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Within occupational epidemiology, the establishment of associations between
chemical exposures and health outcome, in particular of individual chemicals
present in the exposome, is difficult. Epidemiological studies are valuable but may
be prone to confounders, or lack detailed exposure characterisation. Rodent
studies may suffer from interspecies differences in comparison to humans. Here,
we explore if a data driven approach can leverage human relevant mechanistic
information to inform presumed associations between chemical exposures and
two common respiratory disorders: lung function decline (LFD) and allergic
asthma (AA). Using public toxicogenomics datasets, we identified Gene
Ontology Bioprocesses (GO BPs) enriched in human respiratory cells, exposed
in vitro to either diesel ultrafine particles (UFP) or respiratory sensitisers. In
addition, for LFD and AA, GO BPs were curated from Molecular Initiating
Events (MIEs) and Key Events (KEs) extracted from the Adverse Outcome
Pathway (AOP) Wiki, and DisGeNET, a gene-disease database. Considering the
commonality in GO BPs, a clear overlap was observed between GO BPs derived
from UFP and LFD (a.0. "negative -"/"positive” regulation of cell activation,”
“positive regulation of ion transport,” “stem cell proliferation”). 20 GO BPs
were overlapping between sensitisers in combination with AA (e.g., “responses
to xenobiotic stimulus,” “response to oxidative stress” and “regulation of response
to cytokine stimulus”). For AA, sensitiser concentrations used in in vitro were
generally higher compared to equivalent concentrations expected in vivo (from
PBK modelling). Yet, the overlapping GO BPs discovered for these endpoints were
plausible and aided in providing mechanistic insights. Currently, limitations exist
in the approach to infer causality (e.g., data availability, coverage of AOPs, in vitro
to in vivo dosimetry issues), however it can inform on the identification of
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chemicals within the occupational exposome and putative mechanistic linkage
with occupational diseases. Finally, the annotated MIEs and KEs for LFD and AA may
serve as valuable resource for further AOP developments.

sensitisers, ultrafine particles, in vitro cells, toxicogenomics, AOP, dosimetry, asthma, lung

function decline

Introduction

Over the past years, significant improvements have been made
in chemical risk assessment following advancements in toxicology.
Similarly, molecular medicine, molecular epidemiology and research
on the exposome, defined as the “life-course environmental
exposures, from the prenatal period onwards” (Wild, 2005) have
further matured, contributing to a better understanding of exposure
related diseases. Yet, associations between exposure and health
outcome, in particular of individual chemicals, and interactions
between these within the occupational exposome (Pronk et al,
2022), in relation to health, are difficult to comprehend in
humans. Responses observed in animal studies are informative
but may not always be representative for humans, as these are
often performed in inbred strains (ingnoring interindividual
differences seen in humans), which may alter outcomes
compared to studies performed in wild type animals (Brown
et al., 2011). Epidemiological studies, valuable to find associations
between disease and exposures may be prone to bias, confounders
and uncertainties in quantitative exposure assessment in relation to
health outcome (Schaefer et al., 2025).

Given these challenges, we here explore if a human-centric, data-
driven approach can provide mechanistic insights to support
possible associations between exposure and health effects with
relevance for humans. Further, we address if this approach is
suitable to identify if different chemicals within the occupational
exposome induce similar mechanisms leading to adverse outcomes,
as this may ultimately help to prioritise chemicals for risk
assessment.

Exposure to occupational agents contributes substantially to the
burden of respiratory diseases (Driscoll et al., 2005; Blanc et al.,
2019). For this reason, and as part of the European H2020 Exposome
Project for Health and Occupational Research (EPHOR)', (Pronk
etal., 2022), the effects of respirable chemicals on lung function and
allergic asthma (AA), triggered by sensitisation, are considered here.
Chronic obstructive pulmonary disease (COPD) and asthma
(including AA, induced by respiratory sensitisers), are the most
common chronic respiratory diseases globally. Recent estimates
suggest that both asthma and COPD affect millions of people
world wide. In 2019, asthma affected 262.4 million people
globally (Wang et al., 2023), while COPD affected 212.3 million
people (Safiri et al., 2022). These are chronic inflammatory diseases
characterised by airway obstruction and accelerated decline in lung
function with complex gene-environment interactions. Respiratory
sensitisation, where the immune system becomes hyper-responsive
to a substance, does not always cause immediate symptoms.

1 https://www.ephor-project.eu/
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However, once sensitised, subsequent exposures can trigger an
immune response, potentially leading to health issues like allergic
asthma (AA) (Hargitai et al, 2024). There are considerable
similarities in the immune mechanism and other biological
processes causing these diseases. However, the sequential
activation of these is not fully understood in humans, in
particular in relation to occupational exposures.

Therefore, we developed an expert- and data-driven workflow
grounded in human biology to facilitate the exploration of potential
links between respiratory exposures and lung diseases. This, to
ultimately support epidemiological and rodent studies. To this
end, we evaluated if known occupational respiratory irritants
(ultrafine particles (UFP) and sensitisers (phthalic anhydride
(PA), glutaraldehyde (GLUT), 2,4-Diisocyanato-1-methylbenzene
(TDI), maleic anhydride (MA), trimellitic anhydride (TMA)),
commonly present within the occupational exposome, causes the
(transcriptional) activation of specific Gene Ontology Bioprocesses
(GO BPs) (“the larger processes or ‘biological programs’
accomplished by the concerted action of multiple molecular
activities” (Ashburner et al,, 2000; Gene et al,, 2023), that are
associated with lung function decline (LFD) and AA.

Thus, the assumption was that possible mechanistic connectivity
between exposure and health outcome, may be informed via GO BPs
common to both model exposures and disorders. We used expert
knowledge to retrieve information on Adverse Outcome Pathways
(AOPs) -a concept originally from ecotoxicology (Ankley et al,
2010) - relevant to AA and LFD. We identified the relevant GO BPs,
by mapping these onto the different Molecular Initiating Events
(MIEs) and Key Events (KEs) within these prioritised AOPs.
Additional GO BPs derived from a gene-disease centered
database (DisGeNet?) (Bauer-Mehren et al, 2010) were also
included. We then retrieved data from in vitro toxicogenomics
studies employing different cell lines in combination with
controlled chemical exposures (respiratory sensitisers, diesel
exhaust) and performed GO BP enrichment analysis. Subsequent
overlap analysis indeed identified relevant common GO BPs shared
by the exposures and disorders, which may inform hypotheses about
how specific occupational exposures link to respiratory diseases.
While the approach is novel and interesting from a human-centric
risk assessment perspective, at present it is likely influenced by a.o.
the availability of relevant high quality human (in vitro) exposure-
effect data, the extent to which AOPs are curated, intrinsic
limitations of in vitro models such as the absence of interplay
between different immune cells and uncertainties and issues
related to in vitro to in vivo dosimetry comparisons to address
the value for ultimate hazard characterisation.

2 https://disgenet.com/
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Methods

Retrieval of GO biological processes,
general considerations and steps

At the time of our analysis OECD-endorsed AOPs for LED and
AA were absent. Therefore, we relied on a well-structured expert
curation process. This involved six domain experts, with expertise in
respiratory clinical epidemiology, immune toxicology, respiratory
toxicology, molecular toxicology and exposure sciences, who
reviewed candidate AOPs and associated GO BPs through a
series of documented discussions and consensus-building
sessions. Comments were recorded in a shared Excel file, and
decisions were finalized during multiple online TEAMS meetings.
To avoid as much as possible any bias in selecting AOPs/GO BPs,
the following clear inclusion and exclusion criteria guided the

selection of AOPs, MIEs, KEs, and GO BPs:

1. Source Credibility: Only information from trusted and peer-
reviewed sources (e.g., AOP-Wiki, PubMed, GeneCards) was
considered.

. Human Relevance: Preference was given to pathways with
human gene/protein orthologues to minimize interspecies
extrapolation issues.

. Mechanistic Plausibility: Pathways were evaluated for their
potential to inform on possible relationships between
exposure, MIE/KE activation, and adverse outcomes.

. Endpoint Specificity: Mechanisms deemed too generic or those
exclusively describing unrelated endpoints (e.g., lung cancer
development) were excluded unless directly relevant to
respiratory sensitization or asthma.

. Feedback Mechanisms: The absence of feedback loops in some
AQOPs was noted, and the need to consider such mechanisms in
future iterations was acknowledged.

. Cross-Domain Learning: Concepts from more mature AOP
domains (e.g., food allergy) were considered where applicable.
For example, mechanisms from food allergy AOPs were
evaluated for their relevance to respiratory sensitization.

. Consensus-Based Selection: Final inclusion decisions were
made by consensus among the expert panel, ensuring that
selected pathways were both biologically plausible and
contextually relevant.

To complement the expert curated GO BPs, we also used
DisGeNET. DisGeNET contains, aside the inclusion of information

from expert curated databases, also information retrieved in an
unbiased manner from textmining of published literature.

Retrieval of GO biological processes related

to LFD

Using the criteria outlined above, an extensive expert search was
conducted in AOPwiki®, for AOPs of possible relevance to LFD,

3 https://aopwiki.org/
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including information on asthma and COPD. A search was
performed with the following terms “LF: lung function; RS:
Respiratory symptoms; AS: Asthma; COPD)” followed by
additional search terms: “Cough, fibrosis, lung cancer”. After this,
AOPs were further selected in an expert based manner. Next, based
on evaluation of these AOPs, the MIE, KE and outcomes were
extracted by experts. In order to enable the subsequent integration of
GO BP based on enriched gene sets from in vitro toxicogenomic data
(described below) with adverse outcome pathway content, the MIEs
and KEs derived were mapped onto GO terms. This was done by
using Wiki Kaptis*, for retrieval of GO terms associated with the
MIE/KE. In cases only gene names were specified, without a direct
link of the MIE/KE to GO terms (e.g, “Event ID: 1911;
FOXJ1 Protein, Decreased”) Gene Ontology information was
retrieved from GeneCards®. Next, this information was used to
extract the primary GO and child GO terms from the QuickGo
database®. Figure 1 summarises the steps taken to derive GO BPs for
LED, and asthma.

Retrieval of GO biological processes related
to AA

In order to find mechanisms for AA, using the criteria outlined
above, we queried various sources (Figure 2). First, similar as done
for LED, existing AOPs (including the ones in development) related
to allergic lung sensitisation were explored to identify relevant MIE
and KE. For this, the AOPwiki®> and Pubmed’ were searched for
relevant AOPs. The retrieved information related to sensitisation in
the lungs was considered not complete enough, as only parts of the
AOP-cascade were described, e.g., the AOP 39° describes only
covalent protein binding, “covalent binding to proteins leads to
Respiratory Sensitisation/Sensitization/Allergy”). Therefore, AOP
information on food sensitisation described in Van Bilsen et al.
(2017) and the corresponding AOP on “Sensitization induction of
the intestinal tract by food proteins™, as well as the AOP for skin
sensitisation'’, were considered to fill in gaps in the understanding
how sensitisers may affect cells, cell-cell interactions and tissue
homeostasis, ultimately leading to AA.

From these resources, relevant MIE/KE were selected, and the
GO database'' was searched to identify relevant biological processes
(GO BPs) related to MIEs/KEs of possible relevance of AA.
Secondly, as AOPs are linear and unidirectional, they do not
contain compensatory mechanisms and are limited to the
sensitisation phase of asthma and not the elicitation phase

https://wikikaptis.lhasacloud.org/#/aop
5 https://www.genecards.org/
https://www.ebi.ac.uk/QuickGO/
https://pubmed.ncbi.nlm.nih.gov/

8 https://aopwiki.org/aops/39
9 https://aopwiki.org/aops/259
10 https://aopwiki.org/aops/40

11 https://geneontology.org/
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Workflow employed to derive GO BPs of relevance to LFD. AOP resources (AOP Wiki, Wiki Kaptis) were searched and combined with expert
knowledge to obtain a set of GO BPs, for inclusion in subsequent overlap comparison with GO BPs obtained from toxicogenomics data.

AOPs on allergic sensitization
(asthma, food sensitization and
skin sensitization)

MIE/KE related terms
(cells, processes etc.
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FIGURE 2
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Workflow employed to derive GO biological processes with relevance to AA. AOP and literature resources (AOP Wiki, Pubmed) and disease-gene
information sources (DisGeNet) were searched to obtain a set of GO biological processes, for inclusion in subsequent comparison with GO BPs obtained

from toxicogenomics data.

(including the roles of mast cells, basophils, eosinophils, etc.), the
retrieved information of the AOPs as described above was
considered too limited (as also shown in the results section).
Therefore, the DisGeNET database* was accessed to identify
additional genes associated with AA. These retrieved genes were
used as input into a Panther overrepresentation analysis'” to identify
possibly relevant GO biological terms. After retrieving the GO BP
from these two different sources, they were merged together and
duplicates removed. summarises  the

were Figure 2

workflow followed.

Selection of relevant chemicals and analysis
of associated transcriptomics data for LFD
and AA

We followed a structured and predefined approach to identify
suitable chemicals and toxicogenomics studies/datasets. The
selection process was guided by the following “overall criteria” steps:

1. Chemical Relevance: well, unequivocally established exposures
causing lung function decline, as well as sensitisation. This
based upon literature evidence, expert knowledge and
ECHA resources.

2. Comprehensive Data Retrieval: we searched multiple databases
(Comparative Toxicogenomics Database (CTD), biostudies.

12 https://pantherdb.org/
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org, in particular the diXa data warehouse'?, as this contains
the legacy of toxicogenomics data from several past EU
research  projects; Pubmed’; ToxicoDB', a database
containing multiple large toxicogenomics datasets; and gene
expression omnibus" to retrieve relevant gene and omics
datasets and metadata, associated with these chemicals;

3. Human-Relevant Models: we prioritized datasets derived from
human in vivo studies (none were available) or human organ-
specific in vitro systems (e.g., lung epithelial cells, dendritic
cells) representative for (parts of) the organs/tissues/cells
suspected to be involved as the site of MIE/KE/AOPs, to
avoid interspecies extrapolation issues;

. Genome-Wide Expression Coverage: only studies with full-
genome expression data were considered, enabling robust GO
Biological Process (GO BP) enrichment and overlap analysis;

5. Data Quality and Accessibility: we required datasets to include
clearly defined chemical-specific differential gene expression,
(as identified and described by the authors) as well as access to
annotated raw data files;

6. Mechanistic Breadth: to ensure mechanistic robustness and
avoid spurious findings (e.g., specific to one chemical only), we
further narrowed our selection to studies in which the multiple
set of same chemicals were tested across different in vitro

13 https://www.ebi.ac.uk/biostudies/diXa/studies
14 https://www.toxicodb.ca/

15 https://www.ncbi.nlm.nih.gov/geo/

04 frontiersin.org
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models. This allowed us to explore consistent gene expression
responses across cell types, for multiple sensitisers, and better
capture molecular initiating events (MIEs) and key events
(KEs) relevant to allergic asthma (AA) and lung function
decline (LFD).

Below, the selection process and downstream data analysis is
described in more detail for LFD and AA. Concerning LFD, the
selection was confined to studies involving diesel motor emission,
including ultrafine particles (UFP), as this exposure has been clearly
associated with LFD in humans (Zhang et al., 2017; Du et al., 2020).
Diesel exposure is amongst the most common exposures within the
occupational exposome (Peters et al, 2024). Therefore, the
assumption was that the mechanistic connectivity via overlap in
GO BPs, could be potentially observed in this model. Following the
stringent criteria outlined above under “overall criteria”: one study,
in compliance with all the criteria outlined above, on ultra fine
particles from diesel combustion was ultimately retrieved (Grilli
et al., 2018) (see Results for details). This study employed RNAseq
analysis, and the data were retrieved from ArrayExpress under
BioStudies via accession number E-MTAB-5157"°. Normalisation
of the RNAseq data was carried out with edgeR package (version
4.0.12). Differential gene expression analysis was confirmed by
comparing gene expression profiles obtained from samples
treated with UFP generated from diesel, with time matched
gene
expression was used as input into GO BP enrichment analysis.

untreated control exposures. For each time point,
To this end, the gene lists along with their respective fold changes
were subsequently subjected to a Gene Set Enrichment Analysis
(GSEA) through the web-based tool WebGestalt'. The chosen
enrichment methodology involved GSEA for organism Homo
sapiens, utilizing the Gene Ontology-Biological Processes
functional database. Biological processes with a False Discovery
Rate (FDR) below 0.25 were selected for further analysis.
Sensitizing chemicals were identified in line with the stringent
“overall criteria” (step 1, above) to ensure the retrieval of high quality
studies fit for the purpose of our study. In detail, first, expert
knowledge was employed (respiratory clinical epidemiology,
immune-, respiratory- and molecular toxicology, and exposure
sciences), taking into consideration the following publications
(Baur and Bakehe, 2014; Clausen et al., 2020; Dalboge, Albert
Kolstad et al., 2022; Moual et al., 2016). Additionally, a recent
overview publication on respiratory sensitisers for application in
new approach methodologies (in silico, in vitro cell based assays)
(Sadekar et al., 2022) was used. Finally, the ECHA website'® was
searched for “respiratory sensitiser” under the “harmonised
classification and labelling” to verify if the chemicals selected
were indeed also classified as respiratory sensitiser in humans.
identified

“overall criteria.”

The retrieval of studies with omics datasets for

chemicals was as described above under

Applying the stringent criteria, two studies (Dik et al., 2015;

16 https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-5157
17  https://www.webgestalt.org/

18 https://echa.europa.eu/nl/information-on-chemicals
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Forreryd et al., 2015) were found, in which 5 relevant chemicals
were studied (more details see Results).

Data from the Dik et al. (2015) were kindly shared by the authors
upon personal communication. For these datasets, bioinformatics
analyses were conducted in R-4.3.1" using the open software
Bioconductor (version 3.18). Quality control and Normalisation
of the Affymetrix CEL files were performed using the Robust
Multichip Average (RMA) method, from the affy package
(version 1.78.2). The microarray raw data (.CEL files) from
Forreryd et al. (2015) was obtained from ArrayExpress (under
BioStudies) wit E-MEXP-3773%.
expression changes were compared for each of the chemicals

accession number Gene
versus the correspondent control (e.g., Phthalic Anhydride (PA)
versus DMSO). Subsequent GO BP enrichment analysis was
performed as described above for LED.

Overlap analysis between GO BPs from
diesel UFP and sensitisers, and GO BPs
associated with AOPs relevant for LFD

and AA

For LFD, overlap analysis was performed to identify common
GO BP enriched in the toxicogenomics data and derived by AOP
data mining/expert review as relevant to LFD. For each overlap
analysis, a Venn Diagram was generated and a Jaccard Index was
calculated, according to formula: J(A,B) = [ANB|/|AUB|. The Jaccard
index is a commonly used measure of the similarity between two
sets. It is defined as the size of the intersection divided by the size of
the union of the sample sets. This index gives a measure between
0 and 1, where 0 means no overlap and 1 means complete overlap, so
the higher the index, the larger the overlap is. The Jaccard index is
normalised to account for differences in set sizes, allowing us to
compare sets independently. The Jaccard Index Analysis is here
employed to compare different scenarios (exposure, disease) with
one another in a standardized way across different chemicals. The
Jaccard index is suitable to balance out difference in the size of each
of the GO BPs sets, so the outcome of this analysis does not get
penalized (influenced) by the number of GO BPs in each of the sets
of GO BPs.

For the 5 respiratory sensitisers tested in the two different
in vitro systems (Dik et al., 2015; Forreryd et al., 2015), the GO BP
overlap analysis was performed in a similar manner, with the
notion that expert curated GO BPs relevant to AA were used. An
expert evaluation by an immunologist and toxicologist was
performed to verify the plausibility of the proposed exposure-
to-health effect relations from a mechanistic perspective. This
interpretation focused on a limited number of exposures,
specifically ultrafine particles (UFP) from diesel exhaust
and phthalic anhydride (PA), in relation to GO BPs for
LFD and AA.

19 https://www.r-project.org/

20 https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MEXP-3773?
query=E-MEXP-3773
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Exploration of in vitro dosimetry employed
in relation to equivalent internal
concentrations in vivo, expected from
external exposure scenarios

Next, we explored if the concentrations of chemicals used in the
identified in vitro studies were relevant in comparison to internal
concentrations, resulting from external exposures scenarios. We
limited this exploration to sensitisers only, as diesel UFP is a
complex mixture composed of many different chemical
constituents, e.g., organic compounds, organic and elemental
carbon, alkanes, metals (e.g., Pb, As, Cd) and PAHs, for which
in vitro to in vivo comparison of dosimetry of individual constituents
is too complicated (Lim et al., 2021).

To this end, the concentrations employed in Dik et al. (2015),
Forreryd et al. (2015) were compared to expected internal
concentrations  predicted/measured in relation to external
exposure scenarios. Either physiologically based kinetic (PBK)
modelling, biomonitoring data and/or combinations thereof, can
serve this purpose. PubMed queries were performed in which the
name of the chemical was combined with “PBK model,” “internal
dose/concentration,” “biomonitoring,” “biomarkers of exposure” in
title/abstract. For TDI, we modified a PBK previously developed by
our group (Scholten et al., 2023). In addition, Microsoft 365 Copilot
Chat was used with the following prompt: “For the following
5 chemicals I would like to have all information available from
scientific literature that can provide me an answer as to the relation
between quantitative external exposure and quantitative internal
exposure, ideally within the lung. You can consider published PBK/
PBPK models, as well as biomonitoring data in direct relation to
quantitative external exposure information. I do not want to
perform any PBK modelling myself. Here are the five chemicals:
phthalic

methylbenzene, maleic anhydride, trimellitic anhydride.” The

anhydride,  glutaraldehyde,  2,4-Diisocyanato-1-
results were further evaluated by exploration of the original

scientific sources underlying the Copilot statements.

Results

Retrieval of biological processes associated
with LFD and AA

For LED, a list of AOPs was retrieved from AOP-Wiki®, and
mapped to their respective GO BPs. A total of 9 AOPs were retrieved
(AOP 418, AOP 419, AOP 148, AOP 302, AOP 411, AOP 424, AOP
425, AOP 39, AOP 196), related to LFD including asthma and
COPD (Supplementary Data File S1, sheet tab “list of AOPs,” in
relation to Figure 1 workflow step “selection of AOPs”). It is
important to mention that most of the retrieved AOPs were in
early stages of development, with very few ‘Open for comment’.
From the AOPs, a list of unique molecular initiating events (MIE)
and Key events (KE) were summarised and were mapped to their
primary GO and child GO terms from the QuickGO database. These
are available in Supplementary Data File S1, sheet tab “AOP event to
QUICK GO?, in relation to Figure 1 workflow step “Quick-GO”.
From this, a total of 29 parent GO term and 185 linked child GO
terms were retrieved and after removing duplicates 166 GO terms

Frontiers in Toxicology

10.3389/ftox.2025.1589380

were retained. These are available within Supplementary Data File
S1, sheet tab “Final list of GO”, in relation to Figure 1 workflow step
“GO-biological processes associated with lung function decline”.
Following a similar approach for AA, Figure 3 shows several putative
MIEs/KEs derived from expert curation of events published in AOPs
on food and skin sensitisation. A textual hypothetical description of
these results is the following. Allergic asthma is a complex disorder
involving several key events that lead to clinical symptoms.
Chemicals that induce allergic asthma can undergo covalent
binding to endogenous protein, known as haptenisation, either
before (binding to extracellular proteins in the airway lining
fluid) or after (binding to intracellular protein or cytosolic
peptides) crossing the mucosal barrier in the lungs, depending on
their reactivity and solubility. The formed complex can be
recognised by the immune system. The sensitisation process
begins with allergens when allergens interact with the airway
epithelium, activating it. Allergens, particularly those with
proteolytic activity like house dust mite proteins, can disrupt
tight junctions between epithelial cells, compromising the
mucosal barrier integrity and allowing allergens to penetrate the
epithelium. Allergens can also cross the mucosal barrier through
receptor-mediated endocytosis and unspecific transcellular
transport. This crossing triggers epithelial activation, leading to
the release of pro-inflammatory mediators that attract dendritic
cells (DCs) to process the allergens. The activated DCs then migrate
to lymph nodes, where they prime naive T cells, promoting their
differentiation into Th2 cells. Simultaneously, B cells undergo
isotype switching to produce allergen-specific IgE antibodies.
Upon re-exposure to the allergen, cross-linking of IgE on mast
cells results in the release of inflammatory mediators, causing
bronchial smooth muscle contraction, increased mucus
production, and airway inflammation. These events collectively
manifest as the clinical symptoms of allergic asthma, including
wheezing, coughing, and difficulty breathing.

Table 1 provides an overview of the final number of GO BPs
retrieved for AA, in relation to the MIE/KEs that were considered
relevant (Figure 3). The number of GO BPs curated was rather
modest and the information derived from AOP and GO resources
may be too limited to capture the full mechanism, as this mainly
covers the sensitisation phase (and not the elicitation) and does not
include feedback loops. Therefore, to retrieve additional GO BPs
possibly associated with AA caused by occupational sensitisers,
DisGeNet followed by PANTHER Overrepresentation Test were
used to retrieve the additional genes and GO BPs, respectively,
associated with these endpoints. The outcome of this analysis is
shown in the far right column of Table 1. Interestingly, a much larger
number of GO BPs (2205) was observed compared to the GO BPs
derived from expert curated KE/MIEs. This number represents
~8.1% of all GO BPs, suggesting that a substantial amount of GO
BP are associated somehow to AA (2205/27047 Biological process
terms (27047: based upon statistics for release 2014-04>'.

Supplementary Data File S2 provides in each of the tabs the
different expert and literature derived MIEs/KEs, also reflected in
Figure 3. Each tab contains the final set of GO BPs terms selected

21 https://geneontology.org/stats.html
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Ag uptake over mucosal barrier

1. Tight junction disruption (MIE1)

2. Receptor mediated endocytosis (MIE2)
3. Unspecific endocytosis (MIE3)

Epithelium activation (KE1)

(cytokines, adhesion molecules, ROS)

Covalent binding to I

endggenousiprotein DC activation (KE2)

(hapten-carrier complex) X
(cytokines, surface markers)

DC migration (KE3)

Chemical
characteristics

FIGURE 3

}—* 1. T cell priming (Th2) (KE4)

Sensitisation
(IgE production; no symptoms)

Lymph node Clinical asthmatic symptoms

upon repeated exposure

2. B isotype switching to IgE(KE5)

Additional cell types involved, a.o. mast
cells, macrophages, eosinophils,
neutrophils, basophils, DC, smooth muscle
cells, B cells, Th2 cells

Elicitation
(adverse outcomes)

Key mechanisms (depicted as KE, MIE) assumed to be associated with AA induced by occupational exposures, based on AOP 39 (https://aopwiki.org/
aops/39 and published AOPs from food sensitisation and skin sensitisation. Figure adapted from Van Bilsen et al. (2017).

TABLE 1 Overvi ew of the number of selected GO BP associated with key events of AA. The left columns represent the number of GO BPs collected from an
expert based curation of AOP and GO resources in relation to a key mechanisms of AA (Figure 3). Far right column indicates the number of GO BPs derived
from DisGeNet. The GO BPs with GO Term ID and Go Term Name, are shown in detail in Supplementary Data File S2.

GO BPs associated with key events of AA DisGeNet
Tight Endocytosis*  Sampling®  Dendritic Dendritic T cell Isotype B cell Type Hypersensitivity®  DisGeNet
junction® cell cell priming  switching activation 2 immune AA®
activation® migration® response®

Numbering MIEL MIE2-3 MIE2-3 & KE1-2 KE2-3 KE3 KE4 KE5 KE5 All All All

in cascade

(See Figure 3)

#GO BPs 17 14 5 11 6 18 11 43 13 6 2205

selected to be

present

* Different sets of GO BPs, were used in subsequent GO BP, overlap analyses with toxicogenomics data from two in vitro studies.

*GO BPs, used with data from Dik et al. (2015).

*GO BP, used with data from Forreryd et al. (2015). The decision to include different sets of GO BPs, for overlap analysis was based upon the expected presence or absence of MIEs/KEs, in

relation to the characteristics of the in vitro models. As none of the two models was expected to address T-cell priming, Isotype switching or B cell activation, these were omitted from subsequent

downstream GO BP, overlap analysis.

that fit each of the different MIEs/KEs possibly involved in an AOP
for AA induced by occupational exposures.

Selection of relevant chemicals and
toxicogenomics datasets in relation to LFD
and AA

For selection of studies/datasets in relation to relevant
chemicals, selection criteria were applied (see Methods,
“overall criteria”). Considering LFD, one study was identified
(Grilli et al., 2018), in which human bronchial epithelial cells
(BEAS-2B) were exposed in vitro to ultrafine particles (UFP)
derived from diesel (and biomass) combustion. Cells were treated
with 2.5 pg/cm’® (equivalent to 25 pg of UFP particles/mL of tissue
culture media), and RNA was collected at 1, 4, 8, 16, and 20 h,
subjected to RNA seq analysis (for data see Biostudies under
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accession number E-MTAB-5157'%, and compared to time
matched control exposures.

Concerning AA, following, two toxicogenomics studies (Dik et al.,
2015; Forreryd et al., 2015) were found (Table 2). Dik et al. (2015) used
the human bronchial epithelial cell line 16HBE14o, an in vitro model
representing the barrier function of the airway epithelium, in
combination with Affymetrix GeneChip™ HT HG-U133+PM,
with test chemical concentrations between 150 and 2730 pM. The
study by Forreryd et al. (2015) used the human MUTZ-3 cell line*
representing a dendritic cell model. Chemicals were tested in a
concentration range of 10-500 puM. These studies tested five
common respiratory sensitizers in a consistent manner to provide
potential insights into MIEs, KEs involved in epithelial and initial

22 https://www.dsmz.de/collection/catalogue/details/culture/ACC-295
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TABLE 2 Selection of relevant chemicals and studies for collection of exposure related GO BPs. Estimated internal concentrations, resulting from external
exposure scenarios, using PBK and/or biomonitoring data are provided.

Chemical

Abbreviation

CAS
number

Pubchem
link

16HBE140
(Epithelial)
4h exposure at

concentration
80% cell viability

MUTZ-3
(dendritic)
24h exposure,
performed in

Estimated internal
concentration at
external exposure
scenarios, together with
methods indicated in
between parentheses

biological
triplicates
phthalic PA 85-44-9 https://pubchem. 1330 uM 200 uM 2460-114800 pM (biomonitoring:
anhydride ncbi.nlm.nih.gov/ urinary concentration, (Pfaffli,
compound/ 1986))
Phthalic-anhydride
glutaraldehyde GLUT 111-30-8 https://pubchem. 190 uM 10 uM 0.08-0.16 uM (PBK: plasma Cmax,
ncbi.nlm.nih.gov/ (Cable et al., 2025)
compound/3485
2,4- TDI 584-84-9 https://pubchem. 150 uM 40 uM 0.023 pM in lung Interstitial fluid
Diisocyanato-1- ncbi.nlm.nih.gov/ 0575107 uM in lung epithelial
methylbenzene compound/11443 lining fluid
External exposure at 40 pg/m?’ for
4 h exposure. (PBK, based upon
(Scholten et al., 2023) see
Supplementary Data File
“S9_PBK_modelling TDI”)
maleic anhydride = MA 24937-72-2 https://pubchem. 2650 uM 500 uM Unknown (serum MA-specific IgE
ncbi.nlm.nih.gov/ antibodies, (Hansen et al., 2014))
compound/Maleic-
Anhydride
Trimellitic TMA 552-30-7 https://pubchem. 2730 uM 150 uM ~0.009-0.01 puM (low exposure)
anhydride ncbi.nlm.nih.gov/ ~0.17-0.19 uM (high exposure)
compound/11089 (PBK: plasma Cmax (Cable et al,
2025)

immune cell responses in relation to the GO BPs curated in relation to
AA (also reflected in Table 1 with “**”). Whereas the Dik et al. study
used 4 h exposure at concentration 80% cell viability, Forreryd et al.,
performed exposures for 24 h but did not specify a specific rationale
for selecting concentrations. Interestingly, the concentrations of all
chemicals employed by Forreryd et al. was around one order of
magnitude lower (~3.8-18.2 fold), compared to Dik et al. (Table 2).
Both datasets were processed using the same bioinformatics pipeline
(R 4.3.1, Bioconductor 3.18) (Du et al,, 2008), ensuring analytical

consistency.
The chemicals tested were phthalic anhydride (PA),
glutaraldehyde =~ (GLUT),  2,4-Diisocyanato-1-methylbenzene

(TDI), maleic anhydride (MA) and trimellitic anhydride (TMA)).
These chemicals are relevant as to the occupational exposome.
Phthalic anhydride (PA) is a chemical intermediate in the
plastics industry for various phthalate esters, which in turn are
plasticisers in synthetic resins. Glutaraldehyde (GLUT) is used as a
cleaning and disinfecting agent for cleaning of heat sensitive medical
equipment such as endoscopes, surgical instruments, as well as for
laundry and fabric treatment. 2,4-Diisocyanato-1-methylbenzene
(TDI) is used in producing polyurethane products such as foams,
and coatings used, for example, in bedding, furnitures and
packaging. Maleic anhydride (MA) is used amongst others to
form unsaturated polyester resins that can be subsequently used
in construction, manufacturing of transport (boats, cars) and
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electrical goods, as well as in the synthesis of pesticides and other
organic compounds. Trimellitic anhydride (TMA) is used in the
synthesis of plasticisers for polyvinyl chloride resins, paint resins
and in the nail polishing industry (as part of a PA, TMA and glycols
copolymer, which was identified as an allergen (Nassif et al., 2007).

Analysis of transcriptomics data for LFD and
AA, enrichment of GO BPs and GO BP
overlap analysis to associate chemical
exposure to LFD and AA

For LFD (Grilli et al., 2018) the outcome of the differential gene
expression analysis is shown in Supplementary Data File S3. For AA,
the outcome is shown in Supplementary Data File S4, S5. In these
three supplementary data files, for each of the Microsoft Excel sheet
tabs, Column A represents “Gene ID”, column B represents “Fold
Change Value.” These data served as input for GO BP enrichment
analyses. Overlap analyses was performed between GO BPs enriched
and the GO BPs relevant to LFD and AA, respectively. The outcome
is shown in Figure 4 for LFD, and Figures 5-8 for AA. In more detail,
Supplementary Data File S6 shows the GO BP enrichment for the
Grilli et al. (2018). study, for each of the different exposure
durations. Similarly, for Dik et al. (2015) and Forreryd et al.
(2015), the outcome of the enrichment analysis is shown in
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Grilli et al.
2018
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DisGeNET

Legend

20h

JI'=0.0190

1h 4h 8h 16h
Ji=0

Index JI=0.0040 JI=0.0044 JI=0.0041

FIGURE 4
Overlap between GO BPs from LFD and diesel UFP using data from the human bronchial epithelial cells (BEAS-2B). The number of overlapping GO

BPs (in blue) is shown between GO BPs enriched in a toxicogenomics study () using the bronchial epithelial cell BEAS-2B exposed in vitro for various
durations (hours) to ultrafine particles derived from diesel exhaust (in green) and GO BPs derived from expert curation of the MIEs and KEs collected from
the AOP Wiki in relation to LFD including asthma and COPD (in orange).

Dik et al.
2015

Overlap
without
DisGeNET

Legend

ndes JI=0.0020

FIGURE 5

JI=0.0032

JI=0.0025

JI=0.0033

Overlap between GO BPs from AA and sensitisers using data from the human bronchial epithelial cell line 16HBE140. The number of overlapping GO
BPs (in blue) is shown between GO BPs enriched in a toxicogenomics study using the human bronchial epithelial 16HBE140 exposed in vitro to
5 sensitizing agents (in green) and GO BPs derived from expert annotation and mining of AOP and GO resources associated with AA (in orange).

Dik et al.
2015 PA GLUT
Overlap with
DisGeNET
Legend
Jaccard
Index JI=0.0320 J1=0.0790
FIGURE 6

TDI

MA TMA

JI=0.0200 JI=0.0210

JI=0.0450

Overlap between GO BPs from AA and sensitisers using data from the human bronchial epithelial cell line 16HBE140. The legend is further identical
to the legend of Figure 5, except that here the orange circle refers to GO BPs derived from expert annotated AOP content, augmented with GO BPs

derived from a gene centered approach using DisGeNet.

Supplementary Data File S7,S8, respectively. In each of these files,
the first excel sheet tab contains a reading guide, followed by sheet
tabs representing the outcome for the different chemicals. For each
of the different experimental conditions, the overlap in GO BPs is
indicated in column N. For AA, this also includes the overlap
derived from expert curated as well as DisGeNET derived GO BPs.

Considering the possible association between ultrafine particles
derived from diesel exhaust and LFD, the overlap between
experimental GO BPs and disease GO BPs is moderate (Figure 4,
Supplementary Data File S6, for each exposure duration, indicated
in column N of the respective sheet tabs). This, in particular at earlier
exposure durations, whereas at 20 h, 9 out of 166 expert curated GO
BPs were overlapping (with highest Jaccard Index: 0.0190). Despite
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the moderate overlap, interestingly, common GO BP were enriched
across different time points: negative (GO:0050866, 1 h) or positive
(GO:0050867, 20h) regulation of cell activation, positive regulation
of ion transport (GO:0043270: 4 h, 20 h) and stem cell proliferation
(G0O:0072089: 8h,20h). This overlap in GO BPs may be informative
for a mechanistic association between UFP exposure and health
outcome (LFD) (see Discussion Section for interpretation).

Next, the results on chemical sensitisers, in relation to AA are
shown. In Figure 5, and Supplementary Data File S7, the overlap
analyses between the GO BPs corresponding to expert curated AOP
content and GO BPs that were enriched in the in vitro experiment
using human bronchial epithelial 16HBE14o cell line (Dik et al.,
2015) is shown. For all chemicals, this overlap is moderate but
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Forrerryd et
al. 2015 PA GLUT
Overlap
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DisGeNET
Legend
Index JI=0.0020 JI=0.0019

FIGURE 7

DI

MA TMA
Ji=0 Ji=0

JI=0.0019

Overlap between GO BPs from AA and sensitisers using data from the human dendritic MUTZ-3 cell line. The number of overlapping GO BPs (in blue)
is shown between GO BPs enriched in a toxicogenomics study (Forreryd et al., 2015) using the human dendritic MUTZ-3 cell line exposed in vitro to
5 sensitizing agents (in green) and GO BPs derived from expert annotation and mining of AOP and GO resources associated with AA (in orange).

Forrerryd et
al. 2015 PA GLu
Overlap with
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Legend
Index JI=0.0551 JI=0.0547

FIGURE 8

TDI
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JI=0.0026 JI=0.0031

JI=0.0634

Overlap between GO BPs from AA and sensitisers using data from the human dendritic MUTZ-3 cell line. The legend is further identical to the legend
of Figure 7, except that here the orange circle refers to GO BPs derived from expert annotated AOP content, augmented with GO BPs derived from a gene

centered approach using DisGeNet.

present, with for GLUT and TDI one single GO BP (G0:0042092,
“type 2 immune response”), corresponding to the expert curated
MIE/KE term “T cell priming.” Similarly, for MA and TMA one
single GO BP (GO:0006907, “pinocytosis”), corresponding to the
expert curated MIE/KE term “endocytosis” was observed to
overlap. For PA, no overlap was observed. In Figure 6
(Supplementary Data File S7), the overlap is shown, between the
toxicogenomics data and expert curated GO BPs content, but now
augmented with a gene centered approach using DisGeNet. As is
evident, for all chemicals, the overlap was substantially larger, as
higher Jaccard Indices were observed.

The analyses using data from Forreryd et al. (2015), employing a
dendritic cell model, provided similar observations. Similar, as for
the Dik et al. study, only one GO term “GO:0042092, ‘type
2 immune response”, retrieved via expert curation of AOP
content, was found to be enriched within toxicogenomics data
for GLUT and TDI (Figure 7, Supplementary Data File S8).
Apparently, the activation of this GO BP by chemical sensitisers
is “conserved” throughout these different in vitro models. Here also,
for all chemicals, higher Jaccard Indices were observed whenever the
DisGeNET derived GO BPs were included in the analysis (compare
Figures 7, 8). Together, these data indicate that upon expert derived
curation of AOP content limited relevant GO BPs processes are
that overlap with experimental exposure related
toxicogenomic data, however, the overlap between toxicogenomic

found

and diseases data are more profound, whenever GO BP were
enriched with DisGeNet derived GO BPs. Whenever this overlap
is considered in more detail across these two studies, it is interesting
to note that in both studies, in terms of number of GO BPs, the
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overlap was highest for 3 chemicals (PA, GLUT, TDI) (Figures 6, 8)
in which these chemicals have the highest Jaccard Indices). This
despite the fact, within each of the studies, approximately equal or
much higher concentrations were used of MA and TMA, compared
to PA, GLUT and TDI, respectively. Apparently, for these
5 sensitisers, these in vitro models are most sensitive to PA,
GLUT, TDI, of the
concentration used. To explore if a data driven approach can
provide mechanistic insights linking exposure to AA, as done

irrespective difference in in vitro

above for UFP and LFD, we take, as an example, a closer look at
the results for PA. Considering the analysis of the bronchial
epithelial 16HBE14o0 cells (file S7_Dik_overlap_AA xlsx; sheet tab
PA; column N ‘overlap’) 81 GO PBs were overlapping. Considering
the dendritic MUTZ-3 cells (file S8_Forreryd_overlap_AA xlsx;
141 GO BPs were
overlapping. This suggests a possible mechanistic connectivity

sheet tab PA; column N ‘overlap),

(see Discussion Section for interpretation).

We also explored the hypothesis if the approach presented here
is suitable to identify if different chemicals induce similar
mechanisms leading to adverse outcomes, which may be
ultimately helpful for prioritisation of chemicals for hazard
assessment within the occupational exposome. To address this,
we consider sensitisers, specifically the outcome of the analysis of
the Dik et al. study data in further detail. Supplementary Data File S7
(sheet tab “overlapping GOs all chem”, top 101 rows) shows the GO
BP terms that were found to: 1) overlap with the GO BPs associated
with AA; 2) being common across all the five chemical tested (PA,
GLUT, TDI, MA, TMA, chemicals indicated by different colours).
20 GO BP terms were found to be in common. In considering these
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in more detail, 4 GO BPs are possibly directly linked to the chemical
exposure: “cellular response to external stimulus” (GO:0071496);
“response to acid chemical” (GO:0001101); “response to toxic
substance” (GO:0009636); “response to xenobiotic stimulus” (GO:
0009410). Further, the formation of oxidative stress/reactive oxygen
across all 5 chemicals species may be evidenced from: “reactive
oxygen species metabolic process” (GO:0072593); “response to
oxidative stress” (GO:0006979); “response to oxygen levels” (GO:
0070482); “small molecule catabolic process “(G0:0044282);
“regulation of small molecule metabolic process” (GO:0062012)
and “fatty acid metabolic process” (GO:0006631) may be
indicative for perturbations in the metabolism of molecules in
general. All 5 chemicals appear to affect Immune cell responses
and (intracellular signalling in relation to proinflammatory)
cytokines (granulocyte activation (GO:0036230); I-kappaB kinase/
NF-kappaB signaling (GO:0007249); regulation of response to
cytokine stimulus (GO:0060759)), as well as some miscellaneous
GO BPs (negative regulation of transport (GO:0051051);
acid biosynthetic process (GO:0016053); protein localization to
mitochondrion (GO:0070585); response to fluid shear stress (GO:
0034405); response to leptin (GO:0044321); response to metal ion
(G0O:0010038); response to nutrient levels (GO:0031667)).

organic

Exploration of in vitro dosimetry employed
in relation to equivalent internal
concentrations in vivo, expected from
external exposure scenarios

In order to explore if in wvitro concentrations used are
physiologically relevant in relation to equivalent internal

concentrations expected to occur upon realistic exposure
scenario, existing PBK models and/or biomonitoring data were
explored. The outcome of this analysis is presented in Table 2,
right column.

For PA, no published PBK models were available. Pfaffli (Pfaffli,
1986) compared external exposure to PA and internal urinary
settings,

concentrations ranged from 0.3-14.0 pmol/mmol creatinine,

concentrations. In occupational exposure urinary
collected at different times of the day. Expressed as mmol per
liter of urine, these concentrations would yield estimates of

2.46-114.8 mM?>. These values seem very high and may be

23 based upon the following calculation: The average concentration of
creatinine can be estimated as 8.2 mmol/mL. (*The average urinary
creatinine (24-h urine collection) values can be estimated at

11500 mmol/day, based upon a of 4420-17680 mmol/day. (https://

www.mountsinai.org/health-library/tests/creatinine-urine-test). The

average urine production is 1400 mL/day, based upon a normal range
for 24-h urine volume of 800 to 2,000 mL per day (https://www.
mountsinai.org/health-library/tests/urine-.  Together, the average

concentration of creatinine would equal 11500 mmol/1400 mL = 8.

2 mmol/mL) Therefore, the average concentration range of PA from

(Pfaffli, 1986), expressed as mmol/mL urine would be: 0.3-14 pmol/

mmol creatine * 8.2 mmol creatinine/mL urine = 2.46-114.8 ymol/mL =

2.46-114.8 mM.
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overestimated, also compared to the concentrations of (200 uM
and 1330 uM =) 0.2 and 1.33 mM employed in the in vitro
studies (Table 2).

Concerning Glutaraldehyde, no specific PBK models have been
published. Likely due to its high reactivity, also, no human
biomonitoring data are available. This makes a quantitative
judgement as to dosimetry complicated. Cable et al. (2025)
performed, for many chemicals including GLUT, generic PBK
modelling, to predict plasma C,,,. Assuming dermal exposure
only, and considering both low and high exposure scenarios and
employing different generic PK models, these authors predicted
plasma Cmax in between 0.08 and 0.16 pM. (see Supplementary data
to Cable et al. (2025), file “toxsci-24-0360-File009.xlsx,” tab “S2c.
Cmax predictions_all”). The concentrations employed in the
toxicogenomics studies considered here are 10 uM and 190 pM,
around ~2 to ~3 orders of magnitude higher.

Concerning TDI, we modified our previous PBK model
(Scholten et al.,, 2023) to calculate the concentration of TDI in
interstitial fluid. We also estimated the concentration in lung
epithelial lining fluid (see Supplementary Data File “S9_PBK_
modelling TDI.pdf”). Assuming an external exposure scenario of
40 pg/m’ for 4 h exposure, just exceeding the highest value reported
in occupational studies (Figure 2A in Scholten et al. (2023),
modelling predicted TDI concentrations of 0.023 puM in lung
Interstitial fluid. An estimated concentration within the lung
lining fluid (LLF) covering bronchial epithelial cells resulting
from one inhalation was 0.575 x10™ uM. Comparing these values
to Mutz-3 dendritic cells (40 pM) and 16HBE14o epithelial cells
(150 uM) (Table 2), these concentrations are around 1739 and
several order of magnitude fold higher, respectively.

Hansen et al. (Hansen et al, 2014) reported MA-induced
occupational asthma, together with the presence of MA-specific
IgE antibodies in serum, indicating that internal exposure is directly
related to MA-induced asthma. However, no quantitative exposure
information in terms of tissue or blood concentrations, etc., has been
reported in the literature, likely due to the high reactivity of MA.
Further, searching PubMed, no reported PBK models are
available for MA.

TMA, highly
biomonitoring data nor detailed PBK models are available from

For another reactive chemical, neither
literature. Cable et al. (2025) provided various plasma C,,,, using
generic PBK modelling. Considering inhalation exposure, at low
occupational exposure limit value, C,,,, Was predicted to range from
~0.009 uM to ~0.01 pM. At higher exposure scenarios, from 0.17 uM
to 0.19 pM (see Supplementary Data to Cable et al. (2025), file
“toxsci-24-0360-File009.xlsx”, tab “S2c. Cmax predictions_all”). The
concentrations used in the toxicogenomics studies (150 pM and

2730 uM, Table 2) exceed these predicted concentrations (Table 2).

Discussion

Establishing the relation between unique external exposures
within the occupational exposome, such as chemical sensitisers
and irritants, and health effects is challenging. Here, we
hypothesised that human mechanistic information could be
informative to generate hypotheses, supporting the plausibility of
relationships between exposure and related health effects. We
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explored a data-driven mechanistic approach, grounded in human
biology, based upon overlap in GO BPs derived from AOPs and
disease-associated genes, and human toxicogenomics data. We
examined GO BP overlap between irritants and LFD, and
sensitisers and AA, respectively. Further, we considered the
in vitro concentrations employed, in comparison to equivalent
internal exposures expected from relevant external occupational
exposure scenarios, inferred from PBK modelling and
biomonitoring data.

Considering LFD, we observed overlap in GO BPs, with
toxicogenomics data obtained from UFP exposed lung epithelial
cells (Figure 4, Supplementary Data File S6). Interestingly and
consistently, the regulation of GO BPs common to different
timepoints were observed, including negative (GO:0050866, 1h)
or positive (GO:0050867, 20h) regulation of cell activation,
positive regulation of ion transport (GO:0043270: 4h, 20h) and
stem cell proliferation (GO:0072089: 8h,20h). Further, at 20 h of
exposure, the overlap between exposure and disease associated GO
BPs was the highest (9 processes). Thus, expert curated GO BP
content was usefull to capture persistent mechanistic signals from
in vitro data, potentially relevant to understand the development of
LFD. A more detailed evaluation from these GO BPs suggests the
following mechanistic interpretation. UFPs are known to interact
with transmembrane receptors and ion channel regulators, induce
oxidative stress and inflammatory responses (innate and adaptive)
in human and rodent models (Leikauf et al., 2020; Deiuliis et al.,
2012). Studies have indicated that UFP/DEP exposure can alter TLR
signalling, ion channels (e.g., TRPA1, TRPV4) (Shoenfelt et al,
2009; Schwarze et al., 2013; Li et al., 2011). While our approach lacks
complex cell-cell interaction, it is suggested from the overlapping
GO BPs (G0O:0050867, GO:0043270) that these processes may be
activated. UFPs induce oxidative stress and alter mitochondrial
activity, induce cell membrane damage, stimulate lung dendritic
cells and alter cell proliferation (Vallabani et al., 2023; de Haar et al.,
2008; Lambrecht and Hammad, 2010; Leikauf et al., 2020; Provoost
et al,, 20105 Sydlik et al., 2006), suggested from GO BPs, including
response to oxidative stress (GO:0006979), T cell activation (GO:
0042110). The results may also indicate UFP induced compensatory
proliferation through enrichment of different GO BPs (GO:0050673,
GO:0048144, GO:0070661, GO:0072089). Together, a consistent,
sustained time-dependent activation of human disease GO BPs was
observed in human in vitro toxicogenomics studies, of possible
relevance to understand the development of LFD.

Next, we identified GO BPs relevant to the development of AA.
However, only a very small overlap was observed between expert
curated GO BPs, and GO BPs enriched in 16HBE14o cells (epithelial
uptake) and MUTZ-3 cells (dendritic cell migration) upon in vitro
exposure to sensitisers (Figures 5, 7, Supplementary Data File S7,
S8). Assuming that these models are capable of representing at least
some of the different stages in the development of AA after
sensitisation from occupational chemicals (as classification
models using these cells have shown correct classification of
sensitisers from irritants (Vandebriel et al., 2010), an assumption
can be that if no GO BPs are activated, no sensitisation occurs. This
assumption is based on the premise that the activation of specific
BPs is crucial for the sensitisation process, and without such
activation, the cascade of events leading to allergic asthma would
not be initiated. However, individual MIE and KE of AOPs may
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comprise dozen or even hundreds of individual biochemical and
molecular events (e.g., inflammation, oxidative stress). So, during
the process of curating our key mechanisms, large numbers of events
are binned, facilitating a simplistic mechanistic overview of an
ultimate AOP for AA. Also, although we followed a strict set of
inclusion and exclusion criteria (see methods “Retrieval of GO
Biological processes, general considerations and steps”) a certain
amount of selection bias can not be fully excluded. Moreover, as
AOPs are linear and unidirectional, these do not contain
compensatory mechanisms and are primarily limited to the
sensitisation phase of asthma only and likely do not yet capture
the full elicitation phase (e.g., involving mast cells, basophils,
eosinophils). Therefore, the retrieved expert information on MIEs
and KEs for AA as described above, is probably incomplete. This
may, next to in vitro study shortcomings (discussed later), explain
the limited overlap we observed in GO BPs. To augment the analysis,
we therefore included GO BPs derived from DisGeNET -a gene-
disease centered database constructed from expert curation and
unbiased textmining of scientific literature-into the AA analyses,
and indeed observed a much higher overlap (Jaccard indices were
about one order of magnitude (~10-fold) higher (compare Figure 6
with Figures 5, 8 with Figure 7 respectively)). As for UFP and LFD,
this enabled a more detailed examination of the overlapping GO BPs
(S7_Dik_overlap_AA xlsx; and S8_Forreryd_overlap_AA xlsx (tab
PA; column N (“Overlap”)) towards a possible mechanistic
interpretation, outlined below for PA as example. When PA
appears to affect epithelial cell activation and downregulate
cellular junction organisation, the integrity of the airway
epithelial ~barrier may be compromised. This increased
permeability may allows allergens and environmental triggers to
penetrate more easily, exacerbating asthma
Simultaneously, the suggested upregulation of ROS metabolic

symptoms.

processes results in enhanced production of reactive oxygen
species (ROS), causing oxidative stress. This oxidative stress may
damage cellular components, augment inflammatory responses, and
contribute  to airway  hyperresponsiveness and  mucus
hypersecretion. Activated granulocytes, influenced by PA, release
a plethora of inflammatory mediators, including cytokines and
chemokines. This could amplify the inflammatory milieu and
contributes to airway remodeling. Additionally, alterations in
anion transport may affect the regulation of airway surface
liquid, leading to changes in mucus viscosity, increased airway
hyperresponsiveness, and potential modifications in the pH of
the the

upregulation of the Type 2 immune response may lead to

airway surface liquid. Furthermore, suggested
increased production of cytokines such as IL-4, IL-5, and IL-13.
These cytokines promote eosinophilic inflammation, mucus
production, and IgE synthesis, exacerbating asthma symptoms.
The increased response to IL-1, a pro-inflammatory cytokine,
may enhance the inflammatory response, leading to increased
recruitment of immune cells to the airways and further
promoting inflammation and tissue damage. Enhanced leukocyte
migration results in the accumulation of various immune cells,
including eosinophils, neutrophils, and lymphocytes, in the
airways. This contributes to chronic inflammation and airway
hyperresponsiveness. Altered regulation of growth factors leads to
changes in airway structure, including increased smooth muscle

mass and fibrosis, contributing to airway remodeling and persistent
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airflow obstruction. Increased chemotaxis enhances the movement
of immune cells towards the site of inflammation, further amplifying
the inflammatory response and contributing to tissue damage and
airway remodeling. As a consequence of chronic inflammation,
there is increased proliferation of airway smooth muscle cells,
leading to thickening of the airway walls and increased airway
resistance, which are characteristic features of asthma.
Collectively, the GO BP overlap data may indicate that PA
triggers various processes, and these processes perpetuate chronic
airway inflammation, hyperresponsiveness, and tissue remodeling,
establishing a cycle of inflammation and structural changes in the
airways that manifest as the characteristic symptoms of asthma.

Aside mechanistic inference of GO BP based exposure disease
associations, we also addressed a secondary hypothesis to identify if
commonality exist in exposure-related activation of GO BPs
reflecting diseases mechanisms across different chemicals. We
considered the Dik et al. (2015). Indeed, for AA in combination
with sensitisers, we demonstrate overlap in 20 GO BPs common to
all 5 sensitisers tested in vitro (Supplementary Data File S7 (sheet tab
“overlapping GOs all chem”). Together, this “GO BP signature” may
be further developed in future as representative for the exposure to
sensitisers within the occupational exposome.

We are aware of possible artefacts in our approach and a
discussion on these is warranted.

First, shortcomings exist in the in vitro models considered here.
Although plausible mechanistic interpretations could be provided for
UFP and PA, the latter with DisGeNet derived GO BPs, capturing the
interplay between different immunological cell types (e.g., release of
cytokines and chemokines) is incomplete, as the studies were limited to
bronchio epithelial (Grilli et al., 2018; Dik et al., 2015) and dendritic cells
(Forreryd et al, 2015). Further, differences exist in time windows
between short term in vitro exposure and toxicogenomics analysis,
versus long term latency in vivo between exposure and disease outcome.
This may also involve the existence of possible (mechanistic) feedback
loops absent in vitro. As such, the in vitro models identified likely do not
“capture the full AOP content”, and its time and concentration-
dependent chemical activation, as would be expected to occur in
multiple target cells in humans in vivo.

Second, in vitro to in vivo differences in chemical absorption,
distribution, metabolism, excretion, and consequently dosimetry,
exist. These differences need to be characterised to define the
relevance of dose dependent toxicological effects in wvitro for
understanding in vivo effects. For the majority of sensitisers, using
PBK modelling or published data, we were able to compare internal
concentrations  predicted/estimated from realistic occupational
exposure scenarios with in vitro concentrations (Table 2)). For 3 out
of the 5 chemicals (GLUT, TMA and TDI), in vitro concentrations were
much higher in comparison to internal concentrations estimated from
in vivo exposures. However, as (low) dose response data were absent in
the in vitro studies, it is not clear if in target cells in humans exposed in
vivo, similar gene expression/GO BPs changes would occur. Also, for
GLUT and TMA, only plasma C,,,y values were predicted using generic
PBK modelling under the assumption of only dermal exposure for
GLUT and inhalation exposure for TMA (Cable et al., 2025). For TDI,
PBK modelling could be performed upon inhalation exposure to
calculate concentrations in lung interstitial fluid, for comparison
with concentrations used in dendritic cells (Forreryd et al, 2015).
For comparison with bronchio epithelial cells (Dik et al., 2015), data
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was lacking and only an approximate lung epithelial lining fluid
concentration estimate (assuming one inhalation only) could be
provided. For PA, the internal concentrations projected from
urinary biomonitoring data (Pfaffli, 1986) were much higher in
comparison to concentrations employed in vitro, at which GO BP
(primarily from DisGeNet) overlap was observed. Given these estimates
were in the upper millimolar range, an overestimation can not be
excluded. Aside, as details of ADME for PA are unknown, it is unknown
how urinary concentrations would compare to concentrations in lung
tissue. Together, in vitro to in vivo dosimetry comparisons are
complicated by incomplete PBK models, ignorance of relevant
exposure routes for model input, uncertainty as to the relevance of
using concentrations in organs/biofluids other than lung tissues (urine,
plasma C,,. versus interstitial), as well (as absence of or) diverging
concentration ranges between in vitro and in vivo. Finally, the reactivity
of these sensitizing chemicals may further complicate PBK and
biomonitoring inferred dosimetry comparisons. This reactivity may
also lead to an underestimation of the actual concentration in vitro. The
nominal concentration in vitro may not be equal to the actual
concentration reaching cells, due to binding to proteins in cell
culture media supplements such as serum or albumin.

Third, the issue of available toxicogenomics data and AOPs needs
to be discussed, as this affected the GO BP overlap analysis outcome. At
the time of our study, OECD-endorsed AOPs - which undergo rigorous
international peer review and offer a standardized, globally vetted
framework -for AA and LFD were not available. The number of
relevant AOPs (or pathways of toxicity) is expected to be limited by
design (Kleensang et al., 2014), this due to the limited number of cellular
targets and metabolic routes in human biology. However, it is inherently
difficult to define what constitutes a “sufficient, true” number of AOPs
and with this GO BPs to fully capture the chemically-induced disease
processes. Further, although stringent selection criteria were applied to
select AOP content and GO BPs, some bias can not be excluded. The
restricted number of toxicogenomics studies retrieved was the result of
applying stringent selection criteria as well, to ensure a.o. biological
relevance, consistency in chemical testing and availability of full genome
expression data in order to ensure GO BP coverage. While this
approach enhances both chemical and biological mechanistic
specificity, we realize that it also narrows the dataset pool. In future,
our approach could be improved once standardized metadata and
ontologies and FAIR data principles (Wilkinson et al, 2016) in
toxicology are further implemented to facilitate findability and reuse
of data. Further, maturation of OECD-endorsed AOPs, further
integration of AI and NLP tools and similar approaches (e.g., AOP
Helpfinder 3.0 (Jaylet et al., 2024), together with community-driven
curation platforms, similar to AOP-Wiki, can improve transparency.

Fourth, AOPs documented under the AOP wiki are generally
textual descriptions of biological processes. The actual molecular
annotation (e.g., including identifiers for genes/proteins/protein
subunits involved in MIE and KEs, which can be used for cross-
referencing to other databases) is frequently lacking or at best
limited. Further, unclarity may exist if the MIE and KEs involve
interaction with a transcript, with protein expression and/or
modification and/or function of the protein. Consequently, the
proper translation into GO BPs may be subject to error.

Finally, our approach is based upon generic AOPs and in vitro
cells from one source/individual. It does not account yet for
interindividual differences. Genetic predisposition and preexisting
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comorbidities, such as atopic dermatitis can lead to a.o. increased
dermal permeability and immune priming resulting in increased
susceptibility in the response to environmental agents.

In conclusion, we presented a data integration approach based
upon curation and integration of AOP and disease data resources,
together with well controlled mechanistic in vitro exposure to effect
data. Although limitations in our approach exist (coverage of AOP
content, uncertainty in dosimetry issues, isolated in vitro systems, lack
of consideration of interindividual differences), our human-centric
approach may contribute to the identification of plausible
mechanistic links between exposures commonly present in the
occupational exposome and disease outcomes. It can thereby
complement and inform findings obtained from animal studies and
epidemiology. Also, it represents a useful resource for further
development of adverse outcome pathways, as we curated
mechanisms (GO BPs) potentially associated with LFD and AA,
with gene and GO BP content. Finally, the approach can identify
commonality between different chemicals in terms of activating disease
mechanisms, which may ultimately help to prioritise chemicals within
the occupational exposome towards risk assessment.
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