? l| vehicles

Review

Scenario Metrics for the Safety Assurance Framework of
Automated Vehicles: A Review of Its Application

Erwin de Gelder *(, Tajinder Singh %09, Fouad Hadj-Selem 3, Sergi Vidal Bazan % and Olaf Op den Camp !

check for
updates
Academic Editors: Tai-Jin Song and

Yao Cheng

Received: 31 July 2025
Revised: 29 August 2025
Accepted: 8 September 2025
Published: 13 September 2025

Citation: de Gelder, E.; Singh, T.;
Hadj-Selem, F,; Vidal Bazan, S.; Op
den Camp, O. Scenario Metrics for the
Safety Assurance Framework of
Automated Vehicles: A Review of Its
Application. Vehicles 2025, 7, 100.
https://doi.org/10.3390/
vehicles7030100

Copyright: © 2025 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ /creativecommons.org/
licenses /by /4.0/).

TNO—Integrated Vehicle Safety, Automotive Campus 30, 5708 ]Z Helmond, The Netherlands
Siemens—Digital Industries Software, Automotive Campus 15, 5708 JZ Helmond, The Netherlands
Vedecom—MOobiLLAB, 23 bis Allée des Marronniers, 78000 Versailles, France

Applus + IDIADA—Electronics, Santa Oliva, P.O. Box 20, 43710 Tarragona, Spain

*  Correspondence: erwin.degelder@tno.nl

W N =

Abstract

Ensuring the safety of Automated Driving Systems (ADSs) requires structured and trans-
parent validation processes. Scenario-based testing has emerged as a widely adopted
approach, enabling the targeted assessment of system behavior under diverse and chal-
lenging conditions. To offer a structured approach for scenario-based safety assurance, the
European SUNRISE project developed the Safety Assurance Framework (SAF), which com-
prises stages such as scenario creation, allocation, execution, evaluation, decision-making,
and in-service monitoring and reporting. Central to the SAF are scenario metrics, which
quantify aspects such as coverage, criticality, and complexity and support evidence for
safety cases. This paper provides a comprehensive overview of scenario-based scenario
metrics relevant to ADS safety assessments. We categorize six core metric types: complete-
ness, coverage, criticality, diversity/dissimilarity, exposure, and complexity. We explain
their roles across the difference SAF components. This paper also discusses interdepen-
dencies among metrics, implementation challenges, and gaps where further research is
needed, particularly in metric validation, aggregation, and standardization. By clarifying
the landscape of scenario metrics and their application within the SAF, this work aims
to support both practitioners and researchers in advancing scalable, data-driven safety
assurance for ADSs.

Keywords: automated driving system; safety; assurance; scenario; metrics

1. Introduction

To advance the deployment of Automated Driving Systems (ADSs) on public roads,
ensuring their safety and reliability is crucial for both industry and regulators. Large-scale
road testing is impractical for ADSs because the amount of testing that would be required
to obtain enough statistical evidence of its safe operation is in the order of billions of
kilometers [1]. Scenario-based safety validation is a widely supported approach in the au-
tomotive domain [2,3]. The scenario-based approach enables targeted evaluation of system
behavior under diverse and challenging conditions. However, given the complexity of
ADSs and the associated operating conditions they operate in, a structured and transparent
approach for safety assurance is essential [4].

In response to the need for a structured approach for safety assurance, the European
Safety assUraNce fRamework for connected, automated mobllity SystEms (SUNRISE)
project (https://ccam-sunrise-project.eu/, accessed on 12 September 2025) developed
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the Safety Assurance Framework (SAF), which is based on the New Assessment/ Test
Method for Automated Driving (NATM) framework proposed by the UNECE [5]. The SAF
structures the ADS evaluation into a series of processes that ultimately leads to a systematic
argument for the safety case (more details on the SAF will follow in Section 4). The SAF is
designed to be flexible towards the application that is under consideration (also referred
to as the Subject Under Test (SUT)), the toolchains that are used throughout the assurance
process, the operating conditions of the SUT, and external requirements that must be met,
making it a valuable foundation for structured safety assurance.

An important aspect toward effective implementation of the SAF is the use of scenario
metrics: quantitative measures that help evaluate the adequacy, performance, and relevance
of the scenarios used throughout the safety assessment process. Metrics can guide scenario
selection, support pass/fail evaluation, quantify test coverage, and provide evidence for
the safety case. Despite their importance, the literature lacks a consolidated view of which
types of metrics are relevant at each SAF stage and how they interrelate.

The goal of this paper is to fill this gap by providing a structured overview of scenario-
based metrics relevant to the SAF. We categorize and describe key types of metrics such as
scenario completeness, scenario coverage, scenario criticality, scenario diversity, scenario
exposure, and scenario complexity. Furthermore, we discuss their roles across different SAF
components. In doing so, we aim to support both practitioners and researchers in under-
standing the current state of the art, identifying areas for further development, and applying
metrics effectively within the SAF or, more generally, any ADS safety assurance process.

This work is structured as follows: First, related surveys are briefly discussed in
Section 2. Section 3 provides an overview of scenario metrics. The SAF is described in more
detail in Section 4. This section also provides an overview of which metrics can be used
at the different SAF components. This paper ends with a discussion and conclusions in
Sections 5 and 6, respectively.

2. Related Surveys

Recent works have reviewed different perspectives of scenario-based assessments,
which provide overviews of the different aspects of scenario-based assessments. For ex-
ample, next to the works already mentioned in the introduction ([2-5]), Finkeldei et al. [6]
introduce “Scenario Factory 2.0”, a toolchain built around CommonRoad [7], for scenario-
based testing. In [8], the use of large language models to enhance scenario-based testing
workflows is reviewed. Yan et al. [9] propose a scenario generation framework that gener-
ates diverse scenarios with varying risk levels. While these works are not an exhaustive list,
they already showcase that scenario-based testing methods rely on proper metrics. This
observation further motivates our focus on consolidating and structuring scenario metrics.

Several prior works have surveyed or proposed metrics relevant to the assessment of
ADSs, each with a particular focus or application domain. These contributions offer valu-
able insights into specific categories of metrics such coverage, criticality, and complexity.
However, they often address these concepts outside the context of scenario-based evalua-
tion. Therefore, this work should be seen as complementary to existing surveys, with the
goal of providing a scenario-focused perspective on metrics relevant to the scenario-based
safety assessment for ADSs.

For instance, Emran [10] provides a structured overview of data completeness mea-
sures, offering a classification of techniques used to quantify completeness in datasets.
Although not tailored to driving scenarios, the conceptual foundation is relevant for un-
derstanding how completeness might be formalized in the context of scenario-based as-
sessments of ADSs. Regarding criticality, Westhofen et al. [11], Wang et al. [12] provide a
comprehensive review of surrogate safety measures that aim to measure safety without
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the presence of safety-related events like collisions. For scenario complexity, Liu et al. [13]
provide a detailed overview of metrics aimed at quantifying environmental, behavioral,
and perceptual complexity in driving scenarios. Finally, the literature on coverage-based
testing (e.g., structural coverage, requirements coverage, and parameter space exploration)
is well-established, particularly in software and system testing (e.g., see [14]). However,
overviews on coverage metrics related to driving scenarios with respect to an ADS” Opera-
tional Design Domain (ODD) are limited.

Despite the value of these works, there remain important gaps in the literature. Most
notably, few surveys take a scenario-centric view when reviewing different types of metrics,
such as completeness, criticality, and coverage, within the context of assessing the per-
formance of ADSs against their ODDs. Moreover, there is limited guidance on how such
metrics can be mapped to different stages of scenario-based assessments, such as scenario
generation, test case allocation, and In-Service Monitoring and Reporting (ISMR). This
article aims to address these gaps by providing a structured overview of scenario-based
metrics specifically tailored to ADS safety assessments (Section 3). Moreover, we will
highlight the role of these metrics within the SUNRISE SAF (Section 4). Figure 1 visualizes
the position of this work, while aforementioned references provide an overview on either
scenario-centric perspective on ADS assessments or specific metrics; this work provides an
overview of metrics within the context of scenario-based assessments of ADSs.

Scenario-centric
perspective on
ADS assessment

Overview on
specific metrics

Eg., Eg.,
Riedmaier Westhofen

et al. (2020) et al. (2022)

Figure 1. Positioning of this work: while there are several (review) works on scenario-centric
perspectives of ADS assessments (e.g., Riedmaier et al. [2], but also [3-6,8,9]) and several works
on specific metrics (e.g., Westhofen et al. [11], but also [10,12-14]), this work combines the two by
providing an overview of metrics within the context of scenario-based assessments of ADSs.

3. Metrics

This section presents relevant metrics for scenarios that can be utilized when using
scenarios within the SAF. While this section focuses on the metrics themselves, Section 4
will explain how the metrics can be used for the SAF. The metrics are grouped into six dif-
ferent types of metrics: scenario completeness (Section 3.1), scenario criticality (Section 3.2),
scenario coverage (Section 3.3), scenario diversity and dissimilarity (Section 3.4), scenario
exposure (Section 3.5), and scenario complexity (Section 3.6). These metrics are selected
because they consistently emerge across the literature as key dimensions for evaluating
scenarios and because each directly supports at least one stage of the SAF (see Section 4).
For instance, the ISO 34502 standard [15] emphasizes risk- and function-oriented categories
such as perception, planning, and control, which map closely to criticality and complexity.
Similarly, the NATM framework proposed by the UNECE [5] stresses the importance of
scenario coverage and representativeness, where the latter is closely related to scenario
exposure. Though not explicitly mentioned, completeness is necessary for well-defined
scenarios and thus relevant for both the NATM framework and ISO 34502 [15]. Diver-
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sity and dissimilarity are mentioned in scenario clustering/selection studies, though no
consolidated overview exists in the literature to the best of our knowledge. Together,
these size metrics capture complementary aspects: completeness and coverage ensure
adequacy of scenario descriptions and breadth of operational conditions; criticality and
complexity address the level of challenge posed to the system; diversity/dissimilarity
ensures non-redundancy within scenario sets; and exposure grounds the assessment in
real-world likelihoods.

For each of the six different types of metrics, relevant metrics from the literature are
briefly discussed. Table 1 provides an overview of these six types of metrics. In addition to
these metrics, Section 3.7 presents other relevant types of metrics such as realism, rarity,
and representativeness. The reason that these other types of metrics are not included in
the list above is either due to their limited treatment in the existing literature or because
they closely overlap with the six aforementioned metric types. These additional metrics
are briefly introduced and discussed in relation to the six main metric types. Note that the
following subsections can be read independently.

Table 1. Overview of different types of metrics for scenarios. In case of multiple definitions, they are
separated by a semicolon.

Name Definition in the Context of ADS Safety Assessment  Relevant
References

Completeness The extent to which a scenario description contains all  [10,16,17]
the information necessary for meaningful analysis and
decision-making

Criticality Quantification of the potential risks and challenges in  [11,15,18-32]
a scenario
Coverage The adequacy of a testing effort; the extent to which a set  [2,17,33—44]

of scenarios addresses a given ODD
Diversity or Quantification of how two scenarios are different from [45-56]
dissimilarity = each other; spread across a scenario set
Exposure The likelihood of encountering a scenario [57-67]
Complexity The degree of challenge a scenario presents to a human [13,68-78]
driver or an ADS

3.1. Scenario Completeness

From all six core metrics, completeness metrics are the least discussed metrics in
the literature (see also Figure 2). Many agree on the importance of completeness, but a
commonly-agreed definition of completeness does not exist [10]. In [10], a list of various
definitions of completeness is presented. In general, completeness refers to the state
or degree of having all the necessary or appropriate parts. In the context of scenario-
based safety assessments of ADSs, completeness indicates the extent to which a scenario
description contains all the information necessary for meaningful analysis and decision-
making. A complete scenario is one that is free from missing or ambiguous data, as well
as specifies all relevant aspects—such as actor behaviors, environmental conditions, and
time-based relations—required to simulate or evaluate the scenario accurately.

While completeness is often discussed alongside coverage, the two concepts serve
distinct roles. Coverage, which will be more extensively discussed in Section 3.3 pertains
to the breadth of scenarios—how well they span the ODD and the range of conditions
under which the system is expected to operate. Completeness, on the other hand, is about
depth—ensuring that each individual scenario is sufficiently specified. For example, a
scenario might be incomplete if it lacks details such as vehicle velocities, road geometries,
or environmental factors like lighting and weather. High coverage ensures that all relevant
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types of situations are represented, but without completeness, those scenarios may be
unusable for simulation, testing, or validation. Thus, completeness is essential for enabling
confident assertions about system behavior under specific conditions.

Scenario completeness metrics

General:
Emran (2015)

Completeness Completeness defi-
argumentation: nitions (no metrics):
Glasmacher et al. (2024) de Gelder et al. (2024)

Figure 2. Overview of relevant studies for scenario completeness metrics, which focus on the general
concept of completeness ([10]), completeness argumentation [16], or completeness definitions [17].

According to [16], several approaches mentioned in the literature aim to achieve higher
completeness in the context of safety assessments of ADSs, but Glasmacher et al. [16] are
the first to provide an argument for completeness. More specifically, they provide an argu-
ment for the state of completeness—which they regard as binary—of the so-called scenario
concept, where scenario concept refers to a set of scenario categories, their definitions, and
the relations between scenario categories. They define completeness for a use case “if all
relevant driving situations are adequately captured”, which is considered to be a binary
state; i.e., completeness is either reached or it is not. It should be noted that completeness
thus depends on the use case. Also, it is not further elaborated what “adequately” means.

In [17], the authors propose two different types of completeness that focus on concrete
scenarios rather than the scenario concept. Since their use case is the development of a
scenario database based on real-world data, the two different types of completeness focus
on different aspects of this process. The first type of completeness addresses the question
of whether “the driving data contain all relevant details of an ODD”. The second type
addresses the question of whether “the collected scenarios describe all relevant details
that are in the driving data”. Due to the word “relevant”, the degree of completeness
depends on what is considered to be relevant, which depends on the actual use case.
For example, if a system’s response depends on the color of the vehicle in front, the
vehicle’s color is considered relevant and must be described in order to reach completeness.
Conversely, if another system’s response does not depend on the vehicle’s color, there is no
need to describe this to reach completeness. In [17], providing a quantitative measure for
completeness is left as future work.

One aspect of the completeness of a scenario description is the adherence to a specified
format. For example, in the context of scenario description for virtual simulations, one of
the most commonly utilized format is ASAM OpenSCENARIO XML [79]. Because a file
specification exists, it is possible to ascertain whether a given scenario description adheres
to the prescribed specification. Note that this does not imply that the content of the scenario
description is sensible or complete. For example, it is straightforward to describe a scenario
with two vehicles driving through each other or to simply leave out some important
details while still adhering to the specified format. To check for such issues, a visual
inspection can be conducted with a visualization tool of the scenario description. For ASAM
OpenSCENARIO XML, Esmini (https://esmini.github.io/, accessed on 12 September 2025)
could be used for that purpose.

In summary, the completeness of scenarios entails the degree of which all neces-
sary information is contained in the scenario. This definition can be applied to concrete
scenarios [17] as well as to a more abstract scenario concept [16]. As a start towards com-
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pleteness measures, tools have been developed to check whether a scenario description
contains the necessary information to be executable in a simulation environment.

3.2. Scenario Criticality

Criticality metrics are fundamental in evaluating and ensuring the safety and reliability
of ADSs. These metrics quantify the potential risks and challenges in various traffic
scenarios, offering a framework for assessing and mitigating hazards. It is important to
note that while criticality metrics quantify the level of imminent danger or challenge within
an individual scenario, they do not establish the overall safety of an ADS by themselves.
In the context of human driving research, criticality metrics are often used as surrogate
safety indicators to evaluate crash risk. Within ADS assessments, however, their role is to
help identify and prioritize safety-relevant scenarios for testing. The broader evaluation
of system-level safety, which integrates results across many scenarios and metrics, is
addressed later within the SAF (Section 4).

As previously discussed in Section 2, a comprehensive list of criticality metrics is
provided in [11]. Therefore, this section only briefly outlines the five categories of criticality
metrics proposed by Cai et al. [18], and we refer the reader to [11] for a more thorough
overview. For an overview of the literature reviewed below, see Figure 3. The five categories
are as follows:

e Trajectory-based metrics: These metrics calculate the spatial or temporal gaps between
traffic participants based on their trajectories or positions within a scene. Examples
include Time Headway (THW) [19], gap time, distance headway, Time-to-Collision
(TTC) [20], worst TTC [21], time to closest encounter [22], time exposed TTC [23], time
integrated TTC [23], time to zebra [24], and post-encroachment time [25]. These metrics
are crucial for scenarios where the precise movement and interaction of vehicles are
central to assessing risk.

*  Maneuver-based metrics: These metrics measure the difficulty of avoiding an accident
through specific maneuvers such as braking and steering. For braking, key metrics
include time to brake, deceleration to safety time, brake threat number [26], required
longitudinal acceleration, and longitudinal jerk. For steering, important metrics
include time to steer, steer threat number [26], required lateral acceleration, required
longitudinal acceleration, and lateral jerk. These metrics are essential for evaluating
the immediate actions required to prevent collisions.

*  Energy-based metrics: These metrics assess the severity of a crash. For example,
Yue et al. [27] use the kinematic energy of the ego vehicle to compute the scenario risk
index. These metrics are critical for understanding the potential impact and damage
severity in crash scenarios.

¢ Uncertainty-based metrics: These metrics capture the uncertainties inherent in traffic
scenarios. The level of uncertainty in a scenario generally correlates with the num-
ber of challenges faced by the SUT. Examples include the pedestrian risk index by
Cafiso et al. [28], which quantifies the temporal variation in estimated collision speed
between a vehicle and a pedestrian, and the crash potential index [29], which estimates
the average crash possibility if the required deceleration exceeds the maximal available
deceleration. Schreier et al. [30] utilized Monte Carlo simulations to estimate behav-
ioral uncertainties of traffic participants with the time-to-critical-collision probability.
These metrics are pivotal for scenarios with high variability and unpredictability.

*  Combination-based metrics: These metrics integrate several criticality metrics, ad-
dressing different aspects of a scenario to provide a more comprehensive assessment.
Huber et al. [31] presented a multidimensional criticality analysis combining vari-
ous metrics to evaluate overall scenario criticality. Baumann et al. [32] proposed a
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combination-based metric that includes longitudinal acceleration, THW, and TTC.
These metrics offer a holistic view but require careful consideration of the weights
assigned to different components.

The diverse approaches to criticality metrics underscore the complexity and multi-
faceted nature of traffic scenarios. Each class of metrics addresses specific aspects of risk,
yet no single metric can be universally applied to all scenarios. Appropriate criticality
metrics need to be tailored to the specific conditions of different scenarios, as a general and

objective criticality metric for all scenarios does not yet exist.

Scenario criticality metrics
Trajectory
based:
Jansson
(2005) Uncertainty
Hayward based:
(1972) Ca fiso. Combination
Wachenfeld Maneuver based:
. Energy based:| | et al. (2011)
et al. (2016) based: Huber
Yue et al. Cunto and
Eggert (2014) | | Brannstrom (2020) Saccomanno et al. (2020)
Minderhoud et al. (2008) Baumann
(2008)
and Bovy . et al. (2021)
Schreier
(200L) et al. (2016)
Varhelyi ’
(1998)
Allen et al.
(1978)

Figure 3. Overview of relevant studies for scenario criticality metrics, which focus on
trajectories [19-25], maneuvers [26], energy [27], uncertainty [28-30], or combinations thereof [31,32].

3.3. Scenario Coverage

Coverage generally refers to the degree to which something deals with something
else. In the field of software engineering, coverage is a measure of the verification
progress [33]. Since there are multiple ways to measure (the degree of) verification com-
pleteness, Piziali [33] argues that there is no single (best) way to define coverage. For
example, in the application of software engineering, coverage can be related to the fraction
of functional requirements that have been addressed (functional coverage), the fraction
of the code that has been executed during the verification process (code coverage), and
the fraction of assertions that have been evaluated (assertion coverage). For the different
types of coverage, multiple measures can be considered. For instance, code coverage can
be measured in terms of the lines of codes that have been executed, the branches that are
covered, etc.

In [34], the authors highlight the importance of coverage metrics in testing au-
tonomous vehicles. They argue that inadequate coverage of potential situations an
autonomous vehicle might encounter is similar to insufficient testing. To address this,
Alexander et al. [34] propose a “situation coverage metric”. They suggest that this metric
should be tractable with the following characteristics:

¢ Calculable percentage: The metric should be expressible as a percentage. Metrics like
the number of kilometers driven or the number of (simulated) scenarios are inadequate
because they can be infinite. Similarly, the number of failures found is not useful since
the total number of possible failures is unknown.
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e  Coverage of 100% achievable: The metric should allow for 100% coverage to be
realistically achievable under practical conditions.

In the context of testing ADSs, “coverage” is frequently used to assess the adequacy of
a testing effort and to determine when testing can be concluded [35]. Riedmaier et al. [2]
described “scenario coverage” as the extent to which the concrete scenarios used for testing
encompass the entire scenario space, though they did not provide specific quantitative
measures. Traditional metrics, such as requirement and code coverage [33], are also relevant
for ADSs. Additionally, specific coverage metrics have been developed for Automated
Driving (AD). This section will highlight several of these metrics, which can be categorized
based on the two aforementioned properties identified by Alexander et al. [34]: metrics
that cannot be expressed as a percentage, metrics that can be expressed as a percentage but
for which 100 % is not realistic, and metrics that can be expressed as a percentage for which
100 % is achievable. An overview is shown in Figure 4.

Scenario coverage metrics

Percentage,
100 % achievable:
Tatar (2015)

General: Mullins
Piziali (2007) Not as a per- et al. (2018)
Alexander centage: Percentage, not Alnaser
et al. (2015) de Gelder 100 % achievable: et al. (2021)
Araujo et al. (2019) Glasmacher Weissensteiner
et al. (2023) Hartjen et al. (2023) et al. (2023)
Riedmaier et al. (2020) de Gelder

et al. (2020)

et al. (2024)

Tian et al. (2018)
Laurent
et al. (2023)

Figure 4. Overview of relevant studies for scenario coverage metrics, which focus either on the
general concept of completeness [2,33-35] or can be categorized as metrics not as a percentage
[36,37], metrics as a percentage but without 100% achievable [38], and metrics as a percentage with
100% achievable [17,39—44].

In [36], a measure for the uncertainty of an estimated Probability Density Function
(PDF) is used to measure the degree of completeness of the acquired data. The used
measure ranges from zero to infinite, so it cannot be expressed as a percentage. Zero is
only reached in case infinite data is used to estimated the PDF. In [37], two measures are
proposed for measuring the “saturation effect” in recorded data. For the maneuver layer,
the Kullback-Leibler divergence between the PDF estimated with all data and the PDF
estimated with less data is used. This provides a number ranging from zero to infinite, with
zero if and only if the two PDFs are equal. For the behavior layer, the number of unique
maneuver sequences is used. The idea is that this number should reach an asymptote.
However, because this asymptote is unknown, this number cannot be expressed as a
percentage. Because the metrics in [36,37] cannot be expressed as percentages, it is difficult
to determine a threshold for which the data can be regarded as sufficient or saturated.

Glasmacher et al. [38] proposed a coverage metric based on the values of the scenario
parameters. Here, the parameter could refer to scenario-level parameters, like parameters
related to the road geometry, environmental conditions, etc., as well as behavioral parame-
ters of traffic participants, such as initial speed, deceleration, etc. In their approach, each
scenario is represented by an ellipsoid in a parameter space. The total covered space is
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represented by the union of all ellipsoids. The degree of coverage is calculated by dividing
the total covered space by the space that can potentially be covered, where the latter is
estimated based on the assumption that the covered space as a function of the total number
of scenarios can be represented by a cumulative Weibull distribution function. As a result,
the coverage can be expressed as a percentage. However, since a cumulative Weibull
distribution function is assumed, 100% coverage is only achieved if an infinite amount of
data is used.

A number of coverage metrics from the third category, i.e., metrics that can be ex-
pressed as a percentage for which 100% is realistically achievable, are presented in the
literature. In [39], the so-called state coverage is proposed, which is a percentage of pre-
defined states that have been reached during testing. Similarly, in [40], the coverage is
expressed as the percentage of regions covered by the robot. Both these methods require
us to determine the states or regions that must be covered during testing before the actual
testing takes place.

A framework for the coverage of scenes, i.e., a description of the environment at
a certain point in time, is presented in [41]. Here, a method is proposed to discretize
scenes such that they can be enumerated. Once enumerated, the percentage of scenes
covered during testing can be calculated. However, the details to reproduce the metric
of [41] are missing, and so far, no practical results limiting the use of the presented method
are presented.

In [42], the coverage of an ODD is calculated by breaking the ODD down into pre-
defined logical scenarios. It is assumed that the predefined logical scenarios fully cover
the ODD. The coverage of an individual logical scenario is based on the coverage of the
concrete scenarios that are covered by the logical scenario. Similarly, the coverage of a
concrete scenario is based on the coverage of the so-called continuous parameters that
are part of the concrete scenarios. Note that the continuous parameters of a scenario are
considered individually, meaning that the coverage of [42] does not consider different
combinations of parameter values.

Also in [17], metrics for the scenario-based coverage are proposed. Two type of
coverage metrics are distinguished. The first type considers the coverage of all relevant
aspects of an ODD. By encoding these relevant aspects using tags, e.g., following the
ISO 34504 standard [80], the coverage is determined by the number of scenarios containing
the predefined tags. The second type of coverage metrics considers the extent to which the
collected scenarios cover all relevant aspects that are in a data set. One metric calculates the
percentage of time instants that are covered by n scenarios. A second metric computes the
percentage of relevant actors that are covered by the scenarios, where an actor is deemed
relevant based on some predefined rules. A third metric combines the other two and
calculates whether all actors are covered at the time instances at which these actors are
considered relevant.

Other coverage metrics related to the (testing of) AD focus on the internal state of
an ADS. For example, in [43], the authors focused on the Deep Neural Network (DNN)
of an ADS. They proposed the so-called neuron coverage, which is the ratio of activated
neurons during all tests to the total number of neurons of the neural network(s). In [44], it is
assumed that an ADS computes its decisions using parameterized rule-based systems and
cost functions, meaning that parameters characterize the decision process. They proposed
“parameter coverage”, where a scenario covers a parameter if changing the parameter’s
value with a certain amount leads to different simulation results.
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3.4. Scenario Diversity and Dissimilarity

The scenario dissimilarity metric compares two scenarios to identify how different

they are from each other. The scenario diversity metric extends the notion of dissimilarity

to a set of scenarios to measure the spread across the set. These metrics may be applied at

any scenario abstraction stage, whether functional, logical, or concrete. The metrics have

various applications for scenario-based testing, including

Identifying redundant scenarios such that they can be skipped to reduce test efforts.
Clustering and categorization of concrete scenarios to obtain logical scenarios or
scenario categories. Logical scenarios/scenario categories help with understanding,
storage, and querying of scenarios.

Promoting a diverse set of scenarios when using scenario generation methods such
as optimization.

Existing dissimilarity metrics for scenarios can be broadly classified into three cate-

gories (for an overview, see Figure 5):

1.

Dissimilarity based on scenario parameters: These metrics are applied particularly
to multiple concrete scenarios of the same logical scenario. As concrete scenarios
are obtained by sampling values for parameters of the logical scenario, dissimilarity
is computed by comparing parameter values of concrete scenarios. For example,
Zhu et al. [45] compute dissimilarity based on the Euclidean distance in parameter
space. Alternatively, Zhong et al. [46] define the dissimilarity of a (traffic violation)
scenario based on the percentage of scenario parameters that differ between two
scenarios. Here, a continuous parameter is said to differ between two scenarios when
the difference in the parameter value is greater than a user-defined resolution.
Dissimilarity based on scenario trajectories: These metrics compute dissimilarity
considering the complete trajectories of all actors in each scenario. For example,
Ries et al. [47] use dynamic time warping to estimate similarity between the trajec-
tories of actors in two scenarios. Nguyen et al. [51] use the Levenshtein distance
to compute the similarity between trajectories. The Levenshtein distance measures
the number of “edits” needed to convert one trajectory to another. Alternatively,
Lin et al. [48] create matrix profiles that consist of dissimilarities between the sub-
sequences of one trajectory with the nearest neighbor sub-sequences from the other
trajectory. The dissimilarity is based on the number of elements that are lower than a
certain threshold.

Dissimilarity based on scenario features: These metrics define dissimilarity based on
features extracted based on expert knowledge or through feature extraction meth-
ods. The considered features include, e.g., behavior of scenario actors (e.g., average
occupancy around the ego vehicle) and ODD features (e.g., road layout orientation).
Kerber et al. [49] compute average occupancy of an 8-cell grid around the ego vehicle
over the entire scenario and use it as a dissimilarity measure to compare scenarios.
Kruber et al. [50] perform unsupervised random forest clustering based on road
infrastructure and trajectory features and use hierarchical clustering to estimate a
similarity measure. Alternatively, in [51,52], feature maps are computed based on
similar features, including behavior aspects such as steering angle standard deviation.
Some studies prioritize the critical segments of scenarios for dissimilarity calcula-
tion. Wheeler and Kochenderfer [53] determine the critical segment based on a risk
threshold and then estimate dissimilarity based on behavioral features such as rela-
tive speeds, acceleration change, and attentiveness. References [54,55] use criticality
metrics, e.g., the scene of the minimum distance between actors, to determine the
most critical scene. The dissimilarity score is based on both discrete features, such as
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driving path ids and actor types, and continuous features—which characterize the

interaction, e.g., the relative heading angle of actors. A case study is presented on a

database with a thousand scenarios generated by simulations in an intersection.

Scenario diversity and dissimilarity metrics

Based on sce-
nario parameters:
Zhu et al. (2021)

Zhong et al. (2022)

Based on sce-
nario trajectories:
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Nguyen et al. (2021)
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nario features:
Kerber et al. (2020)
Kruber et al. (2018)
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Figure 5. Overview of relevant studies for scenario diversity and dissimilarity metrics, which focus
on scenario parameters [45,46], scenario trajectories [47,48,51], or scenario features [49-55].

Computing dissimilarity based on scenario parameters is straightforward and efficient,
with low computational load and no additional processing of scenarios. However, this
dissimilarity measure is independent of whether the two scenarios would pose different
challenges to the ego vehicle (system under test). It is not distinguished which scenario
parameters influence a safety-critical interaction with the ego vehicle, and how this influ-
ence changes in different regions of the parameter space. In contrast, dissimilarity based
on trajectories captures the changes in interactions of other actors with the ego vehicle.
However, complete trajectories are needed for computing dissimilarity, leading to increased
computational load. Furthermore, unnecessary information may skew the dissimilarity
metric, for example, when the trajectories of actors are much earlier than the actual, safety
relevant interaction with the ego vehicle.

The third group of methods, dissimilarity on features, benefits from the ability to em-
phasize relevant features of the scenario as defined by experts or by data-driven extraction.
Features extend beyond trajectories to consider the ODD and other behavioral aspects. In
addition, specific segments of scenarios may be considered, for example, when part of the
scenario after a criticality threshold for the ego vehicle is exceeded. Thus, the dissimilarity
measure includes the notion of safety relevance and can be fine-tuned based on a given use
case. Depending on the chosen features, it may be necessary to perform testing to obtain
the features, for example acceleration change during the critical segment as in [53].

The diversity of a scenario set is established by extending the dissimilarity measure
to the entire data set, providing a measure to quantify average dissimilarity and spread.
The research on diversity metrics for scenario-based testing is still limited. Tian et al. [56]
measure the average dissimilarity of a new scenario from an existing set. The average
dissimilarity is used as an indicator of the increase in diversity due to the scenario. Alter-
natively, Zohdinasab et al. [52] map scenarios to certain cells within a feature map based
on feature values. Then, they measure diversity using a sparseness measure, which is
defined as the average maximum Manhattan distance between the occupied cells in the
feature map.

3.5. Scenario Exposure

Scenario exposure metrics are related to the frequency, time spent, or distance traveled
in a specific driving scenario in the real world. These metrics encompass aspects such as the
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scenario probability of specific scenarios, the uncertainty associated with this probability,
and the ability to predict and prepare for future scenarios. In practice, scenario exposure is
typically expressed using the scenario probability, which itself is commonly estimated. It
can be useful to also consider the uncertainty of the estimation. Hence, scenario probability
uncertainty is also considered.

As part of the exposure, this section also contains a description of existing metrics
for scenario foreseeability. This notion is mentioned in the United Nations Regulation
157 (UN R157), which requires that the ADS avoids any collisions that are reasonably fore-
seeable and preventable. Thus, it is required to determine all scenarios that are reasonably
foreseeable. The following subsections will treat the different aspects of scenario exposure
for which an overview is presented in Figure 6.

Scenario exposure metrics

Scenario probability: Scenario foreseeability:
de elder e 8 G020 | | ey || Nokamura el 002
" . de Gelder and ’
Gietelink (2007) de Gelder and

Feng et al. (2021) Opp lem Cemmnyp (A025) Op den Camp (2023)

Scenario probabil-

Figure 6. Overview of relevant studies for scenario exposure metrics, which focus on the scenario
probability [57-59,61], scenario probability uncertainty [60], or scenario foreseeability [65-67].

3.5.1. Scenario Probability

Several methodologies have been developed to estimate scenario exposure using
Naturalistic Driving Data (NDD) and Field Operational Test (FOT) data, each with its own
advantages and limitations. For scenario exposure, a distinction is typically made using
a “type of scenario”, such as an “abstract scenario” [81] and a “scenario category” [82],
and the parameter values within such a “type of scenario”. For the former, an expectation
of the number of encounters of such a situation can be determined, e.g., the expected
number of individual scenarios belonging to a certain type of scenario within one hour
of driving or within a certain predefined distance. For the latter, such an expectation is
typically meaningless because the probability of encountering a certain scenario with those
particular parameter values is zero. In that case, it is more useful to consider the probability
density of the scenario parameters.

In the ISO 26262 standard [83], the exposure of being in a certain operational situa-
tion is qualitatively defined. The highest exposure (E4) is used if the situation is almost
certain to happen during a single drive. E3, E2, and E1 are used for medium probability,
low probability, and very low probability, respectively, where each class differs in one
order of magnitude. The exposure classification EQ is used to indicate that a situation is
considered incredible.

Expressing the exposure qualitatively supports further analysis of risks, but a—possibly
more precise—quantitative expression of the exposure provides more possibilities for
further analysis. Regarding the exposure of different types of scenarios, de Gelder et al. [57]
have expressed the exposure as the expected number of encounters per unit of time for
scenarios within a specific scenario category. Their work relies on real-world driving
data, such as the data set from Paardekooper et al. [84], which includes 6000 km of public-
road driving. This data-driven approach provides a robust basis for estimating exposure
frequencies and identifying critical scenarios.

Hakkert et al. [58] have defined exposure within the context of road safety, focusing
on various measures such as the number of kilometers traveled, time spent in traffic, and
traffic volumes at intersections. These measures offer a practical way to quantify exposure
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but often require extensive and high-quality data, which can be challenging and expensive
to collect.

Regarding the exposure at the parameter value level, this comes down to either assum-
ing a particular PDF or estimating a PDF based on some observations. Methods to estimate
a PDF can be divided into two groups: parametric density estimation and non-parametric
density estimation. With parametric density estimation, a particular shape of the PDF is
assumed, while the corresponding parameters are estimated based on the data, e.g., by
maximizing the likelihood of the samples. In the domain of scenario-based assessments
for AD, Gietelink [59] assumed a Gaussian distribution of the scenario parameters. With
the increase in data, more sophisticated (but data-hungry) methods could be employed
when estimating the probability densities, such as kernel density estimation [57,60]. These
methods, however, generally scale badly with an increasing number of parameters, which
is why it is not uncommon to assume that the parameters are independent (see, e.g., [61]).

3.5.2. Scenario Probability Uncertainty

Despite the importance of the uncertainty of estimated probabilities, this has not been
discussed often in the literature in relation to scenario exposure. However, outside the field
of automated driving, extensive studies on this topic are available. Here, two different
approaches can be distinguished:

e With the first approach, a parametric distribution is used to estimate the PDF, such
as a normal or Gaussian distribution or a gamma distribution. In those cases, the
distribution parameters (not to be confused with the scenario parameters for which the
PDF is estimated) are typically fitted to some data. When using a Bayesian approach
to fit those distribution parameters, the posterior uncertainty of the distribution
parameters can be used to estimate the uncertainty of the density [62].

e With the second approach, a non-parametric distribution is used to estimate the PDF,
such as Kernel Density Estimation (KDE). In those cases, the uncertainty is either
based on a theoretical model or bootstrapping is used [63]. In the domain of AD,
bootstrapping is used in [36,60] to estimate the probability uncertainty of the scenario
parameters’ probability density.

3.5.3. Scenario Foreseeability

Regulations for the type approval of ADSs require that the activated system does
not cause any collisions that are reasonably foreseeable [64]. To determine what scenarios
are considered to be “reasonably foreseeable”, one can look at the PDF of the parame-
ters and consider the parameter values at the “edges” to be not reasonably foreseeable.
Nakamura et al. [65] exploited this idea to determine the “reasonably foreseeable” range
of parameter values. Their approach assumes that scenario parameters are independently
distributed according to the Beta distribution. From this, a parameter range capturing
99 % of the distribution is calculated, and all these parameter values are considered to be
reasonably foreseeable. This analysis is applied in [65] to cut-in scenarios. In an extension,
a similar analysis is performed for cut-out scenarios in [66].

This approach is expanded in [67], where two alternative methods are proposed to
estimate “reasonably foreseeable” parameter values. Their first method employs non-
parametric KDE, allowing the PDF to adapt to the data without assuming parameter inde-
pendence. Their second approach utilizes extreme value theory, applying the generalized
Pareto distribution to model extreme parameter values. These methods are demonstrated
through case studies involving scenarios from [65] and an additional scenario where the
ego vehicle approaches a slower vehicle.
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3.6. Scenario Complexity

In the literature, there is no universally accepted definition or metric, and multiple
approaches have emerged depending on the application context. In [68], the complexity
of a system is related to the difficulty to predict the behavior, while Issler et al. [69] define
scenario complexity as the randomness of the scenario. More generally, scenario complexity
is typically understood as the degree of challenge a scenario presents to a human driver or
an ADS and is often influenced by more than one factor, such as the number of elements
and dynamic actors, the variety of the elements and actors, the behavior of the actors,
and the relation between the elements and actors [70]. Figure 7 provides an overview of
different approaches to measure scenario complexity.

Scenario complexity metrics
Complexity Weighted sz
related to sum of B —
hl%n.lan Trained contributing based: 'Vehlcle—.palr
driving: factors: interactions:
Dunne model: Berseth Sussman Yu et al
Liu and (2005) ’
et al. (2010) Hansen et al. (2013) Issler ot al (2021)
Faure et al. Wang et al. ’ Zhou et al.
(2016) PUL) (2018) o) (2023)
Manawadu Liu et al. ot al a(2§21)
et al. (2017) (2024) ’

Figure 7. Overview of relevant studies for scenario complexity metrics, which are based on com-
plexity related to human driving [71-73], a trained model [74], a weighted sum of contributing
factors [13,75,76], uncertainty /entropy [68,69,77], or vehicle-pair interactions [70,78].

Research focusing on the challenge a scenario presents to a human driver typically
expresses scenario complexity using the estimated complexity of the task of the human
driver to deal with a certain traffic situation. For example, in [71], scenario complexity is
based on the following three factors:

*  The complexity of the task, i.e., the number of acts that the driver needs to perform;

e The number of possible ways the task can be performed, meaning that the driver need
to take more decisions if there are more ways to perform a task;

*  The number of external stimuli.

In [71], these three factors are combined by taking the sum of the first two factors
and multiplying this with the third factor, leading to a single number that quantifies the
scenario complexity. Other examples of measures for scenario complexity related to human
drivers are presented in [72], which bases the complexity on the richness of the driving
environment, and [73], which bases traffic complexity on the traffic density.

Given that the complexity of a scenario is often based on several factors, there are
two main approaches used in the literature to combine the different factors. The first
approach is using a trained model. For example, in [74], scenarios are labeled based on
the perceived complexity, and a model is trained using a random forest so that the model
can predict the perceived complexity of a scenario. For the features that are used by the
model to predict scenario complexity, Liu and Hansen [74] use environmental information
extracted from OpenStreetMap, surrounding vehicle information derived from video, and
prior environmental knowledge such as weather, time, and driving location. The second
approach is determined by taking the weighted sum of the different factors [13,75,76].
In [13], scenario complexity is determined by combining factors related to the environment
(weather, illumination, daytime, or night-time), road (obstacles and road condition), and
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dynamic entities (type and occlusion level). This approach offers a highly flexible metric,
although determining the appropriate weights may not be straightforward.

To express the challenge of a scenario for an ADS, several works address the com-
plexity of the dynamic part. An increasingly prominent approach is based on information
theory and machine learning. For example, in [77], information entropy is used to express
the uncertainties of all dynamic entities, which are used to express scenario complexity.
Based on this, in [69], a framework that leverages entropy-based metrics to quantify the
unpredictability and variability of the surrounding agent behavior is proposed, directly
linking scenario complexity to the decision-making challenge for an ADS. In [70,78], a
three-step approach is used to determine the complexity of the dynamic part. First, vehicles
that are part of the so-called dynamic influencing area of the ADS are selected. Second,
vehicle-pair complexity is computed based on the encounter angle, relative velocity, and
relative distance. Third, a single quantity is obtained by integrating the vehicle-pair com-
plexities over all pairs and after applying some form of smoothing. This approach has been
shown to be consistent with complexity ratings of human drivers [70].

3.7. Other Metrics

This section briefly discusses other types of metrics. As mentioned before, the fol-
lowing metrics are not extensively discussed either due to their limited treatment in the
existing literature or because they closely overlap with any of the six metric types that are
discussed above. The relation with the metrics discussed above will be highlighted.

3.7.1. Realism

Since the use of virtual simulations is inevitable for the assessment of (high-level)
ADSs, the development of high-fidelity simulations has received considerable attention.
Many efforts have been put into reducing the so-called sim2real gap, as the extent of the
sim2real gap can have a large influence on the evaluations of ADSs [85]. The quantification
of the real2sim gap typically focuses on the gap between the model of the SUT [86,87],
the gap between data generated by sensors [88,89], and the gap between the resulting
behavior of an SUT [90,91]. These aspects of the real2sim gap go beyond the scenario
descriptions themselves, which is why this work does not provide a further review on
metrics addressing these aspects. Another contributor to the sim2real gap is the limited
description of a scenario compared to the details in the real world. For example, even
though background in a camera image can be influenced by the color of the surrounding
buildings, not all of these colors may be described as part of a scenario. Following [17], this
contributor to the sim2real gap is addressed by scenario completeness metrics (Section 3.1).

3.7.2. Rarity /Novelty

The rarity of a scenario can be expressed using metrics related to scenario exposure
(Section 3.5). Although there is no clear definition of “novelty”, one might argue that
a “novel scenario” should be both rare and distinct from already known scenarios. There-
fore, in addition to scenario exposure metrics, scenario diversity and dissimilarity metrics
(Section 3.4) could be utilized to express novelty.

3.7.3. Reproducibility

Reproducibility is a critical aspect of scenario-based testing for ADSs. Achieving
reproducibility requires that scenarios are described in such a way that they minimize
ambiguity and interpretation errors. Completeness metrics (Section 3.1) help to assess
whether all necessary parameters, constraints, and contextual elements (e.g., actor behav-
iors, road geometry, and weather conditions) are explicitly defined, minimizing ambiguity
and interpretation errors. Variations in scenario execution may also arise due to stochastic
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elements. Dissimilarity metrics (Section 3.4) can be used to quantify differences between
multiple executions of what is nominally the same scenario.

3.7.4. Outcome Severity

Outcome severity metrics quantify the consequences of a scenario, such as the impact
speed in the event of a collision and the likelihood of a resulting injury or damage. These
metrics often overlap with scenario criticality metrics (Section 3.2), but they measure
different aspects of risk: Scenario criticality metrics focus on the urgency of a conflict
(e.g., using TTC), whereas outcome severity metrics address the impact if such a conflict is
not avoided. Outcome severity metrics, such as the maximum abbreviated injury scale [92],
are more related to the vehicle under test, whereas severity metrics are typically related to
a scenario, which is why this paper put more emphasis on the latter.

3.7.5. Traceability

Traceability refers to the ability to track the origin of each scenario and any changes
to it. In the context of ADS assessments, traceability plays a critical role in ensuring
transparency, consistency, and accountability. Traceability could help with quantifying
other metrics. For example, it may allow for reasoning of the ODD in which a certain
scenario is encountered, thereby helping to quantify the coverage (Section 3.3) of an ODD
as well as estimating the exposure (Section 3.5) of the scenario within an ODD. Typically,
aspects of traceability are not quantified, which is why this work does not further elaborate
on this topic. Instead, traceability is typically supported by qualitative attributes, structured
metadata, and auditability criteria.

3.7.6. Representativeness

Scenario representativeness refers to how well a given scenario or a set of scenarios
reflects the conditions and situations the ADS is expected to encounter in its ODD. When
referring to a set of scenarios, representativeness refers to the extent to which the (relevant)
characteristics of the scenarios reflect the characteristics of scenarios within a specific ODD.
In [93], a “scenario representativeness metric” that compares a set of generated scenarios
with a set of observed scenarios is proposed. They accomplish this by measuring the
discrepancy of the parameter distributions using the Wasserstein metric of the two different
scenario sets.

When referring to a single scenario, a representative scenario is one that is realistic,
relevant, and frequent enough to support meaningful conclusions about the system’s safety
and performance in its intended use. To the best of our knowledge, no existing study in the
field of automated driving explicitly defined a metric under the term “representativeness”
for single scenarios. A reason for this could be that it is closely linked with scenario
exposure: scenarios that are highly unrealistic and/or infrequent are inherently associated
with low scenario exposure (Section 3.5) values.

4. Metrics for the Safety Assurance Framework

The Cooperative, Connected, and Automated Mobility (CCAM) Safety Assurance
Framework (SAF) is the main deliverable of the SUNRISE project [94]. The SAF is designed
to accelerate the safe deployment of ADSs. (To be more precise, the SAF targets CCAM
systems. In this work, we refer to ADSs as the core component of broader CCAM systems,
which also include vehicle connectivity and cooperative functions.) It aims to create a
demonstrable positive impact towards safety.

The SAF is schematically shown in Figure 8. This figure also indicates where the
different types of metrics can contribute to the SAF. The SAF is based on the NATM
document from United Nations” world forum for harmonization of vehicle regulations [5].
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The input of the SAF are the ODD, requirements related to the system behavior, external
requirements, and test objectives. Next to the input, there are five main components that
can be distinguished:

1. Scenario: It creates, formats, and stores (test) scenarios in databases;

2. Environment: It converts scenarios into concrete test cases and runs them on various
testing environments;

3. Safety Argument: It evaluates test results, coverage, and overall system safety, which
leads to a decision on a pass or fail for the SUT;

4. In-Service Monitoring and Reporting (ISMR): It monitors the system during deployment,
ensuring continual safety and providing input for future system designs;

5. Audit: It ensures proper safety processes throughout the development lifecycle.

The following five subsections will provide more details on these five main compo-
nents as well as how the metrics of Section 3 can contribute to the SAF components.

I Audit ) f l
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Dissimilarity of scenarios Scenario exposure Scenario complexity

Figure 8. Safety Assurance Framework workflow including an overview of where the different types

of metrics can contribute to the SAF.

4.1. SAF Component—Scenario

The scenario component consists of three parts: create, format, and store. Multiple
approaches are possible and even desired for complementary reasons. Multiple SCenario
DataBases (SCDBs) result from this process, and through the SUNRISE data framework
that accesses these SCDBs, users of the SAF can obtain scenarios from various sources.

The first part of the scenario component (create) concerns the generation of scenarios,
e.g., using data-driven and knowledge-driven approaches. A data-driven approach could
be used to extract scenarios from real-world driving data such as methodologies like
StreetWise [3]. Scenarios may also be created on the basis of system requirements, where
the scenarios are intended to verify the conformance to the requirements. Note that at this
stage, the scenario dissimilarity metrics might be useful for the creation of scenarios. These
metrics could identify redundant or near-duplicate scenarios such that they can be skipped
to reduce test effort and optimize databases.

The second part (format) involves the formatting of the scenarios such that these can
be stored into a SCDB. Describing the scenarios into a computer-readable format facilitates
easy access, interpretation, and integration of the scenario data across different systems
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and tools. When dealing with test scenarios, a common format is ASAM OpenSCENARIO
XML [79]. To describe scenarios observed in real-world driving data, a structured format
for traffic recordings [95] or a format based on an object-oriented framework [82] might be
used. At this stage, it can already be checked whether the formatted scenarios contain all
relevant data, which is why completeness metrics can be applied at this stage.

After scenarios are created and formatted, the next step is to (store) them in a SCDB.
The implementation of the storage is up to the SCDB owner, but requirements are set out
regarding the interface of the SCDB with the subsequent components through the SUNRISE
data framework. Although all metrics could be part of the metadata of scenarios and stored
as such in the SCDBs, there is no direct use of these metrics for the storage itself.

4.2. SAF Component—Environment

The scenarios within the sfore component are the main input to the environment com-
ponent. These scenarios are retrieved through the SUNRISE data framework and, together
with the overall SAF input, which is utilized to create test cases that are executed in an
allocated test environment. This component consists of three parts: query and concretize,
allocate, and execute.

The query and concretize part is responsible for querying scenarios from the SCDB and
defining concrete test scenarios. Together with the test objectives and pass/fail criteria,
test cases are formulated. For the purpose of defining the test scenarios, many different
approaches can be used [96]. For the different approach, different metrics could be utilized.
One approach is to focus the test effort on the more critical or complex scenarios; thus the
scenario criticality and scenario complexity metrics could be used. In addition, it is typically
desired to use test scenarios that are representative of the ODD, and scenario exposure
metrics could be of use to define whether scenarios are representative. Furthermore, the
test scenarios should cover the ODD, which is why coverage metrics are also relevant for
this part.

In the next step, allocate, test cases are assigned to appropriate testing environments,
such as hardware-in-the-loop, proving grounds, or virtual simulations [97]. Each environ-
ment requires different levels of scenario detail and fidelity. Completeness metrics, which
indicate whether a scenario contains all necessary and relevant information (for a specific
testing environment), can guide this allocation process. Additionally, scenario criticality
may influence the choice of environment: for example, a scenario with a high criticality
score might be better suited for execution in a controlled or safe environment, such as a
virtual simulation, to minimize risk during testing. Lastly, scenario complexity can be
an important factor in choosing the testing environments. For instance, highly complex
scenarios may not be feasible in all testing environments.

In the execute step, the selected scenarios are run in their designated testing envi-
ronments, and the performance of the ADS is systematically evaluated. This involves
monitoring key outputs, such as safety margins, rule compliance, and system responses.
Scenario criticality metrics can play a valuable role in interpreting the test outcomes by
providing context for how challenging or safety-relevant a scenario is. For example, an
ADS’s behavior in high-criticality scenarios may warrant closer scrutiny, as these situations
often represent edge cases or conditions with a high potential for failure.

4.3. SAF Component—Safety Arqument

The safety argument component evaluates an ADS’s safety through four stages: coverage,
test evaluation, the safety case, and decide. This component uses the test results that follow
from the environment component together with the input, such as the ODD, behavioral
requirements, and external requirements, to determine whether the system meets the
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overall safety assurance goals. There is a feedback loop through the query and concretize
part in case additional tests are required to make a well-informed decision.

The coverage analysis provides quantitative assessments of the extent to which the
scenario set addresses relevant operational conditions. Therefore, the coverage metrics can
be directly used for this. In addition, metrics related to the dissimilarity of scenarios support
the evaluation of scenario set diversity, ensuring that the testing scenarios are diverse.

The test evaluate part assesses each test execution to determine whether the test has
been executed well and to interpret the outcome of individual tests. This part mainly uses
the information provided from the test cases and the test objectives, so no further scenario
metrics are directly involved.

The safety case compiles structured, evidence-based arguments to demonstrate that an
ADS meets (legal) safety standards and is ready for deployment. Coverage metrics help to
justify that the system has been validated across all relevant operational contexts. Exposure
metrics can serve as weighting factors in the safety argument, enhancing the credibility of
risk-based safety assessments.

The decide block finalizes the safety assurance process by integrating results from earlier
steps into a binary pass/fail decision. This part relies on inputs from prior components
to support a traceable and auditable outcome aligned with regulatory expectations, so no
further scenario metrics are directly involved.

4.4. SAF Component—ISMR

Upon a positive decision following the safety argument component, the ADS may be
deployed with ISMR in place. The ISMR serves multiple purposes [4]. First, it monitors the
system during deployment, thereby ensuring continuous safety. To measure continuous
safety, scenario criticality metrics might be used. Second, ISMR enables the continuous
collection of evidence supporting the assumptions used during the safety case. For example,
assumptions on the exposure of scenarios—possibly based on scenario statistics from the
SCDBs—can be verified during deployment. In this way, ISMR provides additional input
to the safety argument component. Third, new scenarios may be detected, e.g., with the use
of dissimilarity metrics, and may be included into the SCDBs. As a result, ISMR serves as
one of the inputs for the scenario component.

4.5. SAF Component—Audit

The audit component evaluates the manufacturer’s safety management processes,
including how they identify, analyze, and mitigate risks throughout the development and
deployment of the ADS. This goes beyond just passing specific technical tests; the audit
ensures that the manufacturer adopts a structured, transparent, and accountable approach
to safety. A key aspect of this process is the use of the SCDBs to derive test scenarios that
adequately cover the system’s ODD. In this context, coverage metrics can support the audit.

5. Discussion

This article has provided a structured overview of metrics relevant to scenario-based
assessments of ADSs within the context of the SUNRISE SAF. This section discusses several
limitations and remaining challenges.

First, many of the discussed metrics are inherently use-case-dependent. For example,
scenario exposure metrics depend on the actual ODD of an ADS. Similarly, completeness
metrics, though conceptually transferable, must be tailored to the operational context
of the ADS under test. In those cases, it is not particularly useful to already add those
metrics as metadata to the scenarios in the SCDBs at the store phase of the SAF. Given
these dependencies, it is difficult to make general statements on aspects of a particular
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SCDB without providing some context. For example, if a particular ADS does not respond
differently to vehicles of different colors (e.g., because it does not depend on camera footage)
and if a vehicle’s color is omitted from the scenario description, the scenario description
might still be considered complete for testing this particular ADS. However, for an ADS
that may show different behavior based on a vehicle’s color, the scenario description must
contain the vehicle’s color in order to be complete.

Second, for different types of metrics, there is generally no single, universal metric that
fully captures the concept. There are different aspects within the assessment, thus requiring
different metrics. For example, completeness can refer to the inclusion of all relevant
scenario parameters, the specification of boundary conditions, or the presence of required
environmental elements; each of these may require distinct measurement approaches.
Similarly, coverage can pertain to coverage of parameter ranges, environmental conditions
within the ODD, or behavioral variations in traffic participants, etc. This highlights the
need for multiple interpretable metrics that can be combined or adapted depending on the
evaluation objectives, rather than relying on a one-size-fits-all solution.

While metric values can provide useful insights, they often require further interpreta-
tion to fully understand the characteristics of a scenario set. For example, a low coverage
score might suggest that important scenarios are not addressed, potentially due to gaps
in scenario generation or selection. However, it could also reflect the absence of scenarios
that are unlikely or irrelevant within the defined ODD, such as rainy weather conditions
inside a tunnel. In such cases, additional analysis may be needed to determine whether
low coverage truly indicates a deficiency or simply reflects the operational reality. This
underscores the importance of contextualizing metric results rather than relying on absolute
values alone.

That said, metrics play a critical role in enabling iterative refinement across SAF stages.
For example, coverage and criticality metrics can be used to identify underrepresented or
safety-critical regions in the scenario space, which in turn inform new scenario instantia-
tions. However, managing these feedback loops effectively remains a challenge, especially
when metrics are applied at multiple levels of abstraction (e.g., logical vs. concrete scenar-
ios) and across diverse testing environments (e.g., virtual simulation, proving ground, and
hardware-in-the-loop).

While this work focused on reviewing existing scenario metrics and linking them to
SAF components, interactions and trade-offs between metrics deserve further analysis. For
example, increasing scenario diversity may also reduce representativeness if rare edge
cases dominate. Similarly, criticality and exposure can pull in opposite directions, as highly
critical scenarios are often low-frequency. Understanding such interdependencies and
developing methods for balancing or aggregating metrics will be crucial to make SAF-
based safety arguments both robust and efficient. We consider this an important direction
for future research.

An additional avenue for future research lies in linking scenario metrics with currently
trending developments, particularly large language models. Recent surveys (e.g., [8])
highlight how these models can support scenario-based testing by automatically generating
diverse, realistic, and critical scenarios, as well as by assisting in the interpretation of
test outcomes. These capabilities complement scenario metrics: for instance, scenarios
generated using large language models could be evaluated using completeness, coverage,
and exposure metrics to ensure quality and relevance. Exploring how such artificial-
intelligence-driven methods can be integrated with structured metric frameworks like the
SAF represents a promising direction for enhancing both the scalability and the explanatory
power of scenario-based safety assurance.
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6. Conclusions

This paper has provided a structured overview of scenario metrics that support
scenario-based safety assessments of ADS within the SUNRISE SAF. We have identified
six core categories of metrics: scenario completeness, scenario coverage, scenario criticality,
scenario diversity /dissimilarity, scenario exposure, and scenario complexity. In addition,
other related metrics, such as realism, rarity, and representativeness, have been briefly
discussed. The relevance of the six main metric types to the SAF stages, such as scenario
generation, scenario allocation, test execution, and coverage analysis, have been analyzed.
The presented metrics play a foundational role in developing the safety case of an ADS,
which ultimately enables the deployment of these systems on public roads.

A key insight from this work is that there is no one-size-fits-all metric for any category;
different facets of each concept may need to be captured using multiple, context-dependent
metrics. Furthermore, many metrics are interdependent or overlapping, requiring careful
coordination in their application to avoid redundancy or misinterpretation. In addition,
rather than relying on absolute values alone, it remains important to contextualize metric
values. As ADS assessment practices evolve, there is a need for further formalization of
metrics, validation through real-world data, and tooling support to integrate these metrics
effectively within test and validation pipelines.

Future research should focus on defining and validating emerging metrics, developing
aggregation strategies that reflect both system performance and risk, and supporting
regulators and developers in interpreting metric values within diverse operational and
regulatory contexts. Future work should also address the interactions and trade-offs
between metrics, for example, balancing coverage against representativeness or exposure
against criticality, in order to provide more nuanced and actionable guidance for applying
the SAF. By advancing the metric landscape in a structured and scenario-centric way, we
move closer to scalable, explainable, and robust safety assurance for ADSs.
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