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ABSTRACT

There is often sensitive data in defence and security applications, making it difficult for organizations to share such
data. This limits the training of artificial intelligence techniques, which typically require large, diverse datasets.
Federated learning offers a solution by enabling organizations to collaboratively train models without sharing
private data. However, existing research on federated learning often focuses on simple computer vision tasks, such
as classification on balanced datasets, and rarely addresses more complex tasks involving realistic, heterogeneous
data distributions, also known as non-IID (non-independent and identically distributed) data. In this work, we
demonstrate a federated learning framework applied to various object detection tasks relevant to defence and
security. These tasks are evaluated under different types of non-IID conditions, including quantity skew, label
skew, and feature skew. The object detection tasks include number and symbol detection on UNO card corners,
single-frame person and vehicle detection from an air-to-ground perspective using the VisDrone dataset, and
small moving object detection in challenging environments. Experimental results show that federated models
consistently outperform separately trained models in both IID and non-IID settings. In experiments involving
the three types of skew, federated performance decreases as the data becomes more non-IID. However, our
results still demonstrate the added benefit of federated training compared to separately trained models. These
findings highlight the viability of federated object detection in real-world defence and security scenarios involving
heterogeneous data.
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1. INTRODUCTION

Federated learning (FL) is a distributed training technique that allows organisations to collaboratively train a
machine learning model without data sharing.! ® Since training data do not need to be shared among organisa-
tions, it is considered to be more secure than conventional training. This is especially important in the domains
of defence and security, where data sometimes cannot be shared at all.” *

Two main difficulties arise when using federated learning for real-world tasks:

1. Non-IID: in real-world tasks, data are often non-independent and identically distributed (non-1ID) amongst
the clients (participating organisations). Training with non-IID data can result in client drift, where local
client models do not generalise well to the entire dataset and federated aggregation of local models is
difficult.'?

2. Object detection: the most common computer-vision task used in federated learning is image classification.
There is research on object detection available, but the number of sources compared to image classification
is lacking.!! Additionally, existing federated learning techniques designed for image-classification tasks do
not necessarily generalise to object-detection tasks.
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In this work, we investigate the impact of non-IID data on three object-detection tasks. Non-IID data will be
decomposed into three separate issues, namely: (1) quantity skew, where each client has a different amount of
training data available, (2) label skew, where each client has a different amount of classes available or some classes
are completely missing in the training data, and (3) feature skew, where each client has different features in the
training data, for example caused by different camera angles, weather conditions, or time of day.'® Three different
object-detection tasks are used to assess the effect of non-IID data on model performance, being the detection
of numbers and symbols on UNO cards,'? the detection of people and vehicles in the VisDrone dataset,'? and
the detection of drones in an in-house defence dataset.

2. RELATED WORK

This section covers related work, where non-IID data is explained first, followed by conventional strategies to
account for non-IID data. Additionally, research on object detection with non-IID data is included to bridge the
gap between methods made for classification and the applicability for object detection.

2.1 Non-IID data

In this work, non-I1ID data is considered to be so-called ‘statistical heterogeneous’, which concerns the difference
in data distributions amongst the various private datasets at each client.'* There are three key types of non-
IID that will be studied in this work, being (1) quantity skew, (2) label skew, and (3) feature skew.! System
heterogeneity, which concerns differences in computational resources between clients,? is out-of-scope for the
current work.

These types of skew can be summarized as follows: !0 14,15

1. Quantity skew: This type of skew originates purely from the size of the client’s training data. All datasets
contain all classes, and the label distribution in each client is still the same as the original distribution.

2. Label skew: This type of skew originates from the clients not having the same (number of) classes or
class instances. In the most extreme situation, this can lead to some clients not having certain classes in
their training data.

3. Feature skew: Feature skew is the result of each client having different features in their training dataset.
This can originate from multiple sources. For example, in the MNIST dataset,' different people have
different handwriting, creating different features for the same classes.'

The Dirichlet distribution'” is often used to simulate non-IID data for quantity skew and label skew.!%:18 A

higher Dirichlet coeflicient means that the distribution will likely be more uniform. For values less than one, it

is very likely that there is one client that has the majority of the total samples (quantity skew) or the majority
of the samples of a class (label skew). A higher Dirichlet coefficient results in a higher possibility for a uniform
data distribution, and when the Dirichlet coefficient approaches infinity, the distribution is guaranteed to be

IID.' For research on non-IID data in federated learning, a Dirichlet coefficient between 0.1 and 1 is often used

to demonstrate moderate-to-heavy skew.20:2!

2.2 Aggregation strategies for IID and non-IID data

There are many aggregation strategies to account for different types of skewed data. The types of skew may
include quantity, label and feature skew, but may also extend to system heterogeneous situations where the
different hardware devices cause skew. Research presenting these strategies for example measure the effectiveness
of their proposed strategies based on convergence speed, performance, security, or hardware requirements, where
they demonstrate their strategy on a specific configuration to simulate skew. Each strategy may outperform
other strategies in some predefined criteria, but there is none that outperforms others in all types of data skew.
An extensive overview can be found in the survey of Ma et al.'* and the survey of Gutierrez et al.??

The most conventional aggregation strategy is Federated Averaging (FedAvg).?® This method takes the
weighted average of all client’s parameters, where the weighing factor is related to the fraction of the size of the



client’s local dataset compared to the sum of the data available over all clients. This method is designed to work
well in IID data scenarios, but when there is non-IID data, the performance obtained with FedAvg can drop.?*

A recent literature study?? analysed the frequency with which popular methods are used. FedProx?* is by far
the most applied strategy to account for the negative effects caused by heterogeneous data, and is referred to as
the state-of-the-art for non-IID data.?® This method is a variation of FedAvg, and accounts for changes between
the global model and client models by adding a proximal term to the loss function. This proximal term is a
measure for the difference between the global model and the client’s local model. By incorporating this term,
the client’s model updates are forced in the direction of the global model. FedProx performs especially well when
there are ‘stragglers’,?* which is a form of system heterogeneity where some clients may be much slower than
others due to differences in hardware specifications or communication bandwidth. The performance increase of
FedProx is not visible in the case of statistical heterogeneity (based on the performance on MNIST with 0%

stragglers®?).

One promising strategy that covers statistical heterogeneity is FedBN,?® which is a method designed to tackle
feature skew. In FedBN, all “normal” model layers are communicated and averaged using FedAvg, while the
batch normalisation layers are not shared and updated locally only. This has several advantages, including the
addition of security on the communication link (batch normalisation statistics may contain sensitive information
on the local data). It tackles feature skew, since simply averaging the batch normalisation statistics between
clients with feature skewed data will not straightforwardly result in the most optimal batch normalisation. Since
the batch normalisation statistics are only updated locally, the resulting global model will be different in each
client, where each client created a model that is optimal for the situation that they can expect.

2.3 Federated object detection with data skew

Research on federated learning with non-IID data is often focussed on image classification, resulting in less
knowledge on federated object detection. This can be seen in the survey of Shenaj et al.,'' where they have an
extensive overview of classification examples, but they only give five examples for object detection.

Mainly in the world of self-driving cars, non-IID federated object detection is an active research field. In
these use cases, the non-IID data originates from feature skew that arises from using different cameras on the
vehicle, or camera streams from different days. The study of Urmonov et al.?6 gives a summary of federated
applications in intelligent vehicles. Several aggregated schemes have been applied for object detection, including
FedAvg,?? FedProx,?* FedDyn,?” FedBN?® and SCAFFOLD.2® For more information on these methods, see the
survey of Ma et al.'*

Federated learning using data from different cameras may not only contain feature skew, but also label skew,
since different cameras can capture classes at different frequencies. Papers on autonomous vehicles do not always
mention to what extent they witnessed or measured the label skew. One paper that does mention the label
distribution is Jallepalli et al.2® They perform federated object detection with cameras on cars (which results
in feature skew), where they additionally document the class instances per client (where the label skew becomes
visible). The level of skew appears moderate and they did not appear to need any algorithm to account for
non-IID data. A similar thing is mentioned by Su et al.,® where they notice how class imbalance influenced
their performance. When the class imbalance is too severe, their model breaks.

In summary, research on federated object detection lacks behind in image classification. The non-IID data
are often a natural result from the camera setup, and not something that is explicitly measured.

3. METHOD

In this section, we describe the methodology to implement our custom federated learning framework (Section 3.1)
for object detection (Section 3.2) on various types of non-IID data (Section 3.3).



(a) UNO (b) VisDrone (¢) TNO-VOD
Figure 1: Three example images of the datasets used for (a) UNO, (b) VisDrone, and (¢) TNO-VOD. The
TNO-VOD example shows a zoomed region to illustrate how small the objects are.

3.1 Federated learning framework

The method implemented in this research revolves around a federated learning framework, where a single server
coordinates multiple clients. These clients possess their local datasets, which may exhibit quantity skew, label
skew, or feature skew. The implementation of the federated learning framework is an extension of prior work.®

The framework has two main components, the server and the clients. Each client trains its local model on its
respective private dataset and sends updates to the server. These updates can be model weights or gradients.
The server is responsible for aggregating local updates from clients and broadcasting the aggregated global
model. Communication is managed by the tno.mpc.communication package.! Both is possible, but, we choose
to communicate model weights rather than gradients. This gives the possibility to communicate both every
single batch or every multiple batches or epochs, which will speed up the total training time. When gradients
are communicated over multiple batches, additional logic is needed to combine information.

3.1.1 Aggregation

As already explained in the related work (Section 2.2), there is no non-IID aggregation strategy that outperforms
the others in all specific situations. Aggregation is done by FedBN,?® because it has three main advantages: (1)
it can account for specifically feature skew, (2) it can be combined with FedAvg,?® and (3) it adds security to
the communication links by not communicating statistics on private data. Note that the comparison between
FedAvg and FedBN on the three object-detection tasks on the three types of skew, respectively as explained in
Section 3.2 and 3.3 is not in the scope of this research.

3.2 Federated object-detection tasks

This section covers the experimental setup for the three object-detection tasks. The first task is UNO, where the
objective is to detect the numbers and symbols in the upper left corner of UNO cards.'? Every image contains
a stack of three UNO cards (Figure 1a). A Faster R-CNN with pre-trained ResNet-50 backbone is used in this
task.?? Note that a Faster R-CNN has frozen batch norm layers by default,? thus the FedBN implementation
will be the same as plain FedAvg. The second task is VisDrone,'? where the objective is to detect persons and
vehicles from an air-to-ground perspective in single video frames (Figure 1b). A YOLOv8s** model was used in
this task and fine-tuned on the training dataset split.>> The third task is TNO-VOD (Video Object Detection),
where the objective is to perform small moving object detection on videos (i.e. drone detection). Temporal-
YOLOV83%:37 was used in this task and trained on an in-house dataset covering both civilian and military tasks.
This data was previously used for small (moving) object detection®® (Figure 1c).

For both UNO and TNO-VOD, the federated learning setup contains two clients and one server. For VisDrone,
the federated setup contains four clients and one server. For the UNO dataset, unless indicated otherwise, a
subset of 62 images (showing a total of 186 UNO cards) was randomly selected, providing 31 images per client
in the federated setup. The VisDrone training dataset contains 6,471 images, providing 1,617 images per client.
The TNO-VOD dataset contains multiple videos, providing about 2,000 annotated drones per client.

Parameter synchronisation is done in different intervals for each task. UNO first trains on ten local epochs
before synchronising the weights. In VisDrone and TNO-VOD, synchronisation is performed every batch. In
VisDrone, there is a batch size of 10 images, and in TNO-VOD, the batch size is 30.



(a) Dominant class is “vehicle”. (b) Dominant class is “person”.
Figure 2: Visualisation of two example VisDrone images used for the label skew experiments. The dominant
class is determined (class that occurs most often in the image), and the other class is occluded by black boxes.
Grey boxes are included to block out busy regions that lead to many detection mistakes, according to the original
paper.!?

3.3 Non-IID data

The federated learning setup as described in the previous subsection will be used to train three object detection
tasks (UNO, VisDrone, TNO-VOD) in a federated way with non-IID data. Several types of skew are created
to obtain non-IID data, namely quantity skew (Section 3.3.1), label skew (Section 3.3.2), and feature skew
(Section 3.3.3). The next subsections will go into detail on how to obtain the skewed data distributions for each
of the object-detection tasks, including the modifications that need to be made to the dataset (if needed).

3.3.1 Quantity skew

Quantity skew was created using a Dirichlet coefficient, where the general principle is similar for UNO and
VisDrone. Here, the Dirichlet distribution defines how many samples are assigned to each client. Conventional
values for the Dirichlet coefficient are in the range of 0.1 to 1.0, to demonstrate moderate/heavy skew. For
TNO-VOD, the data contains videos, and quantity skew can be obtained by using videos of different lengths
in the client’s training dataset, where longer videos also contain more drone instances. For quantity skew, the
distribution of the classes is the same for all client’s dataset (and the original total dataset).

3.3.2 Label skew

Label skew was introduced in UNO and VisDrone. Not for TNO-VOD, since in this data there is only one class,
making this type of skew not relevant. For UNOQO, the non-IID data is created by removing all images with a
predefined label after assigning the data in an IID manner. The images themselves are not altered. In VisDrone,
each image typically contains both persons and vehicles. To create label skew, instances of the less occurring
class in each image are blocked out by drawing black boxes over them, and the corresponding annotations are
removed. Two example images are shown in Figure 2. These modified images, containing only one class, were
distributed to clients using a Dirichlet coefficient. A Dirichlet coefficient in the range of 0.1 to 1.0 can be used
to show moderate-to-heavy skew.20>2!

3.3.3 Feature skew

The last non-IID data type covered is feature skew and can be introduced in multiple ways. In UNO and
VisDrone, feature skew is added by adding augmentations to the client’s training data. In UNO, this is done by
using colour inversion and conversion to greyscale in the first client, and light exposure and blurring in the second
client (Figure 3). Feature skew is created in VisDrone by adding noise to the training data of the clients, where
each client has a different amount of noise (Figure 4). For TNO-VOD, testing feature skew is very ambiguous.
One possible type of feature skew is letting clients have videos from different cameras, referred to as real-world
feature skew. However, if the data are similar, the actual feature skew in the data is not very measurable.
Therefore, it is chosen to not explicitly test feature skew for TNO-VOD.
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Figure 3: Three example types of augmentations. (a) shows “standard” augmentation, including rotation and
light blurring. The other two images additionally include overexposure and heavy blurring (b), and (c¢) colour
inversion and greyscale. The last two can be used to add feature skew in the client’s datasets.
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Figure 4: Example VisDrone images resulting in feature skew, where various amounts of noise are added over
the images. The severity of the noise increases from left to right, where the first image does not contain any
noise.

4. RESULTS

This section presents the results of UNO, VisDrone, and TNO-VOD on the three types of skew. First, baseline
performances are established on IID data, followed by the results on quantity skew, label skew, and feature skew.

4.1 Baselines on IID data

To assess the added value of federated learning in three object-detection tasks, we first establish a performance
baseline. This involves comparing training on the full dataset (ideal scenario) versus training on partial data
subsets (worst-case scenario, where organizations cannot share data). This comparison is crucial to demonstrate
the impact of federated learning. If both full and separate datasets yield already similar performance, there is
little added benefit of access to more data that a federated learning approach would offer.

The goal is to identify the point where performance drops significantly with reduced data, highlighting where
federated learning becomes valuable. This is done through three experiments:

o Centralised training: Training on the full dataset, representing the upper performance bound.

e Federated training: Training across two (UNO, TNO-VOD) or four (VisDrome) clients with balanced (IID)
data splits, synchronising weights every ten epochs (UNO) or every batch (VisDrone, TNO-VOD).

e Separate training: Training on 50% (UNO, TNO-VOD) or 25% (VisDrone) of the dataset without collab-
oration, representing the lower performance bound.

In the remainder of this paper, when we refer to centralized /federated /separate results or models, we mean
models that are trained using the descriptions above.



Table 1: Baseline object-detection results on different datasets (UNO, VisDrone and TNO-VOD). The centralized
performance (on all training data), separate performance (on a subset), and federated performance (federated
learning with sharing between clients) are compared. Note that for UNO mAP@].5:.95] is used, where VisDrone
and TNO-VOD use mAP@.5. This is because of the differences in complexity of the tasks, leading to different
relevancy for the metrics.

Configuration mAPQ[.5:.95] UNO mAP@.5 VisDrone mAP@.5 TNO-VOD
Centralized 0.70 0.66 0.65
Federated 0.64 0.66 0.65
Separated 0.50 0.63 0.60

We expect centralised training to perform best, separate training worst, and federated training to fall in
between (but closer to centralised). Results for UNO, VisDrone, and TNO-VOD are shown in Table 1. For
UNO, the mAP@[.5:.95] metric is used, which for this relatively easy task gives a reliable indication of the
detection performance For VisDrone and TNO-VOD mAP®Q.5 is used, because in these tasks the objects are
very small, making mAP@].5:.95] scores relatively low whilst detection performance is generally sufficient.

From this table, it becomes visible that for all three object-detection tasks, federated learning has an added
benefit. In all three experiments, the federated performance is higher than the separate performance, and even
close to/the same as the centralized performance.

For UNO, the gap between separated and centralized training is the biggest, which is a result of using a small
partition of the full UNO-Cards dataset to be able to show the effect of federated learning (if the full dataset
was used, all three performances would be at a maximum). The federated UNO result is the only result that is
not the same as the respective centralized result of each experiments, which may be caused by the dataset being
very small. However, since the performance is still close to the centralized performance, it is safe to conclude
that for UNO federated learning is also beneficial.

Note that in the table, our mAP®@.5 for both single-frame object detection and small object detection seem
low compared to the UNO mAP@[.5:.95] score, given that UNO here is only trained on 63 images. VisDrone
and TNO-VOD are more difficult than UNO and the objects to detect are much smaller, given that it becomes
harder to have overlap between the target and predicted bounding boxes. mAP@.5 results from literature for
the centralized performance on VisDrone with YOLOvSs is approximately 0.57.3? Our result is already higher,
namely 0.66 compared to 0.57, making it safe to continue with the non-IID experiments. One explanation for
the difference could be that they did not block out the busy areas (grey boxes in Figure 1b) that can lead to
many detection errors. For TNO-VOD, there is no reference from literature, since in-house data is used, but we
validate our results since the performance on TNO-VOD is similar to VisDrone.

4.2 Quantity skew

The next experiments are conducted to show the effect of quantity skew in each of the three datasets: UNO
(Section 4.2.1), VisDrone (Section 4.2.2) and TNO-VOD (Section 4.2.3).

4.2.1 UNO

This section demonstrates the results UNO with amounts of quantity skew in the training data. The hypothesis is
that separate clients, each with limited data, will experience a drop in performance when trained separately (under
the assumption that the local dataset is small). In contrast, the performance of the federated model is expected
to remain relatively stable compared to the IID baseline. The results are shown in Table 2, where the first two
performance columns represent the local performance in the clients (separate - no parameter synchronisation),
and the last column is the federated performance when there is parameter synchronisation.

Two effects are visible from this table: (1) the separate performances of the clients decrease when the dataset
becomes smaller, and (2) the federated performance stays rather constant and unaffected by the variations of
quantity skew present. The federated performance even appears to increase slightly towards the centralized
upper bound of 0.70 from Table 1 as the data becomes more unbalanced. This may be due to the properties



Table 2: Performance of federated object detection on UNO cards with quantity skew. Separate mAP refers to
local client performance on a subset of the training data, and federated mAP reflects performance after federated
training.

Data distribution Samples Separate mAP@[.5:.95] Federated mAP@Q[.5:.95]
Client 0 Client 1  Client 0 Client 1 Client 0 Client 1
11D 31 31 0.50 0.50 0.64 0.64
Dirichlet(0.5) 37 26 0.49 0.47 0.64 0.64
Dirichlet(0.3) 50 13 0.61 0.33 0.65 0.65
Dirichlet(0.1) 62 1 0.70 0.00 0.67 0.67

Table 3: Data distribution and resulting performance for VisDrone across four clients under various quantity
skew settings. Separate mAP refers to local client performance on a subset of the training data, and federated
mAP reflects performance after federated training. The standard deviation is obtained with the results of the
four clients over one run.

Data Distribution Number of images per client Separate mAP@Q.5 Federated mAP@Q.5
Client 0 Client 1 Client 2 Client 3

11D 1617 1617 1617 1617 0.63 + 0.01 0.66 £+ 0.00

Dirichlet(0.5) 4501 1486 470 12 0.48 + 0.30 0.52 + 0.25

Dirichlet(0.3) 5774 625 39 33 0.39 + 0.28 0.45 £ 0.20

Dirichlet(0.1) 4184 2287 3 1 0.33 + 0.37 0.37 £ 0.30

of FedAvg, which includes a weighting factor based on the size of each client’s local dataset. When the data is
IID, both clients contribute equally (each with 50% weight). As the data split becomes more unbalanced, the
parameters from the client with the larger dataset carry more weight than those from the client with less data.
In the baseline experiments, centralized training outperformed federated training. Therefore, when one client
has a dataset size approaching that of the centralized setup, while the other client’s data is significantly reduced,
it is expected that the global performance will approach the centralized baseline of 0.70.

4.2.2 VisDrone

This subsection presents the results of VisDrone with various amounts of quantity skew in the training data. This
experiment is very similar to UNO, but the main difference is that the VisDrone data has more (complex) features.
We hypothesise that the individual federated clients will not be able to generalise to the global objective if their
training datasets are too small, since they will not be able to establish reliable batch normalisation statistics.
The federated performance is the average of the performance on the four clients global models, and if there is
one client that did not see sufficient data, the average federated performance will be affected. The results of the
experiments with quantity skew are shown in Table 3.

Generally, in this table it can be seen that all performance metrics decrease when the data becomes more
non-IID, which is in line with the expectations. However, this is different than the effect that was visible in the
UNO experiment, where the performance increased when the data becomes more non-IID. This may be explained
by the fact that for VisDrone, the federated and centralized performance are already the same, thus a further
performance increase in a more non-11D setting would not be visible. Additionally, looking at the performance of
individual clients shows that clients with a lot of images in their training data are able to obtain the maximum
performance, while clients with not enough data break and lower the average that is presented in Table 3. The
performances of the individual clients are presented in Appendix A. Inspecting the individual federated client’s
performances, two phenomena are visible: (1) clients with less than 40 samples are not able to generalize, and (2)
clients with sufficient data achieve the same performance as the IID result (or the centralized baseline results).
We expect that this happens because 40 images or less is not enough to create reliable batch normalisation
parameters, breaking these models. This could be a downside of FedBN, because sharing and averaging the
batch normalisation statistics is expected to solve this issue here, which would be a good evaluation for future



Table 4: Data distribution and corresponding federated performance (mAP@.5) for TNO-VOD across two clients
under quantity skew settings. Separate mAP refers to local client performance on a subset of the training data,
and federated mAP reflects performance after federated training. The number of instances in the video’s per
client is shown.

Samples per client  Separate mAP@Q.5 Federated mAP@Q.5
Client 0 Client 1 Client 0 Client 1 Client 0 Client 1
Quantity skew 2,500 20,000 0.39 0.61 0.51 0.59

Data Distribution

work. Interestingly, clients with enough data are not broken by these clients that are not able to learn, implying
that the setup is able to handle quantity skew when there is enough data present.

4.2.3 TNO-VOD

This subsection discusses the quantity skew results of TNO-VOD, where the length of the videos assigned to
clients is used to obtain skewed data. The expectation is that the individual performance of the client with
the shorter video performs worse than the client with a longer video, since it saw less samples. The federated
performance is expected to be better than the separate performance. The results are shown in Table 4. Note
that these results can not be compared with the baseline results from Table 1 because different videos are used
in the clients.

From this table, two things are visible. First, the longer video gives better performance than the shorter
video, which is a logical result of seeing less samples. Second thing is that federated client 0 is boosted compared
to separate client 0, where client 1 loses 0.02. Whether this small drop is statistically significant is not explored,
but generally it is clear that federated learning has added value because of the performance increase of client 0,
and only a small performance reduction in client 1.

4.2.4 Summary on quantity skew

Experimental results with quantity skew proved to be interesting. A general trend among all object-detection
tasks is visible, where the separate performance is lower than the federated performance, showing the added
benefit of federated learning. In UNO, the federated performance was stable, regardless of the data distribution.
In VisDrone, the federated performance drops with the amount of data in the clients. The separate performance
of the clients is still lower than the federated performances, showing the added benefit of federated learning even
in situations where some clients have very small datasets. One effect that is visible however is that clients with
too little data samples are not able to obtain reliable batch normalisation statistics, creating a federated model
that is broken. Clients with enough data are able to obtain performance similar to the IID performance, meaning
that these models are not broken by clients that are not able to learn. In TNO-VOD, only a small performance
decrease for the client with a large dataset is visible, where the client with little data shows a big improvement.
All these results imply that federated object detection with FedBN aggregation is able to handle quantity skew.

4.3 Label skew
This section covers the results for UNO (Sec. 4.3.1) and VisDrone (Sec. 4.3.2) when the data contains label skew.

4.3.1 UNO

This subsection covers the results for object detection on the UNO cards when the data between the clients
contain label skew. The aim is to show the effect on the global performance when classes are missing in one
client. Other experiments used 1% of the UNO-Cards dataset to demonstrate FL capabilities, but this experiment
uses 5%, because otherwise too few samples per class are left in classes that are missing in one of the clients. The
class distribution per client is shown in Figure 5, where the training data of the first client does not contain class
2 and 3, and the second client does not have 9 and 10. The results for this experiment are shown in Table 5.

The results in Table 5 show that the federated model is capable of predicting the bounding boxes of all
classes, even if one of the clients was missing data. On average over all classes, the performance of the federated
approach is higher than the separate performances. The only exception is class 10, where the federated model
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Figure 5: Number of samples of training data for each client. One client lacks train data for classes 2 and 3, and
the other for classes 9 and 10.

Table 5: Performance of UNO with label skew. Separate mAP refers to local client performance on a subset of the
training data, and federated mAP reflects performance after federated training. The performance is documented
on classes with training data in one of the clients, classes with training data in both clients, and an average
performance on all classes.

Class IDs Notes Separated mAP@[.5:.95] Federated mAP@[.5:.95]
Client 0 Client 1

2 Class only in first client 0.00 0.80 0.80

3 Class only in first client 0.00 0.53 0.61

9 Class only in second client 0.78 0.00 0.79

10 Class only in second client 0.72 0.00 0.63

0-1, 4-8, 11-14 All common classes 0.73 0.63 0.79
0-14 All classes 0.63 0.50 0.77

performs worse than client 0. Inspecting the confusion matrix (not shown here) shows that client 0 in almost
one out of three predictions for class 10, it actually predicts class 3, explaining why client 0 performs better on
class 10 without using federated learning.

4.3.2 VisDrone

This subsection covers the results of label skew in VisDrone. Performance is expected to drop as the amount of
heterogeneity increases. This is similar to the results for VisDrone with quantity skew, where it became clear
that clients with too little data are not able to obtain reliable batch norm statistics. Additionally we expect the
separate performance to be lower than the federated performance In the label skew situation, this may be even
more prominent, since there is only one class per image, reducing the amount of information in the images. The
results are shown in Table 6.

The results show that for almost all settings, the federated models perform better than the separate models,
showing the added benefit of federated learning in when there is label skew. The performance of the individual
clients is documented in Appendix B, where this effect is also visible on a client level. Created skew with Dirich-
let(0.5) is the same as the baseline, and the federated performance when applying skew with Dirichlet(0.3) and

Table 6: Results for VisDrone with label skew. Separate mAP refers to local client performance on a subset of
the training data, and federated mAP reflects performance after federated training. The standard deviation is
obtained with the results of the four clients over one run.

Data Distribution Separated mAP@.5 Federated mAP@Q.5

11D 0.53 + 0.01 0.56 4 0.01
Dirichlet(0.5) 0.50 + 0.04 0.56 + 0.02
Dirichlet(0.3) 0.47 + 0.03 0.53 + 0.01

Dirichlet(0.1) 0.44 £+ 0.13 0.51 £ 0.04




Table 7: Performance of object detection on UNO cards with feature skew created with data augmentations.
Separate mAP refers to local client performance on a subset of the training data, and federated mAP reflects
performance after federated training.

Separated mAP@[.5:.95] Federated mAP@][.5:.95]
Client 0 Client 1

11D 0.50 0.50 0.64
Feature skew 0.36 0.35 0.54

Data distribution

Dirichlet(0.1) did not appear to drop in performance a lot. Generally, our hypothesis was that the performance
decreases when the data becomes more unbalanced. However, the drop is less than we expected. This could
either be that the setup indeed is very robust against label skew, or maybe more likely, the experiment did
not show the most extreme label skew. When there is extreme label skew in the conducted experiments, there
are is one or two clients that posses all data, where the other clients would almost not participate in federated
training due to the weighing factor of FedAvg (which is included in FedBN). To test this, it would be interesting
to conduct an experiment where there are more classes, and maybe also more clients, where each client has a
different distribution of these classes. Then, the skew is caused mainly by label imbalance, and is less overruled
by quantity skew.

4.3.3 Summary on label skew

Label skew experiments reveal that federated learning can effectively generalize across unbalanced class distri-
butions using two example object-detection task. In UNQO, the federated model is still able to predict classes
correctly, even though the classes were only present in one of the clients. For VisDrone, federated models gener-
ally outperformed separate models. Overall, the results confirm that federated learning remains effective when
there is label skew.

One interesting future direction would be to include experiments with more classes in VisDrone, because now
the problem may arguably come close to the quantity skew experiments where one or two clients have all data,
and the others do not participate much (which is a property of FedAvg, which is included in FedBN). This effect
would be less prominent when multiple clients would have different number of samples of may clients, where
each client contributes a similar amount to the global federated model.

4.4 Feature skew

This section covers the results of federated learning with feature skew between the client’s datasets on UNO
(Section 4.4.1) and VisDrone (Section 4.4.2).

4.4.1 UNO

Feature skew on the UNO dataset is obtained by using different augmentations on the private dataset of a client
(as was shown in Figure 3). The hypothesis is that the resulting federated performance on the skewed data is a
bit lower than the IID data, because it is expected that training is made more difficult. The results are shown
in Table 7.

From this table, we see that adding the augmentations makes training more difficult, because the feature
skew results are lower than the IID results. Nevertheless, the federated model outperforms the individual (client
0 and 1) models. Also, in the IID setting, the federated performance is better than the separate performance.
Therefore, it is safe to conclude that for UNO card detection, federated learning can account for feature skew,
and the performance is mainly affected by the training task being more difficult.



Table 8: Performance metrics for VisDrone of individual clients under noise-based feature skew. Separate mAP
refers to local client performance on a subset of the training data, and federated mAP reflects performance after
federated training.

Skew type Client index Separated mAP@.5 Federated mAPQ.5

11D Average 0.63 0.66
Client 0 0.64 0.64
Feature skew Client 1 0.58 0.62
Client 2 0.49 0.58
Client 3 0.41 0.53

Average 0.53 £+ 0.09 0.59 4+ 0.04

4.4.2 VisDrone

This subsection shows the results for noise-based feature skew on VisDrone (as was shown in Figure 4). Here the
hypothesis is similar to the UNO feature skew experiment. We expect training to be more difficult, resulting in
lower performance for federated feature skew than the IID results, because the noise will make it more difficult
to detect persons and vehicles. The results are shown in Table 8, where the separate results (without parameter
synchronisation) and federated results can be compared From this table it is visible that for all clients, the
federated performance is higher than (or equal to) the separate result, which is in line with our expectations.
Additionally, the separate performance drops with the amount of noise, but training federated seems to give
these clients a boost, even though the batch normalisation parameters are not shared. This is very interesting
and it is expected that the usage of FedBN makes sure that the clients with a lot of noise dont break the global
model. For future research, it would be interesting to add a comparison study of the effect of FedAvg versus
FedBN.

4.4.3 Summary on feature skew

Feature skew experiments on both UNO and VisDrone demonstrate that federated learning remains effective
even when clients have different features in their training data. In UNO, applying different augmentations per
client led to a drop in performance compared to the IID setting, showing that feature skew makes training more
difficult. Fortunately, the federated model still outperformed the separate models, proving that the different
augmentations do not break the global model, where they did arguably break the separately trained models.
Similarly, in VisDrone, feature skew caused a decline in separate model performance, especially for clients with
more noise. Here, the federated performance is again better than the separate models. We expect that this is
because of the FedBN being able to handle differences in local feature representations. These findings suggest
that while feature skew introduces challenges, federated learning can mitigate its impact and produce stronger
global models than separate training.

5. CONCLUSION

This study demonstrates federated learning for object detection in defense and security applications, particularly
under non-independent and identically distributed (non-IID) data distributions. By evaluating three represen-
tative tasks, namely UNO card detection (UNO), single-frame object detection (VisDrone), and small moving
object detection (TNO-VOD), the impact of quantity skew, label skew, and feature skew is analysed on the
federated performance.

Our results show that federated learning consistently outperforms separate training across all tasks and skew
types, and in many cases approaches the performance of IID training. While quantity skew had minimal impact
on simpler tasks like UNQO, it resulted in a performance drop in VisDrone and TNO-VOD, especially when clients
had insufficient data to establish reliable batch-normalization statistics. Label-skew experiments revealed that
the federated UNO model could generalize to unseen classes, and experiments on VisDrone also showed that
the federated model still learns all classes, even though the classes are non-1ID. Feature skew, particularly when
induced through augmentations or noise, led to divergent client models due to local batch normalization, but



the federated model still outperformed individual clients. The federated model in both UNO and VisDrone is
not broken by the feature skew, while individual clients perform a lot worse.

These results give interesting insights on the behaviour of multiple types of object-detection tasks across
various types of non-IID data using FedBN. Future work will explore more advanced aggregation strategies to
account for performance drops caused by non-IID data. Additionally, it would be interesting to explore the
range of behaviour further by running the experiments more often, to reliably estimate significance and try more
Dirichlet coefficients to analyse the pattern more precisely. The latter is especially interesting for label skew in
VisDrone, which was the experiment for which the most unexpected behaviour was present. For future work,
we plan to investigate the comparison of FedBN with FedAvg and other aggregation strategies, to explore the
behaviour of these methods on non-IID object detection even further.
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Table 9: Performance metrics for VisDrone of individual clients under different Dirichlet quantity skew settings.
Separate mAP refers to local client performance on a subset of the training data, and federated mAP reflects
performance after federated training.

Dirichlet «  Client index Number of images Separated mAP@.5 Federated mAP@.5

Client 0 4502 0.65 0.66
Client 1 1486 0.64 0.66
Dirichlet(0.5) Client 2 470 0.59 0.65
Client 3 12 0.03 0.08
Average 0.48 + 0.30 0.52 + 0.25
Client 0 5774 0.65 0.66
Client 1 625 0.61 0.65
Dirichlet(0.3) Client 2 39 0.06 0.25
Client 3 33 0.26 0.25
Average 0.39 + 0.28 0.45 + 0.20
Client 0 4180 0.65 0.67
Client 1 2284 0.64 0.67
Dirichlet(0.1) Client 2 3 0.02 0.06
Client 3 1 0.00 0.09
Average 0.33 + 0.37 0.37 + 0.30

APPENDIX A. QUANTITY SKEW VISDRONE

Table 9 shows results for VisDrone and quantity skew. Each individual client in each Dirichlet setting is doc-
umented individually to highlight the difference between separate training and federated training. From the
table, it becomes visible that for the separately trained clients, the performance drops when the amount of data
becomes less. This effect is also visible in the federated clients. However, the performance is always higher than
in the separate setting, implying that synchronising the weights is less affected by clients that do not have enough
data. The federate clients that have sufficient number of images in their training data seem uplifted towards the
IID baseline of 0.66, even though the clients individually were not able to achieve this performance when trained
separately.

APPENDIX B. LABEL SKEW VISDRONE

Table 10 shows results for VisDrone with label skew. Each individual client in each Dirichlet setting is documented
individually to highlight the difference between separate training and federated training. For all experiments
(except for client 1 in Dirichlet(0.1)), the separate performance of the individual clients is lower than the federated
performance, which is expected, where the separate performance seems to decrease with number of training
images.



Table 10: Performance metrics of individual clients for VisDrone under different Dirichlet label skew settings.
Separate mAP refers to local client performance on a subset of the training data, and federated mAP reflects
performance after federated training.

Dirichlet «

Client index Person samples Vehicle samples Separated mAP@.5 Federated mAP@.5

Client 0 410 1208 0.53 0.56
Client 1 410 1208 0.52 0.57
11D Client 2 410 1208 0.53 0.56
Client 3 410 1208 0.53 0.56
Average 0.53 £ 0.01 0.56 + 0.01
Client 0 361 193 0.51 0.55
Client 1 16 2851 0.50 0.53
Dirichlet(0.5) Client 2 33 869 0.44 0.59
Client 3 1231 869 0.55 0.57
Average 0.50 + 0.04 0.56 &+ 0.02
Client 0 394 48 0.48 0.53
Client 1 1214 4309 0.52 0.54
Dirichlet(0.3) Client 2 16 290 0.45 0.53
Client 3 16 193 0.44 0.53
Average 0.47 + 0.03 0.53 £ 0.01
Client 0 16 4637 0.59 0.51
Client 1 16 48 0.29 0.44
Dirichlet(0.1) Client 2 16 97 0.40 0.53
Client 3 1592 48 0.49 0.56
Average 0.44 £ 0.13 0.51 £ 0.04
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