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ARTICLE INFO ABSTRACT

Keywords: This paper presents a conditional Generative Adversarial Network (cGAN)-based framework for capturing
Conditional Generative Adversarial Networks uncertainty in the portfolio management of a hybrid power plant, with a particular focus on the joint variability
(cGAN) of wind power output and electricity market prices. The proposed cGAN model generates realistic scenarios
Hybrid power plants

for multiple correlated feature vectors simultaneously, while preserving both temporal dependencies and inter-
feature correlations. A large set of scenarios is produced and subsequently reduced to a limited number of
representative scenarios using a clustering technique that retains the statistical structure and correlations
among variables. These representative scenarios are then integrated into a developed stochastic Mixed-Integer
Linear Programming (MILP) model within the EMERGE platform at TNO to optimize hybrid power plant
portfolio management under uncertainty. Results based on multi-year data demonstrate that the approach
reduces imbalance costs from 20.63% to 14.94% compared to a deterministic baseline that relies only on point
forecasts, which highlights the effectiveness of the proposed framework in enhancing operational robustness

Scenario generation and reduction
Stochastic optimization
Uncertainty modeling

and market alignment.

1. Introduction
1.1. Background and literature review

The increasing penetration of renewable energy sources, such as
wind and solar, has significantly transformed the operational land-
scape of modern power systems. Hybrid power plants (HPPs), which
integrate multiple energy assets such as wind farms, solar PV, energy
storage, and Power-to-X technologies, offer enhanced flexibility and
reliability. However, these systems also introduce high levels of op-
erational uncertainty due to the variability of renewable output and
fluctuations in electricity market prices. Accurate modeling of such un-
certainties is essential for effective portfolio management, particularly
when deviations from forecasts can lead to significant imbalance costs.
Scenario-based stochastic optimization has emerged as a widely used
technique to manage these uncertainties [1]. Traditional methods rely
on statistical approaches such as Monte Carlo or copula-based sam-
pling [2], which often fall short in capturing nonlinear dependencies,
multi-feature interactions, and temporal correlations, especially when
dealing with joint uncertainty in wind power and market prices. In [3],
the distribution of unknown variables is modeled using the copula-
based approach, and Monte Carlo is then utilized to produce wind
scenarios. [4] develops the autoregressive moving average (ARMA)
model for wind scenarios. The uncertainty of wind forecast error is
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examined using empirical distributions in [5], and to create wind
scenarios, the distributions are sampled using an inverse transform
sampling technique. Using historical data, the majority of these tra-
ditional scenario generation techniques first match the parameters of
a presumptive statistical distribution model before creating scenar-
ios through sampling from the distribution model. However, as the
assumptions might not hold in practice, particularly for operational
scenarios involving multivariate uncertain variables, it is difficult to
derive reliable statistical assumptions of uncertain variables and to fit
the corresponding parameters. Furthermore, it can be challenging to
sample from complex distributions [4]. As a result, the scalability and
applicability of these statistical model-based methods in downstream
decision-making tasks remain limited [1].

Recent advances in deep-learning based generative models, particu-
larly Generative Adversarial Networks (GANs), have shown promising
capabilities in high-dimensional scenario generation without the need
for explicit probabilistic assumptions. Instead of directly optimizing
the maximum likelihood function, GAN tackles the problem by al-
ternately training two deep neural networks, the generator and the
discriminator [1]. It was first used in [6] for generating renewable
energy scenarios which demonstrated that GANSs can efficiently produce
a wide range of diverse scenarios in this context. GAN performance is
improved in order to generate better scenarios with focus on solving
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Nomenclature of Hybrid Power Plant Optimization

Indices and Sets:

t, s Time interval and scenario indices, t € 7,
sES

Parameters:

B, a Risk aversion (0 < § < 1), CVaR confidence

level (95%)
Probability of scenarios, Big-M, Initial
battery state-of-charge [MWh]

D> M, Socinit

Apss /1?2 Electricity price [€/MWh], hydrogen price
[€/kgl

st ch2 Electrolyzer startup cost [€], hydrogen
production cost [€/kg]

neh, pdis b Battery charge/discharge efficiency and

operational costs [€/MWh]

Scenario values of wind and PV power
Rated capacity of asset

[-]1 € {w, pv, h2, com, b, g}, which denotes
wind farm, photovoltaic units, electrolyzer,
hydrogen compressor, battery energy
storage (ch/dis), and grid connection,
respectively

W,Scn pV,scn
Pt,s ’ Pt,s

pllmax

Decision Variables:

RH Cr[j Revenue and cost of asset [-] at ¢, s [€]
Pt[;], St[J Power [MW] and setpoint variable of asset
S [latrs (0<ST<1)
U }?S, Ufs Binary variables for charging/discharging,
and import/export status
SOC};, CVaR, Battery state of charge [MWh], Conditional

Value-at-Risk at a [€]
Hfs, Hff“" Total Produced and delivered hydrogen [kg]
VAN Binary variables of electrolyzer startup
m, v, Total profit and CVaR slack variable at
scenario s [€]

model overfitting issue discriminator regularization in [7]. GAN-based
scenario generation is implemented to stochastic optimal scheduling
problem in [8]. Conditional GANs (cGANSs), which incorporate auxiliary
input (e.g., time indices or forecasts), enable structured scenario gen-
eration with control over temporal evolution and external features [9,
10]. However, standard GAN architectures still struggle to capture the
dynamic dependencies and joint distributions of time-series data rele-
vant to energy systems. To overcome these limitations, several works
have introduced time-series-specific GAN architectures. For instance,
an Informer-TimeGAN hybrid model is proposed in [11] that combines
temporal convolutional networks with self-attention mechanisms for
day-ahead wind power scenario generation. That model integrates aux-
iliary classification loss and seasonal embedding to enhance scenario
diversity and accuracy. Similarly, [12] developed a Progressive Grow-
ing of GAN (PG-GAN) and multi-objective optimization framework
for wind power scenario generation, aiming to balance trade-offs be-
tween statistical similarity and forecast diversity. In [13], Conditional
Style-based GANs are used to control scenario generation by injecting
style features into latent spaces to preserve variability while ensuring
statistical realism. GAN-based generation is extended in [14] to in-
tegrated energy systems, addressing operational constraints and data
sparsity through a joint forecasting-scenario framework. A comprehen-
sive review of uncertainty handling in renewable energy applications
is provided in [1], covering stochastic optimization approaches, un-
certainty modeling methods, scenario generation techniques, and their
respective advantages, limitations, and future research directions.
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1.2. Research gaps and contributions

Despite recent progress, the application of conditional GANs for
joint multi-feature uncertainty modeling in HPP portfolio management
remains limited. Accurately capturing the temporal dynamics and cross-
feature dependencies between wind generation and electricity prices
is critical for improving dispatch decisions and market participation.
Furthermore, integrating such high-fidelity scenarios into a tractable
stochastic optimization framework demands robust scenario reduc-
tion techniques that retain essential correlations while minimizing
computational burden.

To address these challenges, this paper presents a novel frame-
work that extends the conditional GAN approach to jointly model
the uncertainty in wind power output and electricity market prices
for HPP portfolio optimization. The proposed model incorporates a
Transformer-GRU hybrid architecture designed to capture both tem-
poral dependencies and cross-feature correlations that are critical in
power system applications. While conventional cGAN implementations
are typically used as standalone scenario generators, the approach
of this paper directly integrates the cGAN-generated scenarios into a
stochastic optimization framework for optimal HPP dispatch. This en-
ables the creation of realistic hourly day-ahead scenarios that are both
computationally tractable and operationally relevant. To reduce com-
plexity while preserving statistical fidelity, a clustering-based scenario
reduction method is employed. The resulting representative scenarios,
along with their associated probabilities, are embedded into a stochas-
tic Mixed-Integer Linear Programming (MILP) formulation within the
EMERGE platform at TNO [15], supporting robust decision-making
under uncertainty.

The key contributions of this work are summarized as follows:

(i) A unified cGAN-based framework is developed for the joint gener-
ation of realistic day-ahead scenarios of wind power and electric-
ity prices. The model integrates a Transformer-GRU architecture
to capture both temporal dependencies and inter-feature corre-
lations, and employs a clustering-based scenario reduction tech-
nique to ensure statistical representativeness while maintaining
computational tractability;

(ii) The reduced scenario set, together with associated probabilities,
is integrated into a stochastic MILP optimization model within the
EMERGE platform at TNO [15]. The complete framework is vali-
dated using multi-year data from the Netherlands, demonstrating
tangible improvements in hybrid power plant scheduling and im-
balance cost reduction relative to a deterministic forecast-based
baseline.

1.3. Paper structure

The remainder of this paper is structured as follows. Section 2
describes the proposed cGAN-based scenario generation and reduction
methodology. Section 3 outlines the case study design, data, and pa-
rameters. Section 4 presents the optimization results and performance
comparison. Finally, Section 5 concludes with key insights and future
research directions.

2. Methodology

Power system datasets often exhibit strong temporal dependencies,
seasonal patterns, and high correlations between electricity prices and
renewable generation. To address these characteristics, the proposed
framework employs a Transformer—-GRU hybrid generator to capture
both long- and short-term dynamics while preserving cross-variable
relationships. This section then outlines the overall structure of the
proposed cGAN method, starting with data preprocessing for model
training, followed by the cGAN architecture and training Strategy.
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Fig. 1. Architecture of the proposed cGAN, where both generator and discriminator use a Transformer-BiGRU core with final dense layers producing multi-feature

outputs (generator) or authenticity logits (discriminator).
2.1. Data loading and preprocessing

The dataset consists of hourly time series data for wind power
output, electricity market prices, and forecasts for wind generation,
market prices, load, and solar generation. We utilize z-score normal-
ization to standardize these features, ensuring that they have a mean
of zero and a standard deviation of one. This is crucial for the effective
training of the cGAN model. We generate hourly labels (0 to 23) to
preserve the intraday structure. The standardized data is then reshaped
into daily sequences of size (24 X 7), representing 24 time steps across
seven dimensions, one label, two target features, and four conditioning
inputs. From the multi-year dataset, the last four days are reserved as
the test set, while the remaining historical data is split into training
(80%) and validation (20%) subsets. This processed dataset serves as
the input for the cGAN described in the following subsection.

2.2. cGAN architecture and training strategy

The developed cGAN generates realistic multi-feature time series
conditioned on external inputs. The architecture combines Transformer
encoders, which capture long-range dependencies through self-
attention mechanisms [16-18], with Gated Recurrent Units (GRUs),
which efficiently model temporal dynamics in sequential data [19,20].

2.2.1. cGAN architecture

As shown in Fig. 1, the proposed cGAN adopts a hybrid archi-
tecture in both generator and discriminator. Each network processes
the input sequence through a Transformer encoder, capturing global
inter-variable dependencies via self-attention with sinusoidal positional
encoding, followed by a bidirectional GRU (BiGRU) [21] to model
forward and backward temporal dynamics. This Transformer-BiGRU
sequence enables learning of both long-range contextual relationships
and local temporal patterns. The generator’s output layers map these
representations to multi-feature sequences, while the discriminator
produces per-time-step logits indicating authenticity. This combination
yields synthetic sequences that are realistic and context-aware.

Generator The generator maps a random noise vector z € RY and
auxiliary conditions to 24-hour sequences of multiple target features
(e.g., wind power, electricity price). Conditional inputs, including fore-
casted variables and hourly labels, are processed through spectral-
normalized dense layers and embedded to preserve temporal semantics.
The noise vector is broadcast across the time dimension and concate-
nated with the embedded inputs, then projected to a latent space.
A Transformer encoder with sinusoidal positional encoding captures
global temporal dependencies, followed by a BiGRU to model sequen-
tial dynamics in both directions. Time-distributed dense layers with
Swish activations and spectral normalization refine the representation,
and a final dense layer outputs the synthetic sequence for each time
step.

Discriminator The discriminator functions as a binary classifier, dis-
tinguishing real from synthetic sequences while conditioned on the
same inputs (hourly labels and forecasted features). Real and generated
sequences are embedded with their conditional information, processed
through spectral-normalized dense layers, and concatenated before
projection. The sequence passes through a Transformer encoder with
sinusoidal positional encoding and a BiGRU to capture temporal depen-
dencies in both directions. Time-distributed dense layers with spectral
normalization and LeakyReLU activations refine the features, and a
final dense layer outputs scalar logits per time step which represents
the probability of each slice being real. During adversarial training,
the discriminator becomes better at telling real and synthetic sequences
apart, while the generator simultaneously learns to fool it. This ongoing
competition gradually pushes the generator to produce sequences that
are increasingly realistic and temporally coherent.

2.2.2. Training strategy

The model is trained using mini-batch stochastic optimization (e.g.,
64 sequences per batch) with the Adam optimizer [22], allowing it to
efficiently learn from the full dataset over multiple epochs. It follows
a hybrid approach that blends adversarial, feature matching, and re-
construction losses, while the Wasserstein GAN with Gradient Penalty
(WGAN-GP) framework [23,24] is applied to guarantee stable and
reliable convergence.

Loss functions To stabilize training and avoid mode collapse, we adopt
the WGAN-GP [23,24]. The discriminator is trained to assign higher
scores to real samples and lower scores to generated (fake) ones. The
loss function for the discriminator is defined as:

Lp =B p [DE)] - B, p [DO] + Ay, - GP(x, %) @

where x ~ P, and & ~ P, denote samples from the real and gen-
erated data distributions, respectively. In practice, these expectations
are computed over mini-batches of real and synthetic sequences. The
discriminator D(-) outputs a scalar score indicating sample realism. The
gradient penalty term GP(x, &) is computed using interpolated pairs of
real and fake data within each batch. 4, is a regularization coefficient
controlling the strength of the gradient penalty term.

The generator is trained to produce realistic sequences that not only
deceive the discriminator but also retain structural similarity to real
data. To achieve this, a composite loss function consisting of three
components is defined:

EG = ladv : £adv + )'fm : Efm + Arecon : Erecon (2)
where:
* Lg, = Eip, [logD(®)] is the adversarial loss, which encour-

ages the generator to produce sequences that the discriminator
classifies as real.

Ly = NIf)-f (fc)ll% is the feature matching loss, which mini-
mizes the distance between intermediate activations f(-) of the
discriminator on real (x) and generated (%) data.
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* Looeon = lIx— fCII% is the reconstruction loss, measured as the mean
squared error (MSE) between real and generated sequences.

The weights 4,4, 47y, and .., control the relative contribution of
each term and are tuned via hyperparameter optimization.

Optimization The generator and discriminator are optimized using the
Adam algorithm with learning rate decay [22]:

n =g -y /T 3)

where 7, is the initial learning rate, y is the decay rate, T is the
decay step interval, and ¢ is the training iteration. The loss functions
for the discriminator (£,) and generator (L) follow the WGAN-GP
formulation, with generator loss combining adversarial, feature match-
ing, and reconstruction components. Hyperparameters, including latent
dimension, learning rates, and batch size, are tuned using Bayesian
optimization via Optuna [25].

Optimization The generator and discriminator are optimized using the
Adam algorithm with learning rate decay [22]:

n =g - y U7 Q)

where 7 is the initial learning rate, y is the decay rate, T is the decay
step interval, and ¢ is the training iteration.

The loss functions for the discriminator (£,) and generator (L)
follow the WGAN-GP formulation, with the generator loss combining
adversarial, feature matching, and reconstruction components.

Hyperparameters such as latent dimension, generator and discrim-
inator learning rates, and batch size are optimized through Bayesian
search using Optuna [25]. The objective function evaluates different
configurations by training the model for a small number of epochs
and selecting the best setting based on a composite validation metric
explained in the next part. Specifically, each Optuna trial suggests
candidate values for the key hyperparameters and initializes a GAN
instance accordingly. After a few training epochs, the trial computes
validation performance, and the composite metric in (8) is used to
guide the selection of optimal parameters. The best trial yields the final
values used in full training.

Validation and evaluation Model performance is evaluated after each
epoch based on:

* Normalized RMSE between real (x) and generated (%) data [26]:

V % Z?:l(xi - %)’

nRMSE(x, £) =~

)

R? score to measures how well the generated values explain the
variance in the real data [27]:

Z:,:|(xi - ’A‘i)z
Z?:l(xi -3
where x is the average of all x;.

KDE overlap between the empirical distributions of real and syn-
thetic data, computed as [28]:

RP=1- (6)

KDE = / min [ £, ), fw)] du @
where f, and f; are the kernel density estimators.

A composite validation metric is computed to jointly assess accuracy
and statistical fidelity:

M =c¢; -nRMSE — ¢, - KDE — ¢; - R? (8)

where ¢, ¢,, and c; are weighting coefficients that balance the trade-
offs between reconstruction error (nRMSE), distributional similarity
(KDE overlap), and explained variance (R? score). The generator model
achieving the lowest exponentially smoothed value of M during train-
ing is selected as the final model.
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Algorithm 1 Training Procedure for the Proposed cGAN Model

Require: Preprocessed training and validation datasets
Require: Generator G, Discriminator D, and hyperparameters 0
1: Initialize G and D with 6, including learning rate schedules
2: for each epoch do
3 for each batch in training set do
4 Sample noise vector z ~ N'(0, I)
5: Generate synthetic data £ = G(z, Z, conditions)
6 for k steps do
7 Compute L, and £, and update G and D using gradient

descent
8: end for
9: end for
10: Evaluate on validation set using the composite validation metric
of (8)
11: Update best generator if the composite metric improves
12: if no improvement for P epochs then
13: Reduce learning rates considering (4) and (9)
14: if no improvement for P + § epochs then
15: Reload best generator weights
16: end if
17: end if
18: end for
19: Load best generator weights for final inference and scenario
generation

Adaptive training and early stopping Building upon the decaying learn-
ing rate strategy used in the optimization phase (4), adaptive training
mechanisms are employed to further improve model robustness. Specif-
ically, if the composite validation metric M does not improve for a
predefined patience window P, the learning rates of both the generator
and discriminator are reduced. If stagnation persists for an additional
5 epochs, the generator is rolled back to the best-performing state. The
learning rate update rule is:

n < max(”t : ADs ”min)’ (9)

where AP < 1 is the decay factor, and 7, is the minimum learning rate
threshold to maintain training stability.

A high-level overview of the training procedure for the proposed
cGAN framework is presented in Algorithm 1. The algorithm outlines
the key stages including stochastic data generation, loss evaluation,
gradient-based updates, and validation monitoring using composite
performance metrics.

Scenario generation & reduction To capture the stochastic nature of
wind generation and electricity market prices, a large set of synthetic
day-ahead scenarios is produced using the trained cGAN generator. For
each test day, the generator receives a latent noise vector z(), hourly
time labels #,, and standardized forecasted features as the conditions. It
then outputs a 24-hour sequence of synthetic values representing both
wind power and market prices:

)?ii) =G(zY, ¢,, conditions,), i=1,...,N, (10)

where G(-) denotes the generator and N is the total number of gen-

erated scenarios. Each scenario xE[) represents a possible realization
of joint wind-price evolution over a 24-hour horizon. The generated
sequences are denormalized to the original scale using the training data
statistics and stored in matrices of shape [N x 24] for both price and
wind features.

To reduce computational complexity in downstream stochastic opti-
mization models, the set of N raw scenarios is clustered using K-Means
clustering. The centroids of each cluster serve as the final reduced
scenarios, capturing both price and wind variability across 24 h. Their
corresponding probability weights are also computed as the probability
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Fig. 2. Overview of the hybrid power plant structure modeled in EMERGE,
including renewable generation, battery storage, and hydrogen conversion
pathways.

of each scenario. This two-step framework, scenario generation via
c¢GAN and reduction via clustering, ensures that the resulting set of
scenarios is both statistically diverse and computationally tractable for
use in day-ahead stochastic optimization models for HPPs.

3. Case study

To evaluate the effectiveness of the proposed cGAN-based scenario
generation method, the generated wind power and electricity price
scenarios are integrated into a stochastic optimization model devel-
oped within the EMERGE platform at TNO [15]. EMERGE enables
comprehensive techno-economic modeling of hybrid energy systems by
incorporating renewable generation alongside storage and conversion
technologies. The system under study is a HPP consisting of wind
turbines, PV solar generation, battery storage systems, and electrolyzer
units capable of producing hydrogen. Fig. 2 shows the overall archi-
tecture of the modeled system. Red arrows represent electrical energy
flows, while blue arrows indicate hydrogen flows. The optimization
problem is formulated as a stochastic MILP. In the stochastic formu-
lation, the cGAN-generated day-ahead scenarios for wind power and
electricity prices are used to represent uncertainties in supply and
market conditions. In contrast, the deterministic baseline uses only
single-point forecast values, with no explicit treatment of uncertainty.
The objective of the optimization is to minimize the total expected
operational cost while maximizing revenue, subject to technical and
operational constraints. Comparing the stochastic and deterministic
configurations allows for assessing the value of uncertainty-aware plan-
ning in reducing imbalance costs and enhancing the scheduling of assets
within the HPP.

The original MILP optimization model within the EMERGE plat-
form [15] is formulated deterministically. In this study, the model is
extended to a stochastic version to account for uncertainty in wind
power and electricity market prices. To further enhance robustness
against adverse scenarios, risk aversion is also incorporated using a
Conditional Value-at-Risk (CVaR) formulation based on [29]. The gen-
eral structure of the developed stochastic MILP model is summarized
below:

max (1 —p) )’ Profit, + - (CVaRn . >, 51/) an
€T =

Profit, = Revenue, — Cost,, V¢ 12)

Revenue, = Z Py (R:f”'s + R:lf) , Wt 13)

SES
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Costy = Y\ p,- (CE +Ch +Cl2), i a4
SES
ng.x = Ptexp ’ At,x’ Ctg,a = Ptlmp : At,s’ v, s 1s)
h2 _ pydeli h2 h2 _ —su _ su P h2
RS = H; VA, Cly=Z5 - +H ¢ Vs (16)
b _ b,ch b,dis b
Gy = (Pt,s + P > e, Vs an
pv b,dis imp _ pexp b,ch
st. PY+P +P +P V=P + P+ P+ P, Vs
(18)
_ w,scn % PV _ PV ppPv,scn .
Pt‘z - Stwv : Pt.s - PY lTlaX’ Pt.s - St,s : PZ,S - PPY ITl'dX’ Vt’ s
19)
Ptes — Srhsz . Ph2,max’ Pfc;)m - Srcgm . peommax gy o (20)

l . .
77Ch . P;bs,Ch < Stb;Ch . Pb’max, L Pb,dlS < Stb;dls . Pb’max, Vi, s

,,Idis LS
(21)
PP <m-ub, PY <M o1-UP), Vs (22)
b b h  pbych 1 b,dis
socp =soct |+ (r]c PP - P - P ) , Vi>1,s (23)
sOCP, =sochit, s (24)

P™ < M-UB.pEmx PP < M. (1-UB). PP, yr (25)

CVaR constraint: CVaR, — [T, <¥,, Vs (26)

m= (RS + M- - P, -ch?), vs 27)
teT

The objective function is defined in Eqgs. (11) to (17), followed by
the technical and operational constraints detailed in Egs. (18) through
(27). The detailed formulations of the hydrogen electrolyzer constraints
and variables (e.g., Hfseli", Z,f‘;, HES, Pfs, and l’tffm), as used in (16),
(18), and (20), follow the modeling structure introduced in [30]. In
that reference, the variables H9V, HP and P®m correspond to d,
h, and P€, respectively. The hydrogen electrolyzer model in this work
is based on equations (8) to (25) of [30]. Note that the formulations
defined in (21) to (24) are based on the battery storage model pre-
sented in [31]. The CVaR-based formulation follows the risk modeling

approach in [29].

4. Numerical results

To assess the quality of the generated day-ahead scenarios, we
present a representative case study comparing the synthetic outputs
of the trained cGAN model against actual realizations and forecasted
values. Fig. 3 illustrates the generated scenarios for electricity market
prices (top) and wind power (bottom) for a sample test day (the last
day, i.e., December 31, 2024). A total of 100 scenarios are generated
and subsequently reduced to 10 representative scenarios for wind
power P/7*" and electricity market prices 4, with a probability p,.
The shaded regions represent the 10th-90th percentile range of the
generated scenarios, the dashed lines denote the scenario medians, and
the solid lines show the real and forecasted data. The results demon-
strate that the cGAN-generated scenarios more accurately capture the
temporal trends and variability observed in the real data compared
to the deterministic forecasts. This illustrates the model effectiveness
in producing diverse and realistic samples suitable for uncertainty-
aware decision-making. Note that PP"*® is treated as deterministic
and identical across scenarios, based on solar generation forecasts.
The underlying dataset includes historical time-series data for wind
generation, wind generation forecast, market prices, market price fore-
casts, load forecast, and solar generation forecast for the Netherlands
spanning 2021-2024. These data were extracted from the ENTSO-E
Energy Charts platform [32].
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Fig. 3. Generated cGAN day-ahead scenarios (Median and 10%-90% Range) compared with forecasted and real values for market price (top) and wind power

(bottom).

Cumulative Imbalance as % of Export Capacity (for Day Ahead)

20.0

17.5

15.0

125

10.0

7.5

5.0

2.5

Imbalance (% of Total Export Capacity)

0.0

Deterministic:
with Forecasted Data

Stochastic:
with cGAN-based Scenarios

Method

Fig. 4. Cumulative imbalance as percentage of total export capacity for day-ahead scheduling.

The generated scenarios are implemented in the stochastic version
of the EMERGE platform, described in (11) to (27), to evaluate opera-
tional decision-making for a HPP. The modeled HPP includes 22 MW
wind, 38 MW PV, a 6 MW/12 MWh battery energy storage system, a
6 MWe electrolyzer, and a 22 MW grid connection. The electrolyzer
parameters and costs follow [30], and battery efficiency is set to 95%.
For fair comparison with the deterministic case, a risk-neutral setting
is adopted by setting the risk-aversion parameter f = 0. To quantify
the benefits of stochastic optimization, results from the scenario-based
case (with cGAN-generated inputs) are compared to the deterministic
case using only point forecasts. The imbalance is computed as the devi-
ation between the real net power export and the net export optimized
under forecasted or scenario-based inputs, normalized by total export

capacity:
|NetReal - NetFoc|
Imb.FOC = W - 100
[Netgea — Netgen|
Imb.gcn = e;)gT - 100 (28)
where Net= Z (P,eXP - Eimp)
teT

In (28), Netg,,, refers to the net power calculated by the optimizer
using actual realized data, Nety,. is the net power obtained using
forecasted input values, and Netg., denotes the net power resulting
from the scenario-based stochastic optimization using cGAN-generated

inputs. The denominator P,

.max T€Presents the total grid capacity of
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Fig. 5. Distribution of hourly imbalance values for deterministic and stochas-
tic cases.

the HPP. The imbalance values are expressed as percentages of this
capacity.

Fig. 4 illustrates the cumulative imbalance as a percentage of total
export capacity for both cases based on (28). The stochastic optimiza-
tion using cGAN scenarios achieves a lower imbalance level compared
to the deterministic case (the imbalance costs is reduced from 20.63%
to 14.94%). Additionally, Fig. 5 presents the distribution of hourly
imbalances, highlighting that the stochastic approach reduces both the
median and spread of imbalances.

Finally Fig. 6 illustrates the hourly profit dynamics with an em-
phasize on how the cGAN-based stochastic optimization approach out-
performs the forecast-based deterministic baseline and closely tracks
the profit realized under real observations. The total hourly profit is
computed as the difference between the total hourly revenue, compris-
ing electricity and hydrogen sales, and the total operational cost. This
highlights the operational benefits of integrating realistic scenario mod-
eling through the developed cGAN framework, improving the dispatch
quality and economic performance of HPPs under uncertainty.

5. Conclusion
This paper proposed a conditional Generative Adversarial Network

(cGAN)-based methodology for joint scenario generation of wind power
and electricity market prices, with the goal of improving portfolio

Electric Power Systems Research 251 (2026) 112181

management decisions for hybrid power plants (HPPs). The developed
model was designed to capture both temporal dependencies and cross-
feature correlations to address the limitations of traditional statistical
and sampling-based approaches.

The generated scenarios were post-processed using clustering tech-
niques to reduce dimensionality while preserving statistical charac-
teristics. These reduced scenarios were integrated into a stochastic
MILP model developed in the EMERGE platform at TNO to optimize
HPP operations under uncertainty. Numerical experiments using Dutch
data from 2021-2024 demonstrated that the developed cGAN-based
stochastic approach achieved superior performance compared to a
deterministic baseline using only point forecasts. In particular, it led
to a reduction in cumulative imbalance, improved alignment with real-
time market conditions, and better operational scheduling of storage
and conversion assets within a HPP. Future work will aim to narrow the
current performance gap by integrating additional uncertainty sources
(e.g., solar variability and electrolyzer efficiency), extending the cGAN
framework to multivariate spatial forecasting, enhancing input fore-
cast accuracy, and incorporating online learning for adaptive scenario
updates.
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