliminary investigation on operator’s experience 
and product quality outputs. In: Sampaio, P., Domingues, P., Costa, A., 
Casadesus, M., Marimon, F., Pires, A.R., Saraiva, P. (Eds.), Internat. Conf. Qual. Eng. 
Manag. Universidade do Minho, Scopus, pp. 72–92.

Green, F., 2013. Demanding work: the paradox of job quality in the affluent economy. In: 
Demanding Work. Princeton University Press.

Gualtieri, L., Palomba, I., Merati, F.A., Rauch, E., Vidoni, R., 2020. Design of human- 
centered collaborative assembly workstations for the improvement of operators’ 
physical ergonomics and production efficiency: a case study. Sustainability 
(Switzerland) 12 (9). https://doi.org/10.3390/su12093606. Scopus. 

Hart, S.G., 2006. NASA-task load index (NASA-TLX); 20 years later, 50 (9), 904–908.
Hart, S.G., Staveland, L.E., 1988. Development of NASA-TLX (Task Load Index): results of 

empirical and theoretical research. In: Advances in Psychology, 52. Elsevier, 
pp. 139–183.

Hertzum, M., 2022. Associations among workload dimensions, performance, and 
situational characteristics: A meta-analytic review of the Task Load Index. Behav. 
Inf. Technol. 41 (16), 3506–3518.

Hinrichsen, S., Riediger, D., Unrau, A., 2016. Assistance systems in manual assembly. 
Product. Eng. Manag. 1.

Hoerner, L., Schamberger, M., Bodendorf, F., 2023. Using tacit expert knowledge to 
support shop-floor operators through a knowledge-based assistance system. Comput. 
Support. Coop. Work: CSCW: Int. J. 32 (1), 55–91. https://doi.org/10.1007/s10606- 
022-09445-4. Scopus. 

Holman, D.J., Wall, T.D., 2002. Work characteristics, learning-related outcomes, and 
strain: a test of competing direct effects, mediated, and moderated models. J. Occup. 
Health Psychol. 7 (4), 283.

Humphrey, S.E., Nahrgang, J.D., Morgeson, F.P., 2007. Integrating motivational, social, 
and contextual work design features: a meta-analytic summary and theoretical 
extension of the work design literature. J. Appl. Psychol. 92 (5), 1332.

Huysamen, K., de Looze, M., Bosch, T., Ortiz, J., Toxiri, S., O’Sullivan, L.W., 2018. 
Assessment of an active industrial exoskeleton to aid dynamic lifting and lowering 
manual handling tasks. Appl. Ergon. 68, 125–131.

ISO, 2014. Automation systems and integration—Key performance indicators (KPIs) for 
manufacturing operations management. (22400-2:2014; Version 1). https://www. 
iso.org/standard/54497.html#:~:text=ISO%2022400%20defines%20key%20per 
formance,unit%2Fdimension%20and%20other%20characteristics.

ISO, 2019. Ergonomics of human-system interaction—Human-centred Design for 
Interactive Systems (9241–210; Version 2). https://www.iso.org/standard/77520. 
html.

Jaber, M., 2016. Learning Curves. CRC Press, Boca Raton, FL, USA. 
Johnson, M., Bradshaw, J.M., Feltovich, P.J., Jonker, C.M., Van Riemsdijk, M.B., 

Sierhuis, M., 2014. Coactive design: designing support for interdependence in joint 
activity. J. Human-Robot Interact. 3 (1), 43–69.

Kim, W., Lorenzini, M., Balatti, P., Nguyen, P.D.H., Pattacini, U., Tikhanoff, V., 
Peternel, L., Fantacci, C., Natale, L., Metta, G., Ajoudani, A., 2019. Adaptable 
workstations for human-robot collaboration: a reconfigurable framework for 
improving worker ergonomics and productivity. IEEE Robot. Autom. Mag. 26 (3), 
14–26. https://doi.org/10.1109/MRA.2018.2890460. Scopus. 

Kleineberg, T., Eichelberg, M., Hinrichsen, S., 2017. Participative Development of an 
Implementation Process for Worker Assistance Systems, pp. 27–29.

König, M., Winkler, H., 2025. Investigation of assistance systems in assembly in the 
context of digitalization: a systematic literature review. J. Manuf. Syst. 78, 187–199.

Lagomarsino, M., Lorenzini, M., Balatti, P., Momi, E.D., Ajoudani, A., 2023. Pick the 
right Co-worker: online assessment of cognitive ergonomics in human-robot 
collaborative assembly. IEEE Trans. Cognitive Develop. Syst. 15 (4), 1928–1937. 
https://doi.org/10.1109/TCDS.2022.3182811. Scopus. 

Laugwitz, B., Held, T., Schrepp, M., 2008. Construction and Evaluation of a User 
Experience Questionnaire, pp. 63–76.

Longo, F., Nicoletti, L., Padovano, A., 2017. Smart operators in industry 4.0: a human- 
centered approach to enhance operators’ capabilities and competencies within the 
new smart factory context. Comput. Ind. Eng. 113, 144–159.

Mark, B.G., Gualtieri, L., De Marchi, M., Rauch, E., Matt, D.T., 2021a. Function-based 
mapping of industrial assistance systems to user groups in production. Proced. CIRP 
96, 278–283.

Mark, B.G., Rauch, E., Matt, D.T., 2022. Systematic selection methodology for worker 
assistance systems in manufacturing. Comput. Ind. Eng. 166, 107982.

Mark, B.G., Rauch, E., Matt, D.T., 2021b. The application of digital worker assistance 
systems to support workers with disabilities in assembly processes. Proced. CIRP 
103, 243–249.

Mark, B.G., Rauch, E., Matt, D.T., 2021c. Worker assistance systems in manufacturing: a 
review of the state of the art and future directions. J. Manuf. Syst. 59, 228–250.

Mietkiewicz, J., Madsen, A.L., 2024. Enhancing control room operator decision making: 
an application of dynamic influence diagrams in formaldehyde manufacturing. In: 
Bouraoui, Z., Vesic, S. (Eds.), Lect. Notes Comput. Sci., 14294 LNAI. Springer Science 

K. Nijland et al.                                                                                                                                                                                                                                 Advances in Industrial and Manufacturing Engineering 11 (2025) 100173 

11 

http://refhub.elsevier.com/S2666-9129(25)00017-0/sref1
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref1
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref1
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref1
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref2
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref2
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref3
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref3
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref3
https://doi.org/10.1016/j.procir.2020.04.119
https://doi.org/10.1016/j.procir.2020.04.119
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref5
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref5
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref5
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref6
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref6
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref6
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref7
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref7
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref7
https://doi.org/10.1371/journal.pone.0289787
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref9
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref9
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref9
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref10
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref10
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref10
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref11
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref12
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref12
https://doi.org/10.1145/3524082
https://doi.org/10.1016/j.jmsy.2023.04.007
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref15
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref15
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref15
http://refhub.elsevier.com/S2666-9129(25)00017-0/optpmLC4IlS78
http://refhub.elsevier.com/S2666-9129(25)00017-0/optpmLC4IlS78
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref16
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref16
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref16
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref17
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref17
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref17
https://doi.org/10.1016/j.promfg.2020.04.030
https://doi.org/10.1016/j.promfg.2020.04.030
https://doi.org/10.3390/su14063289
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref20
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref20
http://www.eurofound.europa.eu/en/publications/2016/sixth-european-working-conditions-survey-overview-report
http://www.eurofound.europa.eu/en/publications/2016/sixth-european-working-conditions-survey-overview-report
http://www.eurofound.europa.eu/system/files/2021-02/ef20021en.pdf
http://www.eurofound.europa.eu/system/files/2021-02/ef20021en.pdf
https://data.europa.eu/doi/10.2767/807269
https://data.europa.eu/doi/10.2767/807269
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref24
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref24
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref24
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref25
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref25
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref25
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref26
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref26
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref26
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref27
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref27
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref28
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref28
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref29
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref29
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref29
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref29
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref29
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref30
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref30
https://doi.org/10.3390/su12093606
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref32
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref33
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref33
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref33
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref34
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref34
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref34
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref35
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref35
https://doi.org/10.1007/s10606-022-09445-4
https://doi.org/10.1007/s10606-022-09445-4
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref37
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref37
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref37
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref38
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref38
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref38
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref39
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref39
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref39
https://www.iso.org/standard/54497.html#:%7E:text=ISO%2022400%20defines%20key%20performance,unit%2Fdimension%20and%20other%20characteristics
https://www.iso.org/standard/54497.html#:%7E:text=ISO%2022400%20defines%20key%20performance,unit%2Fdimension%20and%20other%20characteristics
https://www.iso.org/standard/54497.html#:%7E:text=ISO%2022400%20defines%20key%20performance,unit%2Fdimension%20and%20other%20characteristics
https://www.iso.org/standard/77520.html
https://www.iso.org/standard/77520.html
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref42
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref43
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref43
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref43
https://doi.org/10.1109/MRA.2018.2890460
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref45
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref45
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref46
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref46
https://doi.org/10.1109/TCDS.2022.3182811
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref48
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref48
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref49
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref49
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref49
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref50
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref50
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref50
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref52
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref52
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref53
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref53
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref53
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref54
http://refhub.elsevier.com/S2666-9129(25)00017-0/sref54


and Business Media Deutschland GmbH; Scopus, pp. 15–26. https://doi.org/ 
10.1007/978-3-031-45608-4_2.

Mouhib, H., Amar, S., Elrhanimi, S., Abbadi, L.E., 2024. Maximizing efficiency and 
collaboration: comparing robots and cobots in the automotive industry – a multi- 
criteria evaluation approach. Int. J. Ind. Eng. Manag. 15 (3), 238–253. https://doi. 
org/10.24867/IJIEM-2024-3-360. Scopus. 

Moyon, A., Poirson, E., Petiot, J.-F., 2018. Experimental study of the physical impact of a 
passive exoskeleton on manual sanding operations. In: Laroche, F., Bernard, A. 
(Eds.), Procedia CIRP, 70. Elsevier B.V, pp. 284–289. https://doi.org/10.1016/j. 
procir.2018.04.028. Scopus. 

Muchiri, P., Pintelon, L., 2008. Performance measurement using overall equipment 
effectiveness (OEE): literature review and practical application discussion. Int. J. 
Prod. Res. 46 (13), 3517–3535.

Murali, P.K., Darvish, K., Mastrogiovanni, F., 2020. Deployment and evaluation of a 
flexible human–robot collaboration model based on AND/OR graphs in a 
manufacturing environment. Intell. Serv. Robot. 13 (4), 439–457. https://doi.org/ 
10.1007/s11370-020-00332-9. Scopus. 

Nair, A., Pillai, S.V., Senthil Kumar, S., 2024. Towards emerging industry 5.0–a review- 
based framework. J. Strat. Manag.

Oberhausen, C., Plapper, P., 2015. Value stream management in the “lean manufacturing 
laboratory.”. Proced. CIRP 32, 144–149.

Oeij, P., Rus, D., Pot, F., 2017. Workplace innovation. Theory Res. Pract.
Oestreich, H., Wrede, S., Wrede, B., 2020. Learning and Performing Assembly Processes: 

an Overview of Learning and Adaptivity in Digital Assistance Systems for 
Manufacturing, pp. 1–8.

Osinga, F.P., 2007. Science, Strategy and War: the Strategic Theory of John Boyd. 
Routledge.

Pacaux-Lemoine, M.-P., Trentesaux, D., Rey, G.Z., Millot, P., 2017. Designing intelligent 
manufacturing systems through human-machine cooperation principles: a human- 
centered approach. Comput. Ind. Eng. 111, 581–595.

Page, M.J., McKenzie, J.E., Bossuyt, P.M., Boutron, I., Hoffmann, T.C., Mulrow, C.D., 
Shamseer, L., Tetzlaff, J.M., Akl, E.A., Brennan, S.E., 2021a. The PRISMA 2020 
statement: an updated guideline for reporting systematic reviews. Bmj 372.

Page, M.J., Moher, D., Bossuyt, P.M., Boutron, I., Hoffmann, T.C., Mulrow, C.D., 
Shamseer, L., Tetzlaff, J.M., Akl, E.A., Brennan, S.E., 2021b. PRISMA 2020 
explanation and elaboration: updated guidance and exemplars for reporting 
systematic reviews. Bmj 372.

Pagliosa, M., Tortorella, G., Ferreira, J.C.E., 2021. Industry 4.0 and lean manufacturing: 
a systematic literature review and future research directions. J. Manuf. Technol. 
Manag. 32 (3), 543–569.

Papavasileiou, A., Nikoladakis, S., Basamakis, F.P., Aivaliotis, S., Michalos, G., Makris, S., 
2024. A voice-enabled ROS2 framework for human–robot collaborative inspection. 
Applied Sciences (Switzerland) 14 (10), Scopus. https://doi.org/10.3390/ 
app14104138.

Papetti, A., Ciccarelli, M., Palpacelli, M.C., Germani, M., 2023. How to provide work 
instructions to reduce the workers’ physical and mental workload. Proced. CIRP 120, 
1167–1172.

Park, K.-B., Kim, M., Choi, S.H., Lee, J.Y., 2020. Deep learning-based smart task 
assistance in wearable augmented reality. Robot. Comput. Integrated Manuf. 63. 
https://doi.org/10.1016/j.rcim.2019.101887. Scopus. 

Parker, S.K., 2003. Longitudinal effects of lean production on employee outcomes and 
the mediating role of work characteristics. J. Appl. Psychol. 88 (4), 620.

Parker, S.K., Grote, G., 2022. Automation, algorithms, and beyond: why work design 
matters more than ever in a digital world. Appl. Psychol. 71 (4), 1171–1204.

Patel, P.C., Devaraj, S., Hicks, M.J., Wornell, E.J., 2018. County-level job automation risk 
and health: evidence from the United States. Soc. Sci. Med. 202, 54–60.
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Späker, L., Mark, B.G., Rauch, E., 2021. Development of a morphological box to describe 
worker assistance systems in manufacturing. Procedia Manuf. 55, 168–175.

Syberfeldt, A., Danielsson, O., Holm, M., Wang, L., 2015. Visual assembling guidance 
using augmented reality. Procedia Manuf. 1, 98–109.

Techasarntikul, N., Ratsamee, P., Orlosky, J., Mashita, T., Uranishi, Y., Kiyokawa, K., 
Takemura, H., 2020. Guidance and visualization of optimized packing solutions. 
J. Inf. Process. 28, 193–202.

Tong, Y., Zhang, Q., Galeano, F.M., Ji, Z., 2024. AR and HRC integration for enhanced 
pragmatic quality. In: 2024 IEEE International Conference on Industrial Technology 
(ICIT), pp. 1–6. https://doi.org/10.1109/ICIT58233.2024.10540971.
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