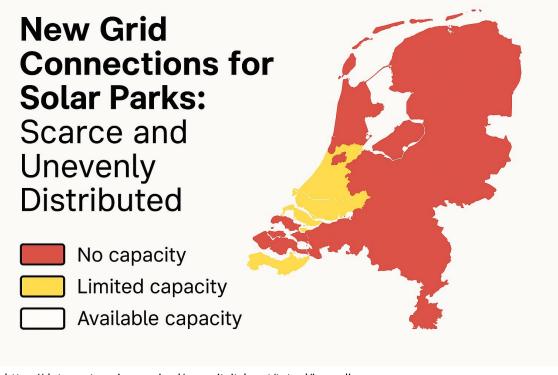


Why solar on land?

- Autonomous
- Renewable
- Cost-effective
- Speed
- Challenges for people and nature
 - Opportunity: multiple functions

Motto: Speed without regrets



Triple strength: Autonomous + Renewable Energy +

Solar development in the Netherlands

- Solar covers 18% electricity demand 2024
- High PV penetration & low flex demand induce low capture prices ¹
- 540 hr/yr non-positive clearing prices 2024
- Severe shortage of new grid connections
- Feed-in restrictions as in Germany²

https://data.partners in energie.nl/capacite its kaart/totaal/invoeding

^{[2] [}Feed-in power limitation of grid-connected PV battery systems with autonomous forecast-based operation strategies, J. Bergner et al., Proc EU PVSEC (2014).

^[1] Marginal Effect of Variation in Photovoltaic System Configuration's Generation Profiles on Price Stabilisation in the Netherlands Compared with Deployment of Flexible Demand and Supply, B.B. Van Aken et al. Sol. RRL, 6, 2100484 (2022). https://doi.org/10.1002/solr.202100484

Solar development in the Netherlands

- Solar covers 18% electricity demand 2024
- High PV penetration & low flex demand induce low capture prices ¹
- 540 hr/yr non-positive clearing prices 2024
- Severe shortage of new grid connections
- Feed-in restrictions as in Germany²
- Ground coverage ratios 75 98%
- Subsidy scheme demands nature-inclusive solar parks

[1] Marginal Effect of Variation in Photovoltaic System Configuration's Generation Profiles on Price Stabilisation in the Netherlands Compared with Deployment of Flexible Demand and Supply, B.B. Van Aken et al. Sol. RRL, 6, 2100484 (2022). https://doi.org/10.1002/solr.202100484

[2] [Feed-in power limitation of grid-connected PV battery systems with autonomous forecast-based operation strategies, J. Bergner et al., Proc EU PVSEC (2014).

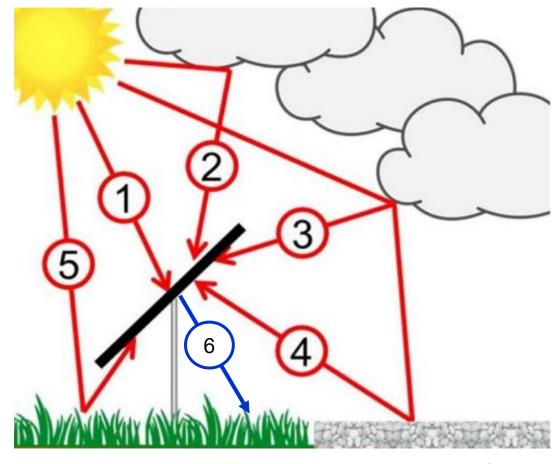
Land lease, soil quality and eco-label

Lease contract: Maintain soil quality!

2022- First irradiance rules published ¹

2025 - Transparent bifacial modules most costeffective ²

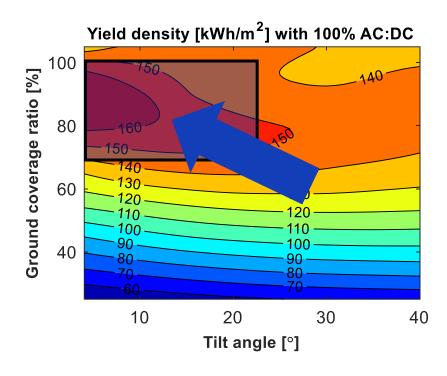
2025 - Ground irradiance rules in Dutch eco-label ³



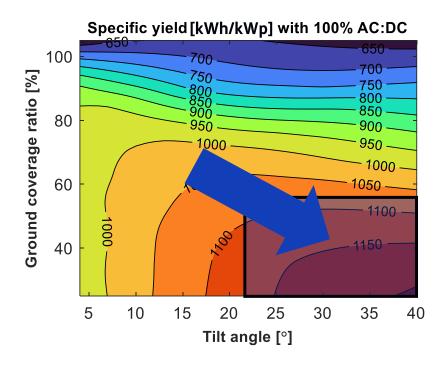
- [1] Nieuwe ontwerptoets verankert bodemkwaliteit in zonneparken, Cesar et al., Bodem (April 2022)
- [2] Evaluation method and module design for cost-effective compliance with irradiance guidelines to maintain soil quality in solar parks, Cesar et.al, EPJ Photovoltaics 16,
- 13 (2025), https://doi.org/10.1051/epjpv/2025003
- [3] EcoCertified Solar Parks. Openbare eindrapportage, Krijgsveld et al., (September 2025) Doi:10.18174/699847

Yield, ground irradiance and LCoE

- Simulation considers ¹:
 - Direct beam and diffuse components
 - Full 3D view-factor
 - Non transparent modules
 - Albedo 25%
- Cost model ^{2,3}
 - 3P south fixed tilt system,
 - Capex, OPEX, depending on tilt en GRC
 - WACC 4%, Degradation 0.5%/year
 - Land lease 8000 €/ha/year

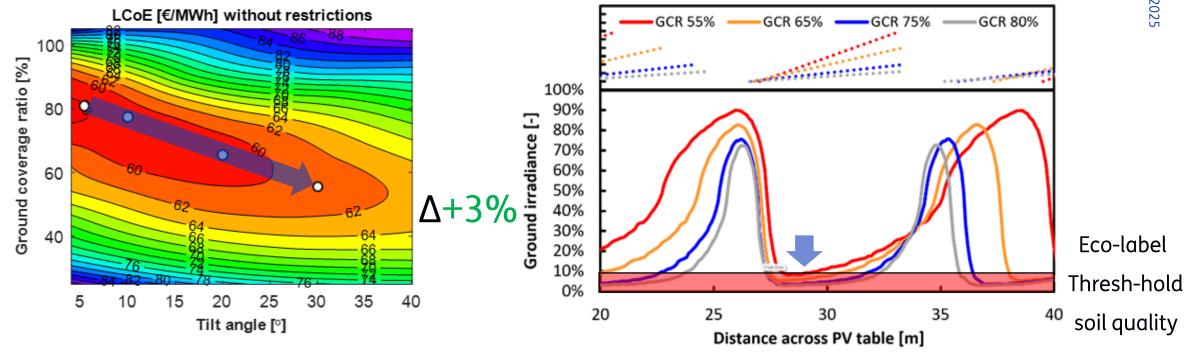

TNO BIGEYE PV yield and ground irradiance platform

^[1] BIGEYE - simulation under shadow conditions, A.R. Burgers, Proc. 6th Workshop Bifacial PV, Amsterdam, the Netherlands (2019).


^[2] Evaluation method and module design for cost-effective compliance with irradiance guidelines to maintain soil quality in solar parks, Cesar et.al, EPJ Photovoltaics 16, 13 (2025), https://doi.org/10.1051/epipv/2025003

innovation for life

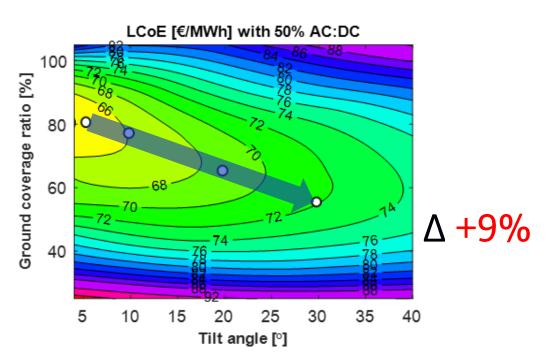
Solar park: the basics without feed-in restriction



- Highest yield per unit area at high GCR and low tilt
- Typical monofunctional solar park in Netherlands

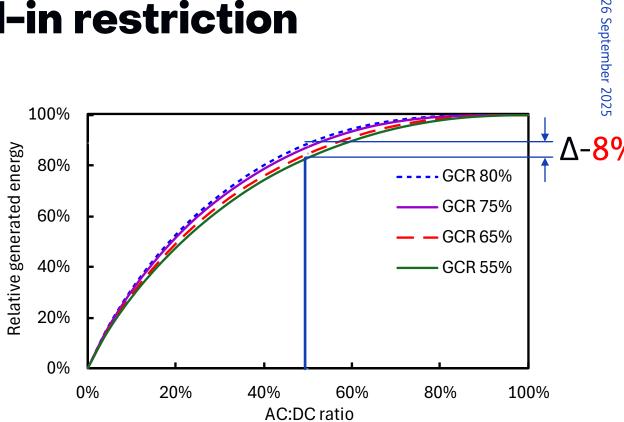
- Highest yield per panel at low GCR and high tilt
- Highest ground irradiance
- Highest return on CO₂ investment per panel
- Capex increases ~25% and OPEX doubles

Solar park: LCoE without feed-in restriction

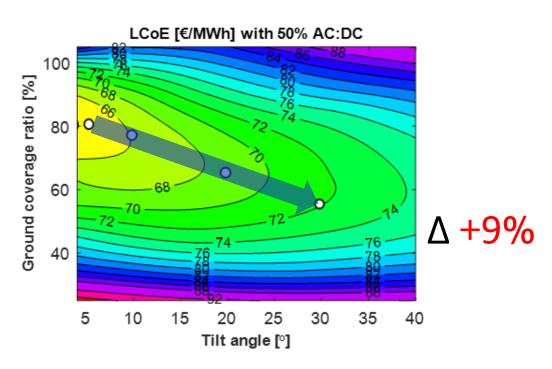

Without feed-in restriction

 LCOE increase 3% over broad range of GCR and tilt values With increasing tilt angle and decreasing GCR

- Minimum irradiance increases from 3% to 8%
- Photons more equally shared between plants and PV
- Broader, brighter regions between PV tables


These effects support nature-inclusive solar parks

Solar park: LCoE with feed-in restriction



LCOE increases 9% in same range

- Annual yield nature-inclusive solar park is 8% lower than industrial park due to clipping losses
 - 80% GCR produces 89% of annual yield
 - 55% GCR produces 82% of annual yield
- Co-located BESS could mitigate this loss and make natureinclusive solar park more competitive → future work

Solar park: Capture price w/wo feed-in restriction

With 50% AC/DC ratio limitation:

- Business case does not allow for sufficient light sharing
- Nature-inclusive solar parks under feed-in restriction needs compensation

Capture prices for two years for four solar park designs, with 100% and 50% AC:DC

GCR	Tilt angle	Capture price 2019 [Euro/MWh]		Capture price 2024 [Euro/MWh]		
		100%	50%	100%	50%	
55%	30°	38.4	39.2	57.9	60.4	
65%	20°	38.4	39.1	57.9	60.1	∆ <1%
75%	10°	38.4	39.0	58.2	60.0	
80%	6°	38.4	39.0	58.4	60.0	

- Extra revenues nature-inclusive park (GCR 55%) <1%
- 9% higher LCOE is main problem for business case

Conclusions

- Nature restoration is guaranteed with new Eco-label for solar parks
- High penetration of solar PV in congested grids results in feed-in restrictions
- Feed-in restriction promotes high panel densities and increases LCoE of nature-inclusive solar parks

Conclusions

- Nature restoration is guaranteed with new Eco-label for solar parks
- High penetration of solar PV in congested grids results in feed-in restrictions
- Feed-in restriction promotes high panel densities and increases LCoE of nature-inclusive solar parks

Future work:

• Solar parks + BESS are likely to improve the competitiveness of nature-inclusive solar parks

Partners SolarEcoPlus:

DEI+ Grant from the Ministry of Economic Affairs and Climate