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Abstract—The node-reliability polynomial nRelG(p) measures
the probability that a connected network remains connected
given that each node functions independently with probability p.
Computing node-reliability polynomials nRelG(p) exactly is NP-
hard. Here we propose efficient approximations. First, we develop
an accurate Monte Carlo simulation, which is accelerated by
incorporating a Laplace approximation that captures the poly-
nomial’s main behavior. We also introduce three degree-based
stochastic approximations (Laplace, arithmetic, and geometric),
which leverage the degree distribution to estimate nRelG(p)
with low complexity. Beyond approximations, our framework
addresses the reliability-based Global Robustness Improvement
Problem (k-GRIP) by selecting exactly k links to add to a
given graph so as to maximize its node reliability. A Greedy
Lowest-Degree Pairing Link Addition (Greedy-LD) Algorithm, is
proposed which offers a computationally efficient and practically
effective heuristic, particularly suitable for large-scale networks.

Index Terms—network robustness, node failure, probabilistic
graph, reliability polynomial

I. INTRODUCTION

RELIABILITY research in network science is concerned
with the estimation of the probability that the resid-

ual network remains operational after the failure of some
components [1]. In 1956, Moore and Shannon [2] proposed
a probabilistic model for network reliability. Based on the
types of components that can fail, network reliability can be
classified into two categories:

Network reliability w.r.t. link failures: defined as the prob-
ability that the nodes of a connected graph G remain connected
if each link is independently operational with probability p,
assuming the nodes of the graph are perfectly reliable [3].
This type of network reliability can be expressed as a so-called
reliability polynomial:

RelG (p) =

L∑
j=0

Fj(G) (1− p)
j
pL−j , (1)

where Fj(G) is the number of sets of j links whose removal
leaves G connected, and F0(G) = 1.
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Network reliability w.r.t. node failures: defined as the
probability that the operational nodes of a connected graph G
remain connected if each node is independently operational
with probability p, assuming that the links of the graph are
perfectly reliable [3]. This type of network reliability can be
expressed as the node reliability polynomial:

nRelG(p) =
N∑

k=0

Sk(G)pk(1− p)N−k, (2)

where Sk(G) denotes the number of induced connected sub-
graphs with k nodes.

Most studies on network reliability focus on link failures.
This paper investigates node failures, assuming that each node
remains operational independently with a uniform probability
p. This assumption is justified in scenarios where nodes
share similar physical characteristics, such as battery depletion
in wireless sensor networks, random hardware failures in
data centers, or telecommunication switching systems [4],
[5]. The uniform probability provides a baseline scenario for
evaluating network robustness, allowing straightforward com-
parisons across network topologies. Although the real-world
node failure probabilities may vary, the uniform assumption
simplifies initial robustness analysis and serves as a foundation
for extensions to heterogeneous scenarios. Additionally, the
assumption that links are perfectly reliable is appropriate
when node robustness dominates reliability concerns, and
link failures are comparatively negligible. Examples include
wireless sensor networks, where link existence depends solely
on node status, or data center networks, where node failures
significantly outweigh link failures.

Compared to robustness metrics such as connectivity, al-
gebraic connectivity, [6] natural connectivity, [7] network
criticality, [8] path diversity, and spectral gap, [9] the node
reliability polynomial provides distinct advantages. First, it
explicitly incorporates the probabilistic nature of random node
failures, intuitively interpreting network robustness as the
probability of remaining interconnected under any node fail-
ure scenario. Traditional connectivity metrics, like algebraic
connectivity and spectral gap, focus primarily on worst-case
partitioning, lacking sensitivity to incremental probabilistic
changes. Second, unlike natural connectivity and network
criticality, node reliability quantitatively captures the cumu-
lative effect of all possible failure scenarios, aiding precise
evaluation and optimization of redundancy. Lastly, while path
diversity assesses redundancy between specific node pairs,

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3607004

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TNO. Downloaded on October 14,2025 at 14:10:54 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT. 2

node reliability evaluates global connectivity involving all
active nodes, thus offering a more comprehensive robustness
assessment for practical communication networks and critical
infrastructures.

The problems of computing the reliability polynomial
RelG(p) and node reliability polynomial nRelG(p) are NP-
hard [10]–[12]. Closed-form analytic expressions for the node
reliability polynomial only exist for some specific graph
topologies [13]. Appendix D and Table I contains some
examples. Various Monte Carlo methods give accurate esti-
mations for the node reliability polynomial, but suffer from
a high computational complexity [14]–[16]. For small- to
medium-sized graphs, exact evaluation can also be performed
with Binary Decision Diagram (BDD) techniques, such as the
efficient vertex-reliability construction proposed by Kawahara
et al. [17]. The reliability polynomial captures crucial informa-
tion about a network’s connectivity by encoding all possible
cut sets—the sets of links or nodes whose removal would
disconnect the network. The reliability polynomial thus serves
as a comprehensive measure of a network’s global robustness.
Networks with higher values of the reliability polynomial,
under the same operational probability p, tend to be more
resilient to disconnection, allowing comparisons between dif-
ferent network topologies. In addition to a structural analysis,
the reliability polynomial plays a key role in network design
[1], [18], [19]. The reliability polynomial can identify critical
nodes or links whose addition or removal significantly affects
the overall reliability [19]. For instance, adding links can
enhance reliability in communication networks by increasing
redundancy, whereas removing specific links can effectively
contain the spread of diseases [19]. The reliability polynomial
finds practical applications in fields such as communication
networks, infrastructure systems, and public health [19]–[21].

This paper first introduces a Laplace approximation for
the node reliability polynomial in Section II. In Section III,
we propose a Monte Carlo method for approximating node
reliability polynomials. The proposed Monte Carlo method is
inspired by a recent fast approach designed for network relia-
bility polynomials [22]. Additionally, the Monte Carlo method
is combined with the Laplace approximation to develop a
new hybrid approach, referred to as the Laplace Monte Carlo
method. Section IV introduces three degree-based stochastic
approximations (Laplace, arithmetic and geometric) for the
node-reliability polynomial. The relation between the relia-
bility polynomial RelG(p) and the node reliability polynomial
nRelG(p) is also analyzed. Section V discusses a practical
application of network reliability to link-augmentation (k-
GRIP) optimisation. Notation and all variables are summarized
in Appendix A. Additional analytical results for Erdős–Rényi
and Random Geometric Graphs are provided in Appendix E.

II. THE LAPLACE APPROXIMATION FOR THE NODE
RELIABILITY POLYNOMIAL NRELG(p)

The number of combinations of k different nodes out of N
nodes is the binomial coefficient

(
N
k

)
= N !

k!(N−k)! . We define
the number Cj(G) as the number of subsets of j nodes whose
removal disconnects the graph G. Every subset of k nodes in

G must either be connected or disconnected, leading to the
following relationship:

Sk(G) + CN−k(G) =

(
N

k

)
(3)

After substituting Sk(G) =
(
N
k

)
− CN−k(G) into Eq. (2),

and applying Newton’s binomial theorem, (a + b)N =∑N
k=0

(
N
k

)
aN−kbk, we obtain:

nRelG(p) = 1−
N∑

k=1

CN−k(G)pk(1− p)N−k (4)

Hence, the (all-terminal) node reliability polynomial can be
expressed both in the “S-form” and in the “C-form” as

nRelG(p) =
N∑

k=0

Sk(G)pk(1− p)N−k

= 1−
N∑
j=1

Cj(G)pN−j(1− p)j (5)

where Sk(G) counts the number of induced connected sub-
graphs on k nodes and Cj(G) counts the number of vertex
cut sets with j nodes, which is the number of subsets of j
nodes whose removal disconnect the graph. We can express
the node reliability polynomials in the “S-form” and “C-form”
in binomial forms as well:

nRelG(p) =
N∑

k=0

(
N

k

)
sk(G)pk(1− p)N−k

= 1−
N∑
j=0

(
N

j

)
cj(G)pN−j(1− p)j (6)

where sk(G) = Sk(G)

(Nk)
and cj(G) =

Cj(G)

(Nj )
are the fractions

of induced connected subgraphs with k nodes and vertex cut
sets of graph G with j nodes amongst all possible node
combinations of k nodes and j nodes from N nodes. In other
words, sk(G) equals the probability that the residual network
remains connected after removing N−k nodes and cj(G) is
the probability that the residual part of graph G is disconnected
after removing j nodes.

Although computing Sk(G) and Cj(G) is NP-hard, the node
reliability polynomials nRelG(p) can still be approximated by
estimating the probabilities sk(G) and cj(G). In this paper, we
propose a Laplace Monte-Carlo approximation of nRelG(p)
based on the “C-form” of the node reliability polynomial and
a stochastic approximation of nRelG(p) based on the “S-form”
of the node reliability polynomial.

The term
(
N
k

)
pk(1− p)N−k represents the probability den-

sity function (pdf) of the binomial distribution. The Central
Limit theorem states [23], [24] that the binomial distribution
approaches the Gaussian distribution for large N . For large
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N , the “S-” and “C-form” of the node reliability polynomials
can then be approximated as:

nRelG(p) =
N∑

k=0

(
N

k

)
sk(G)pk(1− p)N−k

≃
∫ N

0

sk(G)
exp

(
− (Np−k)2

2Np(1−p)

)
√
2πNp (1− p)

dk (7)

Substituting x = k
N transforms the integral in (7) into

∫ 1

0

sNx(G)
1

√
2π
√

p(1−p)
N

exp

(
− (p− x)2

2p(1−p)
N

)
dx (8)

If we define µ̃ = p, and σ̃ =
√

p(1−p)
N , then:

nRelG(p) ≃
1√
2πσ̃

∫ 1

0

sNx(G) exp

(
− (µ̃− x)2

2σ̃2

)
dx (9)

The Gaussian pdf 1√
2πσ̃

exp
(
− (µ̃−x)2

2σ̃2

)
serves as an ap-

proximation of the Dirac delta function as [9, Sec. 7.1]:

δ (x− µ̃) = lim
σ̃→0

1√
2πσ̃

exp

(
− (µ̃− x)2

2σ̃2

)
(10)

Assuming that σ̃ tends to 0, the node reliability polynomial
can be approximated by the following expression:

nRelG(p) ≃
1√
2πσ̃

∫ 1

0

sNx(G) exp

(
− (µ̃− x)2

2σ̃2

)
dx

≃
∫ 1

0

sNx(G)δ (x− µ̃) dx = sNµ̃(G) (11)

where µ̃ = p.
In summary, we call the approximation

nRelG(p) ≃ nRelLapG (p) = sNp(G) (12)

the Laplace approximation of the node reliability polynomial.
Following a similar derivation, the Laplace approximation of
the ”C-form” of the node reliability polynomial is given by

nRelLapG (p) = 1− cN(1−p)(G) (13)

Based on the analysis in Appendix B, the total error of
the Laplace approximation is o

(
1√
N

+
s′′Np(G)

N

)
, where

s′′Np(G) is the second derivative of sNp(G) about p. When
sNp(G) varies more gently (i.e. s′′Np(G) is of smaller order
than o(N)), the second term decreases, and the approximation
becomes more accurate. Meanwhile, for a fixed p, the error
decreases as N grows, further improving the accuracy. Hence,
for sufficiently large N , the Laplace approximation in Eq. (12)
yields increasingly accurate results.

III. MONTE CARLO METHOD FOR APPROXIMATING THE
NODE RELIABILITY POLYNOMIAL NRELG(p)

The Monte Carlo method for estimating node reliability
polynomials is based on a node deletion process, where at
each time step a randomly selected node is removed. In a
given graph, nodes are removed one by one until all nodes
are eliminated. After each removal, the residual network
is checked to determine whether it remains connected. By
repeating the node deletion process M times, the number of
cases Rj in which the removal of j nodes disconnects the
residual graph is obtained for each node j ∈ [1, N ]. When
the number of realizations M is large, the probability that the
removal of j nodes disconnects the graph is approximately
c̃j(G) =

Rj

M . Thus,

cj(G) =
Cj(G)(

N
j

) ≃ c̃j(G) (14)

The C−form (4) of the node reliability polynomial
nRelG(p) = 1 − ∑N

j=1

(
N
j

)
cj(G)pN−j(1 − p)j can be ap-

proximated by:

nRelG,MC(p) ≃ 1−
N∑
j=1

(
N

j

)
c̃j(G)pN−j(1− p)j (15)

where we denote the Monte Carlo approximation of nRelG(p)
by nRelG,MC(p). The computational complexity of the Monte
Carlo method is O(MN). Based on the analysis in Appendix
C, the mean squared error (MSE) of the Monte Carlo approx-
imation nRelG,MC(p) is MSE[nRelG,MC(p)] = o

(
1
M

)
. Fig.

1 demonstrates the inverse power-law relationship between
MSE and number of simulations M by showing a linear
decay trend in the log-log plot of M versus MSE, consis-
tent with a convergence rate close to O(1/M). The proba-
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Fig. 1: MSE of the Monte Carlo approximation nRelG,MC(p)
as a function of number of simulations M for complete graph
K9 with a pendant node K∗

10. The slope of the red fit curve
is −1.02

bilistic error bound is Pr (|nRelG,MC(p)− nRelG(p)| > ϵ) ≤
2 exp

(
−CMϵ2

√
Np(1− p)

)
, where C is a positive constant.

The error probability decays exponentially in M , ϵ2, and√
Np(1− p). For a network with a number of nodes N

and a prescribed error threshold ϵ, the probability that the
Monte Carlo estimate nRelG,MC(p) deviates from the true
value nRelG(p) by more than ϵ decreases exponentially with
a fixed number M of simulations. For a fixed error threshold
ϵ, a larger network size N leads to a smaller required number
of simulations M to achieve the same error probability.
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TABLE I: Network reliability polynomials for some simple networks

Network (on N nodes) nRelG(p)

Complete graph KN nRelG(p) = 1− (1− p)N

Complete graph KN−1 with a pendant node K∗
N nRelG(p) = p2 + p(1− p)N−1 + (1− p)(1− (1− p)N−1)

Cycle graph CN nRelG(p) =
Np(pN−(1−p)N )

2p−1
− (N − 1) pN

(
nRelG(0.5) = N2−N+1

2N

)
Path graphs PN nRelG(p) =

Np(1−p)N+1−(N+1)p2(1−p)N+pN+2

(1−2p)2

(
nRelG(0.5) =

N(N+1)

2N+1

)
Star graph SN nRelG(p) = p+ (N − 1) p (1− p)N−1

Star graph SN−1 with a pendant node S∗
N nRelG(p) = p3+p2 (1− p)N−2+p (1− p)N−1+(1−p)(p+(N−2)p(1−p)N−2)

The Monte Carlo method is applied to several simple
graphs, for which explicit closed-form analytical expressions
of node reliability polynomials are known, see Table I and
Appendix D. The graphs are the complete graph KN , the
complete graph KN−1 with a pendant node, denoted by K∗

N

(N nodes), the cycle graph CN , the path graph PN , the
star graph SN (N nodes) and the star graph SN−1 with a
pendant node, denoted by S∗

N (N nodes). The node reliability
polynomials and the result of the Monte Carlo simulations
are depicted in Fig.2 and Table III, which demonstrate that
the Monte Carlo approximation is accurate for the considered
graphs. In the remainder of this paper, the Monte Carlo method
is used as a benchmark to evaluate other approximations of
the node reliability polynomial.

The analysis in Section II has shown that, if the number
of nodes N in the graph G is large, the node reliability
polynomial can be approximated by Eq. (13) nRelG(p) ≃
1 − cN(1−p). The combination of the Monte Carlo method
and the Laplace approximation is referred to as the Laplace
Monte Carlo method, denoted as nRelLapG,MC(p) = 1−cN(1−p).
The error of the Laplace Monte Carlo method combines
the errors from the Laplace approximation and Monte Carlo
sampling, and is therefore of order o

(
1√
N

+
s′′Np(G)

N + 1√
M

)
.

Fig.3 presents a comparison between the theoretical values
of the node reliability polynomial nRelG(p) and the Laplace
Monte Carlo approximation, represented as 1− cN(1−p). Fig.
3 indicates that the Laplace Monte Carlo approximation fits
the theoretical values more closely as the size of the graph
increases. Table III shows the MSE, mean absolute error
(MAE), and maximum error of the Laplace Monte Carlo
approximation nRelLapG,MC(p). Comparing Figs. 3a, 3b, and 3d,
we observe that, with the number of simulations M held fixed,
both the MSE and MAE decline as the graph size N increases.
Conversely, a comparison between Figs. 3b and 3c shows that,
for a fixed graph size N , increasing M likewise reduces both
MSE and MAE. The maximum error is contributed by the
difference of nRelG(p) and 1− cNp at p = 1

N , the larger the
number of nodes N , the larger the second derivative value
s′′Np(G) at p = 1

N , which contributes to a larger maximum
error.

IV. STOCHASTIC APPROXIMATION FOR THE NODE
RELIABILITY POLYNOMIAL

Our previous work [25] has introduced a stochastic approx-
imation for the reliability polynomial RelG(p). In this paper,
we extend that approach towards a stochastic approximation
for the node reliability polynomial nRelG(p).
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Fig. 2: Monte Carlo simulations (M = 10000) and exact
values of node reliability polynomials for different graphs. The
corresponding error metrics are summarized in Table III.

We denote the random residual graph with the failure of
N − k randomly selected nodes in G as Ĝk. The proba-
bility that the residual graph Ĝk is still connected equals
Pr[Ĝk is connected] = sk(G).

For a given graph, the implication {G is connected} ⇒
{Dmin ≥ 1}, where the minimum degree is Dmin =
minall nodes ∈ GD, is always true. However, the opposite im-
plication does not generally hold, because it is possible for
a network to be composed of several disconnected clusters
where each node has a minimum degree greater than 1. Van
der Hofstad [26] proves that for an Erdős–Rényi(ER) graph
with large N and certain link density pl which depends on N ,
the opposite implication {Dmin ≥ 1} ⇒ {G is connected}
holds almost for sure. For other network models with large N
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Fig. 3: The analytical expressions and Laplace Monte Carlo
simulation results 1− cN(1−p) for the node reliability polyno-
mial for star graphs SN−1 under different N and simulation
sizes M . Error metrics are listed in Table III.

and high link density pl, the equivalence {Dmin ≥ 1} ⇐⇒
{G is connected} also holds [27]–[29]. The main hypothesis
of the stochastic approximation is that

Pr[Ĝk is connected] = Pr[D̂min ≥ 1] + o(1) (16)

where D̂min = minall nodes ∈Ĝk
D̂. Let Pr[D = k] be the

probability that a randomly chosen node in the graph G has
degree k. The probability generating function (pgf) of the node
degree D in the graph G is defined [23] as:

φD(z) = E[zD] =

N−1∑
j=0

Pr[D = j]zj (17)

If the number of operational nodes is k, the probability that all
neighbors of a node with degree j fail independently of each
other equals (1 − k

N )j . Consequently, the probability that a
randomly chosen residual node i in Ĝ is isolated Pr [di = 0]
equals φD(1 − k

N ) [25]. The probability that the minimum
degree Dmin is larger than 0 is approximated by

Pr[D̂min ≥ 1] ≃
k∏

i=1

(1− Pr[di = 0]) ≃ (1− Pr [di = 0])
k

(18)
The probability that the residual graph Ĝk remains connected
is approximated as Pr[Ĝk is connected] ≃ Pr[D̂min ≥ 1]

Pr[Ĝk is connected] ≃
(
1− φD

(
1− k

N

))k

(19)

The definition of the coefficients Sk(G) in the “S-form” in
(6) of the node reliability polynomial indicates that

Sk(G) =

(
N

k

)
sk(G) ≃

(
N

k

)(
1− φD

(
1− k

N

))k

(20)

Substituting (20) to the “S-form” of node reliability polyno-
mial Eq. (2), leads to the approximation of the “S−form” node
reliability polynomial nRelG(p) as

nRelG(p) ≃
N∑

n=0

(
N

k

)(
1− φD

(
1− k

N

))k

pk(1− p)N−k

(21)
When N is large, the value of the node reliability polynomial
nRelG(p) can be approximated by sNp(G) as:

nRelG(p) ≃ sNp(G) = Pr[ĜNp is connected]

≃ (1− φD (1− p))
Np (22)

Following the approach in our previous work [25], the stochas-
tic approximation of the node reliability polynomial is denoted
as:

nRelLap
G (p) = (1− φD (1− p))

Np (23)

The equivalence {G is connected} ⇐⇒ {Dmin ≥ 1},
where the minimum degree is Dmin = minall nodes ∈ G holds
when the number of nodes N and the link density pl is
large, thus the accuracy of stochastic approximation nRelLap

G (p)
increases with the increase of N and pl.
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Fig. 4: Node reliability polynomial nRelG(p) obtained by the
stochastic approximation and Monte Carlo simulations (M =
10000) for Erdős–Rényi graphs with different number of nodes
N and link probability pl =

logN
N depending on the number

of nodes.

We first perform the simulations on Erdős–Rényi graphs
with different number of nodes N and link probability pl =
logN
N . Fig. 4 demonstrates that the accuracy of the stochastic

approximation increases with the size of the network. Deriva-
tions and analytical approximations of the node-reliability
polynomial for Erdős–Rényi graphs are provided in Appendix
E.

Fig. 5, 6, 7, and 8 depict the node reliability polynomial
nRelG(p) obtained by stochastic approximation and Monte
Carlo simulation for Barabási–Albert graphs, Erdős–Rényi
graphs, 2D-lattice graphs and 3D-lattice graphs. We find that
the accuracy of the stochastic approximation increases with
link density pl and the number of nodes N .

Fig. 10 shows the node reliability polynomial nRelG(p)
obtained by stochastic approximation and Monte Carlo sim-
ulation for some real-world networks. The corresponding
parameters for these networks are provided. We find that
the stochastic approximation demonstrates high accuracy in
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Fig. 5: Stochastic approximation and Monte Carlo simulations
(M = 10000) of Barabási–Albert graphs with N = 1000 and
different number of links added per step m
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Fig. 6: Stochastic approximation and Monte Carlo simulations
(M = 10000) for the Erdős–Rényi graphs with N = 1000 and
critical link density pc ∼ logN

N = 0.0069.

approximating the node reliability polynomial in real-world
networks.

0.5 0.6 0.7 0.8 0.9 1.0
Operational Probability p

0.0

0.2

0.4

0.6

0.8

1.0

N
od

e
R

el
ia

bi
lit

y
Po

ly
no

m
ia

ln
R

el
(p

) Stochastic Approximation
Monte Carlo simulations
(d1,d2) = (20,20)
(d1,d2) = (20,30)
(d1,d2) = (20,40)
(d1,d2) = (20,50)
(d1,d2) = (50,50)

Fig. 7: Stochastic approximation and Monte Carlo simulations
(M = 10000) for 2D-lattices with width d1 and height d2

We show in [25] that for graphs with a large number of
nodes and high link density, the link reliability polynomial
can be accurately approximated by:

RelG(p̃) ≃ (1− φD (1− p̃))
N (24)

where the variable p̃ denotes the probability of links being
operational.

To evaluate the performance of our reliability approximation
methods on structured communication topologies, we consider
three representative network models: Torus [30], HyperX [31],
and Fat-Tree [32]. These topologies are widely used in parallel
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Fig. 8: The stochastic approximation and Monte Carlo simu-
lations (M = 10000) for 3D-lattices with width d1, length d2
and height d3

computing and data center networks due to their scalability.
Fig. 9 shows the node reliability polynomial nRelG(p) ob-
tained by stochastic approximation and Monte Carlo simula-
tion. From the MSE and MAE value given in Table II, we
find that the stochastic approximation shows a small error in
computing the node reliability polynomial nRelG(p) of the
Torus network and HyperX network, but perform poorly on
the Fat-Tree network. For a given node functional probability
p, the node reliability nRelG(p) of Fat-Tree network is always
larger than the stochastic approximation nRelLap

G (p). The Fat-
Tree topology provides high path redundancy, which makes it
highly reliable against node failure.
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Fig. 9: Stochastic approximation and Monte Carlo simulations
(M = 10000) for the node reliability of three structured
network topologies: 3D Torus (6 × 6 × 6), HyperX (4D, 4
switches per dimension), and k-ary Fat-Tree (k = 24). The
corresponding error metrics are reported in Table II.

TABLE II: Error metrics (MSE, MAE, ∆p99.999%) for the
structured topologies shown in Figure 9.

Network MSE MAE ∆p99.999%

Torus 4.835× 10−4 1.646× 10−2 0.042
HyperX 8.798× 10−5 5.392× 10−3 0.027
Fat-Tree 1.953× 10−2 7.052× 10−2 0.102

We define p99.999% as the minimum node activation prob-
ability p such that the node reliability satisfies nRelG(p) ≥
0.99999. This value is critical for meeting high availability
targets, such as the ”five nines” standard in telecom systems.
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Fig. 10: Monte Carlo simulations and stochastic approxima-
tions for various real-world graphs. The corresponding error
metrics are reported in Table III.

Our results show that the stochastic approximation closely
estimates p99.999%, offering a fast and practical tool for
guiding network design, redundancy planning, and equipment
selection. We define ∆p99.999% as the absolute difference
between the estimated values of p99.999% obtained by the
stochastic approximation and by Monte Carlo simulation. For
the 3D Torus and HyperX, ∆p99.999% is 0.042 and 0.027,
respectively, indicating good accuracy. For the Fat-Tree, the
difference increases to 0.102, suggesting reduced precision on
Fat-Tree topologies.

TABLE III: Error metrics (MSE, MAE, Maximum Error) for
Figures 2, 3, and 10.

Subfigure MSE MAE Max Error

2a 0 0 0

2b 1.182× 10−6 9.907× 10−4 1.753× 10−3

2c 2.373× 10−6 1.043× 10−3 3.288× 10−3

2d 8.512× 10−7 8.262× 10−4 1.733× 10−3

2e 2.485× 10−5 4.307× 10−3 7.247× 10−3

2f 3.146× 10−6 1.676× 10−3 2.149× 10−3

3a 3.228× 10−2 8.123× 10−2 0.559

3b 4.787× 10−3 1.188× 10−2 0.624

3c 5.817× 10−3 3.584× 10−2 0.624

3d 5.031× 10−4 2.785× 10−3 0.631

10a 1.328× 10−3 1.862× 10−2 2.215× 10−2

10b 1.712× 10−4 7.576× 10−3 9.617× 10−3

10c 7.827× 10−4 2.346× 10−2 3.151× 10−2

10d 1.803× 10−4 1.062× 10−2 1.291× 10−2

A. Arithmetic Stochastic Approximation nRelarith
G (p) and Geo-

metric Stochastic Approximation nRelgeom
G (p)

The main hypothesis of stochastic approximation is
Pr[Ĝk is connected] = Pr[D̂min ≥ 1] + o(1). Sec. IV

gives a way to estimate the probability Pr[D̂min ≥ 1]
that the minimum degree in the residual network Ĝ is
larger than 0. In addition to the Laplace stochastic ap-
proximation nRelLap

G (p), we provide two other stochastic
approximations for the node reliability polynomials, the
arithmetic stochastic approximation nRelarith

G (p) and geo-
metric stochastic approximation nRelgeom

G (p). Given a node
i with degree di, we define the event {Node i fails} ∪
{Node i is active and at least one neighbor of i is active} as
Xi. Its probability is denoted by fi = 1 − p(1 − p)di .
Under the independence assumption, the probability that every
node is not isolated (i.e., each node experiences Xi) is
Pr
(⋂N

i=1 Xi

)
=
∏N

i=1 fi. However, when the events {Xi}
are not independent, we can correct the simple product by in-
corporating the dependencies via joint cumulants. In particular,
according to the analysis in Appendix F, we have

Pr
[ N⋂
i=1

Xi

]
=

N∏
i=1

fi ×
{
1 +

N∑
k=2∑

1≤i1<···<ik≤N

κ
(
Xi1 , Xi2 , . . . , Xik

)
k∏

m=1

fim

}
. (25)

where, κ
(
Xi1 , Xi2 , . . . , Xik

)
denotes the joint cumulant of

the indicator variables of the events Xi1 , Xi2 , . . . , Xik , which
quantifies the pure kth-order dependence among these events.

When the events {Xi} are mutually independent, all joint
cumulants for k ≥ 2 vanish, and the expression in (25) reduces
to the product

∏N
i=1 fi. The resulting geometric stochastic

approximation for the node reliability polynomial is

nRelgeom
G (p) =

N∏
i=1

(
1− p(1− p)di

)
(26)

When calculating the node reliability of large networks, con-
catenating the probabilities that each node is not isolated
becomes computationally demanding. The arithmetic mean
probability that a randomly selected node is not isolated node
in Ĝ is

PAM =
1

N

N∑
i=1

Pr[Xi] (27)

Substituting Pr[Xi] = fi = 1 − p(1 − p)di into Eq. (27), we
obtain

PAM =
1

N

N∑
i=1

fi =
1

N

N∑
i=1

(
1− p (1− p)

di

)
(28)

which we rewrite as a sum over the nodal degrees by denoting
nj as the number of nodes with degree j and realizing that
Pr[D = j] =

nj

N ,

PAM =
1

N

N−1∑
j=0

nd=j

(
1− p (1− p)

j
)

=

N−1∑
j=0

Pr[d = j]
(
1− p (1− p)

j
)
. (29)
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Using the definition of pgf of the node degree (17), we obtain:

PAM =

N−1∑
j=0

Pr[d = j]
(
1− p (1− p)

j
)
= 1− pφD(1− p)

(30)

By raising PAM to the N th power, the arithmetic stochastic
approximation is derived as:

nRelarith
G (p) = (1− pφD(1− p))

N (31)

The geometric mean of 1 − fi over all nodes is PGM =
N

√∏N
i=1 (1− fi), and by the definition of fi:

PGM = N

√√√√ N∏
i=1

(
1− p (1− p)

di

)
. (32)

Since the arithmetic mean is always larger than or equal to
the geometric mean, it holds that nRelarith

G (p) ≥ nRelgeom
G (p).

The computational complexity of the arithmetic stochastic
approximation, nRelarith

G (p) = exp (N log (1− pφD(1− p))) ,
depends on the computation of φD(1 − p), which has a
complexity of o (∥D∥), where ∥D∥ represents the number
of distinct degrees in the graph. In contrast, the geometric
stochastic approximation, nRelgeom

G (p), involves calculating the
term

(
1− p (1− p)

di

)
for each of the N nodes, resulting in

a computational complexity of o(N). Therefore, in networks
where ∥D∥ ≪ N , the arithmetic stochastic approximation re-
quires significantly fewer computational resources, leading to a
notable reduction in computation time and increased efficiency.
As the network size increases, this advantage becomes even
more significant, making the arithmetic stochastic approxima-
tion a practical choice for analyzing large-scale networks with
a limited number of distinct degrees. For cases requiring higher
precision, the geometric stochastic approximation nRelgeom

G (p)
can be used, while the arithmetic stochastic approximation
nRelarith

G (p) is preferred for its computational efficiency.
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Fig. 11: Arithmetic Stochastic approximation nRelarith
G (p), geo-

metric stochastic approximation nRelgeom
G (p) and Monte Carlo

simulations (M = 10000) for the node reliability of three
structured network topologies: 3D Torus (6× 6× 6), HyperX
(4D, 4 switches per dimension), and k-ary Fat-Tree (k = 24).

B. Limitations of the stochastic approximations

Fig. 9 and 11 show that all three stochastic approximations
match the Monte-Carlo benchmark for the Torus and HyperX
networks but clearly underestimate the node reliability of the
Fat-Tree. The discrepancy comes from treating the events
Xi (i = 1, . . . , N) as independent. In large, moderate-degree
graphs each event involves (almost) disjoint neighbour sets,
so the independence product is close to truth. In a Fat-Tree
many leaves share the same aggregation and core switches;
the events then overlap and the product formula is too small.

The example network in Fig. 12 illustrates this overlap for
two nodes that share neighbours: the exact joint probability
Pr[Xi∩Xj ] exceeds the independence product Pr[Xi] Pr[Xj ].
The same mechanism, amplified over thousands of leaves,
explains the gap observed on the Fat-Tree.

Fig. 12: Illustration of dependence between events Xi

and Xj . Each node is independently work with probabil-
ity p. The probability of event Xi = {Node i fails} ∪
{Node i is active and at least one neighbor of i is active} is
Pr[Xi] = 1 − p(1 − p)6. For node j the probability is
Pr[Xj ] = 1 − p(1 − p)4. The joint probability is Pr[Xi ∩
Xj ] = 1 − p(1 − p)6 − p(1 − p)4 + p2(1 − p)8. If the two
events were independent, the probability is Pr[Xi ∩ Xj ] =
Pr[Xi] Pr[Xj ] = 1− p(1− p)6 − p(1− p)4 + p2(1− p)10.

V. ANALYTICAL OPTIMIZATION STRATEGY FOR THE
NODE-RELIABILITY-BASED k-GRIP PROBLEM

The reliability is an important robustness measure of graph
G(V,E). Given a connected graph G = (V,E) and a budget of
k links to be added, a set S ⊂

(
N
2

)
\L of size k that optimizes

the robustness of G is a common problem. Predari et al. refer
to this optimisation problem as k-GRIP problem, short for
graph robustness improvement problem [33]. We select the
reliability polynomial RelG(p) (node reliability polynomial
nRelG(p)) as robustness measure for k-GRIP. Within the
stochastic approximations of reliability polynomial RelG(p)
and node reliability polynomial nRelG(p), we give optimal
solutions S of RelG(p) and nRelG(p). The optimal solution S
are approximate optimal solutions for reliability-based k-GRIP
and node-reliability-based k-GRIP problems.

By using the reliability polynomial as an objective measure,
we design networks that optimize for specific reliability crite-
ria. For example, to enhance a network’s reliability, we might
seek to add or reinforce connections (links) in such a way that
the reliability polynomial achieves its highest possible values
under expected operational probabilities. Since computing the
exact expression of the reliability polynomial is NP-hard, it is
not possible to provide an analytical solution to the reliability-
based k-GRIP problem. However, a stochastic approximation
of the reliability polynomial can be optimized analytically,
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which offers a practical approach to solving the reliability-
based k-GRIP problem.

We recall the stochastic approximation of the reliability
polynomial in Eq. (24),

RelG(p) = (1− φD(1− p))
N
,

and the stochastic approximation of the node reliability poly-
nomial in Eq. (23),

nRelG(p) = (1− φD(1− p))
Np

,

that both depend on the value of term 1 − φD(1 − p).
The function f(x) = xc, where c is a positive number,
is monotonically increasing for x in domain [0, 1]. Thus a
larger 1 − φD(1 − p) contributes to a higher reliability and
node reliability. Consequently, the problem of optimizing the
stochastic approximations RelG(p) and nRelG(p) reduces to
maximizing the value of 1−φD(1− p). We denote the graph
obtained by adding the links of S into G as G′ := G∪S and
the degree distribution of graph G′ as D′, where S ⊂

(
N
2

)
\L.

Based on the analysis in our previous work [25], the term
1− φD(1− p) can be expressed as

1− φD(1− p) =
1

N

N∑
i=1

(
1− (1− p)

di

)
(33)

where di is the degree of node i. Here we denote the
degree vector of graph G as d = [d1, d2, ..., dN ] and the
degree change vector after k links are added into G as
a = [a1, a2, ..., aN ], where ai ≥ 0. Then the degree vector
of graph G′ becomes d = [d1+a1, d2+a2, ..., dN +aN ]. The
reliability-based k-GRIP problem is then transformed into:

Objective:

max
a

1− φD+a(1− p)

= max
a=[a1,a2,...,aN ]

N∑
i=1

(
1− (1− p)

di+ai

)
(34)

Subject to:

s.t.

N∑
i=1

ai = 2k, ai ≥ 0, ai ∈ Z (35)

Suppose there are two sets

a1 = [a1, a2, ..., am, ..., an, ..., aN ]

a2 = [a1, a2, ..., am + 1, ..., an − 1, ..., aN ] (36)

where am, an ≥ 1.
The only difference between a1 and a2 is that the mth

element of a2 is the mth element of a1 plus one, and
the nth element of a2 is the nth element of a1 mi-
nus one. The difference of

∑N
i=1

(
1− (1− p)

di+ai

)
|a2 and∑N

i=1

(
1− (1− p)

di+ai

)
|a1 is

∆ =

N∑
i=1

(
1− (1− p)

di+ai

)
|a2
−

N∑
i=1

(
1− (1− p)

di+ai

)
|a1

= p
(
(1− p)

dn+an−1 − (1− p)
dm+am

)
(37)

The value of ∆ is larger than 0 only when dn+an−1 > dm+
am. Here dm+am and dn+an are the degree of node m and
node n after k links are added to the graph according to set a1.
When the degree dn+an of the node n is larger that dm+am
of node m plus one, reconnecting the end of one link connect
to node n to node m contribute to a better link-adding set
S. Here we define a k-GRIP descending restructuring, which
disconnects the end of an added link to a node n with degree
dn+an in the graph G′ and reconnects that end of the link to
another node m with degree dm + am, where dn + an − 1 >
dm+am and an > 0. The ascending restructuring is defined as
the inverse of the descending restructuring. The above analysis
shows that 1− φD+a(1− p) after descending restructuring is
always larger than that before descending restructuring.

Fig. 13: Schematic illustration of the Greedy-LD algorithm,
which iteratively adds 5 links (shown in red) to a graph
with N = 8 nodes and L = 16 links. Each panel shows
the intermediate graph after one additional link is added,
highlighting how the algorithm prioritizes nodes with the
lowest degree at each step.

We denote the set of all possible graphs, where k links are
added into graph G, as ⟨G⟩. Start from a random graph G′ in
⟨G⟩, any graph in ⟨G⟩ can be obtained by multiple descending
and ascending restructurings. Since descending restructuring
always contribute to a higher

∑N
i=1

(
1− (1− p)

di+ai

)
, the

optimal graph G∗ is a graph where no descending restructuring
could occur. To construct the optimal graph G∗, links can be
greedily added by connecting pairs of nodes with the lowest
degrees, provided the link does not already exist. In this paper,
the algorithm of greedily adding k links between pairs of
nodes with the lowest degrees that are not already connected
is referred to as the Greedy Lowest-Degree Pairing Link
Addition (Greedy-LD) Algorithm.

With a bucket list that stores nodes by current degree,
the initial degree scan costs O(L) time, where L is the
number of links in the graph. Each of the k link insertions
then requires only constant time for bucket updates and an
O(1) adjacency check, giving an overall running time of
O(L + k). Fig. 14 shows the distribution of the average
node reliability over p ∈ [0, 1] for all possible link addition
configurations, where 5 links are added to base graphs with
N = 7, 8, 9 nodes and L = 11, 16, 24 links, respectively.
In all three cases, the Greedy-LD algorithm yields results
that rank within the top 2% of all configurations, indicating
that it consistently produces high-reliability structures with
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Algorithm 1 Greedy Link Addition Based on the Minimum
Degree–Sum
Input: connected graph G = (V,E), number of links to add
k

Output: augmented graph G∗

1: compute initial degrees {dv | v ∈ V }
2: for t← 1 to k do
(a) score every missing link
3: for all {u, v} ⊂ V s.t. (u, v) /∈ E do
4: s(u, v)← du + dv ▷ degree sum of the pair
5: end for
(b) identify best pairs
6: smin ← min{u,v}/∈E s(u, v)
7: C ←

{
{u, v} /∈ E | s(u, v) = smin

}
▷ all pairs with

the smallest degree sum
(c) random tie-break
8: uniformly pick one link {i, j} from C
(d) update graph and degrees
9: E ← E ∪ {(i, j)}; di ← di + 1; dj ← dj + 1

10: end for
11: return G∗ = (V,E)

simple computation. To further evaluate the performance of
the Greedy-LD Algorithm in improving network reliabil-
ity, we applied Greedy-LD Algorithm and other two link-
adding strategies to real-world networks from the Network
Repository [34] and compared their effectiveness. The first
strategy, Random Pairing Strategy, adds links randomly
between node pairs that are not already linked. The second
strategy, Greedy Highest-Degree Pairing Strategy, focuses
on adding links between the highest-degree nodes that are not
yet connected, aiming to strengthen the already well-connected
nodes. Figures in Fig. 15 illustrate that Greedy-LD Algorithm
has the most significant effect in enhancing network reliability
and node reliability, far outperforming random link addition
and adding links between high-degree nodes. Adding links
between high-degree nodes shows the worst performance,
with almost no noticeable impact on network reliability. The
simulation demonstrates that one of the most effective ways to
enhance network robustness from the perspective of network
connectivity is to add links between low-degree nodes.

VI. CONCLUSION

Calculating the exact node-reliability polynomial is known
to be NP-hard, prompting the need for efficient approx-
imation techniques. The node-reliability polynomial of a
graph has been approximated by Laplace’s method. For
the node-reliability polynomial, utilizing “the C-form” and
“S-form” representations. We demonstrated that, by approx-
imating these forms with probabilistic methods, significant
computational efficiency can be achieved, while maintaining
reasonable accuracy when approximating the node-reliability
polynomial nRelG(p).

We proposed two simulation approaches: a standard
Monte-Carlo estimator and a Laplace–Monte-Carlo variant.
Because the Laplace term already captures the main behaviour

of nRel(p), the Laplace–Monte-Carlo method requires far
fewer samples and is therefore computationally lighter while
achieving the same level of accuracy as the plain Monte-Carlo
approach. Additionally, we introduced three degree-based
stochastic approximations—Laplace, arithmetic, and geomet-
ric—leveraging the probability-generating function of node
degrees. These stochastic approximations provide quick and
reasonably accurate estimates, particularly effective for large
and dense networks.

Finally, we introduced a Greedy Lowest-Degree Pairing
Link Addition (Greedy-LD) algorithm that simply connects
pairs of nodes with the smallest current degree. Despite
its simplicity and O(k + L) time complexity, Greedy-LD
consistently ranks within the top 2 % of all possible
link-addition configurations in our experiments, and provides
larger reliability gains than both random link insertion and
highest-degree pairing strategies.
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(a) N = 7, L = 11, k = 5, rank: 2/252
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(b) N = 8, L = 16, k = 5, rank: 12/792
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(c) N = 9, L = 24, k = 5, rank: 10/792

Fig. 14: Distribution of the average node reliability polynomial over p ∈ [0, 1] for all possible configurations obtained by adding
5 links to a base graph with: (a) N = 7, L = 11, (b) N = 8, L = 16, and (c) N = 9, L = 24 links. The red dashed line shows
the result of the Greedy-LD algorithm, while the green dotted line marks the optimal reliability among all configurations. In
these three cases, the greedy strategy ranks 2nd out of 252, 12th out of 792, and 10th out of 792, respectively, demonstrating
consistently near-optimal performance across different network sizes.
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Fig. 15: Monte Carlo simulations results (M = 10000) of
reliability polynomial RelG(p) and node reliability polynomial
nRelG(p) in two real-world graphs and graphs constructed
by adding links to these graphs for three different strategies.
‘n2c6 b3’ is a simplicial complex network with N = 1365
nodes and L = 5263 links [34]. l = 500 links are added into
the ‘n2c6 b3’ graph for three different strategies. ‘USAir97’
is the 1997 U.S. flight network with N = 332 nodes and
L = 2126 links [34]. l = 100 links are added into the
‘USAir97’ graph in three different strategies. (a) Reliability
polynomial RelG(p). (b) Reliability polynomial RelG(p). (c)
Node reliability polynomial nRelG(p). (d) Node reliability
polynomial nRelG(p).
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