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 A B S T R A C T

Stratigraphic interpretation of borehole data is a fundamental aspect of subsurface geological models, providing 
critical insights into the distribution of stratigraphic units. However, expert interpretation of all available 
borehole data is impractical for large-scale regional mapping involving thousands of boreholes. Automated 
interpretations using machine learning models can significantly increase the number of boreholes included in 
subsurface geological models. Nevertheless, these predictions must adhere to strict spatial and stratigraphic 
relationships (e.g. superposition) to ensure geological plausibility, which often requires post-processing tasks. 
Traditional evaluation metrics commonly used for general-domain classification tasks (e.g. accuracy, F1-
score) do not necessarily reflect the geological plausibility of predictions, as they fail to account for the 
sequential nature and spatial relationships inherent in borehole interpretation. To address this limitation, 
we propose and evaluate a set of geology-informed metrics that focus on three key aspects of stratigraphic 
interpretation, namely the expected geographical extent of units (extent metrics), their sequential relationships 
(sequence metrics), and their vertical positioning along boreholes (position metrics). Using a dataset of 1394 
boreholes from the Cenozoic Roer Valley Graben (southeast Netherlands), which covers ∼3000 km2 and 
includes 15 lithostratigraphic units, we demonstrate that Random Forest and Neural Network models with 
similar performance on traditional metrics (e.g. accuracy, Cohen’s kappa, and F1-score) can differ significantly 
in their ability to produce geologically plausible predictions. For example, while many model configurations 
achieve ∼75%–80% agreement between expected and predicted classes, the Neural Network models better 
capture the sequential stratigraphic relationships expected in the study area. Our results underscore the need 
for domain-specific metrics that offer a more accurate and interpretable assessment of model performance.
1. Introduction

Subsurface modelling requires collaboration between geoscientists 
and modelling specialists to ensure that large geological datasets are in-
tegrated in accordance with fundamental geological principles (Stumpf 
et al., 2021). In subsurface geological modelling, labelling of borehole 
intervals is a primary step for constructing layer models and is crucial 
for subsequent modelling stages (Thomason and Keefer, 2021; Stafleu 
et al., 2025). However, expert manual labelling of borehole intervals 
within a common stratigraphic framework is impractical and time-
consuming for regional mapping efforts involving thousands of bore-
holes. Many automated approaches have been developed to support 
borehole interpretation to predict geologically meaningful categories 
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along boreholes, such as lithostratigraphic units and lithofacies, whose 
vertical order respects stratigraphic constraints. These methods in-
corporate stratigraphic relationships and geological knowledge either 
during prediction (e.g. Markov chains) (Yin et al., 2022; Eidsvik et al., 
2004), through rule-based enforcement (Stafleu et al., 2025), or via 
post-processing (Fullagar et al., 2004; Tokpanov et al., 2020; Wedge 
et al., 2019). While such methods can increase data density for 3D 
subsurface models, as in the Dutch GeoTOP model (Stafleu et al., 
2011), which integrates  20 times more boreholes than the Digital 
Geological Model (Gunnink et al., 2013), they can result in complex 
and time-consuming workflows and post-processing tasks, which can 
account for up to 50% of the model construction time (Stafleu et al., 
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2021). Machine learning (ML) models are increasingly adopted to 
support and streamline borehole interpretation in subsurface mod-
elling for both regression and classification tasks (Bhattacharya, 2021). 
These models provide a flexible approach to learning from training 
data, with the potential to scale up automatic geological interpretation 
across large datasets. However, conducting a geology-oriented eval-
uation of ML-generated predictions, informed by expert knowledge, 
remains challenging.

The evaluation of machine learning model outputs often relies on 
general-purpose ML metrics that fail to capture critical aspects of 
geological problems. For instance, classification models utilise met-
rics derived from the confusion matrix (Grandini et al., 2020) and 
regression tasks employ mean absolute error (MAE) or root mean 
squared error (RMSE) (Botchkarev, 2019). In both cases, borehole 
interpretations are evaluated pointwise (i.e. at each depth) ignoring 
the sequential and hierarchical relationships that are fundamental to 
geological problems. Studies automating the labelling of geological 
units across dozens to hundreds of boreholes, such as those by Qi 
and Carr (2006), Tokpanov et al. (2020), and Yang et al. (2023), 
have achieved ∼80%–90% accuracy in the predicted labels. However, 
even when model predictions match the ground truth, post-processing 
is necessary to ensure predictions respect basic stratigraphic relation-
ships. These examples underscore the need for evaluation methods that 
extend beyond label agreement to assess alignment with geological 
principles and expert knowledge.

Metrics for general-purpose classification tasks, referred to here as 
traditional metrics, are widely used to evaluate the performance of 
ML models in automated borehole labelling. However, some studies 
incorporate domain-specific metrics, highlighting the need to evaluate 
geological aspects of the prediction. Domain-specific metrics include 
the Edit Distance (Zhou et al., 2019) and the MAE of Formation 
Tops (Tokpanov et al., 2020), designed to assess the sequential aspect 
and positional accuracy of stratigraphic boundaries. In general, these 
metrics are used during model validation on unseen data to assess 
performance and can also inform decisions about post-processing. For 
instance, Tokpanov et al. (2020) demonstrate that applying a post-
processing step to the predictions of a Convolutional Neural Network 
reduces the MAE of the predicted top of a formation on the validation 
set. Despite the improvement in model evaluation, the proposed metrics 
failed to incorporate some essential aspects for assessing geological 
plausibility. Moreover, since traditional metrics such as accuracy and 
F1-score are commonly used during model selection (e.g. for hyperpa-
rameter tuning), integrating metrics that reflect geological plausibility 
could help guide ML models towards geologically consistent solutions.

This study aims to overcome the limitations of traditional classifi-
cation metrics in evaluating automated borehole labelling by focusing 
on two research questions. First, what metrics can be developed to 
quantify the geological plausibility of stratigraphic unit predictions 
obtained from borehole data? To address this question, we propose 
novel geology-informed metrics incorporating geological principles, 
spatial relationships, and stratigraphic order. Second, can these metrics 
effectively differentiate between machine learning models based on 
their ability to generate geologically plausible predictions? For this 
question, we apply the proposed metrics to predictions generated by 
various standard ML models in the Roer Valley Graben (south-east 
Netherlands) using 1394 labelled boreholes, assessing their ability to 
produce plausible predictions. Rather than identifying the best model 
or workflow for lithostratigraphic labelling, this study aims to sug-
gest and test alternative methods for integrating geological plausibil-
ity into model evaluation using geology-informed metrics. Through 
this approach, we aim to establish a geology-informed framework for 
evaluating ML-generated interpretations in borehole labelling tasks.
2 
2. Methodology

This section outlines the approach to evaluating model performance 
in labelling lithostratigraphic units (i.e. units defined based on litholog-
ical characteristics) from borehole data in the south-east Netherlands. 
First, we describe the case study, comparing two model architectures, 
Random Forest and Neural Network, using various hyperparameter 
configurations, three feature sets, and a five-fold cross-validation pro-
cess. We then introduce both traditional and geology-informed metrics 
to assess model performance.

2.1. Case study: Roer Valley Graben

Study area
The Cenozoic Roer Valley Graben (RVG) is a major NW-SE trending 

fault-bounded graben system in the southeastern Netherlands
(Fig.  1.A). Tectonically related to Mesozoic and Palaeozoic structures, 
differential subsidence in the RVG began in the Late Oligocene, result-
ing in a ∼1750 m thick stratigraphic sequence (Fig.  1.B) (Geluk et al., 
1995). Mapping efforts rely on interpreting borehole data and labelling 
lithostratigraphic units along boreholes. In the RVG, the Miocene age 
Breda Formation, the oldest mapped unit in the Digital Geological 
Model (Gunnink et al., 2013) for this area, reaches depths of up to 
1200 m and marks the model’s base.

Dataset and preprocessing
This study uses borehole descriptions from the Roer Valley Graben, 

including lithological descriptions and expert lithostratigraphic inter-
pretations used in the BRO DGM v2.2, (TNO–GDN, 2014; Gunnink 
et al., 2013) BRO GeoTOP v1.6, (TNO-GDN, 2023; Stafleu et al., 2021), 
H3O-Roerdalslenk (TNO-GDN et al., 2014) and H3O-De Kempen (TNO-
GDN et al., 2017). We selected 1394 boreholes (Fig.  1.A), ∼4.6% of the 
area’s total, containing lithological descriptions and expert lithostrati-
graphic interpretations (i.e. labels). No additional quality thresholds 
(e.g. minimum depth or completeness) were applied. Borehole depths 
range from 0.5 m to 0.9 km, with ∼50% shallower than 42.5 m. 
Interval descriptions, initially at irregular depths, were discretised to 
0.5-m intervals. The dataset contains 25 features, comprising 22 macro-
scopic lithological descriptions based on the Standard Drill Description 
Method (Bosch, 2000) and three location features (Table  1). During 
preprocessing, numerical features were normalised to have zero mean 
and unit variance, and categorical features were encoded using one-hot 
encoding. Missing values in numeric features were imputed using the 
median, and categorical features using the most frequent value (mode). 
To ensure rigorous evaluation and avoid information leakage, these 
transformations were applied within the training data partitions during 
cross-validation. The classification task involves 15 lithostratigraphic 
units as target variables (Fig.  1.C), which follow the Netherlands’ strati-
graphic nomenclature (TNO-GDN, 2020; Hummelman et al., 2019). 
The units occupy distinct depth ranges, which correspond to their 
stratigraphic position in the RVG (Fig.  1. D & E). The dataset is highly 
imbalanced, with the three most abundant classes accounting for ∼50% 
of borehole intervals.

Modelling approach
To illustrate the differences between prediction models across met-

rics, we selected the Random Forest (RF) method and a Neural Network 
(NN) architecture. These models were chosen because RF and NN are 
established techniques used for classification tasks (Fernández-Delgado 
et al., 2014), and they handle sequential information in distinct ways. 
For the RF method (Breiman, 2001), we used the implementation 
from the R package ‘ranger’ (Wright and Ziegler, 2017). The NN 
was implemented using the R implementation of TensorFlow (Abadi 
et al., 2015) and consists of a ragged input layer for variable-length 
sequences (e.g. variable borehole depth), followed by a bidirectional 
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Fig. 1. (A) Map of the Roer Valley Graben area, delimited by Cenozoic faults (v. Gessel et al., 2021), with boreholes grouped by cross-validation fold. (B) SW-NE 
Cross-section of the Roer Valley Graben, as modelled in the Digital Geological Model (DGM) up to −500 m with respect to the Amsterdam Ordnance Datum 
(NAP as denoted in Dutch) showing the distribution of lithostratigraphic units in the area. Location of the cross-section indicated in panel A. (C) Proportion 
of lithostratigraphic units based on boreholes. In the figure, all formal ‘NU’ (Upper North Sea Group) formation prefixes have been omitted for clarity. AAOP: 
Made Ground, NA: Naaldwijk Formation, EC: Echteld Formation, NI: Nieuwkoop Formation, BX: Boxtel Formation, BE: Beegden Formation, KR: Kreftenheye 
Formation, ST: Sterksel Formation, SY: Stramproy Formation, PZ-WA: Peize & Waalre Formations, MS: Maasluis Formation, OO: Oosterhout Formation, KI: 
Kiezeloölite Formation, IE: Inden Formation, BR-VI: Breda & Ville Formations. TNO-GDN (2020) provides a detailed description of the Formations. (D) Mean 
depth distribution per lithostratigraphic unit with respect to NAP. (E) Depth-wise proportion of borehole coverage.
Table 1
Predictor variable descriptions and feature sets. SBB-5.1 correspond to the Standard Drill Description Method used by the TNO - 
Geological Survey of the Netherlands (TNO-GDN) (Bosch, 2000). NAP: Amsterdam Ordnance Datum.
 Variable Description Feature set
 Location  (1) Lithology  (2) All (3) 
 X coordinate Longitude (EPSG:28992) X X  
 Y coordinate Latitude (EPSG:28992) X X  
 Depth Depth with respect to NAP (m) X X  
 Main Lithology Soil Type [SBB 5.1 - L3.1] X X  
 Main colour Soil Type [SBB 5.1 - L4.3] X X  
 Presence of plants Plant fragments [True/False] X X  
 Presence of shells Shell fragments [True/False] X X  
 Presence of clay chunks Clay chunks [True/False] X X  
 Sand median Sand median [SBB 5.1 - L7.2.1] X X  
 Sand median class Sand median class [SBB 5.1 - L7.2.2] X X  
 Sand median class* Sand median class (Preprocessed) X X  
 Lime content Lime Content [SBB 5.1-L4] X X  
 Clay mixture Clay admixture [SBB 5.1-L3.3.1] X X  
 Silt admixture Silt admixture [SBB 5.1-L3.3.2] X X  
 Sand admixture Sand admixture [SBB 5.1-L3.3.3] X X  
 Gravel admixture Gravel admixture [SBB 5.1-L3.3.4] X X  
 Humus admixture Humus admixture [SBB 5.1-L3.3.5] X X  
 Shell material Shell Material [SBB 5.1-L12.2] X X  
 Consistency Consistency [SBB 5.1] X X  
 Plant residue Plant residue [SBB 5.1 - L11.1] X X  
 Organic material Organic material X X  
 Shell material Shell material X X  
 Percentage of clay Clay percentage X X  
 Mica residue Amount of mica [SBB 5.1 - L13.1] X X  
 Glauconite residue Amount of Glauconite [SBB 5.1 - L13.2.2] X X  
3 
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Table 2
Configuration of hyperparameters for the Random Forest and Neural Network models.
 Model configuration Hyperparameters Number of setups 
 Model type Feature set Model ID Random Forest Neural Network  
 Features sampled per split (mtry) Learning rate LSTM Units Attention layer (Heads)  
 Random Forest (1) Location RF1 1, 2, 3 N/A N/A N/A 3  
 (2) Lithology RF2 10, 20, 30, 40, 50, 60, 70, 80 N/A N/A N/A 8  
 (3) All RF3 10, 20, 30, 40, 50, 60, 70, 80 N/A N/A N/A 8  
 Neural Network (1) Location NN1 N/A 0.01, 0.001 16, 32, 64 1, 4, 8 18  
 (2) Lithology NN2 N/A 0.01, 0.001 16, 32, 64 1, 4, 8 18  
 (3) All NN3 N/A 0.01, 0.001 16, 32, 64 1, 4, 8 18  
LSTM layer (Hochreiter and Schmidhuber, 1997), a multi-head atten-
tion layer (Vaswani et al., 2017), and a dense output layer with softmax 
activation. We use categorical cross-entropy as the loss function. This 
NN architecture is expected to integrate the sequential aspect of the 
task as it includes elements of recurrent neural networks and attention 
mechanisms.

We evaluated each model using three input feature sets (Table 
1). Set 1 comprised location features, set 2 contained lithological 
features, and set 3 combined both. The three feature sets were de-
signed to assess the predictive value of spatial location and lithological 
characteristics, which represent fundamentally different geological in-
formation. While location features capture spatial trends and regional 
stratigraphic variations, lithological features describe local sediment 
properties. Combining both sets tests whether integrating spatial and 
compositional data improves predictions. We did not perform formal 
feature selection, as our goal was to evaluate and compare model per-
formance on complete, geologically meaningful feature groups rather 
than optimising input variables via statistical methods.

Additionally, we assessed the impact of varying hyperparameters 
(see Table  2). For RF, we adjusted the number of variables considered 
at each split when building the decision trees (i.e. the ‘mtry’ hyperpa-
rameter). For the NN, we modified the learning rate, number of LSTM 
units, and number of heads in the attention layer.

Cross-validation and evaluation
To assess model generalisation, we implemented a five-fold cross-

validation. The dataset was split using the stratified group k-fold func-
tion from scikit-learn (Pedregosa et al., 2011), which balances the 
target variables and prevents intervals from the same borehole from 
appearing in multiple folds, ensuring that no borehole appears in more 
than one fold. For each iteration, three folds were used for training, one 
for validation (for NN models), and one for testing. Neural networks 
were trained for up to 300 epochs, with early stopping implemented 
after 30 epochs without improvement in validation loss. We trained 
the Neural Network using the Adam optimiser with batches that have 
entire boreholes, each containing variable-length sequences handled 
via the ragged input layer. The batch size was set to 32. Finally, 
we evaluate the resulting predictions of the NN and RF methods for 
each set and hyperparameter configuration using both traditional and 
geology-informed metrics. The RF and NN models generate class scores 
at each depth, using the proportion of tree votes for RF and softmax 
confidence scores for NN. The predicted class at each depth is the one 
with the highest score. We then evaluate the sequence of predicted 
classes per borehole using traditional and geology-informed metrics.

Seventy-three model setups were evaluated (Table  2) based on the 
different feature sets and hyperparameter configurations. Individual 
RF models typically train in under five minutes, while NN training 
times vary by configuration- depending on the number of features, 
hyperparameter settings, and whether early stopping was applied- and 
can take up to an hour.
4 
2.2. Metrics

This study categorises metrics for evaluating model performance 
into two main types: traditional metrics and geology-informed metrics 
(Table  3). In our work, traditional metrics refer to standard met-
rics used in classification tasks, such as accuracy or F1-score. While 
these are useful for checking individual label predictions, they are not 
suited for borehole predictions, which require interpreting vertically 
ordered sequences that follow a stratigraphic structure. These metrics 
do not account for the geological rationale behind a prediction, such 
as the expected continuity, transitions, and spatial extent of units. 
Geology-informed metrics refer to the proposed metrics in this paper, 
which aim to capture essential geological aspects of model predictions. 
Both traditional and geology-informed metrics can be used for overall 
model evaluation and intermediate steps such as hyperparameter tun-
ing. However, no single metric can fully capture all facets of prediction 
quality. Just as accuracy is complemented by metrics like the F1 score 
in classification tasks, geology-informed metrics should be applied 
together to provide a more comprehensive and geologically meaningful 
assessment.

A key challenge in evaluating lithostratigraphic predictions is the 
variability and interpretative nature of the ground truth labels. These 
interpretations are based on manual labelling by an expert -typically 
without a measurement of uncertainty. Therefore, discrepancies be-
tween model predictions and expert labels may not indicate errors but 
rather reflect alternative geologically plausible interpretations. Recog-
nising this limitation, our geology-informed metrics assess the plausi-
bility of predictions from a broader geological perspective, providing 
complementary insights beyond direct label matching.

Metrics implementation
For clarity, we introduce the notation that will be used throughout 

the evaluation of the metrics. Specifically, we define  = {𝑏1,… , 𝑏𝑁}
as the set of boreholes, where 𝑁 is the total number, and 𝑖 represents 
a unique index of each borehole. Each borehole 𝑏𝑖 contains 𝑛𝑖 data 
instances, represented as the collection: 

𝑏𝑖 = {(𝑑𝑗 , 𝑆̂𝑖,𝑑𝑗 , 𝑆𝑖,𝑑𝑗 ) ∣ 𝑗 = 1,… , 𝑛𝑖}, (1)

where 𝑑𝑗 is the depth value, and 𝑆̂𝑖,𝑑𝑗  and 𝑆𝑖,𝑑𝑗  are the predicted and 
ground truth classes, respectively, at depth 𝑑𝑗 . The set of all possible 
stratigraphic units (i.e. classes) is denoted by  = {𝑐1,… , 𝑐𝐾}, with 
𝐾 being the total number of classes. For simplicity, we denote 𝐃𝑖 =
(𝑑1,… , 𝑑𝑛𝑖 ), 𝐒̂𝑖 = (𝑆̂𝑖,𝑑1 ,… , 𝑆̂𝑖,𝑑𝑛𝑖

), and 𝐒𝑖 = (𝑆𝑖,𝑑1 ,… , 𝑆𝑖,𝑑𝑛𝑖
) as the 

ordered vectors for depth, predicted units, and ground truth units, 
respectively, for 𝑏𝑖.

Traditional metrics
We use Accuracy, Cohen’s Kappa, Macro F1, and Weighted F1 

to evaluate model performance, considering them traditional metrics 
widely used in classification tasks (Naidu et al., 2023). These metrics 
are defined based on a confusion matrix (Grandini et al., 2020), de-
noted as CM. The 𝐾×𝐾 confusion matrix compares predicted and actual 
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Table 3
Traditional and Geology-informed evaluation metrics for automated stratigraphic interpretation of boreholes.
 Category Evaluation target Focus Evaluation metric
 Metric name Value range Geologic rational  
 
Traditional 
metrics

Overall 
model fit

Classification 
agreement

Accuracy [0,1] N/A  
 Cohen’s Kappa [−1,1] N/A  
 Class balance F1-Score [0,1] N/A  
 Weighted F1-Score [0,1] N/A  
 

Geology-
informed 
metrics

Position: 
Vertical 
Alignment

Unit top Mean Absolute Error Top [0, ∞) (m) Predicted top units should align with the 
expected depth of the units

 

 Unit 
centre

Mean Absolute Error 
Centre

[0, ∞) (m) Predicted centre of units should align 
with the ground truth, reflecting both the 
expected vertical position and thickness of 
the units

 

 Unit 
Bottom

Mean Absolute Error 
Bottom

[0, ∞) (m) Predicted bottom units should align with 
the expected depth

 

 
Extent: 
Geographical 
range of units

Unit presence
Unit Match F1-Score [0,1] Predicted units should correspond to 

those observed in the borehole
 

 Unit Extent Validation 
Score

[0,1] Predicted units should appear only within 
their expected geographical extent

 

 

Sequence: 
Stratigraphic 
Order

Unit’s transitions

Transition Match 
F1-Score

[0,1] Predicted transitions should match 
expected geological transitions in borehole

 

 Transition Validation 
Score

[0,1] Predicted transitions should be 
geologically plausible, based on known 
stratigraphic relationships

 

 Complete 
sequence

Sequence Alignment 
Score

[0,1] Predicted sequences should align with 
ground truth sequence

 

class labels, with diagonal entries representing correct predictions. 
Values in the CM are defined as: 

CM𝑘,𝑙 =
𝑁
∑

𝑖=1

𝑛𝑖
∑

𝑗=1
1
(

𝑆̂𝑖,𝑑𝑗 = 𝑐𝑘 ∧ 𝑆𝑖,𝑑𝑗 = 𝑐𝑙
)

, (2)

where 𝑘, 𝑙 ∈ {1,… , 𝐾}, with 𝐾 being the total number of target features 
(classes), and 1(⋅) denoting an indicator function.

These metrics evaluate different aspects of the model’s perfor-
mance. Accuracy measures the proportion of correct predictions, Co-
hen’s Kappa considers the likelihood of agreement by chance, and the 
Macro and Weighted F1 scores assess class-wise performance, with the 
latter accounting for class distribution. Details on their computation 
can be found in Grandini et al. (2020).

Proposed geology-informed metrics
We assess model performance based on geological plausibility, using 

three metric sets — position, extent, and sequence (Table  3) — to 
evaluate the vertical placement, geographical extent, and sequential 
relationships of stratigraphic units. Unlike traditional metrics, which 
compare individual data instances, our approach analyses the entire 
boreholes as groups of data instances. This methodology aligns with 
geologists’ labelling results interpretation and offers evaluation criteria 
reflecting geological reasoning.

For this reason, we define operations for ordered vectors and sets, 
introducing notations necessary for evaluating the sequential nature 
of stratigraphic unit predictions. The function 𝑈 (⋅) identifies unique 
elements in an ordered vector, such that for 𝐒𝑖, 𝑈 (𝐒𝑖) = {𝑆𝑖,𝑑𝑗 ∣ 𝑆𝑖,𝑑𝑗 ≠
𝑆𝑖,𝑑𝑘 ,∀𝑗 ≠ 𝑘}, where no repetitions occur. The function Seq(⋅) denotes 
the ordered sequence of stratigraphic units in a borehole, expressed as 
Seq(𝑆𝑖) = ⃖⃖⃖⃗𝑆𝑖 = {𝑆𝑖,𝑑1}∪{𝑆𝑖,𝑑𝑗 ∣ 𝑆𝑖,𝑑𝑗 ≠ 𝑆𝑖,𝑑𝑗−1 , 𝑗 = 2,… , 𝑛𝑖}. The sequence 
⃖⃖⃗𝑆 = (𝑠1,… , 𝑠𝑔) consists of 𝑔 ordered elements, where non-consecutive 
repetition is allowed, and the original notation 𝑆𝑖,𝑑𝑗  no longer applies to 
the elements of the sequence. Finally, Transitions(⋅) represents the set 
of transitions between consecutive elements in a sequence, such that 
Transitions(⃖⃖⃖⃗𝑆 ) = ∇⃖⃖⃖⃗𝑆 = {(𝑠 , 𝑠 ) ∣ 𝑠 , 𝑠 ∈ ⃖⃖⃗𝑆 , 𝑗 = 1,… , 𝑔 − 1}.
𝑖 𝑖 𝑗 𝑗+1 𝑗 𝑗+1 𝑖

5 
Position metrics
The position metrics for a collection of boreholes  are calculated 

by computing the mean absolute error (MAE) between the predicted 
and ground truth values of the top, centre, and bottom positions of the 
stratigraphic units in each borehole. For each borehole 𝑖, we first define 
𝑀𝑖 as the intersection of the unique predicted 𝑈 (𝐒̂𝑖) and ground truth 
𝑈 (𝐒𝑖) values where comparison is possible. For the MAE-Top metric, 𝑀𝑖
excludes the topmost units in both 𝑈 (𝐒𝑖) and 𝑈 (𝐒̂𝑖), while for the MAE-
bottom position, 𝑀𝑖 excludes the bottommost units. The topmost and 
bottommost units are excluded because borehole limits are arbitrary 
and may not align with the top or bottom of a unit. Fig.  2 illustrates 
this process using an example borehole, comparing the predicted and 
true sequences alongside the computed top, centre, and bottom position 
metrics. The metrics are computed as follows: 

MAE-Top = 1
∑𝑁

𝑖=1 |𝑀𝑖|

𝑁
∑

𝑖=1

∑

𝑐∈𝑀𝑖

|max(Z(𝑆̂𝑖,𝑐 )) −max(Z(𝑆𝑖,𝑐 ))|, (3)

MAE-Centre = 1
∑𝑁

𝑖=1 |𝑀𝑖|

𝑁
∑

𝑖=1

∑

𝑐∈𝑀𝑖

|median(Z(𝑆̂𝑖,𝑐 )) −median(Z(𝑆𝑖,𝑐 ))|,

(4)

MAE-Top = 1
∑𝑁

𝑖=1 |𝑀𝑖|

𝑁
∑

𝑖=1

∑

𝑐∈𝑀𝑖

|min(Z(𝑆̂𝑖,𝑐 )) −min(Z(𝑆𝑖,𝑐 ))|, (5)

with 𝑁 representing the total number of boreholes in the dataset and 
𝑐 representing a class value in the intersection set 𝑀𝑖. |𝑀𝑖| is the 
cardinality of the intersection set. 𝑍(𝑆𝑖,𝑐 ) and 𝑍(𝑆̂𝑖,𝑐 ) represent the set 
of depth values for the 𝑐th unit in borehole 𝑏𝑖. Specifically, 𝑍(𝑆𝑖,𝑐 ) =
{𝑑𝑗 ∣ 𝑆𝑖,𝑑𝑗 = 𝑐, 𝑗 = 1,… , 𝑛𝑖}, where 𝑛𝑖 is the number of depth values in 
borehole 𝑏𝑖.

Geographical extent metrics
We implemented two metrics to evaluate whether predictions reflect 

the spatial extent of geological units defined by deposition processes 
and geological structures (Fig.  3).
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Fig. 2. Position metrics calculation for Borehole 𝑏𝑄. The Ground Truth 𝑆𝑄 and Prediction 𝑆̂𝑄 shows values of an example borehole with five geological units (A, 
B, C, D, and E) every 0.5 m. For the ground truth 𝑆𝑞 (left), the sequence contains the unique units 𝑈 (𝑆𝑞) = {𝐴,𝐵, 𝐶,𝐷}, the ordered sequence ⃖⃖⃖⃗𝑆𝑞 = (𝐴,𝐵, 𝐶,𝐷) and 
the transitions ∇ ⃖⃖⃖⃗𝑆𝑞 = {(𝐴,𝐵), (𝐵,𝐶), (𝐶,𝐷)}. For the prediction 𝑆̂𝑞 (right), the sequence contains the unique units 𝑈 (𝑆̂𝑞) = {𝐴,𝐵, 𝐶,𝐷,𝐸}, the ordered sequence 
⃖⃖⃗̂𝑆𝑞 = (𝐴,𝐵, 𝐶,𝐷, 𝐶, 𝐸) and the transitions ∇⃖⃖⃗̂𝑆𝑞 = {(𝐴,𝐵), (𝐵,𝐶), (𝐶,𝐷), (𝐷,𝐶), (𝐶,𝐸)}. The middle panel illustrates the computed position metrics for each unit in 
the sequence: unit top, unit centre, and unit bottom, which quantify the positional differences between the predicted and true occurrences of each unit in the 
borehole. For notation and definitions, see Section 2.2.
The first metric, the Unit Match - F1 Score (UM-F1), evaluates the 
agreement between the unique predicted units 𝑈 (𝑆̂) and the ground 
truth units 𝑈 (𝑆). The UM-F1 score is computed as follows: 

UM-F1 = 1
𝑁

𝑁
∑

𝑖=1

2|𝑈 (𝑆̂𝑖) ∩ 𝑈 (𝑆𝑖)|
2|𝑈 (𝑆̂𝑖) ∩ 𝑈 (𝑆𝑖)| + |𝑈 (𝑆̂𝑖)∖𝑈 (𝑆𝑖)| + |𝑈 (𝑆𝑖)∖𝑈 (𝑆̂𝑖)|

. (6)

The second metric, the Unit Extent Validation Score (UEVS), as-
sesses the alignment of predicted formations with the expected extent 
derived from external geological maps. Unlike UM-F1, UEVS does 
not rely on ground truth data, but instead compares with established 
geological knowledge of the area. The UEVS is computed as: 

UEVS = 1
𝑁

𝑁
∑

𝑖=1

|U(𝑆̂𝑖) ∩ 𝐶𝑖|

|U(𝑆̂𝑖)|
, (7)

with 𝐶𝑖 representing the set of expected geological units in borehole 𝐵𝑖
based on external sources.

Sequence metrics
The sequence metrics assess the model’s ability to predict the correct 

stacking order of geological units along a borehole, and whether these 
6 
predictions align with the observed or expected stratigraphic relation-
ships (Fig.  3). For this, we define the sequence of unique units along 
each borehole from top to bottom.

The first metric, the Sequence Alignment Score (SAS), measures the 
overall similarity between the predicted and ground truth sequences 
based on the Optimal String Alignment (OSA) algorithm (Loo, 2014) de-
noted as OSA(). This algorithm calculates the minimum number of edits 
needed to align two sequences (i.e. insertions, deletions, substitutions, 
and adjacent transpositions).

The SAS is calculated as follows: 

SAS = 1
𝑁

𝑁
∑

𝑖=1
1 −

OSA(⃖⃖⃗𝑆𝑖,
⃖⃖⃖̂⃗𝑆𝑖)

max({|⃖⃖⃖⃗𝑆𝑖|, |
⃖⃖⃖̂⃗𝑆𝑖|})

, (8)

where | ⋅ | denotes the length (cardinality) of the sequence, and max()
the maximum value of a set.

Next, we introduce the Transition Match F1-Score (TM-F1), which 
evaluates the model’s ability to predict correct transitions between units 
based on the ground truth. The TM-F1 is calculated as follows:

TM-F1
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Fig. 3. Extent and sequence metrics calculation for Borehole 𝑏𝑄. This figure’s ground truth and prediction sequences correspond to the example shown in Fig. 
2. External geological information for borehole 𝑏𝑄 includes the set of known units in area, 𝐶𝑄 = {𝐴,𝐵, 𝐶,𝐷,𝐸, 𝐹 } and the set of plausible transitions between 
units, 𝛶 = {(𝐴,𝐵), (𝐵,𝐶), (𝐶,𝐷), (𝐷,𝐶), (𝐷,𝐸), (𝐸, 𝐹 )}. For notation and definitions, see Section 2.2.
Table 4
Model performance results for Borehole B51E0078, taken from a single test fold (unseen data). For each metric, the best value is marked in bold. Results are 
based on the hyperparameter configuration with the highest mean accuracy across five-fold cross-validation, selected separately for each model type (RF or NN) 
and feature set. The borehole shown comes from one of the cross-validation test folds. Accuracy: Accuracy, Kappa: Cohen’s Kappa, F1: Macro-F1 Score, W-F1: 
Weighted F1, UM-F1: Unit Match - F1 Score, UEVS: Unit Extent Validation Score, SAS: Sequential Alignment Score, TM-F1: Transition Match - F1 Score, TVS: 
Transition Validation Score, MAE-Top: Mean Absolute Error - Top, MAE-Centre: Mean Absolute Error Centre, MAE-Bottom: Mean Absolute Error Bottom.
 Model Traditional metrics Extent metrics Sequence metrics Position metrics Mean Absolute 

Error (m)
 Accuracy Kappa F1 W-F1 UM-F1 UEVS SAS TM-F1 TVS Top Centre Bottom

 NN1 0.76 0.71 0.66 0.77 0.93 1.00 0.88 0.92 1.00 12.00 8.43 8.43 
 RF1 0.60 0.53 0.54 0.55 0.86 1.00 0.86 0.83 1.00 6.50 12.25 12.25 
 NN2 0.60 0.52 0.53 0.51 0.83 1.00 0.26 0.50 0.61 6.50 15.30 20.11 
 RF2 0.37 0.23 0.26 0.38 0.86 0.86 0.06 0.07 0.40 80.90 61.21 67.90 
 NN3 0.77 0.72 0.64 0.78 0.93 1.00 0.50 0.71 0.69 19.17 11.25 11.07 
 RF3 0.77 0.73 0.66 0.80 0.93 1.00 0.44 0.71 0.73 13.92 7.79 7.84 
= 1
𝑁

𝑁
∑

𝑖=1

2|𝑈 (∇⃖⃖⃖̂⃗𝑆𝑖) ∩ 𝑈 (∇⃖⃖⃖⃗𝑆𝑖)|

2|𝑈 (∇⃖⃖⃖̂⃗𝑆𝑖) ∩ 𝑈 (∇⃖⃖⃖⃗𝑆𝑖)| + |𝑈 (∇⃖⃖⃖̂⃗𝑆𝑖)∖𝑈 (∇⃖⃖⃖⃗𝑆𝑖)| + |𝑈 (∇⃖⃖⃖⃗𝑆𝑖)∖𝑈 (∇⃖⃖⃖̂⃗𝑆𝑖)|
.

(9)
Finally, the Transition Validation Score (TVS) evaluates predicted 

transitions against a predefined set of observed transitions (𝛶 ) based 
on geological knowledge of the study area. Transitions outside this set 
are considered geologically implausible. 

TVS =

( 𝑁
∑

𝑖=1

|

|

|

|

U(∇⃖⃖⃖̂⃗𝑆𝑖) ∩ 𝛶
|

|

|

|

)

⋅

⎛

⎜

⎜

⎜

⎝

1
∑𝑁

𝑖=1
|

|

|

|

U(∇⃖⃖⃖̂⃗𝑆𝑖)
|

|

|

|

⎞

⎟

⎟

⎟

⎠

(10)

3. Results

In this section, we describe two main aspects of the analysis. First, 
we examine the overall performance of the Random Forest (RF) and 
Neural Network (NN) models. We focus on differences between model 
types (RF, NN) and feature sets (1, 2, and 3, Table  1). Second, we 
evaluate the impact of different hyperparameter configurations for each 
model using traditional and geology-informed metrics.

Before comparing model performance, we outline the process for 
assigning lithostratigraphic units by depth. In RF models, the predicted 
unit is the class with the highest vote share among trees. In NN models, 
it is the class with the highest softmax activation. We treat softmax 
outputs as vote proportions, reflecting the model’s relative support for 
each class. Though not actual probabilities, this normalised score can 
be viewed as a confidence distribution over classes. Fig.  4 shows this 
process for two predictions from a single borehole.

To illustrate the performance differences between different models 
on unseen data, we show a prediction for a single borehole from the 
7 
test set of one of the five cross-validation folds (Fig.  5) and compare 
traditional and geology-informed metrics (Table  4). For each model (RF 
or NN) and feature set (Set 1, 2, or 3), hyperparameter configurations 
were selected based on the highest mean accuracy across five-fold cross-
validation. Despite similar traditional metric values for NN1, NN3, and 
RF3, sequence metrics favour RF1 and NN1 in this single-borehole 
evaluation. Models using lithological features (Sets 2 and 3) exhibit 
more implausible transitions, characterised by lower SAS and TVS 
values. Common misclassifications involve unit interbedding, which is 
unexpected at the formation scale in the Roer Valley Graben. While fil-
tering (e.g. removing single-occurrence units) can reduce some errors, 
others require expert review (e.g. the missing Oosterhout Formation in 
RF1 prediction).

3.1. Overall model performance

Unlike the single-borehole example above, the following analysis 
evaluates model performance averaged across all five cross-validation 
folds. The values presented in the text and figures represent the mean 
and standard deviation calculated from these folds. Key observations 
are summarised below, with Fig.  6 showing the best-performing models 
based on their respective optimal hyperparameter configurations for 
each model (RF or NN) and feature set per metric.

Traditional metrics for model evaluation show comparable perfor-
mance between RF and NN models, with RF1 and RF3 demonstrating 
a slight advantage (Fig.  6). The best models achieve an accuracy of 
0.82 ± 0.005 (mean ± standard deviation) (RF1), 0.79 ± 0.01 in 
Cohen’s Kappa (RF1), and 0.70 ± 0.02 for F1-score (RF3), indicating 
good agreement with the ground truth.

While RF1 and RF3 outperform NN models across traditional met-
rics, the differences are slight and within the standard deviation (e.g. 
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Fig. 4. Voting proportions for lithostratigraphic unit predictions in borehole B51E0078 using Neural Network models NN1 and NN3. NN1 (64 LSTM units, one 
head in the attention layer, 0.01 learning rate, location features only) and NN3 (64 LSTM units, four heads in the attention layer, 0.001 learning rate, all features) 
were the best-performing configurations based on average accuracy across five-fold cross-validation. At each depth, bar widths represent softmax-derived scores 
for each unit. This value is interpreted as the model’s relative support for each class. The predicted class corresponds to the unit with the highest score at each 
depth. This comparison illustrates how architectural and input differences influence class support distributions. In the figure, all formal ‘NU’ (Upper North Sea 
Group) formation prefixes have been omitted for clarity. Lithology notation: GY: Gyttja, K: Clay, L: Loam, V: Peat, ZMFO: Sand Median class moderately fine, 
ZMGO: Sand Median class moderately coarse, ZUGO: Sand Median class extremely coarse, ZZFO: Sand Median class extremely fine, ZZGO: Sand Median class 
very coarse.
accuracy and Cohen’s kappa). The RF1 and RF3 models show more 
significant differences in the F1 scores, indicating more balanced pre-
dictions across under-represented classes. This is supported by the 
weighted F1-score, showing that model differences are less pronounced 
after accounting for class distribution. For models using only litholog-
ical features (Set 2), the RF2 model consistently underperforms across 
all metrics by a large margin. In contrast, the NN2 model achieves 
more consistent results, though it underperforms models using location 
features (Set 1) or all features (Set 3). Overall, differences in traditional 
metrics are noticeable but not substantial enough to favour one model 
type universally, except for F1-scores, where RF1 and RF3 achieve 
better values.

In contrast, sequence metrics reveal more pronounced differences 
among models. These metrics evaluate predictions as sequences of 
units, with some models producing results that more closely resem-
ble the expected order of geological units. As a result, models with 
similar values for traditional metrics show distinct differences in their 
sequential performance. For example, the RF3 model, which is the 
best-performing model using traditional metrics, ranks fifth in both 
the Sequence Alignment Score (SAS) and the Transition Validation 
Score (TVS). Notably, the differences between the RF1 and RF3 mod-
els are more pronounced in the TVS, resulting in a proportion of 
0.66 ± 0.03 of predicted transitions matching known stratigraphic 
8 
relationships for the RF3 model. In contrast, the RF1 model achieves 
a value of 0.92 ± 0.01. Similarly, the NN1 and NN3 outperform the 
RF3 model in all sequence metrics, with the NN1 being consistently 
the best-performing model across these metrics.

These differences are further illustrated in Fig.  7, which compares 
classification and transition matrix outputs for the NN3 (64 LSTM units, 
one-head multi-head attention layer, learning rate = 0.001) and RF3 
(mtry = 60) models. Both predictions achieve similar accuracy on a 
single test fold (0.85), and their class-level prediction patterns are 
broadly comparable. RF3 outperforms NN3 on the rarest, shallowest 
units (<1% of the dataset), which NN3 mostly misses. However, this 
similarity in classification outcomes contrasts with the more appar-
ent distinction shown by the transition matrices, which summarise 
predicted stratigraphic transitions and compare them to the plausible 
transitions (i.e. established geological knowledge) defined for the TVS. 
While both models show similar per-class accuracy for the Breda & 
Ville Formations (0.78), RF3 frequently places younger units beneath 
it (e.g. Oosterhout, Inden, or Kiezeloölite formations), even though the 
Breda & Ville Formations are the expected base of the sequence at this 
depth range. Misclassifications between the Breda & Ville Formations 
and the Oosterhout formation, as with many other transitions sum-
marised in the transition matrix, likely reflect lithological variability 
at their contact, where the lower boundary of Oosterhout Formation is 
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Fig. 5. Lithostratigraphic interpretation of borehole B51E0078. This figure compares the ground-truth interpretation (from the test set of one fold out of five 
in the stratified group cross-validation) with predictions from six models. Each model uses its best hyperparameter configuration, based on the highest average 
accuracy across all five folds. In the figure, all formal ‘NU’ (Upper North Sea Group) formation prefixes have been omitted for clarity. Lithology notation: GY: 
Gyttja, K: Clay, L: Loam, V: Peat, ZMFO: Sand Median class moderately fine, ZMGO: Sand Median class moderately coarse, ZUGO: Sand Median class extremely 
coarse, ZZFO: Sand Median class extremely fine, ZZGO: Sand Median class very coarse.
Fig. 6. Model comparison across metrics. The selected models correspond to the hyperparameter configuration with the best metric value per model and feature 
set. Each value represents the mean across five-fold cross-validation. Error bars indicate one standard deviation above and below the mean. Acc: Accuracy, Kappa: 
Cohen’s Kappa, F1: Macro F1-Score, W-F1: Weighted F1-Score, UM-F1: Unit Match F1-Score, UEVS: Unit Extent Validation Score, SAS: Sequence Alignment Score, 
TM-F1: Transition Match F1-Score, TVS: Transition Validation Score, MAE-Top: Mean Absolute Error - Top, MAE-Centre: Mean Absolute Error - Centre, MAE-
Bottom: Mean Absolute Error - Bottom.
more gradual when its base is sandier (TNO-GDN, 2020). These implau-
sible transitions are less common in the NN3 predictions, highlighting 
how sequence metrics capture structural inconsistencies that traditional 
metrics overlook.
9 
Extent and Position metrics show similar results across all models 
except the RF2 model. On the one hand, extent metrics show a similar 
pattern as the accuracy and Cohen’s kappa metrics, with the RF1 and 
RF3 models narrowly outperforming the other models. On the other 
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Fig. 7. Confusion matrices (top row) and transition matrices (bottom row) for the ideal case (left), Random Forest (RF3, centre), and Neural Network (NN3, right) 
predictions on the test set of a representative fold from five-fold cross-validation. Confusion matrices show classification accuracy per formation, with the ideal case 
displaying a perfect diagonal. Transition matrices illustrate stratigraphic transitions: the ideal case reflects expected transitions based on established geological 
knowledge (left), compared with RF3 (centre) and NN3 (right) predictions. The 𝑥-axis represents the ‘current’ formation, and the 𝑦-axis the ‘next’ formation 
downward in the borehole (i.e. stratigraphically from top to bottom). NN3 predictions more closely align with geologically plausible transitions, exhibiting fewer 
unlikely contacts (e.g. the Breda and Ville Formations directly above the Boxtel Formation). RF3 (mtry = 60) and NN3 (64 LSTM units, one head in the attention 
layer, learning rate 0.001) represent the best-performing configurations based on the highest Transition validation score (TVS). In the figure, all formal ‘NU’ 
(Upper North Sea Group) formation prefixes have been omitted for clarity.
hand, position metrics show that all models achieve similar results in 
determining the top, centre, and bottom of a unit except the RF2 model. 
Thus, the predicted unit position error is around 5 m for the centre 
and bottom of a unit and 7.5 m for the top. The NN2 model, which 
lacks location features, performs similarly to other models in position 
metrics, suggesting that the LSTM units and attention layers capture 
spatial information through sequence length.

3.2. Results by hyperparameter configuration

Random forest
Model evaluation across hyperparameter configurations shows that, 

for all RF models, tuning hyperparameters can improve both traditional 
and geology-informed metrics. The degree of improvement varies by 
10 
metric and feature set (Fig.  8). Generally, for each feature set, all 
metrics respond similarly to changes in the mtry hyperparameter, with 
best results achieved using the same or similar values.

For the RF1 configuration (location features only), traditional met-
rics indicate the best results with an mtry value of 1. This setup 
yields up to 0.82 ± 0.005 accuracy and 0.67 ± 0.01 F1-score. Position 
metrics also favour an mtry value of 1, though other values fall within 
the standard deviation. In contrast, sequence metrics improve slightly 
with an mtry of 2. Extent metrics perform best with an mtry of 1 or 
2, depending on whether comparisons are made to the ground truth 
(UM-F1) or external data (UEVS).

The RF2 configuration (lithological features only) consistently per-
forms worse across all metrics. Traditional metrics peak with an mtry 
value of 10, achieving an accuracy of up to 0.34 ± 0.09 and an F1-score 
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Fig. 8. Model performance for all Random Forest models by hyperparameter configuration. Each value represents the mean across five-fold cross-validation. Error 
bars indicate one standard deviation above and below the mean. The best hyperparameter configuration per metric is highlighted.
of 0.19 ± 0.06. Adjusting this hyperparameter has little effect here, as 
most metrics show worse or unchanged performance with increasing 
values.

In RF3 (combining all features), the optimal mtry value depends 
on the evaluation metric. Higher mtry values generally lead to better 
results. Traditional metrics perform best with an mtry value of 40 or 
50, while sequence metrics peak at a value of 50 or 60. The optimal 
RF3 configuration achieves an accuracy of up to 0.81 ± 0.03 and an 
F1-score of 0.70 ± 0.02. Extent metrics vary more, with optimal results 
at an mtry value of 30 or 50, depending on whether the comparison is 
11 
to the ground truth (UM-F1) or external sources (UEVS). Overall, most 
metrics improve with higher mtry, especially between 40 and 50.

Neural networks
Hyperparameter tuning for the NN models (NN1, NN2, NN3) yields 

apparent performance differences between best and worst configura-
tions per metric (Fig.  9). However, similar results across settings make 
it difficult to pinpoint a single best configuration. For NN2 and NN3, the 
effects of hyperparameters are more pronounced, with better perfor-
mance associated with a higher number of LSTM units, a lower learning 
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Fig. 9. Model performance for all Neural Network models by hyperparameter configuration. Each value represents the mean across five-fold cross-validation. 
Error bars indicate one standard deviation above and below the mean. The best hyperparameter configuration per metric is highlighted.
rate, and more heads in the multi-head attention layer, particularly for 
sequence metrics.

For the NN1 configuration, there is minimal variation across met-
rics, making it more challenging to determine the optimal setup. Tra-
ditional metrics are similar across configurations, with peak values of 
accuracy (0.81 ± 0.02), Cohen’s kappa (0.78 ± 0.03), and weighted F1 
(0.8 ± 0.02) achieved using a learning rate of 0.01, 64 LSTM units, and 
one attention head. This suggests limited sensitivity to hyperparame-
ters, except the F1-Score, which shows a preference for a learning rate 
of 0.01. Geology-informed metrics show a similar pattern, with modest 
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gains from a 0.01 learning rate and minimal impact from LSTM units 
or number of attention heads.

The NN2 configuration exhibits more apparent performance shifts 
across configurations. The best accuracy (0.74 ± 0.01) comes from 
a learning rate of 0.001, 64 LSTM units, and eight heads, which is 
also optimal for most other traditional metrics (except overall F1, 
where differences are minor). In general, increasing the number of 
LSTM units and attention heads yields slight improvements. Geology-
informed metrics (e.g. SAS, TVS) are more sensitive, especially to the 
learning rate, favouring a value of 0.001. Sequence and position metrics 
consistently perform best with a learning rate of 0.001, 64 LSTM units, 
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and one head. These results suggest benefits from a more complex 
architecture (i.e. more LSTM units) and a lower learning rate.

For the NN3 configuration, results vary more by metric. The best 
accuracy (0.79 ± 0.01) is achieved with a learning rate of 0.01, 64 
LSTM units, and four heads in the attention layer. Increasing the 
number of LSTM units and the number of heads in the attention 
layer improves performance across traditional metrics. For geology-
informed metrics, extent and position scores are stable across settings, 
but sequence metrics strongly favour a learning rate of 0.001.

4. Discussion

This study demonstrates how geology-informed metrics enhance 
model evaluation for predicting lithostratigraphic units. These metrics 
integrate geological principles and reflect how geologists would eval-
uate borehole interpretations. Specifically, geology-informed metrics 
help distinguish models that produce geologically plausible results from 
those that excel only under traditional evaluation. We demonstrate 
that traditional and geology-informed metrics yield different best-
performing models, underscoring the importance of evaluation metrics. 
In this section, we discuss how these metrics reflect the strengths and 
limitations of different models, evaluate the implications for geological 
modelling and identify potential avenues for future research.

The traditional and geology-informed metrics proposed in this study 
offer valuable insights into the predictions made by Random For-
est (RF) and Neural Network (NN) models. While traditional metrics 
show that both models can achieve similar classification performance, 
the geology-informed sequence metrics reveal the superiority of the 
NN in producing predictions that align more closely with geological 
principles. Neural Networks can learn complex relationships between 
features, resulting in fewer transitions between units and more con-
nected units, consistent with geological interpretations. For instance, 
although similar unique units are predicted per borehole across models 
(as indicated by the Unit Match - F1 score), NN models distribute these 
units more consistently, adhering more closely to geological princi-
ples. This suggests that the proposed metrics -especially the sequence 
metrics- provide a more nuanced evaluation of model predictions by 
incorporating the sequential nature of lithostratigraphic units, which 
traditional metrics overlook.

Feature selection also affects model performance with metrics
favouring different feature sets. For example, models using all features 
(RF3, NN3) generally achieve higher scores on traditional metrics. 
In contrast, models with lithological features (RF2, NN2) tend to 
underperform across most metrics. For sequence metrics, models using 
only location features (RF1, NN1) often outperform those incorporating 
all features (RF3, NN3). This strong performance of the position-
only models across the sequence metrics suggests that spatial location 
alone can provide substantial predictive power in our study area, 
where stratigraphic relationships are relatively consistent and laterally 
continuous (Fig.  1 B & D). This pattern is illustrated by comparing 
predicted class voting proportions by depth (Fig.  4), showing how 
model behaviour varies with different input features. For NN1, the 
voting proportion changes smoothly with depth, reflecting a grad-
ual interpolation between known stratigraphic positions. In contrast, 
NN3 exhibits sharper transitions in voting proportions, suggesting that 
including lithological features enables the model to respond more 
strongly to local variations in the input features (e.g. mean sand 
size). While this may increase stratigraphic errors, it may also reflect 
greater confidence in stratigraphic boundary positions compared to 
the smoother transitions of the spatial-only model. In addition to the 
relatively simple geological complexity of the area, the strong class 
imbalance likely reinforces this effect, as the most frequent units 
(e.g. Boxtel, Sterksel, Peize & Waalre, and Kiezeloölite formations) 
can already be predicted with high confidence based on spatial trends 
alone (Fig.  1. B & D). In areas with significant lateral facies changes, 
unconformities, or structural deformation, we expect spatial location 
13 
to become a weaker predictor of stratigraphy, thereby reducing the 
geological plausibility of interpolation-based predictions.

The results also reveal that NN and RF models integrate sequential 
information differently into the prediction of lithostratigraphic units. 
For instance, the NN2 model can capture complex relationships be-
tween lithological features without directly relying on location features, 
significantly outperforming RF2 across all metrics and achieving sim-
ilar, yet lower, results than other models that incorporate location 
information. These results demonstrate that a Neural Network with 
components designed to process sequential data (e.g. Long-Short-Term 
Memory) can more effectively incorporate lithological data to produce 
plausible geological predictions than a Random Forest model.

Implications for geological modelling
Machine learning models for interpreting borehole data provide an 

alternative to probabilistic approaches, such as Markov chain mod-
els (e.g. Yin et al., 2022; Eidsvik et al., 2004), which explicitly encode 
stratigraphic transitions through transition matrices. These matrices 
reflect assumptions about probability distributions derived from ob-
served data and incorporate additional constraints such as stationarity 
and fixed-order dependencies. In contrast, ML models learn complex, 
potentially non-linear and high-dimensional relationship patterns di-
rectly from the data without prior assumptions (Qi and Carr, 2006). 
A common limitation of non-probabilistic approaches, including many 
ML models (e.g. Tokpanov et al., 2020; Wedge et al., 2019), is that 
they may produce geologically implausible outputs (e.g. implausible 
transitions between units) if the model does not incorporate geological 
context. In our case study, where strict stratigraphic rules constrain 
the vertical order of lithostratigraphic units, our Neural Network uses 
information from neighbouring depths to better capture this structure, 
resulting in predictions that are often geologically plausible, even with-
out explicit post-processing. While probabilistic approaches have the 
advantage of encoding plausible stratigraphic transitions, our domain-
oriented evaluation of borehole labelling suggests that well-designed 
ML models — particularly Neural Networks with appropriate architec-
ture, set of features, and hyperparameters — can achieve high accuracy 
while also partially capturing stratigraphic relationships.

The varying performance across geology-informed metrics for mod-
els that appear similar based on traditional metrics suggests that fun-
damental aspects of subsurface structure might be overlooked during 
model evaluation. Although a post-processing step can correct some 
interpretation errors in the case of lithostratigraphic units, other less 
restrictive yet sequential problems, such as lithofacies predictions, 
lack obvious post-processing solutions. As a result, minor performance 
differences between models can translate into significant changes in the 
predicted subsurface structure. For instance, hydrogeological models 
are sensitive to the distribution and connectivity of different units 
(e.g. sandy versus shaly sediment sequences), which, as shown in 
this study, vary across seemingly similar models based on traditional 
metrics. Therefore, geology-informed metrics can help identify models 
more likely to produce geologically plausible predictions.

For nationwide 3D subsurface models, such as the Digital Geological 
Model (DGM) (Gunnink et al., 2013), which uses interpreted boreholes 
as input for spatial interpolation, geology-informed metrics can help 
identify predictions aligned with known geological characteristics of 
the area. The TNO–Geological Survey of the Netherlands manages a 
dataset of over 600 000 boreholes. However, only a small subset (5%) 
is typically used for the DGM, illustrating the vast scale of potential 
data available. With many boreholes lacking expert interpretations, 
automated and semi-automated methods that minimise manual cor-
rections are crucial to increasing the number of usable boreholes for 
three-dimensional geological modelling. Therefore, automated work-
flows should prioritise adherence to known geological relationships in 
the area (e.g. stratigraphic relationships) over maximising classification 
performance using traditional metrics. The metrics proposed in this 
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study can help identify prediction models, feature sets, and hyperpa-
rameter configurations that produce outputs more closely aligned with 
geological principles, thereby reducing the need for post-processing 
tasks.

Although beyond the scope of this study, our results suggest using 
domain-specific metrics as loss functions in model training to enhance 
performance by optimising the geological plausibility of predictions. 
Despite the ability of Neural Networks to learn sequential relationships, 
our experiments show that even models outperforming on sequence 
metrics do not fully capture the relatively simple stratigraphic re-
lationships of the area. Standard convex loss functions, such as the 
categorical cross-entropy used in our case study, may not be optimal 
given the inherent interpretative uncertainty of stratigraphic labels and 
the importance of sequential relationships. This results in predictions 
that incorporate spatial relationships not observed in the training data 
and that would be immediately flagged as geologically implausible by 
an expert. Therefore, one promising direction is the use of loss func-
tions tailored to geological interpretation tasks. For instance, Hillier 
et al. (2023) apply this idea to a three-dimensional interpolation task, 
showing that stratigraphic consistency can be enforced during model 
training, which could be adapted for automated borehole interpreta-
tion. In parallel, robust loss functions have been developed to handle 
categorical label noise, such as those based on smooth non-convex for-
mulations for large-margin classification (Feng et al., 2016), providing 
a complementary strategy to address the label noise and uncertainty in-
herent in stratigraphic interpretation data. Together, these approaches 
suggest that better-aligned loss functions could improve the geological 
plausibility of automated predictions.

Limitations
Implementing the proposed geology-informed metrics for evaluating 

automated lithostratigraphic interpretations of boreholes tested in this 
work has several limitations.

First and foremost, most metrics tested in this study rely on the 
assumption that the provided labels represent a ground truth. How-
ever, lithostratigraphic labels are based on expert interpretations and 
have an inherent uncertainty that is not systematically quantified. The 
interpretative nature of the task introduces label noise and imposes a 
performance ceiling on model evaluation. For instance, the interpre-
tative variability of experts defining formation boundaries has been 
quantified in a limited number of studies, which report errors in inter-
preted boundary positions in cross-section and borehole experiments 
in the UK ranging from ± 7 to ± 18 m across different sites, with 
standard deviations between 2.7 and 6.0 m depending on geological 
context and interpreter-specific factors (Randle et al., 2018; Lark et al., 
2014). This implies automated interpretations may already fall within 
the expected expert variability. However, metrics relying on direct 
ground-truth comparisons still penalise any deviation from reference 
labels.

While interpretative variability influences the assumptions underly-
ing most evaluation metrics, we expect geologists to agree on broader 
geological concepts, such as those tested in the proposed geology-
informed metrics. For example, experts may differ on the precise lo-
cation of certain stratigraphic boundaries, but interpretations are ex-
pected to remain consistent with an established stratigraphic frame-
work. Therefore, any ML-based prediction should be evaluated not only 
against individual labels but also against this framework. In this con-
text, metrics such as the Transition Validation Score (TVS) are expected 
to be less sensitive to label noise and to offer a higher performance 
ceiling. Although we did not explicitly estimate the performance ceiling 
of these metrics in this study area, we consider that the proposed 
metrics, particularly those that do not incorporate ground-truth com-
parisons, offer valuable tools for distinguishing models that produce 
plausible interpretations. Formal quantification of the performance 
ceiling represents an important avenue for future research.
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Second, the case study focuses on the Roer Valley Graben, char-
acterised by relatively simple stratigraphic relationships that are not 
generalisable to other geological settings. Therefore, the metrics’ abil-
ity to distinguish plausible geological predictions might not transfer 
directly to more complex contexts. For example, sequential metrics 
such as the Transition Validation Score, which incorporates external 
geological information (Fig.  7), may be less restrictive in other geolog-
ical settings. In our scenario, 15 stratigraphic units define 225 possible 
transitions between lithostratigraphic units, but only 50 of these have 
been observed. While more complex geological areas, such as faulted 
or tilted regions or areas with varying degrees of erosive contacts, 
would likely contain additional plausible transitions, we expect the 
set of implausible transitions to remain significant, allowing sequence 
metrics to remain effective. These assumptions may not hold for other 
classification targets where ordering is less constrained by established 
sequences (e.g. lithologies or lithofacies). Testing the proposed metrics 
in other geological settings, particularly across basins, would offer 
valuable insights.

Third, while our study addressed aspects of model uncertainty 
via five-fold cross-validation, capturing uncertainty related to data 
sampling and model variability, it does not quantify the geological un-
certainty of the predictions. Geological uncertainty is addressed in some 
probabilistic approaches for labelling borehole data using Bayesian 
methods, which provide posterior probability distributions reflecting 
uncertainty in stratigraphic interpretations (e.g. Yin et al., 2022; Ei-
dsvik et al., 2004). However, this aspect is not captured by our current 
evaluation. Although Neural Network predictions can incorporate un-
certainty estimation methods to capture predictive uncertainty (e.g. Gal 
and Ghahramani, 2016; Lakshminarayanan et al., 2017), our geology-
informed metrics evaluate predictions based on the most likely lithos-
tratigraphic class at each depth. Therefore, these metrics assess model 
performance using class assignments rather than incorporating the full 
probabilistic distribution of predictions. Incorporating explicit geolog-
ical uncertainty quantification into Neural network models remains a 
crucial direction for future research.

Fourth, the proposed metrics have inherent limitations in evaluating 
predictions of lithostratigraphic units using borehole information. For 
instance, position metrics cannot be computed if a unit is absent in 
the prediction or ground truth. Similarly, position metrics are sensitive 
to noise in predictions and the selected criteria to define a position, 
affecting the detection of a unit’s top, centre, and bottom. Extent 
metrics such as the Unit Extent Validation Score also have limitations 
as they might only be informative for large scales where geological 
units have distinct spatial distribution patterns. In contrast, sequence 
metrics are only relevant for tasks where order is critical, such as 
lithostratigraphic predictions, but not for other problems like facies or 
physical property predictions.

Lastly, this study did not perform feature selection, which is a 
standard step when dealing with large numbers of input variables. In-
stead, we intentionally evaluated model performance using predefined, 
geologically meaningful feature sets: location-only (set 1), lithological-
only (set 2), and a combination of both (set 3), to compare how models 
respond to different types of input information. For example, while 
location-only features provided reasonable predictions, lithological fea-
tures showed promising results with the Neural Network (NN2) versus 
the RF models. This approach allowed us to assess the relative impor-
tance of spatial versus lithological information rather than optimising 
feature subsets through statistical methods. Nonetheless, the geology-
informed metrics developed here provide a valuable foundation for 
future workflows that could incorporate geological intuition into for-
mal feature selection, potentially identifying the most critical features 
improving predictions.

Despite the limitations, the geology-informed metrics proposed in 
this study provide valuable insights into model performance by em-
phasising geological aspects that traditional metrics may overlook. 
Although further work is needed to assess their generalisability to other 
geological settings and prediction tasks, this use case illustrates the 
potential of these metrics for evaluating the geological plausibility of 
ML-generated borehole interpretations.
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5. Conclusion

In this study, we presented a set of geology-informed metrics to 
evaluate the performance of automated prediction models for lithos-
tratigraphic borehole interpretation. To illustrate their usefulness, we 
applied the metrics to two distinct model types — Random Forests 
and Neural Networks — using a case study in the Roer Valley Graben. 
The results show that geology-informed metrics, particularly sequence 
metrics, capture significant differences among models that traditional 
metrics overlook. While Neural Networks are expected to excel in 
sequential tasks, our case study shows that differences emerge only 
when evaluated with metrics aligned to the task’s sequential nature. 
The proposed metrics provide an informative and complementary per-
spective to traditional metrics, ultimately enabling us to quantify the 
geological plausibility of model predictions.

Our findings also underscore the value of domain-specific metrics 
to reveal performance advantages. In our case study, adhering to 
stratigraphic order is a fundamental aspect of the prediction task. 
Incorporating these metrics during training could help geologists iden-
tify models that produce more geologically plausible predictions. This 
approach reduces the need for post-processing, simplifying automated 
borehole interpretation. Ultimately, this would increase the number of 
borehole interpretations integrated into three-dimensional subsurface 
models. Future work will extend the application of these metrics in 
other sedimentary basins and explore their integration as loss functions 
in Machine learning models to further improve the interpretation of 
lithostratigraphic units from borehole data.
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