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ABSTRACT A compressed sensing (CS) digital radar system based on a sparse array design is proposed
for use in automotive collision-avoidance applications. The proof-of-concept radar system offers an
enlarged antenna aperture, employing fewer elements and can distinguish targets at an angular separation
of only 2 degrees for a bandwidth of 6.25%. This resolution is made possible using a multiple-input
multiple-output (MIMO) configuration from the original sparse array which was implemented and tested
using substrate integrated waveguide (SIW) technology. More specifically, the total aperture size (of the
effective virtual receiver array) is 23.51 which is equivalent to a uniform-linear array (ULA) having 48
elements spaced at 0.5A apart. However, the total number of elements is 32. This defines a cost-effective
setup offering a reduction of 16 elements which accounts for a 33% reduction in the number of required
channels for the SIW array. Also, the radar exploits sparse-reconstruction techniques for target detection.
Results of the simulations and measurements show that the performance of the proposed SIW antenna
and experimentally verified radar system can offer competitive high-resolution detection when compared
to other findings in the literature and to the best knowledge of the authors, no similar antenna and radar
system implementation has been designed and experimentally verified.

INDEX TERMS Compressed sensing, digital beamforming, frequency modulated continuous wave
(FMCW), short-range radar (SRR).

I. INTRODUCTION

ADAR detection for autonomous vehicles has seen

a proliferation in recent years, with industries and
governments investing heavily in the progress of these
systems. While the industry has reduced the growth in 2020
by 21%, it is still projected that the radar industry will
grow in the foreseeable future [1]. Also, radar systems
have become more complex and have reached a certain
maturity, with the topics being directed to microwave
and millimetre-wave systems and complex RF processing

chains [2]. Market trends for the automotive radar industry
are also influenced by performance safety programmes,
such as the European New Car Assessment Programme
(EuroNCAP) [1]. Moreover, EuroNCAP has set standards for
automatic emergency breaking (AEB) for collision avoidance
systems since 2014.

The latest AEB systems, for example, should be able to
avoid crashes for vehicles coming from the side of the car at
a field-of-view (FOV) of 120° on each side and for a distance
of 150 m [1]. The front looking radar should also be capable
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TABLE 1. Comparison of other automotive radar system performances and our work.
Reference | Carrier Receiver Array Antenna Equivalent HRSP Method (SSP) | Receiver Range Angular
Freq. Architecture Type Receiver in the Angular Percentage Resolution | Resolution
(GHz) Array (ERA) Domain Bandwidth (cm) as RCW
or A\/D
[19] 10 ULA Planar array of 18 Fourier, BPDN 16% 9.3 6.4°
MIMO microstrip (=2x9) (LASSO
patches /L2 /L1) by SPGLI
[4] 76 1) Sparse virtual | Planar array of 12 OMP, BPDN by 1.3% 15 6.6°
irregular array by | microstrip (=3x4) SPGL1 FOCUSS (sparse)
MIMO and patches 11.8°
2) ULA (ULA)
[20] 76.5 Regular virtual Planar array of 32 IMAT 2.62% 7.5 20
array by MIMO microstrip (=4 x38)
patches
[7] 300 Single element Horn 5 TX-RX Bilateration, backpro- | 6.2% 0.0083 1.13°
with mechanical Antenna channels jection, elastic net
movement
This work | 24 Sparse virtual array | SIW-fed planar 32 Dual formulation 6.25% 10 2°
by MIMO slot array =4 x (4x2) | of BPDN by YALLI1

to operate over a FOV of at least 20° and permit detection of
objects up to a range of 250 m. In addition, since 2018, radars
are required to be able to avoid cyclist crashes from the side
and front of the car [1]. This capability is possible only if
the elevation information is retrieved from the environment.
Therefore, the latest radar systems require detection in four
dimensions (4D radar): range, Doppler, azimuth, and elevation.
In addition to this, the manufacturing of the sensors must be
cost-effective and practical for mass production [3].

To meet these general design goals, hardware devel-
opments in automotive radar have also progressed in
recent years. One point of interest for microwave and
millimetre-wave radar systems has been directed towards
enhanced resolution of targets and the integration of digital
technologies [2]. Also, a frequently mentioned benefit of
sparse-signal processing (SSP) is the possible resolution
improvements as compared to traditional-signal processing
(TSP), and potentially, lower hardware costs. Moreover,
SSP with various algorithmic solutions has been shown
to have improved resolution probability as compared to
TSP [4], [5], [6], [7], [8], [9]. Also, applying reprocessing
on the same data after detection with low sidelobes, one
may consider to perform pre-whitening in order to improve
accuracy [10], [11], [12].

Given this stage in the developments and depending on
system requirements, a radar may need high resolution in
some or all dimensions. Our approach in this work is to
focus on azimuth resolution as well as reduced hardware
requirements by exploiting sparsity, but the approach can
also be applied to the elevation and range dimensions,
netted radars [13], [14], [15], [16], and other sectorized
systems [17]. In particular, [17] demonstrated a sectorized

and modular MIMO radar system which was capable of
distinguishing targets at £2° in angular separation for the
azimuth domain.

A new study is reported in the following, which chooses
the optimal MIMO antenna element spacing mainly focus-
ing on achieving the best possible half-power beamwidth
(HPBW) and sidelobe level (SLL) performance. Moreover,
our approach in the receiver (RX) antenna design is to
determine the appropriate sparse configuration by thinning
a pre-specified regular array with spacing %/2. The main
criterion in determining this configuration is based on
the HPBW of the resulting virtual array at the receiver.
More specifically, this 32-element MIMO radar antenna
configuration achieves a virtual aperture length of 23.5,
and this is equivalent to a 48-element ULA with 4/2 spacing
resulting in a 33% reduction in the number of elements.

This can offer significant operational cost savings for
the radar as each element is typically connected to an RF
channel which can be digitized, and the reduction in the
number of elements can enable reduced power and hardware
requirements. Also, when our proposed array is compared to
an equivalent ULA with /4 spacing (which would require
95 elements for the same aperture length), our antenna
system demonstrates a 66% reduction in the number of
elements. Nevertheless, our developed sparse array based
on */2 element spacing was manufactured using substrate
integrated waveguide (SIW) technology, and experimentally
tested and built-up with a set of frequency-modulated
continuous waveform (FMCW) target studies defining an
experimental and modular digital MIMO radar.

This experimental and proof-of-concept radar system is
advantageous; i.e., detecting two targets with a 2° separation
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with a bandwidth of more than 6% (see Table 1). Another
unique and novel feature of the proposed MIMO radar
is the spectral smoothing [18] added to the SSP, which
is shown to offer improved SNR performance. To our
best knowledge, no similar antenna and radar system has
been reported previously offering improved target-separation
resolution capability.

The paper is organized as follows. In Section II we
discuss the literature of SSP in the context of automotive
radar and sparse arrays. In Section III we describe the
employed CS approach for the digital radar system trials.
In Section IV the sparse antenna design is outlined and
its performance is assessed. In Section V we present the
simulation and measurement setup of the CS digital radar
system. A conclusion follows in Section VI.

Il. LITERATURE OF AUTOMOTIVE RADAR SYSTEMS
There have been significant advancements in RF electronic
components and radar systems while exploiting fully digital
transmit-receive antenna arrays. These advances can be
observed in the literature in the context of new radar systems.
Moreover, there has been significant development in sparse
arrays, MIMO, and SSP for automotive radar and other
related applications. This is because such architectures can
lead to reduced sampling requirements and data rates, while
maintaining angular resolution. As a result, innovative proof-
of-concept systems have been designed and presented in the
literature as described next.

An example is the fully digital X-band FMCW radar system
described in [19], [21]. A linear array of 12 folded dipoles
was distributed in two transmit (TX) subarrays (the outer
two elements on both sides) and one receive (RX) subarray
(the 8 center elements). The spacing within the subarrays
approximates X /2, while the spacing between (outer elements
of) the subarrays approximates A /4. With this configuration, a
virtual array of 18 elements was formed by MIMO techniques,
whose spacing is /4 when considered 2-way Tx-Rx [21,
Fig. 2] and, hence, the 2-way Rayleigh-cell (/D) width (i.e.,
RCW) is 12.7°, while 1-way it is 6.4°. The radar processing
exploited matched filtering (MF) and MUSIC.

Another contribution aimed directly at automotive radars
is [4]. Similar to [21], the paper describes the formation
of a virtual array of 29 elements with half-wavelength
spacing, by MIMO techniques, and the application of five
high-resolution processing methods [4]. Additionally, several
types of thinned virtual arrays are considered and results
in [4] report the smallest target separation of more than
two Reyleigh cells of the virtual array (8.6° in [4, Fig. 5
(right)] versus 3.95°). In [4] also, an analysis of resolution is
presented. For example, as [4, Fig. 4 (middle)] shows, three
high-resolution methods applied to a virtual aperture of 8.641
with 12 elements (with optimized positions) can resolve two
targets. This research was extended in [6] where an antenna
positioning scheme for CS-MIMO radar was reported.

The work in [20] is also aimed at 77 GHz automotive
radar applications. The paper describes the synthesis of a

sparse array by thinning a regular, Nyquist-sampled, array
using a genetic algorithm and such that the irregularity of the
obtained array prevents side-lobe rise due to the increased
spacing between the antenna-array elements. The missing
array elements are reconstructed by inter- and extrapolation
using the iterative method with adaptive threshold (IMAT)
algorithm. This procedure lowers potentially sidelobes fur-
ther and it narrows the beamwith since the aperture is almost
doubled in extent. Generally, the SNR is not increased by the
reconstruction. The Rayleigh cell of the resulting (virtual)
array of length 29 A is 2.0°.

The work in [7] is more challenging from a manufacturing
point-of-view given a carrier frequency of 300 GHz. It
discusses target localisation by a 300 GHz system, whose
angular Rayleigh cell is 1°/0.886 ~ 1.13°. The considered
signal-processing methods are bilateration, back-projection,
and HRSP by elastic net. They are applied to a measurement
with two targets separated in elevation by 3.4°. So, the targets
are separated by approximately three Rayleigh cells. Another
contribution in [22] examined the influence of coupling on
the virtual array positions of a MIMO radar and a calibration
method using the Discrete Fourier transform (DFT) for
antenna element positioning.

These contributions are summarized and compared in
Table 1 and show that academia and industry are seeking
compact and modular automotive radar systems. Such systems
should exploit planar implementations as well as cost effective-
ness whilst being scalable to larger radars. This combination
brings up clear requirements and system characteristics:
high resolution for small to moderate aperture sizes, and
with reduced digital hardware requirements. Moreover, the
comparisons in Table 1 suggest that the proposed sparse
MIMO array design and experimentally tested radar can
offer improved system performances (i.e., increased angular
resolution achieving 2° target detection with a bandwidth of
6.25%), while other uniform MIMO and ULA solutions may
achieve reduced metrics. To the best knowledge of the authors,
no similar SIW antenna array and digital FMCW radar system
using SSP has been demonstrated previously.

lll. SPARSE PROCESSING
According to the Nyquist-Shannon Theorem, any band-
limited signal can be reconstructed without ambiguities if this
signal is sampled with at least twice the bandwidth frequency.
While this is simple and effective, it also adds a data surplus
to the analogue-to-digital conversion process. It would be
more efficient to extract only the relevant information from
the detection, by employing compressive sensing (CS) in
order to detect and classify the targets, and so, reducing the
signal processing requirements.

Presuming that pulse compression has been carried out
and focusing on a specific range bin, we can describe the
received signal by

K
y:Za(Gi)x,-+n=Ax+n (1)
i=0
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FIGURE 1. Diagram showing the steps that can be taken to apply CS reconstruction
in an automotive radar scenario.

where x; are complex amplitudes, a(f;) are the responses
to unit sources at different angles, y contains the received
signal samples, n is the noise, and A is the sensing
matrix or dictionary. Aiming at enabling high-resolution
data processing based on a single snapshot (in the angular
domain), we formulate the well-known least-squares problem
penalized or regularized by the £;-norm,

N . 1
X = argmin |x||; + —Ily —Ax||%. 2)
x 2u

This minimization problem is the Basis Pursuit Denoising
(BPDN) problem or the Langrangian formulation of the
Least Absolute Shrinkage and Selection Operator (LASSO).
It presumes sparsity of the ‘solution vector’ x. The variable
1 in (2) represents the weighting or regularization parameter.
A theoretical analysis of the choice of u can be found
in [23] and an approach to set u by requiring a certain false-
alarm rate in noise-only simulations can be found in [11].
For target situations, one can get insight into the optimal
algorithm settings by considering the so-called sparsity-SNR
phase transition diagrams. Such diagrams represent detection
or failure rates for varying numbers of targets and varying
SNR. In [24] such diagrams are generated and studied for
simulated data and for measured data of realistic traffic
scenarios.

It should be mentioned that there are two basic needs
for CS: recoverability and stability. With recoverability, the
point of interest is the types of measurements and their
number to extract a sufficiently sparse signal. Stability
refers to the robustness of the algorithm over time and
noise variation [25]. Basically, with a known measurement
y, it can be assumed that a reconstruction algorithm will
look at the sparsest solution for the measurement samples.
An illustration of the CS reconstruction steps is shown in
Figure 1, showing data acquisition, sparse data formation
and reconstruction using /; minimisation.

A fast and robust method of performing sparse recov-
ery based on Eq. (2), can be obtained by rewriting
this objective to its dual form, see [26, Sec. 2.3]. This
form can be approximated numerically by an Alternating
Direction of Multipliers Method (ADMM), as developed
in [27], [28]; i.e., see the ADMM-based iteration scheme
in [26, eq. (2.26)] for the relevant orthonormal dictionary
developed. This scheme is implemented in the YALLI
toolbox for sparse reconstruction for both orthonormal and

non-orthonormal dictionaries.! See also the (L1/L2) problem
in [29, p. 1].

These sparse-reconstruction techniques are important in
modern radar signal processing and can enable enhanced
resolution while reducing hardware requirements and radar
system complexity. In our approach adopted herein, we
utilize the LASSO formulation to enforce sparsity in the
angular domain. This allows for accurate target detection and
with minimal antenna elements. To solve this problem, we
employ ADMM, which is particularly well-suited for large-
scale, constrained optimization problems [27], [28]. ADMM
iteratively decomposes the problem into smaller, manageable
data sets (or updates), ensuring fast convergence and robust-
ness against noise. More specifically, ADMM operates by
splitting the overall objective into sub-problems which are
then tackled individually, using an augmented Lagrangian
framework to enforce consensus between variables. In each
iteration, ADMM alternates between minimizing a smooth
loss term (e.g., least-squares data fidelity) with respect to
one set of variables, and minimizing a potentially non-
smooth term (e.g., the L1 penalty) with respect to the
previous set [27], [28]. The resulting dual variables are
then updated to reconcile the solutions from these two
steps, effectively imposing the equality or ‘“consensus”
constraints.

It is interesting to note that an implementation of ADMM
on chip was described in [30], which may ease the
integration of ADMM for automotive applications. This
decomposition strategy allows ADMM to handle large-
scale or high-dimensional problems more efficiently than
many competing methods. In YALL1 moreover, ADMM is
implemented in a way that accommodates both orthonormal
and non-orthonormal dictionaries seamlessly, offering a
flexible framework for sparse recovery. Through its iterative
updates and ability to handle non-smooth regularizers like the
L1 norm, ADMM in YALLI1 converges reliably to a sparse
solution [26], [27], [28], [29], and this can offer efficient
and robust (sparse) radar signal processing.

In general, YALLI requires a few iterative steps to
find the reconstructed vector x which is k-sparse. A flow
diagram depicted in Fig. 2 shows the procedures taken in
the algorithmic process. It is also important to initialize the
target vector and the YALL1 parameters appropriately. These
parameters refer to the noise threshold, maximum number of
iterations, etc. These parameters have been summarized in
Table 2 for the results of this paper. Setting the parameters
for YALL1 is important since its convergence depends on
setting adequate parameters. In the iteration phase of the
algorithm as shown in Fig. 2, the method for obtaining
the reconstructed signal is achieved by using minimized
Lagrangian functions through an alternating minimisation
procedure and an update of each multiplier after each sweep.

U1n the latter case, the update of the dual variable y in the iteration scheme
is replaced by [26, eq. (2.23)]. Note also that, in the YALLI toolbox, the
parameter S is set equal to 1.
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FIGURE 2. Your Algorithm for L1 (YALL1) procedure diagram.

TABLE 2. YALL1 input value parameters.

Parameter Range Description
This parameter assigns
p (le-2;1e-3) the L1/L2 model, usually with
a positive value.
YALLI can compute
w 0;1)
the conversion with non-uniform weights.
6 0.1 Noise level threshold
Print [0,1,2] Levels of printout
Maxit [0:9999] Maximum iterations
v [0:1] > 0 for L2/L.1 model
P le-3 > 0 for L2/L1 model
nonneg 0 1 for non-negativity
°w set by user penalty parameter

This methodology solves this convex optimization problem
by dividing it into smaller pieces which are simpler to solve.

In this paper we will use the aforementioned ADMM
implementation of YALLI for our high-resolution (HR) radar
signal processing. It should be noted that we have considered
other HR methods in [31], namely MVDR/CAPON, MUSIC,
and Functional Projection whilst considering standard X /2
element spacing at the radar receiver; i.e., a non-sparse
antenna array. In particular, the radar setup in [31] demon-
strated an angular resolution of at least 12.6° for a 2TX 4RX
experimental FMCW radar setup. Other studies for different
virtual MIMO aperture sizes have also been reported in [17]
considering DAS target detection. For our reported results
in the following sections, which adopt a newly designed and
sparse MIMO antenna array (see Section 1V), we use the
aforementioned (L.1/L2) problem implementation in YALLI.
These efforts are then experimentally demonstrated for the
first time in a radar system demonstration achieving 2°

vary this distance

SUB-ARRAY 1 TILE 5UB RAY 2 TILE

Virtual MIMO receiver element

Legend:
l:l Physical MIMO transmitter element

mPhysical MIMO receiver element { E | Emptyelement space

FIGURE 3. Template for obtaining a sparse array design for a 2TX 4RX receiver
MIMO array, with /2 inter-element spacing.

angular resolution for a bandwidth of 6.25% (see Table 1,
and Section V). Moreover, the dictionary employed for our
SPP is an oversampled collection of linear phase tapers,
by which the vector x is sparse for a limited number of
targets in the angular domain.> Because of the oversampling
in the dictionary, the non-orthonormal dictionary option
of YALLI is adopted. Also, the dictionary columns are
normalized to have unit 2-norms, otherwise convergence
problems may arise. The weight parameter u (o in the
YALL1 implementation), the convergence tolerance, and the
algorithm tuning parameter y are fixed to 0.01, 5-107°, and
0.99, respectively. Also, the maximum number of iterations
is 9999.

IV. SPARSE ANTENNA ARRAY DESIGN AND RESULTS
There has been a wide interest in sparse antenna array
design for automotive radar systems due to the capability
of obtaining a larger aperture and modeling SLL for better
target detection [2], [4], [7]. While most works use different
algorithms to obtain the optimal solution based on a set of
constraints (antenna size, number of elements, desired SLL,
etc.), our work starts with a standard */2-spaced array, and
then, makes it sparse. This approach is simple and develops
a clear methodology of how to obtain an optimal MIMO
sparse array.

A. DESIGN CONSIDERATIONS FOR THE SPARSE ARRAY
& ANALYSIS

As described in Section I, the radar receiver antenna
considered in this work employs substrate integrated waveg-
uide (SIW) technology. A 4/2 inter-element spaced element
version has already been fabricated and tested in [32]
considering some preliminary radar trials. Each element of
the array is realized by a series-fed (linear) sub-array of
three slots for radiation. The far-field pattern for this sub-
array element can be seen in Fig. 12, from [17]. In our
newly proposed sparse array design, this same SIW sub-array
element was also employed. The new design methodology
is as follows. We first thin an eight-element receiver array
to form a sparse four-element array while considering a
similar SIW sub-array transmitter. Next, a second transmitter

2C0nsequently, the sparsifying weight-matrix W in the YALL1 (L1/L2)
implementation is the identity. Also, no weights in the ¢{-norm are
introduced according to [29, eq. (9)], since no specific angles are promoted.
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FIGURE 4. Numerically calculated azimuth beam patterns using the element-beam pattern multiplied by the array factors of the configurations listed in Table 3.

is included forming a virtual receiver aperture which is also
sparse.

It should be mentioned that an exhaustive search was
carried out for the possible array configurations, by changing
the separation between the transmit elements (see Fig. 3).
The motivation was to achieve the best possible half-power
beamwidth (HPBW) and SLL. Figure 3 also illustrates the
baseline MIMO antenna system with 2TX and 4RX, which
was then made sparse. By varying the spacing between the
two antenna transmitters it allows for the creation of a larger
virtual antenna receiver with 8 elements (2x4), which can
increase the total aperture length and reduce the HPBW. This
reduction can improve the radar target resolution. However,
this extra degree of freedom comes with the possibility of
introducing grating lobes and raising the SLL, which are
undesirable. Basically, in our sparse array design we are
aiming to minimize these peak SLLs when compared to the
main beam.

While it might be better to vary the inter-element
spacing non-uniformly as in [17], it is desired in this
study to show that a high angular resolution can also be
achieved while starting with a simple equidistant inter-
element spacing. This starting point helps convergence to
the best solution in our evaluations in terms of narrowest
HPBW and low SLL. In particular, an exhaustive two-stage
study was completed where the HPBW was the primary
criterion for the array while the SLL was secondary. See
Table 3, where the five best configurations are reported,
while Fig. 4 presents a comparison of the different patterns.
As mentioned previously, these configurations were gathered
by first discovering the best solution for the individual
MIMO antenna array, mainly by, selecting different elements
which were then driven within each sub-array tile and by
varying the spacing between the sub-arrays (see Fig. 3),

TABLE 3. Comparison of the five best sparse (receive) antenna array configurations.

Config. | Inter-array SLL
Element Positions (\) HPBW

Nr. | spacing (\) (dB)

1 7.5 -2,0,1,1.5,55,75,85,9| 3.6° |-523

2 7 -2,-1,0,1,5,55,7,8 4.0° | -5.06

3 6.5 -2,-05,0,1,45,55,6,8 | 4.0° |-6.17

4 6 -2,-1,0,1,4,55,6,7 44° | -5.86

5 55 -2,0,1,15,35,55,65,7| 4.6° |-5.00

Note : the actual array is located between —2 A and 1.5 X\ and the
eight-element virtual array is next to it. Note that, here, \ is the
free-space wavelength, which is 1.25 cm in free space at 24 GHz.

whilst aiming for best possible performance for the total
MIMO sparse array. This was defined by narrow HPBW and
low SLLs.

The u-v response in Fig. 5 helps to even more observe
the SLLs when varying the antenna scanning angle and
the representation of the simulated response for array
configuration #1 (as defined in Table 3), and can be observed
in Fig. 5. We choose the coordinate system as follows.
The z-axis is directed along the array axis, the x-axis is
directed perpendicular to the antenna plane, and the y-axis
is directed along the slots of a single element such that a
right-handed coordinate system is obtained. Consequently,
the xz-plane is the azimuth plane and the yz-plane is the
elevation plane. Next, we introduce a classical spherical
coordinate system and a corresponding uv-coordinate system
with u = sin 6 cos ¢ along the y-axis and v = sin6 sin ¢ along
the z-axis. We consider the radiation pattern in the azimuth
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FIGURE 5. Calculated response for the eight-element (receive) antenna array in
(u)v-coordinates for a complete scan by configuration #1 in Table 3 in the plane v = 0.
Here, v = sin 6 and Vgcan = Sin fscan, and 0 and 6scan are the observation and as the
scan angles in a plane that incorporates the array axis. The response is calculated as
the simulated element pattern (of the four slots) and the array factor.
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FIGURE 6. SLL comparison for the different virtual array receiver configurations as
described in Table 3. The broadside HPBW is also defined in the legend.

plane u = 0 or ¢ = /2. As can be observed in Fig. 5, a
maximum SLL of about —4 dB is achieved. Even if the SLL
is under a certain margin when scanning at different angles,
it is also possible to have other side-lobes in a different
plane. Sweeping the 6 angle allows the detection of these
lobes.

Figure 6 also reports the SLL variation with scanning
angle for all configurations highlighted in Table 3. This
graph shows the SLL variance with steering antenna angle,
and it can be observed that at 30° off broadside the SLL
can rise to —2.5 dB. This indicates that the antenna array
should not be used for beamsteering in certain cases, as the
target detection may see false targets. In these situations, it is
possible to add tapering to reduce the SLLs at the expense of
HPBW and this is possible with more advanced digital radar
antenna implementations. Regardless, from this graph it can
be seen that configuration #3 provides the best SLL over

Port 7

Port 8
[

0 [
Port2 Port3 Port4 Port5 Port6

[
Port 1
FIGURE 7. Manufactured sparse SIW radar antenna with improved HPBW as
CC ed to an 8-el 1t array with half-wavelength spacing.

P

scan angle and this is the one which has been down-selected
for fabrication.

An alternative approach of selecting element positions for
MIMO radars within an automotive scenario was presented
in [6]. That work was based on the minimization of
the mutual coherence of the sensing matrix, and Monte
Carlo simulations demonstrated that the optimized 3TX and
4RX array outperforms other more standard arrays with
a similar number of elements. In contrast to our discrete
selection problem with minimum HPBW and SLL as the
objective, element positions were continuously optimized
with minimum coherency of the sensing matrix as the
objective in [6]. The optimization result is listed in [6],
Section III, and the array pattern (and hence the SLL)
is determined a posteriori for that work. See also Fig. 3
in [6] for more details where antenna performance values
are comparable to the ones reported for our newly proposed
SIW design, as further described next.

B. MANUFACTURED ANTENNA ARRAY & RESULTS
Microstrip arrays have been extensively used for automotive
radar systems since this type of antenna is simple to
design and easy to manufacture [33]. However, radiation
losses of substrate-integrated waveguide (SIW) antennas
are significantly reduced for millimetre-wave frequencies
when compared with microstrip patch antennas [34], [35].
Also, SIW-type antenna arrays are generally less dispersive
when compared to microstrip structures and other patch-type
arrays [36], leading to reduced beam-squint over frequency
which is generally desired for improved radar accuracy. This
is because SIW technology supports the fundamental and
dominant TEy;-like mode, and this field profile is known to
have lower dispersion when compared to the quasi-TEM mode
of microstrip [36], [37]. Moreover, since the transmission
frequency is constantly being changed in an FMCW radar,
the beam angle can vary due to this dispersion and when
employing more standard microstrip-based antenna arrays,
this dispersive property is undesirable in radar detection [17].
Following these previous developments, SIW technology
has been selected for our radar antenna (see Fig. 7). The
antenna, configuration #3 from Table 3, was manufactured
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FIGURE 8. Simulated and measured reflection coefficient values for the manufactured SIW sparse 8-element antenna array (see Fig. 7).

using Rogers Duroid 5880 and for operation at 24 GHz by
following [17]. Also, the via diameter, pitch and waveguide
width were chosen according to the design guidelines in [38].
The dimensions and positioning of the slots was then
optimized with the aid of design equations as found in [39] as
well as the commercial full-wave simulation software CST.
It should also be mentioned that the array was designed
for 24 GHz, but could easily be up-scaled for higher carrier
frequencies and operation at 77 GHz, for example.

For feeding the antenna prototype, a microstrip-to-SIW
transition was employed and utilized a tapered section for
improved matching. Simulated and measured reflection
coefficient values for the fabricated SIW sparse antenna-
array (see Fig. 7) are reported in Fig. 8. A reasonable
agreement between simulations and measurements can be
observed, particularly for the frequency range up to 25 GHz.
Most importantly, the -10 dB impedance band from about
24 GHz to 25 GHz for the manufactured SIW array is
well predicted by the simulations. There is some minor
disagreement between the position of the reflection coef-
ficient minimums, which could be related to some minor
connector misalignment or change in the rated value of the
dielectric constant which was specified by the manufacturer
at 10 GHz (similar challenges were documented in [40], [41]
and references therein). Regardless of these practicalities, the
developed SIW radar antenna is well matched from about
24 to 25 GHz.

For beam pattern measurements, the antenna under test
(AUT) was placed at 2.5 m from a standard reference
horn in the far-field and gain values were determined as a
function of angle. Simulations and measurements are shown
in Figs. 9 and 10 for the azimuth and elevation planes,
respectively. A fan beam pattern is observed in the elevation
plane to illuminate targets for the application scenario of
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FIGURE 9. Azimuthb n for the 8-el 1t SIW receiver (see Fig. 7).

automotive radar, while a directive beam is shown in the
azimuth plane supporting target resolution.

It should be mentioned that there is a general agreement
between the simulations and measurements, with some
minor discrepancies typical at microwave/millimeter-wave
frequencies. These can be attributed to minor fabrication and
connector practicalities (as mentioned above) and/or some
interaction between the antenna under test and the plastic
mounting platform. Regardless, the measured SLL is at about
—5 dB below the main beam peak which is consistent with
the simulations. The measured realised gain maximum for
the SIW radar antenna is 16.7 dB, only 0.7 dB below when
compared to the simulated value of 17.4 dB. In addition, the
simulated total antenna efficiency (including connectors) is
83.5%. The measured cross-polarization levels (all results not
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shown for brevity) are also in agreement with the simulations
being more than 20 dB below the main beam maximum at
broadside.

V. TARGET DETECTION AND RADAR SYSTEM RESULTS
A photograph of the digital FMCW radar system demonstra-
tor is shown in Fig. 11. The radar electronics are defined
by monolithic microwave integrated circuits (MMICs)
as described earlier in [17]; i.e., an ADF5901 MMIC-
transmitter, the ADF5904 receiver, and the ADF4159
phase-locked loop.

Two targets have been selected to simulate target detection
in an automotive radar collision avoidance scenario. This
detection trial is meant to simulate the case where a car
would be represented with two targets close by. If for
example the car would be able to detect only one of the
targets, then it would not be sufficient in certain situations to
avoid a collision. Hence it is important to perform this trial in
a controlled environment such as an anechoic chamber. The
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FIGURE 12. Normalised target return for frequency calibration at 200 MHz and
1.5 GHz for a corner reflector with 10 cm size.

two selected targets are an aluminum corner reflector with
an edge size of 10 cm on each side and a metal plate with an
edge also of 10 cm. In our study we selected targets with
similar sizes to detect them at a close angular spacing using
the CS and SSP approaches outlined earlier in Section III.

Prior to two-target testing, a preliminary study was
completed to assess the radar system bandwidth whilst using
a more standard (non-sparse), eight-element (2Tx, 4Rx) */2-
spaced MIMO receiver. The angular pattern of this study
after pulse compression can be seen in Fig. 12 to assess
the SLL for a single-target while also ensuring channels
imbalances were corrected for the digital radar. As can be
observed, the SLLs for the 1.5 GHz measurements were
improved compared to the 200 MHz bandwidth system and
results are consistent with simulations. Given these findings,
the radar system was set with a bandwidth of 1.5 GHz as
in [17], and was used for the detection trials. Also, during
system testing, precision-controlled linear stages (with low
reflectivity) were used to position targets with high accuracy;
i.e., laser guided, while environmental factors were carefully
monitored to ensure measurement consistency and limited
system drift.

A. RADAR SYSTEM TESTING

For the two-target studies, a square target plate was placed
at a fixed position in the anechoic chamber, while the corner
reflector was attached to a plastic pole which allowed its
spatial positioning for the detection trials. The measurement
setup is shown in Fig. 11 with indicated target positions. The
targets were positioned in the middle of the anechoic chamber
at 2.6 meters from the radar system demonstrator using the
SIW sparse antenna array outlined in Section IV. The radar
hardware is also shown, attached to a third pole and was formed
by using a four-tiled version of the developed SIW antenna
defining the modular implementation. This setup realized
the prototype proof-of-concept radar system comprised of 32
elements (= 4 x(4x2)) for the effective virtual receiver array.
A similar procedure was reported in [17] by some of the
authors for a sector-based FMCW-MIMO radar. That system
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FIGURE 13. Final measurement for two targets spaced at 2 degrees apart,
comparing delay-and-sum (DAS), CS, and the true target response.

was only able to resolve targets 4° apart in the best case (see
[17, Table 1 and Fig. 26]) by applying delay and sum (DAS)
beamforming only.

For the radar system proposed in this paper, detection
and estimation has been performed with two methods, DAS
and YALLI-CS, and results are shown in Fig. 13. The
two targets being positioned at an angular separation of 2°
are not distinguishable with DAS, but they can be clearly
identified when applying CS. As expected from the antenna
measurements, the SLLs are somewhat high and can lead
to false detections in both methods. Also, if a threshold is
set at —5 dB since the SLL of the virtual reciever array
is also about —5 dB (see Fig. 9), then two targets can be
clearly identified using CS, while DAS would only identify
one target. On the other hand, a threshold at —10 dB would
be unsuitable, as false targets would be identified at £52°
for both approaches as shown in Fig. 13.

B. SPECTRAL SMOOTHING USING PATTERN
MULTIPLICATION

In radar detection, angular target estimates such as the
ones processed using digital radar signals are mostly shaped
similar to a bell-shaped curve as seen in a normal or Gaussian
distribution. Multiplying several Gaussian functions will
result in reduction of the pattern level minima (or lowering of
the troughs) with respect to the main peak [42], [43], [44].
In this manner, the signal can have an improved SLL
response for the radar return. As outlined in [44], this
pattern multiplication approach can define a sharper peak
for the target estimates and improved radar accuracy. More
information about this smoothing process, pattern sharpness,
and the underlying mathematics can be found in [45].
Practically, the technique is basically related to the averaging
of multiple frequency-domain samples when completing
VNA measurements for low power signals in a noisy
environment (and this can improve the accuracy of the
recorded data). This can result in a cleaner or more accurate
target estimate response for the radar where the noise level

-10

Power(dB)

—DAS
CS+M
* True response

-50 0 50
Angles(degrees)

FIGURE 14. Final measurement for two targets spaced at 2 degrees apart,
comparing DAS and CS with multiplication (CS+M).

is effectively reduced, making for an improved signal-to-
noise-ratio (SNR).

This pattern multiplication method [44] is also based on
multiple readings of the same target scenario which can be
used to reduce the SLL. As mentioned above, this technique
can improve the SNR for the target estimate response
mainly due to this pattern multiplication operation and this
methodology is applied here for the CS results, mainly, to
reduce false reconstructions (which are observed in Fig. 13,
for example at about +52° away from broadside). By adding
this technique, the target detection response is improved as
can be seen in Fig. 14, with false detections 40 dB lower
than the response of the actual targets. This is very helpful
in situations where clutter would hinder radar performance,
however, as it is noted in [44], the approach does not increase
angular resolution. Regardless, the combination of CS and
multiplication yields a clearer image for the detection of two
targets with just 2° separation.

It should also be mentioned that simple computing hardware
was employed for the data processing and the SPP; performed
using a laptop running MATLAB. In particular, the computer
characteristics are as follows: Intel Core i7 CPU (3.60 GHz, 4
cores, and 8 logical processors), and 16 GB of RAM. Moreover,
the computation time was calculated as about 35 milliseconds
(or less) and it is expected that this can be improved if the
system is transitioned to FPGA-based processing. Similar
computing times were observed as reported in [17] and [43]
using analogous computation hardware, which was considered
acceptable for development automotive radar setups and the
related target tracking scenarios.

VI. CONCLUSION

A microwave/millimeter-wave FMCW digital radar system
is presented in this paper, in the context of automotive radar
collision avoidance scenarios. The paper also demonstrates
how an SIW sparse array can aid radar detection by
offering an enlarged MIMO virtual antenna aperture using
sparse signal processing, while preserving an acceptable
SLL response and competitive receiver bandwidth of 6.25%.
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The radar signal processing consists of applying sparse-
reconstruction techniques of the digital radar channels and
spectral smoothing. In this way, targets at an angular
separation of just 2° were shown to be distinguishable
during trial measurements in an anechoic chamber, and the
developed receiver offers a 33% reduction when compared
to an equivalent ULA. Findings in the paper are also
compared with other radar systems present in the literature
(see Table I), identifying system characteristics such as
angular resolution and receiver percentage bandwidth. As
can be observed, advancements offered by the proposed radar
system include planar antenna implementation as well as
improved system bandwidth and angular resolution.

The paper also discussed the methodology of obtaining a
sparse antenna array design, given some constraints, such as
antenna inter-element spacing and the number of elements.
Configurations have been compared for best possible radar
angular resolution and SLL, prior to fabrication of the new
radar antenna. Also, good agreement between simulations
and measurements have been reported. Future work can
include achieving better SLL responses for the antenna
design by tapering for non-broadside scenarios while also
considering radar systems with bandwidths in excess of 7%
and higher carrier frequencies.
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