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As workplaces become increasingly complex, manufacturing companies must adopt technologies that not only
fulfill customer requirements but also prioritize high-quality jobs for production workers. Assistance systems are
gaining popularity because they can enhance manufacturing performance and support sufficient job quality.
However, there is a lack of detailed insights into the application-specific impact of the systems. This study
classifies the use of assistance systems in manufacturing, deriving characteristic archetypes and mapping their
impacts through a systematic review of existing literature. Analyzing 56 cases from 40 studies using descriptive
and cluster analysis, four main archetypes are identified: (1) manually operated physical execution support for
routine assembly tasks, (2) automatically operated and adaptable visual task guidance for routine assembly tasks,
(3) automatically operated and adaptive visual support for non-routine diagnostics tasks, and (4) automatically
operated and adaptive physical execution support for routine assembly. Findings suggest that these archetypes
offer potential benefits and risks for job quality and manufacturing performance. However, their successful use
requires careful consideration of role division, task execution capabilities, task support capabilities, and long-
term impacts. The current literature on assistance systems needs more longitudinal empirical studies to pro-

vide clear guidance for both researchers and industry practitioners.

1. Introduction

As customer demands increase, manufacturers adopt smart tech-
nologies to enhance overall equipment effectiveness (OEE) (Frank et al.,
2019). However, this results in increasingly complex and demanding
workplaces for sections of production workers (Eurofound, 2021; Parker
and Grote, 2022), which can potentially lead to reduced mental health
and performance (Humphrey et al., 2007). This situation may affect the
skills gap in Europe (Eurofound, 2021; European Commission, 2023),
especially if smart technology overlooks workers’ needs. This scenario
fuels Industry 5.0 (I5.0) in the manufacturing industry, which promotes
integrating advanced digital technologies while prioritizing job quality
(Breque et al., 2021). Job quality includes employment factors like work
organization, wages, security, flexibility, skills development, and
engagement that enhance job satisfaction and well-being (Green, 2013).
Smart technologies are expected to mainly impact job quality’s work
organization aspects (Parker and Grote, 2022; Waschull et al., 2017).
Thus, manufacturing organizations should prioritize production
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workers’ needs and capabilities regarding work organization and smart
technology to improve job quality and OEE.

Mark et al. (2021c) define assistance systems as “technical systems
that support the specific needs of production workers in the execution of
manufacturing tasks such as assembly, decision-making, or mainte-
nance” (p. 228). These systems help compensate for production workers’
skill gaps, reduce mental and physical work demands, and promote
learning (Longo et al., 2017; Romero et al., 2016a, 2016b). Conse-
quently, these aspects of job quality are linked to decreased absenteeism
and turnover intentions, alongside enhancements in performance,
well-being, and job satisfaction (Humphrey et al., 2007). Studies also
highlight the potential of assistance systems to improve manufacturing
outcomes (Mark et al., 2021c; Oestreich et al., 2020; Romero et al.,
2016Db). Overall, assistance systems appear advantageous in the context
of I5.0 and are defined in this study as technical systems that interact
directly with production workers, facilitating a new way for performing
tasks that either reduce work demands or enhance workers’ capabilities,
thereby contributing to improved overall performance within the
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manufacturing system.

Assistance systems are promising, yet understanding which smart
technologies offer specific manufacturing benefits is limited (Di Pas-
quale et al., 2022; Mark et al., 2022; Pagliosa et al., 2021). Scholars have
highlighted the importance of technology applications, technological
design and capabilities (Segura et al., 2021), impact on manufacturing
performance (Di Pasquale et al., 2022), and job quality (Bal et al., 2021).
However, a comprehensive understanding of these four factors is lack-
ing. In addition, while user experience (UX) can provide valuable in-
sights into the alignment between technology and users’ needs, few
studies focus on UX in human-machine interaction (Bechinie et al.,
2024). Overall, the challenges of effective assistance system use stem
from the limited understanding of application-specific impacts on OEE
and job quality.

To guide practitioners aiming to adopt assistance systems, Mark et al.
(2022) developed a matchmaking methodology for identifying suitable
assistance systems for task support that fit the needs and capabilities of
the production worker. However, the overview is merely a higher-level
data catalogue, and the parameters considered by Mark et al. (2022) do
not consider the work organization. This is a significant gap since work
organization can enhance or constrain the functionalities and usability
of an assistance system. This limitation hinders a meaningful analysis of
an assistance system’s true value in a specific application (Kleineberg
et al., 2017; Pacaux-Lemoine et al., 2017; Virmani and Salve, 2021).
Additionally, job quality is often not addressed, resulting in an incom-
plete mapping of the impacts of an assistance system. This highlights the
need for an assistance system categorization that includes the capabil-
ities and applications, along with the impact on job quality and OEE, to
provide a more comprehensive view of their effects.

This study tackles this challenge by identifying assistance sys-
tem archetypes in manufacturing applications and mapping their
impact on OEE and job quality through a systematic literature re-
view (SLR). It aims to support more effective use of manufacturing
assistance systems through an overview of archetypes with their capa-
bilities, use, benefits, and points of attention. Consequently, this study
addresses two key questions: How can the literature be categorized into
application-level archetypes of assistance systems? Which assistance
system archetypes lead to what impact on job quality and OEE?

To answer the research questions, this paper focuses on assistance
capabilities and application as design variables. Job quality and OEE are
integrated as outcome variables, while UX is considered a potential
influencing factor. The resulting scope of this paper is visualized in
Fig. 1.

The remainder of this paper is structured as follows. Section 2 de-
scribes a theoretical framework for analyzing the archetypes of assis-
tance systems in manufacturing and their impact on OEE and job
quality. Section 3 details the methodology for the SLR. Section 4 pre-
sents the results of the SLR. Furthermore, section 5 discusses the im-
plications of these results and suggests avenues for future research.
Finally, section 6 concludes this research.

2. Theoretical framework

This chapter provides the theoretical basis for categorizing assistance
systems and their manufacturing applications, as well as the variables
for mapping the impact on job quality and OEE.

2.1. Design and capabilities

In this study, the characteristics of assistance system capabilities are
categorized based on (1) type of assistance, (2) functionality types, (3)
human-machine interface, (4) form of information input, (5) form of
information output, and (6) level of assistance adaptability. Type of
assistance refers to the enhancement and augmentation of the specific
capabilities of production workers that an assistance system aims to
provide.
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Fig. 1. The scope of this paper.

The type of assistance can be categorized into sensorial, cognitive,
and physical (Romero et al., 2016b). To provide such assistance, the
systems can have observation, orientation, decision-making, and action
functions (Osinga, 2007). Sensorial support utilizes observation func-
tions, including data collection and information feedback, to aid pro-
duction workers in gathering and processing data from their
environment (Osinga, 2007; Romero et al., 2016a). Romero et al.
(2016a) classify observation functions as: ‘(a) the physical ability to
collect data (by vision, smell, sound, touch, vibration), and (b) the se-
lective perception where a small percentage of the data enters
short-term memory for processing’ (p. 7). Examples include position
tracking systems and RGB cameras for data collection, as well as
warning lights and haptic gloves for feedback (Mark et al., 2021c).
Sensorial information is crucial for supporting cognitive tasks such as
orientation and decision-making, requiring production workers to filter
relevant information for these tasks (Simon and Frantz, 2003). Cognitive
assistance enhances workers’ capabilities in these orientation and
decision-making tasks, such as perceiving, memorizing, deciding, plan-
ning, and diagnosing through technology (Romero et al., 2016a). For
instance, a cognitive assistance system can supply digital work in-
structions for novice workers (Mark et al., 2021c). Finally, physical tasks
involve ‘any bodily movements produced by skeletal muscles that
require energy expenditure’ (Romero et al., 2016a, p. 6). Assistance
systems offer physical support with action functions (e.g., handling,
moving, assembling), non-functional properties (e.g., speed, strength,
precision, dexterity), tailored to maturity and expertise levels (Romero
et al., 2016a).

The morphology of the assistance system can be further categorized
through the human-machine interface (HMI) that the assistance sys-
tem uses. A unimodal design means that a specific channel is available
for receiving information, primarily visual, and another for entering
information, mostly manual. Multimodal interfaces, however, consider
various input and output modalities such as text and image data
(Hinrichsen et al., 2016; Spaker et al., 2021). The form in which the
information is entered into the assistance system can be manually via
actuators, verbally via voice control, gesturing via a tracking system, or
automatically via sensors (Hinrichsen et al., 2016). Additionally, the
system’s output can be visual, optical, auditory, or via physical
movements (based on Hinrichsen et al., 2016; Spaker et al., 2021).
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Finally, the extent to which the assistance system can adapt its assis-
tance can vary in fixed, customized, adaptable, and adaptive assistance
(Wandke, 2005).

Adaptability levels derive from three possibilities for adapting an
assistance system: by the designer, the user, or the system itself. Adap-
tation can occur beforehand or in real time. Fixed assistance provides
the same support for all users, while customized assistance is optimized
for a specific context, task, and user group during the design phase.
Adaptable assistance systems adjust according to user preferences, tasks,
and situations. Lastly, adaptive assistance systems automatically adjust
based on the user, task, and situation (Wandke, 2005).

2.2. Manufacturing application

In this section, the application of the assistance system is specified
through the following characteristics: (1) type of manufacturing process,
(2) function of the manufacturing process, (3) type of supported task, (4)
function of the assistance system, (5) level of automation, (6) range of
support, (7) capabilities for task execution, and (8) capabilities for task
support.

Manufacturing process types can be manual or automated. Manual
processes refer to a set of tasks that production workers execute inde-
pendently, without assistance from automated systems. Automated
processes involve machinery and technology that perform tasks or can
be utilized to perform tasks with minimal human intervention.
Manufacturing processes (manual and automated) are categorized into
single, batch, and mass manufacturing (Oberhausen and Plapper, 2015).
These processes serve specific functions, which include machining,
assembling, finishing, testing, packing, forming, casting/molding, and
other operations (adopted from Wemmerlov and Johnson, 1997). Types
of supported tasks within these operations can be further classified into
routine manual, non-routine manual, routine cognitive, and non-routine
cognitive tasks (Cimini et al., 2023). Assistance systems can utilize
these functions to support ergonomics, physical execution, sensorial
monitoring, work instruction guidance, decision support, and di-
agnostics support.

As the worker and the assistance system jointly execute tasks, they
are mutually dependent on what the other party does over a sustained
sequence of actions (Johnson et al., 2014). These joint activities can be
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divided into monitoring, generating, selecting, and implementing roles.
Implementation indicates which party executes the chosen action whilst
monitoring, generating, and selection roles support the execution of the
task (Endsley and Kaber, 1999). Level of automation refers to the
extent to which these roles are automated by assistance systems
(Endsley and Kaber, 1999). Higher levels of automation can result in
unwanted changes in social and psychological (both emotional and
cognitive) demands on users, if not appropriately managed (Patel et al.,
2018). For instance, both parties require greater interaction capabilities
to jointly execute tasks (Johnson et al., 2014). Endsley and Kaber (1999)
identified ten levels of automation ranging from manual operations to
full automation. Following the definition of this study, an assistance
system should at least support the production worker in one of the four
functions of a task, and the production worker should always remain in
control of the selection role of a task. This means that level two (action
support) up to level seven (rigid system) are adopted to exemplify the
extent to which the assistance system automates certain tasks through its
assistance. Furthermore, it is then specified if the range of support
provided by the deployed assistance system entails a partial part or the
total of the specified task (Hinrichsen et al., 2016; Spaker et al., 2021).

To assess if the chosen level of automation and range of support is a
suitable application, insights into the capabilities for effective execution
and support of the joint activities are required. The capabilities for task
execution are the abilities to perform the task of interest and are
categorized as I can do it all, I can do it all but my reliability is <100 %, I
can contribute but need assistance, I cannot do it (Johnson et al., 2014).
The capabilities for task support are the necessary observability, pre-
dictability, and directability functionalities to support the activity
execution in the chosen task (Johnson et al., 2014). These capabilities
are categorized as my assistance could improve efficiency, my assistance
could improve reliability, my assistance is required, and I cannot pro-
vide assistance (Johnson et al., 2014). Overall, this set of categories
provides input on whether the current task division is fitting to the
mutual dependencies between the worker and the assistance system. If
not, this could potentially lead to a negative impact of assistance systems
on job quality and OEE (Johnson et al., 2014).

In summary, Table 1 offers the analysis framework for categorizing
the design and capabilities of the assistance system and the context in
which it is applied.

Table 1
Categorization framework for analyzing assistance systems in manufacturing.
Feature Category

Type of assistance Sensorial Cognitive Physical

= «» _Functionality type Observe Orient Decide Act

H ;3 HMI Unimodal Multimodal

§, % Form of information input Manual (via actuators) Verbal (voice-control) Gesturing (tracking Automatic (sensory)

§ =3 system)

®  Form of information output Visual/optical | Auditory Physical movement

Level of adaptability Fixed assistance \ Customized assistance \ Adaptable assistance Adaptive assistance
Type of manufacturing Manual single Manual batch Manual mass Automated single | Automated batch | Automated mass
process manufacturing manufacturing manufacturing manufacturing manufacturing manufacturing
Function of the Machining Assemblin Finishing Inspection | Packing | Forming Casting/ Maintenance Other
manufacturing process g /testing molding

0 Type of supported task Routine manual Non-routine manual Routine cognitive Non-routine cognitive

§ § Function of the assistance Workplace monitoring | Work instructions | Decision support Diagnostics Ergonomics Physical execution

‘g ‘é system guidance support support support

‘5 5 Level of automation 2. Action support 3. Batch 4. Shared control | 5. Decision-making 6. Blended 7. Rigid system

59 processing decision-making

2 Range of support Partial work Total work
Capabilities for task lcandoitall I can doit all, but my | can contribute, but | need | cannot do it
execution reliability is < 100% assistance
Capabilities for task support My assistance could improve My assistance could My assistance is required | cannot provide assistance

efficiency improve reliability
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2.3. Overall equipment effectiveness

OEE evaluates the effectiveness of manufacturing equipment by
identifying production losses related to performance, quality, and
availability (Muchiri and Pintelon, 2008). In this study, it not only in-
dicates the equipment’s effectiveness but also reflects the production
worker’s effectiveness in the manufacturing process. Consequently,
performance, quality, and availability losses are supplemented by met-
rics from the ISO, 2014 standard, which suggests 34 industry-neutral
KPIs relevant for either manual, automated, or both production types.
Table 2 summarizes these metrics, illustrating how each metric in-
fluences OEE according to its definitions.

2.4. Job quality

Work organization factors affecting job quality are structured
through task division, detailing how and why tasks are executed. This
process, called work design, can be analyzed using work design char-
acteristics encompassing: motivational characteristics (individual job
components), social characteristics (interactional components), and

Table 2
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work context characteristics (contextual components) (Eurofound,
2017; Hart, 2006; Hart and Staveland, 1988; Humphrey et al., 2007). To
assess the impact on job quality, this study lists definitions of the
included work design variables and their effect on job quality indicators
such as worker attitudes and well-being in Table 3 below (Cazes et al.,
2015).

2.5. User experience

This study characterizes UX through the affective, emotional, effec-
tive, efficient, and satisfaction-related results of production workers’
interactions with assistance systems (Sauer et al., 2020). While
frequently utilized, the user-centered approach of UX methods compli-
cates their universal application. Nevertheless, narrower concepts have
been identified as partial indicators of UX (Laugwitz et al., 2008; Sauer
et al., 2020). This research assesses system usability (Brooke, 1996),
ease of use (Venkatesh and Bala, 2008), usefulness (Venkatesh and Bala,
2008), and satisfaction with technology (Demers et al., 2002) as specific
concepts that contribute to UX.

Overall Equipment Effectiveness metrics and their effect (based on ISO 22400:2014).

Metric Description Effect on OEE
Availability Availability rate Proportion of total production time a machine can be used. Increase
Major stoppage time Total time during which manufacturing is interrupted by a major machine malfunction lasting over 10 min. Reduce
Equipment failure downtime Total unplanned downtime due to equipment failure. Reduce
Replacement time Total downtime due to routinely replacing equipment. Reduce
Set-up time The time required to change a process or a machine from one product or operation to another. Reduce
Performance Cycle time Total time between the start and end of the manufacturing processes. Reduce
Idle time Total time when manufacturing is not occurring without a malfunction as a cause. Reduce
Minor stoppage time Total time during which manufacturing is interrupted by a minor temporary malfunction of the machine. Reduce
Task completion time Total time spent on a manufacturing task. Reduce
Productivity Manufactured product quantity over a specified period. Increase
Productivity variance Variance and distribution in time spent on a task. Reduce
Quality Quality variance Variance and distribution of errors made in a task. Reduce
Quality rate Percentage of products failing to meet quality requirements due to faulty task execution. Reduce
Error rate Percentage of errors made by production workers affecting product quality. Reduce
Table 3
Work design characteristics and their effect on Job Quality (JQ) indicators.
Variable Definition Effect on
JQ
Motivational Work scheduling autonomy The freedom to control the schedule and timing of work. Increase’
characteristics Work methods autonomy The freedom to control which methods and procedures are utilized. Increase’
Decision-making autonomy The freedom to make decisions at work. Increase’
Skill variety The knowledge and skills necessary to perform a job. Increase’
Task variety The degree to which an individual performs various tasks at work. Increase’
Task significance The extent to which a job impacts others’ lives. Increase’
Task identity The extent to which an individual can complete a whole piece of work. Increase’
Feedback from the job The extent to which a job imparts information about an individual’s performance. Increase’
Information processing The extent to which the job necessitates an incumbent to focus on and manage information. Varying!
Job complexity The extent to which a job is multifaceted and difficult. Varying!
Specialization The extent to which the job requires specific knowledge and skills. Varying!
Problem solving The extent to which a job requires producing unique solutions or ideas. Varying!
Perceived cognitive task load The extent to which mental and perceptual activities are perceived as demanding, complex, and Reduce®®
exacting.
Social characteristics Interdependence The extent to which a job depends on others” work. Increase’
Feedback from others The extent to which other organisational members provide performance information. Increase’
Social support The extent to which a job provides opportunities for assistance and advice from supervisors or co-  Increase!
workers.
Interaction outside the The extent to which a job requires communication with people external to the organisation. Increase’
organization
Work context Physical demands The amount of physical activity or effort necessary for a job. Reduce'®
characteristics Work conditions The extent to which factors like health hazards, temperature, and noise in the work environmentare  Increase'

perceived as satisfactory.

Note. Indication of sources: ! Humphrey et al. (2007), 2 Andersen et al. (2016), 3 Hertzum (2022).
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3. Methodology
An SLR methodology was adopted to identify assistance system ar-

chetypes and their impact on job quality and OEE (Page et al., 2021a,
2021b).

3.1. Search strategy

Advances in Industrial and Manufacturing Engineering 11 (2025) 100173

smart technology, its application, the user, the manufacturing context,
and an outcome measure. Five scoping searches were conducted in
Scopus with these terms: (1) assistance systems, (2) task support, (3)
production worker, (4) manufacturing, and (5) performance indicator.
Results from these scoping searches were used to subsequently refine
keywords into synonyms, narrower and broader terms. These synonyms,
narrower and broader terms were further refined by checking with a
thesaurus and experts. This led to the application of the following

Boolean operations.
To execute the SLR, the scope and keywords were determined using a

((TITLE-ABS-KEY (“assistance system” OR “human centered technology” OR “human centric technology” OR “exoskeleton” OR “cobot” OR
“robot” OR “collaborative robot” OR “chair support system” OR “smart glasses” OR “augmented reality” OR “virtual reality” OR “mixed reality”
OR “smart watch” OR “smart glove” OR “big data” OR “data analytics” OR “smart wearable” OR “artificial intelligence” OR “machine learning”
OR “internet of things” OR “sensor” OR “IoT” OR “cloud” OR “intelligent personal assistant” OR “smart personal assistant” OR “automated
guided vehicle” OR “3D printing” OR “additive manufacturing” OR “digital twin” OR “Industry 4.0” OR “smart technology” OR “Industry 5.0" OR
“cyber physical system”) AND TITLE-ABS-KEY (“manufacturing cell” OR “fabrication cell” OR “production cell” OR “machine cell” OR “work
cell” OR “robotic cell” OR “machining cell” OR “welding cell” OR “assembly cell” OR “cellular manufacturing” OR “workstation” OR
“manufacturing”) AND TITLE-ABS-KEY (“production worker” OR “operator” OR “technician” OR “worker”) AND TITLE-ABS-KEY (“operator
support” OR “task support” OR “task assistance” OR “operator assistance” OR “digital support” OR “digital assistance” OR “cognitive assistance”
OR “cognitive support” OR “sensorial assistance” OR “sensorial support” OR “physical assistance” OR “physical support” OR “sensor-based
assistance” OR “sensor-based support” OR “sensor based assistance” OR “sensor based support” OR “decision support” OR “digital working
instructions” OR “dwi” OR “projection-based assistance” OR “projection based assistance™ OR “projection-based support™ OR “projection based
support” OR “remote assistance” OR “remote support” OR “laser support” OR “human-robot collaboration” OR “operator 4.0" OR “operator 5.0"
OR “smart working” OR “human-machine collaboration” OR “human-technology collaboration” OR “augmentation™ AND TITLE-ABS-KEY
(“manufacturing performance” OR “performance indicator” OR “KPI” OR “defect rate” OR “takt time” OR “first pass yield” OR “productiv-
ity” OR “cycle time” OR “first time through rate” OR “process variation” OR “task time” OR “waste reduction” OR “load time” OR “changeover
time” OR “distance covered” OR “error reduction” OR “accessibility” OR “technology utilization rate” OR “energy efficiency” OR “resource
efficiency” OR “OEE” OR “overall equipment effectiveness” OR “machine utilization” OR “throughput time” OR “makespan” OR “cognitive
load” OR “worker safety” OR “worker health” OR “workload” OR “incident rate” OR “job satisfaction” OR “skills” OR “competencies” OR
“expertise” OR “employability” OR “quality rate” OR “mental demand” OR “physical demand”)))

thesaurus, experts, and a scoping search to avoid missing important
synonyms. To meet the study’s goal, the search strategy should consider

Fig. 2 shows keyword co-occurrence in the search string using
VOSviewer (Van Eck and Waltman, 2023). The lines indicate related
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Fig. 2. Co-occurrence map of identified keywords.
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concepts in the search strings, and their proximity suggests a strong
co-occurrence. Four clusters emerge: assistance systems (green),
manufacturing applications of assistance systems (yellow), industrial
paradigms (red), and human-machine paradigms (blue).

The search string was used to query relevant databases. Scopus, Web
of Science, and IEEE Xplore were chosen for their focus on organiza-
tional design science and industrial manufacturing engineering. Other
databases were excluded because they were irrelevant or had limited
added value.

3.2. Selection process

This step followed the Preferred Reporting Items for Systematic Re-
views and Meta-Analyses (PRISMA) to select relevant articles (Page
et al., 2021a, 2021b). Steps included (1) removing duplicates, (2) ab-
stract screening to eliminate irrelevant articles, and (3) full-text
screening to exclude studies that did not meet the inclusion criteria.
The review criteria were that the article:

. Had full text available in English;

. Was published between 2015 and 2024 (ten years);

. Was peer reviewed.

. Concerned production workers. Production workers are defined as
‘those who are directly involved in the execution of operational processes
of manufacturing’;

5. Focused on assistance systems in a manufacturing setting.
Manufacturing is defined as ‘the conversion of raw materials into
physical products by production workers’;

6. Described technology that fulfilled the criteria of an assistance sys-
tem, as defined in this study;

7. Categorized assistance systems, or made it possible to categorize
assistance systems;

8. Contained results that describe the effect that an assistance system
has on job quality and/or OEE;

9. Specified the effect of an assistance system compared to a situation

without an assistance system.

H WM

A log, available upon request, was maintained for all full-text
screened articles, indicating which inclusion criteria were met and
which were not. This evaluation resulted in 40 articles being selected for
analysis. Fig. 3 provides a visual representation of the selection process.

3.3. Data extraction and analysis

The SLR used deductive coding to analyze selected articles. The study
used Tables 1-3 as a codebook to categorize the capabilities, applica-
tions, and impact of assistance systems in an Excel file (available upon
request). Several studies featured multiple assistance systems with
distinct capabilities and applications, resulting in 56 cases identified
from 40 studies. See Table 4 for a selection of relevant sample
characteristics.

A hierarchical and k-means analysis determined assistance system

Assistance systems
studies identified Screening abstracts (N Full text screening (N
through database =422) % =166)

search (N = 585)

Excluded based on
in-depth screening
of inclusion
criteria (N = 116)

Studies included for
analysis (N = 40)

Removed Excluded based on| | Added based on
duplicates (N = inclusion criteria | | snowball search
163) (N=294) (N=38)

Fig. 3. Review process of the systematic literature review.
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Table 4
Sample distribution.

Descriptive variable Categories Proportion of sample (n =
56)
Type of study Experimental study 46 (82,1 %)
Case study 10 (17,9 %)
Participants Test subjects 37 (66.1 %)

Production workers 19 (33,9 %)

Type of manufacturing Described 19 (33,9 %)
process Not described 37 (66,1 %)
Capabilities for task Described 24 (42,9 %)
execution Not described 32 (57,1 %)
Capabilities for task support Described 21 (37,5 %)

Not described 35 (62,5 %)

Measured
Not measured
No variable
measured
Measured

4 (7,1 %)
52 (92,9 %)
56 (100 %)

OEE - Availability

JQ - Social work
characteristics
User experience 10 (17,9 %)

Not measured 46 (82,1 %)

Dendrogram using Ward Linkage
Rescaled Distance Cluster Combine
10 15 20 25

‘Lﬁl_L

w
o

[T L{L“‘_LE_I%L

Fig. 4. Dendrogram for identifying the number of archetypes.

archetypes and their characteristics based on capabilities and applica-
tion variables. The range of support, capabilities for task execution,
capabilities for task support, and the type of manufacturing process were
excluded due to missing values. Categorical variables were one-hot
encoded according to the predefined analysis framework (using IBM
SPSS). To enable comparability with other variables, two ordinal vari-
ables were converted into Z-scores. Furthermore, four clusters were
identified using hierarchical cluster analysis with Ward’s method and
Euclidean distance measure. The number of clusters was chosen based
on the dendrogram in Fig. 4, aiming to maximize the clusters’ robustness
and minimize heterogeneity within the clusters. Finally, the values were
grouped into four clusters using k-means cluster analysis.

To assess the impact of assistance systems on job quality and OEE,
ordinal variables were encoded into a three-point scale: ‘-1’ and ‘1’
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indicate ‘decreases’ or ‘increases’ respectively, while >0’ shows no sig-
nificant effects. Similarly, ordinal UX variables were encoded on a five-
point scale where ‘0’ to ‘5’ respectively refer to low, low/moderate,
moderate, moderate/high, and high scores. Next, averages, standard
deviations, and case counts were utilized to map the impact of each
archetype. For an outcome category to be recognized as significant in the
mapping, it must have at least five cases linked to a specific archetype.
Significant results were subsequently examined at the variable level,
showing each category’s proportions of outcome variables and standard
deviation. A case count of five indicates noteworthy outcomes at the
variable level.

4. Results

Results indicate insights aligned with this paper’s two goals: (1)
assistance system archetypes in manufacturing applications, and (2)
mapping their impact on job quality and OEE.

4.1. Deriving assistance system archetypes in manufacturing applications

Four assistance system archetypes emerge from the SLR, namely (1)
Manually operated physical execution support for routine assembly
tasks, (2) automatically operated and adaptable visual task guidance for
routine assembly tasks, (3) automatically operated and adaptive visual
support for non-routine diagnostics tasks in inspection/testing pro-
cesses, and (4) automatically operated and adaptive physical execution
support for routine assembly tasks. Archetypes 2 and 3 predominantly
provide cognitive assistance, and archetypes 1 and 4 provide physical

Table 5
Assistance system archetypes in manufacturing applications.
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support. Archetypes 2 and 3 have similar capabilities, apart from the
differing adaptability levels they can offer. Most notably, the main dif-
ference lies in the application, as archetype 2 is applied for task guidance
and routine assembly tasks, whilst archetype 3 assists with non-routine
diagnostics in inspection and testing processes. Moreover, archetypes 1
and 4 have similar application domains but differ in capabilities.
Archetype 1 provides fixed action support and requires manual opera-
tion, and archetype 4 accommodates adaptable action support due to its
observation, orientation, and decision functionalities.

Although sensorial assistance is identified as a separate assistance
type in the literature, they are infrequently researched and commonly
integrated with cognitive or physical assistance systems. More specif-
ically, observation functionalities are regularly integrated with assis-
tance systems’ orientation, decision-making, and action functionalities.
Additionally, these capabilities are combined with the ability to auto-
matically administer information through sensors and an increased level
of adaptability of the assistance systems. Finally, support for non-routine
manual tasks or workplace ergonomics does not come forth in one of the
four archetypes. Table 5 summarizes the four assistance system arche-
types with their respective capabilities and applications.

4.2. Mapping the impact of assistance systems archetypes on OEE and job
quality

This study found no articles that examined how assistance systems
influence the social attributes of jobs. Furthermore, the cases evaluating
UX indicators for any specific archetype were limited to no more than
five. Consequently, Fig. 5 illustrates how the four types of assistance

Archetype 1 Archetype 2 Archetype 3 Archetype 4
# of cases 12 26 7 11
Studies (Bosch et al., 2016; Bouillet et al., (Blattgerste et al., 2017; Bosch et al., Eimontaite et al. (2022); Hoerner (Bettoni et al., 2020; Chan et al.,
2023; Gervasi et al., 2022; Gualtieri 2020; Brizzi et al., 2017; Eder et al., et al., 2023; Mietkiewicz and 2022; Chu and Liu, 2023;
et al., 2020; Lagomarsino et al., 2020; Funk et al., 2015a; Funk et al., Madsen, 2024; Park et al. (2020); Huysamen et al., 2018; Kim et al.,
2023; Mouhib et al., 2024; Moyon 2017; Mark et al., 2021b; Papetti Papavasileiou et al. (2024); Traub 2019; Lagomarsino et al., 2023;
et al., 2018; Puttero et al., 2024; et al., 2023; Riedel et al., 2021; et al. (2018); Vukicevic et al. Murali et al., 2020; Pérez et al.,
Zigart et al., 2023) Schuster et al., 2021; Simoes et al., (2019) 2020; Puttero et al., 2024)
2021; Smith et al., 2020; Syberfeldt
et al., 2015; Techasarntikul et al.,
2020; Tong et al., 2024; Yang et al.,
2020; Wilschut et al., 2019)
Feature Design and capabilities
Assistance type Physical Cognitive Cognitive Physical
Functionalities Act Observe Observe Observe
Orient Orient Orient
Decide Decide Decide
Act
HMI Unimodal Multimodal Multimodal Multimodal
Input type Manual Automatic Automatic Automatic
Output type Physical movement Visual/optical Visual/optical Physical movement
Adaptability Moderately low [-,86] Moderate [-,25] High [1,16] Moderately high [,79]
level
Feature Manufacturing application
Man. Process Assembly Assembly Inspection/testing Assembly
function
Supported task Routine manual Routine cognitive Non-routine cognitive Routine manual
type
Function of Physical execution support Work instructions guidance Diagnostics support Physical execution support
assistance
system
Automation Low [-1,55] Moderately high [0,44] High [1,07] Moderate [-,03]
level

Note. Adaptability and automation levels indicate how the value deviates from the variable mean.
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Category N  Mean effect (SD)
° OEE - Availability 0
=3 OEE -Performance — 7 0,43(SD=0,79)
g OEE - Quality 2 0(SD=1,41)
z JQ - Motivation —— 6 -0,33(SD=0,52)
JQ - Work context —— 8 0,63(SD=0,52)
o OEE - Availability e 3 1(5D=0)
< OEE -Performance '7—‘—< 25 0,20(SD=0,76)
& OEE - Quality — 22 0,41(SD=0,73)
g JQ - Motivation e 12 -0,17 (SD=0,72)
JQ - Work context H—* 12 0(SD=0,85)
o OEE - Availability e« 1 1(SD=0)
< OEE -Performance ® 6 1(SD=0)
j OEE - Quality — @—— 4 0,75(SD=0,50)
E JQ - Motivation 1 0(SD=0)
JQ - Work context 1 0(SD=0)
° OEE - Availability 0
g OEE -Performance — 7 0,86(SD=0,38)
o OEE - Quality ° 2 1(SD=0)
E JQ - Motivation ——— 4 0,50 (SD=0,58)
JQ - Work context — 5 0,80(SD=0,45)
-1,00 -0,50 ,00 0,50 1,00

Fig. 5. The impact of assistance system archetypes on job quality and OEE categories.
Note. The size of the bells indicates the number of cases studied for the outcome category of interest.

systems affect the availability, performance, and quality of
manufacturing equipment, along with the motivational and work
context characteristics of a job.

Archetypes 1 and 4 positively affect work context features. While
archetype 4 consistently enhances performance, the effect of archetype
1 is positive but inconsistent. Variability in archetype 1’s performance
outcomes may arise from different studies and their specific outcome
variables. For instance, Bouillet et al. (2023) found negative impacts on
idle time and productivity, while other studies showed positive out-
comes in cycle time (Gualtieri et al., 2020) and task completion time
(Puttero et al., 2024). Furthermore, archetype 1 shows potential risk for
motivational work characteristics as the cognitive demands, frustration
levels, and temporal demands tend to increase.

Archetypes 2 and 3 seem to have a slight positive effect on quality.
Notably, although both archetypes have similar capabilities, their effect
on performance differs (mean difference = 0,8). Archetype 2 shows a
slight increase in performance, whilst archetype 3 shows convincing
evidence for a performance increase. This performance increase is
typically achieved through task completion time reductions. A closer
look at the underlying variables for archetype 2’s varying effects on
performance shows that the effects on task completion time raise
questions about the underlying reasons. Moreover, archetype 2 shows
varying, yet negative average effects on motivational work character-
istics and varying effects on work context characteristics. This indicates
arisk of increasing mental demands and frustration among workers who
use archetype 2. Finally, the varying yet mostly positive effects of
archetype 2 are present at the predominant outcome variable ‘error
rate’.

Further analysis reveals outcome variables by category. First, task
completion time is commonly used as a performance variable. Second,
variables that stem from the NASA TLX are the most used indicators for
motivational and work context outcomes. Finally, error rates serve as
the main measure for OEE quality in archetype 2. Findings on variable-
level outcomes of assistance system archetypes can be found in Table 6
below, and a summary of the findings is given in Table 7.

Table 6
Variable-level outcomes of assistance system archetypes.

Archetype Variable n  Proportion Mean effect SD

Archetype 1 Task completion time 4 50,00 % 0,50 0,58
Cycle time 2 25,00 % 1,00 0,00
Productivity 1 12,50 % -1,00
Idle time 1 12,50 % -1,00
Subtotal OEE - performance 8 100 %
Frustration level 4 36,36 % -0,25 0,50
Stress level 1 9,09% -1,00
Mental workload 6 54,55% -0,33 0,52
Subtotal JQ - motivation 11 100 %
Temporal demands 4 23,53 % 0,00 0,00
Physical demands 8 47,06 % 0,63 0,52
Subtotal JQ - work context 12 100 %

Archetype 2 Task completion time 21 87,50 % 0,10 0,77
Cycle time 1 417% 1,00
Productivity 2 8,33% 0,50 0,71
Subtotal OEE - performance 24 100,00 %
Error rate 20 86,96 % 0,45 0,76
Task success 2 870% 0,50 0,71
Product quality 1 435% 0,00
Subtotal OEE - quality 23 100,00 %
Frustration level 9 33,33% -0,33 0,71
Mental workload 12 44,44 % -0,42 0,79
Task complexity 3 11,11 % 0,00 0,00
Feedback from the job 3 11,11 % 1,00 0,00
Subtotal JQ - motivation 27 100,00 %
Temporal demands 9 42,86 % -0,33 0,71
Physical demands 12 57,14 % 0,00 0,85
Subtotal JQ - work context 21 100,00 %

Archetype 3 Task completion time 3 50,00 % 1,00 0,00
Cycle time 1 16,67 % 1,00
Productivity 2 33,33% 1,00 0,00
Subtotal OEE - performance 6 100,00 %

Archetype 4 Task completion time 3 42,86 % 0,67 0,58
Cycle time 1 1429% 1,00
Productivity 3 42,86 % 1,00 0,00
Subtotal OEE - performance 7 100,00 %
Physical demands 5 100,00 0,80 0,45
Subtotal JQ — work context 5 100,00 %
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Table 7

Overview of assistance system archetypes and their impact.
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Archetype 1: Fixed physical support for

routine tasks in assembly

Archetype 2: Adaptable visual task

guidance for routine tasks in assembly

Archetype 3: Adaptive visual
diagnostics support for non-routine
tasks in inspection/testing

Archetype 4: Adaptive physical

support for routine tasks in assembly

Examples
Cap- e Unimodal, and manually operated e Automatic input and various
abilities e Fixed support operation types
e Adaptability varies
Positive e Work context (M = 0,63, SD = 0,52); e Error rate reduction (M = 0,45, SD
effects e Performance (0,43, SD = 0,79). =0,76);
Risks e Can increase mental demands - e TCT effect (M = 0,10, SD = 0,77)

M = -0,33, SD = 0,52)
Limited variable-level
evidence.

and physical demands effect (M =
0,00, SD = 85) vary

temporal demands (M = —0,33, SD
=0,71);

Mental demands (M —0,33, SD =
0,71) and frustration levels (M =

=

Smart tool

Automatic input and manual
operation
Adaptive support

Performance (M = 1, SD = 0,00).

Limited use cases found for this
archetype.

Automatic input and various
operation types

Adaptive support

Work context (M = 0,80 SD =
0,45);

Performance (M = 0,86, SD =
0,38).

Limited variable-level evidence.

—-0,42, SD = 0,79).

5. Implications and future research

This study addresses the limited understanding of the application-
specific impacts of assistance systems by mapping four archetypes in
manufacturing and their impact on OEE and job quality. The following
discussion highlights key points for scholars and practitioners to consider.

5.1. Implications for theory and manufacturing scholars

Selecting the right assistance technology for the preferred way of
working and work requirements of the production workers remains an
open challenge for manufacturing scholars (Mark et al., 2021a, 2022).
While some studies report job quality improvements (e.g., Huysamen
et al., 2018) or better manufacturing performance (e.g., Funk et al.,
2015a), others show declines in job quality (e.g., Lagomarsino et al.,
2023) or manufacturing performance (e.g., Bouillet et al., 2023). These
findings align with other reviews indicating outcomes vary by context
(Bal et al., 2021; Di Pasquale et al., 2022). For instance, Funk et al.
(2015b) found that the benefits of augmented reality were greater the
more steps each task had. However, a trend can be observed when
looking at the more consistent positive results that emerge from assis-
tance systems with high adaptability capabilities. These results make
sense as customized, adaptable, and adaptive assistance counter the ‘one
size fits all’ approach of fixed assistance and are more tailored towards
addressing the unique capabilities and needs of the production worker in
a given context (Wandke, 2005). Thus, this study notably confirms the
importance of the manufacturing context and reveals the potentially
more consistent positive job quality and OEE outcomes associated with
assistance systems that exhibit high levels of adaptability.

Another key implication for manufacturing scholars is the
application-specific categorization of four assistance system archetypes.
In alignment with earlier research (Yang and Plewe, 2016), task support
in manual processes such as assembly and inspection/testing seems most

common. Researchers should, however, also note that although other
application domains such as workplace ergonomics, sensorial moni-
toring, and decision support are regularly described as promising
(Bechinie et al., 2024; Konig and Winkler, 2025; Mark et al., 2021c), no
robust clusters were found regarding these assistance system functions.
Similarly, non-routine assembly tasks are identified as promising ap-
plications of assistance systems (Gan et al., 2023), yet did not emerge
from the analysis. These outcomes show the modest number of
comparative studies executed for these specific fields of application. In
summary, manufacturing scholars could expand their research on the
assistance system archetypes for manual processes and the observed lack
of comparative studies in other applications.

Manufacturing scholars should note the sample bias in experimental
comparative studies (82,1 %) and test subjects (66.1 %) versus case
studies (17,9 %) and production workers (33,9 %). Mark et al. (2021c)
emphasized the need for more case studies with specific user groups.
This study’s findings align with that need, revealing it was often
impossible to determine the manufacturing process type (66,1 %), UX
(82,1 %), task execution capabilities (57,1 %), and task support capa-
bilities for the application (62,5 %). Thus, it remains unclear if the
assistance system effectively supported user-specific needs (Johnson
et al., 2014). This study reaffirms this critical gap in existing literature.

5.2. Limitations and avenues for future research

The insights indicate limitations and promising research avenues.
Addressing methodological challenges in the state-of-the-art literature
on assistance systems’ outcomes is essential. This study mainly incor-
porated comparative experimental studies supplemented by compara-
tive case studies. By utilizing longitudinal studies, researchers could
gain a more detailed and nuanced insight into the outcomes. For
example, such studies may illustrate significant initial increases while
revealing a later learning curve that may heighten stress and frustration
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or decreased performance over time (Jaber, 2016; Wilschut et al., 2019).
Additionally, longitudinal research could shed light on the usage of skills
and opportunities for skill development, which are thought to mediate
the beneficial effects of high-quality work organization on workers’
well-being (Holman and Wall, 2002). These factors might be overlooked
in comparative studies. Longitudinal studies should ideally be con-
ducted with production workers to address their unique needs. Addi-
tionally, the sample varied in outcome variables and participant types,
complicating cross-study comparisons, which presents another research
opportunity for scholars comparing assistance system impacts.

The study’s findings on the four assistance system archetypes open
new research questions. Future studies could explore additional arche-
types, including sensorial monitoring, decision-support, and workplace
ergonomics functions of assistance systems, as well as support for non-
routine manual tasks. Moreover, although this study followed a
rigorous systematic procedure (following Page et al., 2021a, 2021b), the
search strategy and case selection are limited by the authors’ subjective
assessments. Thus, enriching the analysis framework and dataset would
enhance comprehensiveness. Additionally, enriching the dataset would
enable variable-level outcome analysis of the archetypes, which con-
tributes to addressing methodological challenges and clarifying con-
tradictory results.

The varying impact of assistance system archetypes requires more
empirical research to enhance understanding of decisive contextual
variables. While worker and assistance system capabilities were
considered in mapping outcomes, the description in the sample lacked
sufficient details to determine them for the task of interest. As worker
skills are an important contextual factor (Nair et al., 2024), scholars
could explore whether the fit between assistance systems and worker
capabilities affects outcomes. Including UX indicators like usability
could further refine this analysis. This study did not incorporate UX
indicators due to insufficient sample sizes, despite their importance for
aligning user needs with assistance system applications (ISO, 2019;
Sauer et al., 2020). Additionally, the lack of availability and social work
outcome assessments in evaluating assistance systems warrants deeper
investigation, as both categories are vital indicators of respectively OEE
and job quality (Eurofound, 2017; Muchiri and Pintelon, 2008).

Finally, researchers should explore application-specific approaches
to adopting human-centric assistance systems. The literature already
offers design rules and approaches for human-centric technology
adoptions (De Sitter et al., 1997; Gualtieri et al., 2020; ISO, 2019; Oeij
et al., 2017; Rega et al., 2025). However, this study, again (Mark et al.,
2021c), highlights the absence of case studies that provide hands-on
guidance for applying these principles and design rules within the spe-
cific, work-related context of manufacturing organizations. Scholars can
fill this gap by conducting human-centric design studies that utilize
existing frameworks and implement these in the specific manufacturing
context.

5.3. Implications for manufacturing practitioners

Manufacturing professionals can integrate two types of assistance
systems to provide physical execution assistance for workers in routine
assembly operations. Although results are limited, investing in devel-
oping observation, orientation, and decision functionalities can be
worthwhile when offering physical execution support, allowing the
assistance to be more adaptive. This is due to manually operated phys-
ical execution support systems that pose risks by increasing workers’
mental demands, which can consequently decrease their job quality
(Humphrey et al., 2007). Similar risks are highlighted for visual task
guidance systems in routine assembly operations. These systems can be
adapted and operated in multiple ways, typically possessing observa-
tion, orientation, and decision functionalities. Although practitioners
might consider this to improve error rates, the potentially increased
physical, temporal, and mental demands present a risk for workers and
the achievement of sustainable system-level goals (Andersen et al.,
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2016; Hertzum, 2022). Prior research shows the context-specific effects
of increased work demands and reduced resources on various individual
workers (Parker, 2003). Therefore, this study further underscores the
necessity for manufacturing professionals to consider the specific needs
of users, not only concerning the application of the technology but also
in their work design.

Another important observation is the promising performance im-
provements that adaptive visual support seems to offer for non-routine
diagnostics tasks in inspection/testing processes. The use cases from
Hoerner et al. (2023) and Traub et al. (2018) could provide guidance on
the design and implementation of effective assistance systems for sup-
port of non-routine diagnostic tasks.

6. Conclusion

This unique study offers an archetypal overview of the impact of
assistance systems on job quality and OEE in manufacturing applica-
tions, which scholars can build upon. Cognitive assistance archetypes
are distinct in supporting routine work guidance tasks in assembly and
non-routine diagnostic tasks in inspection and testing processes. Phys-
ical support archetypes are applied in routine assembly but have distinct
capabilities. The study shows that the contradicting impact of the ar-
chetypes on job quality and OEE may be influenced by the differences in
the capabilities of the assistance system archetype. Scholars could better
understand the underlying reasons for the contradictory results by
assessing the fit between the role division of the worker and the assis-
tance system and their respective capabilities. Methodological varia-
tions, such as longitudinal research and case studies utilizing a coactive
design method, could serve as viable approaches to address the gap
identified in the comparative study sample of this SLR. Finally, more
research is needed on social characteristics and the availability of pro-
duction equipment to enhance the comprehensive understanding of
assistance systems on job quality and OEE.

In conclusion, while assistance systems offer various potential ben-
efits for job quality and OEE, their successful use requires careful
consideration of worker capabilities, assistance system capabilities, ap-
plications, and long-term deployment effects. This study enriches the
existing literature on assistance systems and can serve as a foundational
basis for the needed further longitudinal empirical testing to provide
application-specific insights and guidance to scholars.
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