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Stratigraphic interpretation of borehole data is a fundamental aspect of subsurface geological models, providing
critical insights into the distribution of stratigraphic units. However, expert interpretation of all available
borehole data is impractical for large-scale regional mapping involving thousands of boreholes. Automated
interpretations using machine learning models can significantly increase the number of boreholes included in
subsurface geological models. Nevertheless, these predictions must adhere to strict spatial and stratigraphic
relationships (e.g. superposition) to ensure geological plausibility, which often requires post-processing tasks.
Traditional evaluation metrics commonly used for general-domain classification tasks (e.g. accuracy, F1-
score) do not necessarily reflect the geological plausibility of predictions, as they fail to account for the
sequential nature and spatial relationships inherent in borehole interpretation. To address this limitation,
we propose and evaluate a set of geology-informed metrics that focus on three key aspects of stratigraphic
interpretation, namely the expected geographical extent of units (extent metrics), their sequential relationships
(sequence metrics), and their vertical positioning along boreholes (position metrics). Using a dataset of 1394
boreholes from the Cenozoic Roer Valley Graben (southeast Netherlands), which covers ~3000 km? and
includes 15 lithostratigraphic units, we demonstrate that Random Forest and Neural Network models with
similar performance on traditional metrics (e.g. accuracy, Cohen’s kappa, and F1-score) can differ significantly
in their ability to produce geologically plausible predictions. For example, while many model configurations
achieve ~75%-80% agreement between expected and predicted classes, the Neural Network models better
capture the sequential stratigraphic relationships expected in the study area. Our results underscore the need
for domain-specific metrics that offer a more accurate and interpretable assessment of model performance.
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1. Introduction

Subsurface modelling requires collaboration between geoscientists
and modelling specialists to ensure that large geological datasets are in-
tegrated in accordance with fundamental geological principles (Stumpf
et al., 2021). In subsurface geological modelling, labelling of borehole
intervals is a primary step for constructing layer models and is crucial
for subsequent modelling stages (Thomason and Keefer, 2021; Stafleu
et al., 2025). However, expert manual labelling of borehole intervals
within a common stratigraphic framework is impractical and time-
consuming for regional mapping efforts involving thousands of bore-
holes. Many automated approaches have been developed to support
borehole interpretation to predict geologically meaningful categories

along boreholes, such as lithostratigraphic units and lithofacies, whose
vertical order respects stratigraphic constraints. These methods in-
corporate stratigraphic relationships and geological knowledge either
during prediction (e.g. Markov chains) (Yin et al., 2022; Eidsvik et al.,
2004), through rule-based enforcement (Stafleu et al., 2025), or via
post-processing (Fullagar et al., 2004; Tokpanov et al., 2020; Wedge
et al.,, 2019). While such methods can increase data density for 3D
subsurface models, as in the Dutch GeoTOP model (Stafleu et al.,
2011), which integrates 20 times more boreholes than the Digital
Geological Model (Gunnink et al., 2013), they can result in complex
and time-consuming workflows and post-processing tasks, which can
account for up to 50% of the model construction time (Stafleu et al.,
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2021). Machine learning (ML) models are increasingly adopted to
support and streamline borehole interpretation in subsurface mod-
elling for both regression and classification tasks (Bhattacharya, 2021).
These models provide a flexible approach to learning from training
data, with the potential to scale up automatic geological interpretation
across large datasets. However, conducting a geology-oriented eval-
uation of ML-generated predictions, informed by expert knowledge,
remains challenging.

The evaluation of machine learning model outputs often relies on
general-purpose ML metrics that fail to capture critical aspects of
geological problems. For instance, classification models utilise met-
rics derived from the confusion matrix (Grandini et al., 2020) and
regression tasks employ mean absolute error (MAE) or root mean
squared error (RMSE) (Botchkarev, 2019). In both cases, borehole
interpretations are evaluated pointwise (i.e. at each depth) ignoring
the sequential and hierarchical relationships that are fundamental to
geological problems. Studies automating the labelling of geological
units across dozens to hundreds of boreholes, such as those by Qi
and Carr (2006), Tokpanov et al. (2020), and Yang et al. (2023),
have achieved ~80%-90% accuracy in the predicted labels. However,
even when model predictions match the ground truth, post-processing
is necessary to ensure predictions respect basic stratigraphic relation-
ships. These examples underscore the need for evaluation methods that
extend beyond label agreement to assess alignment with geological
principles and expert knowledge.

Metrics for general-purpose classification tasks, referred to here as
traditional metrics, are widely used to evaluate the performance of
ML models in automated borehole labelling. However, some studies
incorporate domain-specific metrics, highlighting the need to evaluate
geological aspects of the prediction. Domain-specific metrics include
the Edit Distance (Zhou et al.,, 2019) and the MAE of Formation
Tops (Tokpanov et al., 2020), designed to assess the sequential aspect
and positional accuracy of stratigraphic boundaries. In general, these
metrics are used during model validation on unseen data to assess
performance and can also inform decisions about post-processing. For
instance, Tokpanov et al. (2020) demonstrate that applying a post-
processing step to the predictions of a Convolutional Neural Network
reduces the MAE of the predicted top of a formation on the validation
set. Despite the improvement in model evaluation, the proposed metrics
failed to incorporate some essential aspects for assessing geological
plausibility. Moreover, since traditional metrics such as accuracy and
F1-score are commonly used during model selection (e.g. for hyperpa-
rameter tuning), integrating metrics that reflect geological plausibility
could help guide ML models towards geologically consistent solutions.

This study aims to overcome the limitations of traditional classifi-
cation metrics in evaluating automated borehole labelling by focusing
on two research questions. First, what metrics can be developed to
quantify the geological plausibility of stratigraphic unit predictions
obtained from borehole data? To address this question, we propose
novel geology-informed metrics incorporating geological principles,
spatial relationships, and stratigraphic order. Second, can these metrics
effectively differentiate between machine learning models based on
their ability to generate geologically plausible predictions? For this
question, we apply the proposed metrics to predictions generated by
various standard ML models in the Roer Valley Graben (south-east
Netherlands) using 1394 labelled boreholes, assessing their ability to
produce plausible predictions. Rather than identifying the best model
or workflow for lithostratigraphic labelling, this study aims to sug-
gest and test alternative methods for integrating geological plausibil-
ity into model evaluation using geology-informed metrics. Through
this approach, we aim to establish a geology-informed framework for
evaluating ML-generated interpretations in borehole labelling tasks.
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2. Methodology

This section outlines the approach to evaluating model performance
in labelling lithostratigraphic units (i.e. units defined based on litholog-
ical characteristics) from borehole data in the south-east Netherlands.
First, we describe the case study, comparing two model architectures,
Random Forest and Neural Network, using various hyperparameter
configurations, three feature sets, and a five-fold cross-validation pro-
cess. We then introduce both traditional and geology-informed metrics
to assess model performance.

2.1. Case study: Roer Valley Graben

Study area

The Cenozoic Roer Valley Graben (RVG) is a major NW-SE trending
fault-bounded graben system in the southeastern Netherlands
(Fig. 1.A). Tectonically related to Mesozoic and Palaeozoic structures,
differential subsidence in the RVG began in the Late Oligocene, result-
ing in a ~1750 m thick stratigraphic sequence (Fig. 1.B) (Geluk et al.,
1995). Mapping efforts rely on interpreting borehole data and labelling
lithostratigraphic units along boreholes. In the RVG, the Miocene age
Breda Formation, the oldest mapped unit in the Digital Geological
Model (Gunnink et al., 2013) for this area, reaches depths of up to
1200 m and marks the model’s base.

Dataset and preprocessing

This study uses borehole descriptions from the Roer Valley Graben,
including lithological descriptions and expert lithostratigraphic inter-
pretations used in the BRO DGM v2.2, (TNO-GDN, 2014; Gunnink
et al., 2013) BRO GeoTOP v1.6, (TNO-GDN, 2023; Stafleu et al., 2021),
H30-Roerdalslenk (TNO-GDN et al., 2014) and H30-De Kempen (TNO-
GDN et al., 2017). We selected 1394 boreholes (Fig. 1.A), ~4.6% of the
area’s total, containing lithological descriptions and expert lithostrati-
graphic interpretations (i.e. labels). No additional quality thresholds
(e.g. minimum depth or completeness) were applied. Borehole depths
range from 0.5 m to 0.9 km, with ~50% shallower than 42.5 m.
Interval descriptions, initially at irregular depths, were discretised to
0.5-m intervals. The dataset contains 25 features, comprising 22 macro-
scopic lithological descriptions based on the Standard Drill Description
Method (Bosch, 2000) and three location features (Table 1). During
preprocessing, numerical features were normalised to have zero mean
and unit variance, and categorical features were encoded using one-hot
encoding. Missing values in numeric features were imputed using the
median, and categorical features using the most frequent value (mode).
To ensure rigorous evaluation and avoid information leakage, these
transformations were applied within the training data partitions during
cross-validation. The classification task involves 15 lithostratigraphic
units as target variables (Fig. 1.C), which follow the Netherlands’ strati-
graphic nomenclature (TNO-GDN, 2020; Hummelman et al., 2019).
The units occupy distinct depth ranges, which correspond to their
stratigraphic position in the RVG (Fig. 1. D & E). The dataset is highly
imbalanced, with the three most abundant classes accounting for ~50%
of borehole intervals.

Modelling approach

To illustrate the differences between prediction models across met-
rics, we selected the Random Forest (RF) method and a Neural Network
(NN) architecture. These models were chosen because RF and NN are
established techniques used for classification tasks (Fernandez-Delgado
et al., 2014), and they handle sequential information in distinct ways.
For the RF method (Breiman, 2001), we used the implementation
from the R package ‘ranger’ (Wright and Ziegler, 2017). The NN
was implemented using the R implementation of TensorFlow (Abadi
et al.,, 2015) and consists of a ragged input layer for variable-length
sequences (e.g. variable borehole depth), followed by a bidirectional
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Fig. 1. (A) Map of the Roer Valley Graben area, delimited by Cenozoic faults (v. Gessel et al., 2021), with boreholes grouped by cross-validation fold. (B) SW-NE
Cross-section of the Roer Valley Graben, as modelled in the Digital Geological Model (DGM) up to —500 m with respect to the Amsterdam Ordnance Datum
(NAP as denoted in Dutch) showing the distribution of lithostratigraphic units in the area. Location of the cross-section indicated in panel A. (C) Proportion
of lithostratigraphic units based on boreholes. In the figure, all formal ‘NU’ (Upper North Sea Group) formation prefixes have been omitted for clarity. AAOP:
Made Ground, NA: Naaldwijk Formation, EC: Echteld Formation, NI: Nieuwkoop Formation, BX: Boxtel Formation, BE: Beegden Formation, KR: Kreftenheye
Formation, ST: Sterksel Formation, SY: Stramproy Formation, PZ-WA: Peize & Waalre Formations, MS: Maasluis Formation, OO: Oosterhout Formation, KI:
Kiezelodlite Formation, IE: Inden Formation, BR-VI: Breda & Ville Formations. TNO-GDN (2020) provides a detailed description of the Formations. (D) Mean
depth distribution per lithostratigraphic unit with respect to NAP. (E) Depth-wise proportion of borehole coverage.

Table 1

Predictor variable descriptions and feature sets. SBB-5.1 correspond to the Standard Drill Description Method used by the TNO -
Geological Survey of the Netherlands (TNO-GDN) (Bosch, 2000). NAP: Amsterdam Ordnance Datum.

Variable Description Feature set
Location (1) Lithology (2) All (3)
X coordinate Longitude (EPSG:28992) X
Y coordinate Latitude (EPSG:28992) X
Depth Depth with respect to NAP (m) X

Main Lithology
Main colour
Presence of plants
Presence of shells
Presence of clay chunks
Sand median
Sand median class
Sand median class*
Lime content

Clay mixture

Silt admixture
Sand admixture
Gravel admixture
Humus admixture
Shell material
Consistency

Plant residue
Organic material
Shell material
Percentage of clay
Mica residue
Glauconite residue

Soil Type [SBB 5.1 - L3.1]

Soil Type [SBB 5.1 - L4.3]

Plant fragments [True/False]

Shell fragments [True/False]

Clay chunks [True/False]

Sand median [SBB 5.1 - L7.2.1]
Sand median class [SBB 5.1 - L7.2.2]
Sand median class (Preprocessed)
Lime Content [SBB 5.1-L4]

Clay admixture [SBB 5.1-L3.3.1]
Silt admixture [SBB 5.1-L3.3.2]
Sand admixture [SBB 5.1-L3.3.3]
Gravel admixture [SBB 5.1-L3.3.4]
Humus admixture [SBB 5.1-L3.3.5]
Shell Material [SBB 5.1-L12.2]
Consistency [SBB 5.1]

Plant residue [SBB 5.1 - L11.1]
Organic material

Shell material

Clay percentage

Amount of mica [SBB 5.1 - L13.1]
Amount of Glauconite [SBB 5.1 - L13.2.2]

LR o T o B B I A e i e I I R

LR o T T A e i I I T B i S I
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Configuration of hyperparameters for the Random Forest and Neural Network models.

Model configuration Hyperparameters

Number of setups

Model type Feature set Model ID Random Forest Neural Network
Features sampled per split (mtry) Learning rate LSTM Units Attention layer (Heads)
Random Forest (1) Location RF1 1,2, 3 N/A N/A N/A 3
(2) Lithology RF2 10, 20, 30, 40, 50, 60, 70, 80 N/A N/A N/A 8
(3) All RF3 10, 20, 30, 40, 50, 60, 70, 80 N/A N/A N/A 8
Neural Network (1) Location NN1 N/A 0.01, 0.001 16, 32, 64 1, 4,8 18
(2) Lithology NN2 N/A 0.01, 0.001 16, 32, 64 1,4,8 18
(3) All NN3 N/A 0.01, 0.001 16, 32, 64 1,4,8 18
LSTM layer (Hochreiter and Schmidhuber, 1997), a multi-head atten- 2.2. Metrics

tion layer (Vaswani et al., 2017), and a dense output layer with softmax
activation. We use categorical cross-entropy as the loss function. This
NN architecture is expected to integrate the sequential aspect of the
task as it includes elements of recurrent neural networks and attention
mechanisms.

We evaluated each model using three input feature sets (Table
1). Set 1 comprised location features, set 2 contained lithological
features, and set 3 combined both. The three feature sets were de-
signed to assess the predictive value of spatial location and lithological
characteristics, which represent fundamentally different geological in-
formation. While location features capture spatial trends and regional
stratigraphic variations, lithological features describe local sediment
properties. Combining both sets tests whether integrating spatial and
compositional data improves predictions. We did not perform formal
feature selection, as our goal was to evaluate and compare model per-
formance on complete, geologically meaningful feature groups rather
than optimising input variables via statistical methods.

Additionally, we assessed the impact of varying hyperparameters
(see Table 2). For RF, we adjusted the number of variables considered
at each split when building the decision trees (i.e. the ‘mtry’ hyperpa-
rameter). For the NN, we modified the learning rate, number of LSTM
units, and number of heads in the attention layer.

Cross-validation and evaluation

To assess model generalisation, we implemented a five-fold cross-
validation. The dataset was split using the stratified group k-fold func-
tion from scikit-learn (Pedregosa et al., 2011), which balances the
target variables and prevents intervals from the same borehole from
appearing in multiple folds, ensuring that no borehole appears in more
than one fold. For each iteration, three folds were used for training, one
for validation (for NN models), and one for testing. Neural networks
were trained for up to 300 epochs, with early stopping implemented
after 30 epochs without improvement in validation loss. We trained
the Neural Network using the Adam optimiser with batches that have
entire boreholes, each containing variable-length sequences handled
via the ragged input layer. The batch size was set to 32. Finally,
we evaluate the resulting predictions of the NN and RF methods for
each set and hyperparameter configuration using both traditional and
geology-informed metrics. The RF and NN models generate class scores
at each depth, using the proportion of tree votes for RF and softmax
confidence scores for NN. The predicted class at each depth is the one
with the highest score. We then evaluate the sequence of predicted
classes per borehole using traditional and geology-informed metrics.

Seventy-three model setups were evaluated (Table 2) based on the
different feature sets and hyperparameter configurations. Individual
RF models typically train in under five minutes, while NN training
times vary by configuration- depending on the number of features,
hyperparameter settings, and whether early stopping was applied- and
can take up to an hour.

This study categorises metrics for evaluating model performance
into two main types: traditional metrics and geology-informed metrics
(Table 3). In our work, traditional metrics refer to standard met-
rics used in classification tasks, such as accuracy or Fl-score. While
these are useful for checking individual label predictions, they are not
suited for borehole predictions, which require interpreting vertically
ordered sequences that follow a stratigraphic structure. These metrics
do not account for the geological rationale behind a prediction, such
as the expected continuity, transitions, and spatial extent of units.
Geology-informed metrics refer to the proposed metrics in this paper,
which aim to capture essential geological aspects of model predictions.
Both traditional and geology-informed metrics can be used for overall
model evaluation and intermediate steps such as hyperparameter tun-
ing. However, no single metric can fully capture all facets of prediction
quality. Just as accuracy is complemented by metrics like the F1 score
in classification tasks, geology-informed metrics should be applied
together to provide a more comprehensive and geologically meaningful
assessment.

A key challenge in evaluating lithostratigraphic predictions is the
variability and interpretative nature of the ground truth labels. These
interpretations are based on manual labelling by an expert -typically
without a measurement of uncertainty. Therefore, discrepancies be-
tween model predictions and expert labels may not indicate errors but
rather reflect alternative geologically plausible interpretations. Recog-
nising this limitation, our geology-informed metrics assess the plausi-
bility of predictions from a broader geological perspective, providing
complementary insights beyond direct label matching.

Metrics implementation

For clarity, we introduce the notation that will be used throughout
the evaluation of the metrics. Specifically, we define B = {b;,...,by}
as the set of boreholes, where N is the total number, and i represents
a unique index of each borehole. Each borehole b, contains n; data
instances, represented as the collection:

b,~={(dj,.SA‘i,dj,S,-,dl)|j=1,...,n,~}, (6]
where d; is the depth value, and .SA‘i,dj and S, are the predicted and
ground truth classes, respectively, at depth d;. The set of all possible
stratigraphic units (i.e. classes) is denoted by C = {c¢;,...,cx}, with
K being the total number of classes. For simplicity, we denote D; =
d,....d,), S = (SA,.,dl,...,SA,.,d”’ ), and 8; = (S;4..... 5,4, ) as the
ordered vectors for depth, predicted units, and ground truth units,
respectively, for b;.

Traditional metrics

We use Accuracy, Cohen’s Kappa, Macro F1, and Weighted F1
to evaluate model performance, considering them traditional metrics
widely used in classification tasks (Naidu et al., 2023). These metrics
are defined based on a confusion matrix (Grandini et al., 2020), de-
noted as CM. The KxK confusion matrix compares predicted and actual
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Traditional and Geology-informed evaluation metrics for automated stratigraphic interpretation of boreholes.

Category Evaluation target Focus Evaluation metric
Metric name Value range Geologic rational
Classification Accuracy [0,1] N/A
Traditional Overall agreement Cohen’s Kappa [-1,1] N/A
metrics model fit Class balance F1-Score [0,1] N/A
Weighted F1-Score [0,1] N/A
Unit top Mean Absolute Error Top [0, o) (m) Predicted top units should align with the
expected depth of the units
Position: Unit Mean Absolute Error [0, o) (m) Predicted centre of units should align
Vertical centre Centre with the ground truth, reflecting both the
Alignment expected vertical position and thickness of
the units
Unit Mean Absolute Error [0, o) (m) Predicted bottom units should align with
Geology- Bottom Bottom the expected depth
informed X - -
. Unit Match F1-Score [0,1] Predicted units should correspond to
metrics Extent: those observed in the borehole
Geographical Unit presence
range of units Unit Extent Validation [0,1] Predicted units should appear only within
Score their expected geographical extent
Transition Match [0,1] Predicted transitions should match
F1-Score expected geological transitions in borehole
Sequence: Unit’s transitions Transition Validation [0,1] Predicted transitions should be
Stratigraphic Score geologically plausible, based on known
Order stratigraphic relationships
Complete Sequence Alignment [0,1] Predicted sequences should align with
sequence Score ground truth sequence

class labels, with diagonal entries representing correct predictions.
Values in the CM are defined as:

CMy; = Z Z 1 (Si,d] = ASia, = ‘31) , 2

N n
i=1

j=1
where k,/ € {1, ..., K}, with K being the total number of target features
(classes), and 1(-) denoting an indicator function.

These metrics evaluate different aspects of the model’s perfor-
mance. Accuracy measures the proportion of correct predictions, Co-
hen’s Kappa considers the likelihood of agreement by chance, and the
Macro and Weighted F1 scores assess class-wise performance, with the

latter accounting for class distribution. Details on their computation
can be found in Grandini et al. (2020).

Proposed geology-informed metrics

We assess model performance based on geological plausibility, using
three metric sets — position, extent, and sequence (Table 3) — to
evaluate the vertical placement, geographical extent, and sequential
relationships of stratigraphic units. Unlike traditional metrics, which
compare individual data instances, our approach analyses the entire
boreholes as groups of data instances. This methodology aligns with
geologists’ labelling results interpretation and offers evaluation criteria
reflecting geological reasoning.

For this reason, we define operations for ordered vectors and sets,
introducing notations necessary for evaluating the sequential nature
of stratigraphic unit predictions. The function U(-) identifies unique
elements in an ordered vector, such that for S;, U(S;) = {Sia | Sia; #
Sia, Vi # ks where no repetitions occur. The function Seq(-) denotes
the ordered sequence of stratigraphic units in a borehole, expressed as
8eq(S) = 57 = (S, JU{Sig, | Sia, # Sigy;oJ = 2.-m). The sequence
S = (s1,...,5,) consists of g ordered elements, where non-consecutive
repetition is allowed, and the original notation S;q, 1O longer applies to
the elements of the sequence. Finally, Transitions(-) represents the set
of transitions between consecutive elements in a sequence, such that
Transitions(?l-) = V?,- ={(sjs5541) | 5j55;41 € §,~,j =1,...,g-1}.

Position metrics

The position metrics for a collection of boreholes B are calculated
by computing the mean absolute error (MAE) between the predicted
and ground truth values of the top, centre, and bottom positions of the
stratigraphic units in each borehole. For each borehole i, we first define
M; as the intersection of the unique predicted U(S,) and ground truth
U (S;) values where comparison is possible. For the MAE-Top metric, M,
excludes the topmost units in both U(S;) and U(S,-), while for the MAE-
bottom position, M; excludes the bottommost units. The topmost and
bottommost units are excluded because borehole limits are arbitrary
and may not align with the top or bottom of a unit. Fig. 2 illustrates
this process using an example borehole, comparing the predicted and
true sequences alongside the computed top, centre, and bottom position
metrics. The metrics are computed as follows:

N
MAE-Top = + > Imax(z(S;,) — max(Z(S; ). 3
i=1 |M1| i=1 ceM;

N
MAE-Centre = — 1 z 2 |median(Z(S; ,)) — median(Z(S; )|,
i=1 |M:| i=1 ceM;
©)]
1 N
MAE-Top = ————— Y ) |min(Z($, ) - min(Z(S; ), (5)
Z;:l |M1| i=1 ceM;

with N representing the total number of boreholes in the dataset and
¢ representing a class value in the intersection set M;. |M;| is the
cardinality of the intersection set. Z(S;.) and Z(S; ) represent the set
of depth values for the cth unit in borehole b;. Specifically, Z(S;.) =
;1S4 =cj=1....n}, where n; is the number of depth values in
borehole b;.

Geographical extent metrics

We implemented two metrics to evaluate whether predictions reflect
the spatial extent of geological units defined by deposition processes
and geological structures (Fig. 3).
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Fig. 2. Position metrics calculation for Borehole b,. The Ground Truth S, and Prediction S'Q shows values of an example borehole with five geological units (A,
B, C, D, and E) every 0.5 m. For the ground truth S, (left), the sequence contains the unique units U(S,) = {4, B, C, D}, the ordered sequence ST = (A, B,C, D) and
the transitions VST = {(A, B),(B,C),(C, D)}. For the prediction S‘q (right), the sequence contains the unique units U(S‘q) = {A, B,C, D, E}, the ordered sequence

S‘q =(A,B,C,D,C, E) and the transitions VS‘q = {(A, B),(B,C),(C, D),(D,C),(C, E)}. The middle panel illustrates the computed position metrics for each unit in
the sequence: unit top, unit centre, and unit bottom, which quantify the positional differences between the predicted and true occurrences of each unit in the

borehole. For notation and definitions, see Section 2.2.

The first metric, the Unit Match - F1 Score (UM-F1), evaluates the
agreement between the unique predicted units U(S) and the ground
truth units U(S). The UM-F1 score is computed as follows:

N 20US) N US|

UM-F1 = L Z _ - —
N & 21US) nUGSHI+ [US)\US)| + [USH\US)

The second metric, the Unit Extent Validation Score (UEVS), as-
sesses the alignment of predicted formations with the expected extent
derived from external geological maps. Unlike UM-F1, UEVS does
not rely on ground truth data, but instead compares with established
geological knowledge of the area. The UEVS is computed as:

N A
Uuws)nc;
UEVS = 1 2 M @
NS us)l
with C; representing the set of expected geological units in borehole B,
based on external sources.

Sequence metrics
The sequence metrics assess the model’s ability to predict the correct
stacking order of geological units along a borehole, and whether these

predictions align with the observed or expected stratigraphic relation-
ships (Fig. 3). For this, we define the sequence of unique units along
each borehole from top to bottom.

The first metric, the Sequence Alignment Score (SAS), measures the
overall similarity between the predicted and ground truth sequences
based on the Optimal String Alignment (OSA) algorithm (Loo, 2014) de-
noted as OSA(). This algorithm calculates the minimum number of edits
needed to align two sequences (i.e. insertions, deletions, substitutions,
and adjacent transpositions).

The SAS is calculated as follows:

N - =
sas= Ly q_ 95AGSLS) ®
=1 max({[S5],185:1)
where | - | denotes the length (cardinality) of the sequence, and max()
the maximum value of a set.

Next, we introduce the Transition Match F1-Score (TM-F1), which
evaluates the model’s ability to predict correct transitions between units
based on the ground truth. The TM-F1 is calculated as follows:

TM-F1
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Fig. 3. Extent and sequence metrics calculation for Borehole b,. This figure’s ground truth and prediction sequences correspond to the example shown in Fig.
2. External geological information for borehole b, includes the set of known units in area, C, = {4, B,C, D, E, F} and the set of plausible transitions between
units, Y = {(4, B),(B,C),(C, D),(D,C),(D, E),(E, F)}. For notation and definitions, see Section 2.2.

Table 4

Model performance results for Borehole B51E0078, taken from a single test fold (unseen data). For each metric, the best value is marked in bold. Results are
based on the hyperparameter configuration with the highest mean accuracy across five-fold cross-validation, selected separately for each model type (RF or NN)
and feature set. The borehole shown comes from one of the cross-validation test folds. Accuracy: Accuracy, Kappa: Cohen’s Kappa, F1: Macro-F1 Score, W-F1:
Weighted F1, UM-F1: Unit Match - F1 Score, UEVS: Unit Extent Validation Score, SAS: Sequential Alignment Score, TM-F1: Transition Match - F1 Score, TVS:
Transition Validation Score, MAE-Top: Mean Absolute Error - Top, MAE-Centre: Mean Absolute Error Centre, MAE-Bottom: Mean Absolute Error Bottom.

Model Traditional metrics Extent metrics Sequence metrics Position metrics Mean Absolute
Error (m)
Accuracy Kappa F1 W-F1 UM-F1 UEVS SAS TM-F1 TVS Top Centre Bottom

NN1 0.76 0.71 0.66 0.77 0.93 1.00 0.88 0.92 1.00 12.00 8.43 8.43
RF1 0.60 0.53 0.54 0.55 0.86 1.00 0.86 0.83 1.00 6.50 12.25 12.25
NN2 0.60 0.52 0.53 0.51 0.83 1.00 0.26 0.50 0.61 6.50 15.30 20.11
RF2 0.37 0.23 0.26 0.38 0.86 0.86 0.06 0.07 0.40 80.90 61.21 67.90
NN3 0.77 0.72 0.64 0.78 0.93 1.00 0.50 0.71 0.69 19.17 11.25 11.07
RF3 0.77 0.73 0.66 0.80 0.93 1.00 0.44 0.71 0.73 13.92 7.79 7.84

N & = . . . .

1 21U(VS) nU(VS)| test set of one of the five cross-validation folds (Fig. 5) and compare

TN 4 = — = — — . traditional and geology-informed metrics (Table 4). For each model (RF

=1 21UVSE) nUNS)| + [UVS)N\UVS)] + [UNVSNUVS) geoosy

9

Finally, the Transition Validation Score (TVS) evaluates predicted

transitions against a predefined set of observed transitions (Y) based

on geological knowledge of the study area. Transitions outside this set
are considered geologically implausible.

Tvs=(

3. Results

N

>

i=1

1

— 10)
U(VS“,.)'

U(vs)n Y‘) .
pon

In this section, we describe two main aspects of the analysis. First,
we examine the overall performance of the Random Forest (RF) and
Neural Network (NN) models. We focus on differences between model
types (RF, NN) and feature sets (1, 2, and 3, Table 1). Second, we
evaluate the impact of different hyperparameter configurations for each
model using traditional and geology-informed metrics.

Before comparing model performance, we outline the process for
assigning lithostratigraphic units by depth. In RF models, the predicted
unit is the class with the highest vote share among trees. In NN models,
it is the class with the highest softmax activation. We treat softmax
outputs as vote proportions, reflecting the model’s relative support for
each class. Though not actual probabilities, this normalised score can
be viewed as a confidence distribution over classes. Fig. 4 shows this
process for two predictions from a single borehole.

To illustrate the performance differences between different models
on unseen data, we show a prediction for a single borehole from the

or NN) and feature set (Set 1, 2, or 3), hyperparameter configurations
were selected based on the highest mean accuracy across five-fold cross-
validation. Despite similar traditional metric values for NN1, NN3, and
RF3, sequence metrics favour RF1 and NN1 in this single-borehole
evaluation. Models using lithological features (Sets 2 and 3) exhibit
more implausible transitions, characterised by lower SAS and TVS
values. Common misclassifications involve unit interbedding, which is
unexpected at the formation scale in the Roer Valley Graben. While fil-
tering (e.g. removing single-occurrence units) can reduce some errors,
others require expert review (e.g. the missing Oosterhout Formation in
RF1 prediction).

3.1. Overall model performance

Unlike the single-borehole example above, the following analysis
evaluates model performance averaged across all five cross-validation
folds. The values presented in the text and figures represent the mean
and standard deviation calculated from these folds. Key observations
are summarised below, with Fig. 6 showing the best-performing models
based on their respective optimal hyperparameter configurations for
each model (RF or NN) and feature set per metric.

Traditional metrics for model evaluation show comparable perfor-
mance between RF and NN models, with RF1 and RF3 demonstrating
a slight advantage (Fig. 6). The best models achieve an accuracy of
0.82 + 0.005 (mean =+ standard deviation) (RF1), 0.79 + 0.01 in
Cohen’s Kappa (RF1), and 0.70 + 0.02 for Fl-score (RF3), indicating
good agreement with the ground truth.

While RF1 and RF3 outperform NN models across traditional met-
rics, the differences are slight and within the standard deviation (e.g.
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Fig. 4. Voting proportions for lithostratigraphic unit predictions in borehole B51E0078 using Neural Network models NN1 and NN3. NN1 (64 LSTM units, one
head in the attention layer, 0.01 learning rate, location features only) and NN3 (64 LSTM units, four heads in the attention layer, 0.001 learning rate, all features)
were the best-performing configurations based on average accuracy across five-fold cross-validation. At each depth, bar widths represent softmax-derived scores
for each unit. This value is interpreted as the model’s relative support for each class. The predicted class corresponds to the unit with the highest score at each
depth. This comparison illustrates how architectural and input differences influence class support distributions. In the figure, all formal ‘NU’ (Upper North Sea
Group) formation prefixes have been omitted for clarity. Lithology notation: GY: Gyttja, K: Clay, L: Loam, V: Peat, ZMFO: Sand Median class moderately fine,
ZMGO: Sand Median class moderately coarse, ZUGO: Sand Median class extremely coarse, ZZFO: Sand Median class extremely fine, ZZGO: Sand Median class

very coarse.

accuracy and Cohen’s kappa). The RF1 and RF3 models show more
significant differences in the F1 scores, indicating more balanced pre-
dictions across under-represented classes. This is supported by the
weighted F1-score, showing that model differences are less pronounced
after accounting for class distribution. For models using only litholog-
ical features (Set 2), the RF2 model consistently underperforms across
all metrics by a large margin. In contrast, the NN2 model achieves
more consistent results, though it underperforms models using location
features (Set 1) or all features (Set 3). Overall, differences in traditional
metrics are noticeable but not substantial enough to favour one model
type universally, except for Fl-scores, where RF1 and RF3 achieve
better values.

In contrast, sequence metrics reveal more pronounced differences
among models. These metrics evaluate predictions as sequences of
units, with some models producing results that more closely resem-
ble the expected order of geological units. As a result, models with
similar values for traditional metrics show distinct differences in their
sequential performance. For example, the RF3 model, which is the
best-performing model using traditional metrics, ranks fifth in both
the Sequence Alignment Score (SAS) and the Transition Validation
Score (TVS). Notably, the differences between the RF1 and RF3 mod-
els are more pronounced in the TVS, resulting in a proportion of
0.66 + 0.03 of predicted transitions matching known stratigraphic

relationships for the RF3 model. In contrast, the RF1 model achieves
a value of 0.92 + 0.01. Similarly, the NN1 and NN3 outperform the
RF3 model in all sequence metrics, with the NN1 being consistently
the best-performing model across these metrics.

These differences are further illustrated in Fig. 7, which compares
classification and transition matrix outputs for the NN3 (64 LSTM units,
one-head multi-head attention layer, learning rate = 0.001) and RF3
(mtry = 60) models. Both predictions achieve similar accuracy on a
single test fold (0.85), and their class-level prediction patterns are
broadly comparable. RF3 outperforms NN3 on the rarest, shallowest
units (<1% of the dataset), which NN3 mostly misses. However, this
similarity in classification outcomes contrasts with the more appar-
ent distinction shown by the transition matrices, which summarise
predicted stratigraphic transitions and compare them to the plausible
transitions (i.e. established geological knowledge) defined for the TVS.
While both models show similar per-class accuracy for the Breda &
Ville Formations (0.78), RF3 frequently places younger units beneath
it (e.g. Oosterhout, Inden, or Kiezelodlite formations), even though the
Breda & Ville Formations are the expected base of the sequence at this
depth range. Misclassifications between the Breda & Ville Formations
and the Oosterhout formation, as with many other transitions sum-
marised in the transition matrix, likely reflect lithological variability
at their contact, where the lower boundary of Oosterhout Formation is
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Fig. 5. Lithostratigraphic interpretation of borehole B5S1E0078. This figure compares the ground-truth interpretation (from the test set of one fold out of five
in the stratified group cross-validation) with predictions from six models. Each model uses its best hyperparameter configuration, based on the highest average
accuracy across all five folds. In the figure, all formal ‘NU’ (Upper North Sea Group) formation prefixes have been omitted for clarity. Lithology notation: GY:
Gyttja, K: Clay, L: Loam, V: Peat, ZMFO: Sand Median class moderately fine, ZMGO: Sand Median class moderately coarse, ZUGO: Sand Median class extremely
coarse, ZZFO: Sand Median class extremely fine, ZZGO: Sand Median class very coarse.
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Fig. 6. Model comparison across metrics. The selected models correspond to the hyperparameter configuration with the best metric value per model and feature
set. Each value represents the mean across five-fold cross-validation. Error bars indicate one standard deviation above and below the mean. Acc: Accuracy, Kappa:
Cohen’s Kappa, F1: Macro F1-Score, W-F1: Weighted F1-Score, UM-F1: Unit Match F1-Score, UEVS: Unit Extent Validation Score, SAS: Sequence Alignment Score,
TM-F1: Transition Match F1-Score, TVS: Transition Validation Score, MAE-Top: Mean Absolute Error - Top, MAE-Centre: Mean Absolute Error - Centre, MAE-

Bottom: Mean Absolute Error - Bottom.

more gradual when its base is sandier (TNO-GDN, 2020). These implau-
sible transitions are less common in the NN3 predictions, highlighting
how sequence metrics capture structural inconsistencies that traditional
metrics overlook.

Extent and Position metrics show similar results across all models
except the RF2 model. On the one hand, extent metrics show a similar
pattern as the accuracy and Cohen’s kappa metrics, with the RF1 and
RF3 models narrowly outperforming the other models. On the other
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Fig. 7. Confusion matrices (top row) and transition matrices (bottom row) for the ideal case (left), Random Forest (RF3, centre), and Neural Network (NN3, right)
predictions on the test set of a representative fold from five-fold cross-validation. Confusion matrices show classification accuracy per formation, with the ideal case
displaying a perfect diagonal. Transition matrices illustrate stratigraphic transitions: the ideal case reflects expected transitions based on established geological
knowledge (left), compared with RF3 (centre) and NN3 (right) predictions. The x-axis represents the ‘current’ formation, and the y-axis the ‘next’ formation
downward in the borehole (i.e. stratigraphically from top to bottom). NN3 predictions more closely align with geologically plausible transitions, exhibiting fewer
unlikely contacts (e.g. the Breda and Ville Formations directly above the Boxtel Formation). RF3 (mtry = 60) and NN3 (64 LSTM units, one head in the attention
layer, learning rate 0.001) represent the best-performing configurations based on the highest Transition validation score (TVS). In the figure, all formal ‘NU’

(Upper North Sea Group) formation prefixes have been omitted for clarity.

hand, position metrics show that all models achieve similar results in
determining the top, centre, and bottom of a unit except the RF2 model.
Thus, the predicted unit position error is around 5 m for the centre
and bottom of a unit and 7.5 m for the top. The NN2 model, which
lacks location features, performs similarly to other models in position
metrics, suggesting that the LSTM units and attention layers capture
spatial information through sequence length.

3.2. Results by hyperparameter configuration

Random forest

Model evaluation across hyperparameter configurations shows that,
for all RF models, tuning hyperparameters can improve both traditional
and geology-informed metrics. The degree of improvement varies by

10

metric and feature set (Fig. 8). Generally, for each feature set, all
metrics respond similarly to changes in the mtry hyperparameter, with
best results achieved using the same or similar values.

For the RF1 configuration (location features only), traditional met-
rics indicate the best results with an mtry value of 1. This setup
yields up to 0.82 + 0.005 accuracy and 0.67 + 0.01 Fl-score. Position
metrics also favour an mtry value of 1, though other values fall within
the standard deviation. In contrast, sequence metrics improve slightly
with an mtry of 2. Extent metrics perform best with an mtry of 1 or
2, depending on whether comparisons are made to the ground truth
(UM-F1) or external data (UEVS).

The RF2 configuration (lithological features only) consistently per-
forms worse across all metrics. Traditional metrics peak with an mtry
value of 10, achieving an accuracy of up to 0.34 + 0.09 and an F1-score
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Fig. 8. Model performance for all Random Forest models by hyperparameter configuration. Each value represents the mean across five-fold cross-validation. Error
bars indicate one standard deviation above and below the mean. The best hyperparameter configuration per metric is highlighted.

of 0.19 + 0.06. Adjusting this hyperparameter has little effect here, as
most metrics show worse or unchanged performance with increasing
values.

In RF3 (combining all features), the optimal mtry value depends
on the evaluation metric. Higher mtry values generally lead to better
results. Traditional metrics perform best with an mtry value of 40 or
50, while sequence metrics peak at a value of 50 or 60. The optimal
RF3 configuration achieves an accuracy of up to 0.81 + 0.03 and an
Fl-score of 0.70 + 0.02. Extent metrics vary more, with optimal results
at an mtry value of 30 or 50, depending on whether the comparison is
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to the ground truth (UM-F1) or external sources (UEVS). Overall, most
metrics improve with higher mtry, especially between 40 and 50.

Neural networks

Hyperparameter tuning for the NN models (NN1, NN2, NN3) yields
apparent performance differences between best and worst configura-
tions per metric (Fig. 9). However, similar results across settings make
it difficult to pinpoint a single best configuration. For NN2 and NN3, the
effects of hyperparameters are more pronounced, with better perfor-
mance associated with a higher number of LSTM units, a lower learning
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Fig. 9. Model performance for all Neural Network models by hyperparameter configuration. Each value represents the mean across five-fold cross-validation.
Error bars indicate one standard deviation above and below the mean. The best hyperparameter configuration per metric is highlighted.

rate, and more heads in the multi-head attention layer, particularly for
sequence metrics.

For the NN1 configuration, there is minimal variation across met-
rics, making it more challenging to determine the optimal setup. Tra-
ditional metrics are similar across configurations, with peak values of
accuracy (0.81 + 0.02), Cohen’s kappa (0.78 + 0.03), and weighted F1
(0.8 + 0.02) achieved using a learning rate of 0.01, 64 LSTM units, and
one attention head. This suggests limited sensitivity to hyperparame-
ters, except the F1-Score, which shows a preference for a learning rate
of 0.01. Geology-informed metrics show a similar pattern, with modest
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gains from a 0.01 learning rate and minimal impact from LSTM units
or number of attention heads.

The NN2 configuration exhibits more apparent performance shifts
across configurations. The best accuracy (0.74 + 0.01) comes from
a learning rate of 0.001, 64 LSTM units, and eight heads, which is
also optimal for most other traditional metrics (except overall F1,
where differences are minor). In general, increasing the number of
LSTM units and attention heads yields slight improvements. Geology-
informed metrics (e.g. SAS, TVS) are more sensitive, especially to the
learning rate, favouring a value of 0.001. Sequence and position metrics
consistently perform best with a learning rate of 0.001, 64 LSTM units,
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and one head. These results suggest benefits from a more complex
architecture (i.e. more LSTM units) and a lower learning rate.

For the NN3 configuration, results vary more by metric. The best
accuracy (0.79 + 0.01) is achieved with a learning rate of 0.01, 64
LSTM units, and four heads in the attention layer. Increasing the
number of LSTM units and the number of heads in the attention
layer improves performance across traditional metrics. For geology-
informed metrics, extent and position scores are stable across settings,
but sequence metrics strongly favour a learning rate of 0.001.

4. Discussion

This study demonstrates how geology-informed metrics enhance
model evaluation for predicting lithostratigraphic units. These metrics
integrate geological principles and reflect how geologists would eval-
uate borehole interpretations. Specifically, geology-informed metrics
help distinguish models that produce geologically plausible results from
those that excel only under traditional evaluation. We demonstrate
that traditional and geology-informed metrics yield different best-
performing models, underscoring the importance of evaluation metrics.
In this section, we discuss how these metrics reflect the strengths and
limitations of different models, evaluate the implications for geological
modelling and identify potential avenues for future research.

The traditional and geology-informed metrics proposed in this study
offer valuable insights into the predictions made by Random For-
est (RF) and Neural Network (NN) models. While traditional metrics
show that both models can achieve similar classification performance,
the geology-informed sequence metrics reveal the superiority of the
NN in producing predictions that align more closely with geological
principles. Neural Networks can learn complex relationships between
features, resulting in fewer transitions between units and more con-
nected units, consistent with geological interpretations. For instance,
although similar unique units are predicted per borehole across models
(as indicated by the Unit Match - F1 score), NN models distribute these
units more consistently, adhering more closely to geological princi-
ples. This suggests that the proposed metrics -especially the sequence
metrics- provide a more nuanced evaluation of model predictions by
incorporating the sequential nature of lithostratigraphic units, which
traditional metrics overlook.

Feature selection also affects model performance with metrics
favouring different feature sets. For example, models using all features
(RF3, NN3) generally achieve higher scores on traditional metrics.
In contrast, models with lithological features (RF2, NN2) tend to
underperform across most metrics. For sequence metrics, models using
only location features (RF1, NN1) often outperform those incorporating
all features (RF3, NN3). This strong performance of the position-
only models across the sequence metrics suggests that spatial location
alone can provide substantial predictive power in our study area,
where stratigraphic relationships are relatively consistent and laterally
continuous (Fig. 1 B & D). This pattern is illustrated by comparing
predicted class voting proportions by depth (Fig. 4), showing how
model behaviour varies with different input features. For NN1, the
voting proportion changes smoothly with depth, reflecting a grad-
ual interpolation between known stratigraphic positions. In contrast,
NN3 exhibits sharper transitions in voting proportions, suggesting that
including lithological features enables the model to respond more
strongly to local variations in the input features (e.g. mean sand
size). While this may increase stratigraphic errors, it may also reflect
greater confidence in stratigraphic boundary positions compared to
the smoother transitions of the spatial-only model. In addition to the
relatively simple geological complexity of the area, the strong class
imbalance likely reinforces this effect, as the most frequent units
(e.g. Boxtel, Sterksel, Peize & Waalre, and Kiezelodlite formations)
can already be predicted with high confidence based on spatial trends
alone (Fig. 1. B & D). In areas with significant lateral facies changes,
unconformities, or structural deformation, we expect spatial location
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to become a weaker predictor of stratigraphy, thereby reducing the
geological plausibility of interpolation-based predictions.

The results also reveal that NN and RF models integrate sequential
information differently into the prediction of lithostratigraphic units.
For instance, the NN2 model can capture complex relationships be-
tween lithological features without directly relying on location features,
significantly outperforming RF2 across all metrics and achieving sim-
ilar, yet lower, results than other models that incorporate location
information. These results demonstrate that a Neural Network with
components designed to process sequential data (e.g. Long-Short-Term
Memory) can more effectively incorporate lithological data to produce
plausible geological predictions than a Random Forest model.

Implications for geological modelling

Machine learning models for interpreting borehole data provide an
alternative to probabilistic approaches, such as Markov chain mod-
els (e.g. Yin et al., 2022; Eidsvik et al., 2004), which explicitly encode
stratigraphic transitions through transition matrices. These matrices
reflect assumptions about probability distributions derived from ob-
served data and incorporate additional constraints such as stationarity
and fixed-order dependencies. In contrast, ML models learn complex,
potentially non-linear and high-dimensional relationship patterns di-
rectly from the data without prior assumptions (Qi and Carr, 2006).
A common limitation of non-probabilistic approaches, including many
ML models (e.g. Tokpanov et al., 2020; Wedge et al., 2019), is that
they may produce geologically implausible outputs (e.g. implausible
transitions between units) if the model does not incorporate geological
context. In our case study, where strict stratigraphic rules constrain
the vertical order of lithostratigraphic units, our Neural Network uses
information from neighbouring depths to better capture this structure,
resulting in predictions that are often geologically plausible, even with-
out explicit post-processing. While probabilistic approaches have the
advantage of encoding plausible stratigraphic transitions, our domain-
oriented evaluation of borehole labelling suggests that well-designed
ML models — particularly Neural Networks with appropriate architec-
ture, set of features, and hyperparameters — can achieve high accuracy
while also partially capturing stratigraphic relationships.

The varying performance across geology-informed metrics for mod-
els that appear similar based on traditional metrics suggests that fun-
damental aspects of subsurface structure might be overlooked during
model evaluation. Although a post-processing step can correct some
interpretation errors in the case of lithostratigraphic units, other less
restrictive yet sequential problems, such as lithofacies predictions,
lack obvious post-processing solutions. As a result, minor performance
differences between models can translate into significant changes in the
predicted subsurface structure. For instance, hydrogeological models
are sensitive to the distribution and connectivity of different units
(e.g. sandy versus shaly sediment sequences), which, as shown in
this study, vary across seemingly similar models based on traditional
metrics. Therefore, geology-informed metrics can help identify models
more likely to produce geologically plausible predictions.

For nationwide 3D subsurface models, such as the Digital Geological
Model (DGM) (Gunnink et al., 2013), which uses interpreted boreholes
as input for spatial interpolation, geology-informed metrics can help
identify predictions aligned with known geological characteristics of
the area. The TNO-Geological Survey of the Netherlands manages a
dataset of over 600 000 boreholes. However, only a small subset (5%)
is typically used for the DGV, illustrating the vast scale of potential
data available. With many boreholes lacking expert interpretations,
automated and semi-automated methods that minimise manual cor-
rections are crucial to increasing the number of usable boreholes for
three-dimensional geological modelling. Therefore, automated work-
flows should prioritise adherence to known geological relationships in
the area (e.g. stratigraphic relationships) over maximising classification
performance using traditional metrics. The metrics proposed in this
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study can help identify prediction models, feature sets, and hyperpa-
rameter configurations that produce outputs more closely aligned with
geological principles, thereby reducing the need for post-processing
tasks.

Although beyond the scope of this study, our results suggest using
domain-specific metrics as loss functions in model training to enhance
performance by optimising the geological plausibility of predictions.
Despite the ability of Neural Networks to learn sequential relationships,
our experiments show that even models outperforming on sequence
metrics do not fully capture the relatively simple stratigraphic re-
lationships of the area. Standard convex loss functions, such as the
categorical cross-entropy used in our case study, may not be optimal
given the inherent interpretative uncertainty of stratigraphic labels and
the importance of sequential relationships. This results in predictions
that incorporate spatial relationships not observed in the training data
and that would be immediately flagged as geologically implausible by
an expert. Therefore, one promising direction is the use of loss func-
tions tailored to geological interpretation tasks. For instance, Hillier
et al. (2023) apply this idea to a three-dimensional interpolation task,
showing that stratigraphic consistency can be enforced during model
training, which could be adapted for automated borehole interpreta-
tion. In parallel, robust loss functions have been developed to handle
categorical label noise, such as those based on smooth non-convex for-
mulations for large-margin classification (Feng et al., 2016), providing
a complementary strategy to address the label noise and uncertainty in-
herent in stratigraphic interpretation data. Together, these approaches
suggest that better-aligned loss functions could improve the geological
plausibility of automated predictions.

Limitations

Implementing the proposed geology-informed metrics for evaluating
automated lithostratigraphic interpretations of boreholes tested in this
work has several limitations.

First and foremost, most metrics tested in this study rely on the
assumption that the provided labels represent a ground truth. How-
ever, lithostratigraphic labels are based on expert interpretations and
have an inherent uncertainty that is not systematically quantified. The
interpretative nature of the task introduces label noise and imposes a
performance ceiling on model evaluation. For instance, the interpre-
tative variability of experts defining formation boundaries has been
quantified in a limited number of studies, which report errors in inter-
preted boundary positions in cross-section and borehole experiments
in the UK ranging from + 7 to = 18 m across different sites, with
standard deviations between 2.7 and 6.0 m depending on geological
context and interpreter-specific factors (Randle et al., 2018; Lark et al.,
2014). This implies automated interpretations may already fall within
the expected expert variability. However, metrics relying on direct
ground-truth comparisons still penalise any deviation from reference
labels.

While interpretative variability influences the assumptions underly-
ing most evaluation metrics, we expect geologists to agree on broader
geological concepts, such as those tested in the proposed geology-
informed metrics. For example, experts may differ on the precise lo-
cation of certain stratigraphic boundaries, but interpretations are ex-
pected to remain consistent with an established stratigraphic frame-
work. Therefore, any ML-based prediction should be evaluated not only
against individual labels but also against this framework. In this con-
text, metrics such as the Transition Validation Score (TVS) are expected
to be less sensitive to label noise and to offer a higher performance
ceiling. Although we did not explicitly estimate the performance ceiling
of these metrics in this study area, we consider that the proposed
metrics, particularly those that do not incorporate ground-truth com-
parisons, offer valuable tools for distinguishing models that produce
plausible interpretations. Formal quantification of the performance
ceiling represents an important avenue for future research.
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Second, the case study focuses on the Roer Valley Graben, char-
acterised by relatively simple stratigraphic relationships that are not
generalisable to other geological settings. Therefore, the metrics’ abil-
ity to distinguish plausible geological predictions might not transfer
directly to more complex contexts. For example, sequential metrics
such as the Transition Validation Score, which incorporates external
geological information (Fig. 7), may be less restrictive in other geolog-
ical settings. In our scenario, 15 stratigraphic units define 225 possible
transitions between lithostratigraphic units, but only 50 of these have
been observed. While more complex geological areas, such as faulted
or tilted regions or areas with varying degrees of erosive contacts,
would likely contain additional plausible transitions, we expect the
set of implausible transitions to remain significant, allowing sequence
metrics to remain effective. These assumptions may not hold for other
classification targets where ordering is less constrained by established
sequences (e.g. lithologies or lithofacies). Testing the proposed metrics
in other geological settings, particularly across basins, would offer
valuable insights.

Third, while our study addressed aspects of model uncertainty
via five-fold cross-validation, capturing uncertainty related to data
sampling and model variability, it does not quantify the geological un-
certainty of the predictions. Geological uncertainty is addressed in some
probabilistic approaches for labelling borehole data using Bayesian
methods, which provide posterior probability distributions reflecting
uncertainty in stratigraphic interpretations (e.g. Yin et al., 2022; Ei-
dsvik et al., 2004). However, this aspect is not captured by our current
evaluation. Although Neural Network predictions can incorporate un-
certainty estimation methods to capture predictive uncertainty (e.g. Gal
and Ghahramani, 2016; Lakshminarayanan et al., 2017), our geology-
informed metrics evaluate predictions based on the most likely lithos-
tratigraphic class at each depth. Therefore, these metrics assess model
performance using class assignments rather than incorporating the full
probabilistic distribution of predictions. Incorporating explicit geolog-
ical uncertainty quantification into Neural network models remains a
crucial direction for future research.

Fourth, the proposed metrics have inherent limitations in evaluating
predictions of lithostratigraphic units using borehole information. For
instance, position metrics cannot be computed if a unit is absent in
the prediction or ground truth. Similarly, position metrics are sensitive
to noise in predictions and the selected criteria to define a position,
affecting the detection of a unit’s top, centre, and bottom. Extent
metrics such as the Unit Extent Validation Score also have limitations
as they might only be informative for large scales where geological
units have distinct spatial distribution patterns. In contrast, sequence
metrics are only relevant for tasks where order is critical, such as
lithostratigraphic predictions, but not for other problems like facies or
physical property predictions.

Lastly, this study did not perform feature selection, which is a
standard step when dealing with large numbers of input variables. In-
stead, we intentionally evaluated model performance using predefined,
geologically meaningful feature sets: location-only (set 1), lithological-
only (set 2), and a combination of both (set 3), to compare how models
respond to different types of input information. For example, while
location-only features provided reasonable predictions, lithological fea-
tures showed promising results with the Neural Network (NN2) versus
the RF models. This approach allowed us to assess the relative impor-
tance of spatial versus lithological information rather than optimising
feature subsets through statistical methods. Nonetheless, the geology-
informed metrics developed here provide a valuable foundation for
future workflows that could incorporate geological intuition into for-
mal feature selection, potentially identifying the most critical features
improving predictions.

Despite the limitations, the geology-informed metrics proposed in
this study provide valuable insights into model performance by em-
phasising geological aspects that traditional metrics may overlook.
Although further work is needed to assess their generalisability to other
geological settings and prediction tasks, this use case illustrates the
potential of these metrics for evaluating the geological plausibility of
ML-generated borehole interpretations.



S. Garzon et al.

5. Conclusion

In this study, we presented a set of geology-informed metrics to
evaluate the performance of automated prediction models for lithos-
tratigraphic borehole interpretation. To illustrate their usefulness, we
applied the metrics to two distinct model types — Random Forests
and Neural Networks — using a case study in the Roer Valley Graben.
The results show that geology-informed metrics, particularly sequence
metrics, capture significant differences among models that traditional
metrics overlook. While Neural Networks are expected to excel in
sequential tasks, our case study shows that differences emerge only
when evaluated with metrics aligned to the task’s sequential nature.
The proposed metrics provide an informative and complementary per-
spective to traditional metrics, ultimately enabling us to quantify the
geological plausibility of model predictions.

Our findings also underscore the value of domain-specific metrics
to reveal performance advantages. In our case study, adhering to
stratigraphic order is a fundamental aspect of the prediction task.
Incorporating these metrics during training could help geologists iden-
tify models that produce more geologically plausible predictions. This
approach reduces the need for post-processing, simplifying automated
borehole interpretation. Ultimately, this would increase the number of
borehole interpretations integrated into three-dimensional subsurface
models. Future work will extend the application of these metrics in
other sedimentary basins and explore their integration as loss functions
in Machine learning models to further improve the interpretation of
lithostratigraphic units from borehole data.
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