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Abstract—The transition towards vehicle electrification
presents various challenges due to uncertainties in charging
behavior and battery aging. This study proposes a method to
generate an accurate charge profile with a battery Digital Twin
(DT). The method is adaptive, has fast prediction and has
low training cost. It is intended towards improving the charge
scheduling for fleet operators by providing predictions on grid
load and charging time. The method was tested with data from a
real case study where, for a charging session, it showed an error
of less than 2% for charge time and an improvement of 7% over
a standard charge profile.

Index Terms—Battery Digital Twin, Charge profile generation,
Charge time prediction, Battery aging

I. INTRODUCTION

Greenhouse Gas Emission (GGE) are known to cause a sig-
nificant negative impact on the environment and are one of the
major contributors to climate change [1] due to the prevalent
usage of Internal Combustion Engine (ICE) in most modern
vehicles [2]. In recent years, Battery Electric Vehicle (BEV)
have been identified as a potential mitigation technology for
this problem, as they have lower well-to-wheel GGE emissions
than ICEs [3]. However, the complete adoption of BEVs
still faces several challenges due to uncertainties in modeling
charging behavior and battery aging. These challenges are par-
ticularly relevant in commercial applications, such as delivery
companies and bus operators, which require large fleets of
BEVs which could benefit from optimal scheduling for cost
reduction.

A positive step towards achieving operational optimality for
a fleet of BEV is to improve charge scheduling algorithms.
Designing charging strategies has been previously studied in
literature such as [4]–[6]. These strategies take into considera-
tion grid constrain, charger constrain and battery degradation.
However, they don’t include the non-linear charging character-
istics of a battery. These strategies could benefit from accurate
prediction of charge profiles.

Several works analyze the non-linear behavior of a battery
with charge profile prediction and charge time estimation.
[7] develops a model-based approach to estimate the charge
time. [8] on the other hand develops a regression based
relation between State-of-Charge (SoC) increase and charge
time. While both methods have requirements for less training
data, these do not take into account the impact of temperature
and battery aging.

[9] gives a method to estimate remaining charge time and
generate the charge profile using a Neural Network model. [9]
takes into account historical charging accuracy and compares
it to real-time charging accuracy to improve its predictions.
However, the method lacks recency bias and does not take
into account battery aging. The method also doesn’t generate
a charging profile before the charging begins which would be
useful for scheduling the charging of a fleet in advance. It also
requires a large amount of data for the training of the models.

In this work, an adaptive DT is developed which is capable
of generating a charging profile for a given charging condition.
The method shows the following novelties:

• A self-calibrating DT that can capture the impact of
battery aging and other changes to the system

• A fast prediction method for generating charge profile
• A methodology for low training cost and low training

data requirement
The rest of the paper is divided as follows: Section II

discusses the architecture of a DT and how it is applied
to the battery charging use case. Section III describes the
charge profile prediction algorithm. Section IV gives the
implementation for a case study as well as the simulation
results. The paper closes with conclusions in Section V.

II. DIGITAL TWIN FRAMEWORK

Fig. 1 shows the four types of virtual models that can be
designed based on their interactions with a physical system:

• Digital Model: No interaction between system and model
• Digital Generator: Physical system follows the model
• Digital Shadow: Model follows physical system
• Digital Twin: Bi-directional exchange of data between

physical and virtual system
Due to the bi-directional interaction, a DT can ensure a

good state of synchronization between the virtual model and
physical system, while also guaranteeing high accuracy, real-
time performance, and scalability of the prediction algorithms.
Further, it can be used for process optimization, observation,
prediction and maintenance. For a DT of a battery in an
Electric Vehicle (EV), the DT uses sensor data to calibrate
itself while the Battery Management System (BMS) receives
feedback to adjust its operation and control.

Fig. 2 shows the architecture of a DT for the prediction
of charging profile for a fleet of BEVs (trucks). The physical
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Fig. 1. Types of virtual models.

object consists of a fleet operator and a fleet of individual
trucks. The objective of the fleet operator is to schedule
the charging of the individual trucks which requires accurate
prediction of charging time and the max load on the grid [4],
[5]. These can be calculated if the charging profile (charge
power vs charge time) for an individual truck is known.

The plant is the virtual model of the system within the
DT and consists of Parameters and States. Parameters are the
properties of a plant that change slowly while states change
rapidly. For the current parameter set, the plant can generate
a charging profile for a given charging condition requested by
the fleet operator. This is an example of the rapid change in
the state (charge profile) of the plant.

A change in parameters for the system occurs due to a
change in configuration, aging, or other mechanical, elec-
trical, or thermal effects. These are updated based on the
actual charging profile from a charging session. The parameter
estimation sub-module within the DT compares the actual
and predicted charging profiles and updates the parameter
set to minimize the error. The parameter update is done
periodically to continuously adapt the DT with the most recent
configuration.
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Fig. 2. Architecture of a generic DT.

III. CHARGE PROFILE PREDICTION

The objective of a charge profile prediction algorithm is
to accurately predict the electrical power during a charging
session based on conditions such as energy requirements,
ambient temperatures, etc. This can be used to accurately
compute the charging time and optimize the charging schedule
for a fleet of EVs.

Fig. 3 shows a power profile during a charging session. It
has three distinct segments shown as:
(a) Ramp
(b) Constant
(c) Decay

Ramp Decay

Constant

Fig. 3. Segmentation of battery charging power.

Each section can be modeled as a simplified equation such
that the overall quality of the charging profile can be captured.
The constant segment is defined as

P = Pc (1)

where P is the output power and Pc is the charging power
in the constant section. To completely model this segment the
duration of this segment is also needed. This is defined as tc.
The ramp is modeled as a linear equation as

P = mc · t+ Ps (2)

where Ps is the charging power at the beginning of charging,
t is time and mc is the slope of charge power during ramp.
The decay is modeled as an exponential equation as

P = Pc · ebc·t (3)

where bc is the exponential co-efficient during decay. Addi-
tionally, it is seen that there is a drop-off towards the end of
the charging session before the charge power reaches 0 kW.
This charging power at the end of charging is denoted by Pe.
Hence, the parameter Pc, Ps, Pe, mc, bc and tc are sufficient
to construct the complete charging profile and determine the
duration of the charging session as shown in Fig. 3.

The shape of these segments are related to battery chemistry
and charger control protocol and would change with a different
combination. In this work, the charging process includes a
Constant Power (CP) phase where the battery voltage rises to



a cut-off point, followed by a Constant Voltage (CV) phase
where the voltage is maintained until the current drops to
near-zero. These phases are captured by Constant and Decay
segments with the shapes representing CP and CV respectively.

A. Plant Model

The plant model should be able to compute the charge
profile parameter for a given start SoC (

¯
z), end SoC (z̄),

reference power request (Pr) and ambient temperature (Ta). A
function is defined as an n dimensional Lookup Table (LuT)
as

ỹ = lny (ũ, Ũu, Ỹy) (4)

which gives the normalized output ỹ for a normalized input
ũ. Additionally, Ũu is the gridded input to the LuT and Ỹy is
the gridded output. Here, y denotes the variable for which the
output is calculated such as Pc, Ps, Pe, etc., and u denotes
the input variables such as z̄, Pr, Ta etc.

The inputs and outputs are normalized such that they vary
between 0 and 1. This is done to enforce boundedness on
the data and avoid interpolation errors due to relative scaling.
A variable x can be normalized from its minimum (

¯
x) and

maximum (x̄) value as x̃ = (x−
¯
x)/(x̄−

¯
x).

The start and end SoCs are already bounded between 0 and
1. Hence, they are not required to be normalized further. The
reference power request varies between 0 and the maximum
power limit for the charger. The ambient temperature is
assumed to have minimum and maximum values of −20 ◦C
and 60 ◦C which can be normalized using those values.

Similarly, on the output side, Pc, Ps and Pe can be nor-
malized as Pr. However, it is seen that mc and bc are not
bounded and can vary between 0 and −∞. These variables can
be normalized using x̃ = x/(x + x̂) where x̂ is the expected
value of x. For mc and bc the expected values are taken as
0.1 and 0.01 respectively.

Similarly, tc is difficult to normalize as it is neither suf-
ficiently bounded nor has a clearly defined expected value.
Hence, instead of using a LuT, it is computed by an alternate
method using the energy throughput (Eth) of the battery
during the charging process. tc is calculated such that the
energy throughput of the reference and fitted charging curve
are equal. Eth can be calculated using LuT and normalized
with limits of 0 and the maximum battery capacity.

Hence, (4) is defined as a 4-D LuT function (n = 4) with
y ∈ {Pc, Ps, Pe,mc, bc, Eth} and u ∈ {

¯
z, z̄, Pr, Ta}.

B. Prediction

The input to the plant are:
¯
z, z̄, Pr and Ta. The output is

the excepted charge profile. The charge profile is a function of
the output variables: Pc, Ps, Pe, mc, bc and tc. The Algorithm
1 can be used to predict the charge profile.

C. Parameter Update

The parameters of the DT are the gridded output matrices
(Ỹy) for the different LuTs. These are incrementally updated
every time the battery is charged. In this way, the cost of

Algorithm 1 Charge profile prediction algorithm.
Require:

¯
z, z̄, Pr, Ta

1: Normalize inputs as ˜
¯
z, ˜̄z, P̃r, T̃a

2: Calculate P̃c using l4Pc
()

3: Calculate Ẽth using l4Eth
()

4: Calculate m̃c using l4mc
()

5: Calculate b̃c using l4bc()

6: Calculate P̃s using l4Ps
()

7: Calculate P̃e using l4Pe
()

8: Denormalize outputs as Pc, Eth, Ps, Pe, mc, bc
9: Calculate tc such that the fitted energy throughput is equal

to Eth

10: Generate charge profile from Pc, Ps, Pe, mc, bc, tc

parameter update is low as the model isn’t required to be
trained for the complete history of the battery operation but
only for the last step.

The gridded output matrices Ỹy for a output variable y is
updated as

Ỹy = Ỹy +∆ỹ · fy (5)

where ∆ỹ is the error between the measured and predicted
values of y and fy is the update factor. fy is calculated as
1 − r2u/(r

2
u + wu) where ru is the radial distance and wu is

the weighing factor. r2u is further calculated as
∑

(ũ− Ũu)
2.

Fig. 4 shows the relation between ru and fy , where fy is
1 at ru = 0 and asymptotically goes to 0 with increase in
ru. This formulation updates Ỹy at the neighborhood of the
charging condition (u) while the influence of update is smaller
the further one moves from u. The strength of the update is
determined by tuning wu. Hence, a wider range of the model
can be trained with less number of data.
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The Algorithm 2 can be used to update the parameters of
the charge profile generation DT.

Algorithm 2 Charge profile parameter estimation algorithm.
Require:

¯
z, z̄, Pr, Ta, Pc, Ps, Pe, mc, bc and Eth

1: Normalize inputs as ˜
¯
z, ˜̄z, P̃r, T̃a, P̃c, P̃s, P̃e, m̃c, b̃c, Ẽth

2: Update YPc
using ∆P̃c

3: Update YEth
using ∆Ẽth

4: Update Ymc
using ∆m̃c

5: Update Ybc using ∆b̃c
6: Update YPs using ∆P̃s

7: Update YPe using ∆P̃e

IV. RESULTS AND DISCUSSION

The method is applied to the data collected for 7 months
from a medium-duty logistic truck with an LFP battery pack.
Fig. 5 shows the variation of start and end SoC during
this period. It is seen that the battery is always changed
above 80% (except for a data point on July 27), while the
start SoC has more variation. Fig. 6 shows the variation of
ambient temperature during this period between 9 ◦C and
27 ◦C. A higher variation in data is better for both training and
validation as the method can be tested on differing conditions.
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Fig. 5. Battery SoC during charging sessions.

For every charging session, the fleet operator is assumed
to make a charge profile request with the corresponding
charging conditions. The algorithm is used to predict the
output variables and the charge time. The output variables are
then compared to the actual data and the plant parameters
are updated. This step is successively repeated for the entire
dataset.

The objective of the charge profile prediction algorithm
is to reduce the error for the charge time prediction. An
additional objective is to prioritize the overestimation of charge
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Fig. 6. Ambient temperature during charging sessions.

time as opposed to underestimation. It is easier to maintain a
schedule if the charge time is overestimated as that scenario
would require the vehicle to stay idle at the charging depot
for an additional duration. However, if the charge time is
underestimation the vehicle will certainly miss the start of its
next assignment.

Fig. 7 shows the reference and predicted charging time
while Fig. 8 shows the relative error for the same. It is seen
that the prediction is poor at the beginning and improves with
successive training. The error for the moving average is less
than 2% for the last sample. Three outliers can be seen at July
27, Sept 10 and Nov 15 which have significant deviation from
the moving average line. The data on July 27 is an outlier
for the SoC condition while Sept 10 and Nov 15 have the
highest and lowest ambient temperatures respectively. Hence,
it is seen that the algorithm is limited in predicting the charge
time at the limits of input conditions.

The poor predictions for these conditions are also due to
the frequency of the training data which is lower than the
availability from the field. During the real-time operation of
the vehicle, the DT will receive data from at least 1 charging
session per day to update the plant parameters. However for
the results shown in Fig. 8, only 2 charging sessions per week
are available. The training for the method is less abrupt with
high-frequency data as the chances of encountering a sudden
jump to a new charging condition are reduced.

The method also attempts to fulfill its additional objective by
tuning the plant parameters to overestimate the charge time.
This is seen in Fig. 9 where the initialization and training
factor is selected to make the prediction error positive for ma-
jority of cases. This objective is applied to individual charging
segments for robustness. However, the current implementation
can only fulfill this criterion under limited circumstances and
future implementations must satisfy this condition explicitly.

Fig. 10 shows the correlation between the errors in the
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Fig. 8. Error in charging time during charging sessions.

predicted output variables and charge time. It is seen that
the energy throughput has the highest correlation followed
by the coefficient of decay. Hence, these two variables have
the largest contribution to the charge time prediction error.
Additionally, it can be seen from the data that the slope for
the ramp segment remains constant for all data points. Hence,
it has a low correlation to charge time prediction error. This
is likely due to the charger control which ramps up the charge
power at the same rate irrespective of the battery behaviour.

The purpose of the development of the charge profile
prediction DT is to improve the charge scheduling operation
for a fleet of BEVs. The goal is to enable a fleet operator to
schedule the charging of individual vehicles in a fleet such
that their operational deadlines are met. Commonly, a fleet
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operator uses the Standard charging profile from Fig. 11 to
make the schedule while the actual charge profile is closer to
the Predicted.

The key challenge faced by a fleet operator while using the
Standard profile is the underestimation of the charge time. To
compensate for this the fleet operators keep an arbitrarily large
buffer between the end of charging and the start of the next
vehicle assignment. Hence, an accurate prediction of charge
time helps the fleet operator reduce this overhead and plan the
fleet charging more efficiently.

An improvement by the Predicted profile over the Standard
profile is shown in Fig. 12. Here, we see that the charge time
for the Predicted profile is similar in accuracy to the Standard
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profile at the beginning but continuously improves with train-
ing. The moving average converges to an improvement of 5%
with the highest achieved improvement of 7%.
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V. CONCLUSION

In this study, a method for charge profile generation was
developed for a BEV which can be implemented in a DT
framework. The method is self-calibrating and takes into
account the long-term changes to the behavior of the battery
such as aging. It also has real-time prediction capabilities with
low training costs due to an incremental update strategy. The
method is aimed at improving the fleet scheduling for fleet
operators.

The method is applied to a medium-duty logistic truck and
the accuracy of prediction for charge time is assessed. It was
found that the error has a decreasing trend with successive
training. For the last sample, an error of less than 2% was
found for charge time. The method also shows an improvement
of up to 7% compared to a Standard profile used for charge
planning by fleet operators.

Future work will extend this method to an in-field im-
plementation with bi-directional communication with a fleet
operator and a fleet of trucks. The prediction method will
be improved by including additional input variables such
as battery temperature and objectives such as overestimation
of charge time. Additionally, advanced machining learning
algorithms and AI techniques will be investigated. Lastly, other
types of battery chemistry and charger combinations will be
investigated to determine the adaptability of this method to
different scenarios.
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