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Summary

This study developed central and decentral fleet control methods and a simulation model to
evaluate baggage transport fleet performance for these different methods. The goal was to
develop a simulation model to identify the impact of different ways of organisation on
baggage transport on Schiphol Airport and to research possible gains of fleet collaboration
by sharing tugs assets amongst fleets. Baggage transport processes have been mapped and
modelled and subsequently instances with real world data have been simulated to compare
self-organising baggage tugs with central controlled baggage tugs, which lead to the
following conclusions.

Decentral control for system performance in limited computation time

Decentral control for baggage tugs shows better fleet performance in total on-time
delivered bags and distance driven by baggage tugs compared to central methods in limited
computation time. Fast computation time is crucial to ensure tug fleets can quickly
reschedule given airport dynamics. The better fleet performance is a result of the decision
making process in the decentral control method being more effective in trailer train
formation leading to on average longer trailer trains and therefore making more effective
use of available tug capacity. Hyperparameter optimisation in the shape of the set up ofthe
single tug objective function is crucial in the decentral control method to ensure agent
interactions lead to effective conflict resolutions and tug assignment decisions.

Characteristics of autonomous and human-operated tugs define scheduling constraints
Both the developed decentral and central control methods can schedule manned and
unmanned baggage tugs. Unmanned, autonomous, baggage tugs have different vehicle
properties, such as average driving speed, ability to handle situations and how they
communicate with other airside stakeholders. These properties need to be well defined and
known, as these properties impact the performance level and operational capability of the
vehicles. Information on these properties and characteristics is therefore crucial as it
constraints decision making fleet control methods.

Simulation and scheduling model for multi-fleet baggage transport

Above conclusions have been based on simulation results of 8 hours of realistic baggage
transport demand for KLM Ground Services on Schiphol Airport. Discrete event simulation
has been used in combination with scheduling heuristics for central control tower decision
making and decentral decision making based on a Distributed Constrained Optimisation
Problem (DCOP) formulation and solution methodology.

Sharing fleet assets can increase system performance

Having autonomous vehicles and autonomous decision making systems opens opportunities
to scalable and automated asset sharing, for example through the sharing of baggage tugs
amongst different airside fleets. Simulation of collaboration between the inbound and
outbound baggage fleet of KLM Ground Services shows an increase in on-time performance
of 55% compared to single fleet operations without asset sharing. This implies that the tug
fleets can be used more effectively in collaboration with each other, which could be really
useful in peak demand periods.
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Abbreviations

ACO Ant Colony Optimisation

DCOP Distributed Constrained Optimisation Problem
DES Discrete Event Simulation

FMS Fleet Management System

LVNL Luchtverkeersleiding Nederland

MDP Markov Decision Process

MILP Mixed Integer Linear Program

OR Operations Research

OTP On-time performance

PSO Particle Swarm Optimisation

TLO Teamleider Omdraaien - Team lead turnaround process.
T™MS Transport Management System

ULD Unit Loading Device

VOP Vliegtuig Opstel Plaats - Airplane Parking Stand
WMS Warehouse Management System
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1

1.1

Introduction

Research context

Amsterdam Schiphol Airport (shortened to Schiphol) ranks 4" in the list busiest airports in
Europe, with over sixty million passengers in 2023. To maintain this position within Europe,
the airport needs to keep innovating the airport ecosystem. This is the goal of the BrightSky
project, a Dutch research and development project with 15 partners.

The luggage of all passengers that pass-through Schiphol needs to be transported to and
from the airplanes. Schiphol is the worldwide transfer hub for airline KLM. A major share of
the Schiphol passengers and their bags therefore require a transfer from an arriving plane
to a departing plane in a limited amount of time. Transporting all the bags timely is a
challenging task for the KLM ground handling service (called KLM Ground Services),, because
they have a limited number of tug drivers and baggage handling crew. To ensure an optimal
number of bags makes it to their flight in time creates the challenge of scheduling and
operating the baggage handling assets as effectively as possible.

Figure 1: Train of two trailers with Unit Loading Devices (ULD) behind a baggage tug.

One of the challenges within the scheduling problem is a limited number of tugs and,
mainly, a limited number of people to operate tugs and handle baggage. If schedules can be
improved upon, then then system performance costs can be reduced. For example fewer
resources, such as workforce, might be needed. Moreover, these resources are currently split
between the incoming and outgoing flights for KLM Ground Services. This means that a tug
operates only on incoming or only on outgoing flights. This fleet separation exists due to the
different nature of the handling of the incoming and outgoing flights and different skills
requirements for the tug drivers. Both fleets are controlled separately, but there are
possibilities for sharing assets and drivers within these fleets that might benefit to the
overall baggage transport performance. This concept of merging inbound and outbound
fleets is not novel, it has been recognised by KLM Ground Services and seen as a potential
direction for future changes. Controlling a fleet of vehicles and making the scheduling
decisions of which asset performances which task can be organized in different manners
from a central control tower to a distributed decision structure.
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Another solution could be the automation of the baggage tugs. This requires further
development of vehicle technology and creates requirements on the airside infrastructure
for safe and smooth operations of autonomous vehicles.

Next to the physical technology, a system of autonomous vehicles driving around on the
airside of Schiphol also raises questions on how to manage and control those vehicles.
How to organize and control a fleet of autonomous vehicles? What level of autonomy and
intelligence should those vehicles attain and how would this impact the baggage transport
process? Should the vehicles be managed in a central way, or can they operate in a
decentralised manner? This last question is not only relevant for the investigation of the
automation of baggage tugs but is also interesting for reducing performance costs and
lowering pressure on the work force by increasing the efficiency of used resources.

Currently, ground handlers assign tugs and tug drivers to transport tasks and therewith aim
for effective asset use and transport performance. They collect all information on available
assets and to be transported bags (tasks) into a single computer system and use scheduling
methods to create scheduled assignments by matching tasks and tugs. We call this a
‘central control method’ because there is a single entity that oversees all transport
assignments and assets and solves the scheduling problem as a hierarchal control entity.

In general, the main advantage of such a central control method is having a full overview
and full information. It therefore theoretically allows for optimal decision making.

An alternative to centralized control would be to decentralise the scheduling process, where
there is not one single entity that decides which tugs execute which assignment. Instead,
for example, the tugs could decide autonomously what a good assignment would be and
execute this assignment. Such an approach could be inspired by natural, self-organising
systems, such as beehives or ant colonies, that have many individual agents making
decisions individually in the interest of the collective with a limited amount of
communication. In case the baggage tugs are driving autonomously, could they also be
organized in a decentral way, and would that benefit the overall performance of the airside
baggage transport?

This study focusses on comparing these different control methods for the different airside
baggage transport fleets (incoming and outgoing) and tries to answer the following main
question: what type of control (central/decentral/hybrid) is most suitable for managing a
system of multiple asset-sharing fleets of baggage tugs.The control methods have been
applied to the situation of KLM Ground Services. A control method is considered suitable if it
meets system requirements, including the requirements on the performance level of the
operations that are being controlled. Performance goals for transport fleets in general can
be summarised by maximising the amount of timely delivered baggage whilst minimising
asset use and asset costs.

Multiple fleets can refer to the distinction that is made for resources allocated to the
handling of either the incoming or outgoing flights. However, it can also refer to the
difference in resource fleets per ground handler. Each handler has its own fleet of tugs.
We focus on the first type of multiple fleets in this research; the fleets allocated to either
incoming or outgoing flights. In other words, we focus on the multiple fleets within the
operations a single ground handler.

A simulation model with different scheduling methods has been developed to research

which type of control method is most suitable for the baggage transport processes under
which conditions. This report describes the background and processes on the airside
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1.2
1.2.1

baggage transport, the fleet control methods that have been modelled, the developed
simulation model and results of the different scheduling methods.

BrightSky

Overall project description

This report is the main deliverable of sub work package WP3.1 of the BrightSky project, that
has been subsidised by the RVO mobility fund. This project describes itself in the following
manner:

“The BrightSky project is an open partnership that aims to stimulate intensive and long-term
collaboration with, and innovation at, many companies in the aviation sector. BrightSky is
therefore a fertile breeding ground for R&D within and outside the aviation sector in general.
BrightSky aims to allow Dutch aviation to play a leading role in Europe for a long time and to
prepare itself to take advantage of new economic opportunities.

BrightSky emphasizes the following three integral aspects.

e Social innovation - how do we obtain a healthy workforce where, with the right
direction, we can develop talents in the direction demanded by technological
developments and which meet the challenges presented by the market?

o Digitization - how can we use the opportunities that the innovative possibilities of
digitization (storage, work content, scanning, data sharing and preventive maintenance)
offer us?

e Sustainability - how do we approach the subject of sustainability (labour potential,
ecosystem development, economic and environmental impact)? How do the work
packages contribute to the sustainability goals for 2030?”

This research relates to the overall BrightSky aspects as it focusses on further automation
and digitization of the decision-making processes in fleet control and fleet organisation, with
the goal to increase system efficiency and reduce energy use of the fleets, and reducing the
work load of fleet planners at baggage handlers. Also enabling further development on full
fleet automation and autonomous vehicles on the air side to reduce workload for air side
workforce.

1.2.2 WP3 Smart Operations

BrightSky Work Package 3 researches an airport system that systematically makes the
coordination and control of airport sub-systems more sustainable and digitized. Where
digitization and automation are means to get to more resilient and efficient air side
operations, making them more sustainable and reducing the workload for the air side
workforce. The consortium with Vanderlande, T-Hive, Schiphol Airport, KLM Ground Services,
Hogeschool van Amsterdam and TNO focusses on automation of baggage tugs on the
airport of Schiphol. This relates to automation in the sense of autonomous driverless
vehicles and autonomous control methods with digitized scheduling of fleet operations.
Autonomous tugs have new properties which need to be considered in fleet management
and they also provide opportunities for innovative fleet control methods. An example of this
is automated decision making on tug level. Allowing tugs to make their own decisions
instead of assigning tasks to tugs shifts the control from a central point to a decentral level.
This leads to the focus of this sub work package 3.1: which fleet control method is most
suitable?
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2

2.1

211

2.1.2

Research plan

This chapter describes the plan of approach that was taken to analyse the impact of central
and decentral control methods for the multi-fleet situation of the airside baggage transport.
For the development of an effective simulation model a clear scope and modelling goal are
required. The later paragraphs of this chapter go into the scope of this study, the scenarios
to be analysed with the simulation model and the key performance indicators that are
relevant for the airside stakeholders and the BrightSky consortium.

Research steps for multi-fleet baggage tugs

The overall goal was to develop a simulation model to evaluate different forms of
organisation of baggage transport fleets.

For the development of the simulation the following steps were foreseen:

Literature study

Airside baggage transport process mapping

Identify properties of autonomous and manual baggage tugs

Develop and implement scheduling methods for baggage tug fleets
Develop and implement a simulation tool to evaluate scheduling methods.

agrODE

Literature study

Research in this part has been focused on optimisation methods for the problem. Online
search tools Dimensions, Google Scholar and Scopus have been used to identify relevant
literature.

Amongst others key words as:
- “baggage transport”,
- “qgirside”,
- “agent-based simulation”,
- “multi-agent”,
- “fleet management”,
- ‘“scheduling”,
- “self-organising” and
- “decentral optimisation” have been used.

Next to first results from these search queries, also citations and references related to the
relevant first results have been scanned for relevant knowledge and research. An overview
of this can be found in chapter 3.

Airside baggage transport process mapping

Before developing simulation and scheduling models a detailed description of the airside
baggage transport is needed. Interviews with and tours at project partners Schiphol and KLM
Ground Servicess provided insight in current day processes and procedures. Additionally
combining this with existing process descriptions led to the process description in chapter 4.
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To structure the interviews and information gathering process the following steps have been
taken to get a good understanding of, and describe the problem of the airplane turnaround
process and the baggage handling transport:

1. Identify the stakeholders and their roles in the baggage transport

2. Make a flow chart model of the current information and control process for the
airside baggage fleet.

3. Collect and analyse data on current day operations.

2.1.3 Autonomous baggage tugs

2.1.4

A relevant innovation for future airside baggage transport is the autonomous baggage tug.
Due to labour shortages, there is an increased need for reduction in personnel needs.

A question for this research is what the differences of autonomous tugs and current manual
operated tugs are and how this impacts the fleet control and fleet performance.

During this research the focus shifted to controlling a fleet of vehicles, which is independent
from the fact that these vehicles are autonomous or human operated. Therefore this step
only resulted in a qualitative description of the difference in properties and operations of
autonomous vehicles, and how these differences could have impact on the fleet operations
and the fleet control methodology.

The questions that have been answered are:

1. What are the differences in properties between human operated tugs and
autonomous tugs?
2. What is the impact of these different properties on the airside baggage process?

Central and decentral multi-fleet scheduling

The main question of the research concerns the difference between central and decentral
control on different fleet scenarios: single-fleet and multi-fleet. With single fleet we describe
the situation where there are individual fleets having their fleet specific sets of tasks to
execute. In case of the KLM Ground Services on Schiphol airport this is for example the
inbound baggage transport fleet only executing the inbound baggage transport. With multi-
fleet we describe the situation where multiple single fleets collaborate to share asset
capacity to execute all tasks more effectively. For example, combining the outbound
baggage fleet and the inbound baggage fleet. This is independent of how these fleets are
organized, central or decentral.

We define central control as the situation where there is a single, central, entity which holds
all information on assets and tasks and this entity also decides on the assignments of tasks
to tugs. With decentral control, we define the opposite situation where the tugs are
individual entities that decide which assignments they are going to execute and
communicate or negotiate these decisions amongst each other.

One of the goals of the simulation model is to quantify the effect of collaboration in the
multi-fleet scenario compared to the single fleet situation. Given the different options to
organize the fleets, which also have impact on the fleet performance, there are already four
different scenarios to simulate:
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2141

Table 1: Four different organisational scenarios with single and multi fleet, and central and decentral

control.
Single fleet Multi Fleet
Central Inbound - central control Inbound & outbound - central
Outbound - central control control
Decentral Inbound - decentral control Inbound & outbound -
Outbound - decentral control decentral control

The baggage fleet operates on the airside of Schiphol. Schiphol as an infrastructure manager
is responsible for the overall airport performance and there can on a tactical level steer the
fleet operations by providing boundaries and regulations for the fleet control systems.
Multiple ground handling services are operating at Schiphol. For this study, we focus on the
ground handling services of KLM.

SELELT]

uonpsRuond

Decentralfcentral  Decentralicentral Decentralicentral

Figure 2: Concept of per fleet or cross-fleet tactical prioritisation by Schiphol. In the use case of this study, the
fleets are owned by a single company, KLM Ground Services.

In the flowchart above, the fleet-blocks are the central control entities (fleet 1; fleet 2;
fleet 1 + 2 combined). These entities control the vehicles at central level. At decentral level,
the vehicles coordinate between each other how to organise themselves, within their own
control entity (fleet 1; fleet 2; fleet 1 + 2). The control specifications are further explained
below (see section “Steps”). All control methods need to take operational conditions and
tactical prioritisation from Schiphol into account. An example of limiting operational
conditions occur when there are weather conditions with limited sight, then it is forbidden
for baggage tugs to cross airplane routes on the air side.

Single-fleet scheduling (2 scenarios)

The development of the scheduling model is an incremental process. The first goal for the
scheduling model was to simulate a single fleet of baggage tugs. In more detail, a model
that can simulate single fleet planning in a central and decentral control structure and
compare the impact of the different scheduling approaches.

With single fleet we define the situation where there is one fleet of baggage tugs which has
to transport a set of baggage shipments and need to decide which tug is going to transport
which shipments. Where in the central control structure there is a single entity with all
information and a decision making, scheduling method, to assign all batches to baggage
tugs.
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Figure 3: Concept of single fleet central control.

In decentral, or also called distributed, control scenario there is not a single central entity
that makes the decisions. On the contrary, the decision making is distributed over multiple
entities. In our situation we define the decentral scenario where the vehicles, baggage tugs,
decide upon which tasks they are going to execute. It is important that decisions made by
the different tugs are aligned, to ensure that effective decisions are made. This requires
communication between the tugs to come to a mutually agreed decision making. The
details of this decentral decision making and decision alignment can be implemented in
various ways. These are further explained in the literature review in chapter 3 and in chapter
6 on the simulation model.

Note that the situation where the vehicles decide is one of the possible forms of decentral
decision-making process. Another situation with multiple decision-making entities for
subsets of the vehicles could also be considered a form of decentralisation. In other words,
there would be a number of control towers, one for each subset of the fleet, which is not
that different from the situation with one central control tower. It could also be seen as a
situation with multiple fleets, which we will discuss in the next paragraph.

Externalconditions:
ﬁ  Flight schedule, gate planning, (baggags) assats planning

+ Tactical priztitisation

Fleat
A\
/ J \
/ N\
/ )
/ 7 " \
Y e
~ Deision making ~

Figure 4: Concept of single fleet decentral control.

Developing the methodology for central and decentral scheduling and comparing these
approaches has been done to provide insights in answering the following questions:

1. What are the differences between central and decentral planning of a (baggage) fleet?

2. What are the differences in organising and controlling a manned and unmanned fleet?
3. What are the differences (benefits and downsides) of the different control methods?
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2.1.4.2 Multi-fleet scheduling (2 scenarios)

The next step for the scheduling models, after single fleet control approaches have been
implemented, is the step to multi-fleet scheduling. In other words, to simulate scheduling
of the two fleets in a cooperating scenario with a central and decentral control structure.
This is illustrated by the following figures.

Externolconditions:

» Flight schedule gote plonning, (haggoge) ossats planning
(Transport d emand)

o Tactical priaritisation

Fleat 7 Fleat
o ner Decision rnd king awnar

Figure 5: Concept of multi-fleet central control.

In the multi-fleet scenario with central control a similar control tower methodology as single
fleet central control can be used. The central control method can take all combined tasks
and combined assets of both fleets into account and use the same assignment
methodology to get to a task assignment for all vehicles. Similar in the decentral scenario,
all the vehicles that have to make decisions on their tasks would need access to information
on all available tasks and communicate with other vehicles in the fleet to align the to be
made decisions. Which contains the risk that a lot of vehicle-to-vehicle communication is
necessary and is shown in Figure 6.

Externaleconditions:

e Flight schedule gate planning, (haggaoge) assats planning
(Transport d emand)
» Tactical priortisation

Figure 6: Concept of multi-fleet decentral control.
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2.15

2.2

Further developing the scheduling methodologies to be applied on the multi-fleet scenarios
provided scheduling models that give insight in answering the following questions:

1. What are the effects of sharing resources (vehicles and drivers) amongst fleets?
2. What are the differences (benefits and disadvantages) of the different control
methods?

Discrete Event Simulation model

The goal of this last step is to evaluate schedules resulting from different control methods
by simulation. Simulating execution of the schedules to identify impact on key performance
indicators can be done by Discrete Event Simulation (DES). Where the environment to be
simulated results from the airside baggage process mapping and the events to be simulated
come from the scheduled events along with optional, additional, dynamics in the system. In
that way the simulation can propagate the baggage transport process through time and
monitor the simulated execution to get insight in performance indicator levels in different
scenarios. More information about the used simulation tool is available in section 6.1.3.

Discrete event simulation as simulation methodology was chosen, because the to be
modelled situations and processes have a clear event-based structure, in which the
processes between events can be quite realistically modelled with known system dynamics.
The events to be simulated are defined by the task assignment resulting from one of the
scheduling methodologies. Up to now no other events, such stochastic events that represent
real world disturbances have been included. Subsequently also no rescheduling to deal with
disruptive events has yet been implemented.

Scope of study

At the start of the research this scope was defined. To clearly bound the research in this
study and to define what the simulation should and should not entail. The following
elements define the scope of the elements studied and modelled:

e All processes related to the transport of baggage from the airport baggage system to the
airplanes and vice versa. This includes outbound and inbound baggage tug fleets
Schiphol airside. This includes scheduling of picking-up empty trailers that are required for
baggage transport, but it excludes additional repositioning of empty trailers to support
the baggage transport process.

e To incorporate sufficient interaction between the fleets the simulation model focusses on
the operation of a single baggage handler. The KLM ground handler (KLM Ground
Services) operates separate fleets for inbound, outbound, and empty trailers, given
current information from interviews with Schiphol and from literature (van Loenhout,
2019). The model simulates different fleets of a single baggage handler.

e The operational area for the baggage transport of this ground handler can be any of the
aircraft parking stands (vliegtuigopstelplaats; VOP) or baggage depot, or on the roads
between these locations on Schiphol Airport.

¢ Time frame of simulation: Focus on D-1 planning; schedule all vehicles for the baggage
transport for the next day. The methods have been developed and tested for day ahead
scheduling. In theory the control methods should also function with real-time
disruptions, hence, should be able to do real-time rescheduling with updated inputs, but
this has not been researched in this study.

e The developed control methods focus on scheduling vehicles (tugs) to baggage
transports (trailers). See next paragraph on decision making for more details.
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e Data on flight and gate schedule with baggage volumes and data on VOP-locations and
assigned baggage laterals or baggage carrousels are considered model input.

e The developed simulation model focusses on the main processes of baggage handling
during normal operations at Schiphol airport. No disturbances or stochastics are included
up to now and process ends at delivering baggage (timely or not), or purposely not
scheduling transport due to lack of assets. So-called miss-handled baggage is counted
but no further handling processes are included.

2.2.1 Scope of decision making in fleet control algorithms

In this report we talk about fleet control, with this we imply the decision making of which
tug is going to execute which transport task. In practice there is a bigger range of decisions
to be made around operating a fleet of tugs, from how many tugs and drivers there are in
the fleet to which tug has right of way on airside traffic junctions. Table 2 presents 5 layers
of decision making and which decision maker has to make which decisions in the scenarios
we define as central and decentral.

Vehicle decisions on which route to take and how to operate vehicles on traffic junctions are
currently made by tug drivers and these can be effectively taken with local information and
local interaction with other road users. Note also for the route choice there generally is only
one logical route option between 2 locations on Schiphol airport and there is not much to
decide upon.

Fleet decisions on how many vehicles in the fleet and specifying which assignments there
are need to be executed is assumed to be predefined by the number of bags per flight,
parking stand where a flight is handled and laterals assigned to this flight.

Following from these decision-making levels, in this study we compare the difference in
decision making on which vehicle executes which assignment. These decisions can be made
on vehicle level with decentral optimisation methods or with a central optimisation method
in a so-called control tower.

Table 2: Overview and different levels of decision making in baggage transport.

Decisions Decision maker Input / Model /
Central Decentral Out of scope
How many resources: vehicles + drivers Fleet owner | Fleet owner | Input

Per activity (inbound, outbound, empties)

From transport demand to demand task: | Fleet owner Fleet owner Input / basic rules on

how many carts / trains per flight/VOP. how to process
How many trips/tasks are there to assign different baggage
vehicles to? (transfer, business
class, ...)
Resource scheduling (which resources Fleet owner | Vehicle / Model decision
execute which demand task at what driver making
point in time)
Route choice Vehicle / Vehicle / In general, each trip
driver driver on Schiphol has only
one logical route.
Traffic interaction Vehicle / Vehicle / Out of scope
driver driver
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2.3

2.4

Scenarios of central and decentral control

The table below gives a summarized overview of the scenarios to simulate with the different
control structures and vehicle fleets in the model. All scenarios focus on autonomous
vehicles, to answer the question which impact different control method of autonomous
vehicles have. The research question on the difference in control methods between human-
operated and autonomous vehicles has not been simulated and only approached
qualitatively, because for a control method the concept of a vehicle, an asset, does not
significantly change if it has a or has no human driver. The qualitative results are presented
in chapter 5. Comparing the different fleet control scenarios leads to 4 scenarios as
presented in Table 3.

Table 3: Overview of scenario's to be modelled and simulated.

Scenario la 1b 2a 2b

Fleets: Single fleet Single fleet Multi fleet (2) Multi fleet (2)
(outbound) (outbound) (outbound and (outbound and

inbound) inbound)

Ccontrol: Central Decentral Central Decentral

Autonomous or Autonomous | Autonomous 2x Autonomous | 2x Autonomous

human operated

vehicles:

The scenarios will be experimented on various instances, datasets representing different
periods of operations on the airside of Schiphol.

Performance Indicators

Performance indicators are defined to research the question what the impact of the
different control methods on the fleet performance is. The main objective of the baggage
handler as described is the on-time performance of baggage delivery, delivering as many
bags in time to the departing flights or to the reclaim system for arriving passengers. In
parallel the handler can maximize his profit by minimizing costs for asset use and required
assets. Minimizing asset use can also reduce energy requirements and contribute to
sustainability goals.

The following performance indicators have been implemented in the simulation model for
evaluation and comparison of the fleet control systems:

1. the number of on-time delivered bags,

2. the total driving time of the tugs and

3. the number of used trailers.

The goals for the simulation model and control methods will be to maximize the number of
on-time delivered bags (1.) and in parallel to minimize the asset use defined by total driving
time (2.) and used number of empty trailers (3.).

This chapter described: the incremental scheduling model steps, the discrete event
simulation model, scenarios for analysis and the performance indicators provided the base
for this research. The remainder of the report will describe the outcomes of these executed
steps.
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3

3.1
3.11

3.1.2

Literature review

We have reviewed the state-of-the-art from two perspectives: (1) mathematical
optimisation of scheduling problems and (2) applied research focused on airport process
optimisation. In the following sections we provide a non-exhaustive overview of the
available literature.

Optimisation of scheduling problems

General optimisation methods

Scheduling problems are a typical operations research (OR) application. A classic approach
to solving such a problem is to formulate the problem as a (Mixed) Integer Linear Program.
Examples of generic scheduling problems in operations research are job-shop scheduling
problems [1] [2]; vehicle scheduling problems [3] [4]; vehicle rescheduling problems [5];
order scheduling problems [6]. A drawback of MILPs is that these are NP-hard problems [2].
This means that solution techniques that are guaranteed to find an optimal solution require
a lot of computation effort. Running these algorithms may take a long time, especially for
large problems with many decision variables. MILPs can be solved using solvers. These are
commercially available, but also open source. The open-source solvers are easy to obtain,
but often have lower computation efficiency.

Next to MILP-solvers there also exist metaheuristic methods to find solutions to scheduling
problems. One category are meta genetic algorithms (see, for example, [4]). Metaheuristics
provide a solution to the problem, but they do not provide guarantees about the quality of
the solution. Some of these metaheuristic methods are based on decentral approaches,
such as particle swarm optimisation [7] or ant colony optimisation [8], but these methods
are generally used by a single central entity such as a control tower to find a solution to the
scheduling problem. Sérensen 2015 [9] warns for the lack of comparison and scientific rigor
with which these new evolutionary and metaphorical methods are tested.

Next to more classic OR-based approaches with solvers and metaheuristics, in recent years
more and more examples of using machine learning to train decision making algorithms
are being developed, by formulating the problem as a Markov Decisions Process (MDP) and
training a reinforcement learning algorithm to make decisions. Research up to know shows
that machine learning in general does not provide better schedules than above mentioned
methods, as it is posed by challenges on how to effectively formulate the MDP and decision
options, and these methods require intensive computational effort for training. For now,
these methods are considered out of scope as it is not a goal of this research to further
develop machine learning based decision making.

Decentral optimisation problems

In this research we want to solve the scheduling problem in a decentral, distributed, manner
with multiple decision agents.
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3.2

When decentralising the scheduling problem there is a specific framework for
mathematically formulating the problem, which is called Distributed Constraint Optimisation
Problem (DCOP). Which formulates a decentral approach to the problem with multiple
agents that optimise a collective decision problem.

“By definition of DCOP, the involved agents are part of a team and need to cooperate in
order to perform well on the global task. Usually in DCOPs, cooperation between agents is
achieved by passing messages from one agent to another.” [10]

DCOPs are also NP-hard [11]. DCOPs are derived from distributed constraint satisfaction
problems (DCSPs), in which the goal is to find a set of assignments to variables that satisfies
all constraints among agents [12]. Asymmetric DCOPs (ADCOP) are applied in cases where
agents have heterogeneous constraint and cost functions.

There are multiple algorithms provided by the literature to solve DCOPs. We shortly discuss
four different DCOP-solver approaches.

Van Leeuwen and Pawelczak [10] introduce CoCoA (Cooperative Constraint Approximation),
which uses a non-iterative, semi-greedy approach with a one-step look ahead. It can solve
ADCOPs and is, in general, better (solutions closer to the optimum) and faster than other
(A)DCOP-solvers.

“Synchronous Branch and Bound”, a derivative of the classic operations research algorithm,
is introduced by Hirayama and Yokoo [12]. The usual branch and bound algorithm is
adjusted for the distributed problem setting of DCOPs. Agents are not allowed to assign or
change their variable values in parallel, and this algorithm can thus not be used to take
advantage of parallel changes. The authors also present the “Iterative Distributed
Breakout”-algorithm. An important drawback of this algorithm is that is not guaranteed to
find a solution, even if a solution exists. It can also not determine if a solution exists.

Grinshpoun et al. [13] propose a privacy preserving “regional optimal”-algorithm. It is a set
of local search algorithms, applied to solving DCOPs. Agents iteratively collect assignment
information for a selected group of other agents and neighbouring agents outside of the
group. The agents focus on finding an optimal set of assignments for the agents in their
group. The runtime of this algorithm, however, is exponential with the size of the groups.

The question for this research now is which method to use to solve the decentral baggage
transport problem. Part of the DCOP methods have been compared by Fioretti et al. [14].
From these comparisons we find that CoCoA performs better than other ADCOP solving
methods on computational requirements and is known to be more privacy preserving.
Moreover, it is known from earlier work [6] that CoCoA provides effective schedules for
transport planning problems and is therefore deemed fit to also solve the decentral baggage
transport problem.

Optimisation of airport processes

There is also literature available on optimising airport processes besides research on general
scheduling problems. This can be split into two categories: allocation of static resources and
optimising (part of) the operations chain for incoming or outgoing flights. From these two
categories, it is already apparent that there is a lack of research on the allocation of dynamic
resources, e.g., vehicles. For completeness, however, we touch upon the two
abovementioned categories. For example, [15] focus on allocating baggage chutes and
baggage belts, with a case study at Copenhagen Airport.
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The allocation of baggage carousels is also considered in [16]. [17] focus on the optimisation
of assigning baggage of departing flights to piers in the baggage-handling facilities. Other
literature researching baggage handling can be found in [18] (discrete event simulation of
inbound baggage handling), [19] (optimising outbound baggage handling through the
assignment of facilities and decision on handling start time) and [20] (optimising inbound
baggage handling through allocating infeed stations and baggage carousels). [21] is a
master thesis with baggage handling at KLM as focus point. It improves an earlier model
that has been created for KLM for the assignment of flights to baggage halls.

Besides the allocation of static resources, we also discuss some literature that focuses on
optimising (part of) the operations chain. [22] has researched the multi-objective scheduling
of ground handling processes as a whole. A short state of the art is given, in which only
baggage scheduling for transfer flights is discussed. An extensive overview of the modelling
techniques is given. These include constraint programming, the vehicle routing problem
with time windows and multi-objective optimisation. [23] have also modelled the transfer
baggage scheduling problem using a static mixed integer model, which is also used in a
dynamic environment. This is applied to Frankfurt Airport and solved using a commercial
MILP-solver. [24] uses a variant of the vehicle routing problem to model short transfer
baggage. Their model is an integer programming model which is solved using a
parameterized greedy algorithm. [25] investigates the estimation of the demand for ground
resources and inclusion of flight delay in ground resource planning for KLM. Machine learning
methods are applied for both subjects.

The literature research has shown that there is a gap in the literature for the scheduling of
baggage tugs and trailers, in other words, for the dynamic resources. This is also emphasized
in [19] and [4]. [26] investigate workforce (i.e., personnel) planning. They first determine the
staff requirements and follow this with an optimisation over the handler shifts and task
assignments. Both steps are formulated with an ILP and solved with commercial solver
CPLEX. [4] is one of the very few papers which focus on the baggage vehicle scheduling
problem. They apply a genetic algorithm to the problem. We will extend the literature by
applying both central and decentral methods to this specific problem.

To benchmark the to be developed methods we choose to use a greedy heuristic method
based upon First-In First Out principle, as it is an effective and fast method that is easy to
implement, just as [6]. The central method initially was based on an MILP as used in above
literature, but due to computation time restriction an alternative central method was
needed. An extended version of the greedy heuristic was developed in this study, which
shows to provide decent schedules in limited computation time. For the decentral approach
the DCOP-solver CoCoA [10] as it is an effective method to solving DCOP-problems.
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A

4.1

41.1

Alrside baggage transport
process

In this chapter the simulated processes are described in detail. Before we go into the details
of the baggage transport process, we first provide an overall description of the airplane
turnaround process, of which the baggage (un)loading are essential subprocesses.
Followingly, we continue with the baggage transport process and how current fleet
operations are managed and transport tasks are assigned to baggage tugs.

Airplane turnaround process

The airplane turnaround process is considered to be everything that happens on an airplane
parking stand (Dutchr. vliiegtuigopstelplaats, abbreviated as VOP) between arrival of an
incoming flight and departure of the outgoing flight. For sake of simplicity, we assume that
all airplanes arrive and depart from the same VOP in a single turnaround process. This is true
for the majority of airplanes visiting Schiphol Airport. In this section we describe the actors
taking part in the turnaround process and that are relevant for the baggage transport
process. Other actors and details on the turnaround subprocesses and a flowchart of the
airport turnaround processes are provided in Appendix A.1.2.

Actors

The three most relevant actors in the baggage handling process on the airside are:

1. Airport
2. Airline
3. Ground handler

The general roles of these actors are:

1. Airport manages the airport infrastructure. The main goal is to ensure smooth and
safe operations of the airport. They minimize flight delays and want all flights to
adhere to flight and VOP schedules. The airport controls Baggage Handlings Systems
and VOP schedule.

2. Airline operates the aircraft and optimises on cost minimization in their flight
network.

3. Ground handler is contracted by an airline to operate all ground operations for the
airplane turnaround process. Concerning the baggage process, they are responsible
for loading/unloading bags and cargo to/from airplanes and transporting bags to
and from the VOP.

These actors have their own objectives in the baggage turnaround processes, which need to
be well defined and understood to develop the scheduling models.
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4.1.2

4.2

4.2.1

Turnaround objectives

The turnaround process is a cooperative process of the different actors. Each actor has their
own stake in the turnaround process, these can be complimentary with other actors, but
they can also be conflicting. Therefore, we consider this a cooperative and not a
collaborative process. Cooperation occurs when different parties work together in certain
processes to achieve a good performance in line with each individual party’s interest, there is
no continuous common goal, because of possible conflicting interests. Collaboration occurs
when different parties work together with a shared, common goal. The different objectives
of the different actors, making this a cooperation, are explained below.

The goal of the airport is that the target turnaround time can be achieved (goal of airport)
and airport operations run as scheduled and delays are minimized. The airport is evaluated
on timeliness of operations.

The airline wants to maximize its turnover, which is done by minimizing the airplane
operating costs and maximizing operating turnover. For the turnaround process this means
there is a balance between minimizing costs of using airport services and minimizing sunk
costs for passengers and/or bags that miss their flights. For example, waiting a few more
minutes could imply some more bags and passengers can make the flight, which saves the
airline costs for replacing flights for miss handled bags or missed transfers. This decision can
conflict with the airport goal to achieve on-schedule departure.

The main objective of the baggage handler is to ensure the airplane turnaround process is
executed as smooth as possible. In other words, the baggage handler wants to provide a
good quality service to the airline, which pays the handler for their services. They have to do
this with a limited amount of available assets, which in peak moments can require decision
making on which flight or airline to give priority over another.

Airside baggage process

For the development of simulation and decision-making models for the airside baggage
transport a clear and detailed description of the process steps and decision making for these
processes is needed. We first give a global description of the baggage flow and then specify
all process rules and different baggage flows there are on Schiphol airport.

Departure and reclaim baggage flows

The baggage flow on Schiphol airport is separated into the 2 major flows, departure
baggage flow and reclaim baggage flow:

- Departure baggage travels via Schiphol baggage system and enters the system via
check-in or transfer processes.

- Reclaim baggage is unloaded on reclaim baggage assets which are only connected
to the baggage reclaim carrousels.

21/59



TNO 2024 R11490V2

In more detail, the bags at Schiphol Airport can be categorized into 4 different baggage

flows:
1. Airplane to reclaim
2. Airplane to baggage system (transfer)
3. System to Airplane (check-in + transfer)
4. Airplane to airplane (tail-to-tail) (transfer)

Figure 7 shows how the bags flow across the airport and which flows traverse the road
network and require tugs and trailers.

The ground handler decides which of the transfer processes, via the baggage system or tail-
to-tail, is used for which bags. Minimal connecting times, minimal time for a passenger and
bag to transfer from flight to flight, are defined by the airline. For intercontinental flights this
is 50 minutes and for transfer connections within Europe this is 40 minutes. These times are
too short for transferring bags via the Schiphol baggage system. In general, 70 minutes is
the required minimal handling time for transfer bags via the baggage system.

Therefore, this short connection baggage (SHOCON) can be treated differently and
transferred from arrival airplane directly to a departing airplane (provided security
regulations allow it), this is called tail-to-tail baggage. This is an expensive process as assets,
tugs and drivers, need to put in effort for a relatively small number of bags.

In case baggage does not make it in time to the transfer flight, it is labelled as NOC (no
connection) baggage and buffered for a next flight to the passenger’s destination. This is not
always allowed due to security regulations.

Airside road Reclairm
Platform network baggage system Airport reclaim hall
Legend
Reclaim -
) N Baggage start of
Airplane A LT o reclaim process
Arrival pi #
"7 Intermediate
k process
Regular
Tail-to-tail Transfer £nd of
Transfer e Airport Check-in process
| 1
l Airport area
Airplane \ 2 S Baggage
Departure R check-in
Departure
Departure
baggage system

Figure 7: Generic overview of baggage flows on Schiphol Airport.
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Figure 8: Lateral with bags on Schiphol Airport.

Within the baggage transport processes there are different steps with different systems and
actors handling the bags.

For the scheduling decisions and for the simulation model the following relevant process
rules have been identified from interviews with Schiphol and KLM Ground Services and from
the Schiphol-CDM-Operations-Manual:

1.

2.

Baggage can be driven to VOP if destined plane has landed and is inbound to the
VOP.

In general one lateral (see Figure 8) is assigned to a single flight for certain period of
time and a carrousel (see Figure 9) can be assigned to multiple flights in parallel.

A driver with tug is send to pick-up inbound baggage trailers at the VOP several
minutes after a plane has arrived on blocks.

Drivers do not wait at VOP to return the empty trailers. In general, the driver
decouples loaded trailers and leaves aircraft loading for the VOP-crew under
supervision of the ground handling team lead (TLO: TeamLeider Omdraaien).

Driver is expected to drive shortest / direct route between VOP and baggage asset.
In general, there is only one logical route between each VOP and baggage asset; a
driver is generally not going to circle around a terminal pier and drive extra distance.
This can exceptionally occur in case of road works or other road disruptions.

A tug is allowed to drive a train of up to maximum 6 trailers on the airside. For some
baggage basements lower maximum of 3 or 4 trailers of specified.

In general, the transport of outbound baggage is segregated into 3 outbound trains,
to spread the workload for the ground-crew effectively over time. To prevent all
bags being delivered just before flight departure, leaving almost no loading time for
the ground crew. Depending on the number of bags the number of trains can be
changed.

Figure 9: Carrousel for bags on Schiphol airport.
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4.2.3

4.2.4

4.2.5

4.2.6

Length of trailer trains

The number of trailers that are needed to get all bags from a lateral to an airplane or vice
versa is determined by the number of bags or number of ULDs that need to be transported.
Each flight has a loading manifest which defines number of bags or ULDs are aboard (arrival)
or need to be loaded (departure). The average number of bags per trailer lies between

35 and 40. Each ULD requires one trailer. In the simulation model we define a 'batch' as the
set of bags that fill one trailer for loose bags or each ULD as a ‘'batch’. This means a batch is
equal to a single trailer load.

Empty trailers and empty ULDs

For picking-up batches a tug needs empty trailers. Empty trailers are generally stored on
general parking stand, but also on VOPs and baggage areas (reclaim, claim). Next to empty
trailers also empty ULDs are needed for loading bags into a wide-body aircraft. For now, in
this study, it is assumed that empty ULD-trailers contain an empty ULD that is reusable,
similar to an empty trailer. In practice, the empty ULD-scheduling is more complex, which is
ignored for now. This implies that storage and availability of ULD is not included in the
developed model. Making the model not directly applicable in practice, as location and
availability of empty ULDs impacts fleet performance.

Baggage categories and prioritization

In parallel with different categories of passengers, there are also different categories of
bags.

In general, there are 3 segregations flight, in order of prioritization:
1. Business class
2. Transfer
3. Economy class

In some cases, a flight has multiple destinations e.g. there can be a flight from Amsterdam
to Bonaire and Curacao, in that case there are 6 segregations, 3 for each of the destinations.
Sometimes even more segregations possible. Each segregation can have a different
prioritization for the ground handler.

Example of exceptions and disturbances

As in every process, exceptions and disturbances can occur that distort the process out of
regular handling, the most common exceptions and consequences are:
1. Adelayed flight
a. Checked-in/Claimed Baggage can be buffered in baggage system or in
handlers’ baggage trailers.
2. Last minute-change of VOP
a. This implies that assigned resources have to change their destined locations,
which can imply higher or lower travel time from the location of previous
task.
3. Bags that miss their flight
a. Bags that have missed their flight go to the Miss-Handled-Baggage process.
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Note that in practice, next to these examples, a lot of different disruptions might occur. To
develop a practical applicable fleet management system requires exception management.
Which can either be implemented in the system or otherwise would require external
intervention by a human. Up to now we did not yet include such exceptions and exception
handling in the developed simulation model, but this might be interesting for further
research.

4.3 Tactical scheduling for baggage handling

The developed decision making and simulation models focus on decisions in the transport
process between VOPs and Laterals of the baggage systems. Which VOPs or lateral is
assigned to a flight and how many tugs, trailers and drivers are available are considered
input. However, it is good to note that there are other actors and processes that define and
decide on these inputs. The so-called tactical decision-making process can, for example,
take into account staff shortage of a ground handler and subsequently optimise assignment
of laterals to reduce driving distance to VOPs.

This level of decision making is out of scope for developed models, but we briefly describe
these processes to give broader understanding of the baggage handling process and factors
that determine and influence the operational scheduling process in the simulation model.

4.3.1 Assignment of VOP and laterals to flights

For the resource allocation in airside baggage transport services, it is relevant to know:

1. which flight is going to land on which VOP and
2. viawhich baggage assets the suitcases are handled.

There are some schedules that are made on tactical level that are input for the to be
developed airside baggage transport simulation. Tactical decisions, that have to deal with
the number of resources available to execute baggage transport, mainly concern the
number of crew members available. Moreover, strategic decisions such as the size of the
vehicle fleet and infrastructural developments influence the process.

Most relevant tactical decisions that influence the boundary conditions and constraints for
the operational baggage transport problem are:

1. The VOP that is assigned to an aircraft.
2. The assigned baggage assets (locations of lateral, carrousel, buffer areas...)
3. Available baggage handler crew

a. Drivers for baggage tugs

b. Asset crew for loading and unloading trailers at assets.

c. VOP crew for loading and unloading trailers at VOPs and/or laterals
4. Repositioning of empty trailers

The scheduling of flight, VOP and assets is an ongoing process, ranging from a seasonal
schedule to a tactical schedule which is made from 7 days in advance to an operational
schedule for real time operations. This operational schedule of current day is called D-O0.
For schedules that lie in the future, this schedule is called D-1 (one day in advance) up to
D-7 (one week in advance).

25/59



TNO 2024 R11490V2

4.3.2

4.4

The tactical schedules D-7 up to D-1 is managed by Schiphol and updated in accordance with
involved stakeholders, also called the sector partners.

Baggage handler crew scheduling

The ground handler is responsible for assigning vehicles, drivers and (un)loading crew to the
baggage handling process. There are different ground handlers active on Schiphol. The
drivers of the tugs and the tugs are assets of the ground handlers and they need to ensure
they have enough assets available to execute the baggage transport process. This requires
maintaining a pool of skilled people and assigning duty rosters to ensure enough crew
members are available in the operational process. The available number of tug drivers and
tugs during the day is considered input for the simulation model.

Airside and baggage handling data

Next to description of the processes to model, also empirical data is required for simulating
airside processes as realistic as possible. For the development of the model and model
scenarios data has been provided by Schiphol Airport and KLM Ground Services. In this
section we describe the data that has been used.

The following three datasets have been provided:

- Geographical information system (G1S-data)
o Location of VOPs and laterals
o Road network connecting VOPs and laterals.
- Airport Flight data
o Arrival and departure of planes at which VOPs
o Passenger count per flight
o Laterals of entry and departure flights
- KLM Baggage handling data
o Bags per passenger
o Share of transfers and reclaim for incoming flights

These data have been used to create input data for the simulation model. Cleaning,
combining, and restructuring of the data was required to get to cohesive datasets as the
provided data had different structures in naming conventions and taxonomy. One of the
steps was to create a uniform list of locations and location names. Subsequently the
GlS-data has been used to create a distance matrix with all travel distances between
these locations at the airport. See Figure 10 for all VOPs and the road infrastructure.
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4.4.1

N

Figure 10: Overview of VOPs and road infrastructure at Schiphol Airport.

Baggage transport problem data

The flight and baggage data has been used to generate so-called transport problem
descriptions for the simulation model, defining the number of trailer loads for the model to
schedule and simulate.

The flight data from Schiphol provided the following information per flight:

- VOP

- Laterals for reclaim and departure baggage
- The arrival or departure time

- Number of passengers

This data has been analysed for completeness and correctness, and to give an insight in the
transport problem for the baggage handling fleet. For example, Figure 11 shows the
distribution of the workload, in other words when the peak moments for the baggage
handling crewing are during the day. This data however lacked information on number of
bags per passenger and the transfer baggage. Therefore, this data has been combined with
data from KLM.
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Figure 11: Distribution of passengers during a day at Schiphol Airport, average over 6 different days in 2021
and 2022.

KLM Ground Services provided a dataset with the number of bags per flight and shares of
transfers per flights. As this data contains commercial sensitive information, we anonymised
this data by abstracting only a distribution of the shares of transfers destinations per flight
and bags per passenger. These distributions have been used in combination with the

Schiphol data to generate realistic transport problem descriptions in format as provided in
Appendix A.2.
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5.1

Autonomy In baggage
handling

This study focusses on how to manage an autonomous fleet of baggage tugs. To answer
this question, we first define what further autonomy of systems could implicate in the
baggage handling process.

In this chapter we elaborate on the autonomy on two different levels:

1. Automation of baggage tugs
2. Automation of fleet scheduling

Firstly, what does autonomy mean for baggage tugs and what does this implicate for
managing a fleet of tugs? Secondly, what is needed to make the scheduling of the tugs a
more autonomous, automated, process? The developments of making the vehicles, tugs,
autonomous are researched in WP3.3 and WP3.4 of BrightSky.

Some operations that are closely related can also be automated, but these are out of scope
for this study. These are for example the (un)loading of trailers or ULDs, (un)loading the
airplanes or connecting trailers to form trailer trains behind a tug. Note that out of these
examples the (un)loading trailers are currently already being executed autonomously on the
Schiphol airside. The number of robot arms executing these processes is limited so only a
small share of all bags are handled this way and a major part still requires manual
(un)loading.

Autonomous vehicles

Sub work packages WP3.3 and WP3.4 look into automation of the baggage transport tugs.
This change also has impact on how to organize and how to communicate with the vehicles
from an organisational and scheduling perspective. We shortly describe what will change
and how this will influence the scheduling process.

For an automated scheduling algorithm, the impact of changing a tug from human
operated to autonomous is small. For a scheduling algorithm it will remain a similar asset
with similar capacities, of driving trailers with or without baggage around the airport.
Properties of the asset might change, such as the response time to communication, the
airside routes the vehicle is allowed to access or the driving speed. These properties are very
relevant to consider when making a schedule and assigning tasks to vehicles. Therefore, the
different properties of human operated tugs and automated tugs need to be determined
and evaluated critically.

Next to task assignment and execution it is also relevant to know the level of autonomy of a

tug. Is it equipped to plainly follow ‘orders’ from a scheduling system or would it also include
more intelligence.
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5.2

For example, to solely change its assigned route in case of disruptions, or even provide
feedback or advice to a scheduling entity to update or improve the scheduling process.

When looking at a fully decentralized fleet of autonomous vehicles, the vehicles would need
sufficient information technology to incorporate and facilitate the algorithms for
decentralized scheduling methodology, including the communication between autonomous
vehicles to allow for negotiation and ensure tasks are effectively assigned across the fleet.

Autonomous asset scheduling

Autonomy in asset scheduling means that without intervention of humans, clear schedules
and tasks are generated by IT systems. This requires algorithms that can access and process
available data on the scheduling problem and provide schedules that contain tasks for the
baggage tugs. As described before these scheduling systems can be either centralized or
distributed systems. Methods to solve these scheduling problems are described in the
literature review in section 3.1.

Advantages of automating the scheduling process are reduced workload for the human
workforce and also in general, if implemented correctly, computer systems can create more
effective schedules than human planners. Subprocesses at Schiphol Airport, at ground
handlers and at airlines, already use automated scheduling and optimisation
methodologies. Due to interaction of different stakeholders and subprocesses there might
be possibilities for improvement for alignment of subprocess schedules, to optimise the
whole turnaround process. This is one of the future goals of one of the ground handlers at
Schiphol. For this ground handler to internally achieve this would already require a
challenging combination of different subprocess optimisers. When looking at multiple
stakeholders the alignment of such subprocess optimisers would be even more challenging
due to conflicting interests.

In general, challenges of automated scheduling systems are:

¢ availability of quality real-time data of the to be scheduled processes and assets, and
¢ the tailoring of scheduling algorithms to work well for the specific planning problem.

These tailor-made solutions are hard to steer or adjust in case situational changes occur
which are not included in the original design of the scheduling system. In such cases human
intervention could be needed to keep schedules and operations up and running. In general
humans provide a lot more flexibility in problem solving then specified tailor made
scheduling algorithms. Therefore, to guarantee continuity of operations in case of
unforeseen situations, requires having a back-up plan of approach with possible human
intervention.

In this study a centralized and decentralized (distributed) scheduling approach has been

developed for incoming and outgoing baggage transport vehicles. These are described in the
following chapter.
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6

6.1

6.1.1

Simulations

To obtain information about the performance of the various scheduling methods,

a simulation environment is built to extract key performance indicators (KPIs). The input of
the simulations is the data that was provided by KLM Ground Services and Schiphol, as
described in chapter 4. In this chapter, the simulation methods that are developed in this
WP3.1 of BrightSky project are described. All following functionalities have been
implemented using Python 3 and can be run on a laptop computer (i7 1.90 GHz, 16 GB RAM).

Architecture

First, the overall simulation architecture is defined as shown in Figure 12. As shown in this
figure, the different software components are implemented as stand-alone applications,
which communicate with one another by sharing files. In Figure 12 these components are
shown as white rectangles, and the files that are their input or output are shown as blue
rounded rectangles. The functionalities of the three components are defined in the following
sections.

Input data from
KLM/Schiphol

!

y

Scenario definition Preprocessing Problem definition Scheduler

A

Schiphol location N Analyzer /
data g Simulation

Output KPIs

'

Figure 12: A schematic depiction of the overall structure of the simulation model

Preprocessing

The first component is the preprocessing application, which makes sure the data is provided
in a way that is compatible with the other components.

The preprocessing application takes input data, which consists of three parts:

1. The input data from KLM Ground Services and Schiphol. This contains information
about flights, departure and arrival times and locations, and amount of luggage to
be handled.

2. Scenario definitions. This is the additional configuration that describes the conditions
for the scheduler, i.e., the amount of tugs and trolleys to be included in the scenario,
but also conditions on how many trolleys a tug can operate.

3. The location data. The input consists of shape files that includes relevant locations
on Schiphol airport. This includes baggage drop-off points, baggage belts, VOPs, but
also the topology of the roads.
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The input data is processed by a set of pre-processing functions, which generates a
standardized format problem definition file. By using a standard data format for the
problem description, which are provided to stand-alone test applications, we can test the
components in isolation. The full data format is not included in this document, but an
example of a problem definition is provided in Appendix A.2. This standard problem
definition includes a section on the fleets of tugs, trailers, flights, jobs and locations.

All information needed to describe the problem should be included in this file.

The problem definition can be used by simulation software, or by any application that can
analyse the problem and provide some output parameters. For instance, one could analyse
the problem to get information about the number of flights, pieces of luggage or available
resources. Another example would be a simple component to determine if certain conditions
apply or whether all defined timings are consistent. The concepts in the data format have
been designed to be self-explanatory, yet self-contained for a potential simulation or
scheduling component.

Scheduler

The scheduler component takes a problem definition and applies any of the scheduling
algorithms as described in chapter 7. The output of this process consists of a new file with
the same format, but now with an additional section for the planning. This planning contains
a set of assignments, which determines which tug must take which action at which
moment.

The possible actions that correspond to assignments are:

couple trailers,

load batches,

drive from one location to another,
unload batches, or

decouple trailers.

akrwnNE

This planning file can be provided to the simulation component to assess the validity and the
quality of the schedules. By analysing the schedule in a separate component, we ensure a
separation of concerns, and have a higher chance of finding any errors. The simulation
component makes sure the schedule is valid, in the sense that the timings are possible
according to the routes provided in the location descriptions. Also, it makes sure resources
are used one by one, i.e. a trailer is always only used by a single tug at a time, and a batch is
loaded only once. Finally, it will determine which batches are handled in time, and will
generate a report consisting of a set of KPIs that will determine how good a planning is.
Potentially, there could also be a feedback loop between the simulation and the scheduler,
by sharing files, or even a real-time interface, for instance if in the simulation some
unforeseen circumstances would be encountered. However, at the moment this is not
implemented.

Simulation

The simulation component as described in the previous section is implemented using a
discrete event simulation. The tool that was used to create this simulation is called DynAA
[27], which is a simulation library developed by TNO.
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DynAA has been used in multiple domains; initially it was created for modelling sensor
networks, with a heavy focus on the communication side of the system. It has been
extensively used as the core driver for the NetSquid? simulator, which models quantum
communication networks.

Discrete event simulations operate by modelling any state changes in the world as discrete
events, which occur at a specific time. In the period between two events, the world is
assumed to be static, therefore the simulator only needs to keep track of changes at the
events and can jump from one event to the next one. Any object in the simulated world can
schedule an event at a time in the future and can register as a listener for future events.

An event has an entity as a source is always of a specific type. An event type might be for
example: BATCH_LOADED or START_DRIVING. A schematic representation of the objects in
DynAA is shown in Figure 13.

Timeline | event | event |

triggers

schedules

Figure 13: A schematic overview of the objects and relations in a Discrete Event Simulation.

An example of how this describes relations in the BrightSky simulation is that of a trailer
loading a batch of luggage. Both the trailer and the batch are modelled as entities, so both
can schedule and listen for events. At some point a function is called of the trailer object,
with an argument the batch that needs to be loaded. This function checks some conditions
and updates the state of the trailer and c/aims the batch. Claiming the batch means that the
batch will schedule an event called START RESOURCE CLAIM at the time of being claimed,
and at the same time will schedule an event after a specific time of type

FINISH_RESOURCE _CLAIM. Upon the latter event, the trailer again triggers because the
loading is now finished, and thus updates its state again, and immediately schedules an
event BATCH_LOADED.

By describing relations between objects as events, and corresponding event handlers, allows
for a very flexible way of modelling systems. Entity additions or removals can occur
seamlessly, without the need of predefining all permutations of cause and effects.

Relation to external simulators

In this research a specific simulation environment and scheduling model have been
developed to answer the research questions. The model has been developed with the
awareness that BrightSky consortium partners and possible other external parties have
knowledge and tools that have overlapping functionalities within existing tooling. Options
for connecting existing models and simulation environments have been discussed, but
differences in requirements, technological and legal possibilities lead to the conclusion to
develop a tailer-made model to answer the posed research questions with possible future
connections of modules in mind. This paragraph gives a brief overview of the relation of the
developed simulation model to existing software at Vanderlande, T-Hive and KLM.

1 https://netsquid.org/
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Terminology

Before we go into details on existing tools, we first briefly describe the terminology. The
software that generally provides insight in the number of shipments to be transported is
called Warehouse Management System or Warehouse Execution System. As the name says
the tool oversees the number of products in stock and the requests for new stock delivery or
pick-up of stock. In our simulation model we call such a request a Job that defines a number
of Batches (trailer loads) that need to be transported from or to an airplane.

A next step in the process flow is that these batches need to be assigned to empty trailers
and a tug to transport them. A system that assigns tasks to vehicles is generally called a
Fleet Management System (FMS) or Transport Management System (TMS). How these
different functionalities are integrated in the developed simulation model and in current day
applications at consortium partners is described below.

Tooling at Vanderlande, T-Hive and KLM

The simulation model developed for this research covers decision making processes that the
KLM Ground Services executes in present day operations. To optimise transport of baggage
to their flights KLM has developed an optimisation tool, called BagPro, that allocates tugs
and tug drivers to transport baggage on the airside of Schiphol. In short, BagPro requires
input information on to be transported baggage, available tugs and tug drivers and provides
a schedule for the tugs and tug drivers as output. The internal methodologies have not been
shared, but it is a central optimisation method, that covers functionalities of WMS and FMS
systems. It also covers functionality of WMS systems as the tool can decide which
shipments to transport and which shipments not to transport to optimise operational costs.
Given the commercial sensitivity it is not possible to use or directly connect BagPro to the
developed models in this research.

In parallel to BagPro, Vanderlande and T-Hive develop tooling to orchestrate fleets of
(autonomous) baggage tugs or pods. They call this the FLEET system, which contains
separate tooling for WMS and FMS functionalities. In theory these functionalities could be
interchanged or connected to developed decision-making models in this research. However
due to differences in level of detail and uncertainty in specifics, requirements and
possibilities this has not been done up to now. The main difference between BagPro and the
FLEET system is that BagPro includes business specifics of the airline and optimises with the
objective of minimizing operational costs for the airline. For example it can prioritize over
which bags to ensure make their plane based on costs that would be incurred to the airline,
costs that can differ per flight or destination. Where the FLEET system (currently) is not
aware of all airline operational costs that are impacted by the systems decisions.

An abstract overview of the different systems compared to the central and decentral control
methodologies has been sketched in Figure 12.
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Figure 14: Abstract overview to compare basic functionality and setup of developed control methods and
tooling at consortium partners.
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Multi-fleet scheduling
methods

The core part of the simulation model is the scheduling of tasks for the baggage fleets, or in
other words the baggage fleet control methods. This chapter describes the problem
formulation and how the problem is solved using central and decentral techniques.

General problem formulation

The main objective of the problem is to deliver as many batches on time as possible. The
decision variables are the assignments of tugs and trailers to jobs. Each tug and each trailer
can only be assigned to one job at any point in time. For every part of every journey of every
job, there is a fixed time that needs to be spent. This depends on the number of bags that is
being transported for the loading and unloading of bags.

The process of picking up a job and delivering the baggage is as defined as follows:

1. Tug picks trailers up:

a. Drive to trailer 1

b. Couple trailer 1

c. Drive to trailer 2

d. Couple trailer 2

e ..

Drive to job start

Load baggage on trailers
Drive to job destination
Uncouple trailers
Unload baggage

o0k wN

The execution time of each of these jobs is added to the schedule for the tug-trailer-
combination that executes the job. The tug and corresponding trailers are only available
after the baggage is unloaded. We assume that there is one optimal route per
origin/destination-combination. Combined with the driving speed of tugs, we get the travel
times for the origin/destination-combinations. These travel times are stored in a matrix. For
origin/destination-points inside baggage basement, only the travel time from outside up
until the closest entry point of the specific basement is included. Travel time inside the
basement is excluded. The number of trailers that a tug can drive with is limited and has a
differentiation for the baggage basements.

Model approaches

The goal in this research is to schedule tugs and trailers according to a given objective. The
tugs and trailers will be scheduled jointly but are separate entities. The main priority is
maximising the number of on-time baggage deliveries. For outgoing flights, this means that
the baggage is delivered to the VOP before the final load deadline.
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For incoming flights, it is a bit different. In this case, there is an internal deadline by which
baggage should have reached the internal baggage systems of Schiphol Airport, counting
from touch down. In this case, the goal is to deliver the baggage to the internal baggage
systems before that deadline. This optimisation is done through scheduling tug-trailer
combinations. This problem is only non-trivial in case the total number of tugs and trailers
are restrictive. However, if the tugs and trailers are not restrictive, another goal could be
added: minimise the total number of vehicles needed in the process.

The problem can be formulated as a Mixed Integer Linear Program (MILP) and categorized
as a version of problems such as the job shop scheduling problem, vehicle scheduling
problem and the order scheduling problem. These formulations are for the central approach.
MILPs are NP-hard. The decentral approach to solving the scheduling problem in this
research is formulated through a Distributed Constraint Optimisation Problem (DCOP).
Optimisation methods for both MILPs as for DCOPs are discussed in the following sections.

Central approach

We consider two types of central optimisation: heuristic methods and solvers that are
guaranteed to find the optimal solution, given enough computation time and the existence
of an optimum. The heuristic methods are not guaranteed to find an optimal solution but
are in general much more scalable and require less computation time. Both options will be
discussed in the following sections.

Heuristic methods

We have implemented two greedy, heuristic methods. They are both originating from the
same principle: earliest deadline first. We denote this with the “first in, first out”-solver (FiFo-
solver). The algorithm consists of sorting the list of assignments to be planned based on
their deadline, in which the assignment with the earliest deadline is the first on the list and
the assignment with the latest deadline the last. This assignment is then coupled to the first
available tug. This is followed by the search for available trailers to load the batches on. This
is also done based on the first and closest available trailers.

The second method that we apply as heuristic is a “smarter” version of the FiFo-solver. We
have named this the FiFoPrime-solver (FiFo’-solver). The improvements are detailed below.

The decision to use First-In First-Out methodology is driven by the problem specification with
time critical deadlines and the need for a computationally fast benchmark method. By
sorting the available tasks on their deadline and subsequently assigning them in that order
to available tugs generally leads to quite effective schedules [6]. Improving this greedy
method by adding more reasoning to the assignment was done to have an alternative
central approach next to the MILP approach, which showed to high computation times.

Search for trailers based on available time and travel time to location

In most cases, multiple trailers must be gathered for an assignment. The FiFo-solver tries to
assign trailers to batches based on the time that it costs to get to the available trailer-
locations. This may, however, lead to trailers being gathered from multiple locations for a
certain assignment. This can result in inefficiencies for total distance driven. The FiFoPrime-
solver has replaced this behaviour by trying to gather the total number of necessary trailers
at one location. In this improved algorithm, locations with at least as many available trailers
as needed are listed. This is followed by sorting the list based on travel time to each of these
locations of trailer-groups. The trailer-group that is closest by is then assigned to the job.
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Only schedule batches that will arrive before deadline + slack

When a certain batch will be delivered late, resulting in a late flight, the FiFo-solver just
keeps on trying to schedule subsequent batches of that flight in time. In time here indicates
the original deadline and slack. This slack is the wiggle room that is available for delivering
after the deadline. If the baggage cannot be delivered before the deadline + slack time, the
baggage is added to the category ‘mishandled baggage’. Adding this baggage to separate
‘mishandled baggage’-category instead of still trying to deliver batches as soon as possible
(even when these are past the deadline + slack) allows for a break in the lateness.
Continuing to schedule batches, even when there are already late batches for a specific
flight can lead to a propagation of lateness in the schedule. This is changed in the
FiFoPrime-solver, in which a timeliness check is done before actually scheduling the batches.
This timeliness check involves the comparison of earliest possible delivery time and deadline
(including slack). Batches that can be delivered on time will be scheduled, while the
remaining batches are marked as too late and ignored. This last step, ignoring late batches,
follows from the principle that late batches will miss their flight and will be reassigned in the
system. This is not the flow that we are scheduling and hence, we ignore batches that we
can no longer schedule to arrive on time.

Only couple/decouple if necessary

The FiFo-solver couples exactly as many trailers as there are batches to be scheduled and
decouples the trailers as soon as the corresponding batches are at their destination. For the
next assignment, however, the tug will need to gather trailers again. If there are trailers that
have been available for a longer period, the tug will gather these, instead of the trailers that
have been uncoupled from it during the previous assignment. In the FiFoPrime-solver,
trailers are only uncoupled if there are more coupled to the tug than necessary for the next
assignment. This removes unnecessary steps.

Solvers

Itis possible to formulate the given problem as a Mixed Integer Linear Program (MILP).
There exists software (both commercial and open source) that can solve such an MILP.
These solvers guarantee to find an optimal solution if they are given enough computation
time. The computation time, however, scales exponentially with the size of the problem. For
already a small subsection (5 tugs, 100 trailers, 20 batches) of the problem, the solver (Coin-
OR branch and cut, available through PuLP in Python, [28]) that we chose took multiple
hours to find a solution. This was not entirely unexpected, as the problem consists of many
assignments for both tug to job and tug-trailer-combination to batch. Because of the
computation time, we have not used the central MILP-solver for our final analyses. A not
explored alternative would be to use commercial solvers, which might be better suited to
solving large problems. These were however not available for this project.

Decentral approach

The decentralized approach is based on a Distributed Constraint Optimisation Problem
(DCOP) formulation of the baggage fleet scheduling problem. In DCOPs, agents have to find
assignments to variables, which in our problem correspond to combinations of trailers and
batches. This means that every tug is represented by an agent, who is responsible for
claiming a set of batches to deliver and finding the right set of trailers to do so. The agents
will have to communicate with one another to share some information about assignments.
This is done to find an assignment which leads to an overall assignment, that is beneficial for
the whole group.
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Cost function definition

A cost function needs to be defined, that determines how “good” or “bad” an assignment is.
Ideally this cost function eventually represents the lateness of a batch of luggage, and at
the same time holds some information about the priority of the batch, as well as the
possibility to deliver the batch at all. Therefore, the following cost function for an assignment
xis used in our scheduler:

Cpr = Ay — 1y + —2- (1)

Ny+1

Where A, is a lateness penalty, indicating that an assignment in which any batch is too late
will have a high cost. Then, 7, indicates the number of trailers that is used, so that longer
trains are preferred over short trains, and finally s; is the time required to deliver all batches
in the assignment. This indicates that the agents will somewhat greedily choose
assignments that they can quickly complete, instead of finding the assignments that are
nearly going to be too late. However, because of the lateness penalty, the agents will still try
to find assignments minimizing any late deliveries. This is quite a fine balance between
assigning batches near their deadline versus choosing batches as quickly as possible.

In addition to the “preference” cost function, there is also the “overlapping assignment” cost
function which states that two agents must never have assignments in which the same
batch is assigned to two agents.

_ (o 3,(bex)u(bey)
Coy = {o, otherwise @)

Here we indicate that the cost affected by assignments xand y is equal to some penalty ¢ if
there is some batch in xand in y. We introduce a virtual assignment 9 that corresponds to
not doing anything to allow the agents to avoid this penalty. The cost of this “do nothing”
assignment is defined as Cy. Then, as long as the following holds:

A<Cy< ¢ 3)

the agent will prefer delivering a batch too late over doing nothing, but the agent will also
prefer delivering a batch late over attempting to deliver a batch for a second time.

Cooperative Constraint Approximation

To solve the DCOP-formulation of the baggage fleet scheduling problem we use the
Cooperative Constraint Approximation (CoCoA) algorithm. Van Leeuwen and Pawetczak
2018 [10] introduce CoCoA (Cooperative Constraint Approximation), which uses a
non-iterative, semi-greedy approach with a one-step look ahead. This algorithm can cope
with asymmetric constraints and is faster than other (A)DCOP solvers.

CoCoA has three key ideas:

1. “Aone-step look ahead to consider the effect of an assignment on the cost of
neighbours. This is especially effective when a neighbour is constrained in its
choices;

2. A unique-first approach, such that an agent will only assign a value if it is a unique
local optimum for its variable. If it cannot find a unique solution, the decision will
be delayed until more information is available;

3. A state machine to spread and keep track of the algorithm’s activity, prevent dead-
locks or endless loops.” [10]
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Effectively, this means that any agent will inquire with its neighbours what the impact of his
decision will be on them. Then, he will assign the value that minimizes the cost for himself,
and his neighbours. A neighbour in this context, means any agent that he shares a
constraint with, and since in our problem, we cannot assign any duplicate batches, every
other agent is a neighbour.

Method adaptation for domain specific application

Similarly to the approach proposed in [6], a pruning step is used to reduce the domain size of
the variables, and at the same time reduce the number of constraints that an agent needs
to consider. Both reductions have a large impact on the search space, which means that the
algorithm will converge faster. At the same time, the reduction of the number of constraints
will make the problem graph less dense, which we know from the literature will improve the
found solution of CoCoA [29]. This pruning step is implemented by making “trains” of
batches and trailers, selecting only the first batches that can be delivered at the time of
running the algorithm, and selecting the top ncombinations as candidates. Then, when the
DCOP algorithm runs, only these top n trains are considered when solving the problem.

Once a solution has been found for the DCOP problem, every agent has assigned a value to
its variable, meaning every tug has selected a set of trailers and batches to deliver. The
corresponding batches are removed from the queue, and the process repeats until there are
no more batches to be delivered.

Hyperparameter optimisation

The above-described cost function and methodology adaptations are a result of iterative
improvements of the multi agent decision system. In between the implementation
iterations, results of the CoCoA-algorithm have been studied to identify possible
improvements in single agent decision making and the agent interaction protocol.

The adjustments were in either of the following categories:
1. Elements to include in cost function (see equation 1);
2. Value of weight parameters (see equation 3).

Equation 1 shows the final cost function, taking into account: (1) lateness of batch deliveries
Ax (2) length of trailer train 71, and (3) total time required s,. Elements that have been tested
in development iterations, but did not make the final cost function are for example time
remaining until batch delivery deadline, difference of batch deadlines within a train and
penalising additional trailer (de)coupling.

The calibration of weight parameters has been done by evaluating scheduling results: if the
resulting scheduled train lengths were rather short with mostly one or two trailers, the
weight value for train length has been increased, or, if many batches were assigned with
late delivery, then the penalty for lateness has been increased and the function for
estimating has been improved.

Implementation

A Python implementation of this algorithm was developed and in parallel a decentral
BrightSky scheduler was made that creates a DCOP-formulation of the general problem
formulation to feed into the algorithm. Scenarios with both central heuristics and decentral
CoCoA method have been simulated and the results are presented in next chapter.
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Results

Experiments have been run with the developed simulation model and the different
scheduling methods using the baggage transport data as described in the section Airside
And baggage handling data. We first compare the results of the different scheduling
approaches (central and decentral). Following this, the different fleet scenarios of

single- and multi-fleet are compared.

Unfortunately, no data on real world execution of baggage tug fleets was available.

This would have been preferable as benchmark values. Alternatively, the basic and greedy
assignment method First-In First-Out (FiFo) (see 7.2.1.1) is used as a reference method in
the results.

Scheduling problem size and context

The schedules have been calculated for two problem sets: a small and a large problem set.
In the small problem set we have used 20 tugs which have to deliver bags for 100 jobs. In
the large problem set we have used 60 tugs which have to deliver bags for 500 jobs. A full
day of baggage transport consists of approximately 4000 jobs and at most 60 tugs for the
KLM ground handler. This implies that the large problem set represents approximately 1/8-th
of a day, similar to scheduling 4 hours ahead. The current day operations system of KLM,
BagPro, schedules 15 minutes in advance. Scheduling longer periods in advance is not
deemed effective due to the high level of uncertainty and dynamics in the airport processes
and scalability issues in the scheduling problem. We have experienced a similar scalability
problem with the MILP approach, therefore heuristic methods have been developed to
schedule longer periods of time. Dynamics, such as disturbances or changes of airplane
timing, are not (yet) included in the simulation model and therefore not of impact in this
study. This study schedules a longer period ahead to create more extensive results to
provide more input to the comparison of the scheduling methods.

Key performance indicators

Six performance indicators have been used to evaluate the performance of the scheduling
methodologies on the baggage transport problem. The main objective of the baggage
transport fleets is to ensure that as many bags as possible reach their flight in time. A more
efficient scheduling method will result in the same fleet being able to deliver more bags in
time. Hence, the number of on-time delivered the bags is the most important indicator. The
total driving time of the tugs is reported to indicate the resource efficiency of the scheduling
methods. To this purpose, also the number of used trailers is reported. This will especially be
interesting for comparing the FiFo- and FiFoPrime-schedulers, as the FiFo-solver does not
reuse trailers, while the FiFoPrime-solver allows the same trailers to remain attached if they
can be reused for the next job. Lastly, the average length of the trailer trains are reported.
This is an indication of the amount of batches that can be combined into one ride and tells
something about the efficiency of the rides.
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Note that there are three more indicators than described in the plan of approach in
paragraph 2.4. The increase in number of indicators is due to the fact that the indicator in
total driving time of tugs is separated into driving with loaded and with empty, which added
2 new indicators. The third additional indicator that has been added is the average train
length. This indicator gives insight in the impact of the different scheduling methods on the
train formations and therewith making more effective use of available tug capacity.

The main performance indicators that are presented in this chapter are therefore:

number of on-time delivered bags,
total driving time of the tugs,

total driving time with empty trailers,
total driving time with loaded trailers,
number of used trailers,

average length of trailer train.

o0k whE

The decentral method, the DCOP-solver, has a random component. To be able to report on
the results of the DCOP-schedules we have run each experiment 100 times for the DCOP-
solver. This is shown in the report by showing the average value for the DCOP-schedules in
the coming sections. The spread of the results of the 100 DCOP-schedules is shown in the
figures, in which the standard deviation is presented through a whisker plot with one
standard deviation below and above the mean as end points.

Single fleet comparison of central and
decentral solution methods

The results of comparing the central FiFoPrime- and decentral CoCoA-methods in the single
fleet scenario are presented in this section. Before we go into the fleet performance details
we first compare the methods on computation time requirements.

Computation time requirements

FiFoPrime currently has a much lower computation time compared to the decentral method.
For example with the large problem instance FiFoPrime requires 15 seconds for a single run,
where the DCOP method currently needs 30 minutes. This requires the sidenote that for the
DCOP the Python implementation of the multi-agent negotiations spends 90% of the
computation time in waiting for Python threads in the scheduling process, due to the fact
that the DCOP implementation is executed on a single processor thread. As mentioned
before the exact central method did not even get to a solution within 30 minutes for the
small problem instance, therefore we are now comparing DCOP results to a more basic, but
computation time efficient, central approach. The results of the two problem sets will be
compared in more detail in the following two subsections.

Small problem set

We have used 20 tugs that have to deliver bags for 100 jobs in case of the small problem
set. The results of this problem set are shown in Table 4. The DCOP-solver performs the best
for most of the KPIs. The DCOP-schedule, on average, timely delivers the most bags, which is
also shown in Figure 15. Even the DCOP-schedules that perform worse than the average
DCOP-schedule perform better than the central scheduling methods.
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For the total driving time, driving time with empty trailers and the driving time with loaded
trailers, the DCOP-schedule also performs the best. The margin for the DCOP-schedule
outcomes as shown in Figure 15 is small enough for the worst DCOP-schedules to
outperform the central methods. Note that total driving time for DCOP is relatively not that
much lower than the FiFo-methods. This is due the fact that DCOP also creates assignments
for all too late bag deliveries, implying driving time for these too late deliveries is also
included, where the FiFo-methods do not include these assignments. Note that DCOP
method cannot incorporate hard constraints, because constraints are added by cost
penalties. So there is a cost penalty for late delivery, to minimize occurrence, but it does not
prevent these deliveries from being added to the schedule by the DCOP method.

The FiFoPrime-method performs the best for the total number of used trailers. This could be
a result of the coupling-decoupling-method that has been implemented for this method,
where coupling/decoupling is only done in case the next job requires more/less trailers.

Lastly, we see that the average train length is the longest for the DCOP-solver. This means
that the tugs, on average, drive with more trailers attached. This is a measure of efficiency,
as shorter trailer trains lead to more separate drives that need to be made in order to deliver
the same number of bags.

Table 4: Results of simulation with 20 tugs, doing 100 jobs.

‘ FiFo l FiFoPrime ‘ DCOP
Absolute Absolute | % of FiFo | Absolute | % of FiFo
Bags delivered on time [#] 9216 9686 105.10 10696 116.06
Total driving time [h] 18.04 16.71 92.63 14.09 78.10
Total driving time with empty 9.39 8.87 94.46 7.83 83.39
trailers [h]
Total driving time with loaded 7.65 7.84 102.48 6.26 81.83
trailers [h]
Average train length [#] 2.19 2.19 100.00 3.42 156.16
Bags delivered on time Total driving time
DCOP — FiFo 1
FiFo DCOP Lon
0 2000 4000 6000 8000 10000 0 5 10 15
number hours

Figure 15: Comparison of the different schedulers on the "small" problem.
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8.3.3 Large problem set

In the large problem set we have used 60 tugs which have to deliver batches for 500 jobs.
The results of the scheduling methods are reported in Table 5 and Figure 16. In this
experiment, the DCOP-solver performs best for all but one KPI - the total number of used
trailers. The percentual differences compared to the baseline FiFo-results for the other
scheduling methods are slightly smaller for this problem instance. Moreover, the variation in
the DCOP-schedules is reduced, see also the error bar of the DCOP-outcomes in Figure 16.

The results are comparable to the results of the small problem instance, with the same
ranking in methods for most KPIs. One KPI for which there is a difference in ranking of the
scheduling methods is the total driving time with empty trailers. FiFoPrime now performs
worse than FiFo. This can be attributed to an increased impact of the decoupling/coupling-
strategy for the FiFoPrime-scheduler. Tugs keep trailers attached if they are needed for

the next job, leading to an increased driving time with empty trailers compared to the
FiFo-method. This does not lead to a higher total driving time for the tugs in the FiFoPrime-
schedules than in the FiFo-schedules. This is an indication of the trade-off between driving
with empty trailers and driving without trailers (not reported) and more efficient scheduling
of the FiFoPrime method.

Table 5: Result of the simulation with 60 tugs and 500 jobs.

‘ FiFo ‘ FiFoPrime ‘ DCOP
Absolute | Absolute | % of FiFo | Absolute | % of FiFo
Bags delivered on time [#] 49269 55737 1131 % 58758 | 1193 %
Total driving time [h] 162.94 130.56 80.1 % 101.93 62.6 %
Total driving time with empty trailers 54.12 67.80 125.3 % 50.71 93.7 %
(h]
Total driving time with loaded trailers 59.55 62.76 105.4 % 51.20 86.0 %
[h]
Average train length [#] 2.04 213 104.4 % 2.87 140.7 %
Bags delivered on time Total driving time
DCOP H FiFo
FiFo DCOP H
0 20000 40000 60000 0 50 100 150
number hours

Figure 16: Comparison of the different schedulers for the large problem set.
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8.3.4

8.4
84.1

Trailer train assignment

The difference in performance between the control methods is amongst others caused by
the difference in trailer train formation as described in 7.2.1.1. This also results in a different
use of trailer assets as different trailer assets are to be coupled and decoupled in the
resulting assignments. The simulation model counts the different trailer assets that are
being used and these are reported in Table 6. Dividing the number of used trailers by the
delivered bags provides an indication on how efficient the tugs use the available trailer fleet.

Note that analysing the trailer usage was not a primary goal of this study, but due to the
difference in control methods there is also in difference in trailer usage. For context, the total
number of available trailers in the simulation is 2365, which is an estimation of the size of
the trailer fleet owned by KLM. In the simulated scenarios for all three assignment methods
this number of trailers is more than sufficient for the resulting schedules.

Table 6: Used trailers and trailer use efficiency for the different control methods for the large problem
instance (60 tugs, 500 jobs).

’ FiFo ’ FiFoPrime

Absolute Absolute % of FiFo | Absolute % of FiFo

Used trailers [#] 1739 693 39.9 % 754 43.4 %
Bags delivered on time [#] 49269 55737 1131 % 58758 1193 %
Trailers / Bags on time [# / #] 0.035 0.012 35.2% 0.013 36.4%

Single-fleet compared to multi-fleet

Multi-fleet simulation results

A medium-sized problem set has been created for the comparison between the single-fleet
and multi-fleet results. This problem set consists of 20 tugs which have to deliver bags for
500 jobs. We use the smaller instance number of tugs due to computation time
requirements, because of the need to do multiple simulation runs to quantify the
randomness effect in the decentral approach. For the number of jobs, the larger instance set
is used to intentionally provide a large set of jobs for which 20 tugs is a too small fleet to
deliver all bags timely. This provides the context to analyse which control method in which is
scenario is most effective in assignment of the tugs and trailers and provides a schedule
which delivers the most bags timely. Thus we don’t expect the tugs to deliver all jobs, but we
want to quantify which method performances the best.

The same performance indicators as in the previous sections have been compared. In this
section, we define the single fleet as the scenario in which the separate fleets (inbound and
outbound) are separately scheduled for the separate problems. The fleet for which the jobs
are scheduled consists of single fleets, hence the name.

The multi-fleet scenario refers to the case in which the two inbound and outbound fleets are
combined into one joint fleet. The fleet for which both the inbound and outbound jobs are
then scheduled consists of both fleets, hence the name ‘multi fleet’. The two different
scenarios have been created to compare the impact of fleet collaboration and asset sharing
between the inbound and outbound fleets. The results are presented in Table 7 and Figure
17.
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When we compare the single- and multi-fleet results for the benchmark FiFo-method, we
already see improvements on the number of bags delivered on time. The other KPIs,
however, have increased in a seemingly less efficient direction. This can be explained by the
fact that significantly more jobs have been successfully executed, which means that the

number of resources used and the number of kilometres driven increase.

Like the large problem simulation results of the central and decentral comparison, these
results show that the central FiFoPrime-method outperforms the central baseline method of
the FiFo-solver. This is apparent in the number of bags delivered on time, the total driving
time, the number of used trailers and the average train length. The total driving time sub-
KPls of total driving time with empty/loaded trailers are higher for the FiFoPrime-schedules
than for the FiFo-schedules. Combined with the drastic decrease in number of trailers used
for the FiFoPrime-method, this can be explained by the decoupling/coupling-strategy for the
FiFoPrime-method. The KPI for average train length is similar for the FiFo- and FiFoPrime-
schedules in the single- and multi-fleet scenarios.

The FiFoPrime-method, in turn, is outperformed by the decentral DCOP-solver, with more
jobs scheduled in both the single- and multi-fleet scenarios. The single fleet DCOP-schedules
perform better than both the single- and multi-fleet schedules of the FiFo-solver. When
comparing the DCOP-scheduler with the FiFoPrime-scheduler the on-time delivery of bags is
increased with 48%. This shows that the DCOP-solver performs significantly better than the
FiFo-solver. Zooming in on the DCOP-solver comparison of single fleet with multi fleet
performance shows that the on-time performance of bag delivery increases by 55% in case

of multi fleet collaboration compared to single fleet operations.

Table 7: Results of the single- and multi-fleet scheduling.

Bags delivered on time [#]
Total driving time [h]

Total driving time with empty
trailers [h]

Total driving time with loaded
trailers [h]

Average train length [#]

FiFo

Single
14248
64.97
32.86

27.98

1.49

Multi

22414
82.47
37.91

34.50

157

FiFoPrime
Single Multi
16920 27380
62.76 82.29
32.37 40.84
30.39 41.46
1.52 1.60

DCOP
Single
25042

73.51
35.37

38.13

3.75

Multi

38838
79.29
36.82

42.46

3.39

For all scheduling methods, the multi-fleet scenario allows for an increase in total driving
time compared to the single-fleet scenario. This increase is the strongest for the central
scheduling methods. The increase from single-fleet to multi-fleet scheduling in the other
driving time KPlIs is similar for each of the scheduling methods. The increase of total driving
time with empty trailers is the strongest for the FiFoPrime-scheduler. This can be explained
by the fact that the FiFoPrime-method only couples or decouples trailers in case the number
of trailers needed for the next job does not match the number of trailers needed for the
current job. This means that the tug often drives towards the next job with a set of empty
trailers. This behaviour is also part of the DCOP-scheduler, but is not part of the FiFo-

scheduler.
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8.4.2

Lastly, we report on the average train length. This is, as in the other problem sets, the
highest for the DCOP-schedules. Interestingly, the average train length slightly increases for
the central scheduling methods, while the DCOP-schedules have shorter trains on average
for the multi-fleet problem set compared to the single-fleet problem set. This can be an
indication of the many jobs that are delivered in the DCOP-multi-fleet schedule, which
means that there might be more jobs at approximately the same time that need to be
executed. This could indicate that the scheduling preference for the DCOP-scheduler lies
with the execution of jobs and less with the average train length. In other words, the DCOP-
scheduler prefers the execution of as many jobs as possible over maximising the average
train length. This is also in line with the fact that the DCOP-scheduler explicitly steers on the
execution of jobs and does not explicitly focus on maximising the train lengths.

Single-fleet Multi-fleet
Bags delivered on time Bags delivered on time
DCOPH — DCOP H
FiFo | FiFo 1
0 5000 10000 15000 20000 25000 0 10000 20000 30000 40000
number number
Total driving time Total driving time
DCOP H FiFo
FiFoPrime DCOP H
0 20 40 60 0 20 40 60 80
hours hours

Figure 17: Comparing single-fleet and multi-fleet scheduling.

Multi-fleet performance improvement

The previous section provides the absolute numbers resulting from the simulation. From
these results we have calculated the fleet efficiency by looking at the average number of
bags delivered per tug per hour to give a more direct answer to the question on what the
gain of asset-sharing in the multi-fleet is. The bags per tug per hour are presented per
control method and for single- and multi-fleet scenarios in the table below. Comparison of
the single- with multi-fleet scenario’s shows a tug efficiency increase of 23 to 44 %.
Implying that multi fleet asset sharing can reduce the requirements for tug and tug drivers
significantly.
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Table 8: Increase in tug effectivity from single- to multi-fleet in number of bags delivered per hour for the

three control methods. .

Bags delivered on time [#]
Total driving time [h]
Bags delivered on-time per hour

9% Iincrease bags per hour from
single to multi-fleet

Single

14248
64.97
209.6

Multi

22414
82.47
2718

29,7 %

FiFoPrime
Single Multi
16920 27380
62.76 82.29
269.6 332.7
234 %

Single
25042
7351
340.6

Multi

38838
79.29
489.8

43,8 %
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9.1

Conclusions and
discussion

Conclusions

Combining the knowledge from literature and insights in airside processes simulation results
leads to the following conclusions and answers on the posed research questions. First we
answer the main question and subsequently the sub questions.

What type of control (central/decentral/hybrid) is most suitable for managing a system of
multiple fleets of baggage tugs, taking into account specific features of unmanned vehicles?
The developed decentral scheduling (DCOP) method outperforms the greedy heuristics that
represents central decision making. For the two central decision-making methods that have
successfully been implemented, the FiFoPrime-method performs best. The central MILP-
approach, implemented in solver software PULP in Python has not made it to the final list of
evaluated solvers, due to the extremely high computation times. The MILP-solver should be
able to find an optimum, if it is given enough computation time. This means that we could
not compare the results of the implemented methods to optimal schedules. We have,
however, implemented two types of central scheduling methods in order to create a
benchmark schedule and to show the improvement potential. The developed methods can
control fleets of manned and unmanned vehicles, more on autonomous vehicles is
elaborated below at the question on the differences posed by unmanned vehicles.

The performance of the decentral control methodology is dependent on the setup and
calibration of the multi-criteria objective functions of the agents, as discussed in section
7.2.2. Setting the right objective is always critical for decision making algorithms, but in the
decentral setup this is even more challenging compared to the central situation due to the
complex interaction between agents within multi agent systems.

To conclude this answer, our report indicates that the decentral scheduling method
performs the best when taking both computation times and KPI-results into account. With a
6 to 10% increase in on-time delivered bags when comparing DCOP to FiFoPrime in the initial
single fleet results and 48% increase in on-time delivered bags in multi-fleet results. The
increase was higher in the multi-fleet scenario due to larger, more challenging, problem with
more baggage transport jobs.

What are the differences between central and decentral planning of a (baggage) fleet?
Central planning of a baggage fleet requires less communication between vehicles. The
communication that is needed for decentral applications provides a computational
challenge in the current Python setup, which is a single server simulation environment.
However, this can be resolved by distributing the problem over separate entities of
resources. The decentral communication and optimisation method will generally outperform
the computation time of exact central methods, especially when applied to larger problem
sizes.
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In the decentral planning setup, information will be shared with all vehicles in the problem.
This does not necessarily mean that all information is shared with all vehicles. Information
on the preference of each vehicle will only be shared with other vehicles if they are in each
others neighbourhood, i.e. if they are interested in the same jobs. General information about
jobs will be shared with all vehicles.

In the central planning setup, the central, “control tower”, entity will have full information.
This means that the central entity should be able to find an optimal solution if it is given
enough runtime. Because of the incomplete information in the decentral setup, this same
guarantee on the optimality cannot be given. It is, however, not the case that the decentral
setup cannot find an optimal solution at all. This is still possible, but there are no guarantees.

What are the differences in organising and controlling a manned and unmanned fleet?

A manned and unmanned fleet differ in vehicle properties, such as driving speed and ability
to handle dynamic and potentially unexpected situations. This could become apparent
through restrictions on the maximum driving speed for unmanned vehicles, because of their
different ability to handle unexpected situations. These properties are inputs for the
performance levels of the vehicles and need to be known and incorporated in the scheduling
problem.

However, a vehicle is a vehicle, from the plain perspective of the scheduling algorithms.
Characteristics such as driving speed are inputs for the algorithms, but the characteristics
that define the difference in manned and unmanned vehicles do not influence the way
vehicles are defined for the algorithms. These properties are known in advance and taken as
given in order to define the problem constraints. Therefore the developed control methods
can also schedule fleets with unmanned vehicles, however due to a lack of information on
unmanned vehicles characteristics this has not be done in this study.

What are the effects of sharing resources (vehicles and drivers) amongst fleets?

The effects of sharing resources has been discussed in section 8.3.4. In this study, we have
investigated two separate fleets (incoming and outgoing) of KLM Ground Services. We have
defined two different fleet setups to investigate this impact: (1) a single-fleet scenario in
which fleets are separate entities and (2) a multi-fleet scenario in which all resources are
shared and the resource pool for the entire problem consists of all resources combined.
Inbound and outbound jobs and resources are separated for the single-fleet problem
instances: inbound jobs can only be handled by inbound tugs and similarly for outbound jobs
and tugs. The inbound and outbound jobs are combined into one pool of jobs for the multi-
fleet scenario, in which every tug (both inbound and outbound) can execute any available
job, irrespective of its direction.

The analysis has shown that 55% more orders can be delivered in time in the case of the
multi-fleet scenario. In absolute terms, the DCOP-solver has performed best and shows the
most improvement in bags that are delivered in time from single- to multi-fleet. The other
two solvers have also improved in the number of bags that are delivered in time. Logically,
the total driving time and number of used trailers have also increased for each multi-fleet
scenario compared to their single-fleet equivalent. This is to be expected, with the strong
increase in jobs that can be executed in time.

The concept of merging the fleets is not novel to KLM Ground Services. Additionally, it is
relevant to note that there are factors complicating the merge of inbound and outbound
fleets into one combined pool of tugs. The main reason for this is overall scheduling
complexity of dynamic airport processes and an increase in complexity when ingoing and
outgoing are combined. Handlers should weigh the benefits of the number of bags delivered
in time against the costs of making each driver employable in both fleets.
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9.2

Discussion

The conclusions are based on the knowledge attained from and experiments with the
developed simulation model. The choices that have been made in this research and
limitations to available data and insights have room for improvement and further research.
In this section we will discuss possible steps for future research.

A first improvement would be to compare the performance of our models with real world
schedules. Due to the sensitivity of information in the actual schedules, we have not been
able to compare with the scheduling results of BagPro. As this is a central model, this would
give more insight on the performance of the decentral scheduling method. Moreover, it
would allow us to make realistic checks on our models. Related to this, an addition of a
central scheduling method would be interesting. As the mixed integer linear programming
method is too computationally heavy, future research could investigate the performance of
commercial MILP-solvers or central metaheuristics such as Simulated Annealing, Genetic
Algorithms and Tabu Search.

The analysis in this research could also be extended by including dynamics in the simulation,
such as disturbances and rescheduling during the model runs. This will create a simulation
environment that better resembles the real-world situation, in which rescheduling happens
often. This would also allow for more insights in the difference in performance for the
central and decentral methods. Decentral methods have as benefit that they are quick,
while central methods usually attain better results due to their higher level of information
availability. While computation time may not be an issue for day ahead scheduling, it
becomes an increasingly important factor when rescheduling during the day. Rescheduling
during the day needs to be done quickly in order to maintain the same level of performance
as before the rescheduling and prevent the mismanagement of jobs. The preference in the
balance between performance and computation time may shift in case of dynamic
scheduling with disturbances, and hence, a shift in the "best” computation method may
occur. Moreover, this may also lead to the investigation of hybrid control methods. These
can be implemented on multiple levels. Firstly, a combination of central and decentral
scheduling methods could be used when scheduling both a day in advance and during the
day. The day ahead schedule could be made by a central method, ensuring a high level of
performance, while rescheduling during the day may be done with a decentral method,
ensuring a relatively short computation time. In addition, a hybrid form of control can also
be implemented as way to allocate certain decisions to specific control methods. Include a
hybrid form of control where straightforward decisions are made local on a decentral level
and decisions which require negotiation are solved on a higher, more central, level. For
example all decisions that do not lead to decision conflicts can be directly assigned, but in
case of decision conflict the decision-making choice could be provided to a central planner
to make the call.

The decentral control method could be improved by a more extensive analysis of the impact

of changes in the utility functions on the performance. This could also be done in
cooperation with handlers, in order to make the utility function as realistic as possible.
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Appendix

Subprocesses in air plane turnaround

Ground handler

The ground handler has a broader portfolio of activities around the airplane turnaround than
only the baggage handler. In general, a ground handler is responsible that the following
processes are executed during airplane turnaround:

Baggage and goods (un)loading
Refueling

Maintenance

Waste collection

Cabin cleaning

Catering services

©uhswNE

Air Traffic Control

After all turnaround processes have been achieved it is not certain that the plane can
directly depart afterwards. As the airplane needs lift off clearance from the Air Traffic
Control, Lucht Verkeersleiding NederLand (LVNL). This is an additional actor to actors
mentioned in chapter 4, but as it is not relevant in the baggage handling process it is left out
of scope of the simulation model:

LVNL ensures safe flight, take off and landing procedures. The air traffic control center
(LVNL) assigns landing and departure slots on the air strips to the flights. Their main goal is
safety and no accidents (can) occur. With their decision they impact the arrival and
departure time of flights and they do not play a direct role in the turnaround process; they
merely define then when the process starts and ends. Therefore, they are very far away
from the baggage transport process and are considered out of scope for the remainder of
this report.
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A.1.3 Overview of turnaround process and role of
baggage handler and busses
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Activities per stakeholder in turnaround process.
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A.2 Data format example

experiment_name: probleml

# The input file where this problem was derived from, only for traceability
input_data_file: schiphol_data_20191008_a.pkl
problem_generation_timestamp: "2022-09-14T10:04:21Z"

# Fleet information, define the fleets of tugs for different types of operation
fleets

inbound

tugs

tug_id: tug_1234

driver: autonomous # The driver type may impact the break times, driving style, reliability

fuel: electric  # Fuel type defines where it may charge, but also can be used to take into account
emission behaviour

driving_time_left # The driving time left (in seconds) is a simplified model of the fuel tank /
battery size and efficiency, and thus the action radius. For now this ignores the amount of cars, weights
and driving speed. If needed we can elaborate this if we want to make the model more precise. The unit is
seconds, which corresponds to the unit of the driving times between locations.

max_driving_time # Maximum driving time (action radius) on a full fuel tank / battery.

max_train_length # Maximum amount of trains this tug can pull, a simplification of the maximum pull
weight, if needed we can make this more precise.

location: basementA # Location of the tug at the start of the simulation. The string is a reference to
the location further down in the problem file

tug_id: tug_abcd

driver: human

fuel: diesel

driving_time_left

max_driving_time

max_train_length

location: fuel_stationl

outbound

empty

# Trailers are the empty cars on which we can load baggage or containers. They can be loaded or empty,
and have a physical location which may of course change over time.
trailers
trailer_id: trailerl
# max_weight: 123
type: luggage # The type of trailer defines whether it can be loaded with separate luggage items,
or a single container.
load: basementA_to_KL1212_batchl # This trailer has a load at the start of the problem definition
location: basementA # The location defines where the trailer is
trailer_id: trailer2
type: luggage
load # An empty trailer is denoted as one where the load is null
location: basementC
trailer_id: trailer3
type: container
load
location: trailer_park

# Flight information contain information about deadlines and locations where the luggage has to go to or
come from.
flights
flight_id: KL1211
type: inbound # Type of flight denotes wether the flight is inboud or outbound
arrival_time: "2022-08-31T11:00:00Z" # Time when the flight is (expected) to arrive at the VOP to be
unloaded
unload_deadline: "2022-08-31T12:00:00Z" # For an inbound flight: this is the time when the flight has to
be fully unloaded
VOP: VOP123 # The location where the flight is arriving
priority_level # A priority can be set to influence the planning. Here a number between © and
100 is suggested, but might as well be 0-1
flight_id: KL1212
type: outbound
departure_time: "2022-08-31T13:00:00Z"
load_deadline: "2022-08-31T12:30:00Z" # For an outbound flight: this is the time when the loading has to
be finished
VOP: VOP123
priority_level

# The luggage of the flights that need to be transported from one place to another, separated into jobs
jobs
job_id: basementA_to_KL1211_firstclass_transfer
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flight: KL1211
end_time: "2022-08-31T12:00:00Z"

origin: basementA # The origin of the luggage for this job, where it need to be loaded on the
trailer

destination: VOP123 # The destination of the luggage for this job, where it is unloaded.

job_class: first class # The class of the job may influence the priority

service: transfer # The service type influences the priority, but also to where the loading times
or locations should point to.

batches # A job is divided into batches. One batch can be loaded onto one trailer, hence the

amount of batches indicate how many trailers are needed.
batch_id: basementA_to_KL1211_batchl
type: luggage # The type of batch corresponds to whether this batch is "loose" luggage, or a
single container. This should correspond to the type of trailer
available_time: "2022-08-31T10:00:00Z" # Different batches of the job will have a different time at
which they are ready for picking up. This is useful information for a planner as it may choose to pick up
a single batch, or wait for multiple and take them in a single drive.
nr_of_bags: 10 # Integer denoting number of baggage items in batch
job_id: basementA_to_KL1212_economy_reclaim
flight: KL1212
end_time: "2022-08-31T12:30:00Z"
origin: basementA
destination: VOP123
job_class: economy
service: reclaim
batches
batch_id: basementA_to_KL1212_batchl
type: luggage
available_time: "2022-08-31T10:00:00Z"
nr_of_bags: 10
batch_id: basementA_to_KL1212_batch2
type: container
loading_time: 60 # The loading time (in seconds) of a batch can override the "default" loading
time that is specified in the locations file.
available_time: "2022-08-31T10:05:00Z"
nr_of_bags: 1
batch_id: basementA_to_KL1212_batch3
type: container
loading_time: 60
available_time: "2022-08-31T10:10:00Z"
nr_of_bags: 12
batch_id: basementA_to_KL1212_batch4
type: luggage
available_time: "2022-08-31T10:15:00Z"
nr_of_bags: 13
batch_id: basementA_to_KL1212_batch5
type: luggage
available_time: "2022-08-31T10:20:00Z"
nr_of_bags: 14
batch_id: basementA_to_KL1212_batch6
type: luggage
available_time: "2022-08-31T10:25:00Z"
nr_of_bags: 15

locations: !include locations_schiphol.yaml # The locations object is loaded from another file, since
this file is expected to be quite big, and does not change a lot between problems.
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