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Abstract. In order to improve road safety, recent studies suggest that it is impor-
tant to study and identify the optimal driving benchmarks that reflect the safest
driving behaviour that may be observed by human drivers. The objective of this
paper is to identify boundaries of risky and typical driving by studying the car-
following driving behaviour. The data used in this study was collected by TNO
in a recent naturalistic driving study. The distributions of driving metrics related
to the following and leading vehicle were illustrated to understand their shapes
and outliers. The safety-related car-following driving metrics of Time to Collision
(TTC), Deceleration Rate to Avoid the Crash (DRAC), Crash Index (CI) and over-
speeding were calculated, with risky thresholds obtained from the literature, and
typical driving thresholds based expert assessors’ ratings. Principal Component
Analysis (PCA) was applied to these metrics and showed that ‘optimal driving’
can be represented by one linear component that represents over 95% of the total
dataset’s variance.
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1 Introduction and Literature Review

Driving is a complex task that necessitates a blend of motor and cognitive skills. Drivers
must adeptly manage their vehicles in traffic while sustaining critical cognitive func-
tions such as attention, visuospatial coordination, and executive functions (1). Amid this
dynamic landscape, drivers engage with their environment and other road users, apply-
ing their skills and experience (2). Although most interactions occur successfully, there
are sporadic instances of traffic conflicts, near-miss situations, or actual collisions. Over
recent decades, extensive research has been conducted on preventing and mitigating these
critical moments of increased traffic risk (3). Notably, in recent years, surrogate safety
measures have emerged as a valuable tool, enabling proactive assessment of risk before
actual accidents occur. This proactive approach to safety management holds potential
for averting safety critical events before they happen and permits a proactive strategy
based on early risk evaluation (4).
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Nonetheless, in the broader field of safety science, it has been proposed that solely
concentrating on negative outcomes offers only a partial comprehension of a system’s
safety (5). As systems, especially complex ones, continue to evolve, new collision mech-
anisms may surface, and decomposing the role of individual risk factors becomes more
difficult. Conversely, there is valuable knowledge to be gained from closely observing
the ‘typical’ functioning of the system and how users/operators handle inherent risks as
part of their everyday activities (6). In order to improve road safety specifically, recent
studies suggest that it is important to study and identify the optimal driving benchmarks
that reflect the most successful driving behaviour, in terms of safety, that may be observed
by human drivers (7). The initial step to achieve this is by defining the boundaries of
risky and typical driving in a multivariate framework. This paper aims to identify these
boundaries by studying the car-following driving behaviour.

2 Data Collection and Methodology

TNO (Dutch Organisation of Applied Research) recently conducted a driving study (the
reader is referred to (8) for more details) where the kinematic variables of the ego (test)
vehicle (longitudinal and lateral positioning, speed, acceleration, etc.) were recorded,
together with the surrounding traffic variables (using a combination of Mobileye, front
radars and cameras) of an instrumented vehicle. Fifteen drivers participated in the study,
who had more than 7 years of driving experience and drive at least 10.000 km per year.
Each driver drove twice in the same location, the stretch of the A2 highway between
Best and Boxtel in the Netherlands between exits 25 and 27. Each driver drove for
approximately 40 min, given the speed limit (100kph).

One expert driving assessor from the Centraal Bureau Rijvaardigheidsbewijzen (the
Dutch agency in charge of awarding driver licenses) accompanied and assessed in real
time each driver. The assessors (two in total), were requested to annotate whether driving
was “competent”, “neutral” or “not competent” by pressing one of three buttons at least
once every 30 s. The kinematic data, together with the button presses, were recorded
at a 20Hz frequency by the same storage device, the StreetLive box, in ROS format,
which was then post-processed into Matlab files. These files were processed in Python
for modeling and visualization purposes.

In order to understand the shapes of the driving metrics’ distributions and identify
the outliers, those were visualized. These distributions included metrics of both the
following and leading vehicle as well as their interaction. Metrics encompassed factors
like speed, acceleration, Time to Collision (TTC), distance from the leading vehicle,
lane positioning, and relative velocity. Subsequently, after excluding lateral movements
within a 30-s window around lane changes, safety-oriented car-following metrics were
computed. These included TTC, Deceleration Rate to Avoid the Crash (DRAC), Crash
Index (CI), and instances of over-speeding. Thresholds denoting risk levels for each of
these metrics were determined through prior literature examination and the time spent
within the risky area was calculated for each metric.

Having excluded the risky areas from the data, the ‘typical driving’ area was defined
by further filtering the data to identify the proportions of non-risky driving that corre-
sponded to the “competent” button presses by the expert assessor for each metric. In
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order to reduce the dimension of “typical” driving to one principal component, Principal
Component Analysis (PCA) was applied, which is a statistical technique employed to
reduce the dimensionality of data while preserving its essential information. It identifies
orthogonal axes (principal components) that capture the maximum variance within the
dataset. PCA aids in simplifying complex data, enhancing interpretability, and revealing
patterns. It is extensively utilized in various fields, including transport safety for the
purposes of data compression, feature selection, and visualization, enabling researchers
to discern underlying structures and reduce data complexity for further analysis (9).

3 Results

3.1 Descriptive Analysis of Safety Metrics

Figure 1 shows the distributions of the ego vehicle’s speed, acceleration, and lateral
position, i.e. the distance of the vehicle’s central axis from the lane’s right border. The
average speed is found to be around 95 kph. It is also observed that slightly more
people drive between 95-100 than 90-95 kph. A longer tail can be noticed on the
left side of the distribution, which mainly captures driving behaviour while entering or
exiting the highway. Regarding the acceleration, which is converted to kph per second,
it averages around O kph/s. Finally, the positive values present slightly higher frequency
than the negative values. With regards to the lane positioning shown in the right panel,
the distribution is observed to be symmetric and centered around 1.60 m.
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Fig. 1. Distribution of speed (left panel), acceleration (middle panel) and lane positioning (right
panel) of the ego vehicle of the experiment

Figure 2 shows the distributions of the relative speed between the ego and the leading
vehicle, the TTC between the two vehicles, as well as the distance from the leading
vehicle. The fact that the right tail of the relative speed distribution is longer and has
higher frequency than the left tail, shows a tendency of the following vehicles to approach
the leading vehicle. Additionally, the distribution of TTC in the middle panel is negatively
skewed with mean value around 6 s. It is observed that a share of critical interactions are
recorded with TTC less than 2 s, which according to literature corresponds to critical
conflicts. At the same time, a share of interactions with TTC less than 4 s may be
considered to reflect the “successful” interactions, while the right part of the distribution
may be considered to reflect the “undisturbed” interactions (7). Regarding distance from
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the vehicle ahead, it can be observed that the distribution is lognormal and positively
skewed.
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Fig. 2. Distribution of relative speed (left panel), TTC (middle panel) and distance to the leading
vehicle (right panel) of the ego vehicle of the experiment

Figure 3 shows the breakdown of the relative speed and lane positioning distributions
with respect to the button presses of the assessors. It can be seen that the vast majority of
small relative speeds between the leading and the ego vehicles are rated as “competent”
or “neutral”, whereas a small share of large speed difference is rated as “competent”,
possibly because it would be acceptable due to contextual factors. Similarly in the dis-
tance distribution, the vast majority of very low distances were given a “non-competent”
rating, and the vast majority of high distances were given a “competent” rating; a small
share of close interactions were given a “competent” or “neutral” rating, probably reflect-
ing situations where the ego vehicle engaged in these interactions in a safe way. This
descriptive analysis shows that examining a single driving metric may not provide a full
understanding of driver’s performance. Additionally, the assessment by an experienced
evaluator can contribute valuable insights into the safety aspects in each case.

Following the above, it was decided to focus on longitudinal driving and exclude
lateral movements occurring 30 s before and after lane changes. The car-following
metrics were calculated from the experimental data and their risky thresholds were
adopted from the literature (10), as follows: 1.6 s for TTC, 16.95 for CI, 3.35 for DRAC
and 100kph for Speed. It is noted that the CI threshold was specified on the basis of the
boundary conditions of the formula provided in (10) on the basis of the risky thresholds
of the included metrics, i.e. by considering 100 kph speed limit for both the leading and
the following vehicle, 0.6 m/s? acceleration for the following vehicle and 1.6 s TTC for
the following vehicle.

3.2 Principal Component Analysis for Typical Driving

A PCA model estimated 4 components (based on the 4 metrics). The 1%t component
represents 99.6% of the total variance of the dataset, meaning that the data can be
adequately represented without using the rest of the components. In order to define the
‘typical’ driving period, the values lying within the 10% and 90% percentiles of this
component were retained.
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Fig. 3. Breakdown of the distribution of relative speed (upper panel), and TTC (lower panel) of
the ego vehicle per assessor ratings (competent, neutral, not competent)

4 Discussion and Conclusions

The 4 driving metrics used were found to be relevant for distinguishing both safe and
typical driving segments. The methodology involved creating a latent construct to define
typical driving and applying three criteria: staying within non-risky thresholds, having
a ‘competent driving’ button pressing by an expert assessor, and excluding extreme
percentiles. This resulted in a concise representation of typical driving, which may
potentially serve as an optimization input. PCA revealed that these driving metrics can
be formed into a single linear component of typical driving.

This research has some limitations. The analysis was limited to car-following condi-
tions, and lateral movements were excluded, due to difficulty in estimating appropriate
metrics of lateral movement (e.g. gaps, lateral acceleration) from the available data.

The determination of typical driving behavior was founded on a blend of data-driven
(non-risky driving time) and expert-based (assessor’s “competent” rating) criteria. We
acknowledge that neither of these criteria is flawless individually, nor is their combina-
tion. Obviously, there may be some subjectiveness in assessors’ ratings. On the other
hand, the fact that the proposed methodology lies on the existence of expert-based ratings,
it is not directly transferable to other existing naturalistic driving datasets.

These results may be useful to researchers on road safety and human factors, as they
offer insights into the skills used by drivers to navigate real-world driving and manage
risks. Moreover, these findings have may practical implications for developing better
Advanced Driver Assistance Systems (ADAS), by learning from the whole spectrum of
driver behaviour and developing automation and support strategies that are recognizable
and trustworthy by human drivers. Future research may study optimal driving as an
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optimisation process, in which the “typical” driving performance is maximised, and any
risky driving situations is minimised.

Acknowledgements. This project has received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie Sktodowska-Curie grant agreement
No 101027222.

References

. Pavlou, D., et al.: Comparative assessment of the behaviour of drivers with mild cognitive

impairment or Alzheimer’s Disease in different road and traffic conditions. Transport. Res.
F: Traffic Psychol. Behav. 47, 122-131 (2015)

. Rasmussen, J.: The role of error in organizing behaviour. Ergonomics 33(10-11), 1185-1199

(1990). https://doi.org/10.1080/00140139008925325

. Arun, A., Haque, M.M., Bhaskar, A., Washington, S., Sayed, T.: A systematic mapping review

of surrogate safety assessment using traffic conflict techniques. Accid. Anal. Prev. 153, 106016
(2021)

. Wang, C., Xie, Y., Huang, H., Liu, P.: A review of surrogate safety measures and their appli-

cations in connected and automated vehicles safety modeling. Accid. Anal. Prev. 157, 106157
(2021). https://doi.org/10.1016/j.aap.2021.106157

. Hollnagel, E.: Safety-I and Safety-II: The Past and Future of Safety Management, pp. 1-187.

ISBN 978-147242306-1, 978-147242305-4, Ashgate Publishing Ltd. (2014)

. Hollnagel, E., Wears, R.L., Braithwaite, J.: From Safety-I to Safety-II: A White Paper. The

Resilient Health Care Net: Published simultaneously by the University of Southern Denmark,
University of Florida, USA, and Macquarie University, Australia (2015)

. Papadimitriou, E., Pooyan Afghari, A., Tselentis, D., van Gelder, P.: Road-safety-II: oppor-

tunities and barriers for an enhanced road safety vision. Accid. Anal. Prev., 106723
(2022)

Tejada, A., Hogema, J.H., van Dam, E., Souman, J.L., Silvas, E.: StreetProof: monitored
deployment for safe and social automated driving. In: Proceeding of the JSAE Annual
Congress (Spring), paper s231413, Yokohama, Japan (2023)

Tselentis, D.I., Papadimitriou, E., van Gelder, P.: The usefulness of artificial intelligence for
safety assessment of different transport modes. Accid. Anal. Prev. Anal. Prev. 186, 107034
(2023)

. Tejada, A., Manders, J., Snijders, R., Paardekooper, J.-P., de Hair-Buijssen, S.: Towards a

characterization of safe driving behavior for automated vehicles based on models of “Typ-
ical” human driving behavior. In: 2020 IEEE 23rd International Conference on Intelligent
Transportation Systems (ITSC), pp. 1-6 (2020)


https://doi.org/10.1080/00140139008925325
https://doi.org/10.1016/j.aap.2021.106157

82 D. L. Tselentis et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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