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Abstract.
This study presents an innovative Mission Management System (MMS) designed for
hybrid-powered yachts, aimed at advancing sustainable maritime operations. The MMS
supports operators in optimizing total mission energy use, integrates with Energy Man-
agement System (EMS) for short-term efficiency, and addresses the shift towards su-
pervisory control paradigms. Key components include a mission profile optimizer based
on a Virtual-Vessel Model and Metamodel, real-time weather integration, and a genetic
algorithm that balances user-defined priorities such as fuel consumption and emissions.
In parallel, a play-based delegation system enhances human-machine interaction, al-
lowing operators to define high-level objectives while maintaining control oversight. A
dashboard interface offers progressive decision support, from manual profile definition
to optimization suggestions. Three workshops with subject-matter experts validated the
MMS, demonstrating its potential to reduce environmental impact without increasing
operator workload, thus contributing to the transition to zero-emission operations.

1 Introduction
The maritime sector is transitioning toward hybrid and smart vessel technologies, driven by a dual
mandate: reduce environmental impact and improve operational efficiency. Future yachts, for example,
are expected to combine diesel engines with electric propulsion, batteries, and renewable energy sources
[15]. These hybrid vessels will be equipped with advanced sensors and communication networks that
enable real-time data collection, performance monitoring, and adaptive energy management.

While hardware advances enable new capabilities, they also introduce operational complexity. Man-
aging energy flows and mission-level decisions in these vessels demands a rethinking of traditional control
hierarchies. A yacht can be subdivided into four interrelated systems. The Power Management Sys-
tem (PMS) governs the instantaneous flow of electrical power on the millisecond timescale. The EMS,
operating on the seconds-to-minutes scale, optimizes energy generation, storage, and consumption across
subsystems, balancing propulsion, hotel loads, and emissions. The MMS acts as the strategic planner on
the hours-to-weeks scale, aligning operations with high-level mission goals. Finally, the Human Machine
Interfaces (HMIs) serve as the interface layer, enabling operators to monitor system status and intervene
through dashboards and decision-support tools.

https://creativecommons.org/licenses/by/4.0/
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This layered architecture is exemplified in initiatives such as Feadship’s Foresight program, which
integrates sensor-driven decision support to help crew choose efficient routes while preserving a high-end
user experience for clients [15]. However, existing approaches often require operators to directly manage
low-level parameters or rely on fixed control modes, limiting the effectiveness of such decision-support
tools in dynamically balancing competing objectives like fuel efficiency, emissions, voyage duration, and
comfort.

Moreover, although advances in Maritime Autonomous Surface Ships (MASS) have focused on nav-
igation autonomy, there is a critical gap in how human operators supervise mission-level planning and
energy decisions in increasingly automated, hybrid-powered vessels. Most systems either lack structured
support for high-level planning or assume full autonomy, neglecting the potential for effective human-
machine teaming.

To address this gap, we present a novel MMS for hybrid-powered yachts that supports supervisory
control. Our methodology is as follows:

1. We created a mission profile optimizer, described in Section 3, which uses a metamodel-based
simulation of a hybrid yacht to evaluate operational scenarios and generate optimized mission plans.
This optimizer balances key performance indicators (KPIs) such as fuel use, emissions, and journey
time based on user-defined objectives. It leverages a virtual vessel model informed by Copernicus
ERA5 weather data and a genetic algorithm for optimization.

2. A play-based delegation framework has been developed, introduced in Section 4, which enables
operators to express intent through structured, editable plan templates—so-called “plays”. These
plays capture user goals and constraints, allowing the system to propose solutions and explain
its reasoning. A dashboard interface supports three escalating levels of decision support: manual
plan inspection, generated options and what-if analysis, and fully delegated optimization with
explanations.

3. We evaluate this MMS concept in collaboration with subject matter experts through workshops
that combined quantitative human-factors metrics with qualitative interviews, as detailed in Sec-
tion 5. The results indicate that our approach enables more sustainable and effective vessel operation
without increasing operator workload.

It is important to note that an optimization system is not an isolated contribution and an end by itself,
disjoint from human-factors considerations. Rather, it serves as an enabler for studying human-machine
interaction and supervisory control through play-based delegation. By simulating complex trade-offs in
realistic scenarios, the optimizer provides a foundation for experiments with human operators and expert
users.
In summary, this work contributes:

• A mission-level optimizer that integrates a digital twin and real-time environmental data to support
high-level planning.

• A delegation-based supervisory control framework that enables human operators to remain in con-
trol while relying on automation for complex trade-offs.

• An operator-centered evaluation showing that such systems can support smarter, more sustainable
operations aligned with MASS and smart shipping goals.

By bridging energy modeling, mission planning, and intuitive human-machine interaction, this work
advances the state of the art in smart maritime systems. It offers a pathway for hybrid-powered vessels to
operate more efficiently, with human operators overseeing strategic outcomes rather than micromanaging
system parameters.

2 Related research
In accordance with the contributions above, we present related research on digital twins for the virtual
vessel model, on existing maritime mission management systems and on supervisory control.
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2.1 Digital Twins of vessels
Digital Twin (DT) technology has gained increasing attention in maritime and energy systems due to its
potential to enhance decision-making, enable predictive maintenance, and optimize operational perfor-
mance. A DT acts as a dynamic, virtual replica of a physical system, continuously updated with real-time
data to reflect current states and simulate future behavior.

In the maritime sector, DTs are being explored for both system-level monitoring and full-ship mod-
eling. Assani et al. [2] provide a comprehensive review of ship-specific DT applications, identifying
key modeling challenges such as integration complexity, real-time data synchronization, and simulation
accuracy. Similarly, Madusanka et al. [23] outline emerging trends in DTs for maritime operations,
emphasizing their role in enabling safer, greener, and more autonomous vessels. Fonseca and Gaspar [12]
discuss the data modeling challenges when creating cohesive ship DTs, highlighting the fragmentation
and heterogeneity of maritime data sources. In the work of Wilkins et al. [42] Functional Mock-Up
Units (FMUs) are introduced to manage the complexity of modeling large systems. Such an FMU
platform allows for real-time parametrization, facilitating its extension into a DT environment. In a
follow-up study, Dankers et al. [9] developed a modular platform for vessel system modeling using FMUs,
representing a hybrid-(diesel/electric) powered yacht.

In broader energy system applications, Moghadam et al. [30] survey DT trends in power systems and
identify critical advancements in modeling, control, and optimization techniques. While their focus is
not exclusively maritime, many insights, such as the importance of modular simulation architectures and
hybrid control strategies, directly inform the development of digital twins for hybrid-powered vessels.

Building on this literature, our approach utilizes the modular DT platform for a hybrid yacht developed
by Dankers et al. [9] that enables real-time optimization via a metamodel within mission simulations.
Rather than focusing solely on the vessel’s physical systems, our digital twin supports high-level mission
planning and supervisory control.

2.2 Mission management systems
Mission management for conventionally operated vessels has gained increasing attention as shipping com-
panies seek to improve operational efficiency and environmental sustainability without fully automating
navigation. Rather than replacing operators, MMSs increasingly aim to support decision-making through
advanced simulation, optimization, and user interfaces.

Jaurola et al. [19] provide a comprehensive review of power management strategies for hybrid marine
vessel systems, focusing on design-phase and operational energy optimization. Their work emphasizes
the role of modular architectures and mission-specific operational modes, such as harbor, cruising, and
station-keeping, as essential considerations when designing power systems for energy efficiency. These
insights inform the integration of energy-aware planning into operational systems such as the MMS, which
aims to optimize both total mission energy use and short-term power allocation.

From a broader logistics and operations research perspective, Mansouri et al. [25] reviews decision-
support approaches in maritime shipping that balance environmental performance with operational ob-
jectives. They highlight multi-objective optimization methods that help operators consider trade-offs
between cost, fuel consumption, emissions, and scheduling. These methods provide a foundation for
the mission-profile optimization capabilities of the MMS, which incorporates environmental data and
user-defined objectives to generate mission plans aligned with sustainability goals.

Beyond energy and efficiency, recent work by Sharif et al. [35] addresses the critical issue of safety in
maritime routing. Their review outlines the importance of integrating safety constraints into planning
tools, especially in adverse weather or high-risk navigational zones. Although their focus lies in route
planning, the notion of safety as a planning parameter is also highly relevant to systems such as the
MMS, which must enable operators to adjust mission profiles in response to environmental conditions
and vessel limitations. The inclusion of what-if analysis and play-based delegation in the MMS supports
this adaptive planning approach.

2.3 Supervisory control
The automation of vessel operations sets new requirements of human involvement and supervision [22].
Operator responsibilities move away from direct control and towards supervisory control, with their
tasks changing from setting low-level control parameters towards setting mission profiles or high-level
preferences [24]. Currently, the supervisory control solutions are based on concepts of more direct control
[32, 41]. This often results in support concepts that still require constant operator attention and a
high degree of expertise [5]. This limits the advantages of automated management systems, because,
for example, such concepts do not reduce operator workload [40]. More importantly, these concepts do
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not necessarily lead to more efficiency and safety as operators do not receive the support they need to
transition from direct control to supervisory control causing them to micro-manage, distrust the offered
systems, or make wrong decisions due to a lack of situational awareness. Supervisory control concepts are
needed that allow operators to enact control over management systems in an effective, safe, and efficient
manner.

Delegation refers to situations where one actor has managerial authority over another but does not
command every aspect of task performance [26]. Through delegation, the captain can express their intent
to a vessel management system, which then interprets, completes, and produces precise plans for this
intent while updating the captain on its progress. Consequently, the effectiveness of operations relies
less on manual control, intuition, and past experience in accommodating multiple objectives, and more
on the clarity of the captain’s intent, the system’s interpretation and implementation of this intent, the
justification for its proposed options, and the communication between parties. Some purported bene-
fits of delegation include the reduction of mental workload for human operators, even in unpredictable
environments, the formation of shared understanding and expectations between human and systems,
streamlined communication and increased collaboration fluency, which arguably enable operators to ex-
ercise Meaningful Human Control [31, 11, 27, 8]. Delegation methods have been mostly applied in the
military domain [29, 39] and applications that touch on the maritime domain are, to the best of our
knowledge, currently limited to applications in the Navy [3].

Different delegation concepts can be envisioned depending on the degree of supervisor involvement
or, dually, reliance on automation [6, 28]. It is therefore important to (i) properly translate levels
of supervisory control into concrete mission management functionalities and human-machine teaming
protocols and (ii) understand which level would be preferable, especially in terms of concrete human
factors metrics such as usability, mental workload, transparency, trust and intended reliance.

3 Mission profile optimizer
The first key component of the MMS is the mission profile optimizer, which determines optimal opera-
tional parameters based on user-defined objectives and constraints. The optimizer comprises six compo-
nents: (1) the virtual vessel model, (2) its metamodel, (3) mission profile definitions, (4) the simulator, (5)
the optimization algorithm, and (6) play-based delegation. The relationships between these components
are illustrated in Figure 1, and the following subsections provide detailed descriptions of each, with the
exception for play-based delegation, which is discussed separately in Section 4.

Figure 1: The architecture of the mission profile optimizer.

3.1 Virtual Vessel
An FMU-based modular DT of a hybrid yacht has been developed to represent the vessel powertrain.
In this study, a forward-backward facing modeling approach is used. This simulation regime involves
forward-facing causality of calculations beginning at the prime mover in the direction of the propulsion.
Moreover, the forward-backward simulation approach deals with quantities that are physically measurable
in the vessel, satisfying the requirement for DTs [38]. The FMU-based virtual vessel allows for design
modularity and integration of user-specific vessel configurations. The MMS utilizes a model of a hybrid
diesel-powered yacht, incorporating engines, generators, batteries, and auxiliary systems to manage hotel



ICMASS-ISSS-2025
Journal of Physics: Conference Series 3123 (2025) 012057

IOP Publishing
doi:10.1088/1742-6596/3123/1/012057

5

loads. An overview of the digital yacht Power, Propulsion, and Energy (PPE) system use-case is provided
in Figure 2. As shown, the model features four engine/generator sets, two battery packs, and two
combined Power Take-In and Power Take-Off systems.

Figure 2: PPE system of the studied digital yacht use case.

The EMS manages system configuration and overall power distribution. Based on speed requests
or hotel load demands, the EMS can switch diesel or electric engines on or off as needed. A modified
Equivalent Consumption Minimisation Scheme (ECMS) approach is used to minimize the overall losses
in power delivered to the propulsion and auxiliary systems to minimize the overall fuel consumption
[34]. It utilizes available power sources through various operational modes, which also help determine the
auxiliary load requirements. The EMS supports multiple operational modes, including high/low-speed
sailing, maneuvering, dynamic positioning, harbor mode, shore converter mode, and emergency mode.
For the purposes of the MMS, these modes are simplified into two categories: electric and hybrid.

The exact workings of this virtual vessel model are too detailed to fully describe here. We refer
to Dankers et al. [9] for more details on how the virtual vessel translates energy estimations and the
translations to emissions.

3.2 Virtual Vessel Metamodel
Ideally, the virtual vessel is used directly for running simulations. Its execution speed is however too
slow to support optimization effectively. Therefore a metamodel is created; constructed in this case by
caching results in steps, and interpolating between the steps. The inputs and outputs of the metamodel
are presented in Table 1. Please note that the battery State Of Charge (SOC) is not allowed to be below
30% in order to always be able to enter a harbor and in practice it never reaches 100% charge level.

Input Unit Step size Range Output Unit
Battery SOC % 10 30-90 Total NOx pollution kg

Battery target SOC % 10 30-90 Total CO2 pollution kg
Electric or hybrid bool 1 0-1 Final battery state %

Initial speed m/s 1 1-12 Final ship speed m/s
Target speed m/s 1 1-12 Total time needed s

Total distance traveled m
Total diesel consumption tons

Table 1: The inputs and outputs of the metamodel.

The vessel travels a straight 10 km path under ideal conditions, with a perfectly calm sea state. While
factors such as currents and weather impact the resources needed for the journey, these are not currently
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modeled within the virtual vessel. As a result, the output from the model would have to be scaled to
account for these influences. As this scaling is not trivial, we chose to keep it simple by applying a linear
increase in CO2, NOx, and diesel consumption based on wind speed.

3.3 Weather
To account for weather in mission planning, a weather service should be used to retrieve localized and
accurate forecasts for the duration of the upcoming mission. While integrating such a service is straight-
forward for the developed proof-of-concept, we have opted to use a historical weather database to ensure
reproducible results. For a given reference date in the past, we treat the recorded weather as a forecast.

The weather data is sourced from the Copernicus Earth Observation Program ERA5 [17]. It contains
detailed location and time resolution, which allows for more refined analyses and additional functionality
in the future. ERA5 data includes information on location, time, precipitation, temperature, and wind
speed. Weather information is retrieved based on latitude, longitude, and time for each route segment.

3.4 Mission Profile
The mission profile outlines the journey and serves as input for testing in the simulator. It may either be
(partially) defined by the user, or created by the optimizer when searching for an optimal mission profile.

The mission profile consists of a user-defined route, using waypoints and doing justice to the Earth’s
curvature. Each segment is characterized by three parameters: (1) the target speed, (2) the target battery
SOC, and (3) whether electric mode should be used. Additionally, the mission profile includes a reference
date for the journey’s start, as well as the vessel’s initial speed and battery SOC.

3.5 Simulator
The simulator calculates four Key Performance Indicators (KPIs) for a mission profile: (1) Fuel consump-
tion, (2) Time spent, (3) Tail-pipe NOx emission, and (4) Comfort.

The first three KPIs are directly derived from the virtual vessel metamodel (see Table 1). The
simulator operates deterministically, essentially moving the ship along the desired route and records the
outcomes. Each segment of the mission profile is divided into 10 km chunks. For each chunk, the KPIs
are calculated and accumulated, yielding the final scores for each category. For chunks smaller than 10
km, the results are scaled linearly.

The comfort KPI is a composite of several factors, and in our implementation includes wind speed,
temperature and precipitation. The current formula, as presented in eq:(1)-eq:(3), is used in this study
to illustrate how comfort can affect the results, but requires more work to be included in a real system
(e.g., including cargo status for other type of vessels). As the overall problem is a minimization problem,
a value of 0 is the best score, and a value of 1 is the worst possible score.

Weather information is sourced from the historical Copernicus ERA5 database. While this enables
realistic environmental modeling, it assumes perfect foresight of future weather conditions. In a practical
setting, however, future weather is uncertain. Incorporating this uncertainty into the simulator and,
specifically, into the comfort KPI is a direction for future work. For instance, forecast variability could
be used to penalize overly optimistic comfort predictions or to adjust route planning under risk.

In eq:(1) the wind comfort of a journey segment is calculated. The value is scaled between 0 and 1
by using the minimum and maximum wind speeds for that location and time (as found in the ERA5
database) while performing the optimization.

windComfortsegment =
(windSpeedmax − windSpeedsegment)

(windSpeedmax − windSpeedmin) (1)

In eq: (2) the temperature component of the comfort score is calculated. The temperature is evaluated
in categories; comfortable, neutral, and uncomfortable.

temperatureComfort =


0, if 18 ≤ temperature ≤ 22
0.5, if 10 ≤ temperature < 18 || 22 < temperature ≤ 30
1, otherwise

(2)

Precipitation comfort works analogously to wind comfort, and is shown in eq:(3).

precipitationComfortsegment =
(precipitationmax − precipitationsegment)

(precipitationmax − precipitationmin) (3)
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The wind, temperature and precipitation are averaged to arrive at an integral comfort score for a
single segment. The comfort scores for each segment of a route are combined to form the comfort KPI
of the entire mission profile, taking into account the length the segments.

3.6 Optimizer
The assigned weights are used to optimize a given mission profile using a Genetic Algorithm (GA) [1]. A
GA is an algorithm inspired by nature, particularly the concept of evolution. A population of potential
solutions is evaluated based on their performance in the given task. The most fit solutions are more likely
to reproduce, meaning they pass on their genetic information to the next generation. Combined with
crossover and mutation operators, new generations are created until a stopping criterion is met.

An individual is defined by its genes, which in our case correspond to the mission profile segment
parameters being optimized: (1) the target speed, (2) the target battery SOC, and (3) whether electric
mode should be used. Additionally, each individual includes the reference date for the journey’s start
(see Subsection 3.4). Although it is technically possible, the route itself (a series of latitude-longitude
coordinates) is not altered by the optimizer. This decision was made because there are sufficient systems
that perform route optimization [21].

The goal of the optimization is to minimize a weighted sum of the following KPIs: (1) Fuel consump-
tion, (2) Time spent, (3) Tail-pipe NOx emission, and (4) Comfort (see Subsection 3.5). The user can
reorder the four KPIs in any order on the dashboard and can also remove KPIs from the list. The final
result is translated into a set of weights for each KPI. On the dashboard, preferences and constraints for
the KPIs can be set, which are then translated into weights for each KPI.

A key challenge is that the four KPIs do not use the same scale or units. For instance, how should
an additional kilogram of diesel be compared to saving 10 seconds of the entire journey? We employed
a simple yet effective solution. During optimization, many mission profiles are tested, providing lower
and upper bounds for each KPI. For a short mission, these values are low, while for a transatlantic
crossing, they will be much higher. Each individual in the population is scored relative to these bounds.
For example, the fastest solution scores 0 on the time KPI, while the slowest one scores 1. The mission
profile with the lowest fuel consumption scores 0, while the highest one scores 1, and so on. This strategy
standardizes the different scales and units, while remaining agnostic to the specific mission being tested.

The optimization process can be broken down into two key functionalities. The first functionality
aims to achieve the best possible fitness according to a specific set of KPI weights. These weights are
considered fixed in this first phase of the optimization. It may be difficult for humans to clearly define
their goals as a set of specific weights [36]. Powell refers to this challenge as “goal uncertainty” [33,
Ch. 10], describing it as: “Arises in problems with multiple competing objectives, where the decision
maker’s preference between those objectives is uncertain, or when some objectives are not articulated”.
The second functionality addresses this goal uncertainty by widening the search area using dynamic
novelty search [14]. This approach guides the algorithm to unexplored areas of the fitness landscape.
The algorithm, called Fitness Diversity Driven Co-Evolution (FDDC) [13], works with a secondary GA
whose genes consist of the KPI weights. By allowing this algorithm to adjust the weights of each KPI,
the outcome is a set of solutions that prioritize different KPIs in varying degrees.

GA solutions of both functionalities can be visualized on a Pareto front, a collection of solutions that
are not dominated by any other solution [18]. By visualizing the Pareto-optimal solutions, the end user
can select the solution they prefer, while understanding the trade-offs involved in choosing one solution
over another. For an example, see Figure 3. To further stimulate the advancement of the Pareto front,
some of the current Pareto solutions are injected into the parent selection process at each generation. This
also helps maintain genetic diversity within the population, increasing the robustness of the algorithm.

To improve the explainability of the GA, we have implemented a contrastive explanation feature.
Each KPI of a solution is compared to the entire pool of found solutions. For example, the time it took
for a particular solution to reach its destination might be in the top 10% compared to other solutions,
while its tail-pipe NOx pollution could be in the top 60%.

4 Play-based delegation for supervisory control
The second key component of the MMS is play-based delegation for supervisory control. We mapped
MMSs functionalities to levels of supervisory control, using expertise on delegation. Various delegation
methods have been identified, based on the interaction between the delegating and delegated agents
[6]. These methods span a spectrum of operator involvement and reliance on automation, with play-
based delegation striking a middle ground. A play is an adjustable plan template that allows operators
to specify high-level objectives, resources, (hard) constraints, and (soft) preferences [26, 37, 39]. For
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Figure 3: Pareto front for an example mission, that balances time for the journey, tail-pipe NOx and CO2
pollution. The green triangles are the front itself. The coloring corresponds with tail-pipe NOx pollution
to make the visualization more interpretable. Comfort is not visualized, but does contribute to whether
mission profiles lie on the Pareto front.

example, during play-based delegation, captains may use a user interface to create plays, resulting in
constraints and preferences for the upcoming mission. Constraints are hard, such as declaring a fixed
arrival time, while preferences are soft, such as reducing emissions as much as possible while ensuring the
cheapest plan. The system proposes options and explains how these comply with the given guidelines,
without being dominated by other candidate solutions.

A dashboard interface was developed, offering three levels of decision support, progressively ranging
from simple to complex interactions, namely (1) Overview, (2) Mission Profiling, and (3) Smart Support.
The different levels of control and decision support were operationalized as different tabs of an interactive
dashboard. That is, each tab of the dashboard represents another level of decision support.

The (1) Overview tab allows the operator to manually define a mission profile, calculate its KPIs
by the simulator, and inspect basic information about the results and vessel components. This mission
profile assumes the current date as starting date for the journey (i.e., a fixed date in the past in the ERA5
database). For reasons of brevity, we have omitted this figure.1 It is similar to the mission profiling tab
(Figure 4), except that it does not have the options for setting the environment conditions (upper left in
Figure 4), and does not include details on the KPIs for the generated options (lower right of Figure 4).

The (2) Mission Profiling tab, as shown in Figure 4, proposes options complying with the user-defined
profiles, reports on their performance against the several KPIs, and allows the user to vary the weather
conditions in a what-if analysis. The temperature and head wind can be set to chosen values, which
impact the comfort and fuel efficiency of the journey. A given mission profile can then be simulated,
assuming these conditions. Currently, the conditions are taken to be constant for the entire journey; a
point of improvement would be to be able to vary this for each section of the journey.

The (3) Smart Support tab enables the operator to define the priority of the KPIs by ordering them
(the left part of Figure 5), which translates to a set of weights for the optimization. In addition, target
departure and arrival dates can be set. The optimization calculates options which are displayed to the
user as a Pareto front (see separate Figure 3). On the bottom right of the screen, the textual explanation
functionality provides insight into a found mission profile (the right part of Figure 5). A complete overview
of this tab has been omitted as the text would become unreadable.1

5 Demonstration and evaluation
We conducted three workshop sessions where domain experts evaluated the MMS and its dedicated
human-machine interface. The gathered data were used to collect insights on research questions of

1Please see http://schadd.com/Papers/MENENS_dashboard_step_by_step.pdf for more detailed figures.
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Figure 4: The second level of decision support to the operator, proposing options and allowing a what-if
analysis on varying weather conditions.

interest: (i) Which level of decision support is preferable for vessel operations, in terms of usability, trust
and intended reliance, transparency, and mental workload? (ii) To what extent is the tool generalizable
to vessel operations beyond the yacht use-case?

5.1 Study population
Eleven participants were recruited from the industrial partners of TNO in the MENENS consortium.
The inclusion criteria were: (i) familiarity with vessel operations as R&D experts or operators, (ii)
English language proficiency, and (iii) interest in automation and decision support. All participants had
experience in maritime R&D, combined, in at least two cases, with experience as vessel staff.

5.2 Procedure
A workshop session consisted of four phases: (1) Introduction: The facilitator briefed the participants
on the scope and choices made for the development of the MMS and presented the overarching goal and
procedure of the workshop. (2) Tutorial: The facilitator walked the participants through the three tabs
of the interactive dashboard, with the help of a simplified scenario of a transatlantic crew-only operation.
In particular, the facilitator sketched a situation in which a yacht captain receives the mission statement
to reach a destination as fast as possible and as fuel-efficiently as possible to pick up new clients, but
following a pre-determined route, due to safety and logistical reasons. The storyline was such that the
mission takes place in a region and time of the year where extreme weather conditions are less likely,
but the weather conditions are still volatile – therefore it is important to safeguard the operation for
different environmental conditions. In general, the storyline was such to encourage the consideration
and responsible use of the functionalities offered by the tool. For each tab, once all input fields were
completed, the corresponding output of the system was displayed. (3) Runtime: The participants went
through each tab again, using the same background storyline but an adapted mission statement (e.g., a
mission statement concerning a guest operation, requiring a different ranking of priorities, safeguarding
against weather conditions, justification for the selected option). This was to nudge the participants to
experience even more functionalities of the tool. After trying out each tab, a questionnaire was launched,
targeting usability, trust and intended reliance, transparency, and mental workload (inspired by [4, 7, 16])
to assess the experience of the participants with both the functionalities and design protocols of the tab
in question. (4) Interview: In a semi-structured, plenary interview, participants provided feedback on
the added value of the tool, used to elucidate the responses to the questionnaire items.
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Figure 5: The third level of decision support to the operator, allowing the system to propose mission
profiles based on different user-defined KPI preferences and explain why a certain option was proposed.

5.3 Results
The quantitative results in terms of the overall usability, trust, workload, and transparency scales are
presented in Table 2. All three levels of decision support were mostly positively evaluated with respect
to usability and mental workload and neutrally with respect to trust and transparency. However, only
minor differences can be observed between the assessments for each level of decision support (Table 2).
Due to sample size (n=11), no statistical tests were run. The participants did report that they expected
the Smart Support tab to be the level of decision support envisioned for a final product.

We processed the qualitative responses of the participants to the open feedback fields of the question-
naires and the verbal feedback from the semi-structured interview. Regarding the first research question
on the preferred level of decision support, the key findings can be summarized as follows:

1. The difference in decision support levels between the tabs is certainly perceivable, which is instru-
mental in understanding which level of support would be most suitable and for which purposes.

Usability Trust Transparency Workload
tab 1 tab 2 tab 3 tab 1 tab 2 tab 3 tab 1 tab 2 tab 3 tab 1 tab 2 tab 3

Mean 3.6 3.2 3.2 5.7 5.8 5.7 5.7 4.5 4.9 3 2.9 3.4
Median 3.8 3.4 3.3 6.0 6.0 5.6 5 4.5 4.7 3 3.0 4.0

SD 0.7 0.8 0.8 1.9 1.6 2.0 2.3 2.2 2.3 1.3 1.1 1.2

Table 2: Statistics for the overall usability, trust, transparency, and mental workload scales (tab 1 :=
Overview, tab 2 := Mission Profiling, tab 3 := Smart Support). Usability items were rated in a 1-5 Likert
scale (fully disagree to fully agree), trust and transparency items with a slider from 0 - 10 (Not at all -
Very), and mental workload with a 1-7 Likert scale (Very Low - Very High).
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2. The layout is clear and intuitive and everyone can master this software quite quickly, aided by the
progressive familiarization with MMS features across the different tabs. This probably contributed
to the mostly favorable evaluations with respect to usability and workload.

3. The comparative benefits to commercial route optimization tools include: possibility to select a
mode in defining mission profiles, the multi-objective optimization, the brief natural language ex-
planation justifying system-generated options, and the ability to run multiple scenarios quickly.
Interestingly, while these features were generally well-received, they did not necessarily translate
to higher ratings for transparency and trust (as could be, at least theoretically, expected given the
role of explainability as facilitator of trust [10]). Upon further inquiring into this and the potential
improvements in MMS functionalities and interaction design in this direction, some participants
revealed that they would have liked the option to further inspect the mechanisms underlying the
MMS decision-making (e.g., the accuracy of outputs of the virtual vessel meta-model, physics-
related assumptions behind the calculation of KPIs such as Comfort, the vessel’s characteristics and
equipment status). While some of these concerns could be attributed to the early-stage prototype
that was used for demonstration purposes, a more significant insight emerged, especially from
participants with operational experience: that the maritime domain tends to be more conservative
in adopting such automated systems despite their apparent benefits (which can also be witnessed
in other initiatives [19] and could be explained, from a cognitive standpoint, in terms of naturalistic
theories of expert decision-making and dual-process theories of reasoning [20]). Specifically, captains
often rely on their own intuition and experience and thus desire more insights into the workings of
the MMS to ensure they align with their own, which could seemingly be at odds with usability and
workload considerations. The key-takeaway was to clearly distinguish the training and operational
use phases: it is likely that developing more functionalities, e.g., tab variants varying even more in
the amount of displayed information, could help users suitably calibrate their trust during training,
even if the final adopted system offers a more streamlined, high-level decision support interface that
still harvests the usability and workload benefits.

4. The Smart Support tab should be intended as the final product in the future, provided that certain
improvements are implemented. However, the other two tabs could be useful for (a) research
purposes, (b) as part of the training and adoption phase, e.g., to progressively familiarize with the
MMS, and thus gain understanding and trust in the system.

Regarding the second research question, on the generalizability of the tool beyond the yacht use-case, par-
ticipants indicated that it should be in principle possible to apply the MMS architecture and interaction
concept when adopting alternative vessel configurations. However, that would entail some modifications,
e.g., in the production of the virtual vessel meta-model as well as in the interface, to allow users to
specify different types of vessels and fuels. Most importantly, the objective of Comfort would have to be
individuated differently across different vessel types and be reshaped into its conceptual analogues (e.g.,
‘cargo status’ for cargo vessels, ‘crew habitability’ or ‘workability’ for Navy vessels, etc.) which naturally
entails adjusted calculation mechanisms.

6 Discussion and Conclusion
This study presented a novel MMS designed to support hybrid-powered yachts in achieving more energy-
efficient and sustainable operations. By integrating mission-profile optimization with real-time weather
data, a virtual-vessel metamodel, and a genetic algorithm, the MMS allows operators to define and
evaluate operational strategies aligned with environmental and operational goals. The system’s capability
to balance key performance indicators such as fuel consumption, emissions, and travel time—based on
user-defined priorities—provides tailored decision support across a wide range of missions.

A key contribution of this work is the development of a play-based delegation framework that shifts
the operator’s role toward supervisory control. By offering a layered interface with increasing levels of
support—from manual input to automated suggestions—the MMS empowers users to maintain strategic
oversight while leveraging automation for complex optimization tasks. This approach not only reduces
cognitive workload but it can, under certain conditions, also enhance trust and transparency in system
recommendations.

The MMS was validated through expert workshops, which confirmed its potential to reduce envi-
ronmental impact without compromising operational effectiveness or increasing operator workload. The
combination of mission-level planning and real-time adaptability positions the MMS as a promising so-
lution for the maritime industry’s ongoing transition toward zero-emission operations.
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Building on the proof-of-concept, future research will explore four key directions to enhance and
broaden the impact of the MMS: (1) While the current MMS is tailored to hybrid-powered yachts,
future work will adapt it to other vessel categories. This involves reconfiguring the virtual vessel model
to reflect different propulsion systems, operational profiles, and mission objectives, as well as enriching
the dashboard interface, consistent with the suggested modifications emerging from the workshops. (2)
Extending the MMS to include real-time synchronization with onboard sensors and systems, enables
continuous performance monitoring and adaptive mission re-planning during operation. (3) Improving the
precision and scope of the simulations remains a priority. Incorporating dynamic behavior under various
sea states will improve the accuracy of the model. We furthermore want to account for uncertainties
in metocean data, such as forecast errors in wind, waves, and currents by using techniques such as
probabilistic modeling and ensemble forecasting. (4) The MMS framework shows potential for use in
early-stage vessel design. Designers can assess trade-offs by simulating and optimizing mission profiles.
This integration would allow mission-based performance evaluation to inform key design decisions from
the outset. Together, these research directions aim to evolve the MMS into a versatile, scalable, and
industry-ready system that supports sustainable maritime operations across a wide range of missions.
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