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A B S T R A C T

Non-destructive test (NDT) methods provide an indirect assessment of the compressive strength of in-situ con
crete structures. While traditional static models effectively capture the behaviour of small-scale localised data
sets, their accuracy diminishes when applied to larger, aggregated datasets, where increased variability in NDT 
measurements introduces greater uncertainty in predicting concrete compressive strength. This paper presents 
three exhaustive, largest-to-date NDT databases on the ultrasonic pulse velocity (UPV), rebound hammer (RH), 
and SonReb methods, comprising 16,531 test results from 115 studies. First, existing empirical models are 
evaluated against global dataset trends. New relationships are fitted to reflect the global behaviour of each NDT 
method, highlighting their innate limitations in capturing large-scale variability. A comprehensive three-phase 
machine learning (ML) program is then introduced, studying the effects of incomplete features with varying 
levels of missing data on model performance. Seven diverse ML models are included in Phase 1, while Phase 2 
assesses different imputation strategies. Phase 3 integrates the top-performers with a Tree-Structured Parzen 
estimator (TPE) optimisation algorithm to refine hyperparameters and maximise performance. Across all phases, 
CatBoost regression emerged as the most robust predictive model due to the high proportion of categorical 
variables included within the databases. The TPE-CatBoost models achieved final R2 values of 0.928, 0.896, and 
0.947 for UPV, RH, and SonReb, respectively. Finally, a Django-based web application was deployed on a cloud 
server (https://recreate-ndt.onrender.com/), allowing practitioners to generate real-time compressive strength 
predictions for new NDT results. These novel datasets and ML tools can power future innovation through more 
advanced data-driven modelling.

1. Introduction

Construction and demolition activities contribute 11 % of global 
energy-related CO2 emissions, while the European building sector is 
responsible for 36 % of their solid waste generation [1]. In the late 
1990s, demolition activities in Britain produced approximately 30 
million tonnes of industrial waste, with only 2 million tonnes of con
struction materials reclaimed through reuse or recycling [2]. As the 
deadlines for achieving CO2 emission targets approach, alternative 
methodologies that improve material circularity and extend the lifespan 
of structural components are urgently needed [3]. The effective struc
tural reuse of existing concrete elements is a promising option for sub
stantially reducing emissions and environmental impacts [4–6]. For 

example, Küpfer et al. [6] conducted a systematic review identifying 77 
completed projects involving the structural reuse of precast and 
cast-in-place concrete elements across Europe and the USA between 
1967 and 2022.

To ensure that reclaimed elements are suitable for additional service 
lives, their quality and properties must be thoroughly assessed and 
tested. Non-destructive test (NDT) methods have been employed for 
decades to evaluate the quality and properties of structural materials 
[7–10]. Techniques for non-destructive estimation of the concrete 
compressive strength include ultrasonic methods, impact hammer, 
penetration testing, radiography, and acoustic technologies [11–14]. A 
tremendous amount of research has been devoted to the non-destructive 
study of concrete compressive strength at various life-cycle stages, from 
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less than one day to structures over 80 years old [15,16]. Among these 
methods, the ultrasonic pulse velocity (UPV) and rebound hammer (RH) 
techniques have been most widely adopted within academic and in
dustry communities. More recently, the combined UPV and RH 
approach (SonReb) has attracted significant attention, showing 
improved predictive capability compared to other independent methods 
[17–19]. Despite their broad use, each method indirectly estimates 
strength by relying on the establishment of univariate or multivariate 
correlations that require additional modelling [11,20,21].

The research presented herein is part of the EU Horizon 2020-funded 
ReCreate project, exploring the complete structural reuse of precast 
concrete elements in new building constructions, including the assess
ment of material properties and quality prior to reconstruction. This 
study comprises several progressive phases. Initially, three databases are 
established, each representing, to the best of the authors’ knowledge, 
the largest aggregation of experimental data on UPV, RH, and SonReb 
methods. From a total of 115 published studies, 16,531 test results are 
compiled. Existing empirical models from the literature are then 
compared against the global performance of each NDT. Subsequently, 
new models are developed for the conventional typologies (linear, 
polynomial, power, and exponential) based on the final empirical dis
tributions. To further advance predictive performance, several machine 
learning (ML) models are competitively trained and tested to determine 
the optimal methodology for each NDT. Two modelling phases are un
dertaken, implementing different feature lists and imputation methods 
based on the volume of missing data. The most effective predictor for 
each NDT is then selected, and a rigorous Tree-Structured Parzen Esti
mator (TPE) optimisation algorithm is integrated into the training pro
cess to enhance performance further. Finally, a web-based graphical 
user interface (GUI) has been developed, which runs the optimised ML 
models in the backend, thereby providing engineers with a practical and 
reliable tool for estimating concrete compressive strength from on-site 
or laboratory NDT results.

1.1. Ultrasonic pulse velocity

The ultrasonic pulse velocity (UPV) method is widely used to assess 
the properties, homogeneity, structural health, and the presence of de
fects in concrete. It measures the velocity of an ultrasonic wave trans
mitted between two piezo transducers at a known distance. Because 
wave velocity depends on density and elastic properties, it can be 
correlated to compressive strength and material quality [22,23]. An 
electrical pulse induces vibrations in the concrete at its resonance fre
quency, where a receiving transducer records travel time, and velocity is 
calculated from the known distance [16]. Strong acoustic coupling be
tween the transducer and concrete surface via grease or petroleum jelly 
is required for accurate measurements [24]. Fig. 1 schematically 

illustrates a typical UPV apparatus in a direct arrangement. For longi
tudinal (P-wave) propagation in elastic concrete: 

Vp =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Ec(1 − νc)

ρc(1 + νc)(1 − 2νc)

√

(1) 

Where Ec is the concrete elastic modulus, νc is the Poisson ratio, and ρc is 
the concrete density. Factors such as moisture content, mixture details, 
and embedded reinforcing steel also influence Vp, where correction 
factors of 0.9 and 0.8 have been proposed for reinforcing steel perpen
dicular and parallel to the wave path, respectively [16]. UPV can 
monitor cracking and degradation; however, due to concrete heteroge
neity and variable pore structure, correlations with compressive 
strength can be inconsistent in situ [25,26]. UPV tests may be direct, 
semi-direct, or indirect, depending on the relative placement of the 
transducers. Direct transmission (Fig. 1) yields the most reliable strength 
correlation, but is often less practical for in-situ assessments due to 
accessibility challenges, where semi-direct or indirect arrangements are 
adopted. Numerous standards, such as EN 12504-4 [27], ASTM C597
[28], and BS 1881-203 [29], delineate the procedural requirements, 
limitations, and interpretations of UPV tests.

1.2. Rebound hammer

The Schmidt rebound hammer (RH) relates surface rebound hard
ness to the compressive strength, through a spring-loaded steel mass 
impacting the concrete surface (Fig. 2). The rebound number (RN) 
represents the kinetic energy and distance travelled by the rebounding 
mass, expressed as a percentage of the initial spring energy [30,31]. 
Velocity is measured before and after impact, and is affected by gravity 
and the inclination of the hammer [32]. Horizontal applications are 
therefore preferred (Fig. 2), while vertical readings must be recalibrated 
to horizontal benchmarks. Since RN indicates surface hardness, local 
variations in the concrete, such as coarse aggregate beneath the plunger 
or cracks, can cause over- or under-estimations of strength, respectively. 
Moreover, moisture content, surface texture, concrete maturity, stress 
state, degradation, mix design and aggregate properties all further in
fluence RH accuracy [30,33,34]. The standards ASTM C805 [35] and EN 
12504-2 [36] recommend a minimum of nine measurements per test 
location to establish a reliable statistical distribution, using the median 
value. If more than 20 % of readings deviate by more than 30 % from the 
median, the entire set should be discarded and repeated [36]. EN 
12504-2 [36] further requires rigid support of concrete elements to 
eliminate displacement upon impact during testing.

Fig. 1. Schematic of a typical UPV apparatus and test arrangement.
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1.3. SonReb

The SonReb method combines UPV and RH tests at the same location 
to mitigate individual limitations and improve strength estimations. For 
example, increasing relative humidity reduces RN while inversely 
raising Vp [18]. Furthermore, UPV probes internal properties, while RH 
characterises surface hardness, providing a more holistic understanding 
of the concrete member’s condition when used in combination. Since the 
1970s, SonReb has generally outperformed the standalone methods, 
though some studies report only marginal gains [18,19,37–42]. 
Carbonation in older existing structures increases elastic modulus and 
density, slightly increasing the ultrasonic velocity (Eq. (1)), while 
markedly increasing RN, potentially biasing strength estimates [32,41].

Multivariate SonReb relationships, fc = f
(
Vp, RN

)
, are commonly 

presented as 3D surfaces or nomograms, and calibrated by fitting iso- 
strength curves to strength-stratified datasets at regular intervals [18]. 
Breysse [18] and Cristofaro et al. [43] synthesised 59 and 17 SonReb 
models, respectively, from the literature, proposing strength-UPV-RH 
curves calibrated to local or aggregated datasets. The most common 
functional forms include double power and bilinear models, although 
double exponential and higher-order polynomials are also used. 
Although the increased complexity of SonReb appears to improve pre
dictive ability in most local calibration cases, the additional testing time 
and cost may not always justify its use.

1.4. Destructive testing

Destructive testing (DT) on cast or drilled specimens remains the 
standard method for verifying the compressive strength of concrete mix 
designs. Compression tests performed on poured cylinders or cubes (for 
new elements) and drilled cylinders (for existing elements) provide 
direct measurements of concrete compressive strength that can be 
correlated with NDT results [7,18]. Test outcomes depend heavily on 
specimen geometry, compaction quality, curing, aggregate characteris
tics, age, homogeneity, and air-entrainment [8,44]. To standardise DT 
results across different geometries, normalisation methods are required. 
EN 1992-1-1 [45] defines concrete strength using a standard reference 
cylinder geometry of 150 × 300 mm. Reineck et al. [46] propose a 
two-step normalisation procedure: first, specimens are standardised to a 
reference geometry (150 × 150× 150 mm for cubes and 150× 300 mm 
for cylinders) using conversion factors [46]. These conversion factors 
are also adopted in the German code DIN 1045-1 [47], fib Bulletin 12 
[48], and ASCE-ACI Committee 445 [49] and are therefore considered 
internationally recognised [46]. Second, reference cubes are converted 
to cylinders using a bilinear approximation for normal- and 
high-strength concrete, as given in Eq. (2) [46]: 

fc,cyl =

{
0.83⋅fc,cu150, if fc,cyl ≤ 54 MPa

1.0⋅fc,cu150 − 11.1, if fc,cyl > 54 MPa (2) 

Drilling effects also impact the compressive strength of in-situ core 

samples [50]. Drilled cores often exhibit cut aggregate and 
micro-cracking, leading to lower compressive strength than 
laboratory-cast or on-site cylinders [50]. This variability is not explicitly 
addressed in the normalisation procedure and may contribute to resid
ual variance observed among experimental results.

2. Experimental databases

Extensive databases of experimental test results for the non- 
destructive evaluation of the compressive strength of concrete speci
mens have been compiled for the UPV, RH, and SonReb methods. A total 
of 16,531 unique sets of NDT-compression strength results were gath
ered from 115 publications, comprising 6103 UPV, 10,428 RH, and 3299 
SonReb results [7–10], [13–17], [19], [22], [23], [30–34], [38–41], 
[43], [51–66], [67-82], [83-98], [99-114], [115-130], [131-142]. The 
literature sources ‘Ramboll Finland OY (2023)’ and ‘Matthews et al. 
(2025)’ are an unpublished industry report and internal ReCreate testing 
on in-situ precast concrete elements. For brevity, the original experi
mental tests performed as part of the ReCreate project are not described 
in detail here. The UPV database includes 20 input variables, while the 
RH database includes 18, and the SonReb database contains 25. These 
variables encompass material age, location, composition, geometry, 
NDT parameters and adopted procedures. The response variable of each 
database is the compressive strength determined through destructive 
testing of cubic, cylindrical, or drilled core specimens, normalised 
through the procedure described in Section 1.4. Each database consists 
of approximately equal proportions of numerical and categorical vari
ables. Fig. 3 visualises the database structures and shared characteristics 
between each NDT.

Article discovery was achieved through a programmatic API-based 
web-scraping algorithm of leading scholarly databases, including Goo
gle Scholar, Scopus, CrossRef, and a custom ResearchGate scraper. 
Keyword-based query limits were set to the first 200 successful matches 
for Google Scholar and Scopus, 100 for CrossRef, and 150 for 
ResearchGate. After deduplication, over 250 relevant article metadata 
sets were exported for both UPV and RH. Following a screening process 
based on the exclusion criteria mentioned below, data were collected 
manually for each study to ensure relevance, correctness, and fidelity. A 
total of 1328 UPV tests, 3042 RH tests, and 544 SonReb tests were 
performed on in-situ structures, with the remaining number conducted 
on laboratory-cast specimens. Material ages range from structures built 
in the 1930s to laboratory specimens tested one day after casting. Tests 
conducted on concrete less than one day old were excluded. An open- 
source computer vision-assisted software was used to extract the nu
merical data from plots to high precision for publications that reported 
their results visually. Since the drilling effect is not explicitly accounted 
for in the normalisation approach, the input features “NDT Specimen 
Type” and “Compression Specimen” are used to qualitatively differen
tiate between poured or drilled cylinders, enabling the machine learning 
models developed in later sections to learn underlying patterns 

Fig. 2. Rebound hammer device (left) and application on a precast concrete element.
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associated with core extraction effects. Fig. 4 summarises the distribu
tions of UPV and RH test counts (individual test records captured within 
the databases) by year and country. UPV and RH show a clear absolute 
increase in the number of tests performed over the past five decades, 
likely due to the growing need for assessment of existing structures and 
reliable in-situ strength estimations. While other NDT modalities may 
have grown as well, Fig. 4 reports absolute counts rather than cross- 
modality shares, which is considered outside of the scope of this paper.

Data filtering criteria were systematically applied throughout the 
acquisition phase [143]. The primary objective of the raw databases was 
to gather the maximum amount of experimental data, irrespective of its 
potential impact on model performance. In this unprocessed state, the 
databases serve as a comprehensive representation of the overall 

predictive capacity of each NDT method for estimating the concrete 
compressive strength, considered herein as the ‘global’ performance. 
During data collection, all observations were determined to be statisti
cally independent, with each entry corresponding to a distinct pairing of 
an NDT measurement and compression strength value. Tests presenting 
evidence of significant corrosion, deterioration, fire damage, or other 
physical damage were omitted from the databases, as it is assumed that 
such elements will undergo substantial rehabilitation or will be dis
regarded from a reuse perspective. For UPV measurements, only 
compression P-waves were considered, while shear (S-waves) and Ray
leigh (R-waves) were excluded. Other exclusions include unique con
crete materials, admixtures, superplasticisers, and aggregates, which 
may influence compressive strength in niche ways. Table 1 summarises 

Fig. 3. Database structure and variables recorded for each NDT.

Fig. 4. Annual and geographical test counts for UPV and RH within the compiled databases. “Test count” denotes the number of individual test records extracted 
from the literature.
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the statistical domains of the normalised compression strength and key 
NDT results for each database. The complete open-source databases can 
be accessed at https://doi.org/10.5281/zenodo.14921019. The sup
plementary documentation in the repository provides an account of all 
assumptions, nomenclature, and abbreviations applied throughout the 
databases.

Fig. 5 illustrates the correlation between ultrasonic velocity and RN 
measurements with normalised compressive strength alongside density 
distributions and marginal histograms. No data filtering or outlier 
removal is applied at this stage, ensuring that the global variability and 
sensitivity of each technique are fully represented. When simplified to 
univariate relationships, neither NDT method yields a reliable estima
tion of compressive strength. The UPV distribution encompasses tests 
conducted across all transmission modes – direct, semi-direct, and in
direct – which increases the variance, particularly at lower velocities. 
The rebound hammer is more heavily influenced by the specific device 
and orientation (horizontal or vertical) applied during testing. For 
higher-strength concretes, devices with larger nominal kinetic energies 
provide more reliable results, as demonstrated by Chen et al. [128].

Furthermore, the large cluster of high RN results, which deviates 
from the global trends in Fig. 5b, was predominantly produced by one 
specific device with a 4.5 J nominal kinetic energy, applied on high- 
strength concrete in Ref. [128]. It is evident that a linear approxima
tion does not adequately capture the global ability of any individual 
NDT technique. However, on a local scale, linear models often perform 
relatively well on small subsets of data [13,64,66,144]. The interaction 

between UPV and RH measurements within the SonReb database is 
depicted in Fig. 6. In general, a proportional increase among all three 

Table 1 
Statistical domains of key features and response variables for each database.

Variable UPV RH SonReb

Vp (m/s) fc,cyl (MPa) RN fc,cyl (MPa) Vp (m/s) RN fc,cyl (MPa)

n 6103 6103 10428 10428 3299 3299 3299
μ 4198 27.78 38.56 42.17 4171 32.97 28.86
σ 637.8 15.43 10.90 23.65 631.6 9.136 14.58
Min 981.2 0.840 7.955 1.343 1510 7.955 1.343
25 % 3880 17.37 30.70 22.71 3840 26.08 18.57
50 % 4300 25.09 38.20 37.08 4272 32.00 26.68
75 % 4638 34.11 45.90 59.15 4605 38.97 35.08
Max 5779 109.2 79.30 128.1 5660 63.50 109.2

Note: n is the sample size, μ is the mean, and σ is the standard deviation.

Fig. 5. Density distributions of the UPV (a); Rebound Hammer (b) databases along with the marginal distributions of each variable. The colour gradient represents 
data density.

Fig. 6. Multivariate relationship between velocity, RN, and strength (SonReb).
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variables is observed. However, a significant amount of uncertainty will 
remain in an empirically fitted multivariate model unless the strength 
iso-curves are calibrated to a very fine resolution.

3. Empirical modelling

3.1. Existing models

A substantial body of research has been conducted within the sci
entific community to assess the capability of UPV, RH, and SonReb 
techniques in estimating the concrete compressive strength and the 
derivation of empirical laws to capture these relations. Breysse [18] 
collated 89 published UPV models, 70 RH models, and 59 SonReb 
models through an extensive review of the literature. More recently, 
Debroy and Sil [145] performed a comprehensive review of 102 models, 
proposing their own formulations after evaluating the global uncer
tainty associated with each technique.

When fitted to localised datasets derived from individual structures, 
small groups of structures, or controlled laboratory experiments, many 
empirical models exhibit exceptionally high performance, frequently 
achieving correlation coefficients (R2) exceeding 0.90 [71,146–152]. 
However, as datasets increase in size, the accuracy of these locally 
calibrated models invariably declines. Furthermore, research proposing 
new empirical models does not converge on a single optimal typology, 
accentuating the variability in NDT performance at the local scale. The 
selection of model typology typically includes exponential, power, 
polynomial (second order), and linear functions, with additional 

adaptations for multivariate approaches in SonReb-based models. EN 
13791 [144] advocates a locally calibrated linear method for estimating 
the in-situ concrete compressive strength by integrating NDT measure
ments with destructive core tests, generally requiring a minimum of 
eight core-NDT couples per test region. From this perspective, further 
research exploring local calibration becomes inherently limited, as 
newly developed models are site- or program-specific, preventing their 
applicability to other locations and consequently limiting their contri
bution to the broader scientific understanding of NDT-based strength 
estimation. Conversely, Breysse [18] demonstrated that local calibra
tions consistently outperform global (collective) calibrations for both 
UPV and RH due to the substantial variability between datasets.

Since the databases compiled as part of this research are, to the best 
of the author’s knowledge, the most extensive of their kind currently 
available, it is assumed that each database provides a representative 
measure of the ‘global’ ability of each NDT to explain the compressive 
strength. The objective of the present study is, therefore, to evaluate the 
predictive capability of each NDT on a global scale through various 
modelling modalities of increasing complexity. As a preliminary phase 
to the machine learning discussed in Section 4, a selection of existing 
empirical models is extracted from the literature and benchmarked 
against the global performance of each NDT technique. Twelve models 
per method are selected and summarised in Tables A1 to A3 in Appendix 
A, derived from Refs. [9,11,20,21,31–33,61,71,84,105,126], and 
[146–155], along with their corresponding local and global perfor
mances. Erroneous data points exhibiting excessive deviations from the 
global trend were removed as outliers, resulting in the cleaned 

Fig. 7. Performance of existing empirical models for UPV and RH relative to the global datasets.
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distributions given in Fig. 7. The final cleaned databases consisted of 
5680 test results for UPV, 9824 for RH, and 2980 for SonReb.

Fig. 7 presents the selected models against their respective databases. 
To ensure appropriate correlation, only UPV tests conducted using the 
direct transmission method and RH tests performed in the horizontal 
orientation are considered in this phase. Most manufacturers of Schmidt 
hammers provide proprietary conversion factors to adjust vertical 
measurements to horizontal values. However, many of the reviewed 
articles that employed vertical testing did not specify whether a con
version was applied to the reported results. Therefore, in the absence of 
explicit conversion details, it is assumed that no adjustments were made 
in these cases.

There is considerable diversity across different model typologies in 
their effectiveness at capturing the global behaviour of the UPV and RH 
tests. Due to the substantial variance within each distribution, the global 
predictive performance is significantly lower than the originally re
ported local fits. Several models also yielded negative R2 results, shown 
in Appendix A. A negative correlation coefficient indicates that the 
model predictions are less accurate than a simple mean-based estimation 
of the dependent variable. If the sum of the squared residuals exceeds 
the total sum of squares, then the model would perform better by simply 
predicting the mean value, y, for each data point, signifying that, despite 
following the correct trajectory, it fails to capture the variance in the 
dataset adequately.

Among the NDT methods, UPV proves to be the most challenging to 
model accurately, with a maximum R2 of 0.421, as reported by Ali- 
Benyahia et al. [126]. For RH, the highest achieved R2 was 0.713, ob
tained by the second-order polynomial function proposed by Logothetis 
[149]. Despite slightly lower correlation coefficients, SonReb models 
demonstrate the most consistency, with a maximum R2 of 0.631 by 
Fawzi et al. [71] and a minimum of 0.208 from Nikhil et al. [84]. It is 
important to note that many of these models were likely fitted to con
crete specimens of varying geometries without normalisation to a 
standard reference shape, further impeding their adaptability to larger 
datasets.

3.2. Proposed models

New empirical models are proposed based on the global distribution 
of each NDT method, covering the most commonly used mathematical 
typologies. Eqs. (3)–(6) define the general forms of the exponential, 
power, polynomial, and linear models, respectively: 

y= a⋅e(b ⋅ x) (3) 

y= a⋅xb (4) 

y= a⋅x2 + b⋅x + c (5) 

y= a⋅x + b (6) 

Model coefficients are derived through a non-linear least-squares 
optimisation, implementing the Levenberg-Marquardt (LM) algorithm. 
An additional combined power-exponential model is fitted against the 
SonReb dataset. Table 2 presents the newly proposed models for each 
NDT method, along with their corresponding performance metrics. 
Fig. 8 presents the nomogram iso-curves for the SonReb power model 
given by Eq. (16).

Among the fitted functions, exponential provides the best fit for the 
UPV and, less convincingly, SonReb datasets, where the double-power 
and combined power-exponential functions demonstrate equivalent 
performance. The power and second-order polynomial functions show 
comparable performance for the RH. Although the RH models yield the 
highest correlation coefficients, the mean absolute error (MAE) and 
root-mean-squared error (RMSE) are similarly the highest, reflecting the 
considerable variance in the dataset. SonReb achieves the most balanced 
trade-off between reduced variance and absolute error, with an optimal 

MAE of 6.05 MPa. The top-performing model for each NDT in Table 2
also surpasses the best local models presented in Tables A1 to A3
(Appendix A), although the improvement margins are minor at only 2.8 
% for UPV and 2.9 % for RH.

Despite the abundance of locally calibrated empirical models, 
numbering in the hundreds [18,145], these global comparisons 
demonstrate that no empirical models reliably capture the true vari
ability of UPV, RH, or SonReb measurements when applied beyond their 
original, small-scale datasets. Even when refitted to the new aggregated 
databases, static univariate and bivariate equations exhibit minor 
improvement, large predictive errors, and fail to serve as adaptive 
baselines. Therefore, these new global empirical fits are established as 

Table 2 
Proposed empirical models for each NDT based on global fitting to the cylinder 
compressive strength.

NDT Equation Eq. R2 RMSE 
(MPa)

MAE 
(MPa)

UPV fc
(
Vp

)
= 0.9231⋅e(0.7804Vp) (7) 0.427 12.0 9.13

fc
(
Vp

)
= 0.1887⋅V3.4009

p (8) 0.417 12.1 9.22

fc
(
Vp

)
= 5.8184⋅V2

p − 29.1268⋅ 
Vp + 44.6680

(9) 0.415 12.1 9.24

fc
(
Vp

)
= 16.4909⋅Vp − 42.1610 (10) 0.366 12.6 9.56

RH fc(RN) = 2.1610⋅e(0.0459RN+1.1575) (11) 0.690 13.1 10.1
fc(RN) = 0.0326⋅RN1.9584 (12) 0.708 12.8 9.79
fc(RN) = 0.0287⋅RN2 − 0.0984⋅ 
RN+ 2.5969

(13) 0.708 12.8 9.77

fc(RN) = 2.0441⋅RN − 34.7406 (14) 0.688 13.2 10.4

SonReb fc
(
Vp,RN

)
=

1.3770⋅e(0.4101Vp+0.0292RN− 0.2423)

(15) 0.683 8.06 6.05

fc
(
Vp,RN

)
=

0.0372⋅V1.7766
p ⋅RN1.1495

(16) 0.682 8.07 6.11

fc
(
Vp,RN

)
=

0.0357⋅RN1.1439⋅e(0.6672Vp)

(17) 0.683 8.07 6.11

fc
(
Vp,RN

)
= 3.6069⋅V2

p + 0.0188⋅ 
RN2 − 18.5577⋅Vp − 0.3917⋅RN+

31.9895

(18) 0.680 8.10 6.03

fc
(
Vp,RN

)
= 10.5888⋅Vp +

0.9383⋅RN − 47.6760
(19) 0.644 8.54 6.43

Note Vp is in km/s.

Fig. 8. Iso-curves for SonReb power model Eq. (16).
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rigorous null models, against which more advanced ML approaches 
must demonstrate clear performance gains.

4. Machine learning

To further extend the modelling capabilities of the NDTs, three ma
chine learning phases are introduced to examine the impact of 
increasing complexity on the predictive performance. The primary 
distinction between Phases 1 and 2 lies in the extent of feature reporting 
within the datasets. Variables such as transducer diameter and fre
quency (for UPV), maximum aggregate size, water/cement (W/C) ratio, 
and target strength exhibit significant reporting gaps. For instance, 
within the RH database, the W/C has a 74.1 % non-reporting rate, 
largely due to the substantial contribution by Ref. [33]. To impute 
incomplete features of this scale would be impractical.

Accordingly, Phase 1 involves machine learning using a refined list of 
‘core features’, selecting only those with complete or near-complete 
reporting, where logical imputation can be reasonably justified. Phase 
2 then expands the feature set to include all available features within the 
databases, leaving heavily incomplete features unaltered, and applies 
machine learning models that can handle missing values. This compar
ison aims to identify whether incorporating additional features, even 
with minimal reporting, meaningfully impacts the predictive power of 
the models.

Seven models from different algorithmic typologies are trained and 
tested in Phase 1 to determine the most appropriate model for each NDT. 
Likewise, Phase 2 includes training and testing seven models for the 
same purposes. Phase 3 then integrates an advanced optimisation al
gorithm into the strongest-performing model from each NDT, further 
refining predictive performance. The final optimised models are then 
deployed within a Django-based web GUI application. Throughout all 
phases, the response variable is the normalised compressive strength, 
calibrated to a reference cylinder of 150 × 300 mm (fc,cyl) using the 
procedure described in Section 1.4.

4.1. Phase 1: core features

4.1.1. Exploratory data analysis
Due to insufficient reporting, several features were excluded from 

this phase, including transducer diameter and frequency (for UPV and 
SonReb), maximum aggregate size, W/C ratio, concrete strength class, 
and target strength. Features with minimal missing data were imputed 
based on logical inferences and supplementary information given within 
the publication. The following assumptions were applied for imputation: 

• Specimen age was inferred from the reported information and 
element type; otherwise, 28 days was assumed. In cases where a 
range of ages was reported, the average value was taken.

• Compression specimen dimensions were estimated based on the type 
of experiment. Laboratory-cast cylinders were assumed to be 150 ×
300 mm, whereas in-situ cores were more likely to be 100× 200 mm 
or 100× 100 mm due to reinforcement constraints.

• Number of tests per location: The number of UPV tests performed at a 
single location was imputed as one for all missing values. For RH 
tests, a default value of nine was assigned if not reported, assuming 
the usual standard recommendations were followed.

• The UPV device was imputed as ‘PUNDIT’, while the RH device was 
imputed as ‘Original Schmidt Type N’ to generalise for all missing 
values.

• UPV and RH standards were inferred based on similar countries and 
the timeframe of the experimental program.

The reduced feature set included five numerical and seven categor
ical features for the UPV and RH datasets, while the SonReb dataset 
contained seven numerical and ten categorical features. Before model
ling, a feature evaluation was conducted to assess the suitability of 

features as predictors for the concrete compressive strength. Categorical 
variables were evaluated to determine whether the inter-group variance 
was statistically significant. If statistical significance is not observed, all 
groups have approximately the same effect on the response (null hy
pothesis). Therefore, the covariate is deemed detrimental to training 
quality and removal from modelling.

Independent t-testing can be used on features with only two groups 
(e.g., the presence of reinforcement) [156]. The t-value quantifies the 
relative difference between groups considering variance, where higher 
t-values indicate greater statistical significance. A p-value ≤0.05 is a 
standard threshold for statistical significance. Analysis of variance 
(ANOVA) tests can be used for features with three or more groups. 
ANOVA tests measure group sensitivity through the f-value and p-value. 
If the computed f-value is less than the f-critical value, the null hy
pothesis cannot be rejected, and there is no significant variance between 
groups [157]. Following independent t-tests and ANOVA tests across all 
categorical features in each database, only one variable – the compres
sion specimen type (cube, cylinder, or core) in the RH and SonReb da
tabases – failed to demonstrate statistical significance, returning 
p-values of 0.761 and 0.571, respectively. This outcome implies that the 
normalisation methodology discussed in Section 1.4 effectively accounts 
for the variance in compressive strength associated with compression 
specimen geometries. Since most statistical models require numerical 
inputs, the validated categorical features were encoded to ordinal in
tegers in the range [0, n − 1].

As the primary purpose of this study is to develop optimal predictive 
performance, rather than assessing feature importance, multi
collinearity among numerical and encoded features was not analysed 
[158]. Furthermore, due to the wide variety of experimental programs 
captured within each database, the response variable (fc,cyl) displays 
mild skewness and heavy-tailed distributions. For optimal model per
formance, normally distributed response data is typically preferred. A 
logarithmic transformation appeared to be the most appropriate option 
for the UPV and SonReb distributions, whereas a square-root trans
formation produced the closest near-Gaussian state for the RH 
compressive strength. Fig. 9 displays the probability distribution func
tions of the transformed response variables used for model training. 
Observations exhibiting anomalous behaviour (outliers) were identified 
and excluded based on their statistical deviation from the global trends.

4.1.2. Model selection
Seven machine learning models were trained, optimised, tested, and 

evaluated for Phase 1, covering a range of typologies. The selected 
models include artificial neural networks (ANN), gradient boosting 
regression trees (GBRT), XGBoost, LightGBM, CatBoost regression, 
support vector regression (SVR), and k-nearest neighbour (k-NN). Past 
research by the authors has indicated that ensemble tree-based models 
perform particularly well in structural engineering applications, espe
cially when the datasets contain a large proportion of categorical fea
tures [159]. Thus, tree-based models are given specific attention in the 
present study. The models empirically fitted to the databases in Section 
3.2 and Table 2 serve as the benchmark null models for comparative 
analysis. The same cleaned datasets presented in Fig. 7 were used for all 
machine learning phases. For brevity, theoretical descriptions of the 
selected models are not given here. Table 3 summarises the models 
applied in both Phases 1 and 2.

4.1.3. Model training
All models were trained and validated using the k-fold cross- 

validation technique. This technique partitions the whole dataset into 
k subsets, where the model is trained on [k − 1] subsets and tested on the 
final hold-out set. The process is then iteratively repeated until each 
subset has been used for testing, effectively representing an out-of-bag 
(OOB) hold-one-out validation approach. OOB sampling ensures the 
measured errors are representative of the true model performance, 
eliminating the risk of data snooping [160]. Ten folds were applied to all 
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models, such that 90 % of the data was allocated for training while 10 % 
was reserved for testing in each iteration. For ANNs, the training sets 
were further partitioned into training and validation subsets at an 80:20 
ratio. Hyperparameter tuning was conducted within the training loop 
using a standard grid-search optimisation approach, wherein appro
priate search ranges were defined for each hyperparameter. Thus, ten 
models were trained and evaluated for each model.

Five performance metrics were used to evaluate the predictive ca
pabilities of each model, namely the coefficient of determination (R2), 
mean squared error (MSE), root mean squared error (RMSE), mean ab
solute error (MAE), and the mean absolute percentage error (MAPE), 
given in Eqs. (20)–(24). 

R2 =1 −

∑n

i=1
(ŷi − yi)

2

∑n

i=1
(yi − yi)

2
(20) 

MSE=

∑n

i=1
(yi − ŷi)

2

n
(21) 

RMSE=
̅̅̅̅̅̅̅̅̅̅
MSE

√
(22) 

MAE=
1
n
∑n

i=1
|yi − ŷi| (23) 

MAPE=
1
n
∑n

i=1

⃒
⃒
⃒
⃒
yi − ŷi

yi

⃒
⃒
⃒
⃒*100 % (24) 

Where yi is the actual value, ŷi is the predicted response, and yi is the 
mean true response. A higher R2 indicates stronger predictive 

performance, while lower MSE, RMSE, MAE, and MAPE signify more 
accurate predictions. The primary difference between RMSE and MAE is 
that MAE treats all errors equally, whereas RMSE assigns greater weight 
to larger errors due to its quadratic derivation, making it more sensitive 
to outliers.

4.1.4. Model performance and interpretability
Table 4 presents the average performance metrics of the Phase 1 

models across the ten testing folds for each NDT. In general, the 
ensemble tree-based models demonstrated the most consistent predic
tive strength. CatBoost regression achieved the best performance for the 
UPV and RH databases, ranking second for SonReb based on the average 
R2 – although it produced the best MAE and MAPE outcomes. CatBoost is 
a boosting aggregation approach that integrates categorical string data 
in its raw state, eliminating the need for manual encoding, which le
verages the proportionately large number of categorical features (~50 
%) included in each database. CatBoost sequentially develops many 
‘weak’ learners, with each tree building upon the residual error of its 
predecessor, culminating into one final strong predictor with a globally 
minimised residual. The differentiating aspect from other boosting 
methods comes from growing ‘oblivious’ trees, which impose a rule 
across all nodes at a given level to test the same covariate under the same 
conditions, enabling more efficient binary indexing [161].

Fig. 10 presents the box and whisker distributions for R2 from all ten 

Fig. 9. Transformed concrete compressive strength distributions for UPV (a); RH (b); and SonReb (c) alongside idealised normal distribution curves.

Table 3 
Machine learning models in Phases 1 and 2.

Typology Model Phase 1 Phase 2

UPV RH SonReb UPV RH SonReb

Network-based ANN X X X ​ ​ ​
MANN ​ ​ ​ X X X

Ensemble 
Tree-based

GBRT X X X ​ ​ ​
HGBRT ​ ​ ​ X X X
XGBoost X X X X X X
LightGBM X X X X X X
CatBoost X X X X X X

Kernal-based SVR X X X ​ ​ ​
SVR +
MICE

​ ​ ​ X X X

k-NN X X X X X X

Table 4 
Phase 1 machine learning results with models ordered from best to worst for 
each NDT.

NDT Model R2 σε MSE RMSE 
(MPa)

MAE 
(MPa)

MAPE 
(%)

UPV CatBoost 0.874 5.54 31.0 5.56 3.86 16.2
XGBoost 0.872 5.59 31.4 5.60 3.86 16.1
LightGBM 0.842 6.18 39.0 6.24 4.49 18.3
ANN 0.833 6.36 40.9 6.39 4.55 19.0
k-NN 0.825 6.57 43.5 6.55 4.54 18.7
SVR 0.822 6.58 43.7 6.60 4.66 19.6
GBRT 0.796 6.99 50.2 7.08 5.10 20.4

RH CatBoost 0.891 7.74 60.0 7.74 5.43 14.6
XGBoost 0.889 7.82 61.3 7.82 5.51 14.8
ANN 0.885 7.92 63.1 7.94 5.73 15.6
LightGBM 0.881 8.09 65.7 8.10 5.92 16.1
SVR 0.874 8.33 69.5 8.33 5.89 15.9
GBRT 0.872 8.38 70.6 8.40 6.20 16.9
k-NN 0.866 8.58 73.9 8.59 6.32 17.5

SonReb SVR 0.935 3.54 12.6 3.54 2.63 10.2
CatBoost 0.934 3.57 12.8 3.58 2.40 9.38
ANN 0.929 3.72 13.8 3.71 2.67 10.2
XGBoost 0.926 3.78 14.3 3.77 2.54 10.1
k-NN 0.920 3.91 15.4 3.91 2.66 10.3
LightGBM 0.919 3.95 15.8 3.96 2.79 10.7
GBRT 0.903 4.30 18.8 4.32 3.10 11.8
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folds and Phase 1 models. For SonReb, the SVR model outperformed all 
alternatives, with an R2 of 0.934 and an MAE of 2.63 MPa. By com
parison, the best empirical SonReb model (exponential function, 
Table 2) yielded an R2 of 0.683 and an MAE of 6.05 MPa, representing a 
relative MAE reduction of 56.5 % for the SVR. UPV experienced the 
largest growth relative to the new empirical models proposed in Table 2, 
increasing R2 from 0.427 (exponential model) to 0.874 (CatBoost 
model). The MAE subsequently reduced by 57.7 % from 9.13 MPa to 
3.86 MPa.

During the EDA, variance inflation factors (VIFs) consistently 
remained below 10 for Phase 1 features, confirming acceptable levels of 
multicollinearity to evaluate feature influence. Consequently, SHapley 
Additive exPlanations (SHAP) were applied to each CatBoost regressor 
to quantify feature influence on the response. Fig. 11 displays the 
combined global feature importances (mean absolute SHAP values) in 
ascending order. The RN exerts substantially greater influence on 
compressive strength than Vp, corroborating the behaviour observed in 
Fig. 10 and Table 4. The RH testing standard also markedly affects 
strength predictions, indicating that procedural and statistical reporting 

conventions have a nontrivial impact. UPV transmission type and the 
presence of rebar demonstrate the lowest global importance, despite the 
common consensus of their effect on test outcomes [16,31,71]. This 
behaviour is likely due to their under-representation within the training 
data (e.g., only 155 indirect tests among 5681), rather than a negligible 
mechanical effect, suggesting that more targeted experiments could 
clarify their true importance.

Fig. 12 presents the ridgeline kernel density distributions for the 
residual errors (yi − ŷi) of each NDT method across all modelling phases. 
Empirical models exhibit non-normal residual error distributions for 
UPV and SonReb, displaying heavy-tailed left-skewing (indicating a 
tendency toward under-estimation). The mean of the residuals does not 
converge at zero either, confirming that the empirical models fail to fit 
the empirical datasets adequately – despite this being the best achiev
able outcome among existing empirical approaches (Appendix A). RH 
demonstrates a closer approximation to normality, likely due to the 
larger sample population, but still exhibits significant heavy tails in both 
directions. Given that the RH residual errors are normally distributed 
about a mean of 0 MPa (Fig. 12), approximately 95 % of all predictions 

Fig. 10. Box and whisker distributions of the model correlation coefficients for each NDT across all phases.
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fall within ± 15.48 MPa (two standard deviations). The SonReb method 
offers the most reliable consistency in predictive performance, despite 
being trained on approximately half the volume of data as the UPV 
models and one-third of the RH datasets.

4.2. Phase 2: all features

4.2.1. Feature selection
Phase 2 incorporates additional incomplete features into model 

training, supplementing the feature set used in Phase 1. These newly 
introduced variables include UPV device diameter and frequency, 
maximum aggregate size, water/cement ratio, and the 28-day target 
strength. Meanwhile, features manually imputed in Phase 1 (e.g., 
specimen age and device brand/model) were left unmodified to assess 
their impact in an incomplete state.

The RH database contained the highest proportion of missing values, 
primarily due to Szilágyi [33], who contributed 4236 test results, many 
of which were collected from historical publications lacking detailed 

Fig. 11. Global ranked feature importance for each NDT.

Fig. 12. Ridgeline kernel density plots for all models fitted or trained within this study for UPV (left); RH (middle); and SonReb (right).
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reporting. For RH, the proportion of missing inputs was 62.4 % (spec
imen age), 18.8 % (device brand/model), 73.3 % (max aggregate size), 
74.2 % (W/C ratio), and 87.4 % (target strength). Hence, the purpose of 
Phase 2 is to evaluate whether including incomplete features can still 
improve model performance, leveraging different intrinsic and extrinsic 
strategies for handling missing values. The final sets comprised 17 fea
tures for UPV, 15 for RH, and 22 for SonReb.

4.2.2. Model selection
The strategies for handling missing values can be categorised into 

two broad approaches: 1) native handling of missing data (built-in 
mechanisms within specific models) and 2) imputation-based methods 
(explicitly filling in missing data). Tree-based models typically provide 
robust intrinsic strategies for handling missing values, making them 
particularly suitable for datasets with incomplete information. For 
instance, CatBoost does not require explicit imputation for missing nu
merical values, instead substituting a default value learned during 
training [161]. Missing categorical values are processed through an 
ordered target encoding mechanism, allowing the model to infer pat
terns from missing entries as if they were distinct categories.

The Phase 2 model list incorporates both native and imputation- 
based techniques: 

• The ANN model was adapted into a masked artificial neural network 
(MANN), which applies a masking layer directly after the input layer. 
Missing values are indicated using a unique placeholder ‘mask’, 
preventing the need for explicit imputation. This method is partic
ularly effective when the missing values are systematic and not 
random.

• GBRT relies on exact feature splits when constructing decision trees 
and cannot inherently handle missing values. Therefore, the GBRT 
was replaced with histogram-based gradient boosting regression 
(HGBR), which groups continuous features into discrete bins, 
dynamically assigning splits for missing values to minimise the loss 
function [162].

• XGBoost and LightGBM handle missing data via strategies similar to 
HGBR and were retained from Phase 1.

• Kernel-based methods (e.g. SVR) lack in-built mechanisms for 
handling missing values and require explicit imputation before 
training. For the k-NN model, a simple imputation method was fol
lowed, taking the feature mean for missing numerical values and 
feature mode for missing categorical values.

• Multivariate imputation by chained equations (MICE) is a powerful 
method that preserves the uncertainty associated with missing data 
by generating multiple imputed datasets, rather than applying fixed 
values (e.g., the mean) [163]. MICE can be particularly beneficial 
when considering multiple features with missing values, when the 
missing entries are correlated or systematic, and works for both 
numerical and categorical variables. Given that SVR performed well 
for SonReb in Phase 1 (Table 4), an augmented model was developed 
by integrating MICE with SVR.

Thus, seven models were trained and optimised in Phase 2. The same 
k-fold cross-validation training scheme, grid-search optimisation algo
rithms, and performance metrics established in Phase 1 were 
maintained.

4.2.3. Model performance
Table 5 summarises the average performance metrics for each model 

trained and tested in Phase 2, ranked from best to worst predictor. 
CatBoost emerged as the top-performing model for all NDTs, surpassing 
SVR for SonReb, which exhibited only minor improvement after inte
grating the additional features and MICE framework. The tree-based 
models with native capabilities for handling missing data showed 
notable improvements relative to Phase 1. Similar to Phase 1, UPV 
demonstrated the most improvement after including incomplete 

features, reducing the MAE from 3.86 MPa to 2.99 MPa, representing a 
further 22.5 % improvement. Conversely, RH models exhibited only 
minor performance changes (4.12 % CatBoost improvement), likely due 
to the higher proportions of missing data.

From Tables 4 and 5, SonReb consistently exhibits the strongest 
correlation to the cylinder compressive strength, demonstrated by the 
significantly lower variance depicted in Fig. 12. Every metric presented 
is discernibly better than either UPV or RH individually (Fig. 10). 
Although the extensive review work performed by Breysse [18] identi
fied inconsistent findings regarding SonReb’s efficacy, these findings 
appear to be limited to traditional univariate or bivariate empirical 
models. Machine learning with expanded feature sets demonstrates that 
SonReb provides a significantly stronger predictive capability when 
leveraging complex multivariate modalities.

Across all NDTs, Phase 2 consistently outperforms Phase 1, as 
demonstrated by Figs. 10 and 11, confirming that incorporating 
incomplete features positively influences model competency. Phase 1 
comprises the core variables that are universally reported across the 
literature. Given the exhaustiveness of the 115-study databases, this core 
set is unlikely to change materially given further expansion. Phase 2 
selectively augments the models with partially reported variables that 
demonstrate statistical association during EDA, and is therefore ex
pected, and observed, to outperform Phase 1. Thus, the top-performing 
models from Phase 2 (CatBoost regression) will be included in Phase 3, 
integrating a more rigorous optimisation algorithm into the training 
process to further maximise predictive potential.

4.3. Phase 3: best model optimisation

To further augment the performance of the best models from Phases 
1 and 2, a Tree-Structured Parzen Estimator (TPE) was integrated into 
the k-fold cross-validation training algorithm for each NDT, replacing 
the earlier grid-search algorithm. TPE is a practical multi-objective 
Bayesian optimiser widely employed for advanced hyperparameter 

Table 5 
Phases 2 and 3 ML results with models ordered from best to worst for each NDT.

NDT Model R2 σε MSE RMSE 
(MPa)

MAE 
(MPa)

MAPE 
(%)

UPV CatBoost 
þ TPE

0.926 4.20 18.0 4.24 2.96 12.3

CatBoost 0.923 4.34 18.9 4.34 2.99 12.6
LightGBM 0.917 4.49 20.4 4.51 3.25 13.6
k-NN 0.910 4.71 22.2 4.71 3.19 13.3
SVR +
MICE

0.880 5.42 29.5 5.42 3.88 16.4

XGBoost 0.865 5.67 33.3 5.77 4.22 17.3
MANN 0.862 5.80 34.1 5.83 4.17 17.2
HGBR 0.862 5.68 34.0 5.83 4.22 17.1

RH CatBoost 
þ TPE

0.897 7.54 56.7 7.53 5.26 14.2

CatBoost 0.897 7.54 56.9 7.54 5.21 14.0
SVR +
MICE

0.887 7.87 61.9 7.87 5.57 14.9

XGBoost 0.887 7.87 62.2 7.88 5.70 15.6
LightGBM 0.887 7.88 62.3 7.89 5.70 15.5
MANN 0.887 7.88 62.4 7.89 5.62 15.3
HGBR 0.876 8.24 68.2 8.25 6.08 16.7
k-NN 0.874 8.33 69.6 8.33 5.96 16.2

SonReb CatBoost 
þ TPE

0.948 3.18 10.1 3.17 2.19 8.64

CatBoost 0.945 3.26 10.7 3.25 2.19 8.55
SVR +
MICE

0.940 3.40 11.6 3.38 2.41 9.33

XGBoost 0.939 3.42 11.8 3.42 2.38 9.22
HGBR 0.938 3.45 11.9 3.44 2.34 9.11
MANN 0.935 3.56 12.7 3.56 2.55 9.92
LightGBM 0.929 3.69 13.7 3.70 2.58 9.99
k-NN 0.862 5.16 26.6 5.10 3.48 13.1
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tuning in complex ML tasks [164]. Unlike grid-search, which exhaus
tively evaluates predefined hyperparameter sets, TPE constructs prob
abilistic models of the objective function, distinguishing between 
favourable and unfavourable hyperparameter configurations. These 
models are iteratively refined to identify an optimal set of hyper
parameters. Given a set of hyperparameters, x, and an objective func
tion, y, (e.g. validation loss or MAE), TPE models the following 
conditional probabilities: 

p(y|x)=
{

l(x), if y < y*

g(x), if y ≥ y* (25) 

l(x)= p(x|y< y*) (26) 

g(x)= p(x|y≥ y*) (27) 

Where l(x) and g(x) are the likelihoods of a given hyperparameter 
configuration resulting in a good (low) or bad (high) objective function 
value, with y* denoting a threshold used to separate the best hyper
parameter trials from the rest, typically expressed as a quantile value. 
The ratio l(x)/g(x) guides the search toward hyperparameter spaces with 
higher potential, and the next hyperparameter configuration is selected 
by maximising the Expected Improvement (EI) [164]. 

xi+1 = argmax
x

l(x)
g(x)

(28) 

Although TPE is based on Bayesian Optimisation, it substitutes the 
traditional Gaussian Process with a more scalable Parzen Estimator, 
improving efficiency in high-dimensional (feature) spaces [165]. In 
exchange, TPE requires a minimum number of trials to build meaningful 
probability functions before it can effectively exploit promising regions, 
causing small datasets (<1000 observations) to converge prematurely 
and lead to suboptimal results. TPE is a particularly effective framework 
for gradient-boosting models, such as CatBoost, LightGBM, and 
XGBoost, due to their similar tree-based learning structures and hyper
parameter characteristics. The CatBoost hyperparameters tuned using 
TPE within each training fold include the loss function, the number of 

trees in the model, the learning rate, depth, and L2 regularisation (to 
prevent overfitting).

The performance results of the TPE-augmented CatBoost models are 
summarised in Table 5. The additional TPE optimisation yielded negli
gible changes to the RH and SonReb models, as illustrated in Figs. 10 and 
11, although UPV benefited more from its integration. This outcome 
implies that the volume and reliability of the collected databases allow 
the models to perform near their theoretical limits, leaving only slight 
gains achievable through additional hyperparameter tuning. Fig. 13
presents the final regressions and residual error distributions of the 
CatBoost-TPE models compared to the actual compressive strengths.

The RH method visibly demonstrates a considerable residual scatter 
with heteroscedastic behaviour, indicating a systematic change in 
variance. Such heteroscedasticity could result from the optimised model 
not fully capturing the underlying variance within RH-based compres
sive strength predictions, limitations in the model structure, or inherent 
constraints of the NDT technique itself. For example, due to the non- 
linear relationship between the RN and compressive strength, there is 
paucity of data beyond an RN of 60, while an RN of 50 is associated with 
a scatter of approximately ± 30 MPa (Fig. 5). Without supplementing 
the training with synthetic data to augment high-strength domains, 
improving model training and reliability in these regions will require the 
collection of additional experimental data. Technological improvements 
and the emergence of rebound hammers specifically designed for high- 
strength concretes may also offer a pathway for improving predictive 
error.

Because of the clear exponential relationship between Vp and fc,cyl 
(Fig. 5), a similar trend is anticipated for the UPV at higher concrete 
strengths, which will limit the applicability of this testing technique. To 
enhance prediction reliability for higher-strength concretes, it may be 
beneficial to combine these techniques with an additional approach, 
such as penetration testing [13,14]. Alternatively, model performance in 
regions with significant scatter could be improved by employing 
repeated k-fold cross-validation to train and aggregate a larger ensemble 
of models.

A native CatBoost feature importance metric was computed for all 

Fig. 13. CatBoost-TPE regression (top) and residual error distributions (bottom) for UPV (left); RH (middle); and SonReb (right).
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ten folds and averaged to obtain a robust in-house ensemble feature 
ranking. This approach quantifies the average change in the model 
output attributable to each feature, directly reflecting the influence of 
features with missing data. The top 15 features by mean importance are 
shown in Table 6, where the value represents the percentage contribu
tion to the prediction. The results corroborate the same behaviour 
observed in Fig. 11, with the additional concrete details – maximum 
aggregate size, w/c ratio, and target 28-day strength, all demonstrating 
measurable impact on the model performance, despite the varying levels 
of missing data.

5. Web application

The final step of this study involves providing researchers and 
practitioners with a practical tool for predicting the cylinder compres
sive strength, utilising the optimised TPE-CatBoost models given in 
Table 5 and Section 4.3. While ML models consistently outperform 
conventional empirical equations, their dissemination and practical 
implementation can be challenging, as they do not produce simple, 
closed-form expressions. To address this issue, a web-based GUI has 
been developed and deployed on a cloud server, hosted on Render, 
which can be accessed at the URL: https://recreate-ndt.onrender.com/

The frontend of the application is designed using HTML, CSS, and 
JavaScript modules to create a simple and intuitive user interface. A 
Django-based backend retrieves the user-supplied information from the 
frontend, processes the data, runs the TPE-CatBoost models and returns 
real-time predictions to the user interface. The user can select the NDT 
method, initiating the relevant input features. Once the necessary feature 
information is provided, the TPE-CatBoost models retrieve the relevant 
features from the backend, process the input, and generate a prediction of 
the cylinder compressive strength. The trained TPE-CatBoost models 
from all ten cross-validation folds are saved offline and stored in a secure 
cloud storage system. The final compressive strength prediction displayed 
to the user is the average output from all ten models, each contributing 
with equal weighting. The accuracy of the generated predictions is pre
sented in Table 5 for each NDT. It should be stressed that these perfor
mance metrics apply only within the domains of the available training 
data (Table 2) for each NDT method; outside of which, the models must 
extrapolate, and accuracy will diminish. Refer to Fig. 13 for the rela
tionship between fc,cyl and model error. For deployment, the backend and 
frontend code have been added to a public GitHub repository as per the 
open research requirements of the EU-funded ReCreate project. The re
pository can be accessed at: https://github.com/bma114/recreate-ndt.

The incomplete features incorporated in Phase 2 are left as optional 
fields, while all other features are treated as required fields before 
generating predictions. Concrete compression specimen details are also 
optional, enabling predictions based solely on NDT parameters and 
specimen metadata. All numerical features are normalised using the 

same scaler functions applied during model training, ensuring consis
tency with the original preprocessing pipeline.

Since CatBoost regression models take categorical variables in their 
raw string formats, no encoding of the user-supplied inputs is necessary. 
However, to mitigate user-input inconsistencies, categorical features are 
normalised during testing (Phase 3) and within the Django backend. 
This step offsets the risk of user-induced errors such as inadvertent 
spaces, inconsistent capitalisation, or formatting discrepancies. For 
more information regarding the expected formatting of the numerical 
and categorical features, for optimal model performance, refer to the 
databases and supplementary documentation stored in the Zenodo re
pository at: https://doi.org/10.5281/zenodo.14921019. Since the app 
is deployed on Render’s free tier, and due to the size of the ensemble 
models being loaded from AWS, a short cold start delay of approxi
mately 2–3 min is expected each time the app is opened.

6. Model and app validation

To assess the predictive performance and underlying learned 
behaviour of the final models (Fig. 13), the web app is applied to a small 
set of randomly selected tests spanning a wide range of compressive 
strengths. Although these tests were included in the training data, they 
serve as a simple demonstration of the model and app performance. 
Table 7 presents the predictive results of the tests for each NDT, 
generated through the cloud app described in Section 5.

Prediction accuracy declines modestly as strength increases. This 
behaviour reflects the training domains summarised in Table 1 – model 
performance degrades near the empirical boundaries as data becomes 
more sparse, and deteriorates more substantially when extrapolating 
beyond them.

A complementary verification check, summarised in Table B.1
(Appendix B), represents a rudimentary feature influence test to ensure 
the models behave as expected. Since multicollinearity is not addressed 
in this paper, actual feature influences on the response may be sup
pressed, depending on their inter-feature collinearity. Nonetheless, this 
brief analysis provides an indication of the functional capacity of the 
models and learned understanding of patterns between the independent 
and dependent variables. The test from Fawzi et al. [71] in Table 7 is 
applied for this purpose (Specimen ID: B40_S3), where one feature is 
varied while holding all else constant, observing the ensuing influence 
on the predicted compressive strength.

7. Conclusions

This study evaluates the global predictive capability of various non- 
destructive test (NDT) methods for indirectly estimating concrete 
compressive strength. The investigation focused on ultrasonic pulse 
velocity (UPV), rebound hammer (RH), and SonReb (UPV and RH 
combined) due to their widespread adoption in both research and 
practice. Comprehensive databases were compiled from 90 studies 
(6103 test results) for UPV, 87 studies (10,428 tests) for RH, and 53 
studies (3299 tests) for SonReb. In each case, the response variable was 
the concrete compressive strength, normalised to a reference cylinder of 
150 × 300 mm dimensions. The databases were first used to assess the 
performance of existing empirical models proposed in the literature, 
which were initially calibrated to more localised datasets. New re
lationships were then derived to capture the ‘global’ behaviour of each 
NDT method across the typical typologies – exponential, power, 
quadratic, and linear. A three-phase machine learning (ML) framework 
was then employed to investigate the impact of incorporating incom
plete features (variables with a high proportion of missing values) on 
predictive performance. Phase 1 examined seven ML models from three 
different typologies – network-based, tree-based, and kernel machines – 
trained on a core feature set with complete or near-complete reporting. 
Phase 2 involved seven models that implemented different imputation 
strategies to handle substantial volumes of missing data. A k-fold cross- 

Table 6 
Top 15 features influencing compressive strength through CatBoost’s native 
importance test.

Feature SonReb UPV RH

RN 30.63 – 47.48
Vp 24.67 38.43 –
UPV Device & Brand 6.376 0.953 –
Specimen Age (days) 4.996 12.19 4.508
W/C Ratio 4.470 9.754 4.842
Max Agg. Size (mm) 3.375 3.084 3.990
Compression Specimen 3.288 5.046 2.733
No. UPV Tests 3.171 5.362 –
NDT Specimen Type 2.895 4.030 2.352
No. RH Tests 2.389 – 2.706
Height (mm) 2.266 1.940 3.532
Width/Diameter (mm) 2.184 1.676 1.785
Design Strength (MPa) 2.129 3.051 2.306
RH Standard 1.814 – 2.522
RH Device & Brand 1.665 – 15.82
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validation training algorithm, paired with a simple grid-search optimi
sation, was implemented across Phases 1 and 2. Finally, the top model 
from Phases 1 and 2 was integrated with a Tree-Structured Parzen 
Estimator (TPE) optimisation algorithm further to advance its perfor
mance for deployment in a web-based application. The following con
clusions can be drawn from the investigation: 

• Literature-proposed static models reveal a significant diversity 
related to their ability to predict the normalised compressive strength. 
Although many models boast high performance metrics after fitting to 
their local datasets or a small collection of validation sets, few models 
produce metrics close to their original values when compared against 
the global behaviour of each NDT. Due to the substantial variability 
within each test method, empirical models cannot adequately capture 
the concrete compressive behaviour strength through univariate or 
bivariate relationships alone. The best-fitted models to the global 
datasets achieved maximum R2 values of 0.385, 0.746, and 0.648 for 
UPV, RH, and SonReb, respectively.

• Incorporating additional predictive features in the machine learning 
models resulted in substantial performance improvements compared 
to the empirical models. The top-performing models in Phase 1 were 
the CatBoost regression model for UPV and RH, and the support 
vector regression (SVR) model for SonReb. The UPV method experi
enced the greatest growth, increasing the correlation coefficient by 
220.5 % to 0.849 when using CatBoost regression. The mean absolute 
error (MAE) was reduced by 51.1 %, 36.4 %, and 56.0 % in UPV, RH, 
and SonReb models. The SonReb method consistently demonstrated 
the highest aptitude for predicting compressive strength, reaching an 
MAE of 2.44 MPa and an R2 of 0.933 in Phase 1. These results are valid 
over the available training data domains, which are concentrated 
within [0.05, 0.95] fractiles for fc,cyl in MPa of [8.47, 59.6] for UPV, 
[11.7, 85.0] for RH, and [11.3, 58.7] for SonReb. A small SHAP and 
native CatBoost feature importance analysis highlights the hierar
chical influence of features on the compressive strength predictions.

• After incorporating several heavily incomplete features into model 
training (Phase 2), tree-based models, which could natively handle 
missing values, consistently outperformed their counterparts trained 
on only complete features (Phase 1). CatBoost regression was the 
best performer for all NDTs and experienced a further improvement 
of 16.3 % in MAE for UPV compared to Phase 1. Some imputation 
approaches (e.g., multivariate imputation by chained equations, 
MICE), which were used to augment the SVR model, did not yield 
any notable improvements across phases, likely due to the severity of 
the missing data for some features.

• Overall, CatBoost regression emerged as the best-performing model 
across Phases 1 and 2. An advanced TPE optimisation algorithm was 
then applied during k-fold training, further refining the hyper
parameters. After optimisation, only minor improvements were 

observed compared to Phase 2, suggesting that the models had 
already reached their near-optimal performance, given the dataset 
volume and quality. Finally, a Django-based web application was 
developed to assimilate the optimised models, allowing users to 
generate real-time predictions based on new NDT inputs through a 
convenient and straightforward interface.
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Table 7 
Model performance obtained through the web application.

NDT Study Vp (m/s) RN fc,cyl,act (MPa) fc,cyl,pred (MPa) Error (MPa) Error (%)

UPV Poorarbabi [23] 4390 – 16.3 16.4 0.13 0.79
Nash’t et al. [9] 4609 – 27.4 32.5 5.13 15.8
Fawzi et al. [71] 4959 – 35.1 34.1 − 0.96 − 2.81
Cianfrone & Facaoaru [38] 5190 – 58.2 50.2 − 8.05 − 16.0
de Almeida [53] 5000 – 81.8 90.8 8.97 9.88

RH Poorarbabi [23] – 20 16.3 15.3 − 1.04 − 6.81
Nash’t et al. [9] – 37 27.4 32.1 4.70 14.7
Fawzi et al. [71] – 44 35.1 39.3 4.21 10.7
Cianfrone & Facaoaru [38] – 41 58.2 50.5 − 7.75 − 15.4
de Almeida [53] – 55 81.8 98.1 16.3 16.6

SonReb Poorarbabi [23] 4390 20 16.3 17.8 1.51 8.47
Nash’t et al. [9] 4609 37 27.4 30.6 3.27 10.7
Fawzi et al. [71] 4959 44 35.1 35.0 − 0.06 − 0.17
Cianfrone & Facaoaru [38] 5190 41 58.2 51.2 − 7.05 − 13.8
de Almeida [53] 5000 55 81.8 88.8 6.99 7.87
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ndteint.2025.103549.

APPENDIX A. EXISTING EMPIRICAL FORMULAE

Table A1 
Published empirical models for the relationship between UPV and compressive strength.

Model Type Equation Eq. Local R2 Global R2 Reference

Exponential fc
(
Vp

)
= 1.146⋅e(0.77Vp) (A1) 0.920 0.309 Turgut [146]

fc
(
Vp

)
= 1.19⋅e(0.715Vp) (A2) 0.590 0.417 Nash’t et al. [9]

fc
(
Vp

)
= 0.0854⋅e(1.288Vp) (A3) 0.640 0.310 Trtnik et al. [61]

fc
(
Vp

)
= 11.804⋅e(0.2601Vp) (A4 0.081 0.036 Al-Nu’man et al. [147]

fc
(
Vp

)
= 1.2288⋅e(0.726Vp) (A5) 0.700 0.421 Ali-Benyahia et al. [126]

Power fc
(
Vp

)
= 1.2⋅10− 5⋅

(
1000Vp

)1.7447 (A6) 0.409 0.308 Kheder [20]

fc
(
Vp

)
= 5.4942⋅Vp

0.9874 (A7) 0.780 0.101 Kumavat & Chandak [148]

fc
(
Vp

)
= 0.6401⋅Vp

2.5654 (A8) 0.720 0.392 Ali-Benyahia et al. [21]

Polynomial fc
(
Vp

)
= 13.906⋅V2

p − 96.467⋅Vp + 176.9 (A9) 0.820 0.194 Logothetis [149]

fc
(
Vp

)
= 28.9⋅V2

p − 221.6⋅Vp + 440.1 (A10) 0.882 − 0.556 Trezos et al. [150]

Linear fc
(
Vp

)
= 36.73⋅Vp − 129.077 (A11) 0.956 − 0.189 Qasrawi [151]

fc
(
Vp

)
= 15.533⋅Vp − 34.58 (A12) 0.919 0.315 Shariati et al. [31]

Note Vp is in km/s.

Table A2 
Published empirical models for the relationship between RH and compressive strength.

Model Type Equation Eq. Local R2 Global R2 Reference

Exponential fc(RN) = 3.9622⋅e(0.0504RN) (A13) 0.903 0.346 Pucinotti & Lorenzo [152]
fc(RN) = 2.6113⋅e(0.0558RN) (A14) 0.770 0.036 Ali-Benyahia et al. [21]

Power fc(RN) = 0.4030⋅RN1.2083 (A15) 0.805 0.347 Kheder [20]
fc(RN) = 0.788⋅RN1.03 (A16) 0.770 0.317 Nash’t et al. [9]
fc(RN) = 0.0307⋅RN1.952 (A17) NR 0.681 Szilágyi [33]
fc(RN) = 0.0238⋅RN1.8781 (A18) 0.770 − 0.146 Ali-Benyahia et al. [126]

Polynomial fc(RN) = 0.02⋅RN2 + 0.52⋅RN − 9.40 (A19) 0.952 0.700 Logothetis [149]
fc(RN) = 0.032⋅RN2 − 0.164⋅RN+ 5.9 (A20) 0.851 0.640 Trezos et al. [150]
fc(RN) = − 0.0177⋅RN2 + 2.0481⋅RN − 19.303 (A21) 0.810 0.136 Erdal [11]

Linear fc(RN) = 1.353⋅RN − 17.393 (A22) 0.880 0.469 Qasrawi [151]
fc(RN) = 1.7206⋅RN − 26.595 (A23) 0.936 0.641 Shariati et al. [31]
fc(RN) = 2.832⋅RN − 35.472 (A24) 0.878 − 0.937 Kocáb et al. [105]

NR = Not reported.

Table A3 
Published empirical models for the relationship between SonReb and compressive strength.

Model Type Equation Eq. Local R2 Global R2 Reference

Exponential & 
Power-Exponential

fc
(
Vp,RN

)
= 0.0981e(1.78 ln(Vp)+0.85 ln(RN)− 0.02) (A25) 0.934 0.589 Logothetis [149]

fc
(
Vp,RN

)
= 0.0981⋅18.6e(0.515Vp+0.019RN) (A26) 0.954 0.528 Arioglu & Manzak [153]

fc
(
Vp,RN

)
= 0.356⋅RN0.866⋅e(0.302Vp) (A27) 0.800 0.620 Nash’t et al. [9]

Double Power fc
(
Vp,RN

)
= 0.0158⋅

(
1000Vp

)0.4254⋅RN1.1171 (A28) 0.907 0.581 Kheder [20]

fc
(
Vp,RN

)
= 2.6199⋅10− 8⋅

(
1000Vp

)2.2878⋅RN0.5341 (A29) 0.339 0.380 Faella et al. [154]

fc
(
Vp,RN

)
= 1.6411⋅10− 9⋅

(
1000Vp

)2.29366⋅RN1.30768 (A30) 0.867 0.208 Nikhil et al. [84]

fc
(
Vp,RN

)
= 0.0543⋅Vp

1.286⋅RN1.171 (A31) 0.840 0.395 Ali-Benyahia et al. [21]

fc
(
Vp,RN

)
= 9.043⋅10− 6⋅

(
1000Vp

)1.381⋅RN1.036 (A32) 0.598 0.417 Breccolotti & Bonfigli [32]

Bilinear fc
(
Vp,RN

)
= 0.951⋅Vp + 0.745⋅RN − 0.544 (A33) 0.940 0.490 Tanigawa et al. [155]

fc
(
Vp,RN

)
= 13.166⋅Vp + 0.42⋅RN − 40.255 (A34) 0.857 0.540 Erdal [11]

fc
(
Vp,RN

)
= 7.666⋅Vp + 1.017⋅RN − 38.653 (A35) 0.974 0.631 Fawzi et al. [71]

fc
(
Vp,RN

)
= 5.752⋅Vp + 0.653⋅RN − 24.674 (A36) 0.840 0.320 Ali-Benyahia et al. [21]

Note Vp is in km/s.
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APPENDIX B. PHASE 3 FEATURE INFLUENCE VERIFICATION

Table B.1 
Simple verification of feature influence on predicted compressive strength, to determine expected relationships.

Feature Name Model Original Value Prediction, 
fc,cyl,pred1 (MPa)

New Value Prediction, 
fc,cyl,pred2 (MPa)

Observation

Specimen Type SonReb Cylinder - 
Laboratory

36.07 Cylinder - 
In-situ

34.88 A 3.3 % decrease is observed due to the effects of drilling, 
demonstrating that cored cylinders are correctly interpreted as 
having lower compressive strengths [50].

Rebar Present UPV FALSE 38.68 TRUE 36.96 Inclusion of rebar in the concrete reduces the predicted strength by 
4.5 %, as expected from wave-path interference. The effect is 
smaller than the 0.8–0.9 corrections in Ref. [16], perhaps due to 
the unknown bar orientation.

UPV Transmission 
Type

UPV Direct 38.68 In-direct 38.49 Negligible change observed, contrary to the expected lower wave 
velocities in indirect tests. The absence of this change indicates that 
the models require additional indirect test data for calibration and 
to improve understanding, aligning with Fig. 11.

RH Device Brand & 
Model

RH Original 
Schmidt Type 
N

40.54 Silver 
Schmidt

36.00 Silver Schmidt hammers yield lower rebound numbers, resulting in 
smaller estimated compressive strengths that align with the 
expected device behaviour.

Maximum Aggregate 
Size (mm)

RH 10 38.02 30 41.10 An 8.1 % increase is observed when the maximum aggregate size 
increases for an RH test. The presence of larger aggregates near the 
surface can cause artificial inflation of the measured surface 
hardness.

W/C Ratio SonReb 0.65 30.69 0.40 36.40 Reducing W/C ratios increases predicted strength, consistent with 
established mix-design principles.

28-Day Target 
(Design) Strength 
(MPa)

UPV 40 38.68 60 46.32 The model accurately predicts higher strength for increased 28-day 
design values, despite substantial rates of missing data.

Data availability

The complete collection of databases has been made publicly avail
able and open source at: https://doi.org/10.5281/zenodo.14921019. A 
user’s guide is provided alongside the database to provide full de
scriptions of all assumptions, nomenclature, equations, and abbrevia
tions used throughout the databases. The authors hope that these 
databases may serve as a strong foundation for future research and the 
accumulation of experimental data, which is necessary to continually 
improve the reliability of non-destructive methods for estimating con
crete compressive strength.
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[160] Géron A. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. 
first ed. ed. Sebastopol, CA: O’Reilly Media, Inc.; 2022.

[161] Hancock JT, Khoshgoftaar TM. CatBoost for big data: an interdisciplinary review. 
J Big Data 2020;7(1). https://doi.org/10.1186/s40537-020-00369-8.

[162] Guryanov A. Histogram-based algorithm for building gradient boosting ensembles of 
piecewise linear decision trees. Analysis of images, social networks and texts. 8th Int 
Conf 2019;11832:39–50. https://doi.org/10.1007/978-3-030-37334-4.

[163] Azur MJ, Stuart EA, Frangakis C, Leaf PJ. Multiple imputation by chained 
equations: what is it and how does it work? Int J Methods Psychiatr Res 2011;20 
(1):40–9. https://doi.org/10.1002/mpr.329.

[164] Bergstra J, Bardenet R, Bengio Y, Kégl B. Algorithms for hyper-parameter 
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