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 A B S T R A C T

This paper presents a conditional Generative Adversarial Network (cGAN)-based framework for capturing 
uncertainty in the portfolio management of a hybrid power plant, with a particular focus on the joint variability 
of wind power output and electricity market prices. The proposed cGAN model generates realistic scenarios 
for multiple correlated feature vectors simultaneously, while preserving both temporal dependencies and inter-
feature correlations. A large set of scenarios is produced and subsequently reduced to a limited number of 
representative scenarios using a clustering technique that retains the statistical structure and correlations 
among variables. These representative scenarios are then integrated into a developed stochastic Mixed-Integer 
Linear Programming (MILP) model within the EMERGE platform at TNO to optimize hybrid power plant 
portfolio management under uncertainty. Results based on multi-year data demonstrate that the approach 
reduces imbalance costs from 20.63% to 14.94% compared to a deterministic baseline that relies only on point 
forecasts, which highlights the effectiveness of the proposed framework in enhancing operational robustness 
and market alignment.
1. Introduction

1.1. Background and literature review

The increasing penetration of renewable energy sources, such as 
wind and solar, has significantly transformed the operational land-
scape of modern power systems. Hybrid power plants (HPPs), which 
integrate multiple energy assets such as wind farms, solar PV, energy 
storage, and Power-to-X technologies, offer enhanced flexibility and 
reliability. However, these systems also introduce high levels of op-
erational uncertainty due to the variability of renewable output and 
fluctuations in electricity market prices. Accurate modeling of such un-
certainties is essential for effective portfolio management, particularly 
when deviations from forecasts can lead to significant imbalance costs. 
Scenario-based stochastic optimization has emerged as a widely used 
technique to manage these uncertainties [1]. Traditional methods rely 
on statistical approaches such as Monte Carlo or copula-based sam-
pling [2], which often fall short in capturing nonlinear dependencies, 
multi-feature interactions, and temporal correlations, especially when 
dealing with joint uncertainty in wind power and market prices. In [3], 
the distribution of unknown variables is modeled using the copula-
based approach, and Monte Carlo is then utilized to produce wind 
scenarios. [4] develops the autoregressive moving average (ARMA) 
model for wind scenarios. The uncertainty of wind forecast error is 
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examined using empirical distributions in [5], and to create wind 
scenarios, the distributions are sampled using an inverse transform 
sampling technique. Using historical data, the majority of these tra-
ditional scenario generation techniques first match the parameters of 
a presumptive statistical distribution model before creating scenar-
ios through sampling from the distribution model. However, as the 
assumptions might not hold in practice, particularly for operational 
scenarios involving multivariate uncertain variables, it is difficult to 
derive reliable statistical assumptions of uncertain variables and to fit 
the corresponding parameters. Furthermore, it can be challenging to 
sample from complex distributions [4]. As a result, the scalability and 
applicability of these statistical model-based methods in downstream 
decision-making tasks remain limited [1].

Recent advances in deep-learning based generative models, particu-
larly Generative Adversarial Networks (GANs), have shown promising 
capabilities in high-dimensional scenario generation without the need 
for explicit probabilistic assumptions. Instead of directly optimizing 
the maximum likelihood function, GAN tackles the problem by al-
ternately training two deep neural networks, the generator and the 
discriminator [1]. It was first used in [6] for generating renewable 
energy scenarios which demonstrated that GANs can efficiently produce 
a wide range of diverse scenarios in this context. GAN performance is 
improved in order to generate better scenarios with focus on solving 
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 Nomenclature of Hybrid Power Plant Optimization

 Indices and Sets:  
 𝑡, 𝑠 Time interval and scenario indices, 𝑡 ∈  , 

𝑠 ∈ 
 

 Parameters:  
 𝛽, 𝛼 Risk aversion (0 ≤ 𝛽 ≤ 1), CVaR confidence 

level (95%)
 

 𝑝𝑠, 𝑀 , 𝑆𝑂𝐶 init Probability of scenarios, Big-M, Initial 
battery state-of-charge [MWh]

 

 𝜆𝑡,𝑠, 𝜆h2𝑡 Electricity price [e/MWh], hydrogen price 
[e/kg]

 

 𝑐su, 𝑐h2 Electrolyzer startup cost [e], hydrogen 
production cost [e/kg]

 

 𝜂ch, 𝜂dis, 𝑐b Battery charge/discharge efficiency and 
operational costs [e/MWh]

 

 𝑃w,scn𝑡,𝑠 , 𝑃 pv,scn𝑡,𝑠 Scenario values of wind and PV power  
 𝑃 [⋅],max Rated capacity of asset 

[⋅] ∈ {w, pv, h2, com, b, g}, which denotes 
wind farm, photovoltaic units, electrolyzer, 
hydrogen compressor, battery energy 
storage (ch/dis), and grid connection, 
respectively

 

 Decision Variables:  
 𝑅[⋅]

𝑡,𝑠, 𝐶
[⋅]
𝑡,𝑠 Revenue and cost of asset [⋅] at 𝑡, 𝑠 [e]  

 𝑃 [⋅]
𝑡,𝑠 , 𝑆

[⋅]
𝑡,𝑠 Power [MW] and setpoint variable of asset 

[⋅] at 𝑡, 𝑠 (0 ≤ 𝑆[⋅]
𝑡,𝑠 ≤ 1)

 

 𝑈b
𝑡,𝑠, 𝑈

g
𝑡,𝑠 Binary variables for charging/discharging, 

and import/export status
 

 𝑆𝑂𝐶b𝑡,𝑠,CVaR𝛼 Battery state of charge [MWh], Conditional 
Value-at-Risk at 𝛼 [e]

 

 𝐻p
𝑡,𝑠,𝐻

deliv
𝑡,𝑠 Total Produced and delivered hydrogen [kg] 

 𝑍su
𝑡,𝑠 Binary variables of electrolyzer startup  

 𝛱𝑠, 𝛹𝑠 Total profit and CVaR slack variable at 
scenario 𝑠 [e]

 

model overfitting issue discriminator regularization in [7]. GAN-based 
scenario generation is implemented to stochastic optimal scheduling 
problem in [8]. Conditional GANs (cGANs), which incorporate auxiliary 
input (e.g., time indices or forecasts), enable structured scenario gen-
eration with control over temporal evolution and external features [9,
10]. However, standard GAN architectures still struggle to capture the 
dynamic dependencies and joint distributions of time-series data rele-
vant to energy systems. To overcome these limitations, several works 
have introduced time-series-specific GAN architectures. For instance, 
an Informer-TimeGAN hybrid model is proposed in [11] that combines 
temporal convolutional networks with self-attention mechanisms for 
day-ahead wind power scenario generation. That model integrates aux-
iliary classification loss and seasonal embedding to enhance scenario 
diversity and accuracy. Similarly, [12] developed a Progressive Grow-
ing of GAN (PG-GAN) and multi-objective optimization framework 
for wind power scenario generation, aiming to balance trade-offs be-
tween statistical similarity and forecast diversity. In [13], Conditional 
Style-based GANs are used to control scenario generation by injecting 
style features into latent spaces to preserve variability while ensuring 
statistical realism. GAN-based generation is extended in [14] to in-
tegrated energy systems, addressing operational constraints and data 
sparsity through a joint forecasting-scenario framework. A comprehen-
sive review of uncertainty handling in renewable energy applications 
is provided in [1], covering stochastic optimization approaches, un-
certainty modeling methods, scenario generation techniques, and their 
respective advantages, limitations, and future research directions.
2 
1.2. Research gaps and contributions

Despite recent progress, the application of conditional GANs for
joint multi-feature uncertainty modeling in HPP portfolio management 
remains limited. Accurately capturing the temporal dynamics and cross-
feature dependencies between wind generation and electricity prices 
is critical for improving dispatch decisions and market participation. 
Furthermore, integrating such high-fidelity scenarios into a tractable 
stochastic optimization framework demands robust scenario reduc-
tion techniques that retain essential correlations while minimizing 
computational burden.

To address these challenges, this paper presents a novel frame-
work that extends the conditional GAN approach to jointly model 
the uncertainty in wind power output and electricity market prices 
for HPP portfolio optimization. The proposed model incorporates a 
Transformer–GRU hybrid architecture designed to capture both tem-
poral dependencies and cross-feature correlations that are critical in 
power system applications. While conventional cGAN implementations 
are typically used as standalone scenario generators, the approach 
of this paper directly integrates the cGAN-generated scenarios into a 
stochastic optimization framework for optimal HPP dispatch. This en-
ables the creation of realistic hourly day-ahead scenarios that are both 
computationally tractable and operationally relevant. To reduce com-
plexity while preserving statistical fidelity, a clustering-based scenario 
reduction method is employed. The resulting representative scenarios, 
along with their associated probabilities, are embedded into a stochas-
tic Mixed-Integer Linear Programming (MILP) formulation within the 
EMERGE platform at TNO [15], supporting robust decision-making 
under uncertainty.

The key contributions of this work are summarized as follows:

(i) A unified cGAN-based framework is developed for the joint gener-
ation of realistic day-ahead scenarios of wind power and electric-
ity prices. The model integrates a Transformer–GRU architecture 
to capture both temporal dependencies and inter-feature corre-
lations, and employs a clustering-based scenario reduction tech-
nique to ensure statistical representativeness while maintaining 
computational tractability;

(ii) The reduced scenario set, together with associated probabilities, 
is integrated into a stochastic MILP optimization model within the 
EMERGE platform at TNO [15]. The complete framework is vali-
dated using multi-year data from the Netherlands, demonstrating 
tangible improvements in hybrid power plant scheduling and im-
balance cost reduction relative to a deterministic forecast-based 
baseline.

1.3. Paper structure

The remainder of this paper is structured as follows. Section 2 
describes the proposed cGAN-based scenario generation and reduction 
methodology. Section 3 outlines the case study design, data, and pa-
rameters. Section 4 presents the optimization results and performance 
comparison. Finally, Section 5 concludes with key insights and future 
research directions.

2. Methodology

Power system datasets often exhibit strong temporal dependencies, 
seasonal patterns, and high correlations between electricity prices and 
renewable generation. To address these characteristics, the proposed 
framework employs a Transformer–GRU hybrid generator to capture 
both long- and short-term dynamics while preserving cross-variable 
relationships. This section then outlines the overall structure of the 
proposed cGAN method, starting with data preprocessing for model 
training, followed by the cGAN architecture and training Strategy.
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Fig. 1. Architecture of the proposed cGAN, where both generator and discriminator use a Transformer-BiGRU core with final dense layers producing multi-feature 
outputs (generator) or authenticity logits (discriminator).
2.1. Data loading and preprocessing

The dataset consists of hourly time series data for wind power 
output, electricity market prices, and forecasts for wind generation, 
market prices, load, and solar generation. We utilize z-score normal-
ization to standardize these features, ensuring that they have a mean 
of zero and a standard deviation of one. This is crucial for the effective 
training of the cGAN model. We generate hourly labels (0 to 23) to 
preserve the intraday structure. The standardized data is then reshaped 
into daily sequences of size (24 × 7), representing 24 time steps across 
seven dimensions, one label, two target features, and four conditioning 
inputs. From the multi-year dataset, the last four days are reserved as 
the test set, while the remaining historical data is split into training 
(80%) and validation (20%) subsets. This processed dataset serves as 
the input for the cGAN described in the following subsection.

2.2. cGAN architecture and training strategy

The developed cGAN generates realistic multi-feature time series 
conditioned on external inputs. The architecture combines Transformer 
encoders, which capture long-range dependencies through self-
attention mechanisms [16–18], with Gated Recurrent Units (GRUs), 
which efficiently model temporal dynamics in sequential data [19,20].

2.2.1. cGAN architecture
As shown in Fig.  1, the proposed cGAN adopts a hybrid archi-

tecture in both generator and discriminator. Each network processes 
the input sequence through a Transformer encoder, capturing global 
inter-variable dependencies via self-attention with sinusoidal positional 
encoding, followed by a bidirectional GRU (BiGRU) [21] to model 
forward and backward temporal dynamics. This Transformer-BiGRU 
sequence enables learning of both long-range contextual relationships 
and local temporal patterns. The generator’s output layers map these 
representations to multi-feature sequences, while the discriminator 
produces per-time-step logits indicating authenticity. This combination 
yields synthetic sequences that are realistic and context-aware.
Generator The generator maps a random noise vector 𝑧 ∈ R𝑑 and 
auxiliary conditions to 24-hour sequences of multiple target features 
(e.g., wind power, electricity price). Conditional inputs, including fore-
casted variables and hourly labels, are processed through spectral-
normalized dense layers and embedded to preserve temporal semantics. 
The noise vector is broadcast across the time dimension and concate-
nated with the embedded inputs, then projected to a latent space. 
A Transformer encoder with sinusoidal positional encoding captures 
global temporal dependencies, followed by a BiGRU to model sequen-
tial dynamics in both directions. Time-distributed dense layers with 
Swish activations and spectral normalization refine the representation, 
and a final dense layer outputs the synthetic sequence for each time 
step.
3 
Discriminator The discriminator functions as a binary classifier, dis-
tinguishing real from synthetic sequences while conditioned on the 
same inputs (hourly labels and forecasted features). Real and generated 
sequences are embedded with their conditional information, processed 
through spectral-normalized dense layers, and concatenated before 
projection. The sequence passes through a Transformer encoder with 
sinusoidal positional encoding and a BiGRU to capture temporal depen-
dencies in both directions. Time-distributed dense layers with spectral 
normalization and LeakyReLU activations refine the features, and a 
final dense layer outputs scalar logits per time step which represents 
the probability of each slice being real. During adversarial training, 
the discriminator becomes better at telling real and synthetic sequences 
apart, while the generator simultaneously learns to fool it. This ongoing 
competition gradually pushes the generator to produce sequences that 
are increasingly realistic and temporally coherent.

2.2.2. Training strategy
The model is trained using mini-batch stochastic optimization (e.g., 

64 sequences per batch) with the Adam optimizer [22], allowing it to 
efficiently learn from the full dataset over multiple epochs. It follows 
a hybrid approach that blends adversarial, feature matching, and re-
construction losses, while the Wasserstein GAN with Gradient Penalty 
(WGAN-GP) framework [23,24] is applied to guarantee stable and 
reliable convergence.
Loss functions To stabilize training and avoid mode collapse, we adopt 
the WGAN-GP [23,24]. The discriminator is trained to assign higher 
scores to real samples and lower scores to generated (fake) ones. The 
loss function for the discriminator is defined as: 
𝐷 = E𝑥̂∼P𝑔 [𝐷(𝑥̂)] − E𝑥∼P𝑟 [𝐷(𝑥)] + 𝜆𝑔𝑝 ⋅ GP(𝑥, 𝑥̂) (1)

where 𝑥 ∼ P𝑟 and 𝑥̂ ∼ P𝑔 denote samples from the real and gen-
erated data distributions, respectively. In practice, these expectations 
are computed over mini-batches of real and synthetic sequences. The 
discriminator 𝐷(⋅) outputs a scalar score indicating sample realism. The 
gradient penalty term GP(𝑥, 𝑥̂) is computed using interpolated pairs of 
real and fake data within each batch. 𝜆𝑔𝑝 is a regularization coefficient 
controlling the strength of the gradient penalty term.

The generator is trained to produce realistic sequences that not only 
deceive the discriminator but also retain structural similarity to real 
data. To achieve this, a composite loss function consisting of three 
components is defined: 
𝐺 = 𝜆𝑎𝑑𝑣 ⋅ 𝑎𝑑𝑣 + 𝜆𝑓𝑚 ⋅ 𝑓𝑚 + 𝜆𝑟𝑒𝑐𝑜𝑛 ⋅ 𝑟𝑒𝑐𝑜𝑛 (2)

where:

• 𝑎𝑑𝑣 = E𝑥̂∼P𝑔
[

log𝐷(𝑥̂)
] is the adversarial loss, which encour-

ages the generator to produce sequences that the discriminator 
classifies as real.

• 𝑓𝑚 = ‖𝑓 (𝑥) − 𝑓 (𝑥̂)‖22 is the feature matching loss, which mini-
mizes the distance between intermediate activations 𝑓 (⋅) of the 
discriminator on real (𝑥) and generated (𝑥̂) data.
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• 𝑟𝑒𝑐𝑜𝑛 = ‖𝑥 − 𝑥̂‖22 is the reconstruction loss, measured as the mean 
squared error (MSE) between real and generated sequences.

The weights 𝜆𝑎𝑑𝑣, 𝜆𝑓𝑚, and 𝜆𝑟𝑒𝑐𝑜𝑛 control the relative contribution of 
each term and are tuned via hyperparameter optimization.
Optimization The generator and discriminator are optimized using the 
Adam algorithm with learning rate decay [22]: 
𝜂𝑡 = 𝜂0 ⋅ 𝛾

⌊𝑡∕𝑇 ⌋ (3)

where 𝜂0 is the initial learning rate, 𝛾 is the decay rate, 𝑇  is the 
decay step interval, and 𝑡 is the training iteration. The loss functions 
for the discriminator (𝐷) and generator (𝐺) follow the WGAN-GP 
formulation, with generator loss combining adversarial, feature match-
ing, and reconstruction components. Hyperparameters, including latent 
dimension, learning rates, and batch size, are tuned using Bayesian 
optimization via Optuna [25].
Optimization The generator and discriminator are optimized using the 
Adam algorithm with learning rate decay [22]: 
𝜂𝑡 = 𝜂0 ⋅ 𝛾

⌊𝑡∕𝑇 ⌋ (4)

where 𝜂0 is the initial learning rate, 𝛾 is the decay rate, 𝑇  is the decay 
step interval, and 𝑡 is the training iteration.

The loss functions for the discriminator (𝐷) and generator (𝐺) 
follow the WGAN-GP formulation, with the generator loss combining 
adversarial, feature matching, and reconstruction components.

Hyperparameters such as latent dimension, generator and discrim-
inator learning rates, and batch size are optimized through Bayesian 
search using Optuna [25]. The objective function evaluates different 
configurations by training the model for a small number of epochs 
and selecting the best setting based on a composite validation metric 
explained in the next part. Specifically, each Optuna trial suggests 
candidate values for the key hyperparameters and initializes a GAN 
instance accordingly. After a few training epochs, the trial computes 
validation performance, and the composite metric in (8) is used to 
guide the selection of optimal parameters. The best trial yields the final 
values used in full training.
Validation and evaluation Model performance is evaluated after each 
epoch based on:

• Normalized RMSE between real (𝑥) and generated (𝑥̂) data [26]: 

nRMSE(𝑥, 𝑥̂) =

√

1
𝑛
∑𝑛

𝑖=1(𝑥𝑖 − 𝑥̂𝑖)2

max(𝑥) − min(𝑥)
(5)

• 𝑅2 score to measures how well the generated values explain the 
variance in the real data [27]: 

𝑅2 = 1 −
∑𝑛

𝑖=1(𝑥𝑖 − 𝑥̂𝑖)2
∑𝑛

𝑖=1(𝑥𝑖 − 𝑥̄)2
(6)

where 𝑥̄ is the average of all 𝑥𝑖.
• KDE overlap between the empirical distributions of real and syn-
thetic data, computed as [28]: 

KDE = ∫ min
[

𝑓𝑥(𝑢), 𝑓𝑥̂(𝑢)
]

d𝑢 (7)

where 𝑓𝑥 and 𝑓𝑥̂ are the kernel density estimators.

A composite validation metric is computed to jointly assess accuracy 
and statistical fidelity: 
 = 𝑐1 ⋅ nRMSE − 𝑐2 ⋅ KDE − 𝑐3 ⋅ 𝑅

2 (8)

where 𝑐1, 𝑐2, and 𝑐3 are weighting coefficients that balance the trade-
offs between reconstruction error (nRMSE), distributional similarity 
(KDE overlap), and explained variance (𝑅2 score). The generator model 
achieving the lowest exponentially smoothed value of  during train-
ing is selected as the final model.
4 
Algorithm 1 Training Procedure for the Proposed cGAN Model
Require: Preprocessed training and validation datasets
Require: Generator 𝐺, Discriminator 𝐷, and hyperparameters 𝜃
1: Initialize 𝐺 and 𝐷 with 𝜃, including learning rate schedules
2: for each epoch do
3:  for each batch in training set do
4:  Sample noise vector 𝑧 ∼  (0, 𝐼)
5:  Generate synthetic data 𝑥̂ = 𝐺(𝑧,𝓁, conditions)
6:  for 𝑘 steps do
7:  Compute 𝐷 and 𝐺 and update 𝐺 and 𝐷 using gradient 
descent

8:  end for
9:  end for
10:  Evaluate on validation set using the composite validation metric 

of (8)
11:  Update best generator if the composite metric improves
12:  if no improvement for 𝑃  epochs then
13:  Reduce learning rates considering (4) and (9)
14:  if no improvement for 𝑃 + 𝛿 epochs then
15:  Reload best generator weights
16:  end if
17:  end if
18: end for
19: Load best generator weights for final inference and scenario 

generation

Adaptive training and early stopping Building upon the decaying learn-
ing rate strategy used in the optimization phase (4), adaptive training 
mechanisms are employed to further improve model robustness. Specif-
ically, if the composite validation metric  does not improve for a 
predefined patience window 𝑃 , the learning rates of both the generator 
and discriminator are reduced. If stagnation persists for an additional 
𝛿 epochs, the generator is rolled back to the best-performing state. The 
learning rate update rule is: 
𝜂𝑡 ← max(𝜂𝑡 ⋅ 𝜆𝐷, 𝜂min), (9)

where 𝜆𝐷 < 1 is the decay factor, and 𝜂min is the minimum learning rate 
threshold to maintain training stability.

A high-level overview of the training procedure for the proposed 
cGAN framework is presented in Algorithm 1. The algorithm outlines 
the key stages including stochastic data generation, loss evaluation, 
gradient-based updates, and validation monitoring using composite 
performance metrics.
Scenario generation & reduction To capture the stochastic nature of 
wind generation and electricity market prices, a large set of synthetic 
day-ahead scenarios is produced using the trained cGAN generator. For 
each test day, the generator receives a latent noise vector 𝑧(𝑖), hourly 
time labels 𝓁𝑡, and standardized forecasted features as the conditions. It 
then outputs a 24-hour sequence of synthetic values representing both 
wind power and market prices: 
𝑥̂(𝑖)𝑡 = 𝐺(𝑧(𝑖),𝓁𝑡, 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠𝑡), 𝑖 = 1,… , 𝑁, (10)

where 𝐺(⋅) denotes the generator and 𝑁 is the total number of gen-
erated scenarios. Each scenario 𝑥̂(𝑖)𝑡  represents a possible realization 
of joint wind-price evolution over a 24-hour horizon. The generated 
sequences are denormalized to the original scale using the training data 
statistics and stored in matrices of shape [𝑁 × 24] for both price and 
wind features.

To reduce computational complexity in downstream stochastic opti-
mization models, the set of 𝑁 raw scenarios is clustered using K-Means 
clustering. The centroids of each cluster serve as the final reduced 
scenarios, capturing both price and wind variability across 24 h. Their 
corresponding probability weights are also computed as the probability 
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Fig. 2. Overview of the hybrid power plant structure modeled in EMERGE, 
including renewable generation, battery storage, and hydrogen conversion 
pathways.

of each scenario. This two-step framework, scenario generation via 
cGAN and reduction via clustering, ensures that the resulting set of 
scenarios is both statistically diverse and computationally tractable for 
use in day-ahead stochastic optimization models for HPPs.

3. Case study

To evaluate the effectiveness of the proposed cGAN-based scenario 
generation method, the generated wind power and electricity price 
scenarios are integrated into a stochastic optimization model devel-
oped within the EMERGE platform at TNO [15]. EMERGE enables 
comprehensive techno-economic modeling of hybrid energy systems by 
incorporating renewable generation alongside storage and conversion 
technologies. The system under study is a HPP consisting of wind 
turbines, PV solar generation, battery storage systems, and electrolyzer 
units capable of producing hydrogen. Fig.  2 shows the overall archi-
tecture of the modeled system. Red arrows represent electrical energy 
flows, while blue arrows indicate hydrogen flows. The optimization 
problem is formulated as a stochastic MILP. In the stochastic formu-
lation, the cGAN-generated day-ahead scenarios for wind power and 
electricity prices are used to represent uncertainties in supply and 
market conditions. In contrast, the deterministic baseline uses only 
single-point forecast values, with no explicit treatment of uncertainty. 
The objective of the optimization is to minimize the total expected 
operational cost while maximizing revenue, subject to technical and 
operational constraints. Comparing the stochastic and deterministic 
configurations allows for assessing the value of uncertainty-aware plan-
ning in reducing imbalance costs and enhancing the scheduling of assets 
within the HPP.

The original MILP optimization model within the EMERGE plat-
form [15] is formulated deterministically. In this study, the model is 
extended to a stochastic version to account for uncertainty in wind 
power and electricity market prices. To further enhance robustness 
against adverse scenarios, risk aversion is also incorporated using a 
Conditional Value-at-Risk (CVaR) formulation based on [29]. The gen-
eral structure of the developed stochastic MILP model is summarized 
below:

max (1 − 𝛽)
∑

𝑡∈
Profit𝑡 + 𝛽 ⋅

(

CVaR𝛼 −
1

1 − 𝛼
∑

𝑠∈
𝑝𝑠 ⋅ 𝛹𝑠

)

(11)

Profit𝑡 = Revenue𝑡 − Cost𝑡, ∀𝑡 (12)

Revenue𝑡 =
∑

𝑝𝑠 ⋅
(

𝑅g𝑡,𝑠 + 𝑅h2𝑡,𝑠
)

, ∀𝑡 (13)

𝑠∈

5 
Cost𝑡 =
∑

𝑠∈
𝑝𝑠 ⋅

(

𝐶g𝑡,𝑠 + 𝐶b𝑡,𝑠 + 𝐶h2𝑡,𝑠
)

, ∀𝑡 (14)

𝑅g𝑡,𝑠 = 𝑃 exp𝑡 ⋅ 𝜆𝑡,𝑠, 𝐶g𝑡,𝑠 = 𝑃 imp𝑡 ⋅ 𝜆𝑡,𝑠, ∀𝑡, 𝑠 (15)

𝑅h2𝑡,𝑠 = 𝐻deliv
𝑡,𝑠 ⋅ 𝜆h2𝑡 , 𝐶h2𝑡,𝑠 = 𝑍su

𝑡,𝑠 ⋅ 𝑐
su +𝐻p

𝑡,𝑠 ⋅ 𝑐
h2, ∀𝑡, 𝑠 (16)

𝐶b𝑡,𝑠 =
(

𝑃 b,ch𝑡,𝑠 + 𝑃 b,dis𝑡,𝑠

)

⋅ 𝑐b, ∀𝑡, 𝑠 (17)

s.t. 𝑃w𝑡,𝑠 + 𝑃 pv𝑡,𝑠 + 𝑃 b,dis𝑡,𝑠 + 𝑃 imp𝑡 = 𝑃 exp𝑡 + 𝑃 b,ch𝑡,𝑠 + 𝑃 e𝑡,𝑠 + 𝑃 com𝑡,𝑠 , ∀𝑡, 𝑠

(18)
𝑃w𝑡,𝑠 = 𝑆w𝑡,𝑠 ⋅ 𝑃

w,scn
𝑡,𝑠 ⋅ 𝑃w,max, 𝑃 pv𝑡,𝑠 = 𝑆pv𝑡,𝑠 ⋅ 𝑃 pv,scn𝑡,𝑠 ⋅ 𝑃 pv,max, ∀𝑡, 𝑠

(19)

𝑃 e𝑡,𝑠 = 𝑆h2𝑡,𝑠 ⋅ 𝑃 h2,max, 𝑃 com𝑡,𝑠 = 𝑆com𝑡,𝑠 ⋅ 𝑃 com,max, ∀𝑡, 𝑠 (20)

𝜂ch ⋅ 𝑃 b,ch𝑡,𝑠 ≤ 𝑆b,ch𝑡,𝑠 ⋅ 𝑃 b,max, 1
𝜂dis

⋅ 𝑃 b,dis𝑡,𝑠 ≤ 𝑆b,dis𝑡,𝑠 ⋅ 𝑃 b,max, ∀𝑡, 𝑠

(21)

𝑃 b,ch𝑡,𝑠 ≤ 𝑀 ⋅ 𝑈b
𝑡,𝑠, 𝑃 b,dis𝑡,𝑠 ≤ 𝑀 ⋅ (1 − 𝑈b

𝑡,𝑠), ∀𝑡, 𝑠 (22)

𝑆𝑂𝐶b𝑡,𝑠 = 𝑆𝑂𝐶b𝑡−1,𝑠 +
(

𝜂ch ⋅ 𝑃 b,ch𝑡,𝑠 − 1
𝜂dis

⋅ 𝑃 b,dis𝑡,𝑠

)

, ∀𝑡 > 1, 𝑠 (23)

𝑆𝑂𝐶b𝑡=0,𝑠 = 𝑆𝑂𝐶 init, ∀𝑠 (24)

𝑃 imp𝑡 ≤ 𝑀 ⋅ 𝑈g
𝑡 ⋅ 𝑃 g,max, 𝑃 exp𝑡 ≤ 𝑀 ⋅ (1 − 𝑈g

𝑡 ) ⋅ 𝑃
g,max, ∀𝑡 (25)

CVaR constraint: CVaR𝛼 −𝛱𝑠 ≤ 𝛹𝑠, ∀𝑠 (26)

𝛱𝑠 =
∑

𝑡∈

(

𝑅g𝑡,𝑠 + 𝑅h2𝑡,𝑠 − 𝐶g𝑡,𝑠 − 𝐶b𝑡,𝑠 − 𝐶h2𝑡,𝑠
)

, ∀𝑠 (27)

The objective function is defined in Eqs. (11) to (17), followed by 
the technical and operational constraints detailed in Eqs. (18) through 
(27). The detailed formulations of the hydrogen electrolyzer constraints 
and variables (e.g., 𝐻deliv

𝑡,𝑠 , 𝑍su
𝑡,𝑠 , 𝐻

p
𝑡,𝑠, 𝑃 e𝑡,𝑠, and 𝑃 com𝑡,𝑠 ), as used in (16), 

(18), and (20), follow the modeling structure introduced in [30]. In 
that reference, the variables 𝐻deliv, 𝐻p, and 𝑃 com correspond to 𝑑, 
ℎ, and 𝑃 c, respectively. The hydrogen electrolyzer model in this work 
is based on equations (8) to (25) of [30]. Note that the formulations 
defined in (21) to (24) are based on the battery storage model pre-
sented in [31]. The CVaR-based formulation follows the risk modeling 
approach in [29].

4. Numerical results

To assess the quality of the generated day-ahead scenarios, we 
present a representative case study comparing the synthetic outputs 
of the trained cGAN model against actual realizations and forecasted 
values. Fig.  3 illustrates the generated scenarios for electricity market 
prices (top) and wind power (bottom) for a sample test day (the last 
day, i.e., December 31, 2024). A total of 100 scenarios are generated 
and subsequently reduced to 10 representative scenarios for wind 
power 𝑃w,scn𝑡,𝑠  and electricity market prices 𝜆𝑡,𝑠 with a probability 𝑝𝑠. 
The shaded regions represent the 10th–90th percentile range of the 
generated scenarios, the dashed lines denote the scenario medians, and 
the solid lines show the real and forecasted data. The results demon-
strate that the cGAN-generated scenarios more accurately capture the 
temporal trends and variability observed in the real data compared 
to the deterministic forecasts. This illustrates the model effectiveness 
in producing diverse and realistic samples suitable for uncertainty-
aware decision-making. Note that 𝑃 pv,scn𝑡,𝑠  is treated as deterministic 
and identical across scenarios, based on solar generation forecasts. 
The underlying dataset includes historical time-series data for wind 
generation, wind generation forecast, market prices, market price fore-
casts, load forecast, and solar generation forecast for the Netherlands 
spanning 2021–2024. These data were extracted from the ENTSO-E 
Energy Charts platform [32]. 
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Fig. 3. Generated cGAN day-ahead scenarios (Median and 10%–90% Range) compared with forecasted and real values for market price (top) and wind power 
(bottom).
Fig. 4. Cumulative imbalance as percentage of total export capacity for day-ahead scheduling.
The generated scenarios are implemented in the stochastic version 
of the EMERGE platform, described in (11) to (27), to evaluate opera-
tional decision-making for a HPP. The modeled HPP includes 22 MW 
wind, 38 MW PV, a 6 MW/12 MWh battery energy storage system, a 
6 MWe electrolyzer, and a 22 MW grid connection. The electrolyzer 
parameters and costs follow [30], and battery efficiency is set to 95%. 
For fair comparison with the deterministic case, a risk-neutral setting 
is adopted by setting the risk-aversion parameter 𝛽 = 0. To quantify 
the benefits of stochastic optimization, results from the scenario-based 
case (with cGAN-generated inputs) are compared to the deterministic 
case using only point forecasts. The imbalance is computed as the devi-
ation between the real net power export and the net export optimized 
under forecasted or scenario-based inputs, normalized by total export 
6 
capacity: 

Imb.𝐹𝑂𝐶 =
|NetReal − NetFOC|

𝑃 g,max
⋅ 100

Imb.𝑆𝐶𝑁 =
|NetReal − NetSCN|

𝑃 g,max
⋅ 100

where Net =
∑

𝑡∈

(

𝑃 exp𝑡 − 𝑃 imp𝑡

)

(28)

In (28), Net𝑅𝑒𝑎𝑙 refers to the net power calculated by the optimizer 
using actual realized data, Net𝐹𝑂𝐶 is the net power obtained using 
forecasted input values, and Net𝑆𝐶𝑁  denotes the net power resulting 
from the scenario-based stochastic optimization using cGAN-generated 
inputs. The denominator 𝑃  represents the total grid capacity of 
𝑔,𝑚𝑎𝑥
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Fig. 5. Distribution of hourly imbalance values for deterministic and stochas-
tic cases.

the HPP. The imbalance values are expressed as percentages of this 
capacity.

Fig.  4 illustrates the cumulative imbalance as a percentage of total 
export capacity for both cases based on (28). The stochastic optimiza-
tion using cGAN scenarios achieves a lower imbalance level compared 
to the deterministic case (the imbalance costs is reduced from 20.63% 
to 14.94%). Additionally, Fig.  5 presents the distribution of hourly 
imbalances, highlighting that the stochastic approach reduces both the 
median and spread of imbalances.

Finally Fig.  6 illustrates the hourly profit dynamics with an em-
phasize on how the cGAN-based stochastic optimization approach out-
performs the forecast-based deterministic baseline and closely tracks 
the profit realized under real observations. The total hourly profit is 
computed as the difference between the total hourly revenue, compris-
ing electricity and hydrogen sales, and the total operational cost. This 
highlights the operational benefits of integrating realistic scenario mod-
eling through the developed cGAN framework, improving the dispatch 
quality and economic performance of HPPs under uncertainty.

5. Conclusion

This paper proposed a conditional Generative Adversarial Network 
(cGAN)-based methodology for joint scenario generation of wind power 
and electricity market prices, with the goal of improving portfolio 
7 
management decisions for hybrid power plants (HPPs). The developed 
model was designed to capture both temporal dependencies and cross-
feature correlations to address the limitations of traditional statistical 
and sampling-based approaches.

The generated scenarios were post-processed using clustering tech-
niques to reduce dimensionality while preserving statistical charac-
teristics. These reduced scenarios were integrated into a stochastic 
MILP model developed in the EMERGE platform at TNO to optimize 
HPP operations under uncertainty. Numerical experiments using Dutch 
data from 2021–2024 demonstrated that the developed cGAN-based 
stochastic approach achieved superior performance compared to a 
deterministic baseline using only point forecasts. In particular, it led 
to a reduction in cumulative imbalance, improved alignment with real-
time market conditions, and better operational scheduling of storage 
and conversion assets within a HPP. Future work will aim to narrow the 
current performance gap by integrating additional uncertainty sources 
(e.g., solar variability and electrolyzer efficiency), extending the cGAN 
framework to multivariate spatial forecasting, enhancing input fore-
cast accuracy, and incorporating online learning for adaptive scenario 
updates.
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