

Check for updates

Driving Sustainable Innovation: A Review of Data-Driven Technologies in Sustainable Business Model Innovation

Nadine Bachmann^{1,2} | Rainer Harms¹ | Katherine Gundolf³ | Tamara Oukes⁴

¹Faculty of Behavioural, Management and Social Sciences, Entrepreneurship and Technology Management, University of Twente, Enschede, the $Netherlands + ^2 Josef \ Ressel \ Centre \ for \ Data-Driven \ Business \ Model \ Innovation, \ University \ of \ Applied \ Sciences \ Upper \ Austria, \ Steyr, \ Austria + ^3 Faculty$ of Business, Economics and Statistics, University of Vienna, Vienna, Austria | 4Netherlands Organization for Applied Scientific Research, The Hague, the Netherlands

Correspondence: Nadine Bachmann (n.bachmann@utwente.nl; nadine.bachmann@fh-steyr.at)

Received: 13 March 2024 | Revised: 22 July 2025 | Accepted: 21 August 2025

Funding: This work was supported by the Austrian Federal Ministry of Digital and Economic Affairs, the National Foundation for Research, Technology and Development, and the Christian Doppler Research Association.

Keywords: bibliometrics | business model innovation | data-driven technology | dynamic capability | sustainability | systematic literature review

ABSTRACT

Many companies use data-driven technologies to drive sustainable business model innovation (BMI), yet often face challenges in doing so effectively. However, the literature at the intersection of data-driven and sustainable BMI remains conceptually dispersed, limiting theoretical progress and practical application. To consolidate the literature, we combine a systematic literature review with bibliometric coupling to conceptualize data-driven sustainable BMI. First, we identify five distinct research streams—digital platforms, circular economy, smart manufacturing and supply chains, blockchain, and servitization—which reflect diverse technological pathways to transform traditional business models into sustainable ones. Second, we develop a dynamic capabilities-based process model that explains how companies can achieve this transformation by orchestrating datadriven and sustainable capabilities across the initiation, ideation, integration, and implementation phases of BMI. This study advances theoretical understanding and provides practical guidance on how data-driven technologies can enable positive environmental, social, and economic outcomes.

1 | Introduction

Data-driven technologies, such as the Internet of Things (IoT), artificial intelligence (AI), data analytics, and blockchain can contribute to sustainable business practices. In particular, digital transformation—adopting digital technologies for business model development (Verhoef et al. 2021)—can help close material and energy loops and support efforts in recycling, reusing, and remanufacturing (Langley 2022; Murray et al. 2017). Recent studies show that AI-based technologies, including generative AI, drive sustainability, particularly by accelerating social outcomes (Torrent-Sellens et al. 2025) and enhancing exploitative and exploratory learning processes to advance sustainability in production systems (Wang and Zhang 2025). In doing so, sustainable business and management practices can address significant environmental and social challenges (Atif et al. 2021) and contribute to achieving the United Nations' Sustainable Development Goals (SDGs) (Dantas et al. 2021; Mahajan et al. 2024).

Companies use data-driven technologies to foster sustainable business model innovation, such as through smart manufacturing (González-Varona et al. 2020) and digital servitization (Paiola et al. 2021). Two examples highlight the potential of business model innovation (Centobelli et al. 2020). First, in the apparel industry, the IoT and AI have improved sustainability by facilitating

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2025 The Author(s). Business Strategy and the Environment published by ERP Environment and John Wiley & Sons Ltd.

resource monitoring and real-time tracking via RFID systems. These technologies allow companies to trace products throughout the supply chain, authenticate products, and verify their supply chains (Abbate et al. 2023). Second, a ceramic tile manufacturer (García-Muiña et al. 2018) implemented data-driven technologies, such as the IoT, to transition from a linear to a circular business model. The IoT was used to collect, store, and process data for impact assessment and real-time monitoring of performance and operational flows, such as resource usage. This helped the company overcome difficulties in data management, optimize production processes, and enhance the sustainability of its operations.

These examples demonstrate that the successful implementation of data-driven sustainable business model innovation requires companies to operate differently than before. Hence, adopting a capabilities-based perspective is valuable for analyzing the drivers of such strategies.

Several reviews explore the topic of digital sustainability (see Table 1), highlighting how digital technologies enable circular (Chauhan et al. 2022; Khan, Shah, et al. 2022; Liu, Quddoos,

et al. 2022) and sustainable business models (Holzmann and Gregori 2023). Some studies focus on specific technologies, such as Industry 4.0 (Toth-Peter et al. 2023), AI (Di Vaio et al. 2020; Madanaguli et al. 2024), and information technologies (Vidmar et al. 2021), as enablers of these business models. Others examine digitalization and sustainability as drivers of new business models (Capurro et al. 2024) or adopt a strategic management perspective on digitally enabled sustainable business models (Palmié et al. 2024).

However, none of these reviews examine the intersection of data-driven technologies and sustainable business model innovation from a dynamic capabilities-based perspective. Such a perspective is urgently needed (Palmié et al. 2024). First, from a researcher's perspective, there is a research gap in understanding how integrating data-driven technologies into the innovation process can foster the development of sustainable business models. Second, from a practitioner's perspective, there is a need to identify the specific data-driven and sustainable capabilities that can promote environmentally, socially, and economically sustainable development.

TABLE 1 Overview of review articles on digital technologies enabling sustainability-oriented business models.

Study	Method, sample size	Focus area	Identified gaps
Chauhan et al. (2022)	SLR, <i>N</i> =123	Digital technologies as an enabler of circular BMs	Does not adopt a DCs perspective
Khan, Shah, et al. (2022)	SLR, N=91	Digital technologies as an enabler of circular BMs	Does not examine BMI dynamics; capabilities are briefly mentioned, but not discussed within a DCs perspective
Liu, Trevisan, et al. (2022)	SLR, $N = 174$	Digital technologies as an enabler of circular BMs	Does not examine BMI dynamics or adopt a DCs perspective
Holzmann and Gregori (2023)	SLR, N = 59	Digital technologies as an enabler of sustainable BMs	Does not examine BMI dynamics or adopt a DCs perspective
Toth-Peter et al. (2023)	SLR, <i>N</i> =76	Industry 4.0 as an enabler of circular BMs	Although the reviewed articles flag DCs as an emerging research stream, DCs are not integrated into the conceptual framework
Di Vaio et al. (2020)	SLR, <i>N</i> =73	Artificial Intelligence as an enabler of sustainable BMs	Capabilities are briefly mentioned, but does not adopt a DCs perspective
Madanaguli et al. (2024)	Semi-systematic scoping LR, N=41	Artificial Intelligence as an enabler of circular BMs	Focus on AI capabilities, but does not integrate a DCs perspective
Vidmar et al. (2021)	SLR, N=61	Information technologies as an enabler of sustainable BMs	Capabilities are briefly mentioned, but does not adopt a DCs perspective
Capurro et al. (2024)	In-depth LR, n/a	Digitalization and sustainability as enablers of new/more innovative BMs	Focuses on boundary resources/ capabilities, yet not conceptually linked to DCs theory
Palmié et al. (2024)	Integrative LR, $N = 134$	Strategic management perspective on digital- sustainable BMs	Identifies a gap in research on organizational capabilities and calls for future research to explore their role in digital-sustainable BMI

 $Abbreviations: BM = Business\ Model, BMI = Business\ Model\ Innovation, DCs = Dynamic\ Capabilities, LR = Literature\ Review, SLR = Systematic\ Literature\ Review.$

Accordingly, we derive the following research question: What insights does recent research provide on the process of data-driven sustainable business model innovation that utilizes data-driven technologies for sustainable business model innovation? To address this question, we structured our study around business model innovation, focusing on the intersection of data-driven technologies and sustainability. From this, we developed a process model. First, we conducted a systematic literature review to identify a suitable sample, which we used for bibliographic coupling to determine five clusters representing key research streams. We combined bibliometric coupling with qualitative content analysis to gain deeper insights into these clusters. We found that these can be classified into two primary research streams: digital sustainability and sustainable digital transformation. Our study indicates that companies must possess data-driven and sustainable dynamic capabilities to transform traditional business models into sustainable ones. However, the literature on the dynamic capabilities for data-driven sustainable business model innovation appears conceptually dispersed.

Second, we developed a dynamic capability-based process model that links data-driven and sustainable business model innovations. Our model conceptualizes data-driven sustainable business model innovation and explores how data-driven technologies transform traditional business models into more sustainable ones. In summary, our study contributes to the literature by offering a comprehensive understanding of the role of dynamic capabilities in the process of data-driven sustainable business model innovation.

2 | Conceptual Background

2.1 | Business Model Innovation

A business model is a structural template that guides a company's management and development strategies for its operations (Clauss 2017; Spieth et al. 2014; Teece 2010; Zott and Amit 2013; Zott et al. 2011). The key dimensions of a business model include the following (Gassmann et al. 2015; Latifi et al. 2021): The first dimension, value proposition, expresses the intended added value for the customer through valuable (new) products and services (Latifi et al. 2021; Massa and Tucci 2013). Second, value delivery ensures efficient processes, channel personalization, customer service, and support for target customers. Third, value capture aims to ensure a business's financial success by optimizing revenue streams and cost structures (Johnson et al. 2008). Finally, value creation focuses on maximizing customer-perceived value, meeting customer needs, and minimizing associated risks.

Business model innovation typically involves creating new products and services, introducing new distribution channels, implementing new technologies, and forming new partnerships (de Reuver et al. 2013). It is usually conceptualized as a process divided into four phases: initiation, ideation, integration, and implementation (Frankenberger et al. 2013). During these phases, companies must (1) identify the need to innovate the business model (initiation), (2) collect ideas for the (re)design of the business model (ideation), (3) design a concept for the potential new business model and evaluate it among multiple ideas

(integration), and (4) replace the current business model with a new one (implementation) (Bonakdar and Gassmann 2016; Gassmann et al. 2014; Remané et al. 2017).

Business model innovation refers to designing a new business model for startups or reconfiguring an existing business model for incumbents (Massa and Tucci 2013). It is a broad, iterative process (Bachmann and Jodlbauer 2023; Sosna et al. 2010) that involves modifying at least one of the four dimensions during innovation (Baden-Fuller and Haefliger 2013; Baden-Fuller and Mangematin 2013). This process entails recognizing the need for a new business model and redesigning, assessing, and implementing it to create value for the company and its target customers (Teece and Linden 2017). When incumbents use data-driven technologies for business model innovation, they may design and integrate new data-driven business models. This study examines changes within the business models of incumbent companies, focusing on business model reconfiguration. However, throughout this study, we use the term "business model innovation" to draw upon a broader array of literature and integrate diverse insights from various research streams.

2.2 | Sustainability and Sustainable Business Model Innovation

The concept of sustainable business models emerged with Stubbs and Cocklin (2008a), who argue that in these models, social and environmental priorities drive company decision-making. To adopt them successfully, companies must build internal structural and cultural capabilities and collaborate with stakeholders to promote sustainability within the broader socio-economic system (Stubbs and Cocklin 2008b). Sustainable business models differ from traditional ones by considering various environmental, social, and financial needs across various stakeholders (Bocken et al. 2014). Furthermore, sustainable business models integrate sustainability into their value proposition, creation, delivery, and capture mechanisms (Geissdoerfer et al. 2018). A company's dedication to sustainability can indirectly drive innovation in its business model through changes in market dynamics, technology, and entrepreneurial orientation (Klein et al. 2021).

Sustainable business models must balance economic, environmental, and social benefits, thereby contributing to the sustainable development of both companies and society (Boons and Lüdeke-Freund 2013). Company performance is evaluated based on the triple bottom line of social, environmental, and economic value creation (Ekwueme et al. 2013; Hussain et al. 2018). Economic benefits include profit and return on investment, while environmental benefits involve reduced energy consumption and the utilization of renewable resources. In contrast, social benefits encompass community development and labor standards (Evans et al. 2017).

Sustainable business model innovation can be defined as changes in a company's value creation, value delivery, value capture, or value proposition to create positive impacts and reduce adverse environmental and societal effects (Bocken et al. 2014). The innovation process for developing and transforming business models into sustainable ones is complex, because social,

environmental, and economic metrics must be incorporated (Laasch 2018). Thus, diverse stakeholders must be included (Freudenreich et al. 2020).

2.3 | Data-Driven Technologies and Data-Driven Business Model Innovation

Data-driven technologies enable the utilization of data and analytics, which are crucial for effective business operations, decision-making, and development (Chen et al. 2012). Advancements in fields, such as the IoT and AI, have made data increasingly important. Thus, business analytics is considered a valuable strategy for transforming a company's business model (Li et al. 2018; Ramaswamy and Ozcan 2016) and creating customer-perceived value (Rashed and Drews 2021). Industry 4.0 (I4.0) allows entirely new business models to create and capture value through digital technologies (Ghobakhloo 2020; Müller and Däschle 2018). Specifically, I4.0 drives data-driven business model innovation by enabling process digitization, smart manufacturing, and connectivity across value networks, reshaping value creation, delivery, and capture (Müller et al. 2018). Datadriven business models use data as a key resource, with data processing and analysis as core activities (Hartmann et al. 2016).

Data-driven business model innovation is defined as either the transformation of a business model into a data-driven business model or the use of data-driven technologies to support the innovation process by analyzing data and converting it into knowledge (Fruhwirth et al. 2020). The main distinction between these two types is that the first necessitates a company integrating data and technology into its business model, such as by altering its products or services. In contrast, the second involves analyzing data to gain insights into customer behavior or market trends and using that knowledge to change the business model.

2.4 | Data-Driven Sustainable Business Model Innovation

We propose the concept of data-driven sustainable business model innovation by exploring the intersection of data-driven technologies, sustainability, and business model innovation (see Figure 1). Data-driven sustainable business model innovation refers to the process of transforming traditional business models into sustainable ones using data-driven technologies such that at least one of the four dimensions (value proposition, value delivery, value capture, and value creation) is changed (Baden-Fuller and Haefliger 2013; Baden-Fuller and Mangematin 2013). The outcome is a sustainable value proposition, sustainable value delivery, sustainable value capture, or sustainable value creation. A business model may also be described as a data-driven business model if at least one of the four dimensions is changed through the business model innovation process to a data-driven value proposition, data-driven value delivery, data-driven value capture, or data-driven value creation. This study focuses on the connection between these

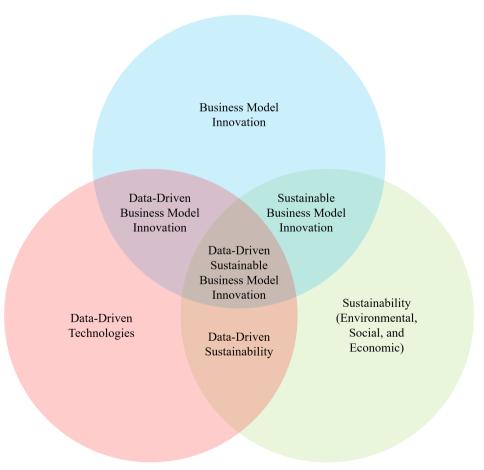


FIGURE 1 | The intersection of business model innovation, sustainability, and data-driven technologies.

two types of business models, namely data-driven sustainable business model innovation.

3 | Methodology

3.1 | Corpus Selection

We conducted a systematic literature review on data-driven sustainable business model innovation, building on the framework proposed by Tranfield et al. (2003), to synthesize the literature and provide a comprehensive understanding of the topic. For this review, we conducted a literature search in the Web of Science (WoS) database in November 2023. We limited our search to WoS because it offers access to a wide range of high-quality journals and is internationally recognized for maintaining rigorous quality standards (Gaviria-Marin et al. 2019). WoS is a well-established source for bibliometric reviews (Zupic and Čater 2014), providing essential metadata (e.g., references and citation counts) (Carvalho et al. 2013), effectively handling lengthy queries (Gusenbauer and Haddaway 2020), and ensuring compatibility with VOSviewer, thereby meeting the needs of this study.

We excluded Scopus due to its high content overlap with WoS (Singh, Singh, et al. 2021). Google Scholar was excluded because its citation data, which are crucial for bibliometric analyses, are often incomplete or inaccurate (Martín-Martín et al. 2018). Our exclusive use of WoS aligns with best practices in bibliometric research, such as Hossain et al. (2024) and López-Concepción et al. (2024).

The literature search comprised three phases: identification, screening, and eligibility, during which various inclusion and exclusion criteria were applied (see Table 2). In the identification phase, articles were required to contain a combination (AND conjunction) of the core terms "business model*" and

"sustainab*" with two groups of keywords, either in the title, abstract, or keywords (author keywords and keywords plus).

The first group of keywords refers to "data-driven:"

("data-driven" OR "data-based" OR digital* OR "artificial intelligence-driven" OR "AI-driven" OR "data analytics" OR "machine learning" OR "ML" OR "big data" OR "data mining" OR "data servi*" OR "industry 4.0" OR "I4.0" OR "internet of things" OR "IoT" "industrial internet of things" OR "IoT" OR blockchain OR "smart product*" OR "smart servi*" OR "digital servi*")

The second group of keywords references "innovation:"

(innovation OR design OR reconfiguration OR creation OR development OR disruption OR invention OR reinvention OR renewal OR transformation OR adaption OR adaptation OR change OR evolution OR revolution OR rethinking)

A criterion for inclusion was to limit the sample to English-language articles. Only peer-reviewed, ranked journal articles were included, as they are recognized as validated sources of knowledge (Podsakoff et al. 2005) and form the basis for the quality appraisal (Aguinis et al. 2020; Hiebl 2021; Kraus et al. 2020). To operationalize the ranking criterion, we used the CABS Academic Journal Guide 2021 and the SCImago Journal Rank 2021, a measure of scholarly journal prestige that accounts for the number of citations a journal receives and the prestige of the citing journals. We set a quality criterion that papers should at least be ranked, as "innovative research ideas may even appear in lower-ranked journals" (Kubíček and Machek 2019, p. 967).

During the first round of eligibility assessment, we included or excluded articles based on their abstracts, titles, and keywords. Articles that mentioned business model innovation,

TABLE 2 | Inclusion and exclusion criteria.

Selection phases	Inclusion criteria	Exclusion criteria
Identification	Articles focusing on business model innovation, sustainability, and data-driven technologies	n/a
	English-language articles	Non-English-language articles
Screening	Journal articles	Conference proceedings, book chapters, and gray literature
	Peer-reviewed, ranked (ABS, SJR) journal articles	Non-peer-reviewed, non-ranked articles
Eligibility	Articles addressing data-driven sustainable business model innovation	Articles that mention business model innovation sustainability, and data-driven technologies but do not focus specifically on these concepts
	Articles addressing at least one of the three dimensions of sustainability	Articles that do not address any of the three dimensions of sustainability
	Articles addressing business models or business model innovation that incorporate digitalization or digital transformation	Articles addressing business models or business model innovation that do not incorporate digitalization or digital transformation
	Articles addressing business model innovation	Articles addressing only product innovation

sustainability, and data-driven technologies but did not focus specifically on these concepts were excluded. In the second round of eligibility assessment, we conducted full-text reviews to remove articles that did not address data-driven sustainable business model innovation according to our definition. We based our evaluation on the following exclusion criteria: (1) none of the three dimensions of sustainability were addressed; (2) aspects of digitalization or digital transformation were not incorporated into the business model or were not part of the business model's innovation; and (3) only product innovation was addressed, but not business model innovation. Articles meeting any of these exclusion criteria were excluded.

The exclusion of articles focusing solely on product innovation was essential to maintaining alignment with our research focus. Although product innovation can be a precursor to business

model innovation, papers that did not examine the resulting changes at the business model level—such as modifications to value creation, delivery, and capture mechanisms—were excluded. By applying these criteria, we ensured that our final sample comprised studies that explicitly examined how technologies drive sustainable business model innovation. In cases where the applicability of these criteria was unclear, the first author screened the literature, while the other authors were involved in discussions to resolve uncertainties.

To ensure the continued relevance and integrity of our sample, we conducted an additional check for article retractions before finalizing the manuscript. During this process, two publications were identified as retracted and subsequently removed from the sample. The final dataset used for analysis thus comprises 131 papers. The article selection process is illustrated in Figure 2.

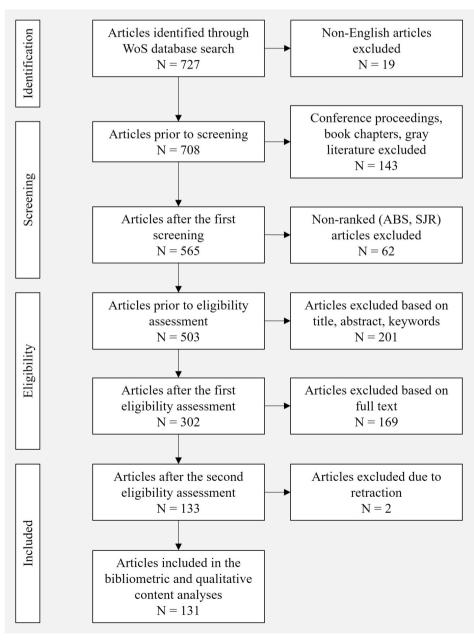


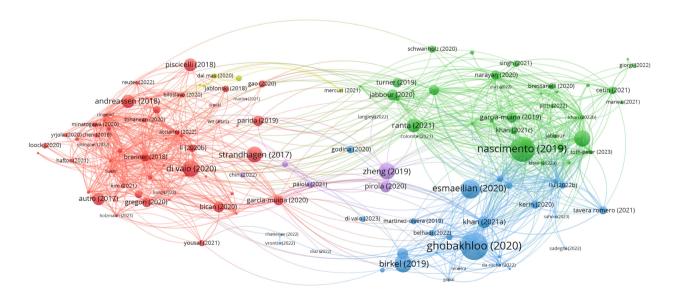
FIGURE 2 | Article selection process.

3.2 | Corpus Analysis

We chose bibliographic coupling as the most appropriate bibliometric analysis technique for mapping the current state of research. Bibliographic coupling can uncover a wide range of topics and their latest developments by forming thematic clusters based on cited publications, allowing new and niche publications to gain visibility (Donthu et al. 2021). To conduct bibliographic coupling (based on documents; minimum number of citations 0) and visualization, we used the bibliometric software VOSviewer.

In bibliographic coupling, the similarity between two articles is measured by the number of shared references; the greater the overlap in their bibliographies, the stronger the linkage and conceptual similarity between them (Zupic and Čater 2014). For instance, if two papers share ten publications in their reference lists, they are linked with a coupling strength of ten (Budler et al. 2021). The total strength of the bibliographic coupling links between each article and others was calculated to identify the most highly connected documents. Documents with similar concepts are positioned closer together on a bibliographic coupling map (Budler et al. 2021). We acknowledge that bibliometric coupling is susceptible to several biases, such as (self)citation, geographical, and accessibility biases, which can impact the accuracy and reliability of the analysis (Zupic and Čater 2014).

Therefore, we combined bibliometric coupling with qualitative analysis to provide deeper insights into the impacts of the included studies, as proposed by Mukherjee et al. (2022). Specifically, the clusters were interpreted using qualitative content analysis (Finfgeld-Connett 2014). First, we reviewed each article to identify relevant data segments and codes (Step 1: Identification of data segments), which we recorded on a spreadsheet (Step 2: Data matrices and coding). We interpreted and synthesized the coded findings across studies and continuously recorded them (Step 3: Memoing). We then compiled a diagram to illustrate the apparent


relationship between the codes and accompanying memos (Step 4: Diagramming), which aggregated our findings into a process model for data-driven sustainable business model innovation. We gradually constructed concepts through iterative reflections on ideas and their interconnections (Step 5: Reflection).

4 | Findings

4.1 | Intellectual Structure of Data-Driven Sustainable Business Model Innovation

The bibliographic coupling map (see Figure 3) reveals five clusters, with similar concepts indicated by the close positioning of documents forming each cluster (Budler et al. 2021): (1) digital sustainability and digital platforms (red cluster), (2) digital circular economy (green cluster), (3) smart manufacturing and circular supply chains (blue cluster), (4) blockchain-enabled sustainability (yellow cluster), and (5) smart and circular servitization (purple cluster). Tables A1–A5 provide a detailed listing of all articles assigned to each cluster.

Based on Van Eck and Waltman (2022), we can summarize that on the bibliographic coupling map, two publications that cite the same document are interconnected by a link. Highly linked publications connect related works and are influential within their network. In comparison, highly cited publications are characterized by larger circles, with their sizes corresponding to the number of citations received. Many citations may indicate foundational publications with a greater influence on the field. By contrast, less frequently cited publications suggest more specialized contributions. If two publications cite many of the same sources, they are more strongly related and are located closer together on the bibliographic coupling map. Greater distances between publications indicate weaker connections. These clusters consist of related publications. If two clusters are close to each other, they are

♣ VOSviewer

FIGURE 3 | Bibliographic coupling performed by VOSviewer.

thematically related, as the publications within them cite some of the same sources. A greater distance between clusters suggests thematic separation.

4.1.1 | Digital Sustainability and Digital Platforms

Within the largest cluster (55 items), shown in red on the left side of the figure, most publications are closely positioned, indicating a shared focus on digital sustainability and digital platforms. This cluster primarily centers around Brenner (2018), who, with 113 links, connects related publications at its center, along its periphery, and within the blue and green clusters on the right side of the figure. In close proximity, there are additional highly linked papers (between 108 and 103 links).

This cluster explores the embedding of sustainability principles with data analytics (Brenner 2018) and information technology (Vidmar et al. 2021) for adapting business models to digital sustainability (Acciarini et al. 2022; Bencsik et al. 2023). Highly cited papers in this cluster (between 130 and 78 citations) have a significant influence on the field of digital sustainability (Di Vaio et al. 2020; Strandhagen et al. 2017) and digital platforms (Andreassen et al. 2018; Piscicelli et al. 2018). Digital platforms can contribute to sustainable business models by promoting the peer-to-peer sharing of underutilized assets (Piscicelli et al. 2018) and creating value for internal and external stakeholders (e.g., buyers, sellers/suppliers, and platform firms) (Andreassen et al. 2018).

Companies must possess specific data-driven and sustainable capabilities to innovate traditional business models into sustainable ones. To establish digital sustainability and build digital platforms, companies must ensure IT capability (Minatogawa et al. 2020) and computational capability (Martín et al. 2021), analyze the retrieved data (data capability) (Ringvold et al. 2022; Wardhana et al. 2023), make decisions based on data (decision-making capability) (Andersen et al. 2022), and, more specifically, possess digital platform capability (Karimi and Walter 2021; Yousaf et al. 2021).

Sustainable capabilities are prominently discussed in this cluster, and we define them as organizational capabilities essential for facilitating sustainable value propositions. Companies must scan the business environment and cultivate a sense of urgency to innovate their business models (Andersen et al. 2022). Additionally, they must develop their capabilities through partners (partnership management capability) and possess the social capital required to establish such relationships (navigation capability) (Ringvold et al. 2022).

4.1.2 | Digital Circular Economy

The green cluster (36 items)—positioned in the upper-right section of the figure—is the second largest. It displays a lower density than the red cluster—located on the left side of the figure—suggesting some topical distance between publications while remaining connected by the common focus on the digital circular economy. The most linked papers in the cluster (between 116 and 109 links) represent this focus by developing conceptual models that explore how digital technologies can be used for

business model innovation within the circular economy (Ávila-Gutiérrez et al. 2020; Burmaoglu et al. 2023; Ranta et al. 2021). They also derive tools for analyzing, ideating, and developing circular innovation ecosystems (Konietzko et al. 2020).

The most cited articles (between 289 and 79 citations) investigate how I4.0 technologies (e.g., IoT, AI) enable circular economy practices in the manufacturing sector (Nascimento et al. 2019), thus contributing to achieving sustainability goals (Dantas et al. 2021). I4.0 technologies can support the transition from linear to new circular business models (García-Muiña et al. 2019; Manea et al. 2021) or even to digital circular ones (Rodrigues Dias et al. 2022; Turner et al. 2019).

An article by Ranta et al. (2021), distinguished by its 116 links and 85 citations, underscores the importance of data-driven capabilities in achieving circular economy goals. The remanufacturing capability encompasses components, such as improved product design and maintenance, which drive business model innovation (Ranta et al. 2021). The need to build data-driven capabilities is evident (Kim et al. 2022), including technological (Khan, Shah, et al. 2022), machine learning (Çetin et al. 2021), data analysis (Benedettini 2022), and information storage capabilities (Kumar and Chopra 2022). By contrast, sustainable capabilities are not addressed.

4.1.3 | Smart Manufacturing and Circular Supply Chains

The blue cluster (28 items)—positioned in the lower-right section of the figure—focuses on smart manufacturing and circular supply chains. Its central hub revolves around Khan, Ahmad, et al. (2021) (106 links) and other highly linked papers (between 89 and 85 links), highlighting how the integration of I4.0 technologies facilitates smart (re)manufacturing (Ghobakhloo 2020; Khan et al. 2023). Strengthening connections among product manufacturers, users, and remanufacturers highlights open innovation and co-creation with partners as key success factors for integrating stakeholder interests (Lardo et al. 2020). Highly cited (between 338 and 63 citations) and thus foundational publications center on supply chain digitalization and integration (Ghobakhloo 2020), changes in value creation caused by I4.0 technologies impacting the entire supply chain (Birkel et al. 2019), and sustainable supply chain management (Esmaeilian et al. 2020; Khan, Ahmad, et al. 2021).

The data-driven capabilities in this cluster focus on I4.0 (Belhadi et al. 2022), blockchain technology (Esmaeilian et al. 2020), and analytics capabilities (Chatterjee et al. 2022). Applying circular principles (e.g., circular procurement and design) within business models, supported by I4.0 capability, facilitates the integration of supply chain sustainability with data-driven practices (Belhadi et al. 2022; Gopal et al. 2024). These sustainable supply chain business models are further strengthened by AI-enhanced knowledge-management processes (Di Vaio et al. 2023) and the application of circular process capabilities (Dahmani et al. 2021).

As circular supply chains rely on blockchain, blockchain technology capabilities become critical for enabling decentralized

data collection, improving system efficiency, and supporting performance reporting across supply chain networks (Esmaeilian et al. 2020). Real-time analytics capabilities are also essential for transforming traditional business models into technologyenabled, sustainable ones (Chatterjee et al. 2022). Data-driven technologies (e.g., machine learning and predictive analytics) and interconnected smart technologies (e.g., sensors, indicators, and smart devices) contribute to developing economically, socially, and environmentally sustainable processes, for example, through lifecycle monitoring (Kluczek et al. 2023; Sadeghi et al. 2022). This underscores the growing importance of environmentally focused capabilities in achieving sustainability outcomes (Kumar et al. 2022).

4.1.4 | Blockchain-Enabled Sustainability

The yellow cluster (five items) is vertically dispersed in the center of the figure, with considerable distances separating the rarely cited, specialized contributions, suggesting a weak emphasis on blockchain-enabled sustainability. The publications with the highest number of links (between 75 and 69 links) within this cluster are closely situated and linked to the red cluster on the left side of the figure, aligning with its digital sustainability theme and focusing on blockchain technology to support the development of new sustainable business models (Calandra et al. 2022; Dal Mas et al. 2020; Massaro et al. 2020).

4.1.5 | Smart and Circular Servitization

The purple cluster (seven items)—horizontally dispersed in the center of the figure—focuses on smart and circular servitization. This cluster serves as a topical bridge between the three largest clusters: red, green, and blue. Zheng et al. (2019) is the central publication, marked by high connectivity (73 links) and frequent citations (124 citations). Digital technologies and services are integrated into traditional product-based business models (smart servitization), while platform approaches (e.g., e-marketplaces) are used to leverage the value of these technologies (Zheng et al. 2019). Other noteworthy contributions include those of Paiola et al. (2021) (101 links) and Pirola et al. (2020) (61 citations).

The transition from traditional business models to smart and circular servitization business models is driven by the digital transformation of businesses, coupled with the adoption of circular economy principles. This shift is enabled by product-service systems, which combine physical products with digital services to create new value (Paiola et al. 2021; Pirola et al. 2020).

A notable characteristic of this cluster is its emphasis on datadriven capabilities, such as blockchain technology capability. Translating blockchain technology into environmental innovation in business models requires value-appropriation capability to balance value creation with value capture (Chin et al. 2022). Zheng et al. (2019) emphasize the significance of digitalization capability, a multifaceted concept that encompasses connection, intelligence, and analytic capabilities. Complementing the discourse on digitalization, digital platform capability, decision-making capability based on data, data management capability (Thomson et al. 2022), and data-sharing capability (Langley 2022) are critical. Langley (2022) also highlighted the emerging trend of servitization capability, which reflects a shift toward value-added services and customer-centric strategies.

4.2 | Inter-Cluster Analysis: Exploring Dynamic Capabilities

After analyzing the five clusters individually, their interrelationships are discussed. The red cluster on the left side is dense, with only a few exceptions at the periphery, such as Strandhagen et al. (2017) and Piscicelli et al. (2018), indicating its strict focus. It is relatively distant from the green and blue clusters on the upper right and lower right sides, respectively.

The close connection between the green and blue clusters suggests overlapping content, particularly concerning circularity. The central hub of the blue cluster, anchored by Khan, Ahmad, et al. (2021) and other highly linked papers nearby, is strongly associated with the green cluster, sharing its focus on the circular economy. The yellow and purple clusters, which are small and dispersed in the center of the figure, act as links between the three major clusters, occupying the free space between them.

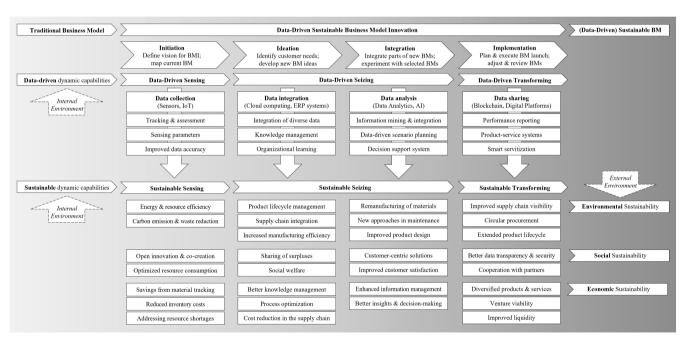
We can conclude from the bibliographic coupling map that while all clusters address the overarching theme of data-driven sustainable business model innovation, two central research streams emerge: digital sustainability (red cluster) and sustainable digital transformation (green and blue clusters). The red cluster prioritizes sustainability and explores how digital technologies can be leveraged to develop sustainable capabilities and achieve data-driven sustainable business model innovation. The green and blue clusters prioritize digital transformation and explore how data-driven capabilities lead to circular business models, especially within manufacturing companies. Table 3 provides an overview of all the capabilities discussed, organized into data-driven and sustainable categories, along with the clusters in which they appear and their corresponding references.

Data-driven and sustainable capabilities are grounded in dynamic capabilities theory, which is often associated with Teece's framework of sensing, seizing, and transforming. Dynamic capabilities comprise the routines and skills that enable companies to innovate their business models (Teece 2014, 2016). For example, they allow companies to *sense* emerging opportunities, develop new business models to *seize* them, and *transform* the company to align with these opportunities (Teece 2018). Our core argument, drawn from the intellectual structure of data-driven sustainable business model innovation, is that companies require dynamic capabilities—specifically data-driven and sustainable capabilities—for business model innovation.

4.3 | A Process Model for Data-Driven Sustainable Business Model Innovation

We derived a capability-based process model (see Figure 4). The model is read from left to right, as indicated by the arrows, and is organized into four phases of the business model innovation

 $\textbf{TABLE 3} \hspace{0.2cm} | \hspace{0.2cm} \textbf{Dynamic capabilities for data-driven sustainable business model innovation.} \\$


				Research	ı desigr
Main category	Subcategory	Cluster	Key references	Ql	Qn
Data-driven	Digital capability	Red cluster	Ringvold et al. (2022)	✓	
capabilities			Wardhana et al. (2023)		✓
		Green cluster	Chauhan et al. (2022)	✓	
			Kim et al. (2022)	✓	
			Ranta et al. (2021)	✓	
	Digitalization capability	Purple cluster	Zheng et al. (2019)	✓	
	Digital platform capability	Red cluster	Karimi and Walter (2021)		✓
			Yousaf et al. (2021)		✓
		Purple cluster	Thomson et al. (2022)	✓	
	Data capability	Red cluster	Ringvold et al. (2022)	✓	
			Wardhana et al. (2023)		✓
	Data-based decision-making capability	Red cluster	Andersen et al. (2022)	✓	
		Purple cluster	Thomson et al. (2022)	✓	
	Data management capability	Purple cluster	Thomson et al. (2022)	✓	
	Data-sharing capability	Purple cluster	Langley (2022)	✓	
	Data analysis capability	Green cluster	Benedettini (2022)	✓	
	Analytical capability	Green cluster	Ranta et al. (2021)	✓	
		Blue cluster	Sahoo and Jakhar (2023)		✓
		Purple cluster	Zheng et al. (2019)	✓	
	Real-time analytics capability	Blue cluster	Chatterjee et al. (2022)		✓
	Technological capability	Green cluster	Khan, Shah, et al. (2022)	✓	
	I4.0 capability	Blue cluster	Belhadi et al. (2022)	✓	✓
	Remanufacturing capability	Green cluster	Ranta et al. (2021)	✓	
	IT capability	Red cluster	Minatogawa et al. (2020)	✓	✓
	Computational capability	Red cluster	Martín et al. (2021)	✓	
	Machine learning capability	Green cluster	Çetin et al. (2021)	✓	
	Cyber capability	Red cluster	Yrjölä et al. (2020)	✓	
	AI capability (forecasting capability)	Green cluster	Çetin et al. (2021)	✓	
	1 3 3		Ranta et al. (2021)	✓	
	Blockchain technology capability	Red cluster	Martín et al. (2021)	✓	
	(predictive cap., maintenance service	Green cluster	Kumar and Chopra (2022)	✓	
	cap.; value appropriation cap.)		Ranta et al. (2021)	✓	
		Blue cluster	Esmaeilian et al. (2020)	✓	
		Purple cluster	Chin et al. (2022)		✓
	Information storage capability	Green cluster	Kumar and Chopra (2022)	✓	
	Information processing capability	Purple cluster	Zheng et al. (2019)	· ✓	
	Tracking capability	Green cluster	Ranta et al. (2021)	√	
	Logistics capability	Blue cluster	Awan et al. (2022)	√	
		Green cluster	Benedettini (2022)	√	
	Servitization capability	Purple cluster	Langley (2022)	√	

(Continues)

TABLE 3 | (Continued)

				Research	n design
Main category	Subcategory	Cluster	Key references	Ql	Qn
Sustainable	Communication capability	Red cluster	Martín et al. (2021)	✓	
capabilities	Capability to scan business environment	Red cluster	Andersen et al. (2022)	✓	
	Capability to convey a sense of urgency	Red cluster	Andersen et al. (2022)	✓	
	Managerial capability	Red cluster	Minatogawa et al. (2020)	✓	✓
	Marketing capability	Red cluster	Minatogawa et al. (2020)	✓	✓
	Strategic perspective capability	Red cluster	Wardhana et al. (2023)		✓
	Recombination capability (rethinking)	Red cluster	Ringvold et al. (2022)	✓	
	Adaptive capability	Red cluster	Wardhana et al. (2023)		✓
	Partnership management capability	Red cluster	Ringvold et al. (2022)	✓	
	Network capability	Red cluster	Wardhana et al. (2023)		✓
	Navigation capability	Red cluster	Ringvold et al. (2022)	✓	
	Efficiency-minded capability	Red cluster	Ringvold et al. (2022)	✓	
	Effectuation capability	Red cluster	Ringvold et al. (2022)	✓	
	Administrative capability	Blue cluster	Sahoo and Jakhar (2023)		✓
	Circular process capability	Blue cluster	Dahmani et al. (2021)	✓	
	Environmentally focused capability	Blue cluster	Kumar et al. (2022)	✓	✓

Abbreviations: Ql = qualitative, Qn = quantitative.

FIGURE 4 | Process model for data-driven sustainable business model innovation Legend: AI = artificial intelligence, BM = business model, BMI = business model innovation, ERP = enterprise resource planning, IoT = Internet of Things.

process. Each phase outlines the data-driven dynamic capabilities, their associated technologies, and the sustainable dynamic capabilities, along with their effects on environmental, social, and economic sustainability. Vertical arrows point downward from the data-driven dynamic capabilities to represent their impact on the sustainable dynamic capabilities and sustainability at all three levels. Technologies are shown along the arrows

to indicate that they are tools used to facilitate this impact. Stakeholder influence is depicted as follows: the internal environment influences both data-driven and sustainable dynamic capabilities, with arrows pointing upward. The external environment affects the three sustainability levels, with the arrow pointing downward. The different arrow directions help distinguish between the internal and external environments.

The capability-based process model connects the research streams of sustainability and data-driven technologies in business model innovation, illustrating the process of transitioning from a traditional business model to a (data-driven) sustainable business model. A business model can be described as data-driven when data is used as a key resource and data processing becomes a core activity (Hartmann et al. 2016). All phases of the business model innovation process, along with the guidance provided throughout, hold significant potential to be supported by data-driven methods and tools (Trabucchi and Buganza 2019).

In our capability-based process model, we categorized the technologies predominantly used in each phase, synthesizing existing research into the headings "Data collection," "Data integration," "Data analysis," and "Data sharing." Each of these phases also includes relevant subheadings, which serve as exemplary application areas and outcomes (Chauhan et al. 2022; Esmaeilian et al. 2020; Ranta et al. 2021). However, these technologies are not confined exclusively to their designated phases and can be applied throughout the innovation process.

Business model innovation capabilities are the unifying threads across all five clusters (see Table 3). Therefore, we included dynamic capabilities as the cornerstone of our model for data-driven sustainable business model innovation. The core message of dynamic capability theory is that a company's success depends not only on its existing capabilities but also on its ability to continuously adapt and reconfigure those capabilities in response to a rapidly changing business environment (Teece 2007, 2018). While the concept of dynamic capabilities is often associated with Teece, other scholars, such as Helfat and Peteraf (2003) and Helfat and Raubitschek (2018), highlight the lifecycle dynamics of capabilities, including their founding, development, and maturity.

Dynamic capabilities allow companies to continually monitor the external environment, identify new opportunities, and integrate novel elements into their business models (Helfat and Raubitschek 2018; Lantano et al. 2022). Both internal forces (e.g., managers) and external forces (e.g., the environment) can moderate the deployment of dynamic capabilities. Specifically, external forces impact the links between dynamic capability deployment and the outcomes of the value creation process (Ambrosini and Bowman 2009).

The development of data-driven capabilities (Vrontis et al. 2022) and sustainable capabilities (Chin et al. 2022; Hajiheydari et al. 2022) can drive business model innovation, enabling companies to innovate their existing business models. We incorporated stakeholder influence in our process model in two ways. First, the internal environment influences data-driven and sustainable dynamic capabilities. Second, the external environment influences environmental, social, and economic sustainability, which forms the link between the deployment of dynamic capabilities and the outcomes of the business model innovation process.

Based on our review, we identified two sets of dynamic capabilities: (1) data-driven sensing, data-driven seizing, and data-driven transforming (Warner and Wäger 2019), and (2) sustainable sensing, sustainable seizing, and sustainable

transforming (Hajiheydari et al. 2022; Pieroni et al. 2021). Following Teece (2018), we can describe these three types of dynamic capabilities as follows. Sensing aims to identify emerging sustainable issues and digital opportunities (i.e., unmet customer needs) and translate them into data-driven business model ideas, which, in turn, help companies develop sustainable business model ideas. Seizing focuses on configuring and refining business model concepts for data-driven and, subsequently, sustainable business model innovation, allowing companies to seize opportunities and capture their value. Transforming seeks to align existing capabilities, build the capabilities required for data-driven and sustainable business models, and plan the implementation of business model innovations.

We built on the work of Ranta et al. (2021) and Chauhan et al. (2022) to incorporate data-driven and sustainable dynamic capabilities into the four phases of the business model innovation process. The capabilities of sensing, seizing, and transforming were assigned to the following phases: the initiation phase corresponds to sensing, the ideation and integration phases align with seizing, and the implementation phase is linked to transforming (Pieroni et al. 2019; van Eechoud and Ganzaroli 2023).

Pieroni et al. (2019) presented a process model for circular business model innovation from a dynamic capabilities perspective. In comparison, our process model extends the existing sustainability perspective to include digital transformation aspects and the associated dynamic capabilities. Thus, our work aligns with existing research that highlights data as both a key driver and a critical factor in developing dynamic capabilities (Tortora et al. 2021), and shows that strong dynamic capabilities support digital transformation and AI adoption for value creation (Cimino et al. 2025; Matarazzo et al. 2021), foster competitive advantage in dynamic markets (Mondal et al. 2025; Singh et al. 2025), and facilitate adaptation to environmental change and progress toward sustainability goals (Cimino et al. 2025; Mondal et al. 2025).

Our findings contrast slightly with related research, as our model focuses specifically on business model innovation, while digital transformation extends beyond business models, influencing organizational culture, processes, technologies, and the workforce (Al-Moaid and Almarhdi 2024)—areas that we do not examine in detail. While the process model by van Eechoud and Ganzaroli (2023) explores dynamic capabilities in digital circular business model innovation, our process model extends theirs by distinguishing between data-driven and sustainable dynamic capabilities, providing a more detailed breakdown of data-driven technologies in the innovation process, and analyzing their effects on all three levels of sustainability—not just environmental sustainability.

In the initiation phase, data-driven dynamic capabilities are primarily used for data collection, which requires technologies, such as sensors and the IoT (Ranta et al. 2021). These technologies facilitate the tracking, assessment, and sensing of parameters, improving data accuracy (Chauhan et al. 2022). They also contribute to sustainable dynamic capabilities that support sustainability across all three dimensions.

Environmental sustainability is enhanced through improvements in renewable energy and resource efficiency (Del Vecchio et al. 2022; Ranta et al. 2021), as well as reductions in carbon emissions and waste (Ghobakhloo 2020; Nascimento et al. 2019).

Social sustainability is achieved through open innovation and co-creation with partners, which is made possible by strengthening connections among product manufacturers, users, and remanufacturers (Lardo et al. 2020). Another aspect of consumers is the optimized consumption of resources, including materials and energy (Esmaeilian et al. 2020; Godina et al. 2020).

Economic sustainability is supported by the capability to track products and materials (e.g., material passports/databanks), enabling knowledge accumulation that can lead to savings from waste and surplus reduction (Çetin et al. 2021; Ranta et al. 2021). Additionally, improved inventory management can reduce costs and address resource shortages (Godina et al. 2020; Mukherjee and Wood 2021).

During the ideation phase, data-driven dynamic capabilities support data integration—enabled by tools, such as cloud computing and enterprise resource planning (ERP) systems—which help integrate diverse data, manage knowledge, and support organizational learning (Di Vaio et al. 2023; Wardhana et al. 2023).

Environmental sustainability is bolstered by product lifecycle management (Zheng et al. 2019) and supply chain integration (Belhadi et al. 2022; Chauhan et al. 2022; Gopal et al. 2024), with the latter benefiting from logistics capabilities (Awan et al. 2022; Benedettini 2022). Manufacturing efficiency can be enhanced by shortening production times (Godina et al. 2020) and improving productivity (Dahmani et al. 2021; Hanelt et al. 2017).

Social sustainability is positively influenced by the connection between supply and demand, which facilitates the sharing of surpluses (de Oroski and da Silva 2022), thereby enhancing social welfare (Chauhan et al. 2022). Digital technologies empower small-scale production on the supply side while improving access to customers and consumers on the demand side (George et al. 2021).

Economic sustainability is enhanced by improved knowledge management processes (Di Vaio et al. 2023) and process optimization, such as efficient material processing and streamlined logistics (Ranta et al. 2021). Decreased costs in logistics (Godina et al. 2020), supply chains, investments, and social scalability (Calandra et al. 2022) are possible outcomes.

In the integration phase, data analysis is facilitated by data analytics and AI, requiring companies to excel in real-time analytics (Chatterjee et al. 2022) and AI capabilities (Çetin et al. 2021). Data-driven dynamic capabilities encompass information mining and integration (Kumar and Chopra 2022; Zheng et al. 2019), data-driven scenario planning (Warner and Wäger 2019), and support systems for decision-making (Pirola et al. 2020).

Environmental sustainability benefits from recycling, reusing, and remanufacturing materials and components. Therefore,

remanufacturing capabilities are necessary and encompass components, such as improved maintenance and product design (Langley 2022; Murray et al. 2017; Ranta et al. 2021). Possible outcomes include adopting new organizational approaches in equipment maintenance (Chen et al. 2018; Martín et al. 2021) and developing eco-efficient products (Dahmani et al. 2021; García-Muiña et al. 2019; Manea et al. 2021).

Social sustainability is achieved as customers benefit from more customer-centric solutions (Minatogawa et al. 2020), resulting in enhanced customer satisfaction (Dahmani et al. 2021) and improved user experience (Martin and Bustamante 2021).

Economic sustainability is facilitated through enhanced information management (Dahmani et al. 2021) and improved insights and decision-making (Andersen et al. 2022; Lardo et al. 2020), as the workforce is equipped with new decision-making tools (Esmaeilian et al. 2020). However, this also necessitates the development of data-based decision-making capabilities (Andersen et al. 2022; Thomson et al. 2022).

During the implementation phase, data-driven dynamic capabilities involve data sharing facilitated by blockchain technology and digital platforms. The adoption of blockchain technology enhances system efficiency and facilitates performance reporting across supply chain networks (Chin et al. 2022; Esmaeilian et al. 2020; Kumar and Chopra 2022; Martín et al. 2021; Ranta et al. 2021). Supported by servitization capability, more companies are employing product-service systems that enable smart servitization (Langley 2022).

Environmental sustainability is positively influenced by block-chain technology through improved traceability (Mercuri et al. 2021) and greater transparency in the supply chain (Kumar and Chopra 2022). Circular supply chains (Esmaeilian et al. 2020) can result from the incorporation of circular principles (Belhadi et al. 2022; Gopal et al. 2024), further supported by circular process capability (Dahmani et al. 2021). Such circular principles include circular design and procurement (Mukherjee and Wood 2021). Digital technology-based services can extend a product's lifecycle (Kim et al. 2022).

Social sustainability is supported by technologies that enhance transparency, stakeholder inclusion, and collaborative partnerships. Blockchains improve the transparency and security of data access within a given system, while digital platforms enable cooperation with external partners (e.g., competitors) and the inclusion of shareholders (Awan et al. 2022; Chin et al. 2022; Kim et al. 2022). Involving internal and external stakeholders (Holzmann and Gregori 2023) and garnering their support (Biloslavo et al. 2020) necessitates partnership management (Ringvold et al. 2022) and network capabilities (Wardhana et al. 2023).

Economic sustainability is positively impacted by the adoption of data-driven and circular approaches (Ghobakhloo 2020; Paiola et al. 2021), which foster more diversified and competitive product and service offerings (da Rocha et al. 2022; Mukherjee and Wood 2021). These developments contribute to enhanced venture viability (Holzmann and Gregori 2023) and improved liquidity (George et al. 2021).

We provide a hypothetical example, inspired by the realworld case of a ceramic tile manufacturer (García-Muiña et al. 2018), to illustrate the application of the process model in sustainability-oriented decision-making. In the initiation phase, the company mapped its existing linear business model, identified high waste generation as a key sustainability challenge, and leveraged IoT technologies to collect data on resource usage. During the ideation phase, data-driven insights facilitated the evaluation of circular business models, supported by ERP systems for data integration. The integration phase employed AI-driven scenario planning to assess environmental impacts and optimize remanufacturing processes. Finally, in the implementation phase, blockchain technology enabled data sharing across supply chain networks, thereby reinforcing circularity and sustainability. This example illustrates how organizations can apply our process model to inform decision-making in the context of data-driven sustainable business model innovation.

Thus, data-driven and sustainable dynamic capabilities are interconnected throughout the business model innovation process. Data-driven sensing, seizing, and transforming can lead to sustainable sensing, seizing, and transforming. In other words, the use of data-driven technologies can enable sustainability practices, thereby (ideally) positively impacting the three dimensions of sustainability.

However, while data-driven technologies can positively affect sustainability, their potential negative effects must not be overlooked. Mustak and Plé (2020) described the disadvantages of positive bias, which can limit the explanatory power of a concept or logic by offering an overly optimistic and favorable perspective. Similarly, we argue that research on the sustainable outcomes of data-driven technologies may fall victim to a positive bias that overlooks the adverse effects these technologies can have on the environment and society. Thus, the proposed process model presents an ideal case. However, it is important to recognize that digital technologies can negatively affect environmental, social, and economic sustainability (Birkel et al. 2019).

Nonetheless, our process model offers a valuable framework for both theory and practice, helping to understand the relationship between data-driven and sustainable business model innovation. By mitigating the risks associated with these technologies, we can harness their potential to create positive outcomes for the environment, society, and economy.

5 | Discussion

5.1 | Theoretical Contributions and Implications

Our study makes two key theoretical contributions to the literature on data-driven sustainable business model innovation. First, we further conceptualize the field by identifying five research clusters, each offering distinct insights into how data-driven technologies drive sustainable business model innovation. Second, based on insights gathered from these research streams, we develop a new dynamic capabilities-based process model that explains how data-driven and sustainable dynamic capabilities interact throughout the innovation process.

We identify five research clusters that structure the discourse on data-driven sustainable business model innovation: Cluster 1 explores how digital platforms contribute to sustainable business models, underscoring the need to integrate data-driven and sustainable capabilities. Cluster 2 examines the use of digital technologies to transition from linear to circular business models and finds that the sustainable capabilities required to achieve circular economy goals remain largely unknown. Cluster 3 focuses on smart manufacturing and supply chain digitalization, demonstrating how circular principles align supply chain sustainability with data-driven capabilities. Cluster 4 investigates blockchain's role in sustainable business model innovation. Cluster 5 analyzes how digital transformation enables smart and circular servitization business models, highlighting servitization capability as a pathway to value-added services and customer-centric strategies.

Building on insights from the five clusters, we present a dynamic capabilities-based process model that explains how data-driven technologies can enable sustainable business model innovation. Following Makadok et al. (2018), our theoretical contribution lies not in developing new "grand theories," but in extending existing ones. Our process model advances theories in sustainable business model innovation in three ways: First, it addresses how data-driven technologies can be integrated into the innovation process to foster sustainable business model development, an aspect previously underexplored.

Second, our model builds upon existing process theory-inspired process models (Chesbrough and Rosenbloom 2002; Teece 2010) that consider the dynamic and iterative nature of business model innovation. This expansion applies dynamic capabilities theory to explain the transformation of traditional business models into (data-driven) sustainable business models.

Third, the process model offers a theoretical conceptualization of how data-driven and sustainable dynamic capabilities interact during business model innovation. Data-driven capabilities likely operate indirectly in the sensing and seizing phases, while their direct influence may emerge only in the transforming phase, where business model implementation occurs. Based on our literature review, we propose that while data-driven capabilities alone may enhance efficiency, their impact could become more targeted when combined with sustainable capabilities.

Overall, the process model explains the mechanisms through which companies can utilize data-driven technologies to reconfigure their business models for positive environmental, social, and economic impacts.

The significance of strong dynamic capabilities in business model innovation is well-established (Teece 2018). This study demonstrates that this principle also applies to data-driven sustainable business model innovation. Using a dynamic capabilities lens, we identify the data-driven and sustainable capabilities that companies leverage to create value in business model innovation. Thus, this study contributes to the literature on dynamic capabilities by connecting the business model innovation process with the processes of sensing, seizing, and transforming. In conclusion, we offer a new perspective on the dynamic

and interconnected process of data-driven sustainable business model innovation. $\,$

5.2 | Limitations and Directions for Future Research

Limitations stem from the methodology and its implementation. The search was limited to the WoS database. A comparison with Scopus revealed a high degree of content overlap, as both databases index the leading journals in the Scimago Journal Rank subcategory "Business, Management, and Accounting." The key journals—ranked by (1) the most frequently cited contributions, (2) the most relevant contributions, and (3) the highest number of publications in the sample—are included in both WoS and Scopus. However, the exclusion of Scopus may have led to the omission of relevant studies, as searching additional databases could have expanded the sample size and yielded different results.

Another limitation concerns the subjectivity inherent in article selection and analysis. Although several researchers were involved in conducting the systematic literature review, objectivity can only be partially ensured. To address these limitations in future research, scholars could extend their search to other databases to explore the literature and theoretical frameworks comprehensively. Furthermore, they could enhance the reliability and validity of data collection and analysis by involving researchers from diverse backgrounds.

Our work opens several avenues for future research, including validating the process model, identifying, developing, and measuring critical dynamic capabilities, and extending the process model to the ecosystem level. To guide future research in this field, we have created a plan exploring the identified research areas, research questions, and potential methodologies (see Table 4). This plan integrates the insights from our bibliographic coupling analysis and process model.

The five clusters identified in the bibliographic coupling map (see Figure 3) highlight key research streams. Each cluster represents distinct implications for future research. Cluster 1 raises questions about how digital platforms can contribute to sustainable business models, particularly by fostering strong relationships with partners. Cluster 2 suggests investigating

TABLE 4 | Research agenda.

Research area	Research questions	Potential methodologies
Validation of process model	Does the process model accurately reflect the data-driven process of sustainable business model innovation?	Expert interviews, surveys
	Can the process model serve as a helpful guideline for companies in designing their innovation processes?	Longitudinal case studies
	What adaptations to the process model are necessary to account for the sustainability-damaging effects of technologies?	Impact assessments
Critical dynamic capabilities	What key dynamic capabilities enable successful data-driven sustainable business model innovation?	Mixed-methods approach
	How can companies develop the required capabilities for data-driven sustainable business model innovation?	Expert interviews
	How can the effectiveness of dynamic capabilities in driving sustainable business model innovation be measured?	Develop and validate metrics (e.g., through factor analysis)
	How do data-driven capabilities directly and indirectly impact sustainability outcomes?	Cross-impact analysis
Extension of the process model to the ecosystem level	How can data-driven technologies boost sustainability throughout supply chains?	Mixed-methods approach
	How do dynamic capabilities mediate between partners in supply chain networks?	Surveys, structural equation modeling
	How can companies ensure shared value creation through their sustainable business models?	Stakeholder analysis

 $Note: Table\ structure\ adapted\ from\ tables\ included\ in\ Mahajan\ et\ al.\ (2024,pp.\ 11-24)\ and\ Centobelli\ et\ al.\ (2020,pp.\ 12-13).$

how manufacturing companies can effectively implement sustainable capabilities to achieve circular economy goals. Cluster 3 raises future research questions regarding the achievement of sustainability objectives within supply chains. Cluster 4 focuses on the role of blockchain in advancing sustainable business model innovations. Cluster 5 encourages research on the intersection of servitization capability with other data-driven and sustainability-related capabilities.

The digital technologies and dynamic capabilities identified by analyzing the five clusters were integrated into our process model (see Figure 4), but their validation remains outstanding. Future research should assess whether this model accurately reflects the data-driven process of sustainable business model innovation and whether it can serve as a guideline for companies to design their innovation processes. Additionally, changing the business model by introducing technological and sustainability components carries significant risks for companies (Tohānean et al. 2020). Cases where the application of data-driven technologies in business model innovation has not led to sustainable outcomes need further investigation to identify the necessary adaptations to the process model and move it from an ideal case to a more realistic one.

Dynamic capabilities play an important role in the business model innovation process. However, the challenge for companies lies in simultaneously managing data-driven and sustainable dynamic capabilities. This challenge is further complicated by the influence of internal and external factors on the business model innovation process (Ambrosini and Bowman 2009). When integrating these data-driven and sustainable capabilities, companies face similar challenges in balancing the tensions between adopting new technologies and achieving sustainability goals (Kumar et al. 2022).

The key challenges are as follows: First, internal stakeholder resistance—such as from employees and managers—to organizational change. This resistance is especially prevalent when innovations are integrated into conventional processes and focused sustainable capabilities are lacking (Kumar et al. 2022). Second, the external environment can pose a significant barrier to technological adoption. Specifically, companies may struggle to select appropriate technologies due to the vast number of available options (Sahoo and Jakhar 2023).

Further research is needed to determine which dynamic capabilities are crucial for successfully implementing business model innovations and how companies can develop these capabilities. Moreover, questions arise regarding how the effectiveness of dynamic capabilities in achieving sustainable business model innovation can be measured and how data-driven capabilities directly and indirectly impact sustainability outcomes.

Companies are embedded in extensive networks within their ecosystem, comprising diverse stakeholders, such as suppliers, customers, and competitors. Collaborations with these stakeholders facilitate co-creation (Brown et al. 2021; Ramaswamy and Ozcan 2018) and the development of more sustainable value propositions (Bocken and Geradts 2020). However, ecosystem actors face coordination and collaboration challenges in aligning with new value propositions, which can be addressed through orchestration driven by dynamic capabilities (Kanda

et al. 2025). Therefore, an important avenue for future research is extending our process model to the ecosystem level to consider companies within their supply chain networks and their approaches to shared value creation.

Data-driven technologies offer new opportunities for cooperation with stakeholders (Adelekan and Sharmina 2024) and help realize sustainable supply chain business models (Di Vaio et al. 2023; Esmaeilian et al. 2020). Partners (e.g., producers, suppliers, processors, distributors, and retailers) in such sustainability-oriented supply chains tend to build positive performance relationships (Shashi et al. 2018). Future research must explore how data-driven technologies can boost sustainability throughout supply chains and how dynamic capabilities mediate relationships between partners in supply chain networks.

Changes in value creation caused by digital technologies impact the entire supply chain (Birkel et al. 2019) and lead to considerations regarding how value is shared along the supply chain. The principle of shared value proposes that companies must integrate a social perspective so that their business activities benefit both themselves and society (Porter and Kramer 2006, 2011). Integrating economically disadvantaged individuals into the supply chain can create shared value depending on the company's level of inclusivity—that is, from being used only in distribution to being used along the entire supply chain (Panapanaan et al. 2016). Future research could explore how companies can ensure that their sustainable business models generate economic value while simultaneously creating value for society by addressing societal concerns.

6 | Conclusion

In conclusion, this paper makes a valuable contribution to the increasingly relevant field of data-driven sustainable business model innovation by connecting data-driven and sustainable business model innovation. We developed a comprehensive dynamic capability-based process model that conceptualizes how data-driven technologies can contribute to sustainable business model innovation while promoting environmentally, socially, and economically sustainable development. This study provides a new perspective on the dynamic and interconnected process of data-driven sustainable business model innovation.

Acknowledgments

The financial support by the Austrian Federal Ministry of Digital and Economic Affairs, the National Foundation for Research, Technology and Development, and the Christian Doppler Research Association is gratefully acknowledged. N/A

Conflicts of Interest

The authors declare no conflicts of interest.

References

Abbate, S., P. Centobelli, and R. Cerchione. 2023. "From Fast to Slow: An Exploratory Analysis of Circular Business Models in the Italian Apparel Industry." *International Journal of Production Economics* 260: 108824. https://doi.org/10.1016/j.ijpe.2023.108824.

Acciarini, C., F. Borelli, F. Capo, F. Cappa, and C. Sarrocco. 2022. "Can Digitalization Favour the Emergence of Innovative and Sustainable Business Models? A Qualitative Exploration in the Automotive Sector." *Journal of Strategy and Management* 15, no. 3: 335–352. https://doi.org/10.1108/JSMA-02-2021-0033.

Adelekan, A., and M. Sharmina. 2024. "Collaborative Digitally-Enabled Business Models for a Circular Economy: Sustaining, Managing and Protecting Value in the UK Plastics Sector." *Journal of Cleaner Production* 438: 140770. https://doi.org/10.1016/j.jclepro.2024.140770.

Aguinis, H., R. S. Ramani, and N. Alabduljader. 2020. "Best-Practice Recommendations for Producers, Evaluators, and Users of Methodological Literature Reviews." *Organizational Research Methods* 26, no. 1: 46–76. https://doi.org/10.1177/1094428120943281.

Al-Moaid, N. A. A., and S. G. Almarhdi. 2024. "Developing Dynamic Capabilities for Successful Digital Transformation Projects: The Mediating Role of Change Management." *Journal of Innovation and Entrepreneurship* 13, no. 1: 85. https://doi.org/10.1186/s13731-024-00446-9.

Amaral, D. G., and R. J. Orsato. 2023. "Digital Platforms for Food Waste Reduction: The Value for Business Users." *Business Strategy and the Environment* 32, no. 4: 1373–1387. https://doi.org/10.1002/bse.3193.

Ambrosini, V., and C. Bowman. 2009. "What Are Dynamic Capabilities and Are They a Useful Construct in Strategic Management?" *International Journal of Management Reviews* 11, no. 1: 29–49. https://doi.org/10.1111/j.1468-2370.2008.00251.x.

Andersen, T., A. Aagaard, and M. Magnusson. 2022. "Exploring Business Model Innovation in SMEs in a Digital Context: Organizing Search Behaviours, Experimentation and Decision-Making." *Creativity and Innovation Management* 31, no. 1: 19–34. https://doi.org/10.1111/caim.12474.

Andreassen, T. W., L. Lervik-Olsen, H. Snyder, A. C. van Riel, J. C. Sweeney, and Y. van Vaerenbergh. 2018. "Business Model Innovation and Value-Creation: The Triadic Way." *Journal of Service Management* 29, no. 5: 883–906. https://doi.org/10.1108/JOSM-05-2018-0125.

Atif, S., S. Ahmed, M. Wasim, B. Zeb, Z. Pervez, and L. Quinn. 2021. "Towards A Conceptual Development of Industry 4.0, Servitisation, and Circular Economy: A Systematic Literature Review." *Sustainability* 13, no. 11: 6501. https://doi.org/10.3390/su13116501.

Autio, E. 2017. "Strategic Entrepreneurial Internationalization: A Normative Framework." *Strategic Entrepreneurship Journal* 11, no. 3: 211–227. https://doi.org/10.1002/sej.1261.

Ávila-Gutiérrez, M. J., A. Martín-Gómez, F. Aguayo-González, and J. R. Lama-Ruiz. 2020. "Eco-Holonic 4.0 Circular Business Model to Conceptualize Sustainable Value Chain Towards Digital Transition." *Sustainability* 12, no. 5: 1889. https://doi.org/10.3390/su12051889.

Awan, U., R. Sroufe, and K. Bozan. 2022. "Designing Value Chains for Industry 4.0 and a Circular Economy: A Review of the Literature." *Sustainability* 14, no. 12: 7084. https://doi.org/10.3390/su14127084.

Bachmann, N., and H. Jodlbauer. 2023. "Iterative Business Model Innovation: A Conceptual Process Model and Tools for Incumbents." *Journal of Business Research* 168: 114177. https://doi.org/10.1016/j.jbusres.2023.114177.

Baden-Fuller, C., and S. Haefliger. 2013. "Business Models and Technological Innovation." *Long Range Planning* 46, no. 6: 419–426. https://doi.org/10.1016/j.lrp.2013.08.023.

Baden-Fuller, C., and V. Mangematin. 2013. "Business Models: A Challenging Agenda." *Strategic Organization* 11, no. 4: 418–427. https://doi.org/10.1177/1476127013510112.

Bähr, K., and A. Fliaster. 2022. "The Twofold Transition: Framing Digital Innovations and Incumbents' Value Propositions for Sustainability." *Business Strategy and the Environment* 32, no. 2: 920–935. https://doi.org/10.1002/bse.3082.

Baranauskas, G., and A. G. Raišienė. 2022. "Transition to Digital Entrepreneurship With a Quest of Sustainability: Development of a New Conceptual Framework." *Sustainability* 14, no. 3: 1104. https://doi.org/10.3390/su14031104.

Belhadi, A., S. Kamble, A. Gunasekaran, and V. Mani. 2022. "Analyzing the Mediating Role of Organizational Ambidexterity and Digital Business Transformation on Industry 4.0 Capabilities and Sustainable Supply Chain Performance." *Supply Chain Management, an International Journal* 27, no. 6: 696–711. https://doi.org/10.1108/SCM-04-2021-0152.

Bencsik, B., M. Palmié, V. Parida, J. Wincent, and O. Gassmann. 2023. "Business Models for Digital Sustainability: Framework, Microfoundations of Value Capture, and Empirical Evidence From 130 Smart City Services." *Journal of Business Research* 160: 113757. https://doi.org/10.1016/j.jbusres.2023.113757.

Benedettini, O. 2022. "Green Servitization in the Single-Use Medical Device Industry: How Device OEMs Create Supply Chain Circularity Through Reprocessing." *Sustainability* 14, no. 19: 12670. https://doi.org/10.3390/su141912670.

Bican, P. M., and A. Brem. 2020. "Digital Business Model, Digital Transformation, Digital Entrepreneurship: Is There A Sustainable "Digital"?" *Sustainability* 12, no. 13: 5239. https://doi.org/10.3390/su121 35239

Biloslavo, R., C. Bagnoli, M. Massaro, and A. Cosentino. 2020. "Business Model Transformation Toward Sustainability: The Impact of Legitimation." *Management Decision* 58, no. 8: 1643–1662. https://doi.org/10.1108/MD-09-2019-1296.

Birkel, H., J. Veile, J. Müller, E. Hartmann, and K.-I. Voigt. 2019. "Development of a Risk Framework for Industry 4.0 in the Context of Sustainability for Established Manufacturers." *Sustainability* 11, no. 2: 384. https://doi.org/10.3390/su11020384.

Bocken, N. M. P., and T. H. J. Geradts. 2020. "Barriers and Drivers to Sustainable Business Model Innovation: Organization Design and Dynamic Capabilities." *Long Range Planning* 53, no. 4: 101950. https://doi.org/10.1016/j.lrp.2019.101950.

Bocken, N. M. P., S. W. Short, P. Rana, and S. Evans. 2014. "A Literature and Practice Review to Develop Sustainable Business Model Archetypes." *Journal of Cleaner Production* 65: 42–56. https://doi.org/10.1016/j.jclepro.2013.11.039.

Bonakdar, A., and O. Gassmann. 2016. "Design Thinking for Revolutionizing Your Business Models." In *Design Thinking for Innovation: Research and Practice*, 57–66. Springer. https://doi.org/10.1007/978-3-319-26100-3_4.

Boons, F., and F. Lüdeke-Freund. 2013. "Business Models for Sustainable Innovation: State-of-the-Art and Steps Towards a Research Agenda." *Journal of Cleaner Production* 45: 9–19. https://doi.org/10.1016/j.jclepro. 2012.07.007.

Böttcher, T. P., S. Empelmann, J. Weking, A. Hein, and H. Krcmar. 2023. "Digital Sustainable Business Models: Using Digital Technology to Integrate Ecological Sustainability Into the Core of Business Models." *Information Systems Journal* 34: no. 3: 736–761. https://doi.org/10.1111/isj.12436.

Brenner, B. 2018. "Transformative Sustainable Business Models in the Light of the Digital Imperative - A Global Business Economics Perspective." *Sustainability* 10, no. 12: 4428. https://doi.org/10.3390/su10124428

Bressanelli, G., F. Adrodegari, D. C. A. Pigosso, and V. Parida. 2022. "Towards the Smart Circular Economy Paradigm: A Definition, Conceptualization, and Research Agenda." *Sustainability* 14, no. 9: 4960. https://doi.org/10.3390/su14094960.

Bressanelli, G., N. Saccani, M. Perona, and I. Baccanelli. 2020. "Towards Circular Economy in the Household Appliance Industry: An Overview of Cases." *Resources* 9, no. 11: 128. https://doi.org/10.3390/resources9 110128.

Brown, P., C. von Daniels, N. M. P. Bocken, and A. R. Balkenende. 2021. "A Process Model for Collaboration in Circular Oriented Innovation." *Journal of Cleaner Production* 286: 125499. https://doi.org/10.1016/j.jclepro.2020.125499.

Budler, M., I. Župič, and P. Trkman. 2021. "The Development of Business Model Research: A Bibliometric Review." *Journal of Business Research* 135: 480–495. https://doi.org/10.1016/j.jbusres.2021.06.045.

Burmaoglu, S., D. Ozdemir Gungor, A. Kirbac, and O. Saritas. 2023. "Future Research Avenues at the Nexus of Circular Economy and Digitalization." *International Journal of Productivity and Performance Management* 72, no. 8: 2247–2269. https://doi.org/10.1108/IJPPM -01-2021-0026.

Calandra, D., S. Secinaro, M. Massaro, F. Dal Mas, and C. Bagnoli. 2022. "The Link Between Sustainable Business Models and Blockchain: A Multiple Case Study Approach." *Business Strategy and the Environment* 32, no. 4: 1403–1417. https://doi.org/10.1002/bse.3195.

Capurro, R., R. Fiorentino, and S. Garzella. 2024. "Putting Boundaries in the Middle of Business Model Innovation: A Framework to Face Megatrends in the Digital and Sustainable Landscape." *Business Process Management Journal* 30, no. 8: 49–70. https://doi.org/10.1108/BPMJ-08-2023-0635.

Carvalho, M. M., A. Fleury, and A. P. Lopes. 2013. "An Overview of the Literature on Technology Roadmapping (TRM): Contributions and Trends." *Technological Forecasting and Social Change* 80, no. 7: 1418–1437. https://doi.org/10.1016/j.techfore.2012.11.008.

Cavazza, A., F. Dal Mas, M. Campra, and V. Brescia. 2023. "Artificial Intelligence and New Business Models in Agriculture: The "ZERO" Case Study." *Management Decision*, Early View. https://doi.org/10.1108/MD-06-2023-0980.

Centobelli, P., R. Cerchione, D. Chiaroni, P. Del Vecchio, and A. Urbinati. 2020. "Designing Business Models in Circular Economy: A Systematic Literature Review and Research Agenda." *Business Strategy and the Environment* 29, no. 4: 1734–1749. https://doi.org/10.1002/bse.2466.

Çetin, S., C. de Wolf, and N. M. P. Bocken. 2021. "Circular Digital Built Environment: An Emerging Framework." *Sustainability* 13, no. 11: 6348. https://doi.org/10.3390/su13116348.

Chatterjee, S., R. Chaudhuri, D. Vrontis, and F. Jabeen. 2022. "Digital Transformation of Organization Using AI-CRM: From Microfoundational Perspective With Leadership Support." *Journal of Business Research* 153: 46–58. https://doi.org/10.1016/j.jbusres.2022. 08.019.

Chauhan, C., V. Parida, and A. Dhir. 2022. "Linking Circular Economy and Digitalisation Technologies: A Systematic Literature Review of Past Achievements and Future Promises." *Technological Forecasting and Social Change* 177: 121508. https://doi.org/10.1016/j.techfore.2022. 121508.

Chauhan, C., A. Sharma, and A. Singh. 2021. "A SAP-LAP Linkages Framework for Integrating Industry 4.0 and Circular Economy." *Benchmarking: An International Journal* 28, no. 5: 1638–1664. https://doi.org/10.1108/BIJ-10-2018-0310.

Chen, H., R. H. Chiang, and V. C. Storey. 2012. "Business Intelligence and Analytics: From Big Data to Big Impact." *MIS Quarterly* 36, no. 4: 1165–1188. https://doi.org/10.2307/41703503.

Chen, J., R. Zhang, and D. Wu. 2018. "Equipment Maintenance Business Model Innovation for Sustainable Competitive Advantage in the Digitalization Context: Connotation, Types, and Measuring." *Sustainability* 10, no. 11: 3970. https://doi.org/10.3390/su10113970.

Chesbrough, H., and R. S. Rosenbloom. 2002. "The Role of the Business Model in Capturing Value From Innovation: Evidence From Xerox Corporation's Technology Spin-Off Companies." *Industrial*

and Corporate Change 11, no. 3: 529–555. https://doi.org/10.1093/icc/11.3.529.

Chin, T., Y. Shi, S. K. Singh, G. K. Agbanyo, and A. Ferraris. 2022. "Leveraging Blockchain Technology for Green Innovation in Ecosystem-Based Business Models: A Dynamic Capability of Values Appropriation." *Technological Forecasting and Social Change* 183: 121908. https://doi.org/10.1016/j.techfore.2022.121908.

Cimino, A., V. Corvello, C. Troise, A. Thomas, and M. Tani. 2025. "Artificial Intelligence Adoption for Sustainable Growth in SMEs: An Extended Dynamic Capability Framework." *Corporate Social Responsibility and Environmental Management*, Early View. https://doi.org/10.1002/csr.70019.

Clauss, T. 2017. "Measuring Business Model Innovation: Conceptualization, Scale Development, and Proof of Performance." *R&D Management* 47, no. 3: 385–403. https://doi.org/10.1111/radm. 12186.

Colombi, C., and E. D'Itria. 2023. "Fashion Digital Transformation: Innovating Business Models Toward Circular Economy and Sustainability." *Sustainability* 15, no. 6: 4942. https://doi.org/10.3390/su15064942.

da Rocha, A. B. T., K. Borges de Oliveira, M. Espuny, S. da Motta, J. Reis, and O. J. Oliveira. 2022. "Business Transformation Through Sustainability Based on Industry 4.0." *Heliyon* 8, no. 8: e10015. https://doi.org/10.1016/j.heliyon.2022.e10015.

Dahmani, N., K. Benhida, A. Belhadi, S. Kamble, S. Elfezazi, and S. K. Jauhar. 2021. "Smart Circular Product Design Strategies Towards Eco-Effective Production Systems: A Lean Eco-Design Industry 4.0 Framework." *Journal of Cleaner Production* 320: 128847. https://doi.org/10.1016/j.jclepro.2021.128847.

Dal Mas, F., G. Dicuonzo, M. Massaro, and V. Dell'Atti. 2020. "Smart Contracts to Enable Sustainable Business Models. A Case Study." *Management Decision* 58, no. 8: 1601–1619. https://doi.org/10.1108/MD-09-2019-1266.

Dantas, T., E. D. de- Souza, I. R. Destro, G. Hammes, C. Rodriguez, and S. R. Soares. 2021. "How the Combination of Circular Economy and Industry 4.0 Can Contribute Towards Achieving the Sustainable Development Goals." *Sustainable Production and Consumption* 26: 213–227. https://doi.org/10.1016/j.spc.2020.10.005.

de Oroski, F. A., and J. M. da Silva. 2022. "Understanding Food Waste-Reducing Platforms: A Mini-Review." *Waste Management & Research* 41, no. 4: 816–827. https://doi.org/10.1177/0734242X221135248.

de Reuver, M., H. Bouwman, and T. Haaker. 2013. "Business Model Roadmapping: A Practical Approach to Come From an Existing to a Desired Business Model." *International Journal of Innovation Management* 17, no. 1: 1340006. https://doi.org/10.1142/S1363919613400069.

Del Vecchio, P., C. Malandugno, G. Passiante, and G. Sakka. 2022. "Circular Economy Business Model for Smart Tourism: The Case of Ecobnb." *EuroMed Journal of Business* 17, no. 1: 88–104. https://doi.org/10.1108/EMJB-09-2020-0098.

Di Vaio, A., B. Latif, N. Gunarathne, M. Gupta, and I. D'Adamo. 2023. "Digitalization and Artificial Knowledge for Accountability in SCM: A Systematic Literature Review." *Journal of Enterprise Information Management* 37, no. 2: 606–672. https://doi.org/10.1108/JEIM-08-2022-0275.

Di Vaio, A., R. Palladino, R. Hassan, and O. Escobar. 2020. "Artificial Intelligence and Business Models in the Sustainable Development Goals Perspective: A Systematic Literature Review." *Journal of Business Research* 121: 283–314. https://doi.org/10.1016/j.jbusres.2020.08.019.

Diaz, R., and R. Montalvo. 2022. "Digital Transformation as an Enabler to Become More Efficient in Sustainability: Evidence From Five Leading Companies in the Mexican Market." *Sustainability* 14, no. 22: 15436. https://doi.org/10.3390/su142215436.

Donthu, N., S. Kumar, D. Mukherjee, N. Pandey, and W. M. Lim. 2021. "How to Conduct a Bibliometric Analysis: An Overview and Guidelines." *Journal of Business Research* 133: 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070.

Ekwueme, C. M., C. F. Egbunike, and C. I. Onyali. 2013. "Benefits of Triple Bottom Line Disclosures on Corporate Performance: An Exploratory Study of Corporate Stakeholders." *Journal of Management and Sustainability* 3, no. 2: 79–91. https://doi.org/10.5539/jms.v3n2p79.

Esmaeilian, B., J. Sarkis, K. Lewis, and S. Behdad. 2020. "Blockchain for the Future of Sustainable Supply Chain Management in Industry 4.0." *Resources, Conservation and Recycling* 163: 105064. https://doi.org/10.1016/j.resconrec.2020.105064.

Evans, S., D. Vladimirova, M. Holgado, et al. 2017. "Business Model Innovation for Sustainability: Towards a Unified Perspective for Creation of Sustainable Business Models." *Business Strategy and the Environment* 26, no. 5: 597–608. https://doi.org/10.1002/bse.1939.

Ferreira, J. J., J. M. Lopes, S. Gomes, and H. G. Rammal. 2023. "Industry 4.0 Implementation: Environmental and Social Sustainability in Manufacturing Multinational Enterprises." *Journal of Cleaner Production* 404: 136841. https://doi.org/10.1016/j.jclepro.2023.136841.

Finfgeld-Connett, D. 2014. "Use of Content Analysis to Conduct Knowledge-Building and Theory-Generating Qualitative Systematic Reviews." *Qualitative Research* 14, no. 3: 341–352. https://doi.org/10.1177/1468794113481790.

Fonseca, L., A. Amaral, and J. Oliveira. 2021. "Quality 4.0: The EFQM 2020 Model and Industry 4.0 Relationships and Implications." *Sustainability* 13, no. 6: 3107. https://doi.org/10.3390/su13063107.

Frankenberger, K., T. Weiblen, M. Csik, and O. Gassmann. 2013. "The 4I-Framework of Business Model Innovation: A Structured View on Process Phases and Challenges." *International Journal of Product Development* 18, no. 3–4: 249–273. https://doi.org/10.1504/IJPD.2013.055012.

Freudenreich, B., F. Lüdeke-Freund, and S. Schaltegger. 2020. "A Stakeholder Theory Perspective on Business Models: Value Creation for Sustainability." *Journal of Business Ethics* 166, no. 1: 3–18. https://doi.org/10.1007/s10551-019-04112-z.

Fruhwirth, M., C. Ropposch, and V. Pammer-Schindler. 2020. "Supporting Data-Driven Business Model Innovations: A Structured Literature Review on Tools and Methods." *Journal of Business Models* 8, no. 1: 7–25. https://doi.org/10.5278/OJS.JBM.V8I1.3529.

Fuerst, S., O. Sanchez-Dominguez, and M. A. Rodriguez-Montes. 2023. "The Role of Digital Technology Within the Business Model of Sustainable Entrepreneurship." *Sustainability* 15, no. 14: 10923. https://doi.org/10.3390/su151410923.

Gao, P., and J. Li. 2020. "Understanding Sustainable Business Model: A Framework and a Case Study of the Bike-Sharing Industry." *Journal of Cleaner Production* 267: 122229. https://doi.org/10.1016/j.jclepro.2020. 122229.

García-Muiña, F. E., R. González-Sánchez, A. M. Ferrari, and D. Settembre-Blundo. 2018. "The Paradigms of Industry 4.0 and Circular Economy as Enabling Drivers for the Competitiveness of Businesses and Territories: The Case of an Italian Ceramic Tiles Manufacturing Company." *Social Sciences* 7, no. 12: 255. https://doi.org/10.3390/socsci7120255.

García-Muiña, F. E., R. González-Sánchez, A. M. Ferrari, et al. 2019. "Identifying the Equilibrium Point Between Sustainability Goals and Circular Economy Practices in an Industry 4.0 Manufacturing Context Using Eco-Design." *Social Sciences* 8, no. 8: 241. https://doi.org/10.3390/socsci8080241.

García-Muiña, F. E., M. S. Medina-Salgado, A. M. Ferrari, and M. Cucchi. 2020. "Sustainability Transition in Industry 4.0 and Smart Manufacturing With the Triple-Layered Business Model Canvas." *Sustainability* 12, no. 6: 2364. https://doi.org/10.3390/su12062364.

Gassmann, O., K. Frankenberger, and M. Choudury. 2015. Geschäftsmodelle Entwickeln: 55 Innovative Konzepte Mit dem St. Galler Business Model Navigator. 2nd ed. Carl Hanser Verlag GmbH Co KG.

Gassmann, O., K. Frankenberger, and M. Csik. 2014. *The Business Model Navigator: 55 Models That Will Revolutionise Your Business*. Financial Times Publishing.

Gaviria-Marin, M., J. M. Merigó, and H. Baier-Fuentes. 2019. "Knowledge Management: A Global Examination Based on Bibliometric Analysis." *Technological Forecasting and Social Change* 140: 194–220. https://doi.org/10.1016/j.techfore.2018.07.006.

Geissdoerfer, M., D. Vladimirova, and S. Evans. 2018. "Sustainable Business Model Innovation: A Review." *Journal of Cleaner Production* 198: 401–416. https://doi.org/10.1016/j.jclepro.2018.06.240.

George, G., R. K. Merrill, and S. J. D. Schillebeeckx. 2021. "Digital Sustainability and Entrepreneurship: How Digital Innovations Are Helping Tackle Climate Change and Sustainable Development." *Entrepreneurship Theory and Practice* 45, no. 5: 999–1027. https://doi.org/10.1177/1042258719899425.

Ghobakhloo, M. 2020. "Industry 4.0, Digitization, and Opportunities for Sustainability." *Journal of Cleaner Production* 252: 119869. https://doi.org/10.1016/j.jclepro.2019.119869.

Giorgi, S., M. Lavagna, K. Wang, M. Osmani, G. Liu, and A. Campioli. 2022. "Drivers and Barriers Towards Circular Economy in the Building Sector: Stakeholder Interviews and Analysis of Five European Countries Policies and Practices." *Journal of Cleaner Production* 336: 130395. https://doi.org/10.1016/j.jclepro.2022.130395.

Godina, R., I. Ribeiro, F. Matos, B. T. Ferreira, H. Carvalho, and P. Peças. 2020. "Impact Assessment of Additive Manufacturing on Sustainable Business Models in Industry 4.0 Context." *Sustainability* 12, no. 17: 7066. https://doi.org/10.3390/su12177066.

González-Varona, J. M., D. Poza, F. Acebes, F. Villafáñez, J. Pajares, and A. López-Paredes. 2020. "New Business Models for Sustainable Spare Parts Logistics: A Case Study." *Sustainability* 12, no. 8: 3071. https://doi.org/10.3390/su12083071.

Gopal, P. R. C., P. Kadari, J. J. Thakkar, and B. K. Mawandiya. 2024. "Key Performance Factors for Integration of Industry 4.0 and Sustainable Supply Chains: A Perspective of Indian Manufacturing Industry." *Journal of Science and Technology Policy Management* 15, no. 1: 93–121. https://doi.org/10.1108/JSTPM-10-2021-0151.

Gräßler, I., and J. Pottebaum. 2021. "Generic Product Lifecycle Model: A Holistic and Adaptable Approach for Multi-Disciplinary Product-Service Systems." *Applied Sciences* 11, no. 10: 4516. https://doi.org/10.3390/app11104516.

Gregori, P., and P. Holzmann. 2020. "Digital Sustainable Entrepreneurship: A Business Model Perspective on Embedding Digital Technologies for Social and Environmental Value Creation." *Journal of Cleaner Production* 272: 122817. https://doi.org/10.1016/j.jclepro.2020. 122817.

Gregori, P., P. Holzmann, and D. B. Audretsch. 2023. "Sustainable Entrepreneurship on Digital Platforms and the Enactment of Digital Connectivity Through Business Models." *Business Strategy and the Environment* 33, no. 2: 1173–1190. https://doi.org/10.1002/bse.3551.

Gusenbauer, M., and N. R. Haddaway. 2020. "Which Academic Search Systems Are Suitable for Systematic Reviews or Meta-Analyses? Evaluating Retrieval Qualities of Google Scholar, PubMed, and 26 Other Resources." *Research Synthesis Methods* 11, no. 2: 181–217. https://doi.org/10.1002/jrsm.1378.

Haftor, D. M., R. Costa Climent, and J. E. Lundström. 2021. "How Machine Learning Activates Data Network Effects in Business Models: Theory Advancement Through an Industrial Case of Promoting Ecological Sustainability." *Journal of Business Research* 131: 196–205. https://doi.org/10.1016/j.jbusres.2021.04.015.

Hajiheydari, N., M. Kargar Shouraki, H. Vares, and A. Mohammadian. 2022. "Digital Sustainable Business Model Innovation: Applying Dynamic Capabilities Approach (DSBMI-DC)." *Foresight* 25, no. 3: 420–447. https://doi.org/10.1108/FS-02-2022-0012.

Hanelt, A., S. Busse, and L. M. Kolbe. 2017. "Driving Business Transformation Toward Sustainability: Exploring the Impact of Supporting IS on the Performance Contribution of Eco-Innovations." *Information Systems Journal* 27, no. 4: 463–502. https://doi.org/10.1111/isj.12130.

Hartmann, P. M., M. Zaki, N. Feldmann, and A. Neely. 2016. "Capturing Value From Big Data – A Taxonomy of Data-Driven Business Models Used by Start-Up Firms." *International Journal of Operations & Production Management* 36, no. 10: 1382–1406. https://doi.org/10.1108/IJOPM-02-2014-0098.

Helfat, C. E., and M. A. Peteraf. 2003. "The Dynamic Resource-Based View: Capability Lifecycles." *Strategic Management Journal* 24, no. 10: 997–1010. https://doi.org/10.1002/smj.332.

Helfat, C. E., and R. S. Raubitschek. 2018. "Dynamic and Integrative Capabilities for Profiting From Innovation in Digital Platform-Based Ecosystems." *Research Policy* 47, no. 8: 1391–1399. https://doi.org/10.1016/j.respol.2018.01.019.

Hiebl, M. R. W. 2021. "Sample Selection in Systematic Literature Reviews of Management Research." *Organizational Research Methods* 26, no. 2: 229–261. https://doi.org/10.1177/1094428120986851.

Holzmann, P., R. J. Breitenecker, E. J. Schwarz, and P. Gregori. 2020. "Business Model Design for Novel Technologies in Nascent Industries: An Investigation of 3D Printing Service Providers." *Technological Forecasting and Social Change* 159: 120193. https://doi.org/10.1016/j.techfore.2020.120193.

Holzmann, P., and P. Gregori. 2023. "The Promise of Digital Technologies for Sustainable Entrepreneurship: A Systematic Literature Review and Research Agenda." *International Journal of Information Management* 68: 102593. https://doi.org/10.1016/j.ijinfomgt.2022.102593.

Hossain, M., S. Park, N. Suchek, and M. Pansera. 2024. "Circular Economy: A Review of Review Articles." *Business Strategy and the Environment* 33, no. 7: 7077–7099. https://doi.org/10.1002/bse.3867.

Hussain, N., U. Rigoni, and R. P. Orij. 2018. "Corporate Governance and Sustainability Performance: Analysis of Triple Bottom Line Performance." *Journal of Business Ethics* 149, no. 2: 411–432. https://doi.org/10.1007/s10551-016-3099-5.

Huynh, P. H. 2022. "Enabling Circular Business Models in the Fashion Industry: The Role of Digital Innovation." *International Journal of Productivity and Performance Management* 71, no. 3: 870–895. https://doi.org/10.1108/IJPPM-12-2020-0683.

Iannone, B., and G. Caruso. 2023. ""Sustainab-Lization": Sustainability and Digitalization as a Strategy for Resilience in the Coffee Sector." *Sustainability* 15, no. 6: 4893. https://doi.org/10.3390/su15064893.

Illankoon, C., and S. C. Vithanage. 2023. "Closing the Loop in the Construction Industry: A Systematic Literature Review on the Development of Circular Economy." *Journal of Building Engineering* 76: 107362. https://doi.org/10.1016/j.jobe.2023.107362.

Jabbour, A. B. L. d. S., F. C. d. O. Frascareli, E. D. R. Santibanez Gonzalez, and C. J. C. Jabbour. 2021. "Are Food Supply Chains Taking Advantage of the Circular Economy? A Research Agenda on Tackling Food Waste Based on Industry 4.0 Technologies." *Production Planning and Control* 34, no. 10: 967–983. https://doi.org/10.1080/09537287.2021. 1980903.

Jabbour, C. J. C., P. D. C. Fiorini, C. W. Y. Wong, et al. 2020. "First-Mover Firms in the Transition Towards the Sharing Economy in Metallic Natural Resource-Intensive Industries: Implications for the Circular Economy and Emerging Industry 4.0 Technologies." *Resources Policy* 66: 101596. https://doi.org/10.1016/j.resourpol.2020.101596.

Jabłoński, M. 2018. "Value Migration to the Sustainable Business Models of Digital Economy Companies on the Capital Market." *Sustainability* 10, no. 9: 3113. https://doi.org/10.3390/su10093113.

Johnson, M. W., C. M. Christensen, and H. Kagermann. 2008. "Reinventing Your Business Model." *Harvard Business Review* 86, no. 12: 50–59.

Kanda, W., M. Klofsten, D. Bienkowska, D. B. Audretsch, and M. Geissdoerfer. 2025. "Orchestration in Mature Entrepreneurial Ecosystems Towards a Circular Economy: A Dynamic Capabilities Approach." *Business Strategy and the Environment* 34, no. 4: 4747–4765. https://doi.org/10.1002/bse.4229.

Karami, M., and R. Madlener. 2021. "Business Model Innovation for the Energy Market: Joint Value Creation for Electricity Retailers and Their Customers." *Energy Research & Social Science* 73: 101878. https://doi.org/10.1016/j.erss.2020.101878.

Karimi, J., and Z. Walter. 2021. "The Role of Entrepreneurial Agility in Digital Entrepreneurship and Creating Value in Response to Digital Disruption in the Newspaper Industry." *Sustainability* 13, no. 5: 2741. https://doi.org/10.3390/su13052741.

Kerin, M., and D. T. Pham. 2020. "Smart Remanufacturing: A Review and Research Framework." *Journal of Manufacturing Technology Management* 31, no. 6: 1205–1235. https://doi.org/10.1108/JMTM-06-2019-0205.

Khan, I. S., M. O. Ahmad, and J. Majava. 2021. "Industry 4.0 and Sustainable Development: A Systematic Mapping of Triple Bottom Line, Circular Economy and Sustainable Business Models Perspectives." *Journal of Cleaner Production* 297: 126655. https://doi.org/10.1016/j.jclepro.2021.126655.

Khan, I. S., M. O. Ahmad, and J. Majava. 2023. "Industry 4.0 Innovations and Their Implications: An Evaluation From Sustainable Development Perspective." *Journal of Cleaner Production* 405: 137006. https://doi.org/10.1016/j.jclepro.2023.137006.

Khan, S. A. R., A. Z. Piprani, and Z. Yu. 2022. "Digital Technology and Circular Economy Practices: Future of Supply Chains." *Operations Management Research* 15: 676–688. https://doi.org/10.1007/s12063-021-00247-3.

Khan, S. A. R., A. S. A. Shah, Z. Yu, and M. Tanveer. 2022. "A Systematic Literature Review on Circular Economy Practices: Challenges, Opportunities and Future Trends." *Journal of Entrepreneurship in Emerging Economies* 14, no. 5: 754–795. https://doi.org/10.1108/JEEE-09-2021-0349.

Khan, S. A. R., H. M. Zia-ul-haq, M. Umar, and Z. Yu. 2021. "Digital Technology and Circular Economy Practices: An Strategy to Improve Organizational Performance." *Business Strategy & Development* 4, no. 4: 482–490. https://doi.org/10.1002/bsd2.176.

Kim, C. H., A. T. Kuah, and K. Thirumaran. 2022. "Morphology for Circular Economy Business Models in the Electrical and Electronic Equipment Sector of Singapore and South Korea: Findings, Implications, and Future Agenda." *Sustainable Production and Consumption* 30: 829–850. https://doi.org/10.1016/j.spc.2022.01.006.

Kim, S.-S. 2021. "Sustainable Growth Variables by Industry Sectors and Their Influence on Changes in Business Models of SMEs in the Era of Digital Transformation." *Sustainability* 13, no. 13: 7114. https://doi.org/10.3390/su13137114.

Klein, S. P., P. Spieth, and S. Heidenreich. 2021. "Facilitating Business Model Innovation: The Influence of Sustainability and the Mediating Role of Strategic Orientations." *Journal of Product Innovation Management* 38, no. 2: 271–288. https://doi.org/10.1111/jpim.12563.

Kluczek, A., B. Gladysz, A. Buczacki, K. Krystosiak, K. Ejsmont, and E. Palmer. 2023. "Aligning Sustainable Development Goals With Industry 4.0 for the Design of Business Model for Printing and Packaging Companies." *Packaging Technology and Science* 36, no. 4: 307–325. https://doi.org/10.1002/pts.2713.

Konietzko, J., N. M. P. Bocken, and E. J. Hultink. 2020. "A Tool to Analyze, Ideate and Develop Circular Innovation Ecosystems." *Sustainability* 12, no. 1: 417. https://doi.org/10.3390/su12010417.

Kraus, S., M. Breier, and S. Dasí-Rodríguez. 2020. "The Art of Crafting A Systematic Literature Review in Entrepreneurship Research." *International Entrepreneurship and Management Journal* 16, no. 3: 1023–1042. https://doi.org/10.1007/s11365-020-00635-4.

Kubíček, A., and O. Machek. 2019. "Gender-Related Factors in Family Business Succession: A Systematic Literature Review." *Review of Managerial Science* 13, no. 5: 963–1002. https://doi.org/10.1007/s11846-018-0278-z.

Kumar, N. M., and S. S. Chopra. 2022. "Leveraging Blockchain and Smart Contract Technologies to Overcome Circular Economy Implementation Challenges." *Sustainability* 14, no. 15: 9492. https://doi.org/10.3390/su14159492.

Kumar, S., R. D. Raut, E. Aktas, B. E. Narkhede, and V. V. Gedam. 2022. "Barriers to Adoption of Industry 4.0 and Sustainability: A Case Study With SMEs." *International Journal of Computer Integrated Manufacturing* 36: 1–21. https://doi.org/10.1080/0951192X.2022. 2128217.

Laasch, O. 2018. "Beyond the Purely Commercial Business Model: Organizational Value Logics and the Heterogeneity of Sustainability Business Models." *Long Range Planning* 51, no. 1: 158–183. https://doi.org/10.1016/j.lrp.2017.09.002.

Langley, D. J. 2022. "Digital Product-Service Systems: The Role of Data in the Transition to Servitization Business Models." *Sustainability* 14, no. 3: 1303. https://doi.org/10.3390/su14031303.

Lantano, F., A. M. Petruzzelli, and U. Panniello. 2022. "Business Model Innovation in Video-Game Consoles to Face the Threats of Mobile Gaming: Evidence From the Case of Sony PlayStation." *Technological Forecasting and Social Change* 174: 121210. https://doi.org/10.1016/j.techfore.2021.121210.

Lardo, A., D. Mancini, N. Paoloni, and G. Russo. 2020. "The Perspective of Capability Providers in Creating a Sustainable I4.0 Environment." *Management Decision* 58, no. 8: 1759–1777. https://doi.org/10.1108/MD-09-2019-1333.

Latifi, M.-A., S. Nikou, and H. Bouwman. 2021. "Business Model Innovation and Firm Performance: Exploring Causal Mechanisms in SMEs." *Technovation* 107: 102274. https://doi.org/10.1016/j.technovation.2021.102274.

Lee, C.-H., C.-L. Liu, A. J. Trappey, J. P. Mo, and K. C. Desouza. 2021. "Understanding Digital Transformation in Advanced Manufacturing and Engineering: A Bibliometric Analysis, Topic Modeling and Research Trend Discovery." *Advanced Engineering Informatics* 50: 101428. https://doi.org/10.1016/j.aei.2021.101428.

Li, L., F. Su, W. Zhang, and J.-Y. Mao. 2018. "Digital Transformation by SME Entrepreneurs: A Capability Perspective." *Information Systems Journal* 28, no. 6: 1129–1157. https://doi.org/10.1111/isj.12153.

Li, X., J. Cao, Z. Liu, and X. Luo. 2020. "Sustainable Business Model Based on Digital Twin Platform Network: The Inspiration From Haier's Case Study in China." *Sustainability* 12, no. 3: 936. https://doi.org/10.3390/su12030936.

Li, X., L. Zhang, and J. Cao. 2023. "Research on the Mechanism of Sustainable Business Model Innovation Driven by the Digital Platform Ecosystem." *Journal of Engineering and Technology Management* 68: 101738. https://doi.org/10.1016/j.jengtecman.2023.101738.

Liang, Y., C. Zhao, and M.-J. Lee. 2023. "Institutional Pressures on Sustainability and Green Performance: The Mediating Role of Digital Business Model Innovation." *Sustainability* 15, no. 19: 14258. https://doi.org/10.3390/su151914258.

Liu, J., M. U. Quddoos, M. H. Akhtar, M. S. Amin, M. Tariq, and A. Lamar. 2022. "Digital Technologies and Circular Economy in Supply

Chain Management: In the Era of COVID-19 Pandemic." *Operations Management Research* 15: 326–341. https://doi.org/10.1007/s12063-021-00227-7.

Liu, Q., A. H. Trevisan, M. Yang, and J. Mascarenhas. 2022. "A Framework of Digital Technologies for the Circular Economy: Digital Functions and Mechanisms." *Business Strategy and the Environment* 31, no. 5: 2171–2192. https://doi.org/10.1002/bse.3015.

Loock, M. 2020. "Unlocking the Value of Digitalization for the European Energy Transition: A Typology of Innovative Business Models." *Energy Research & Social Science* 69: 101740. https://doi.org/10.1016/j.erss. 2020.101740.

López-Concepción, A., A. I. Gil-Lacruz, I. Saz-Gil, M.-Á. Garcia-Madurga, and I. Sánchez-Medalón. 2024. "What Are the Factors That Most Influence the Formation of Workers' Labor Values in Order to Achieve Sustainable Development in Latin America?" *Business Strategy and the Environment* 33, no. 6: 5269–5283. https://doi.org/10.1002/bse.3737.

Madanaguli, A., D. Sjödin, V. Parida, and P. Mikalef. 2024. "Artificial Intelligence Capabilities for Circular Business Models: Research Synthesis and Future Agenda." *Technological Forecasting and Social Change* 200: 123189. https://doi.org/10.1016/j.techfore.2023.123189.

Mahajan, R., S. Kumar, W. M. Lim, and M. Sareen. 2024. "The Role of Business and Management in Driving the Sustainable Development Goals (SDGs): Current Insights and Future Directions From a Systematic Review." *Business Strategy and the Environment* 33, no. 5: 4493–4529. https://doi.org/10.1002/bse.3712.

Makadok, R., R. Burton, and J. Barney. 2018. "A Practical Guide for Making Theory Contributions in Strategic Management." *Strategic Management Journal* 39, no. 6: 1530–1545. https://doi.org/10.1002/smj.2789.

Manea, D.-I., N. Istudor, V. Dinu, and D.-M. Paraschiv. 2021. "Circular Economy and Innovative Entrepreneurship, Prerequisites for Social Progress." *Journal of Business Economics and Management* 22, no. 5: 1342–1359. https://doi.org/10.3846/jbem.2021.15547.

Martin, M., and M. J. Bustamante. 2021. "Growing-Service Systems: New Business Models for Modular Urban-Vertical Farming." *Frontiers in Sustainable Food Systems* 5: 787281. https://doi.org/10.3389/fsufs. 2021.787281.

Martín, M. G., A. P. Álvarez, J. Ordieres-Meré, J. Villalba-Díez, and G. Morales-Alonso. 2021. "New Business Models From Prescriptive Maintenance Strategies Aligned With Sustainable Development Goals." *Sustainability* 13, no. 1: 216. https://doi.org/10.3390/su130 10216.

Martínez-Olvera, C., and J. Mora-Vargas. 2019. "A Comprehensive Framework for the Analysis of Industry 4.0 Value Domains." *Sustainability* 11, no. 10: 2960. https://doi.org/10.3390/su11102960.

Martín-Martín, A., E. Orduna-Malea, M. Thelwall, and E. Delgado López-Cózar. 2018. "Google Scholar, Web of Science, and Scopus: A Systematic Comparison of Citations in 252 Subject Categories." *Journal of Informetrics* 12, no. 4: 1160–1177. https://doi.org/10.1016/j.joi.2018.09.002.

Massa, L., and C. L. Tucci. 2013. "Business Model Innovation." In *The Oxford Handbook of Innovation Management*, edited by M. Dodgson, D. M. Gann, and N. Phillips, 420–441. OUP Oxford.

Massaro, M., F. Dal Mas, C. J. Chiappetta Jabbour, and C. Bagnoli. 2020. "Crypto-Economy and New Sustainable Business Models: Reflections and Projections Using a Case Study Analysis." *Corporate Social Responsibility and Environmental Management* 27, no. 5: 2150–2160. https://doi.org/10.1002/csr.1954.

Matarazzo, M., L. Penco, G. Profumo, and R. Quaglia. 2021. "Digital Transformation and Customer Value Creation in Made in Italy SMEs: A Dynamic Capabilities Perspective." *Journal of Business Research* 123: 642–656. https://doi.org/10.1016/j.jbusres.2020.10.033.

Mercuri, F., G. Della Corte, and F. Ricci. 2021. "Blockchain Technology and Sustainable Business Models: A Case Study of Devoleum." *Sustainability* 13, no. 10: 5619. https://doi.org/10.3390/su13105619.

Minatogawa, V. L. F., M. M. V. Franco, I. S. Rampasso, et al. 2020. "Operationalizing Business Model Innovation Through Big Data Analytics for Sustainable Organizations." *Sustainability* 12, no. 1: 277. https://doi.org/10.3390/su12010277.

Mondal, S., S. Singh, and H. Gupta. 2025. "Dynamic Capabilities and Green Strategy in Green Entrepreneurship and Circular Economy: A Study." *Business Strategy and the Environment*, Early View. https://doi.org/10.1002/bse.70030.

Morea, D., S. Fortunati, F. Cappa, and R. Oriani. 2023. "Corporate Social Responsibility as a Catalyst of Circular Economy? A Case Study Perspective in Agri-Food." *Journal of Knowledge Management* 27, no. 7: 1787–1809. https://doi.org/10.1108/JKM-06-2022-0451.

Mukherjee, D., W. M. Lim, S. Kumar, and N. Donthu. 2022. "Guidelines for Advancing Theory and Practice Through Bibliometric Research." *Journal of Business Research* 148: 101–115. https://doi.org/10.1016/j.jbusres.2022.04.042.

Mukherjee, M., and J. Wood. 2021. "Consolidating Unorganised Retail Businesses Through Digital Platforms: Implications for Achieving the UN Sustainable Development Goals." *Sustainability* 13, no. 21: 12031. https://doi.org/10.3390/su132112031.

Müller, J. M., O. Buliga, and K.-I. Voigt. 2018. "Fortune Favors the Prepared: How Smes Approach Business Model Innovations in Industry 4.0." *Technological Forecasting and Social Change* 132: 2–17. https://doi.org/10.1016/j.techfore.2017.12.019.

Müller, J. M., and S. Däschle. 2018. "Business Model Innovation of Industry 4.0 Solution Providers Toward Customer Process Innovation." *Processes* 6, no. 12: 260. https://doi.org/10.3390/pr6120260.

Murray, A., K. Skene, and K. Haynes. 2017. "The Circular Economy: An Interdisciplinary Exploration of the Concept and Application in a Global Context." *Journal of Business Ethics* 140, no. 3: 369–380. https://doi.org/10.1007/s10551-015-2693-2.

Mustak, M., and L. Plé. 2020. "A Critical Analysis of Service Ecosystems Research: Rethinking Its Premises to Move Forward." *Journal of Services Marketing* 34, no. 3: 399–413. https://doi.org/10.1108/JSM-02-2019-0084.

Narayan, R., and A. Tidström. 2020. "Tokenizing Coopetition in a Blockchain for a Transition to Circular Economy." *Journal of Cleaner Production* 263: 121437. https://doi.org/10.1016/j.jclepro.2020.121437.

Nascimento, D. L. M., V. Alencastro, O. L. G. Quelhas, et al. 2019. "Exploring Industry 4.0 Technologies to Enable Circular Economy Practices in a Manufacturing Context." *Journal of Manufacturing Technology Management* 30, no. 3: 607–627. https://doi.org/10.1108/JMTM-03-2018-0071.

Paiola, M., F. Schiavone, R. Grandinetti, and J. Chen. 2021. "Digital Servitization and Sustainability Through Networking: Some Evidences From IoT-Based Business Models." *Journal of Business Research* 132: 507–516. https://doi.org/10.1016/j.jbusres.2021.04.047.

Palmié, M., A. Aebersold, P. Oghazi, N. Pashkevich, and O. Gassmann. 2024. "Digital-Sustainable Business Models: Definition, Systematic Literature Review, Integrative Framework and Research Agenda From a Strategic Management Perspective." *International Journal of Management Reviews* 27: 346–374. https://doi.org/10.1111/ijmr.12380.

Panapanaan, V., T. Bruce, T. Virkki-Hatakka, and L. Linnanen. 2016. "Analysis of Shared and Sustainable Value Creation of Companies Providing Energy Solutions at the Base of the Pyramid (BoP)." *Business Strategy and the Environment* 25, no. 5: 293–309. https://doi.org/10.1002/bse.1866

Parida, V., and J. Wincent. 2019. "Why and How to Compete Through Sustainability: A Review and Outline of Trends Influencing Firm and Network-Level Transformation." *International Entrepreneurship and Management Journal* 15, no. 1: 1–19. https://doi.org/10.1007/s11365-019-00558-9.

Pieroni, M. P. P., T. C. McAloone, and D. C. A. Pigosso. 2019. "Business Model Innovation for Circular Economy: Integrating Literature and Practice Into a Conceptual Process Model." *Proceedings of the Design Society: International Conference on Engineering Design* 1, no. 1: 2517–2526. https://doi.org/10.1017/dsi.2019.258.

Pieroni, M. P. P., T. C. McAloone, and D. C. A. Pigosso. 2021. "Developing a Process Model for Circular Economy Business Model Innovation Within Manufacturing Companies." *Journal of Cleaner Production* 299: 126785. https://doi.org/10.1016/j.jclepro.2021.126785.

Pirola, F., X. Boucher, S. Wiesner, and G. Pezzotta. 2020. "Digital Technologies in Product-Service Systems: A Literature Review and a Research Agenda." *Computers in Industry* 123: 103301. https://doi.org/10.1016/j.compind.2020.103301.

Piscicelli, L., G. D. Ludden, and T. Cooper. 2018. "What Makes a Sustainable Business Model Successful? An Empirical Comparison of Two Peer-To-Peer Goods-Sharing Platforms." *Journal of Cleaner Production* 172: 4580–4591. https://doi.org/10.1016/j.jclepro.2017. 08.170.

Pizzi, S., R. Leopizzi, and A. Caputo. 2022. "The Enablers in the Relationship Between Entrepreneurial Ecosystems and the Circular Economy: The Case of Circularity.com." *Management of Environmental Quality: An International Journal* 33, no. 1: 26–43. https://doi.org/10.1108/MEQ-01-2021-0011.

Podsakoff, P. M., S. B. MacKenzie, D. G. Bachrach, and N. P. Podsakoff. 2005. "The Influence of Management Journals in the 1980s and 1990s." *Strategic Management Journal* 26, no. 5: 473–488. https://doi.org/10.1002/smj.454.

Porter, M. E., and M. R. Kramer. 2006. "Strategy & Society: The Link Between Competitive Advantage and Corporate Social Responsibility." *Harvard Business Review* 84, no. 12: 78–92.

Porter, M. E., and M. R. Kramer. 2011. "Creating Shared Value." *Harvard Business Review* 89, no. 1/2: 62–77.

Principato, L., C. Trevisan, M. Formentini, L. Secondi, C. Comis, and C. A. Pratesi. 2023. "The Influence of Sustainability and Digitalisation on Business Model Innovation: The Case of a Multi-Sided Platform for Food Surplus Redistribution." *Industrial Marketing Management* 115: 156–171. https://doi.org/10.1016/j.indmarman.2023.09.001.

Ramaswamy, V., and K. Ozcan. 2016. "Brand Value Co-Creation in a Digitalized World: An Integrative Framework and Research Implications." *International Journal of Research in Marketing* 33, no. 1: 93–106. https://doi.org/10.1016/ji.jiresmar.2015.07.001.

Ramaswamy, V., and K. Ozcan. 2018. "What Is Co-Creation? An Interactional Creation Framework and Its Implications for Value Creation." *Journal of Business Research* 84: 196–205. https://doi.org/10.1016/j.jbusres.2017.11.027.

Ranta, V., L. Aarikka-Stenroos, and J.-M. Väisänen. 2021. "Digital Technologies Catalyzing Business Model Innovation for Circular Economy: Multiple Case Study." *Resources, Conservation and Recycling* 164: 105155. https://doi.org/10.1016/j.resconrec.2020.105155.

Rashed, F., and P. Drews. 2021. "Pathways of Data-Driven Business Model Design and Realization: A Qualitative Research Study." In *Proceedings of the 54th Hawaii International Conference on System Sciences*, 5676–5685. University of Hawai'i at Manoa, Hamilton Library.

Remané, G., A. Hanelt, J. F. A. N. Tesch, and L. M. Kolbe. 2017. "The Business Model Pattern Database: A Tool for Systematic Business Model Innovation." *International Journal of Innovation Management* 21, no. 1: 1750004. https://doi.org/10.1142/S1363919617500049.

Reuter, E. 2022. "Hybrid Business Models in the Sharing Economy: The Role of Business Model Design for Managing the Environmental Paradox." Business Strategy and the Environment 31, no. 2: 603-618. https://doi.org/10.1002/bse.2939.

Ringvold, K., T. Saebi, and N. Foss. 2022. "Developing Sustainable Business Models: A Microfoundational Perspective." *Organization & Environment* 36, no. 2: 315–348. https://doi.org/10.1177/1086026622 1117250.

Rodrigues Dias, V. M., D. Jugend, P. de Camargo Fiorini, C. d. A. Razzino, and M. A. Paula Pinheiro. 2022. "Possibilities for Applying the Circular Economy in the Aerospace Industry: Practices, Opportunities and Challenges." *Journal of Air Transport Management* 102: 102227. https://doi.org/10.1016/j.jairtraman.2022.102227.

Rodrigues, J. C. 2022. "Business Models for the Digital Transformation of Audiovisual Archives." *International Journal of Entrepreneurial Behavior and Research* 28, no. 8: 1975–1999. https://doi.org/10.1108/IJEBR-01-2021-0073.

Romero, C. A. T., D. F. Castro, J. H. Ortiz, O. I. Khalaf, and M. A. Vargas. 2021. "Synergy Between Circular Economy and Industry 4.0: A Literature Review." *Sustainability* 13, no. 8: 4331. https://doi.org/10.3390/su13084331.

Sadeghi, K., J. Kim, and J. Seo. 2022. "Packaging 4.0: The Threshold of an Intelligent Approach." *Comprehensive Reviews in Food Science and Food Safety* 21, no. 3: 2615–2638. https://doi.org/10.1111/1541-4337. 12932.

Sahoo, S., and S. K. Jakhar. 2023. "Industry 4.0 Deployment for Circular Economy Performance—Understanding the Role of Green Procurement and Remanufacturing Activities." *Business Strategy and the Environment* 33, no. 2: 1144–1160. https://doi.org/10.1002/bse.3542.

Schwanholz, J., and S. Leipold. 2020. "Sharing for a Circular Economy? An Analysis of Digital Sharing Platforms' Principles and Business Models." *Journal of Cleaner Production* 269: 122327. https://doi.org/10.1016/j.jclepro.2020.122327.

Shashi, R. Singh, P. Centobelli, and R. Cerchione. 2018. "Evaluating Partnerships in Sustainability-Oriented Food Supply Chain: A Five-Stage Performance Measurement Model." *Energies* 11, no. 12: 3473. https://doi.org/10.3390/en11123473.

Singh, S., C. Babbitt, G. Gaustad, et al. 2021. "Thematic Exploration of Sectoral and Cross-Cutting Challenges to Circular Economy Implementation." *Clean Technologies and Environmental Policy* 23, no. 3: 915–936. https://doi.org/10.1007/s10098-020-02016-5.

Singh, V., J. Singh, and N. Singh. 2025. "Fuelling Organisational Capabilities for Sustainable Innovation Disruption: Performing to Be a Pioneer." *Business Strategy and the Environment*, Early View. https://doi.org/10.1002/bse.70013.

Singh, V. K., P. Singh, M. Karmakar, J. Leta, and P. Mayr. 2021. "The Journal Coverage of Web of Science, Scopus and Dimensions: A Comparative Analysis." *Scientometrics* 126, no. 6: 5113–5142. https://doi.org/10.1007/s11192-021-03948-5.

Snihur, Y., and G. Markman. 2023. "Business Model Research: Past, Present, and Future." *Journal of Management Studies* 60: e1–e14. https://doi.org/10.1111/joms.12928.

Sosna, M., R. N. Trevinyo-Rodríguez, and S. R. Velamuri. 2010. "Business Model Innovation Through Trial-And-Error Learning." *Long Range Planning* 43, no. 2–3: 383–407. https://doi.org/10.1016/j.lrp.2010. 02.003.

Spieth, P., D. Schneckenberg, and J. E. Ricart. 2014. "Business Model Innovation - State of the Art and Future Challenges for the Field." *R and D Management* 44, no. 3: 237–247. https://doi.org/10.1111/radm. 12071.

Steinhauser, S. 2019. "Network-Based Business Models, the Institutional Environment, and the Diffusion of Digital Innovations: Case Studies of Telemedicine Networks in Germany." Schmalenbach

Business Review 71, no. 3: 343-383. https://doi.org/10.1007/s41464-019-00076-9.

Strandhagen, J. O., L. R. Vallandingham, G. Fragapane, J. W. Strandhagen, A. B. H. Stangeland, and N. Sharma. 2017. "Logistics 4.0 and Emerging Sustainable Business Models." *Advances in Manufacturing* 5, no. 4: 359–369. https://doi.org/10.1007/s40436-017-0198-1.

Stubbs, W., and C. Cocklin. 2008a. "Conceptualizing a "Sustainability Business Model"." *Organization & Environment* 21, no. 2: 103–127. https://doi.org/10.1177/1086026608318042.

Stubbs, W., and C. Cocklin. 2008b. "An Ecological Modernist Interpretation of Sustainability: The Case of Interface Inc." *Business Strategy and the Environment* 17, no. 8: 512–523. https://doi.org/10. 1002/bse.544.

Teece, D. J. 2007. "Explicating Dynamic Capabilities: The Nature and Microfoundations of (Sustainable) Enterprise Performance." *Strategic Management Journal* 28, no. 13: 1319–1350. https://doi.org/10.1002/smj.640.

Teece, D. J. 2010. "Business Models, Business Strategy and Innovation." Long Range Planning 43, no. 2–3: 172–194. https://doi.org/10.1016/j.lrp. 2009.07.003.

Teece, D. J. 2014. "The Foundations of Enterprise Performance: Dynamic and Ordinary Capabilities in an (Economic) Theory of Firms." *Academy of Management Perspectives* 28, no. 4: 328–352. https://doi.org/10.5465/amp.2013.0116.

Teece, D. J. 2016. "Dynamic Capabilities and Entrepreneurial Management in Large Organizations: Toward a Theory of the (Entrepreneurial) Firm." *European Economic Review* 86: 202–216. https://doi.org/10.1016/j.euroecorev.2015.11.006.

Teece, D. J. 2018. "Business Models and Dynamic Capabilities." *Long Range Planning* 51, no. 1: 40–49. https://doi.org/10.1016/j.lrp.2017. 06.007.

Teece, D. J., and G. Linden. 2017. "Business Models, Value Capture, and the Digital Enterprise." *Journal of Organization Design* 6, no. 1: 1–14. https://doi.org/10.1186/s41469-017-0018-x.

Teixeira, J. E., and A. T. Tavares-Lehmann. 2023. "Industry 4.0: The Future of Manufacturing From the Perspective of Business and Economics: A Bibliometric Literature Review." *Competitiveness Review* 33, no. 2: 458–482. https://doi.org/10.1108/CR-07-2022-0091.

Thomson, L., A. Kamalaldin, D. Sjödin, and V. Parida. 2022. "A Maturity Framework for Autonomous Solutions in Manufacturing Firms: The Interplay of Technology, Ecosystem, and Business Model." *International Entrepreneurship and Management Journal* 18, no. 1:125–152. https://doi.org/10.1007/s11365-020-00717-3.

Tiscini, R., S. Testarmata, M. Ciaburri, and E. Ferrari. 2020. "The Blockchain as a Sustainable Business Model Innovation." *Management Decision* 58, no. 8: 1621–1642. https://doi.org/10.1108/MD-09-2019-1281.

Tohānean, D., A. I. Buzatu, C. A. Baba, and B. Georgescu. 2020. "Business Model Innovation Through the Use of Digital Technologies: Managing Risks and Creating Sustainability." *Amfiteatru Economic* 22, no. 55: 758–774.

Torrent-Sellens, J., M. Enache-Zegheru, and P. Ficapal-Cusí. 2025. "Promoting the European Sustainable Firm: How Economic, Social, and Green Innovation and the AI-Based Technologies Create Pathways of Social and Environmental Sustainability." *Business Strategy and the Environment*, Early View. https://doi.org/10.1002/bse.70068.

Tortora, D., R. Chierici, M. Farina Briamonte, and R. Tiscini. 2021. "'I Digitize so I Exist'. Searching for Critical Capabilities Affecting Firms' Digital Innovation." *Journal of Business Research* 129: 193–204. https://doi.org/10.1016/j.jbusres.2021.02.048.

Toth-Peter, A., R. Torres de Oliveira, S. Mathews, L. Barner, and S. Figueira. 2023. "Industry 4.0 as an Enabler in Transitioning to Circular

Business Models: A Systematic Literature Review." *Journal of Cleaner Production* 393: 136284. https://doi.org/10.1016/j.jclepro.2023.136284.

Trabucchi, D., and T. Buganza. 2019. "Data-Driven Innovation: Switching the Perspective on Big Data." *European Journal of Innovation Management* 22, no. 1: 23–40. https://doi.org/10.1108/EJIM-01-2018-0017.

Tranfield, D., D. Denyer, and P. Smart. 2003. "Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review." *British Journal of Management* 14, no. 3: 207–222. https://doi.org/10.1111/1467-8551.00375.

Turner, C., M. Moreno, L. Mondini, et al. 2019. "Sustainable Production in a Circular Economy: A Business Model for Re-Distributed Manufacturing." *Sustainability* 11, no. 16: 4291. https://doi.org/10.3390/su11164291.

N. J. Van Eck, and L. Waltman. 2022. VOSviewer Manual: Manual for VOSviewer Version 1.6.18.

van Eechoud, T., and A. Ganzaroli. 2023. "Exploring the Role of Dynamic Capabilities in Digital Circular Business Model Innovation: Results From a Grounded Systematic Inductive Analysis of 7 Case Studies." *Journal of Cleaner Production* 401: 136665. https://doi.org/10.1016/j.jclepro.2023.136665.

Verhoef, P. C., T. Broekhuizen, Y. Bart, et al. 2021. "Digital Transformation: A Multidisciplinary Reflection and Research Agenda." *Journal of Business Research* 122: 889–901. https://doi.org/10.1016/j.jbusres.2019.09.022.

Vidmar, D., M. Marolt, and A. Pucihar. 2021. "Information Technology for Business Sustainability: A Literature Review With Automated Content Analysis." *Sustainability* 13, no. 3: 1192. https://doi.org/10.3390/su13031192.

Vrontis, D., R. Chaudhuri, and S. Chatterjee. 2022. "Adoption of Digital Technologies by SMEs for Sustainability and Value Creation: Moderating Role of Entrepreneurial Orientation." *Sustainability* 14, no. 13: 7949. https://doi.org/10.3390/su14137949.

Wang, S., and H. Zhang. 2025. "Leveraging Generative Artificial Intelligence for Sustainable Business Model Innovation in Production Systems." *International Journal of Production Research*, Early View: 1–26. https://doi.org/10.1080/00207543.2025.2485318.

Wardhana, V. D., I. Gautama So, D. L. Warganegara, and M. Hamsal. 2023. "Mitigating Disruption Through Adaptive Organization and Organization Learning to Create a Transformation Business Model." *Journal of Business & Industrial Marketing* 38, no. 9: 1822–1836. https://doi.org/10.1108/JBIM-05-2022-0208.

Warner, K. S., and M. Wäger. 2019. "Building Dynamic Capabilities for Digital Transformation: An Ongoing Process of Strategic Renewal." *Long Range Planning* 52, no. 3: 326–349. https://doi.org/10.1016/j.lrp. 2018.12.001.

Wit, B., P. Dresler, and A. Surma-Syta. 2021. "Innovation in Start-Up Business Model in Energy-Saving Solutions for Sustainable Development." *Energies* 14, no. 12: 3583. https://doi.org/10.3390/en141 23583.

Yousaf, Z., M. Radulescu, C. I. Sinisi, L. Serbanescu, and L. M. Păunescu. 2021. "Towards Sustainable Digital Innovation of SMEs From the Developing Countries in the Context of the Digital Economy and Frugal Environment." *Sustainability* 13, no. 10: 5715. https://doi.org/10.3390/su13105715.

Yrjölä, S., P. Ahokangas, and M. Matinmikko-Blue. 2020. "Sustainability as a Challenge and Driver for Novel Ecosystemic 6G Business Scenarios." *Sustainability* 12, no. 21: 8951. https://doi.org/10.3390/su12218951.

Zheng, L., Y. Dong, J. Chen, Y. Li, W. Li, and M. Su. 2022. "Impact of Crisis on Sustainable Business Model Innovation: The Role of Technology Innovation." *Sustainability* 14, no. 18: 11596. https://doi.org/10.3390/su141811596.

Zheng, P., Z. Wang, C.-H. Chen, and L. Pheng Khoo. 2019. "A Survey of Smart Product-Service Systems: Key Aspects, Challenges and Future Perspectives." *Advanced Engineering Informatics* 42: 100973. https://doi.org/10.1016/j.aei.2019.100973.

Zott, C., and R. Amit. 2013. "The Business Model: A Theoretically Anchored Robust Construct for Strategic Analysis." *Strategic Organization* 11, no. 4: 403–411. https://doi.org/10.1177/1476127013 510466.

Zott, C., R. Amit, and L. Massa. 2011. "The Business Model: Recent Developments and Future Research." *Journal of Management* 37, no. 4: 1019–1042. https://doi.org/10.1177/0149206311406265.

Zupic, I., and T. Čater. 2014. "Bibliometric Methods in Management and Organization." *Organizational Research Methods* 18, no. 3: 429–472. https://doi.org/10.1177/1094428114562629.

Appendix

 TABLE A1
 Digital sustainability and digital platforms (red cluster).

Author(s) (year)	Journal	Number of citations Google Scholar
Acciarini et al. (2022)	Journal of Strategy & Management	71
Amaral and Orsato (2023)	Business Strategy & the Environment	16
Andersen et al. (2022)	Creativity & Innovation Management	46
Andreassen et al. (2018)	Journal of Service Management	221
Autio (2017)	Strategic Entrepreneurship Journal	186
Bähr and Fliaster (2022)	Business Strategy & the Environment	10
Baranauskas and Raišienė (2022)	Sustainability	29
Bencsik et al. (2023)	Journal of Business Research	9
Bican and Brem (2020)	Sustainability	362
Biloslavo et al. (2020)	Management Decision	66
Böttcher et al. (2023)	Information Systems Journal	9
Brenner (2018)	Sustainability	129
Chen et al. (2018)	Sustainability	43
Di Vaio et al. (2020)	Journal of Business Research	574
Fuerst et al. (2023)	Sustainability	4
Gao and Li (2020)	Journal of Cleaner Production	61
García-Muiña et al. (2020)	Sustainability	148
Gregori and Holzmann (2020)	Journal of Cleaner Production	215
Gregori et al. (2023)	Business Strategy and the Environment	0
Haftor et al. (2021)	Journal of Business Research	32
Hajiheydari et al. (2022)	Foresight	5
Hanelt et al. (2017)	Information Systems Journal	140
Holzmann et al. (2020)	Technological Forecasting & Social Change	42
Holzmann and Gregori (2023)	International Journal of Information Management	46
Iannone and Caruso (2023)	Sustainability	6
Jabłoński (2018)	Sustainability	54
Karami and Madlener (2021)	Energy Research & Social Science	32
Karimi and Walter (2021)	Sustainability	39
Kim (2021)	Sustainability	29
Li et al. (2020)	Sustainability	83
Li et al. (2023)	Journal of Engineering and Technology Management	12
Liang et al. (2023)	Sustainability	1
Loock (2020)	Energy Research & Social Science	82
Martin and Bustamante (2021)	Frontiers in Sustainable Food Systems	14
Martín et al. (2021)	Sustainability	34
Minatogawa et al. (2020)	Sustainability	60
Mukherjee and Wood (2021)	Sustainability	12

(Continues)

TABLE A1 | (Continued)

Author(s) (year)	Journal	Number of citations Google Scholar
Oroski and de Oroski and da Silva (2022)	Waste Management & Research	10
Parida and Wincent (2019)	International Entrepreneurship & Management Journal	173
Piscicelli et al. (2018)	Journal of Cleaner Production	182
Principato et al. (2023)	Industrial Marketing Management	0
Reuter (2022)	Business Strategy & the Environment	31
Ringvold et al. (2022)	Organization & Environment	12
Rodrigues (2022)	International Journal of Entrepreneurial Behavior & Research	7
Snihur and Markman (2023)	Journal of Management Studies	6
Steinhauser (2019)	Schmalenbach Business Review	23
Strandhagen et al. (2017)	Advances in Manufacturing	348
Tiscini et al. (2020)	Management Decision	88
Tohãnean et al. (2020)	Amfiteatru Economic	67
Vidmar et al. (2021)	Sustainability	32
Wardhana et al. (2023)	Journal of Business & Industrial Marketing	1
Wit et al. (2021)	Energies	15
Yousaf et al. (2021)	Sustainability	102
Yrjölä et al. (2020)	Sustainability	37
Zheng et al. (2022)	Sustainability	7

 TABLE A2
 Digital circular economy (green cluster).

Author(s) (year)	Journal	Number of citations Google Scholar
Ávila-Gutiérrez et al. (2020)	Sustainability	32
Benedettini (2022)	Sustainability	11
Bressanelli et al. (2020)	Resources	69
Bressanelli et al. (2022)	Sustainability	52
Burmaoglu et al. (2023)	International Journal of Productivity & Performance Management	19
Çetin et al. (2021)	Sustainability	159
Chauhan et al. (2021)	Benchmarking: An International Journal	110
Chauhan et al. (2022)	Technological Forecasting & Social Change	288
Colombi and D'Itria (2023)	Sustainability	8
Dantas et al. (2021)	Sustainable Production & Consumption	432
Del Vecchio et al. (2022)	EuroMed Journal of Business	49
García-Muiña et al. (2019)	Social Sciences	116
Giorgi et al. (2022)	Journal of Cleaner Production	120
Gräßler and Pottebaum (2021)	Applied Sciences	14
Huynh (2022)	International Journal of Productivity & Performance Management	73
Illankoon and Vithanage (2023)	Journal of Building Engineering	9
Jabbour et al. (2021)	Production Planning & Control	22
Jabbour et al. (2020)	Resources Policy	151
Khan, Piprani, et al. (2022)	Operations Management Research	68
Khan, Shah, et al. (2022)	Journal of Entrepreneurship in Emerging Economies	32
Khan, Zia-ul-haq, et al. (2021)	Business Strategy & Development	71
Kim et al. (2022)	Sustainable Production & Consumption	15
Konietzko et al. (2020)	Sustainability	158
Kumar and Chopra (2022)	Sustainability	33
Liu, Quddoos, et al. (2022)	Operations Management Research	15
Manea et al. (2021)	Journal of Business Economics & Management	39
Morea et al. (2023)	Journal of Knowledge Management	13
Narayan and Tidström (2020)	Journal of Cleaner Production	115
Nascimento et al. (2019)	Journal of Manufacturing Technology Management	752
Pizzi et al. (2022)	Management of Environmental Quality: An International Journal	32
Ranta et al. (2021)	Resources, Conservation & Recycling	331
Rodrigues Dias et al. (2022)	${\it Journal of Air TransportManagement}$	21
Schwanholz and Leipold (2020)	Journal of Cleaner Production	107
Singh, Babbitt, et al. (2021)	Clean Technologies & Environmental Policy	47
Toth-Peter et al. (2023)	Journal of Cleaner Production	23
Turner et al. (2019)	Sustainability	90

 TABLE A3
 Smart manufacturing and circular supply chains (blue cluster).

Author(s) (year)	Journal	Number of citations Google Scholar
Atif et al. (2021)	Sustainability	53
Awan et al. (2022)	Sustainability	80
Belhadi et al. (2022)	Supply Chain Management: An International Journal	101
Birkel et al. (2019)	Sustainability	432
Chatterjee et al. (2022)	Journal of Business Research	29
da Rocha et al. (2022)	Heliyon	24
Dahmani et al. (2021)	Journal of Cleaner Production	80
Di Vaio et al. (2023)	Journal of Enterprise Information Management	45
Esmaeilian et al. (2020)	Resources, Conservation & Recycling	591
Ferreira et al. (2023)	Journal of Cleaner Production	24
Fonseca et al. (2021)	Sustainability	170
Ghobakhloo (2020)	Journal of Cleaner Production	1419
Godina et al. (2020)	Sustainability	128
Gopal et al. (2024)	Journal of Science & Technology Policy Management	2
Kerin and Pham (2020)	Journal of Manufacturing Technology Management	84
Khan, Ahmad, et al. (2021)	Journal of Cleaner Production	302
Khan et al. (2023)	Journal of Cleaner Production	19
Kluczek et al. (2023)	Packaging Technology & Science	4
Kumar et al. (2022)	International Journal of Computer Integrated Manufacturing	18
Lardo et al. (2020)	Management Decision	58
Lee et al. (2021)	Advanced Engineering Informatics	75
Liu, Trevisan, et al. (2022)	Business Strategy & the Environment	120
Martínez-Olvera and Mora-Vargas (2019)	Sustainability	46
Sadeghi et al. (2022)	Comprehensive Reviews in Food Science & Food Safety	21
Romero et al. (2021)	Sustainability	82
Sahoo and Jakhar (2023)	Business Strategy and the Environment	0
Teixeira and Tavares-Lehmann (2023)	Competitiveness Review	7
Vrontis et al. (2022)	Sustainability	47

 TABLE A4
 Blockchain-enabled sustainability (yellow cluster).

Author(s) (year)	Journal	Number of citations Google Scholar
Calandra et al. (2022)	Business Strategy & the Environment	44
Cavazza et al. (2023)	British Food Journal	2
Dal Mas et al. (2020)	Management Decision	54
Massaro et al. (2020)	Corporate Social Responsibility & Environmental Management	59
Mercuri et al. (2021)	Sustainability	49

 TABLE A5
 Implementation (Smart and circular servitization (purple cluster)).

Author(s) (year)	Journal	Number of citations Google Scholar
Chin et al. (2022)	Technological Forecasting & Social Change	70
Diaz and Montalvo (2022)	Sustainability	10
Langley (2022)	Sustainability	40
Paiola et al. (2021)	Journal of Business Research	106
Pirola et al. (2020)	Computers in Industry	165
Thomson et al. (2022)	International Entrepreneurship & Management Journal	63
Zheng et al. (2019)	Advanced Engineering Informatics	298