
Solving the Flexible Job Shop Problem
with Alternative Process Plans
Evaluating Constraint Programming and

Multivalued Decision Diagrams

Master Thesis

Steven Boonstoppel
Computing Science

Supervisors UU:

Dr. Han Hoogeveen
Research Institute of Information and Computing Sciences

Dr. ir. Marjan van den Akker
Research Institute of Information and Computing Sciences

Supervisor TNO:

Dr. Jacques Verriet
TNO-ESI

August 2025

Abstract

This thesis addresses the Flexible Job Shop Scheduling Problem (FJSP) with three exten-
sions: Sequence-Dependent Setup Times (SDST), Blocking tasks and Alternative Process Plans
(APPs). The research evaluates the efficacy of two distinct optimization paradigms: Constraint
Programming (CP) and Multivalued Decision Diagrams (MDDs). For CP, both the commercial
IBM CPLEX CP Optimizer and Google’s open-source OR-Tools CP-SAT solver are utilized.
The study formalizes the problem, including multifunctional machine routing, SDST, blocking
constraints, and APPs, into a unified CP model, demonstrating its robust framework for real-
time, make-to-order environments. Both solvers are competitive, with either having a slight
advantage in certain aspects. Furthermore, it explores MDDs as a complementary technique,
showcasing how restricted and relaxed MDD variants can rapidly generate bounds and decent
solutions. Through extensive computational experiments on both established and newly gener-
ated benchmark instances (the latter made publicly available), this thesis shows that alternative
process plans can directly be implemented to try and minimize setup times and establishes hybrid
CP-MDD strategies as a promising direction for large-scale, real-time scheduling implementa-
tions in high-mix, low-volume production settings. The findings indicate that while CP offers
greater flexibility and gradually improves solutions over longer runtimes, MDDs excel in quickly
generating decent schedules, particularly when SDST are involved, making them suitable for
scenarios prioritizing rapid schedule creation.

2

Preface

Starting in September 2024, I knew that writing a thesis was going to be a challenge, not in
the least due to the part-time teaching job. I set myself the goal to find out whether I would
see myself as a researcher at an institute or company, and therefore wanted to write my thesis
outside of the university. I applied at a vacancy at the research institute TNO, where I was
welcomed onto the High Tech Campus of Eindhoven. With Eindhoven being quite a distant
travel, we agreed that I would be on-site one day a week, work two days from home, with the
other two days as a teacher at school. This partition of the week was not always the easiest,
especially in the beginning, as I was not always sure what to do or was easily sidetracked by
emails or other projects. The scheduling field was new to me, and I was given much space to
choose freely.

However, as my subject took shape, it became more clear what I wanted to do and what I was
good at. I did not want to create another extremely long abbreviation with a very niche setting
in the Job Shop field, but rather contribute something that would hopefully be useful and lead
on to new projects. This turned out to be the exploration of Multivalued Decision Diagrams
for (Flexible) Job Shop scheduling, in comparison with Constraint Programming. With this
subject, I could learn and include both theoretical aspects (coming up with a formulation for
several modifications and/or extensions) as well as obtaining numeric results comparing these two
paradigms. At first, it looked like MDDs would lose hopelessly against CP, but in the end, the
obtained results do show that MDDs are quite promising. This of course is a sweet observation,
and, combined with diminishing work load at school due to the approaching holiday, gave me
more confidence and helped boosting my concentration to completing my thesis. I am happy
with the final result.

I would like to thank Jacques Verriet first and foremost, my daily (weekly) supervisor, who was
always happy to discuss and review topics, took me on a few trips to talk to some experienced
people in the field, and helped steering me into the right directions where needed. Next, I want
to thank Han Hoogeveen, who made sure that my research and paper is actually theoretically
sound and that I would not lose the big picture. I am sure that he raised his eyebrows a few
times on the initial progress, but that helped me to push extra during the final couple of months.
My gratitude also goes out to the people that I had some small chats with or helped me in
another way over the course of my thesis, among which Leon regarding constraint programming,
Eghonghon-Aye regarding multivalued decision diagrams and Marvin about all sorts of orders,
machines and process plans, keeping the theory connected to the application. Also, I am grateful
for the access to the server hardware at my job, allowing me to generate all the results for this
thesis. Last but not least, I thank my parents and girlfriend for supporting me during all phases
of the process, even when they did not really have a clue what I was working on.

3

Table of Contents

1. Introduction 6
1.1. Motivation . 6
1.2. Orders: the customer viewpoint . 6
1.3. The production floor: the shop viewpoint . 7
1.4. Processing orders: the operator viewpoint . 8
1.5. The production schedule . 8
1.6. Goal . 8
1.7. Example instance . 9
1.8. Contribution . 10
1.9. Outline . 11

2. Literature review 12
2.1. History . 12
2.2. Three-field notation . 12
2.3. Flexible Job Shop . 13
2.4. Modelling . 14
2.5. Sequence-dependent Setup Times . 14
2.6. Alternative Process Plans . 15

3. Problem description 17
3.1. Notation . 17
3.2. Description . 17

4. Constraint Programming 19
4.1. Background . 19
4.2. Notation . 19
4.3. Flexible Job Shop model . 19
4.4. Sequence-Dependent Setup Times . 21
4.5. Blocking tasks . 21
4.6. Alternative Process Plans . 21
4.7. Warmstart . 23
4.8. Summary . 23

5. Multivalued Decision Diagrams 24
5.1. Background . 24
5.2. Structure and functions . 25
5.3. MDDs for Scheduling . 27
5.4. Framework . 27
5.5. Flexible Job Shop model . 28
5.6. Restricting the FJS model . 29
5.7. Relaxing the FJS model . 31
5.8. Relaxation in DDO . 32
5.9. Sequence-Dependent Setup Times . 32

4

Table of Contents

5.10. Blocking tasks . 32
5.11. Alternative Process Plans . 33
5.12. Warmstart . 34
5.13. Summary . 34

6. Computational results 35
6.1. Benchmark instances . 35

6.1.1. FJSP . 35
6.1.2. SDST . 36
6.1.3. Blocking . 37
6.1.4. APP . 37

6.2. Constraint Programming . 39
6.2.1. Progression of bounds . 43
6.2.2. Summary . 43

6.3. Multivalued Decision Diagrams . 43
6.3.1. FJSP . 44
6.3.2. SDST . 47
6.3.3. Blocking . 48
6.3.4. APP . 49
6.3.5. Summary . 49

6.4. Combining MDD and CP . 50

7. Discussion 51
7.1. Constraint Programming . 51
7.2. Multivalued Decision Diagrams . 52
7.3. MDD + CP . 52
7.4. Conclusion . 53
7.5. Future work . 53

A. CP model for OR-Tools 55
A.1. Flexible Job Shop model . 55
A.2. Sequence-Dependent Setup Times . 56
A.3. Alternative Process Plans . 56

B. Results 57
B.1. FJSP — Constraint Programming . 57
B.2. SDST — Constraint Programming . 67
B.3. Blocking & APP — Constraint Programming . 69
B.4. FJSP — Multivalued Decision Diagrams . 75
B.5. SDST — Multivalued Decision Diagrams . 86
B.6. Blocking — Multivalued Decision Diagrams . 88
B.7. APP — Multivalued Decision Diagrams . 95

Bibliography 102

5

1 Introduction

1.1. Motivation

Manufacturing systems are ubiquitous and sustain almost all our production lines. Many of these
systems are simple: there is a fixed operation to be performed by a single machine or human such
as packing an item in a box, with the goal of processing as many as possible. However, industrial
systems quickly grow quite complex with varying requirements, machines and customer orders.

Examples of such complex manufacturing industries include PCB manufacturing (where circuit
boards must be drilled, copper-plated, silkscreened, coated, cut to the right shape and size,
using materials of varying thickness), semiconductor manufacturing (where wafers are cleaned,
coated, implanted with ions, etched, multiple materials are deposited, while maintaining certain
temperature conditions) or the printing industry (where books, cards, leaflets and magazines
are printed on one or both paper sides, on different materials, folded or cut to different shapes
and sizes, with all sorts of finishings such as embossing, stapling, laminating, etc.). These
industries have in common that products are not simply made by a single machine or using a
fixed routine, but instead evolved into highly flexible environments capable of producing many
different products in many different ways.

With the rise of (online) tools that provide accessibility to these industries even to less-skilled
consumers, it has become very easy for individuals or small companies to order e.g. a small
quantity of PCBs or a few leaflets. Moreover, competition and innovation in the industry has
caused a decrease in price. As a result, with orders of all shapes and sizes, the market sees more
High-Mix Low-Volume (HMLV) production rather than Low-Mix High-Volume (LMHV) and
transforms into an environment where Make-to-Order is the norm, rather than Make-to-Stock
(Gan et al. 2023). In turn, it becomes more and more complex for manufacturing business to
generate efficient schedules that maximize their order production.
In this Master’s thesis, we hope to improve these schedules by looking at one of the latest

developments in this area, namely Alternative Process Plans: different sets of activities that yield
the same product. As the setting is similar and results are highly applicable to the Online Printing
Shop (OPS) scheduling problem as proposed by Lunardi et al. (2020), we will stick to the domain
of the printing industry as a working example throughout this thesis. However, all discussed
concepts apply similarly to other industries. Moreover, we will attempt to use a relatively new
modelling technique to solve these kinds of scheduling problems, namely Multivalued Decision
Diagrams, to try and see whether it is a useful technique.

1.2. Orders: the customer viewpoint

Traditionally, printing shops are used for large-quantity orders, such as the daily newspaper. In
this case, printing is done ‘analog’: an offset is created for each page, and thousands of identical
pages can be printed with ease. However, with the rise of HMLV, there has been a shift to digital
printing, similar to what we are used to with personal printers. While e.g. some popular books
may still be printed with the thousands, an upcoming writer may order print runs of a handful
of books at a time. A small business orders a few magazines to be put on display, and a small
event orders a few posters and leaflets.

6

1. Introduction 1.3. The production floor: the shop viewpoint

In all of these examples, the customer orders a product with a certain printing design and
possibly specifies the material (thickness, size, finish) and the deadline by which they need it
produced. As long as those requirements are met, the shop operator is free to choose how that
product is made, and at what time it will be produced.

1.3. The production floor: the shop viewpoint

We will set the scene for the production floor from the perspective of the printing industry.
A printing business’ production floor typically consists of a number of printers and finishers.
Generally, a machine has a number of functions. For instance, while some can only print simplex
(one-sided), others are able to print simplex and duplex (two-sided); some can print up to paper
size B4, while others can handle larger sizes etc. If a shop has all identical machines, they are
typically named parallel units (Heinz et al. 2022). Otherwise, if they all have their own set of
functionalities, they are commonly named multi-function units (Hurink et al. 1994).
Obviously, not all machines have equal speed, even if they have the same functionalities.

Newer models can be faster, or a specialized model may be very good at a particular task.
Consequently, the machines have flexible processing speeds. The processing speed may also differ
per functionality of the machine: it usually takes longer to print or emboss a larger sheet of paper.
This flexible processing speed only applies to the multi-function setting: parallel machines (see
previous paragraph) are considered to have identical speed.
This however is not the only thing that should be noted about multi-functional machines. If

one machine can, for example, process both A3- and A4-sized paper, parts of the machine must
be widened or narrowed when switching the size of paper: these lead to sequence-dependent setup
times. These setup times depend on the sequence of the schedule: if a subsequent task on the
same machine has the same properties, no or smaller setup time is required; if it has different
properties, the setup time will be larger. The effect of these setup times becomes significantly
more impactful in HMLV compared to LMHV. A business that only prints newspapers may
find the setup times insignificant in their schedule, but the effect is much more apparent in a
shop that prints all sorts of products. It could be quite inefficient to process orders in a random
mix: if there are multiple orders of the same type requiring the same function, setup times can
potentially be reduced by scheduling them back to back.
When looking at the production chain in a factory as a whole, another point that arises is

the use of buffers: while production is in progress, parts may need to be stored before moving
on to the next stage. This happens in two cases: during a production step (e.g. printing a
thousand sheets), or when assembling subparts (e.g. book blocks and their covers). Three types
of buffers are distinguished in the literature: infinite buffers, finite buffers or no buffers. Infinite
buffers make it possible to process a single operation (such as printing one side) at any time,
without concern about the storage size. Finite buffers mean that after a certain number of
partial products are made, they have to move on to the next process as storage in practice is
not infinite. Sometimes, depending on the shop or machines, one stack of output can be stored
at the machine until the next machine is available. This results in a blocked machine: if another
job were to enter the machine, the output would contain multiple jobs. This scenario is typically
described as blocking. When there are no buffers, the output must be immediately transported
to the next machine: this case is also known as no-wait or tightly-coupled. This is for instance
the case when transport belts connect machines back-to-back.

7

1. Introduction 1.4. Processing orders: the operator viewpoint

1.4. Processing orders: the operator viewpoint

With a set of orders (mostly referred to as jobs throughout this work) placed during a day, and a
set of available machines, the operator goes to make a schedule or requests a program to generate
a schedule. The scheduler has some degrees of freedom to generate a schedule.
Firstly, there is the sequencing freedom: when do we start processing a certain job (and the

specific tasks within that job, such as printing or cutting). Sometimes, this choice is affected
e.g. by a reward for finishing a specific job earlier so it can be shipped faster, while in other
occasions, it is just a matter of finishing the whole set of jobs as soon as possible.
Then, there is the assignment freedom: selecting which machine is going to produce (parts

of) a job. For instance, if the business owns multiple printers, and assuming at most a marginal
difference in quality between these machines, any of them may be assigned to a task without
affecting the final product. If an order consists of multiple sub-parts or processing steps, this
freedom is available for any such step.

Lastly, there is the processing freedom. While the final product that is shipped to the customer
must meet the order requirements, the production process is not fixed. In turn, this means that
the shop operator is free to choose (some aspects of) the input material and operations performed
on the materials. Sticking to the printing theme, imagine an order for an A4 booklet: while it
can be produced by printing on A4 sheets and binding these, it can also be made by printing
on A3 sheets and folding them before binding, or printing on A3 sheets and cutting them in
halves prior to the binding process. Any of these production plans is a valid choice, and thus this
selection of process plans can be utilized by the shop operator to create an efficient production
schedule.

1.5. The production schedule

Production businesses typically work with production schedules: a timetable that shows for each
machine in the shop what it should produce and when this should happen. Usually, these are
divided into shifts of e.g. 8 hours. Depending on the business and agreements, during or at the
end of the shift the orders are shipped out. The most common question in this case is: how many
orders can be produced during the shift? If there are a lot of orders, choices have to be made
about which ones must be prioritized and which ones can be delayed (maybe at a certain penalty)
- typically, this is referred to as minimizing the (weighted) tardiness. If the order deadlines are
less pressing, the challenge typically reduces to minimizing the total time required to produce all
the orders: the makespan. The makespan is the time it takes from the start of the production
to the end of the latest completion time.

The schedule is always limited by a bottleneck: the machine(s) that limit(s) the reduction of
the makespan, or the operator(s) required to switch machines (corresponding to the sequence-
dependent setup times). This is where the alternative process plans might be able to help.
Taking the production flexibility into account can reduce the load of the bottleneck, decreasing
the overall makespan of the shop. Or, these process plans may reduce the setup times, in turn
resulting in less time consumed by the operator.

1.6. Goal

The goal of this research is to be able to produce a schedule for a typical daily shift of a moderately
sized shop subject to High-Mix Low-Volume: e.g. a set of up to 100 orders that must be produced
before the delivery truck collects these for shipping at the end of the day. The resulting solution
would preferably allow an operator to run the scheduler while starting up the factory or getting

8

1. Introduction 1.7. Example instance

a cup of coffee, and have a (near-) optimal schedule presented within a few minutes. Considering
this goal, the main question arising in this research is: what is the effect of including setup times
and alternative process planning into the scheduler on the quality and makespan of the produced
schedule?

1.7. Example instance

To demonstrate the impact of some of the points raised in the previous section, we consider an
example of a printing shop with four machines. These machines have the following functions:

• M1: it can print A4-sized paper.
• M2: it can print A3- and A4-sized paper.
• M3: it can perform any cut, including halving a sheet A3 into two sheets A4.
• M4: it applies a finish to any sheet.

M2 is a multifunctional machine. It is specialized in printing A3-sized paper at a high speed,
but can still print A4 at a speed comparable to M1.
Next, consider five orders. Their specifications are:

• Order 1: 8 A4 sheets, with finish. Note: print on M1 (due to reproducibility with previous
order).

• Order 2: 12 A4 sheets, no finish.
• Order 3: 8 A4 sheets, with finish.
• Order 4: 4 A3 sheets, cut to some unique size, with finish.
• Order 5: 4 A4 sheets, no finish. Note: print on special A4-only paper.

The finish could be per sheet (such as embossing each page) or per stack of sheets (such as
binding), but that distinction is not important here.
A basic generation of process plans that starts with the materials matching the order specifi-

cations would result in the following set of process plans:

• Plan 1: [(M1, 4)] → [(M4, 2)]
• Plan 2: [(M1, 6) ∨ (M2, 6)]
• Plan 3: [(M1, 4) ∨ (M2, 4)] → [(M4, 3)]
• Plan 4: [(M2, 4)] → [(M3, 1)] → [(M4, 1)]
• Plan 5: [(M1, 2) ∨ (M2, 2)]

Here, (Mi, p) means that machine Mi can be used with a total process time of p time units.
[a ∨ b] indicates that either a or b can be selected to process this activity. α → β indicates
precedence constraints: activity α must be completed before β can be processed. Processing
times are derived from the number of sheets of a task and the speed of machine (e.g. machine 1
can process four A4-sheets per unit of time in this example).
Now consider that orders 2 and 3 may just as well be produced on sheets of A3 paper and

subsequently cut into two sheets A4: the resulting product is identical to the customer. Thus,
their alternatives process plans would be:

• Plan 2 (alt): [(M2, 2)] → [(M3, 1)]

9

1. Introduction 1.8. Contribution

• Plan 3 (alt): [(M2, 1)] → [(M3, 1)] → [(M4, 3)]

In Figure 1.1, four schedules are presented for this example. The first three sub-figures consider
the normal, singular process plans. In Figure 1.1(a), only a few basic rules are present: the
precedence constraints must be followed, machines can only process one activity at any time,
and an activity can only be processed by one machine at a time. This yields a makespan of
10 time units. In Figure 1.1(b), one of the rules is tightened: activities must start exactly
when the preceding activity is completed (we cannot hold items in buffers). Consequently, some
activities cannot start immediately, and as a result the makespan increases to 11 time units. In
Figure 1.1(c), a new rule is added: sequence-dependent setup times. Machine M2 requires 2
time units to switch between printing sheets of A3 and A4, and machine M4 requires 1 time unit
between any pair of activities for this example. The makespan increases to 13 time units because
of the additional setup times incurred. However, in Figure 1.1(d), the alternative process plans
are added into the model. All rules present in Figure 1.1(c) apply, but the increased flexibility
means that both the second and third order can now be produced on M2’s A3 function without
incurring any setup time on this machine, while orders 1 and 5 can be printed on M1 without
incurring setup time. This means that a shorter makespan of 10 time units can be achieved, and
shows the advantage of considering these alternative process plans.

Figure 1.1.: Gantt schedules for example instance with four machines, five jobs.

1.8. Contribution

The primary contribution of this thesis is threefold. First, it formalizes a typical production
scheduling problem — including multifunctional machine routing, sequence-dependent setup
times, blocking constraints and alternative process plans — into a unified Constraint Program-
ming (CP) model, providing a proven framework for real-time, make-to-order environments. Sec-
ond, it explores Multivalued Decision Diagrams (MDDs) as a new and complementary paradigm,
demonstrating how restricted and relaxed MDD variants can rapidly generate bounds and possi-
bly warm-start solutions for the CP solver. Finally, through extensive computational experiments
on benchmark instances, this thesis demonstrates the operational value of alternative process

10

1. Introduction 1.9. Outline

plans and establishes hybrid CP–MDD strategies as a promising direction for large-scale, real-
time implementations. Together, these contributions advance both the theory and practice of
scheduling in high-mix, low-volume manufacturing systems.

1.9. Outline

In Chapter 2, we discuss the history of (job shop) scheduling as well as the history and catego-
rization of our setting. Then we introduce some notation and formalization in Chapter 3. Next,
in Chapter 4 we introduce a Constraint Programming model, and in Chapter 5 an MDD model.
In Chapter 6, we collect benchmark results for a variety of configurations to compare the CP
and MDD models. Finally, our findings and comparisons are discussed in Chapter 7 with some
recommendations for future research.

11

2 Literature review

2.1. History

The scheduling of jobs has a rich history, with a commonly recognized starting point dating back
to a paper by Johnson (1954). Johnson considered a scenario of a shop where n items must be
processed in two or three stages with one machine per stage, and was able to optimally solve
the problem for two stages, as well as a restricted version of the three-stage problem. According
to Xiong et al. (2022), this marked the start of the field of research, that received its name
‘Job Shop Scheduling’ from Sisson (1959), which is now a widely used term. However, this
field of research is at times also called Machine Scheduling, as it emphasizes that this problem
is primarily concerned with generating a machine schedule (even though this directly yields a
job/task schedule).
A classical Job Shop Scheduling Problem (JSSP) consists of a set of jobs J = {J1, J2, ..., Jn},

where each job Ji consists of a set of tasks Oi = {Oi1, Oi2, ..., Oini} defined in topological order,
to be processed on a set of machines M = {M1,M2, ...,Mm}. Each task is assigned a machine in
M on which it must be processed with a given processing time pij . In the JSSP, both machines
and jobs are unitary: a machine can process one job at a time, and a job can only be processed
by one machine at a time. And except for some special research cases, tasks in a job are typically
not allowed to overlap. The task is to find a sequence of tasks on the machines that minimizes
the latest completion time of all jobs, i.e. the duration in which all jobs are processed, defined
as the makespan, denoted by Cmax.
While our research deals with unitary machines and tasks, we will lend ideas from a related

field. In contrast to the unitary machine scheduling, a closely linked field to JSSP is the Resource-
Constrained Project Scheduling Problem (RCPSP). In the RCPSP, the same notion of jobs
(although usually one job or project), tasks and machines is used. However, neither machines
nor tasks are unitary in the RCPSP: a task may (or must) be processed by multiple machines
(simultaneously) and a machine may process multiple tasks at the same time.

2.2. Three-field notation

As many applications have different environments, requirements or goals, numerous studies have
been carried out on Job Shop scheduling. They each have their own set of constraints, extensions
and objectives. To categorize these problems, scheduling literature commonly uses the α|β|γ
three-field notation proposed by Graham et al. (1979).
In this notation, α denotes the machine environment. Some popular examples are:

1: there is a single machine in this shop/problem.
P , Pm: the shop consists of a set of parallel, identical machines such that the processing time

pj is equal for all machines. If m is specified, this is a fixed size. Otherwise, m is part of
the input.

Q, Qm: the shop consists of a set of parallel machines with different speeds si for machine Mi.
The execution time of job Jj is pj/si for machine Mi. m as above.

12

2. Literature review 2.3. Flexible Job Shop

R, Rm: the shop consists of a set of parallel machines, but they are completely unrelated, such
that a processing time must be specified for each job on each machine; m as above.

J : the Job shop problem, in which every job consists of a collection of tasks. Each task must
be processed on a specified machine. The machines are unrelated and may be passed in
different order.

F : the Flow shop problem, in which every job consists of an identical sequence of tasks. In
contrast to the Job shop, all jobs pass through the specified machines in the same order,
for instance coupled by a transport belt.

O: the Open shop problem, in which every job Jj corresponds to one task for each machine i in
the shop. Task Oij can be be scheduled in any order: there are no precedence constraints.
Task Oij must be processed for pij time units.

Secondly, β describes the job or machine characteristics that are present in the shop: possibly
none, but usually one or multiple. A selection of commonly used constraints are these:

rj : a release date is specified for each job (or task, depending on the problem).
dj : a due date is specified for each job (or task).
bkdwn : machines may suffer (un)expected breakdowns.
sjk : sequence-dependent setup times are present between successive tasks on a machine.
block: a task remains on its machine after processing until it is processed by the next machine,

blocking the machine from processing another task.
pmtn: pre-emption of tasks is allowed.

Lastly, the γ field shows the objective of the shop. Here, some popular choices are:

Cmax: the goal is to minimize the makespan, which is the latest completion time of all jobs.
Lmax: minimize the maximum lateness of all jobs. The lateness is defined as the difference

between the due date of the job and its completion time. The lateness can possibly have a
negative value if it is completed before the due date.

Tmax: minimize the maximum tardiness of all jobs. The tardiness is defined as the difference
between the due date of the job and its completion time. However, it has a strictly
non-negative value, and is set to 0 if the job is completed before its due date.

ΣiTi, ΣiwiTi : minimize the total tardiness of all jobs. If wi is not specified, all jobs have an
equal weight, otherwise multiply each value by the job’s weight.

Several of these scheduling characteristics are discussed by Pinedo (2022).

2.3. Flexible Job Shop

A special field of Job Shop scheduling is the Flexible Job Shop Scheduling Problem (FJSP).
The FJSP is denoted in the α-field by FJ . In the FJSP, tasks of a job need not necessarily
be processed on a specific machine, but can be processed on one of multiple machines. These
machines may differ in speed, and as such, the FJSP can be regarded as a combination of types
R and J for the α-field in the three-field notation. This is a realistic case for a factory where a
number of parallel machines (one or more) are available for a specific task.

The FJSP is notoriously hard. Where the classical Job Shop Scheduling Problem (JSSP) deals
with sequencing and scheduling of the tasks, the FJSP also needs to consider machine assignment.

13

2. Literature review 2.4. Modelling

The JSSP is already proven Strongly NP-hard (Garey et al. 1976), and by extension the FJSP
is NP-hard as well. The RCPSP mentioned previously is also known to be NP-hard (Blazewicz
et al. 1983).

The first publication on FJSP as we currently know it dates back to an article by Brucker and
Schlie (1991) - back then, the problem was named Job Shop Scheduling Problem with Multi-
Purpose Machines (JSSP-MPM). Brucker et al. considered a very restricted case with two jobs
on two machines, and were able to derive a polynomial algorithm. However, only shortly after,
the same problem with three jobs on two machines (also denoted as 3×2) was already proven
NP-hard (Jurish 1992). The name Flexible Job Shop was coined soon after by Brandimarte
(1993) and is now commonly used.

Dauzère-Pérès, Ding, et al. (2024) argue that the flexibility in the FJSP should be named
operation flexibility, as to distinguish it from other types of flexibility. This operation flexibility is
the typical flexibility used in the FJSP as discussed in the previous section (α = FJ). However,
there are two other types of flexibility. The first of these is sequencing flexibility (α = FSJ),
which relaxes some of the precedence constraints. The other type of flexibility is processing
flexibility (α = FPJ), which is defined as the availability of alternative process plans (also
named alternative routes).

2.4. Modelling

With realistic cases quickly exceeding the 3×2 size, optimal solutions are hard to find. There
are two main techniques for solving (or trying to solve) these larger instances: using generalized
methods or specialized methods. The former are easier to formulate and are usually built to
be able to find exact solutions, however, generally slow. The specialized methods (also known
as (meta)heuristics) try to exploit certain features of the problem at hand and as such may be
faster, but these sometimes come with the trade-off that they may not be able to find an optimal
solution and are usually much more complex.
There are two popular generalized methods: (Mixed) Integer Linear Programming (denoted

MILP) which has been around for a long time, and more recently Constraint Programming
(denoted CP) has gained traction. Both of these methods are able to find exact solutions up to
medium-sized instances in a decent time-frame, and feasible solutions for large instances that
are not computed up to optimality in a certain time-frame (Dauzère-Pérès, Ding, et al. 2024).

However, many researches have opted for metaheuristic algorithms for certain (sub)problems
in the scheduling field. There are many types of metaheuristics; we will quickly list a few of them.
Brandimarte (1993) employed a Tabu Search algorithm; Najid et al. (2002) used Simulated
Annealing. Li and Gao (2016) added a Hybrid Genetic Algorithm to a Tabu Search algorithm, a
method that was subsequently improved by Chen et al. (2020) by using Reinforcement Learning.

2.5. Sequence-dependent Setup Times

One of the extensions investigated in this paper is the inclusion of Sequence-Dependent Setup
Times (SDST).

To be complete, a distinction can be made between two types of SDST: separable and non-
separable (Dauzère-Pérès, Ding, et al. 2024). If setup times are separable, this means that a
machine can be set up during its idle time, even if the preceding task of the upcoming job is still
being processed. In contrast, non-separable setup times mean that a machine can only undergo
its setup time once the preceding task is released from its machine and is available to the machine
in question. Özgüven et al. (2012) show what the impact of this distinction is. However, most

14

2. Literature review 2.6. Alternative Process Plans

of the references to SDST in literature silently imply that setup times are separable, which is a
fair assumption for many industries.

SDST are used in different forms throughout literature. Heinz et al. (2022) for example study
a parallel machine environment with setup times, but include servers (or: workers) in their
model, often required to switch over a machine from one function to another. Similar to Lunardi
et al. (2020), they find that CP is good, but they also provide heuristics to speed up the solver.
Their key idea is to batch similar jobs (creating so-called job families), which locally minimize
setup times and idle time. This strategy for heuristics is also used by Li, Zheng, et al. (2024),
where orders that require the same colours of ink are grouped together. An interesting contrast
to heuristics that warm-start the CP solution, is explored by Abreu and Nagano (2022): they
hybridized their CP solutions with Large Neighbourhood Search as main routine and CP as
subroutine. This turned out to be an effective method for larger instances.

2.6. Alternative Process Plans

Another important part of this research is the inclusion of alternative process plans (APPs),
also referred to as Alternative Routing (Ali et al. 2025), or Automated or Integrated Process
Planning (Lin et al. 2020). In principle, these APPs are only concerned with an or-operation:
choose plan A or plan B. Commonly, APPs are generalized to include and-actions as well: for
instance in the printing environment, the and-action would be used in the production of a book.
Both the cover and the book block must be produced, but these can be produced in parallel,
there is no need for these to be sequential. To that end, a (dummy) and-node can be used
with multiple successors. While this is strictly speaking not the essence of APPs, it is useful to
capture this generalization.

In early literature on this topic, it was already noted that APP-extension can be computation-
ally expensive (Kusiak and Finke 1988). Throughout literature, representations of alternative
process plans have varied. Roughly speaking, there are two variants of alternative process
planning (Dauzère-Pérès, Ding, et al. 2024):

• α = FPFJ : a job is defined by multiple linear routes, of which only one should be selected
for sequencing and scheduling. This can also be viewed as an enumeration tactic. This
typically does not use and-nodes.

• α = FPFSFJ : a job is defined using an And/Or graph instead of a number of linear
routes. Here, operations can have multiple predecessors or successors.

An example of the former can be found in a paper by Kusiak and Finke (1988): they enumerated
all process plans by a vector that holds the information for each process plan. However, two
more interesting variants are Petri nets and And/Or networks, which are closely related.
And/Or networks were used first in a paper by Kis (2003). There, the name And/Or-graph

was only subtly used. It then re-emerged from the field of RCPSP for use in Alternative Process
Plans more recently in 2017, inspired by Activity-on-Node networks and And/Or trees used in
artificial intelligence (Tao and Dong 2017). The authors initially used Simulated Annealing to
find a solution to the instance as a whole, but in a later research decomposed the problem into
a master problem to determine the selected tasks and a sub-problem to generate a schedule,
using Tabu Search to solve the master problem (Tao and Dong 2018). Another research using
Activity-on-Node networks used a Genetic Algorithm as a solver (Servranckx et al. 2024). In
the RCPSP, there are two other useful reports on Alternatives: Hauder et al. (2020) perform a
comparison between MILP and CP on the same Activity-on-Node networks, and finds that CP
yields better results. R. Čapek et al. (2015) use a slightly different Nested Temporal Network

15

2. Literature review 2.6. Alternative Process Plans

with Alternatives: the core functionality is identical, but it includes some extra details. The
authors implement an MILP solver with additional heuristic algorithm and yield great results.

A less frequently used, but similarly useful idea is a Petri net. Petri nets are a strong formalism
to model or simulate parallel, sequential and optional tasks at once. In a Petri net, Or-nodes
may be present - these imply that only one of their successive nodes must be selected. Thus, the
Or-nodes are able to encode alternative chains in a process plan, resulting in different process
plans. Čapek et al. (2012) for example show that Petri nets can be encoded into a matrix and
solved by an ILP. There are also examples of using Petri nets with CP, however dated (Richard
et al. 1995) (Boutet and Motet 1998). Overall, Petri nets do not turn up in competitive results
for scheduling problems.

16

3 Problem description

3.1. Notation

Set Description

J Set of jobs - Jj is the j’th job of J
Oj Set of tasks of job Jj - Ojk is the k’th task of Oj

□ Empty (dummy) task
Ajk Set of allocation options for Ojk - Ajkm allocates Ojk on Mm with processing time pjkm

M Set of machines - Mm is the m’th machine of M
Mjk Set of eligible machines for operation Ojk

Nj Network capturing And/Or-relations between tasks Oj

3.2. Description

Here, we will discuss the necessary elements of our problem from a formal standpoint.We will
use the FJSP as the basis of our model. Referencing the three-field notation as introduced in
Section 2.2, this means we set the machine environment to α = FJ .

Jobs In the FJSP, there is a set of jobs J to be scheduled on a set of machines M. Each
job Jj is defined by a set of tasks or operations Oj . A task is not necessarily atomic (such as
printing a single sheet), but rather the compound of identical atomic actions (e.g. printing all
covers for a book order). All tasks Oj are represented by an And/Or-network Nj , as discussed
in Section 2.6. In this network, all tasks are represented using nodes. However, as it includes
alternative process plans, not all nodes need to be selected to produce the job.

To be more specific, an And/Or-network consists of And-nodes and Or-nodes as well as dummy
start/end nodes. The reason for these dummy nodes will be clear when the model is discussed.
If an And-node is selected as part of the path, all of its successors must be selected as well (∧).
If an Or-node is selected, exactly one of its successors must be chosen (∨). As a result, choices
between process plans are encoded using Or-nodes. An example can be seen in Figure 3.1 for the
third job of the example in Section 1.7. Note: a task that can be processed by one of multiple
machines could be modelled using Or-nodes as well, but we choose to group these for easier
understanding and to be consistent with the model used in the experiments.
The alternative process plans are assumed given (e.g. generated by the system upon order

placement). Therefore, for each job j there is a network Nj = (Vj , Aj) that represents the
And/Or-network.

Tasks Every task Ojk in the And/Or-network of a job is specified by a tuple (Ajk, Pjk). Ajk

corresponds to the set of machines available for processing this task, with their respective
processing times Pjk, and can simply be regarded as a list of tuples (m, p). Tasks cannot be

17

3. Problem description 3.2. Description

Figure 3.1.: And/Or-network for example job. The dummy start node is an Or-node, indicated
by the ∨ and dashed outgoing arcs.

pre-empted nor interrupted: once they start, they must be fully processed. The task may be
blocking: in that case, if a machine finished processing a task, that task remains on that machine
until the product can move on to the next machine.

Machines The set M represents the available machines in the shop. These machines may be
multifunctional, for instance being able to print on multiple sizes of materials, or using different
techniques for different materials. Between operations that use different of these functionalities,
setup times may occur. As machines cannot instantaneously switch between functions, for any
pair of tasks (say α and β) that are allocated to the same machine and that are their immediate
successors on that machine, the start time of β is at least the end-time of α plus a change-over
time from α to β. This setup time is set to 0 if the tasks require the same functionality. The
setup time for the first operation on each machine is ignored. Lastly, it is assumed that the
machines are always operational, i.e. they do not have (un)scheduled downtime or breakdowns.

Blocking tasks Commonly, machines have either an input- or an output-buffer. For instance,
a printer can store a stack of papers that it just printed. While some shops have a certain
number of places available to hold partial products in a separate place on the shop floor, for
simplicity we will assume that there are no buffers besides the output buffer of each machine.
As a result, a machine is blocked from processing further tasks until its output is cleared - or, in
other words, a machine idles until the next task of its last job can be processed by that task’s
allocated machine. Manufacturing equipment may have both input and output buffers; however,
we assume that there is just one buffer, as that appears to be the common choice in literature.

Objective The objective is to minimize the makespan of the fulfilment of the orders.
As rush jobs may occur – e.g. a priority order must be scheduled during the current shift, or a

machine failure resulting in a failed order production means that an order must be re-produced
in the shift before the order deadline is exceeded – the goal is to quickly (in a few minutes)
produce a decent (sub-optimal) schedule. This allows an operator to start up the shift or get a
drink, and be able to start production upon return.

Three-field notation The setting described here can be characterized as FJ |prec, sijk, block|Cmax.
β = prec is due to the precedence constraints; β = sijk denotes the presence of sequence-
dependent setup times, and β = block signals the blocking nature of tasks. γ = Cmax charac-
terizes the optimization of the makespan. The alternative process plans are denoted by either
α = FPFJ or α = FPFSFJ depending on the method chosen.

18

4 Constraint Programming

4.1. Background

As discussed in the literature review (Chapter 2), Constraint Programming is a very powerful
scheduling solver nowadays. While traditionally MILP solvers are good at scheduling, in general
there is a trend that CP beats MILP (Naderi, Ruiz, et al. 2023). Many recent studies and
literature reviews support this conclusion, however specialized MILP solutions with heuristics
for specific scenarios may still yield better results (Laborie 2018), (Dauzère-Pérès, Ding, et al.
2024).

A case study that is closely related to our setting is probably the Online Printing Shop problem,
as proposed by Lunardi et al. (2020). They discuss a setting that, in a number of aspects, matches
our problem, among which the inclusion of sequence-dependent setup times. The focus of their
paper however is machine unavailability, here not considered - they in turn do not use alternative
process plans. Lunardi et al. provide both a MILP and CP model, and conclude that their CP
model yields much better results.
A useful feature of Constraint Programming in general is its anytime ability. This term was

coined by Dean and Boddy (1988), and in essence boils down to this: a solver may find some
initial solution, and while it keeps running, it will incrementally try to improve this solution
until it can prove optimality or a runtime cut-off occurs. Especially for larger instances, this is
welcome, since it takes very long to prove optimality: being able to stop the solver at any point
with a suboptimal schedule is always better than no schedule at all. Note that MILP models are
also anytime; this is not a feature exclusive to CP models.
Overall, with CP proven to be a powerful general framework for scheduling, in this chapter

we will put together an FJSP model with the discussed extensions. Specifically, we define a set
of constraints for IBM’s CP Optimizer (CP Optimizer for short). An equivalent CP model for
Google’s OR-Tools CP-SAT (OR-Tools for short) is available in Appendix A.

4.2. Notation

The notation used throughout this chapter builds upon the notation used in Section 3.1 and is
extended with additions from Naderi and Roshanaei (2021).

4.3. Flexible Job Shop model

In this section, we first present the basic model for a Flexible Job Shop (α = FJ , β = ∅,
γ = Cmax), and subsequently incrementally expand the model to include more extensions.

19

4. Constraint Programming 4.3. Flexible Job Shop model

Description
Parameters

Task∗jk
An interval variable whose domain all
interval variables Taskjkm

Taskjkm
An interval variable corresponding to
an allocation Ajkm

pjkm The processing times of operation Ojk on machine m

V A very large positive number, representing ∞
Functions
BinaryVar() Returns a binary variable with value 0 or 1

IntervalVar(p, Task∗jk, Optional)
Returns an optional interval variable of size s = p
(processing time) on the domain [0, V)
synchronizing its properties with Taskjk

IntervalVar([p, q))
Returns an optional interval variable of size p ≤ s < q
on the domain [0, V)

StartOf(a) Returns the start of interval variable a

EndOf(a) Returns the end of interval variable a

Alternative(a, B)
Creates an alternative constraint between interval
variable a and the set of subsequent interval variables B:
one variable of B must be present as successor to a

NoOverlap(B)
Constrains a set of interval variables B not to overlap
each other

EndBeforeStart(a, b) Ensures EndOf(a) ≤ StartOf(b)
StartBeforeEnd(a, b) Ensures StartOf(a) ≤ EndOf(b)
PresenceOf(a) True (1) if a is present, False (0) if a is absent

A plain FJSP model consists of the following goal and constraints1:

minimize Cmax (4.1)
subject to Task∗jk = IntervalVar(

[
min

m∈Mjk

pjkm, max
m∈Mjk

pjkm
]
) ∀j ∈ J , k ∈ Oj

(4.2)
Taskjkm = IntervalVar(pjkm,Task∗jk,Optional) ∀j ∈ J , k ∈ Oj ,m ∈ Mjk

(4.3)
Alternative(Task∗jk, {Taskjkm : m ∈ Mjk}) ∀j ∈ J , k ∈ Oj

(4.4)
EndBeforeStart(Task∗jk−1,Task∗jk) ∀j ∈ J , k ∈ Oj

(4.5)
NoOverlap(Taskjkm : j ∈ J , k ∈ Oj |m ∈ Mjk) ∀m ∈ M

(4.6)
Cmax = max

j∈J
(EndOf(Task∗j|Oj |)) (4.7)

Constraint 4.2 ensures that there exists a variable for each task. Constraint 4.3 then ensures
that for each allocation on each machine, an optional variable exists with the corresponding
1https://ibmdecisionoptimization.github.io/docplex-doc/cp/refman.html

20

https://ibmdecisionoptimization.github.io/docplex-doc/cp/refman.html

4. Constraint Programming 4.4. Sequence-Dependent Setup Times

processing time. These allocation variables are combined in Constraint 4.4 to ensure that exactly
one allocation is selected per task, because tasks and machines are unitary as discussed in
Section 2.1. Constraint 4.5 imposes the precedence constraints of tasks in a job: the previous
task must be processed before the next one can start (this constraint does allow StartOf(Taskjk) =
EndOf(Taskjk−1)). The unitarity of machines is constrained in 4.6. Finally, the makespan is
defined in Equation 4.7 as the latest end of each job’s final task variable; the minimization of
the makespan is the goal of the model (4.1).

4.4. Sequence-Dependent Setup Times — β = sjk

When SDST are activated, the ‘NoOverlap’ constraint is modified to include a transition matrix:
NoOverlap(Taskjkm : j ∈ J , k ∈ Oj | m ∈ Mjk, Mm) ∀m ∈ M (4.8)

This transition matrix Mm ensures that a specified minimum delay (≥ 0) occurs between any
two subsequent tasks on machine m. Mm is of size |O| × |O| and contains a value for any pair
of tasks. If there is a setup time between two tasks on this machine, the new task is delayed by
this value and the machine must idle. This may have impact on the predecessor of the new task
if it is blocking, as this predecessor must stay buffered in its machine until the setup time has
passed. If there is no setup time between two tasks, the corresponding entry in the matrix is
zero and the new task can start at once.

4.5. Blocking tasks — β = block

For tasks that block a machine, Constraint 4.3 must be modified to relax the fixed processing
duration:

Taskjkm = IntervalVar([pjkm, V),Optional) ∀j ∈ J , k ∈ Oj , m ∈ Mjk (4.9)
In this modification, the minimum size of the variable is set to the processing time as before,

but the maximum size is now set to infinite, as this task may block the machine for a while
longer as described in Section 3.2. By extent, Constraint 4.2 is modified similarly. Moreover,
a successive task within a job is now only allowed to start exactly when the preceding task is
released from its machine, unblocking that machine. Therefore, an extra constraint is added:

StartBeforeEnd(Task∗jk,Task∗jk−1) ∀j ∈ J , k ∈ Oj (4.10)
Constraint 4.10 is the reverse of 4.5, which results in a tight coupling of Taskjk and Taskjk−1.

The resulting behaviour is that the predecessor stays in the buffer of its machine, thereby blocking
it, until the successor starts.

4.6. Alternative Process Plans — α = FPFSFJ

APPs are, as per Section 3.2 defined by And/Or-networks. In contrast to the topological ordering
of activities, the precedences are now captured by the arcs in the network. Consequently,
Constraint 4.5 must be reformulated to look at the dependencies in the graph instead:

EndBeforeStart(Task∗ja,Task∗jb) ∀j ∈ J , (a, b) ∈ Nj (4.11)
If a task is a blocking task, the StartBeforeEnd constraint must be modified similarly.
Now, a solution should always select exactly one process plan for each job. There are two

options as to how these choices can be implemented: using constraints on nodes or using
constraints on arcs.

21

4. Constraint Programming 4.6. Alternative Process Plans

Constraining node selection This strategy exploits the presence of tasks (nodes). The first
task of each job is marked as required, and all the job’s subsequent tasks are marked as optional
to the solution. Then for each task, a constraint is added that if this task is part of the solution,
one of its successors must also be present. This models Or-nodes where one process plan must
be selected, as well as And-nodes with one successor. (It is possible to force all its successors to
be present e.g. in case of disassembly.)
CP solvers implement a so-called IfThen-constraint that nicely captures this behaviour: if

a certain condition is met (presence of a task), then the statement (presence of a successor) is
imposed. If a process plan is selected, this constraint is easily propagated through all successive
tasks on this path. This constraint comes with a caveat however: it does not constrain the
behaviour of the statement if the condition is not met (and as such, a successor may be marked
as present by the solver even if its predecessor is not). This leads to false inclusions and redundant
branches in the search process. In practice, this results in significant overhead during the solving
process (testing indicated a roughly 3x-5x performance penalty compared to the next strategy).
This cannot simply be solved by applying a negated constraint where the absence of a task
requires its successors to be absent. For if a task is not present, its successor may still be present
in case both plans come back to the same tasks later in their process plan. This only works
when all process plans are fully enumerated. However, this solution is not as clean and powerful
as the arc selection strategy. For this reason, we do not use this technique.

Constraining arc selection In this strategy, not the presence of predecessors dictates the
presence of successors, but rather a ‘flow’ across arcs forces this presence. We lend ideas from
flow networks, where a flow must exist through the network from one place to another. To
that end, we now discern three types of tasks: a source s, a sink t and a normal task. For
each job, a dummy source and sink are added to the network, with arcs from the source to the
original starting task(s), and arcs from the final task(s) to the sink. These sources and sinks
are mandatory to be present in the solution. They all have a processing time pjs = pjt = 0
on a dummy machine 0. The CP solvers are able to stack ‘overlapping’ intervals with size 0
within one time unit. Hence, these dummy tasks do not affect the solution. All tasks in the
And/Or-graph are normal tasks. Just as for the node selection strategy, all these tasks are now
marked as optional.

To guarantee that exactly one process plan is selected, a flow of value 1 should exist from each
job’s source to its sink. Accordingly, flow variables are added for all arcs in the network. For the
source nodes, the flow should be +1 (only outgoing); for sinks, it should be −1 (only incoming).
For all other nodes, the incoming and outgoing flow should be equal to the presence of the task:
if the task is part of the solution, then there must be a flow across this node; otherwise, there
should be none.
With respect to the model, Constraint 4.2 is modified to mark all tasks as optional:

Task∗jk = IntervalVar(
[
min

m∈Mjk

pjkm, max
m∈Mjk

pjkm
]
,Optional) ∀j ∈ J , k ∈ Oj (4.12)

Then, the source and sink variables are added with processing time 0:

Taskjs = IntervalVar(0) ∀j ∈ J (4.13)
Taskjt = IntervalVar(0) ∀j ∈ J (4.14)

Next, flow variables are added for all arcs in the network:

Flowjuv = BinaryVar() ∀j ∈ J , (u, v) ∈ Nj (4.15)

22

4. Constraint Programming 4.7. Warmstart

Finally, the flow constraints are imposed:∑
(s,u)∈Nj

Flowjsu = 1 ∀j ∈ J (4.16)

∑
(v,t)∈Nj

Flowjvt = 1 ∀j ∈ J (4.17)

∑
(u,v)∈Nj

Flowjuv = PresenceOf(Task∗jv) ∀j ∈ J , ∀v ∈ Nj (4.18)

∑
(v,w)∈Nj

Flowjvw = PresenceOf(Task∗jv) ∀j ∈ J ,∀v ∈ Nj (4.19)

Constraints 4.16 and 4.17 model the flow out of the source and into the sink respectively.
Constraints 4.18 fix the flow into a task to be identical to the task’s presence: if the task is
present, there should be a path leading up to this task; otherwise, there should not be a flow
into this task. Constraint 4.19 forces the subsequent flow out of this task, similar to the flow
into the task: if the task is present, there should be a path to the sink.

An important note is that these constraints assume a single path from source to sink: there are
no assembly or disassembly activities. However, extending the model to include such activities
can be implemented rather straightforwardly by specifying a certain flow value (other than 1)
into and out of each node.

4.7. Warmstart

Both CP Optimizer and OR-Tools support an optional warmstart. A warmstart means that the
solver is seeded with a feasible solution. This immediately provides a starting point and upper
bound which kickstarts the solver, potentially decreasing the runtime.

4.8. Summary

Overall, we see that the basic properties of the FJSP are captured with a handful of constraints.
These constraints can be modified and/or extended quite easily, although there is quite some
administrative work involved to enforce the constraints between all jobs, tasks and allocations.
With the constraints described in this chapter, a complete FPFSFJ |prec, sijk, block|Cmax model
can be constructed.

The nice part about a CP model is that it only requires a set of boundaries, it does not need to
know how to create a feasible and optimal solution. This is all handled internally by constraint
propagation and objective optimization.

23

5 Multivalued Decision Diagrams

5.1. Background

Anticipating the computational results from Section 6.2, it is clear that sequence-dependent
setup times have a significant impact on the runtime of the CP model, even when the instance
size remains the same. With the result becoming more noticeable for larger instances, and the
open-source OR-Tools clearly lagging behind the commercial CP Optimizer, we want to explore
a different technique. Here, we will explore the use of Decision Diagrams. In recent years, more
attention has gone to these (Multivalued) Decision Diagrams, which can both be used as an exact
solution method, but also for quickly finding feasible solutions. We will explore this method and
evaluate whether it yields useful results.
For a full in-depth explanation on Decision Diagrams, we refer the reader to the dissertation

by Bergman et al. (2016) with a compact version available by van Hoeve (2024). Here, we will
provide a brief introduction to the necessary details for our model.

The basic idea of a Decision Diagram (DD) stems from a decision tree. Given a set of binary
variables, one can build a decision tree with all possible combinations. Such a tree, and therefore
a DD, consists of multiple layers: in layer i, i decisions have been made, with i = 0 being the
root node. Traversing the path from the root to any terminal node (a node in the final layer)
will yield an assignment of all variables. In principle, a decision tree is a DD. If the decision
space consists not only of binary variables, but includes discrete variables with more than two
choices, the DD turns into a Multivalued DD (MDD), with each node possibly having more than
two children. Just as a decision tree can have costs associated with the arcs connecting nodes
on consecutive layers, a Decision Diagram usually includes a certain cost on its arcs.

A few things set DDs apart from simple decision trees. Firstly, there is a notion of ‘domination’
between nodes such that the tree can be pruned. This is explained later. Moreover, there are
options to remove and/or merge nodes. Instead of expanding all variables into a full DD, certain
assignments may be removed because they do not contribute to a solution, or certain nodes may
be merged to reduce the DD size favouring faster computation time at the cost of introducing
some infeasibilities. There are three flavours of DDs:

Reduced In a reduced (also called exact) decision diagram, the paths from root to terminal
nodes represent all unique solutions. To achieve this, during construction, all duplicate
nodes in the DD are merged. Duplicate nodes are those that have made the same (number)
of decisions so far in the construction (possibly in a different order, depending on the
problem specification). Merging nodes means that the incoming arcs to these nodes are all
redirected to a single (new) node, and the duplicate nodes are removed. Even though it is
called ‘reduced’, a reduced DD may still be very large in size, depending on what defines
a unique solution (for example: a sorted set of values yields many fewer unique solutions
than an unordered set).

Restricted In a restricted decision diagram, all paths from root to a terminal node form a unique
solution, but not necessarily all solutions are present. Commonly, one defines a maximum
width w for the diagram: if this width is exceeded in the diagram, nodes are removed until
the diagram is at most w wide. This type of diagrams can be useful in situations aimed at

24

5. Multivalued Decision Diagrams 5.2. Structure and functions

satisfiability, where any solution is good enough and it need not be optimal (Bryant 1986).
Their smaller size means that they can be traversed much quicker. For optimization, they
can be used to find an upper bound (in case of a minimization problem; for a maximization
problem it will find a lower bound) in a short time, but a restricted DD is less likely to
yield an optimal solution.

Relaxed In contrast to restricted DDs, a relaxed DD may include paths from root to terminal
node that may not be a feasible solution. Where a restricted DD has valid solutions
removed, the construction of a relaxed DD may insert solutions that do not satisfy the
original requirements and therefore are infeasible. In a relaxed DD, all nodes that cause
the DD to exceed the width w are not removed, but merged instead. This action is
performed by a merge operator : it applies a relaxation on the states, and all ingoing and
outgoing arcs are directed to this new node. This merge operator may need to act on nodes
with non-identical states. In that case, it will need to decide on a new state. This new
state may be a combination of the old states, which may introduce infeasibilities. This
infeasibility could be that a precedence constraint is broken or that two tasks overlap on
a certain machine. Hence, a path that includes relaxed nodes may be too optimistic (for
a minimisation problem). As a result, a path from root to terminal node that includes
relaxed nodes provides a lower bound on the solution. Relaxed decision diagrams contain a
superset of all solutions: all feasible solutions are always present, with infeasible solutions
added due to the relaxation. With respect to size, it is larger than a restricted diagram
since there are many more arcs, but smaller than an exact diagram since the number of
nodes is substantially lower.

A Decision Diagram can either be exact or restricted and/or relaxed. Any DD that is relaxed
or restricted is not exact, but a DD can be both restricted and (partially) relaxed.
Traversing a DD once yields a solution (or a bound on the solution). However, just like

in Constraint Programming, the DD is effectively a Search Tree. As such, it can be used for
optimization by repeatedly traversing the tree, either exhaustively to find the lowest (highest)
value, or by closing the gap between the lower and upper bound. This means that it can be
used as an anytime-technique (Fontaine et al. 2023), just as CP. For optimization, relaxed DDs
are most useful, as their smaller size makes them much more tractable, while still being able to
provide dual bounds which can improve with longer runtime. Restricted diagrams are also small,
but cannot provide a dual bound.

5.2. Structure and functions

A Decision Diagram can be constructed by defining a state and a handful of functions that work
on this state. We will briefly discuss the essentials here, and show their implementation in the
next section.

The Knapsack problem will be used as a running example. In this problem, layer i corresponds
to item i, where the decision can be to include item i or not. This is therefore a Binary
Decision Diagram.

State The state is the most crucial piece of a DD. Each node in the DD is defined by a state,
which holds the variables corresponding to the chain of decisions made to get to this node.
As such, it is a stepping stone that can be traversed to find a path from the root of the DD
to a terminal node. The contents of the state are completely dependent on the problem.

25

5. Multivalued Decision Diagrams 5.2. Structure and functions

A KnapsackState holds the remaining capacity of the knapsack, and the number i
of the current layer. Note that the state does not need to include the selected items
nor the associated prize: this is known from the traversed arcs. However, to easily
recognize dominance later, the state also tracks the accrued prize.

Decision function To progress the construction of a DD, we need to know to what states we
can go to from a certain state. To this end, a decision function must be specified: given a
state, it returns the decisions that can be made.

The function Decision(KnapsackState) checks the weight of the next item i. If its
weight is equal to or lower than the remaining capacity, the decision function returns
both Yes and No. If the weight exceeds the remaining capacity, it only returns No.

Transition function The transition function is used to construct the DD. This function takes a
state and a decision, and calculates the new state that results from applying the decision
to the previous state.

The Transition(KnapsackState, DecisionValue) function increases the depth of
the state by 1. Then it checks whether the value of the decision is Yes or No. If Yes,
the remaining capacity is decreased by the weight of item i+ 1. If the decision is No,
the remaining capacity remains unaltered.

Cost function With a DD constructed, one can traverse it from the root to a terminal node to
find a solution. To measure the quality of a solution, a cost can be associated with each arc
in the DD. The cost function takes two states (before and after a transition) and calculates
the cost associated with going from the former to the latter state. The cost depends on
the objective of the problem.

The function Cost(KnapsackState, DecisionValue) returns 0 if the decision is No.
If the decision is Yes, the cost (in this case ‘prize’) is the prize of item i + 1 (i is
available as a property from the state).

Dominance function To achieve a reduced DD, a dominance function must be implemented that
specifies whether a certain state dominates another. Dominance is defined only between
similar nodes: those that have made the same (number) of decisions (depending on the
problem). A state dominates another if all its ‘coordinates’ are strictly equal or better.
For the simple Knapsack problem, these are the profit and capacity: if the same number
of items is taken and the capacity dominates (equal or more remaining) and the profit
dominates (equal or higher), this state dominates. Note that dominance cannot simply be
defined between nodes in a different layer (different number of decisions made), as these
states have a different number of decisions still to be made.

The function Dominance(KnapsackState A, KnapsackState B) checks if A domi-
nates B or vice versa. A KnapsackState dominates another iff, with the same number
of decisions made (equal depth), the state has an equal or higher remaining capacity
and an equal or higher cost (prize). This means that the state dominates also if both
capacity and cost are equal, since there is no point keeping both.

Merge function The merge function takes two or more states and returns the new state that
results from merging the given states by applying a merge operator. The merge operator

26

5. Multivalued Decision Diagrams 5.3. MDDs for Scheduling

may ‘mix’ states to generate a lower or upper bound. For duplicate nodes with dominance,
the merge operator should always return the dominating state.

The Merge([KnapsackState]) function takes a list of states, and returns the state
with the highest remaining capacity, as this safely provides an upper bound on the
optimal solution. In case of a tie based on capacity, it returns the state with the highest
cost (as the Knapsack problem is a maximization problem). It does not need to merge
states.

Ranking function (opt.) Optionally, a ranking function can be defined for constructing a relaxed
DD. This function uses a heuristic to select nodes for merging if the specified width is
exceeded in a layer. For example, the worst states can be merged, thus keeping the best
states intact as they are more likely to generate a good solution.

The function Rank(KnapsackState A, KnapsackState B) compares the states A and
B. A state ranks higher (better) if it has a higher remaining capacity. In case of a tie,
it ranks higher if it has a higher cost.

5.3. MDDs for Scheduling

MDDs have been used in scheduling before. They can be used quite easily for single-machine
scheduling: in that case, the algorithm only needs to sequence the jobs (or tasks). Moreover, the
merging operator is quite powerful, as it can group all nodes that have processed the same set
of jobs (even when SDST are present, because it can remember the optimal path to this node,
and for the future layers, the order of the previous jobs does not matter). This is for example
illustrated in Bergman et al. (2016), used in Cire and van Hoeve (2012), and a variant on it
is used by Matsumoto et al. (2018). They show that in certain cases or settings, MDDs can
be (significantly) faster than MILP or CP models. For example, when SDST are involved with
relatively large values compared to processing times, MDDs can get up to orders of magnitude
speed improvements.

The problem becomes more challenging however when looking at a job shop with more than one
machine. Solutions are readily available for shops with parallel machines of identical functionality
and speed; in this case, two states can be compared by sorting the F -vector (containing the
current machine times) and for example picking one with the lowest maximum - there is no
distinction between the machines anyway. For that case, solutions are demonstrated by van den
Bogaerdt and de Weerdt (2019) and Kowalczyk and Leus (2018). However, for the makespan
minimization problem with multiple unrelated machines, van den Bogaerdt (2018) shows that
an MDD implementation yields extremely poor solving speeds. To find out how their MDD
formulation compares to our CP model for the FJSP, we decided to implement this method.

5.4. Framework

The MDD structure as described in this chapter is implemented in DDO (Gillard et al. 2020).
DDO is a multithreaded MDD-framework written in Rust with an interface that offers all
discussed functions. There is one minor caveat in using this framework: DDO only offers support
for maximization problems. The solution is to flip the signs of the model: instead of working
with positive processing times, we use negative processing times. As a consequence, we want to
find the least-negative makespan - this is now a maximization problem! To be consistent with the

27

5. Multivalued Decision Diagrams 5.5. Flexible Job Shop model

CP model however, we will discuss the implementation in this chapter as a usual minimization
problem.
During runtime, DDO tries to build an exact decision diagram. This can grow very large

though for instances with a large search space. To make the MDD construction more tractable,
DDO can revert to a restriction and/or relaxation: the width must be limited. With a limit
for the width, the construction happens in two passes: first, DDO builds a restricted diagram;
secondly, it applies a relaxation.
The restricted diagram is constructed layer by layer from top to bottom. Starting from the

root, all possible decisions for the next layer are considered. If a specified width w is then
exceeded on the next layer (there are more than w nodes), all nodes from that layer except the
best w nodes are discarded. The nodes that are discarded are those with the worst ranking,
according to the specified ranking function: they are least likely to generate a good solution. The
discarded nodes are not removed completely: they are put onto a ‘fringe’: the unexplored border
around the diagram, to be expanded during the relaxation phase. In the restricted phase, DDO
can only report a primal (or: upper) bound for the solution: any path from root to terminal
node is a valid primal bound; it cannot provide a lower bound since only a subset of the paths
is present in the diagram.
Once the restricted diagram is finished, the relaxation phase starts. In this phase, nodes

on the fringe will be expanded. In principle, this phase considers all fringe nodes across all
layers in a priority queue according to the same ranking function. However, as the width of the
diagram is already saturated from the restricted phase, it can only add additional arcs or merge
‘new’ nodes with existing nodes, which is likely to introduce infeasibilities. For this reason, a
relaxation rarely contributes to an useful improvement on the solutions. The most useful feature
of a relaxed diagram is that it may provide a lower bound on the optimum; a true lower bound
can be found once the fringe is emptied completely and therefore all solutions are present (as well
as infeasible solutions). If the construction of the relaxed diagram takes longer than a specified
runtime time-limit cut-off, not all paths have been explored, and therefore there is no true lower
bound - there could be better paths than those present in this restricted diagram. Thus, if the
relaxation phase ends prematurely due to a time limit cut-off, the reported lower bound cannot
be taken as a true lower bound.

5.5. Flexible Job Shop model

To model the FJS in a reduced DD, we define the state S = (V, F, T). We follow the naming
scheme from van den Bogaerdt (2018). Here, V ∈ (O1 ∪ {□})× · · · × (On ∪ {□}) is the frontier
of the tasks for each job in J - note that □ means that no task has been scheduled yet for this
job (see Section 3.1). This set V is required to keep track of precedence constraints by recording
the last selected task within each job. Initially, all entries Vj = □ since no task is processed.
F ∈ R|M | corresponds to the latest completion times of all machines in M, and initially starts
with all values set to 0. T ∈ R|J | corresponds to the latest completion times of the tasks in V ,
and similarly starts off with all values set to 0, for each job in J . The T -vector is required to
check when the previous task within a job has finished processing, before the next task can be
scheduled: a task can only start once both the machine and the previous task of this job (if
applicable) are finished.

The decision function is rather straightforward: given a vector V (from a state S), it returns
all options from O = ⋃

j Oj that are permitted given the current precedence constraints from V .
To that end, it lists all next tasks for each job (if the job is not completed yet), and subsequently
lists all available machines for that task. Therefore, the set of decisions it returns is a list of
allocation options Auvw: the v’th task from job u allocated on machine w. All these decisions

28

5. Multivalued Decision Diagrams 5.6. Restricting the FJS model

will result in a new node in the next layer of the diagram.
The transition function is also quite easy: given a state S and a decision Ouvw (with corre-

sponding processing time puvw), it calculates the modified state S =
(
V , F , T

)
. V , F and T are

defined to be

Vi =
{
Ouv, if i = u.

Vi, otherwise.
(5.1)

Fi =
{
max(Fw, Tu) + puvw, if i = w.

Fi, otherwise.
(5.2)

Ti =
{
max(Fw, Tu) + puvw, if i = u.

Ti, otherwise.
(5.3)

The cost function is defined as the difference between the makespan in the new state and
the makespan in the old state (given the objective to minimize the makespan). This can be
calculated as c(F, F) = maxm∈M(Fm)−maxm∈M(Fm).
The dominance function requires a notion of ‘duplicate states’. Two states S1 = (V 1, F 1, T 1)

and S2 = (V 2, F 2, T 2) are considered duplicates if V 1 = V 2. If they are duplicates, state S1

is said to dominate S2 iff F 1 ≤ F 2 with the ≤-sign performing an element-wise minimum. S2

dominates S1 iff F 2 ≤ F 1. In any other case, neither S1 nor S2 dominates and these states
cannot be merged, because the ‘best’ state cannot be chosen unambiguously.

The merge function for a reduced DD is straightforward since it only merges duplicate (domi-
nating and dominated) states. These states have an identical vector V , and the vectors F and
T can be picked from the dominating state. As such, the merge function can simply return the
dominating state.
The ranking function is not used for a reduced DD, as relaxations will not be applied.
With this formulation, the width of an exact MDD diagram becomes very large even for small

instances. For an instance with 4 jobs with in total 12 tasks on 6 machines (with approximately
2 machines available per task), the width grows to over 21,000 nodes on the widest layer. The
same instance with a fifth job with another three tasks yields a width of over half a million
nodes on the widest layer, and a total number of nodes of over three million. Consequently, the
required amount of memory for such an instance grows to roughly 30GB.

5.6. Restricting the FJS model

Creating a restricted FJS model is quite straightforward, as it only involves the removal of
nodes. The main question here is: which nodes should be cut off? Ideally, the nodes that lie on
the optimal path should be retained - however, knowing this during construction would require
knowing the solution beforehand. Instead, we must retain the most promising node(s) on each
layer. We are looking for the ranking function described previously: the node(s) with the best
rank is/are kept; the others are discarded.
There are multiple options of guessing or estimating the promise of a node. The simplest

option is to look at the current makespan: a node with a small makespan is more likely to yield
a good solution than a node with a large makespan. Thus, nodes are simply compared by their
current state only. However, for the relaxation phase, this may be suboptimal, as this ranking
function is also used for the fringe during the relaxation phase (see Section 5.4).

29

5. Multivalued Decision Diagrams 5.6. Restricting the FJS model

The second option is to not look at the current makespan, but instead trying to estimate the
total makespan given the current state and the decisions that still must be made. This strategy
is similar to the classic A∗ algorithm (Hart et al. 1968). In A∗, the estimator should never
overestimate the real cost in order to be considered optimal (for a minimization problem). Such
an estimator is called admissible, and provides a lower bound on the solution. However, in the
FJSP, a task may be processed by one of multiple machines. And as the estimation must be
calculated for each node, the complexity must be kept minimal to keep the runtime as fast as
possible. An estimation with minimal runtime is typically a greedy one. A greedy estimation is
not easily admissible though. Consider the following example: there are two machines and three
jobs consisting of one task each. Each task can be processed on both machines: [(M1, 2)∨(M2, 4)].
A greedy option would be to allocate the fastest option for each task. That would result in
a makespan of 6 as all tasks are allocated on machine 1. However, the optimal schedule is to
allocate two tasks on machine 1, and one on machine 2, yielding a makespan of 4.
Instead, as we are looking at ranking, which is relative to other nodes, a strictly admissible

function is not truly required. It may be easier to get a consistent ranking the other way around:
crafting an estimate for the upper bound. If good nodes are consistently ranked lower than
others, this would still yield a good solution.

A consistent estimator function for the upper bound could be constructed as follows: given a
state S = (V, F, T), we know for sure that all tasks in V are scheduled with the corresponding
machine times F . All tasks that are not in V still need to be scheduled. We schedule all of these
tasks, each task on all of the machines that can process it, taking precedence constraints into
account.

Consider the same example with two machines and three jobs. A decision to allocate the first
job on machine 1 yields an estimated makespan of 8 (due to the other two tasks being scheduled
on machine 2), while a decision to schedule this job on machine 2 would yield an estimated
makespan of 12. The former state would be ranked better.

The order of scheduling tasks matters due to precedence constraints. To keep the complexity
minimal, we propose two greedy ways to handle this:

1. Sort by jobs: process all jobs one by one, scheduling their remaining tasks consecutively.

2. Sort by tasks: process the next task from each job, repeating this until all jobs are com-
pleted.

For either alternative, the previous task of a job must be finished on all its machines before
the next task can start. Both these techniques have a complexity that scales with the input size
- O(n) - as they consider all items Ojkm at most once.

Option 1 may, depending on the number of machines that can process a task, result in quite
a poor estimate as gaps are very likely to occur due to precedence constraints. Although, as
discussed, the actual estimated value is not really of concern, it is the relative ranking that
must be good. Option 2 is likely to yield fewer or smaller gaps between tasks as a consecutive
task within a job has a much smaller probability of requiring a delay to precedence constraints.
However, this is much more dependent on the tasks that are already processed so far and may
therefore provide a less consistent estimated makespan.
For either option, an additional choice can be made: to select one allocation for each task

at random, instead of allocating on all possible machines. This introduces some variance or
uncertainty, but is more likely to yield a realistic estimate of the real makespan.
In conclusion, we propose three ranking functions for a total of five implementations:

1. Lowest current makespan.
2. Sort by jobs.

30

5. Multivalued Decision Diagrams 5.7. Relaxing the FJS model

2a. Allocate each task on all machines.
2b. Allocate each task on one random machine.

3. Sorted by tasks.
3a. Allocate each task on all machines.
3b. Allocate each task on one random machine.

Note that regardless of the ranking function, a restricted DD will only ever provide an upper
bound on the makespan. As the diagram is incomplete, it cannot provide an actual lower bound
on the solution.

5.7. Relaxing the FJS model

To get a measure of the quality of the upper bound of a restricted diagram and possibly find
better solutions, a relaxation can be applied. Because a relaxed diagram includes a superset of
all feasible solutions, the shortest path through a decision diagram provides a lower bound on
the optimal solution. These bounds are calculated using a branch-and-bound scheme (Bergman
et al. 2016).
The relaxation depends on the merge operator. This merge operator takes any number of

states and returns a new relaxed ‘superstate’. A relaxed state differs from an exact state in both
the precedence constraints and the timing constraints.
To track precedence constraints in this relaxed state, Cire and van Hoeve extend the state S

with an additional vector U . We once again follow the naming scheme from van den Bogaerdt
(2018). As we will show below, the set V from now on contains the nodes that are shared between
all merged paths from the root r to a node v (the intersection of all paths), while the set U
contains all nodes on the merged paths from r to v (the union of all paths). For an ‘exact’ node
that has no merged nodes on the path from r to v, both V and U are equal and contain the set
of decisions on the path. Once two nodes are merged, V and U are the intersection and union
respectively of the paths leading up to the merged node. As a result, we now track which tasks
are certainly done, which tasks may still need to be processed on some paths, and which tasks
cannot be scheduled from any path due to precedence constraints. This as a best-effort attempt
at trying to make complete solutions by preventing schedules that are definitely infeasible (by
breaking precedence constraints) or surely suboptimal (by scheduling tasks twice).
To be able to provide a lower bound on the solution, the relaxed node takes the pairwise

minima of all F -vectors of the states that must be merged; the same applies to the T -vectors
holding the completion time of the last task for each job. As an example, merging the vectors
F = (0, 5) and Ḟ = (4, 0) results in F ′ = (0, 0).
An important detail must be tackled for the ranking strategy that is based on the current

makespan. One cannot simply rank merged states based on the maximum of the F -vector, as
the merge of two dissimilar states is likely to result in a very low makespan according to F .
Looking at the previous example for F ′, this merged state would rank as (one of) the best state(s),
while merged states are not ideal for generating good solutions due to the infeasibilities they
introduce. Therefore, we want not only to track this ‘minimized’ F , but also the upper bound
on the machine times, F ub. We also introduce the vector T ub which corresponds to the upper
bound version of T : the finish times of the last task of each job. When a task is selected, T ub

and F ub are updated similarly to F , but referencing the new vectors:

F ub
i =

{
max(F ub

w , T ub
u) + puvw, if i = w.

F ub
i , otherwise.

(5.4)

31

5. Multivalued Decision Diagrams 5.8. Relaxation in DDO

T ub
i =

{
max(F ub

w , T ub
u) + puvw, if i = u.

T ub
i , otherwise.

(5.5)

Then, when merging, the pairwise maximum of the machine times is taken for F ub, and the
makespan ranking is calculated by taking the maximum of F ub.

In conclusion, we use the merge operator ⊗ that merges two states as follows: given two states
S(V,U, F, F ub, T, T ub) and Ṡ(V̇ , U̇ , Ḟ , Ḟ ub, Ṫ , Ṫ ub),

S ⊗ Ṡ =
(
V ∩ V̇ , U ∪ U̇ ,min(F, Ḟ),max(F ub, Ḟ ub),min(T, Ṫ),max(T ub, Ṫ ub)

)
(5.6)

The functions min(A,B) and max(A,B) take the pairwise minima and maxima of the values in
A and B. van den Bogaerdt (2018) established and proved correctness for this merge operator: a
valid merge operator should result in a relaxed diagram that contains a superset of all solutions.

5.8. Relaxation in DDO

DDO offers different ways of constructing a decision diagram during the relaxation phase. There
are two types regarding node caching: caching and no caching. As far as we are aware, the
caching variant includes an additional datastructure that allows some heuristics to be added
instead of some default optimizations. This hash-set prevents DDO from doing redundant work
at the cost of additional memory. This is discussed in more detail by Coppé et al. (2024). We did
not implement any of these caching heuristics. Then, there are three different modes regarding
the branch-and-bound algorithm, some of which suggested by Bergman et al. (2016). DDO offers
a frontier- (Fc), last-exact-layer- (Lel) and Pooled cutset for the branch-and-bound algorithm.
The pooled cutset combines the frontier and lel-cutset. Combining these types with caching and
no-caching, DDO offers six construction types.
During the relaxation phase, DDO may (partially) explore subtrees and expand promising

nodes (Coppé et al. 2024) to find improved bounds. The nodes that
Therefore, it neither does breadth-first search nor depth-first search, but best-first search with

some branch-and-bound technique. And, as mentioned before, if the relaxation phase ends
prematurely due to a time limit cut-off, the relaxation cannot provide an actual lower bound
because not all subtrees may have been considered.

5.9. Sequence-Dependent Setup Times — β = sjk

Implementing Sequence-Dependent Setup Times in an MDD is rather straightforward. The state
must be extended by one additional vector L - this L contains the last task that was processed
on each machine. The transition function is modified to include the SDST between the previous
and current task on this machine. Thus, the transition for the vectors F and T is defined
as: Fw = max(Fw + s(Lw, Ouv), Tu) + puvw and Tu = max(Fw + s(Lw, Ouv), Tu) + puvw. Here,
s(Lw, Ouv) is the setup time between the last task on machine w and the upcoming task Ouv.
Then, the vector L is updated: L = (L1, ..., Lw = Ouv, ..., Lm).

5.10. Blocking tasks — β = block

To add blocking tasks, two modifications are required. The first modification concerns the
completion time of tasks: a preceding task must remain on its machine until the subsequent

32

5. Multivalued Decision Diagrams 5.11. Alternative Process Plans

task starts. This is a simple change as long as the previous task is currently the last task on its
machine: we can just modify its completion time and set it to the start time of the subsequent
task. However, if there is already another task scheduled after this previous task, we encounter
some trouble. In the best case, we would need to shift the start and/or end time of certain
tasks; however, in the worst case, there is an infeasible situation. Consider the example in
Figure 5.1: the task (1, 2) is under consideration to be scheduled. However, there are already two
tasks behind its predecessor (1, 1), and they cannot be shifted to resolve the problem. The only
option is to switch the order of tasks, but that is non-trivial and goes against the incremental
construction of Decision Diagrams. And besides, the diagram will already contain those paths
in another branch.

Figure 5.1.: Infeasible schedule for a shop with blocking tasks.

We conclude that if the predecessor of a considered task is not the last task on its machine, this
task cannot safely be scheduled. Thus, another modification is required: the decision function
must not schedule a task on a machine if the successor of the last task on that machine is not
scheduled yet. This will prevent the situation in Figure 5.1 from happening. Unfortunately,
this will introduce some dead paths, e.g. if there are two tasks remaining that must both be
scheduled on the machine of the other task’s predecessor. This is a case for which a solution
exists, but this is not handled with our modifications. The feasible paths will still be in the exact
decision diagram; however, a restricted diagram may not always be able to construct a solution.

5.11. Alternative Process Plans — α = FPFJ

Alternative Process Plans are not as easy to implement as SDST. While it is conceptually easy
to draw a diagram that includes APP, it is much more difficult to capture them in a (DDO)
model. Creating an exact diagram requires only minor modifications:

• MDDs typically expect any arc to connect two nodes on consecutive layers. However, if
one process plan contains fewer tasks than another, long arcs must be created that span
to the end of the longest process plan. DDO provides an interface that does not actually
create such a long arc, but creates as many copies as the long arc would span a number of
layers; each short arc between these copies has an empty decision with zero cost.

• Jobs that include choices (APPs) at multiple points, either nested or consecutively, need
an additional data structure to track the next task given the currently selected process
plan.

33

5. Multivalued Decision Diagrams 5.12. Warmstart

With these modifications, both an exact and a restricted diagram can be built.
The main roadblock is encountered in a relaxed diagram however. Consider a job that has

two process plans A = {A1, A2} and B = {B1, B2}. For simplicity, this is the only job. Consider
S = (V,U, F, T) with V = U = A1 and Ṡ = (V̇ , U̇ , Ḟ , Ṫ) with V̇ = U̇ = B1. Here we omit
F ub and T ub for simplicity. How would we define S ⊗ Ṡ? We cannot simply take V ∩ V̇ nor
U ∪ U̇ . Instead, at least U and for best results also V should itself be a vector to track the
progress for both process plans - in this case U ⊗U U̇ = (A1, B1) and V ⊗V V̇ = (A1, B1) as
well. Here, ⊗U and ⊗V are the ‘partial’ merge operators as defined for vectors U and V . This
strategy could work for an instance where the number and structure of process plans is identical
for all jobs. However, if some jobs have nested process plans, let alone multiple layers of nesting,
the datatype of V and U must be flexible and becomes intractable. There is no decently fast
programming language that allows this; the Rust language in which DDO is written does not
permit this either.

This problem can be tackled by enumerating all process plans beforehand into all unique paths
for this job. Then, the decision function must be modified to only select one of the enumerated
paths for each job, as a solution should only include one process plan for each job. Considering
the previous example with a job with two process plans A = {A1, A2} and B = {B1, B2},
this now effectively turns into an instance with two jobs A and B. When constructing the
MDD, the decision function should return both A1 and B1 as an allowed decision for the root
state. But, once a certain process plan is selected, the decision function should only continue
that process plan. For instance, given a vector V = (A1,□), it should only return A2 as an
option, and for V = (□, B1) it should only return B2 as an option. This ensures only one
process plan is present in a solution. Regarding the merge operator, the merge operator from
the original relaxation can be left intact, with V ⊗V V̇ = V ∩ V̇ and U ⊗U U̇ = U ∪ U̇ . The
decision function subsequently should continue all process plans that are in progress given U .
For instance, (A1,□)⊗U (□, B1) = (A1, B1), and the decision function subsequently should yield
all machine options corresponding to both A2 and B2.

Sadly, this formulation does not support the And-nodes as discussed for the And/Or-networks,
for the same reason of the nested paths. This is not as easily solved using enumeration, as the
paths would need to be coupled. Our formulation only supports Or-nodes. Therefore, our model
does not support α = FPFSFJ , but α = FPFJ instead (see Section 2.6).

5.12. Warmstart

DDO allows setting an initial (primal) solution. This solution simply acts as a restricted diagram
of w = 1, which can act as a starting point for relaxation.

5.13. Summary

In this chapter, we have discussed the MDD model and how we implement the FJSP and its
extensions in DDO. While these extensions are handled separately from each other, they can all
be combined without problems to create a FPFJ |prec, sijk, block|Cmax model. Working with
MDDs is very different from CP: instead of specifying a large set of constraints and leaving
out the way to get there, for DDO we fully specified how to create a solution and what the
best solution would be, but with much less administration regarding precedence and timing.
This is an advantage of the incremental nature of Decision Diagrams, as they are built layer
by layer, without revisiting earlier decisions. Unfortunately, we were unable to match the APP
formulation from CP in our MDD model, ending up with a less general formulation.

34

6 Computational results

In this chapter, we first select applicable datasets for the general FJSP (Section 6.1.1), SDST
(Section 6.1.2), Blocking (Section 6.1.3) and APP (Section 6.1.4). Then, we benchmark these
using both CP models in Section 6.2. Finally, we use these datasets to benchmark our MDD
model in Section 6.3, including comparisons between the two approaches.

6.1. Benchmark instances

We start with datasets for the plain FJSP model. With a baseline set for these datasets, we collect
additional instances for the SDST and APP extensions. All datasets used here are available from
our repository1.

6.1.1. FJSP

There is a substantial number of datasets in the FJSP literature, comprising hundreds of instances
in total. After a thorough investigation through older and more recent papers, we came to the
following datasets:

Brandimarte The oldest dataset stems from Brandimarte (1993), and comprises 10 instances
from small to medium size. Two of its largest instances are not known to be solved to
optimality, the others are.

Dauzere-Paulli The second dataset comes from Dauzère-Pérès and Paulli (1994): it consists of
mostly medium-size instances, but is mostly known for its high number of operations per
job.

Hurink The dataset with the highest number of instances is from Hurink et al. (1994): it consists
of three sets of each 66 instances with increasing operation flexibility. This is outlined in
Table 6.1 for the three datasets edata, rdata and vdata.

Barnes Barnes and Chambers (1995) created a dataset of small to medium sized instances, most
with a very low operation flexibility. As a result, all its instances have known optimal
solutions.

Kacem Another dataset has been created by Kacem et al. (2002): it has only four small to
medium-size instances, all with complete operation flexibility (meaning that all operations
can be processed on all machines), but a low number of operations per job, and as a result
all optimal solutions are known.

Fattahi Fattahi et al. (2007) created a dataset of small and medium instances and relatively low
flexibility with few operations per job. All instances have known optimal solutions. The
small instances are so small that we only included the 10 medium instances.

Behnke As many datasets have known optimal solutions, Behnke and Geiger (2012) decided to
create a dataset with medium to large instances. With on average fewer operations per
job than others, some instances have known optimal solutions, while for a large number of
them, only bounds are known for feasible solutions.

1https://github.com/StevenCellist/FJSP-with-APP-using-CP-and-MDD-thesis

35

https://github.com/StevenCellist/FJSP-with-APP-using-CP-and-MDD-thesis

6. Computational results 6.1. Benchmark instances

Naderi The most recent dataset has been created by Naderi and Roshanaei (2021): they are all
large instances with a high operation flexibility, many operations per job and many jobs.
Consequently, only one instance has a known optimal solution, and for all the others, only
feasible solutions with bounds are known.

These datasets vary in several aspects, such as (a) the number of instances, (b) instance size
(defined by the number of jobs and machines), and (c) the average number of operations per
job. Moreover, as discussed in Chapter 2, two crucial aspects of the FJSP are (d) the average
number of eligible machines per operation -as an absolute value- and (e) the average flexibility
rate (calculated as the ratio of eligible machines per operation to the total number of machines)
- a relative value. For instance, in the dataset proposed by Brandimarte, the flexibility rate is
0.36, meaning that, on average, 36% of available machines (or in this case 2.5 machines) can
process a given operation.

For a quick overview, these characteristics are outlined in Table 6.1 for the datasets discussed.

Table 6.1.: Public benchmark instances for the FJSP.
Dataset Instances Jobs Machines Operations Machs/ops Flexibility
Barnes 21 10-15 11-18 11.9 1.2 0.09

Brandimarte 10 10-20 4-15 9.1 2.5 0.36
Dauzere-Paulli 18 10-20 5-10 19.5 2.6 0.33

Fattahi 20 2-12 2-8 3.3 2.3 0.52
Hurink-edata 66 6-30 4-15 9.0 1.1 0.15
Hurink-rdata 66 6-30 4-15 9.0 2.0 0.26
Hurink-vdata 66 6-30 4-15 9.0 4.7 0.48

Kacem 4 4-15 5-10 3.3 8.8 1.0
Behnke 60 10-100 20-60 5.0 12.4 0.32
Naderi 96 30-100 10-20 10.7 6.0 0.40

The first six datasets (Brandimarte, Barnes, Dauzère-Paulli, Fattahi, Hurink and Kacem) have
been benchmarked numerous times. These are sometimes referred to as the classic datasets
throughout this chapter, consisting of mostly small- and medium-sized instances. Some were
solved using general models, with other researches using more tailored models. As a result, of
the 271 instances in this ‘classic’ benchmark suite, 244 have been solved to optimality. The
other two datasets (Behnke and Naderi) are newer and larger, and commonly referred to as the
modern datasets. There is no common maximum runtime between different benchmark reports,
with runtimes varying from ten minutes to two hours on one or multiple processing cores.

Results with bounds are scattered over numerous reports and papers. A thorough although
non-exhaustive search was performed, and we found the best results in the following papers for
the six classic datasets: Naderi and Roshanaei (2021) and Dauzère-Pérès, Ding, et al. (2024). For
the Behnke dataset, results were found in the original paper by Behnke and Geiger (2012), as well
as papers from Lei et al. (2022) and Wan et al. (2024). For the Naderi dataset, upper bounds
were made available by Lan and Berkhout (2025). All bounds can be found in Appendix B.

There exist multiple repositories each with a number of these datasets, with the complete one
we used collected by Lan and Berkhout (2025).

6.1.2. SDST

The FJSP with Sequence Dependent Setup Times is a combination that has not seen much
research. To the best of our knowledge, there are no publicly available benchmarks that are also

36

6. Computational results 6.1. Benchmark instances

reviewed in literature. However, there are some papers that refer to the dataset SDST-HUdata.
This dataset is an extension of the dataset by Hurink et al. with SDST, as proposed by Oddi et al.
(2011). It is benchmarked in a handful of papers: Fernández et al. (2013), Azzouz, Ennigrou,
et al. (2016), Azzouz, Ennigrou, et al. (2017), Azzouz, Chaabani, et al. (2020) and Ben Ali et al.
(2024). Upon request, Azzouz provided the instances la21 through la40 of the Hurink-edata set
that they used for their results, although we expect that they are different from those used in the
paper by Oddi et al. (2011). The values of the SDST are roughly 20% of the average processing
times of the tasks.
Besides this dataset from Oddi et al. (2011), a dataset with 20 instances from Fattahi et al.

(2007) was found. This dataset is identical to Fattahi’s original dataset with 10 small and 10
medium instances, and expanded by the company Hexaly2 to include SDST. The values of the
SDST are roughly 50% of the average processing times of the tasks. Only one paper was found
that mentions this dataset (Reijnen et al. 2025); the author kindly provided us with their results
upon request.

Table 6.2.: Public benchmark instances for the FJSP-SDST.
Dataset Instances Jobs Machines Operations Machs/ops Flexibility

SDST-HUdata 20 10-20 5-10 5.9 1.1 0.20
Fattahi-SDST 20 2-12 2-8 3.3 2.3 0.52

A short overview of both datasets is given in Table 6.2.
Some authors have generated custom SDST instances which are not publicly available, and

with various levels of detail on how they were generated (Özgüven et al. 2012), (Rossi 2014),
(Tayebi-Araghi et al. 2014), (Shen et al. 2018). We reached out to the authors, but unfortunately
did not get any response. Thus, we cannot use their results.

6.1.3. Blocking

For the blocking FJSP, we did not find any public mentions of datasets. However, we decided
to keep it simple: we take the known FJSP datasets as discussed in Section 6.1.1, and mark all
tasks as blocking.

6.1.4. APP

Similarly to the FJSP-SDST problem, the FJSP with Alternative Process Plans also is a seldomly
researched category. Currently, there is no record of any dataset that can be used to benchmark
this scenario. Just one paper by Kis (2003) was found that benchmarked their algorithm on a
randomly generated dataset, using the same And/Or-graphs. They give a description on how
their instances were generated, but do not provide their instances online.

As the APPs are a core part of our research, we took the description from Kis and generated
our own instances from that. As Kis phrased it: “Each job was a sequence of 1, 2 or 3 or-
subgraph(s), and each or-subgraph had two or three branches, where a branch consisted of either
one and-subgraph of five operations, or a sequence of two and-subgraphs one of them comprising
2, the other 3 operations. The processing times and the machine requirements of the operations
were generated at random with the restriction that the five operations on the same branch of an
or-subgraph always required five different machines. The processing time of the operations varied
between 2 and 99.” (Kis 2003)

2https://www.hexaly.com/example/flexible-job-shop-problem-with-setup-times-fjsp-sdst

37

https://www.hexaly.com/example/flexible-job-shop-problem-with-setup-times-fjsp-sdst

6. Computational results 6.1. Benchmark instances

We made one modification to this description: instead of one machine per operation, an
operation may be performed by more than one machine, which re-introduces the operation
flexibility that is used in the FJSP.

Table 6.3.: New benchmark instances for the FJSP-APP setting.
Instances Machines Jobs Or-nodes Machs/ops

10 5 10 1 1
10 5 10 2 1
10 5 10 3 1
10 5 10 1 2
10 5 10 2 2
10 5 10 3 2
10 5 5 1 1
10 5 10 1 1
10 5 15 1 1
10 5 20 1 1
10 10 5 1 1
10 10 10 1 1
10 10 15 1 1
10 10 20 1 1
10 10 10 1 2
10 10 10 2 2
10 10 10 3 2
10 10 30 1 2
10 10 30 2 2
10 10 30 3 2
10 10 50 1 2
10 10 50 2 2
10 10 50 3 2

The parameters for the 230 instances we generated are listed in Table 6.3.
As our MDD model does not support And-nodes, the instances from Kis cannot be used for

this model. Subsequently, we will need to generate instances that do not use these parallel
paths. We took existing instances and added APPs to them. Given a job (consisting of a set
of tasks), we define a number of process plans for this job. A process plan is defined by indices
corresponding to the task-list of that job. Originally, the first job of instance la01 from Hurink’s
edata looks like this:

5 1 2 21 1 1 53 1 5 95 1 4 55 2 3 34 5 34

This job consists of 5 tasks; the first four can be processed by one machine, while the last one
can be processed by two.
To include APPs, we transform it like so:

3 5 1 2 21 1 1 53 1 5 95 1 4 55 2 3 34 5 34
3 1 3 5
3 1 2 3
5 1 2 3 4 5

38

6. Computational results 6.2. Constraint Programming

We prepend the number of APPs to the job line (in this case 3); after the job line, as many
lines follow with an APP. The first APP in this example consists of tasks 1, 3 and 5; the second
of tasks 1, 2 and 3, while the third APP consists of tasks 1 through 5. Note that this format
is a full enumeration, while a DAG could be constructed that resembles the And/Or-network
formulation shown before. Such a DAG formulation is harder to capture in an instance file
however.
We generated APPs for 271 instances using the following settings: for each job, generate

randomly between 1 and 3 APPs, where each APP consists of a random selection of between
30% and 90% of all tasks in the job. This means that on average, a job can be made according to
2 process plans, with on average 60% of the original tasks. The average length of the shortest of
these two process plans is 50%. Accordingly, we expect an average decrease of 50% in makespan.

6.2. Constraint Programming

We tested both Google’s OR-Tools CP-SAT3 and IBM’s ILOG CP Optimizer4 on a range of
benchmark instances. The three datasets (FJSP, FJSP-SDST and FJSP-APP) were benchmarked
using 8 threads, for a duration of 900 seconds (unless mentioned otherwise), on a pair of Intel
Xeon Gold 6134 CPUs @ 3.20GHz with 256GB of memory. The benchmarks in this section serve
to verify the performance of the models and act as a baseline to compare with the MDD model.
All programs used here are available from our repository5.

Table 6.4.: Summary of CP Optimizer results for the FJSP datasets
Dataset Instances Optimal # Avg Time (s) Avg Gap%
Brandimarte 10 7 330.08 5.68
Dauzere 18 2 802.01 24.16
Hurink-e 66 58 121.31 0.67
Hurink-r 66 30 521.17 16.34
Hurink-v 66 27 531.92 21.32
Barnes 21 21 14.87 0.00
Kacem 5 5 4.09 0.00
Fattahi 10 10 19.38 0.00
Behnke 60 15 677.02 44.22
Naderi 96 3 874.57 55.80

FJSP Full results for this benchmark can be found in Appendix B. Table 6.4 shows a compre-
hensive overview per dataset for CP Optimizer, with Table 6.5 showing results for OR-Tools. In
these tables, we report the number of instances in each dataset, the number of instances that are
solved to optimality, the average runtime of all instances in that dataset, and the average gap
(LB divided by UB) across these instances. Table 6.6 combines these all into a quick overview
for the classic and modern datasets.
Regarding the classic benchmarks (see Section 6.1.1), literature reveals optimal bounds for

244 out of the 271 instances. Using our CP model for CP Optimizer, we solved 170 instances to
optimality, with another 33 instances finding an optimal upper bound but the solver not yet able

3https://developers.google.com/optimization/cp/cp_solver, version 9.12.4544
4https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-cp-optimizer, version 22.1.2.0
5https://github.com/StevenCellist/FJSP-with-APP-using-CP-and-MDD-thesis

39

https://developers.google.com/optimization/cp/cp_solver
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-cp-optimizer
https://github.com/StevenCellist/FJSP-with-APP-using-CP-and-MDD-thesis

6. Computational results 6.2. Constraint Programming

Table 6.5.: Summary of OR-Tools results for the FJSP datasets
Dataset Instances Optimal # Avg Time (s) Avg Gap%
Brandimarte 10 5 451.32 4.27
Dauzere 18 2 805.50 24.78
Hurink-e 66 59 71.88 0.89
Hurink-r 66 33 508.00 11.17
Hurink-v 66 27 537.88 18.74
Barnes 21 21 6.83 0.00
Kacem 5 5 8.43 0.00
Fattahi 10 10 75.26 0.00
Behnke 60 25 583.85 34.36
Naderi 96 1 892.12 56.66

Table 6.6.: Average bounds for CP solvers.
Solver LB UB Avg. Time (s)

Classic datasets
CP Optimizer 1173.8 1362.0 27.9
OR-Tools 1185.2 1374.6 28.7

Modern datasets
CP Optimizer 558.6 1628.1 798.6
OR-Tools 563.0 1720.2 773.6

to close the gap within the given runtime. Using our CP model for OR-Tools, we optimally solved
172 instances, with optimal upper bounds for 37 more instances. In the detailed results (see
Appendix B), bounds are included from Naderi and Roshanaei (2021). They used a very similar
CP model and ran their experiments on a CPU with half the number of threads and slightly
slower speed, but with a time-limit of 7200 seconds (versus our 900 seconds). As such, they
managed to solve more instances as the additional running time allows more gaps to be closed.
However, with roughly a quarter of the available total time, our results are very competitive,
setting a positive baseline for further results.

For the modern datasets (see Section 6.1.1), optimal solutions were found for 18 instances using
CP Optimizer and 26 for OR-Tools out of the 156 instances, while we found optimal bounds for
only one instance in literature. An interesting observation is that CP Optimizer yields slightly
better results on the Naderi dataset, while OR-Tools performed much better on the Behnke
dataset, solving almost all medium-size instances. Here, CP shows its strengths by finding much
better bounds across the board than were found in literature. The used CP models scale better
than the Linear Programming or Machine Learning models that were used for the previously
best-known bounds.

From Table 6.6, we conclude that both solvers (CP Optimizer and OR-Tools) are competitive
on the classic datasets. Google’s OR-Tools pulls ahead with a slight edge on average here,
but either can be used just as well. Regarding the modern datasets with large instances, CP
Optimizer clearly finds better upper bounds (-5.5%), while OR-Tools finds slightly better lower
bounds (+0.8%). But by all means, the OR-Tools solutions are good as well.

40

6. Computational results 6.2. Constraint Programming

Table 6.7.: Summary of CP Optimizer results for the FJSP-SDST datasets
Dataset SDST Instances Optimal # Avg Time Avg Gap%
Fattahi N 20 20 10.11 0.00
HUdata N 20 20 0.47 0.00
Fattahi Y 20 19 51.90 0.74
HUdata-SDST Y 20 11 431.90 5.51

Table 6.8.: Summary of OR-Tools results for the FJSP-SDST datasets
Dataset SDST Instances Optimal # Avg Time Avg Gap%
Fattahi N 20 20 29.35 0.00
HUdata N 20 20 0.21 0.00
Fattahi Y 20 18 93.15 1.45
HUdata Y 20 10 517.91 6.44

SDST In Table 6.7 and Table 6.8, we report our findings for the SDST datasets. We first
benchmarked these instances excluding setup times (the first two entries), and including setup
times after (the last two entries).

For the SDST datasets, optimal solutions were found for 28 of the 40 available instances using
OR-Tools, with CP Optimizer solving the same 28 plus another 2 instances to optimality for a
total of 30.

In contrast to the plain FJSP benchmark, the SDST benchmark shows a measurable disparity
between CP Optimizer and OR-Tools, with better results for the former. It appears that OR-
Tools has more difficulty with sequencing when SDST are present. This is strengthened by the
observation that the computation time drops back to a similar level when the instances are
parsed as a normal FJSP instance, ignoring the SDST. Inspecting individual instances (see
Table B.4), CP Optimizer is able to solve instances more than five times faster than OR-Tools.

Comparing the runtime between the ‘plain’ instances (without SDST) and the instances
including SDST, there is a notable difference. What we see is that the increase in complexity for
the Fattahi instances is significant but not extraordinary; the difference for the HUdata instances
is much worse however. This is due to the relatively higher values of SDST for the HUdata set:
artificially increasing the values of the Fattahi from on average 20% to 50% of the processing
time instances confirms this.

During testing, we also examined the effect of applying partial SDST (for instance on 50% of
the tasks). For CP Optimizer, we observed linear scaling between the number of tasks with a
setup time and the overall runtime. For OR-Tools, this was much worse: it looks like OR-Tools
activates setup times almost globally if only a few actual values are specified.

Blocking For the Blocking FJSP, we tested the classic set of 271 instances using a runtime of
60 seconds. Average results are listed in Table 6.9, and full results are available in Table B.5.
Of course, the resulting upper bounds are higher, since tasks are likely to have a larger duration
as they usually remain longer on a machine. However, the lower bound hardly increased for
the blocking instances, showing that they are much harder to solve. This is also clear from
the increased runtime; looking for instance at the instance mt10xyz from Barnes’ dataset, the
runtime to prove optimality increased from 1.48 to 27.3 seconds for CP Optimizer, and from 0.70
to 57.6 seconds for OR-Tools. OR-Tools even failed to find feasible solutions for six instances,

41

6. Computational results 6.2. Constraint Programming

Table 6.9.: Summary of results for the Blocking FJSP benchmark.
Average bounds exclude instances without a feasible solution.

Solver Blocking Avg LB Avg UB Feasible # Avg Time (s)
CP Optimizer N 1173.8 1362.0 271 27.9
OR-Tools N 1185.2 1374.6 271 28.7
CP Optimizer Y 1183.9 1659.6 271 46.1
OR-Tools Y 1210.8 1766.7 265 50.8

showing that the modification to a blocking shop is non-trivial.

APP For the APP instances, we only found optimal solutions for the smaller instances, as the
additional tasks mean that these instances (judging by the number of selected tasks) are still
substantial in size. As we have generated these ourselves, we do not have numbers available for
comparison.

Table 6.10.: Summary of results for the APP dataset
Dataset Instances Optimal # Avg Time Avg Gap%
AFJSP (CP Optimizer) 290 186 350.64 26.30
AFJSP (OR-Tools) 290 184 341.63 16.95

The first thing to mention is that the results from CP Optimizer versus OR-Tools are almost
exactly equal, with CP Optimizer solving 2 more instances to optimality, but OR-Tools closing
the gap between upper and lower bound substantially better.

Table 6.11.: Summary of OR-Tools results for AFJSP datasets
Dataset Instances Optimal # Avg Time Avg Gap
m05 j10 f1 30 20 345.74 11.42
m05 j10 f2 30 10 613.88 21.57
m05 or1 f1 40 40 8.78 0.00
m10 or1 f1 40 40 1.26 0.00
m10 or1 f2 30 10 600.31 32.85
m10 or2 f2 30 9 634.35 44.18
m10 or3 f2 30 4 822.82 51.09

Table 6.11 shows the results of the same dataset for OR-Tools, split out in a few different
partitions, which gives insight into the effect of the number of machines, jobs and tasks. The
abbreviation m refers to the number of machines, j the number of jobs, or the number of Or-nodes
and f the average number of machines per task. Refer to Table 6.3 for more details.

The first pair shows the effect of having on average two machines per task instead of just one.
Instead of 20 optimal solutions, just 10 are fully solved, and the average gap doubles. From the
second pair (5 machines versus 10 machines), it is clear that an increase in machines is easier to
solve; likely because there are fewer permutations to consider per machine. The third entry shows
the differences between one, two or three consecutive Or-subgraphs in each job (resulting in

42

6. Computational results 6.3. Multivalued Decision Diagrams

more choices and thus process plans). The 10 smaller instances included in this dataset become
very hard to solve when increasing the number of process plans, with the larger instances never
yielding an optimal bound, resulting in a significant gap.

6.2.1. Progression of bounds

Figure 6.1.: Primal bounds of CP Optimizer over time.

We have analysed the progression of the bounds throughout the solving process of all FJSP
instances. These are shown in Figure 6.1 for three different timestamps. From this, we see that
the first solution of the solver is not very good (an average makespan of 2088.5), but it is quickly
able to improve its solutions. The reported upper bound at the 1 second mark (on average
1366.0) is hardly improved up to the 900 second runtime cut-off (on average 1360.1).

6.2.2. Summary

Overall, we observe that CP solvers are very good at solving FJSP instances. But if the constraints
become more complicated, especially regarding timing (through Blocking tasks or Setup times),
their performance drops and the runtimes increase vastly. Mostly, they have trouble with finding
better lower bounds to close the gap, but in some cases, even finding primal bounds is a challenge.
Regarding the difference in both solvers, we see that both yield good results, but CP Optimizer
generally finds marginally better upper bounds while OR-Tools usually yields slightly better
lower bounds. Either way, the obtained results are very competitive with known results for the
normal FJSP instances.

6.3. Multivalued Decision Diagrams

Our MDD model is benchmarked using DDO6. The same hardware is used as for the CP
benchmarks, with again 8 threads, but now 60 seconds of runtime (compared to 900 for CP)
unless specified otherwise. The main reason for this will become apparent later in this section.
6https://github.com/xgillard/ddo, version 2.0.0

43

https://github.com/xgillard/ddo

6. Computational results 6.3. Multivalued Decision Diagrams

Table 6.12.: Comparing bounds for five MDD construction heuristics on relaxed diagrams.
The lower-bound values as reported by DDO are incorrect due to the time-limit cutoff.

Heuristic LB (reported) UB
1 938.2 1608.2
2a 954.5 1650.7
2b 926.8 1635.0
3a 931.3 1642.9
3b 954.7 1643.6

The results here will be compared to the results from the CP models. All programs used here
are available from our repository7.

6.3.1. FJSP

In this section, we first test some of the details of the framework and construction heuristics, in
order to establish the best choices for our benchmarks.

Construction heuristics As the ranking function influences the bounds or solutions that can
be obtained, we first present the results of comparing the five ranking strategies as discussed in
Section 5.6. These heuristics are tested by generating relaxed decision diagrams for 271 instances
(the classic benchmark sets), with a maximum width w = 1. We choose this width for the reason
that it forces a maximal dependency on the ranking function in the restricted phase: there can
only be one node on each layer, namely the ‘best’ one according to the ranking function. With a
greater width, chances are higher that similar solutions are constructed, even if they are ranked
in a different order, minimizing the effect of the ranking function. The node selection in the
relaxation phase also depends on the ranking function: the better the ranking function, the
better the relaxation if the relaxation does not complete within the specified time limit. For
these reasons, we construct a relaxed decision diagram with a width w = 1, and we analyse
which ranking function yields the best solutions.

The average primal and dual bounds obtained by DDO are listed in Table 6.12. DDO was able
to build a relaxed diagram and therefore find bounds for all instances. However, an important
observation is that DDO is unable to explore the complete fringe within the time limit. The
reported lower bound then is only the lower bound with respect to the currently constructed
diagram, while nodes that are still on the fringe may yield better solutions. Therefore, we cannot
be certain about the reported lower bound values.
From Table 6.12, we see that there is very little difference between the upper bounds of the

proposed ranking functions. The reported upper bounds are best for ‘1’. (which we recall from
Section 5.6 simply ranks states according to the current makespan). From this, we conclude
that the current makespan is a better indicator for a good solution than any of the estimation
attempts, although the other heuristics do yield decent results. The reported lower bounds are
best for ‘2a’ and ‘3b’. However, as discussed, these values cannot be relied on. All further results
in for MDDs will be generated using ranking function 1.

Construction modes As described in Section 5.6, DDO offers some different construction
modes. We testedNoCachingFc, CachingFc, CachingLel andCachingPooled on a relaxed diagram
with w = 5. The average results are available in Table 6.13. The caching modes show a clear
7https://github.com/StevenCellist/FJSP-with-APP-using-CP-and-MDD-thesis

44

https://github.com/StevenCellist/FJSP-with-APP-using-CP-and-MDD-thesis

6. Computational results 6.3. Multivalued Decision Diagrams

Table 6.13.: Comparing bounds for four MDD construction modes on relaxed diagrams.
The lower-bound values as reported by DDO are incorrect due to the time-limit cutoff.

Method LB (reported) UB
NoCachingFc 937.2 1638.3
CachingFc 938.2 1608.2
CachingLel 937.1 1608.8
CachingPooled 939.8 1608.9

Table 6.14.: Comparing bounds for different numbers of threads.
The lower-bound values as reported by DDO are incorrect due to the time-limit cutoff.

Threads Runtime cut-off (s) LB (reported) UB Avg Time (s)
1 80 933.4 1623.7 60.8
2 40 931.5 1628.8 30.7
4 20 931.7 1633.3 15.5
8 10 930.0 1637.7 7.9

advantage with respect to the upper bound. We did not track RAM usage as a metric across the
benchmarks, but a quick inspection every now and then did not reveal a large disparity in used
memory. The additional memory used for caching is likely saved by fewer nodes being present
on the fringe. Also, there is hardly any difference between the different modes that do include
caching. Apparently, our model is not influenced by the distinctions between the cutsets.

Threads There are few reports of the effectiveness of multithreading for Multivalued Decision
Diagrams. The authors of DDO did include an option for multithreading, which distributes
the workload equally across the specified cores, and list some results using varying number of
threads for a MaxClique problem (Gillard et al. 2020). To verify their results, we tested whether
adding more threads is beneficial for constructing a relaxed MDD with w = 1, using different
numbers of threads with an allowed total runtime of 80 seconds for all threads combined. Given
perfect workload distribution, they should all yield near-identical results. Table 6.14 shows the
used values for number of threads and maximum runtime, and their results. The results show
that multithreading results in a slightly worse score, but the difference is small. Given a fixed
runtime cut-off, adding more threads is surely beneficial.

Restriction — Width As DDO first constructs a restricted diagram, we investigate the effect
of the width on the upper bound. Table 6.15 shows the results for w ∈ {1, 5, 10, 50, 100}. We
observe that the average runtime increases roughly linearly with the width. This is as expected,
as the number of nodes in the diagram increases linearly with w (until w exceeds the maximum
width for a problem).

The construction of a restricted diagram is very fast for small- and medium-sized instances.
Even a diagram with w = 100 is constructed in a few seconds for medium-sized instances, and for
widths up to 10, the restricted diagram can be built in what we consider ‘real-time’: a fraction
of a second. It does get progressively worse though for large instances: a width of 5 results
in a runtime of 37.2 seconds for the largest instance (100 jobs, 10 machines, 30 tasks per job).
Regardless, a restricted diagram is still generated within a very usable time, especially for w = 1.
An increase in width does yield a valuable improvement with respect to the primal bound;

45

6. Computational results 6.3. Multivalued Decision Diagrams

Table 6.15.: Comparing primal bounds for restricted MDD width.
Width UB Reduction (%) Avg. Time (s) Max. Time (s)

Classic datasets
1 1848.8 0 0.019 0.105
5 1726.5 6.4 0.066 0.470
10 1700.0 7.3 0.122 0.951
50 1631.6 11.7 0.680 6.78
100 1629.7 12.1 1.56 17.2

Modern datasets
1 2080.4 0 0.851 6.78
5 2005.3 2.6 4.58 37.2

Table 6.16.: Comparing bounds for MDD construction.
Width Restriction Relaxation Avg Time (s) Improvement (%)

1 1848.8 1608.2 45.8 12.0
5 1726.5 1503.0 55.3 12.7

after w = 50 that we see only a little improvement. For the large instances in the modern
datasets, the increase from w = 1 to w = 5 does not yield as much an improvement. The very
large search space likely means that some additional width does not directly translate into much
better solutions.

Relaxation — Limitations Moving on to the relaxation phase, we encounter a difficulty.
While constructing the relaxed MDD, DDO consumes an enormous amount of memory. For
larger instances, the number of nodes that could be created (given an unlimited width) on a layer
grows immensely. As DDO tries to minimize the gap between the bounds, it keeps expanding
these nodes, merging them with existing nodes and adding more and more arcs. As a result, large
instances require a very large amount of memory, reaching a limit of 80GB after roughly 200
seconds (without a bound on the runtime). The program stalls once it reaches this 80GB limit
and does not yield any results. With the cap on 60 seconds runtime in place, the relaxation fails
to find any improvements over the restricted diagram, even for w = 1. Due to these problems, we
did not include the Behnke and Naderi instances in the benchmarks unless specifically reported,
and limited the runtime for DDO to 60 seconds.

Relaxation — Width Figure 6.2 shows the upper bounds that were achieved by building a
relaxed MDD for w = 1 and w = 5. On average, a makespan of 1608.2 and 1503.0 was found
respectively, with an average improvement of 7.1%. It is useful to note that the restricted MDD
finished with a makespan of 1848.8 for w = 1 and 1724.6 for w = 5 - thus, the decrease on
makespan after the relaxation phase is logically better as well. However, the absolute improvement
for w = 5 is lower, as the optimal values are being approached.

Relaxation — Improving the Restriction Figure 6.3 shows the results of limiting DDO to
just construct a restricted diagram, as well as the bounds when allowing relaxation to occur up to
the 60 second cut-off. The averages are reported in Table 6.16. In most cases, the improvement

46

6. Computational results 6.3. Multivalued Decision Diagrams

Figure 6.2.: Primal bounds for 271 FJSP benchmark instances, including Best-Known Solutions.

Table 6.17.: Average bounds for 40 SDST instances.
The lower-bound values as reported by DDO are incorrect due to the time-limit cutoff.

Solver SDST LB UB Time (s)
CP Optimizer N 649.2 654.4 2.3
OR-Tools N 641.9 654.6 4.4
DDO N 386.7 702.1 39.5
CP Optimizer Y 681.0 729.8 19.4
OR-Tools Y 668.8 743.9 32.5
DDO Restricted Y 762.9 0.13
DDO Relaxed Y 419.5 709.5 35.9

of the relaxation is roughly 10-20%. However, as reported earlier, this improvement diminishes
with the size of the instance. For the instances of the Behnke and Naderi datasets, the relaxation
did not yield any improvements.

It is also worth noting that while relaxation for w = 1 yields an average makespan of 1608.2 in
45.8 seconds, increasing the restricted MDD from w = 1 to w = 100 yields an average makespan
of 1629.7 in 1.56 seconds. The advantage of the relaxing a w = 1-diagram in DDO is that
it works good as an anytime-algorithm, returning an initial solution almost instantaneously
and continuously improving it; a restricted MDD only returns a solution once it completes the
final layer. However, on average, a wider restricted MDD yields much better performance over
runtime.

6.3.2. SDST

Table 6.17 shows the results for the 40 instances that include Sequence-Dependent Setup Times,
compared to the same instances without, using CP Optimizer, OR-Tools and DDO (w = 100,
as we want to achieve competitive results). The same observation is apparent as before that
OR-Tools has more difficulty when SDST are included. Then, we see that the inclusion of SDST

47

6. Computational results 6.3. Multivalued Decision Diagrams

Figure 6.3.: Primal bounds for 271 FJSP benchmark instances, including Best-Known Solutions.

Table 6.18.: DDO results for the Blocking datasets.
The lower-bound values as reported by DDO are incorrect due to the time-limit cutoff.

Width # Res. feasible # Rel. feasible Rel. LB Rel. UB
1 29 103 1538.7 2900.5
5 37 139 1166.6 2543.1
10 43 153 1216.1 2512.5
50 84
100 100

has no effect on the runtime of the MDD algorithm versus without. Here, we even see DDO
beating both CP solvers based on runtime and upper bound values! However, DDO is not able
to provide a lower bound as good as the CP models. The advantage of the MDD model for
SDST is that adding the SDST is just a constant-complexity operation. It does not result in
any different or additional behaviour. This contrasts with our findings for the CP solvers, where
the addition of SDST had a major impact on the performance.

6.3.3. Blocking

The DDO results for the Blocking datasets are not so strong, just as we saw that the CP solvers
have trouble with Blocking tasks. This is clear from Table 6.18, where we list the number of
solutions obtained for restricted and relaxed MDDs, as well as the average lower bound for the
relaxed MDDs. Restricted diagrams do not yield any solution for a large number of instances.
This is caused by the infeasibilities that can occur with these blocking tasks, as described in
Section 5.10. Increasing the width does result in more feasible solutions: there is a higher chance
that there is a path that does not end up in an infeasible situation. A relaxation is able to find
a lower bound for all instances; however, as before, these may be incomplete. For the w = 5
and w = 10 relaxation, we do see lower bound values in the expected region. The upper bound
values are high, but an increase in width helps a lot here. The relaxation also manages to find

48

6. Computational results 6.3. Multivalued Decision Diagrams

Table 6.19.: Comparing bounds for APP instances.
The lower-bound values as reported by DDO are incorrect due to the time-limit cutoff.

Solver LB (reported) UB Time(s)
Without APP

CP Optimizer 1173.8 1362.0 27.9
OR-Tools 1185.2 1374.6 28.7
DDO 938.2 1608.2 45.8

With APP
CP Optimizer 720.9 780.0 15.2
OR-Tools 755.9 781.7 11.9
DDO 160.7 965.0 57.2

many new solutions, as it is able to merge some dead paths into valid paths. Overall, a restricted
solution would be much preferred, but our method is not good enough for this; the relaxation
does help quite well.

6.3.4. APP

A quick check shows that the runtime of the APP formulation is on par with the FJSP model
for normal instances. To verify this, we converted the FJSP instances into APP instances with
one process plan, consisting of all tasks of the job. Except for small variances both up and down,
the average results are the same.

We tested 271 instances as described in Section 6.1.4. Full results are listed in Table B.10, with
averages displayed in Table 6.19. We observe an average decrease in makespan upper bound of
43% for CP Optimizer and OR-Tools, and a decrease of 40% for DDO, approaching the estimated
50% reduction as the process plans in these instances are shorter and there are more options
(see Section 6.1.4). The average runtime of both CP solvers roughly halved, while almost all
instances ran into the runtime limit for DDO. The addition of these process plans therefore does
not result in a large difference between our CP and MDD model, although the CP models do
achieve a better runtime. The increase in number of jobs has a very large impact on the number
of available decisions per layer in the decision diagram, as we demonstrated in Section 5.5.

6.3.5. Summary

The results from DDO for our MDD model can be summarized as follows: Decision Diagrams
can be used to very quickly generate feasible solutions, especially if the width is very small.
The quality of the solution strongly depends on the decisions that are made, as a poor decision
will result in a poor solution because the diagram is built incrementally; it does not revisit
earlier decisions. MDDs are very useful for certain timing constraints because of this incremental
construction: the SDST extension can be added without any decrease in performance, which
as a result outperforms the CP solvers. Other extensions resulted in varying success: generally,
feasible solutions are found, but CP outperforms our model in many situations.

49

6. Computational results 6.4. Combining MDD and CP

Table 6.20.: Comparing CP cold-start versus a warm-start from MDD model.
Solver LB UB Time (s)
CP Optimizer 1173.8 1362.0 27.9
DDO + CP Optimizer 1173.7 1362.1 27.8
OR-Tools 1185.2 1374.6 28.8
DDO + OR-Tools 1183.6 1376.6 28.7

6.4. Combining MDD and CP

Both CP Optimizer and OR-Tools support an optional warmstart. As DDO is able to quickly
generate a feasible solution, we tested whether they are useful as a primal solution to the CP
solver.

• Generate a restricted MDD with w = 100.

• Take the best solution from the MDD and convert it into a warmstart for a CP model.

• Run the CP model for 60 seconds.

• Compare against the same CP model without warmstart and 60 seconds of runtime.

Table 6.20 shows the results of CP only versus CP with a warmstart, for both CP-Optimizer
and OR-Tools. We see virtually no difference in performance with or without this warmstart.
This does align with the findings in Section 6.2.1. The story is likely somewhat better for SDST
instances.
The opposite technique is also possible: DDO supports setting a ‘primal’ solution, similar to

the warmstart for the CP models. We tried to apply a reverse of the warmstart technique to
generate an initial solution with CP and construct an MDD from this primal solution. However,
DDO was unable to yield any improvement in reported bounds over the CP models after the
same 60 seconds.

50

7 Discussion

In this research, we explored the Flexible Job Shop Problem (FJSP) with two extensions using two
different techniques. First, we modelled and evaluated the FJSP using Constraint Programming
(CP), a widely used paradigm for scheduling. We extended this model with Sequence-Dependent
Setup Times (SDST) and Alternative Process Plans (APP). These results serve as a baseline for
our next method and future research. Then, we evaluated the same problem and extensions using
Multivalued Decision Diagrams (MDD). For the general FJSP, there are numerous datasets with
public benchmark results; for the SDST and APP extensions, there are few or no public instances
with no known bounds. Therefore, we crafted some datasets which are available online1, and we
report our best-found bounds for them in Appendix B.

7.1. Constraint Programming

For the CP model, we evaluated two constraint solvers: the commercial IBM CPLEX CP
Optimizer solver and Google’s open-source OR-Tools CP-SAT solver. We showed that our
implementation yields very competitive results using either solver. In many circumstances, both
solvers are competitive with minor differences every now and then. A slight edge goes to CP
Optimizer for the upper bound values, while OR-Tools usually finds a (significantly) better lower
bound. The biggest difference was observed when including Sequence-Dependent Setup Times,
as it appears that OR-Tools has more trouble with sequencing than CP Optimizer. Its results
are still decent and usable though.
Constraint Programming is a very flexible paradigm: adding extensions is easy and in most

cases quite straightforward. However, the selection and implementation of constraints can greatly
impact the performance, and a small modification of or extension to the basic FJSP model may
already worsen the runtime significantly. Adding Sequence-Dependent Setup Times into the
model, we observed a big step back in performance. CP Optimizer was better able to handle
these setup times, with OR-Tools lagging behind. However, both models are still able to generate
good solutions; mostly the gap to the dual bound is harder to close. Switching to a fully blocking
shop, where tasks must remain on a machine until the next task starts processing, we see a strong
degradation in performance. OR-Tools even fails to find feasible solutions within a smaller time
limit.
Alternative Process Plans can be implemented into the CP models without any limitations.

Some additional administration is required to capture all And/Or-precedence constraints, but
all of it is possible. Once again, the additional complexity means that the reported gap between
primal and dual bound increases, but the generated solutions are good for many instances.
Overall, Constraint Programming is proven to be a good framework for (Flexible Job Shop)

scheduling, both in literature and in our results. For plain, and small- and medium-sized instances,
it is well capable of finding great if not optimal bounds, but for larger instances or with extensions,
it requires quite some time to yield good solutions and even more to close the gap between the
upper and lower bound.

1https://github.com/StevenCellist/FJSP-with-APP-using-CP-and-MDD-thesis

51

https://github.com/StevenCellist/FJSP-with-APP-using-CP-and-MDD-thesis

7. Discussion 7.2. Multivalued Decision Diagrams

7.2. Multivalued Decision Diagrams

Next, we looked at the same problems from the perspective of Decision Diagrams, using the
Rust-implementation DDO. We concluded that exact MDDs are infeasibly large for any non-
trivial FJSP instance. Thus, we applied a restriction and relaxation, with the consequence that
it is difficult to find an optimal solution.

Using a restricted MDD, decent primal bounds were found in real-time for small- and medium-
sized instances, and near-real-time for large instances. Increasing the maximum allowed width
of the restricted diagram greatly helps finding better solutions, but this does not scale as well to
larger instances.
When relaxing the restricted MDD, dual bounds were obtained for small- and medium-sized

instances within a minute, but for large instances, DDO was unable to report any lower bound.
Building a relaxed MDD can also improve the upper bound; however, we found that a wider
restricted diagram may be a better idea than spending time relaxing a small restricted diagram.

Ideally, construction would allow incrementing the width of the restricted diagram as we saw
in Table 6.15; starting with w = 1, increasing the width until a specified duration is exceeded (or
some other form of cut-off). This way, even large instances could see useful improvements with
longer runtime, where DDO now failed to relax these instances in a useful way. Only once an
increase in width results in marginal improvements, we would recommend applying a relaxation.

We also compared heuristics to select the best nodes while constructing the MDDs, concluding
that the current makespan of a partial schedule yields better results than a simple estimation of
the total makespan. However, a more sophisticated estimation of the makespan may result in
improved upper bounds.

Adding Sequence-Dependent Setup Times has virtually no effect on the runtime or performance
of our model. This is a clear advantage of the incremental nature of Decision Diagrams: any
decision that is made is final. The setup times are simply a shift in the start and end-time
calculation (a constant-complexity operation), nothing more. Here, DDO manages to outperform
the CP solvers, demonstrating the power of such an incremental construction. Regarding the
Blocking instances, we demonstrated that MDDs can quickly yield good solutions for smaller
instances. But as our decision function allowed traversal into dead ends, we were unable to find
solutions to larger instances in the restricted phase. An improved decision function that would
prevent the traversal of these paths would be a useful improvement.
We also came up with a formulation for Alternative Process Plans. This formulation is not

as flexible as for CP, as it does not work with And-nodes; however, for the alternatives, we
essentially only require Or-nodes. The results for DDO versus both CP solvers are comparative
to plain FJSP instances, but as the search space is larger, the observed behaviour is magnified:
DDO quickly yields a good solution from restricted diagrams, but in longer runs, the CP solvers
outperform DDO easily.
Finally, we note that DDO consumes a rather large amount of RAM while relaxing large

instances. While it is manageable for server equipment, it outgrows consumer-hardware during
relaxation of larger instances.

7.3. MDD + CP

We also tried a warmstart technique for CP for the FJSP instances: giving the solution from a
restricted MDD as an initial solution to a CP solver. This did not result in any performance
improvements, as the CP solvers also manage to find a good solution in short time on their own.
However, if improved solutions can be generated using restricted MDDs, this may result in a
useful hybridization in the future.

52

7. Discussion 7.4. Conclusion

7.4. Conclusion

In Chapter 1, we asked the question whether it is feasible “to produce a schedule for a typical daily
shift of a moderately sized shop subject to High-Mix Low-Volume: e.g. a set of up to 100 orders”,
with the additional question “what is the effect of including setup times and alternative process
planning into the scheduler on the quality and makespan of the produced schedule?” We conclude
that both Constraint Programming and Multivalued Decision Diagrams are a useful means for
producing a schedule. MDDs can be used to very quickly generate a decent schedule, but (at least
regarding the DDO framework we used) it is not very suited for getting (near)optimal solutions,
or a useful estimate on the quality of the schedule. Some modifications (such as large processing
times) and some extensions (such as SDST) lend themselves perfectly to solving using MDDs
due to the incremental construction of the diagram, while others are harder to implement (such
as APP) due to the fixed structure of these diagrams. CP is much more flexible in that regard,
as it does not have such a rigid structure due to the freedom of the constraints. However, CP
does suffer from modifications or extensions. While the tested CP solvers are capable of finding
good bounds for a plain FJSP instance, it is not as fast when for instance SDST are involved,
or when processing times get large. Given more runtime, they do manage to gradually improve
their bounds.
If the runtime of schedule creation (approaching real-time) is of more importance than the

quality of the produced schedule, MDDs appear to be a good tool. However, if there is some
more time available (such as an operator starting up machines and getting a cup of coffee), CP
is likely to yield better results.

7.5. Future work

The Flexible Job Shop field is quite mature, with an extensive track record of public research.
Constraint Programming for (Flexible) Job Shop Scheduling has been around for long enough
that we have not seen major improvements over the last few years. Improvements may be
obtainable with newer versions of the CP solvers or even tighter constraint formulations. The
latter may especially be the case for the Alternative Process Plans.
More interesting however is the development around using MDDs for scheduling. This appli-

cation of MDDs might still be considered in its infancy given the limited amount of available
research, even though the results we demonstrated are promising. The main improvement that
we would like to try out is the use of an A∗(-like) algorithm (Hart et al. 1968) for MDD construc-
tion. With such an algorithm, the (restricted) Decision Diagram is not necessarily built layer by
layer, but using a priority queue that works across all layers. Consequently, construction would
be neither breadth-first nor depth-first, but a hybrid. Literature shows that such an anytime
construction algorithm can be very useful (Fontaine et al. 2023, Horn et al. 2021). Another
construction option would be some equivalent to beam search, where the width of the restricted
diagram is gradually increased, serving as another useful anytime construction algorithm.

Besides a different construction technique, there is likely also room for improvement regarding
the ranking functions. There may be better estimation functions that result in improved solutions
for restricted diagrams. And not only the ranking function may be improved, the decision function
for the Blocking case can likely be improved.

Lastly, our MDD formulation considers the full solution space, with all decisions being consid-
ered during construction, even though a restricted set may be selected. With improved dominance
rules or heuristics, the solution space can maybe be pruned, improving the runtime or yielding
better restricted or relaxed diagrams.

In conclusion, we challenge others to investigate the use of Multivalued Decision Diagrams for

53

7. Discussion 7.5. Future work

scheduling and improve our results.

54

A CP model for OR-Tools

In Chapter 4, the Constraint Programming model is given for ILOG’s CP Optimizer. Here, we
describe the model used for Google’s OR-Tools. It is similar in most regards, however, there are
some differences, mostly regarding setup times.

The notation used is identical to that in Chapter 4, with some additions listed in Appendix A.

Description
Variables
T = {1, 2, ..., N} The indices of the concatenation of all variables Taskjkm
mt The machine corresponding to task t ∈ T

D A dummy binary variable
Functions

ExactlyOne(B)
Creates a constraint such that exactly one
of the boolean variables in B is selected

If(e, s) If the expression e evaluates to 1, activate the statement s

A.1. Flexible Job Shop model

A plain FJSP model consists of the following goal and constraints1:

minimize Cmax (A.1)
subject to Task∗jk = IntervalVar(

[
min

m∈Mjk

pjkm, max
m∈Mjk

pjkm
]
) ∀j ∈ J , k ∈ Oj

(A.2)
Taskjkm = IntervalVar(pjkm,Task∗jk,Optional) ∀j ∈ J , k ∈ Oj ,m ∈ Mjk

(A.3)
ExactlyOne(PresenceOf(Taskjkm) : m ∈ Mjk) ∀j ∈ J , k ∈ Oj

(A.4)
StartOf(Task∗jk) ≤ EndOf(Task∗jk−1) ∀j ∈ J , k ∈ Oj

(A.5)
NoOverlap(Taskjkm : j ∈ J , k ∈ Oj |m ∈ Mjk) ∀m ∈ M

(A.6)
Cmax = max

j∈J
(EndOf(Task∗j|Oj |)) (A.7)

There are some slight differences compared to the CP Optimizer implementation. The first
is in Constraint A.4: OR-Tools does not include a function that intrinsicly links the machine
selection to a task; however, a generic constraint is used to enforce presence of exactly one of the

1https://developers.google.com/optimization/reference/python/sat/python/cp_model

55

https://developers.google.com/optimization/reference/python/sat/python/cp_model

A. CP model for OR-Tools A.2. Sequence-Dependent Setup Times

machine-variables for this task. Secondly, where CP Optimizer implements the EndBeforeStart
function as an abstraction, this must be added by hand in OR-Tools as an inequality (Constraint
A.5).

A.2. Sequence-Dependent Setup Times

Where CP Optimizer presents a concise function that takes a matrix for the SDST, this requires
more work for OR-Tools. The model is extended with some additional constrains:

Arcmuv = BinaryVar() ∀m ∈ M,∀u, v ∈ O ∪D|u ̸= v;mu = mv (A.8)
Circuit(u, v,Arcmuv|u, v ∈ O) ∀m ∈ M (A.9)
Arcmuv ≤ PresenceOf(u) (A.10)
Arcmuv ≤ PresenceOf(v) (A.11)
If(Arcmuv,EndOf(u) + suv ≤ StartOf(v)) ∀m ∈ M, ∀u, v ∈ O|u ̸= v (A.12)

(A.13)

Effectively, these constraints constitute a complete matrix of size |O| × |O| per machine m,
similar to the matrix Mm for CP Optimizer. Respectively, these constraints add arc variables for
all possible permutations of tasks on a machine, ensure that all activated arcs form one circuit
(through the additional dummy variable), that all associated tasks are processed on this machine,
and obey the selected permutation and setup time constraints.

A.3. Alternative Process Plans

Constraint A.5 is reformulated to look at the dependencies in the precedence graph:

EndOf(Taskja) ≤ StartOf(Taskjb) ∀j ∈ J , (a, b) ∈ Nj (A.14)

All modifications and additions with respect to optional tasks and flow variables is completely
identical to the CP Optimizer model.
Constraint A.4 is not valid any more when tasks are not present in the solution. As such, it

must be modified:∑
m∈Mjk

PresenceOf(Taskjkm) = PresenceOf(Task∗jk) ∀j ∈ J , k ∈ Oj (A.15)

(A.16)

Unfortunately, this constraint is less performant than the ExactlyOne constraint, with regular
FJSP problems taking roughly a 20% performance hit using this constraint instead of A.4.

56

B Results

In this appendix, we report all upper and lower bounds per instance, including the runtime.
Where applicable, best-known values are presented.

Note: some papers have an additional Kacem instance between ‘Kacem1’ and ‘Kacem2’ with a
makespan of 14.

B.1. FJSP — Constraint Programming

In Table B.1, we present the results of both CP solvers for all classic datasets (see Section 6.1.1).
Best-known bounds are taken from Dauzère-Pérès, Ding, et al. (2024). Results from Naderi
and Roshanaei (2021) are included since they have a similar CP model, to validate our results.
The maximum allowed runtime was set to 900 seconds: any instance for which this runtime is
reached is not solved to optimality.

Table B.1.: Results of CP Optimizer and OR-Tools for classic datasets.
Best-known Naderi et al. CP Optimizer OR-Tools

Name LB UB LB UB LB UB CPU (s) LB UB CPU (s)
Barnes

mt10c1 927 927 927 6 927 2
mt10cc 908 908 908 4 908 < 1
mt10x 918 918 918 5 918 2
mt10xx 918 918 918 4 918 < 1
mt10xxx 918 918 918 5 918 1
mt10xy 905 905 905 3 905 < 1
mt10xyz 847 847 847 2 847 < 1
setb4c9 914 914 914 4 914 1
setb4cc 907 907 907 3 907 < 1
setb4x 925 925 925 8 925 4
setb4xx 925 925 925 9 925 4
setb4xxx 925 925 925 8 925 5
setb4xy 910 910 910 8 910 2
setb4xyz 902 902 902 4 902 1
seti5c12 1169 1169 1169 27 1169 8
seti5cc 1135 1135 1135 60 1135 30
seti5x 1198 1198 1198 9 1198 5
seti5xx 1194 1194 1194 13 1194 2
seti5xxx 1194 1194 1194 13 1194 3
seti5xy 1135 1135 1135 57 1135 29
seti5xyz 1125 1125 1125 61 1125 40

Brandimarte

57

B. Results B.1. FJSP — Constraint Programming

Table B.1.: Results of CP Optimizer and OR-Tools for classic datasets (continued).
Best-known Naderi et al. CP Optimizer OR-Tools

Name LB UB LB UB LB UB CPU (s) LB UB CPU (s)

Mk01 40 40 40 < 1 40 < 1
Mk02 26 26 26 598 25 26 900
Mk03 204 204 204 < 1 204 2
Mk04 60 60 60 1 60 < 1
Mk05 172 172 136 172 900 158 172 900
Mk06 57 50 57 39 57 900 50 59 900
Mk07 139 139 133 139 900 133 139 900
Mk08 523 523 523 < 1 523 < 1
Mk09 307 307 307 1 307 10
Mk10 189 193 189 195 183 197 900 183 206 900

Dauzère-Paulli

01a 2505 2505 2505 21 2505 72
02a 2228 2228 2231 1691 2235 900 1644 2243 900
03a 2228 2228 1392 2228 900 1409 2235 900
04a 2503 2503 2503 14 2503 25
05a 2192 2203 2193 2219 1643 2216 900 1703 2224 900
06a 2163 2171 2163 2186 1351 2193 900 1364 2214 900
07a 2216 2254 2206 2276 2206 2320 900 2206 2308 900
08a 2061 2061 2070 1400 2068 900 1400 2121 900
09a 2061 2061 2062 1400 2062 900 1400 2084 900
10a 2212 2241 2197 2294 2197 2287 900 2197 2323 900
11a 2018 2037 2019 2066 1354 2063 900 1383 2083 900
12a 1969 1984 1969 2023 1310 2032 900 1310 2084 900
13a 2197 2236 2195 2252 2138 2271 900 2109 2309 900
14a 2161 2161 2164 1354 2164 900 1354 2207 900
15a 2161 2161 2162 1354 2162 900 1354 2206 900
16a 2193 2231 2189 2255 2138 2276 900 2138 2286 900
17a 2088 2105 2088 2143 1303 2147 900 1309 2183 900
18a 2057 2070 2056 2120 1289 2133 900 1289 2174 900

Fattahi

SFJS1 66 66 < 1 66 < 1
SFJS2 107 107 < 1 107 < 1
SFJS3 221 221 < 1 221 < 1
SFJS4 355 355 < 1 355 < 1
SFJS5 119 119 < 1 119 < 1
SFJS6 320 320 < 1 320 < 1
SFJS7 397 397 < 1 397 < 1
SFJS8 253 253 < 1 253 < 1
SFJS9 210 210 < 1 210 < 1
SFJS10 516 516 < 1 516 < 1
MFJS1 468 468 < 1 468 < 1
MFJS2 446 446 < 1 446 < 1
MFJS3 466 466 < 1 466 < 1

58

B. Results B.1. FJSP — Constraint Programming

Table B.1.: Results of CP Optimizer and OR-Tools for classic datasets (continued).
Best-known Naderi et al. CP Optimizer OR-Tools

Name LB UB LB UB LB UB CPU (s) LB UB CPU (s)
MFJS4 554 554 < 1 554 < 1
MFJS5 514 514 < 1 514 < 1
MFJS6 634 634 < 1 634 < 1
MFJS7 879 879 2 879 < 1
MFJS8 884 884 2 884 2
MFJS9 1055 1055 30 1055 16
MFJS10 1196 1196 160 1196 734

Hurink edata

abz5 1167 1167 2 1167 < 1
abz6 925 925 1 925 < 1
abz7 604 610 564 633 900 575 633 132
abz8 625 636 586 654 900 579 732 < 1
abz9 644 588 646 900 581 719 1
car1 6176 6176 < 1 6176 < 1
car2 6327 6327 < 1 6327 < 1
car3 6856 6856 < 1 6856 < 1
car4 7789 7789 < 1 7789 < 1
car5 7229 7229 < 1 7229 < 1
car6 7990 7990 2 7990 < 1
car7 6123 6123 < 1 6123 < 1
car8 7689 7689 < 1 7689 < 1
la01 609 609 609 < 1 609 < 1
la02 655 655 655 < 1 655 < 1
la03 550 550 550 < 1 550 < 1
la04 568 568 568 < 1 568 < 1
la05 503 503 503 < 1 503 < 1
la06 833 833 833 < 1 833 < 1
la07 762 762 762 < 1 762 < 1
la08 845 845 845 < 1 845 < 1
la09 878 878 878 < 1 878 < 1
la10 866 866 866 < 1 866 < 1
la11 1103 1103 1103 < 1 1103 < 1
la12 960 960 960 < 1 960 < 1
la13 1053 1053 1053 < 1 1053 < 1
la14 1123 1123 1123 < 1 1123 < 1
la15 1111 1111 1111 < 1 1111 < 1
la16 892 892 892 < 1 892 < 1
la17 707 707 707 1 707 < 1
la18 842 842 842 1 842 < 1
la19 796 796 796 1 796 < 1
la20 857 857 857 < 1 857 < 1
la21 1009 1009 1009 100 1009 80
la22 880 880 880 4 880 3
la23 950 950 950 5 950 2

59

B. Results B.1. FJSP — Constraint Programming

Table B.1.: Results of CP Optimizer and OR-Tools for classic datasets (continued).
Best-known Naderi et al. CP Optimizer OR-Tools

Name LB UB LB UB LB UB CPU (s) LB UB CPU (s)
la24 908 908 908 17 908 26
la25 936 936 936 10 936 9
la26 1106 1106 1106 1117 900 1106 1112 900
la27 1181 1181 1181 196 1181 145
la28 1142 1142 1124 1142 900 1119 1142 900
la29 1107 1107 1069 1110 900 1080 1107 900
la30 1188 1148 1192 1148 1197 900 1155 1207 900
la31 1532 1532 1490 1541 900 1532 362
la32 1698 1698 1698 5 1698 34
la33 1547 1547 1547 23 1547 22
la34 1599 1599 1599 146 1599 35
la35 1736 1736 1736 1 1736 4
la36 1160 1160 1160 31 1160 16
la37 1397 1397 1397 2 1397 1
la38 1141 1141 1141 98 1141 90
la39 1184 1184 1184 11 1184 8
la40 1144 1144 1144 100 1144 140
mt06 55 55 55 < 1 55 < 1
mt10 871 871 871 2 871 < 1
mt20 1088 1088 1088 < 1 1088 2
orb1 977 977 8 977 10
orb2 865 865 4 865 < 1
orb3 951 951 6 951 3
orb4 984 984 5 984 1
orb5 842 842 2 842 < 1
orb6 958 958 5 958 2
orb7 389 389 2 389 < 1
orb8 894 894 < 1 894 < 1
orb9 933 933 2 933 < 1
orb10 933 933 1 933 < 1

Hurink rdata

abz5 954 954 2 954 4
abz6 807 807 < 1 807 < 1
abz7 493 522 448 533 900 463 545 900
abz8 507 535 469 550 900 489 564 900
abz9 517 536 487 546 900 506 562 900
car1 5034 3559 5047 900 5034 755
car2 5985 4078 5987 900 5985 434
car3 5622 3979 5625 900 4563 5625 900
car4 6514 4521 6514 900 5250 6514 900
car5 5615 5615 89 5615 72
car6 6147 6147 1 6147 < 1
car7 4425 4425 < 1 4425 < 1
car8 5692 5692 < 1 5692 < 1

60

B. Results B.1. FJSP — Constraint Programming

Table B.1.: Results of CP Optimizer and OR-Tools for classic datasets (continued).
Best-known Naderi et al. CP Optimizer OR-Tools

Name LB UB LB UB LB UB CPU (s) LB UB CPU (s)
la01 570 570 434 572 900 570 434
la02 529 529 529 130 529 242
la03 477 477 477 577 477 280
la04 502 502 381 502 900 502 556
la05 457 457 380 457 900 428 457 900
la06 799 799 502 799 900 639 799 900
la07 749 749 453 749 900 572 749 900
la08 765 765 451 765 900 623 765 900
la09 853 853 560 853 900 677 853 900
la10 804 804 480 804 900 663 804 900
la11 1071 1071 668 1071 900 729 1071 900
la12 936 936 634 936 900 720 936 900
la13 1038 1038 541 1038 900 718 1038 900
la14 1070 1070 658 1070 900 768 1070 900
la15 1089 1089 631 1089 900 715 1089 900
la16 717 717 717 < 1 717 < 1
la17 646 646 646 < 1 646 < 1
la18 666 666 666 1 666 < 1
la19 700 700 700 < 1 700 < 1
la20 756 756 756 < 1 756 < 1
la21 808 825 805 839 719 852 900 759 850 900
la22 741 753 733 764 677 772 900 723 762 900
la23 816 831 809 850 673 851 900 733 853 900
la24 775 795 775 811 717 811 900 742 805 900
la25 768 779 751 784 736 789 900 749 787 900
la26 1056 1057 1055 1063 717 1065 900 760 1088 900
la27 1085 1085 1089 769 1089 900 826 1097 900
la28 1075 1076 1075 1082 758 1081 900 787 1094 900
la29 993 994 993 1003 737 999 900 771 1004 900
la30 1068 1071 1068 1082 815 1076 900 852 1094 900
la31 1520 1520 1006 1522 900 1006 1524 900
la32 1657 1657 976 1658 900 1019 1659 900
la33 1497 1497 801 1499 900 839 1500 900
la34 1535 1535 874 1536 900 939 1535 900
la35 1549 1549 1550 813 1550 900 824 1551 900
la36 1023 1023 1023 8 1023 29
la37 1062 1062 1062 278 1055 1067 900
la38 954 954 954 8 954 31
la39 1011 1011 1011 55 1011 153
la40 955 955 955 830 955 817
mt06 47 47 47 < 1 47 < 1
mt10 686 686 686 1 686 1
mt20 1022 1022 632 1022 900 700 1022 900
orb1 746 746 1 746 < 1
orb2 696 696 1 696 1

61

B. Results B.1. FJSP — Constraint Programming

Table B.1.: Results of CP Optimizer and OR-Tools for classic datasets (continued).
Best-known Naderi et al. CP Optimizer OR-Tools

Name LB UB LB UB LB UB CPU (s) LB UB CPU (s)
orb3 712 712 2 712 2
orb4 753 753 < 1 753 < 1
orb5 639 639 1 639 < 1
orb6 754 754 1 754 1
orb7 302 302 2 302 3
orb8 639 639 2 639 2
orb9 694 694 < 1 694 < 1
orb10 742 742 1 742 2

Hurink vdata

abz5 859 859 < 1 859 10
abz6 742 742 < 1 742 2
abz7 492 410 494 900 410 527 900
abz8 506 507 443 509 900 443 540 900
abz9 497 467 500 900 467 526 900
car1 5005 3312 5006 900 3719 5006 900
car2 5929 3794 5929 900 4224 5929 900
car3 5597 3518 5598 900 3956 5598 900
car4 6514 3883 6514 900 4588 6514 900
car5 4909 4910 4037 4917 900 4241 4914 900
car6 5486 5486 < 1 5486 < 1
car7 4281 4281 < 1 4281 < 1
car8 4613 4613 < 1 4613 1
la01 570 570 413 570 900 474 570 900
la02 529 529 394 529 900 442 529 900
la03 477 477 349 477 900 418 477 900
la04 502 502 379 502 900 452 502 900
la05 457 457 380 457 900 399 457 900
la06 799 799 441 799 900 504 799 900
la07 749 749 422 749 900 446 749 900
la08 765 765 370 765 900 502 765 900
la09 853 853 407 853 900 526 853 900
la10 804 804 443 804 900 485 804 900
la11 1071 1071 448 1071 900 533 1071 900
la12 936 936 416 936 900 486 936 900
la13 1038 1038 444 1038 900 544 1038 900
la14 1070 1070 443 1070 900 550 1070 900
la15 1089 1089 401 1089 900 519 1089 900
la16 717 717 717 < 1 717 1
la17 646 646 646 < 1 646 2
la18 663 663 663 < 1 663 3
la19 617 617 617 < 1 617 3
la20 756 756 756 < 1 756 1
la21 800 800 802 717 802 900 717 816 900
la22 733 733 735 619 733 900 619 747 900

62

B. Results B.1. FJSP — Constraint Programming

Table B.1.: Results of CP Optimizer and OR-Tools for classic datasets (continued).
Best-known Naderi et al. CP Optimizer OR-Tools

Name LB UB LB UB LB UB CPU (s) LB UB CPU (s)
la23 809 809 810 640 812 900 640 819 900
la24 773 773 774 704 774 900 704 784 900
la25 751 751 754 723 752 900 723 760 900
la26 1052 1052 717 1052 900 717 1059 900
la27 1084 1084 686 1085 900 686 1092 900
la28 1069 1069 756 1069 900 756 1076 900
la29 993 993 994 723 994 900 723 1000 900
la30 1068 1068 1069 726 1069 900 726 1075 900
la31 1520 1520 717 1520 900 717 1521 900
la32 1657 1657 756 1658 900 756 1659 900
la33 1497 1497 1498 723 1498 900 723 1500 900
la34 1535 1535 656 1535 900 656 1536 900
la35 1549 1549 647 1550 900 647 1552 900
la36 948 948 948 < 1 948 62
la37 986 986 986 < 1 986 97
la38 943 943 943 < 1 943 58
la39 922 922 922 < 1 922 96
la40 955 955 955 < 1 955 32
mt06 47 47 47 < 1 47 < 1
mt10 655 655 655 < 1 655 3
mt20 1022 1022 387 1022 900 477 1022 900
orb1 695 695 < 1 695 2
orb2 620 620 < 1 620 3
orb3 648 648 < 1 648 2
orb4 753 753 < 1 753 3
orb5 584 584 < 1 584 4
orb6 715 715 < 1 715 2
orb7 275 275 < 1 275 3
orb8 573 573 < 1 573 2
orb9 659 659 < 1 659 2
orb10 681 681 < 1 681 2

Kacem

1 11 11 < 1 11 < 1
2 11 11 < 1 11 < 1
3 7 7 < 1 7 < 1
4 11 11 20 11 42

In Table B.2, we present the results of both CP solvers for the Behnke datasets (see Sec-
tion 6.1.1). Bounds [1] by Behnke and Geiger (2012), [2] by Lei et al. (2022) and [3] by Wan
et al. (2024). The maximum allowed runtime was set to 900 seconds: any instance for which
this runtime is reached is not solved to optimality.

63

B. Results B.1. FJSP — Constraint Programming

Table B.2.: Results of CP Optimizer and OR-Tools for Behnke dataset.
[1] [2] [3] CP Optimizer OR-Tools

Name LB UB UB UB LB UB CPU (s) LB UB CPU (s)
1 70 91 87 22 87 1
2 75 91 87 13 87 2
3 79 91 86 11 86 1
4 76 97 84 9 84 2
5 71 91 87 14 87 1
6 78 131 143 74 115 900 114 453
7 84 130 142 76 117 900 117 270
8 76 128 139 78 125 900 125 668
9 74 129 144 73 113 900 113 107
10 81 133 146 76 124 900 123 141
11 163 259 250 278 77 220 900 99 220 900
12 157 251 247 247 81 213 900 101 213 900
13 160 252 249 261 76 214 900 99 217 900
14 164 258 257 262 81 225 900 105 230 900
15 159 262 255 260 82 223 900 99 225 900
16 327 566 437 451 80 391 900 89 399 900
17 320 535 430 438 83 392 900 91 401 900
18 321 555 428 442 82 400 900 96 408 900
19 323 532 423 447 81 400 900 93 401 900
20 322 522 427 444 84 402 900 95 411 900
21 78 85 85 6 85 2
22 69 87 87 6 87 1
23 72 86 85 4 85 1
24 70 87 87 8 87 1
25 80 87 87 6 87 2
26 70 122 129 74 114 900 113 174
27 81 132 140 84 124 900 122 434
28 73 123 133 75 115 900 114 351
29 75 125 138 78 118 900 117 625
30 80 127 142 82 121 900 117 121 900
31 79 272 271 264 85 228 900 106 234 900
32 77 259 267 255 79 224 900 97 228 900
33 77 245 261 253 80 225 900 104 227 900
34 78 265 250 262 80 222 900 104 227 900
35 79 253 249 252 82 214 900 101 214 900
36 152 531 442 446 82 391 900 95 405 900
37 153 536 444 435 84 396 900 107 405 900
38 151 527 454 434 83 393 900 98 395 900
39 153 516 471 454 86 391 900 92 401 900
40 156 521 460 456 86 419 900 95 423 900
41 68 87 90 3 90 2
42 75 87 91 1 91 1
43 68 86 91 4 91 1
44 68 85 97 4 97 1
45 68 87 91 5 91 3

64

B. Results B.1. FJSP — Constraint Programming

Table B.2.: Results of CP Optimizer and OR-Tools for Behnke dataset (continued).
[1] [2] [3] CP Optimizer OR-Tools

Name LB UB UB UB LB UB CPU (s) LB UB CPU (s)
46 73 124 145 81 127 900 114 126 900
47 76 126 144 89 125 900 104 128 901
48 74 134 141 78 124 900 100 127 900
49 66 121 134 80 125 900 125 278
50 73 131 147 89 131 900 110 133 900
51 75 259 253 245 86 232 900 108 256 900
52 76 255 242 240 83 222 900 101 239 900
53 74 257 256 244 84 232 900 105 252 900
54 75 267 268 258 90 236 900 108 257 900
55 77 256 262 248 86 231 900 99 254 900
56 99 538 439 442 91 420 900 110 478 900
57 99 535 442 433 85 408 900 101 460 900
58 100 531 442 439 89 404 900 98 469 900
59 99 532 443 441 89 406 900 110 465 900
60 101 537 458 444 90 404 900 100 448 900

In Table B.3, we present the results of both CP solvers for the Naderi datasets (see Section 6.1.1).
Best-known upper bounds by Lan and Berkhout (2025). The maximum allowed runtime was set
to 900 seconds: any instance for which this runtime is reached is not solved to optimality.

Table B.3.: Results of CP Optimizer and OR-Tools for Naderi dataset.
Best-known CP Optimizer OR-Tools

Name UB LB UB CPU (s) LB UB CPU (s)
1 1009 578 1025 900 589 1019 900
2 1158 585 1159 900 619 1159 900
3 970 420 1002 900 427 987 900
4 1121 542 1121 900 542 1123 900
5 2183 1153 2252 900 1155 2266 900
6 2413 1170 2415 900 1170 2418 900
7 2097 970 2212 900 970 2162 900
8 2397 1048 2397 900 1048 2404 900
9 641 505 640 900 505 663 900
10 691 554 692 900 554 698 900
11 641 512 647 900 512 653 900
12 720 522 720 900 522 722 900
13 1336 1058 1342 900 1058 1403 900
14 1602 1211 1602 900 1211 1658 900
15 1542 1034 1567 900 1034 1601 900
16 1565 1252 1565 900 1252 1605 900
17 540 518 535 900 518 559 900
18 601 580 603 900 580 618 900
19 452 539 245 539 561 900
20 638 638 1 638 120

65

B. Results B.1. FJSP — Constraint Programming

Table B.3.: Results for Naderi dataset (continued).
Best-known CP Optimizer OR-Tools

Name UB LB UB CPU (s) LB UB CPU (s)
21 1218 1051 1198 900 1051 1279 900
22 1280 1167 1283 900 1167 1411 900
23 1053 949 1021 900 949 1112 900
24 1158 1158 3 1158 1228 900
25 1692 641 1750 900 646 1729 900
26 1838 594 1840 900 572 1839 900
27 1610 553 1691 900 553 1649 900
28 1896 620 1896 900 620 1897 900
29 3590 1080 3789 900 1091 3743 900
30 4008 1192 4010 900 1192 4013 900
31 3314 996 3545 900 996 3550 900
32 3992 1180 3993 900 1180 3999 900
33 1036 517 1084 900 517 1066 900
34 1324 613 1326 900 613 1326 900
35 1124 505 1199 900 505 1169 900
36 1296 666 1296 900 666 1304 900
37 2266 986 2426 900 986 2505 900
38 2650 1255 2651 900 1255 2662 900
39 2158 1064 2320 900 1064 2296 900
40 2521 1147 2520 900 1147 2568 900
41 836 507 874 900 507 872 900
42 909 678 908 900 678 914 900
43 763 437 809 900 437 803 900
44 920 596 921 900 596 931 900
45 1784 1001 1859 900 1001 1888 900
46 1991 1152 1992 900 1152 2107 900
47 1662 973 1736 900 973 1778 901
48 1865 1241 1866 900 1241 1972 901
49 2474 663 2566 900 648 2558 900
50 2719 784 2720 900 719 2720 900
51 2239 518 2307 900 518 2311 900
52 2717 563 2717 900 563 2718 900
53 4948 1119 5217 900 1132 5295 900
54 5532 1417 5534 900 1322 5563 900
55 4729 1113 5039 900 1113 4852 900
56 5493 1242 5494 900 1242 5502 900
57 1563 563 1660 900 564 1653 900
58 1739 622 1741 900 622 1740 900
59 1482 555 1602 900 555 1528 900
60 1866 577 1867 900 577 1870 900
61 3320 1012 3588 900 1008 3791 900
62 3616 1298 3618 900 1298 3650 900
63 2994 993 3272 900 993 3164 901
64 3664 1241 3664 900 1241 3703 900
65 1122 562 1196 900 562 1154 900

66

B. Results B.2. SDST — Constraint Programming

Table B.3.: Results for Naderi dataset (continued).
Best-known CP Optimizer OR-Tools

Name UB LB UB CPU (s) LB UB CPU (s)
66 1335 584 1336 900 584 1340 900
67 1091 551 1189 900 551 1133 900
68 1358 670 1359 900 670 1364 900
69 2492 1022 2669 900 1022 2681 900
70 2679 1208 2679 900 1208 2751 900
71 2154 934 2361 900 934 2307 901
72 2649 1117 2649 900 1117 2809 901
73 3519 724 3667 900 728 3698 900
74 3705 905 3707 900 831 3707 900
75 3181 539 3271 900 539 3317 900
76 3789 584 3790 900 584 3790 900
77 6920 1390 7345 900 1316 7470 900
78 7569 1431 7569 900 1334 7915 900
79 6786 1083 7000 900 1083 7556 900
80 7824 1178 7825 900 1178 7225 900
81 2111 528 2263 900 528 2205 900
82 2519 685 2521 900 685 2521 900
83 2098 494 2260 900 494 2145 900
84 2579 613 2581 900 613 2589 900
85 4517 1010 4892 900 1009 4845 901
86 5108 1229 5109 900 1229 5431 901
87 4512 1020 4945 900 1020 5123 900
88 4994 1177 4995 900 1177 5216 900
89 1666 521 1795 900 521 1735 900
90 1778 576 1779 900 576 1782 900
91 1558 528 1713 900 528 1655 900
92 1923 705 1924 900 705 1948 900
93 3240 928 3555 900 928 3458 901
94 3792 1191 3790 900 1191 3853 901
95 3273 970 3594 900 970 3590 900
96 3897 1284 3896 900 1284 5898 900

B.2. SDST — Constraint Programming

In Table B.4, we present the results of both CP solvers for all SDST datasets (see Section 6.1.2).
The maximum allowed runtime was set to 900 seconds: any instance for which this runtime is
reached is not solved to optimality.

67

B. Results B.2. SDST — Constraint Programming

Table B.4.: Results from CP Optimizer and OR-Tools for the SDST datasets.
CP Optimizer OR-Tools

Name UB LB t (s) UB LB t (s)
Fattahi

SFJS1 70 < 1 70 < 1
SFJS2 112 < 1 112 < 1
SFJS3 233 < 1 233 < 1
SFJS4 374 < 1 374 < 1
SFJS5 126 < 1 126 < 1
SFJS6 334 < 1 334 < 1
SFJS7 397 < 1 397 < 1
SFJS8 262 < 1 262 < 1
SFJS9 220 < 1 220 < 1
SFJS10 541 < 1 541 < 1
MFJS1 482 < 1 482 < 1
MFJS2 468 < 1 468 < 1
MFJS3 490 < 1 490 < 1
MFJS4 591 < 1 591 < 1
MFJS5 546 < 1 546 < 1
MFJS6 659 < 1 659 1
MFJS7 939 2 939 5
MFJS8 934 4 934 55
MFJS9 1130 131 958 1130 900
MFJS10 1086 1276 900 1107 1284 900

Hurink edata

la21 721 3 721 14
la22 737 2 737 10
la23 652 3 652 105
la24 673 4 673 267
la25 602 5 602 239
la26 833 952 900 864 963 900
la27 749 914 900 755 930 900
la28 845 947 900 834 940 900
la29 856 988 900 874 997 900
la30 951 490 909 987 900
la31 1043 1243 900 1104 1271 900
la32 960 1062 900 960 1162 900
la33 1053 1181 900 1065 1220 900
la34 1121 1235 900 1125 1254 900
la35 1136 1259 900 1153 1351 900
la36 1007 3 1007 84
la37 851 4 851 169
la38 985 5 985 90
la39 951 15 951 256
la40 997 4 997 122

68

B. Results B.3. Blocking & APP — Constraint Programming

B.3. Blocking & APP — Constraint Programming

In Table B.5, we present the results of both CP solvers for all Blocking and APP datasets (see
Section 6.1.3 and Section 6.1.4). The maximum allowed runtime was set to 60 seconds: any
instance for which this runtime is reached is not solved to optimality.

Table B.5.: Results from CP Optimizer and OR-Tools for the Blocking and APP datasets.
Alternative Process Plans Blocking

CP Optimizer OR-Tools CP Optimizer OR-Tools

Name UB LB t (s) UB LB t (s) UB LB t (s) UB LB t (s)
Barnes

mt10c1 482 2 482 < 1 869 1024 60 954 1038 60
mt10cc 516 1 516 < 1 861 997 60 975 48
mt10x 542 1 542 < 1 868 1028 60 979 1025 60
mt10xx 474 1 474 < 1 868 1028 60 1025 34
mt10xxx 496 1 496 < 1 868 1025 60 982 1025 60
mt10xy 543 < 1 543 < 1 976 25 976 10
mt10xyz 605 < 1 605 < 1 914 21 914 58
setb4c9 620 2 620 < 1 911 1375 60 974 1354 60
setb4cc 634 1 634 < 1 911 1319 60 968 1300 60
setb4x 579 1 579 < 1 911 1325 60 980 1353 60
setb4xx 529 1 529 < 1 911 1352 60 978 1333 60
setb4xxx 698 1 698 < 1 911 1323 60 978 1315 60
setb4xy 477 1 477 < 1 896 1369 60 952 1228 60
setb4xyz 519 1 519 < 1 892 1219 60 948 1207 60
seti5c12 681 3 681 < 1 1148 1725 60 1205 1651 60
seti5cc 628 3 628 < 1 1069 1578 60 1149 1564 60
seti5x 779 < 1 779 < 1 1189 1668 60 1224 1692 60
seti5xx 618 4 618 < 1 1189 1664 60 1224 1570 60
seti5xxx 630 2 630 < 1 1189 1598 60 1224 1622 60
seti5xy 571 < 1 571 < 1 1069 1578 60 1149 1578 60
seti5xyz 684 3 684 < 1 1069 1403 60 1140 1477 60

Brandimarte

Mk01 18 < 1 18 < 1 42 2 42 6
Mk02 13 1 13 < 1 25 33 60 26 34 60
Mk03 104 < 1 104 < 1 204 205 60 204 213 60
Mk04 26 < 1 26 < 1 55 69 60 63 73 60
Mk05 44 84 60 78 84 60 136 213 60 156 217 60
Mk06 24 4 24 2 39 72 60 45 82 60
Mk07 46 67 60 58 68 60 133 181 60 133 195 60
Mk08 234 3 234 < 1 523 634 60 523 627 60
Mk09 144 146 60 144 12 307 388 60 307 453 60
Mk10 73 96 60 72 99 60 183 294 60 183 371 60

Dauzère-Paulli

01a 874 1233 60 1143 1233 60 2522 3961 60 2555 4396 60
02a 739 847 60 766 841 60 1691 3042 60 1650 3633 60

69

B. Results B.3. Blocking & APP — Constraint Programming

Table B.5.: Results from CP Optimizer and OR-Tools for the Blocking and APP datasets
(continued).

Alternative Process Plans Blocking

CP Optimizer OR-Tools CP Optimizer OR-Tools

Name UB LB t (s) UB LB t (s) UB LB t (s) UB LB t (s)
03a 1273 12 1273 16 1393 2532 60 1392 3364 60
04a 1051 10 1051 4 2503 3838 60 2552 4281 60
05a 744 987 60 848 995 60 1643 3179 60 1628 3445 60
06a 1032 1101 60 1032 1102 60 1352 2509 60 1355 3239 60
07a 1278 5 1278 1 2206 4016 60 2224 4978 60
08a 807 895 60 807 897 60 1400 2834 60 1405 3429 60
09a 846 907 60 846 972 60 1400 2305 60 1400 4215 60
10a 1208 14 1208 6 2202 3939 60 2218 4397 60
11a 1012 55 1012 1048 60 1356 2785 60 1377 4090 60
12a 977 21 977 1001 60 1310 2316 60 1310 — 60
13a 814 899 60 868 905 60 2158 3998 60 2113 4947 60
14a 1072 1129 60 1072 1179 60 1354 2763 60 1354 — 60
15a 1000 1144 60 1000 1261 60 1354 2371 60 1354 — 60
16a 1077 1219 60 1086 1216 60 2142 4305 60 2093 5456 60
17a 717 914 60 717 992 60 1303 2745 60 1305 — 60
18a 770 959 60 770 1013 60 1289 2374 60 1289 — 60

Fattahi

SFJS1 24 < 1 24 < 1 66 < 1 66 < 1
SFJS2 43 < 1 43 < 1 107 < 1 107 < 1
SFJS3 106 < 1 106 < 1 256 < 1 256 < 1
SFJS4 179 < 1 179 < 1 396 < 1 396 < 1
SFJS5 73 < 1 73 < 1 128 < 1 128 < 1
SFJS6 160 < 1 160 < 1 320 < 1 320 < 1
SFJS7 247 < 1 247 < 1 397 < 1 397 < 1
SFJS8 146 < 1 146 < 1 253 < 1 253 < 1
SFJS9 80 < 1 80 < 1 210 < 1 210 < 1
SFJS10 173 < 1 173 < 1 533 < 1 533 < 1
MFJS1 285 < 1 285 < 1 473 < 1 473 < 1
MFJS2 273 < 1 273 < 1 448 < 1 448 < 1
MFJS3 145 < 1 145 < 1 473 < 1 473 < 1
MFJS4 154 < 1 154 < 1 566 < 1 566 < 1
MFJS5 223 < 1 223 < 1 559 < 1 559 < 1
MFJS6 215 < 1 215 < 1 667 < 1 667 < 1
MFJS7 546 < 1 546 < 1 954 3 954 2
MFJS8 482 1 482 < 1 953 12 953 12
MFJS9 519 < 1 519 < 1 808 1178 60 952 1160 60
MFJS10 640 2 640 < 1 956 1358 60 1061 1344 60

Hurink edata

abz5 764 < 1 764 < 1 1108 1435 60 1239 1467 60
abz6 483 < 1 483 < 1 890 1118 60 1019 1162 60
abz7 349 9 349 1 565 1082 60 581 1063 60

70

B. Results B.3. Blocking & APP — Constraint Programming

Table B.5.: Results from CP Optimizer and OR-Tools for the Blocking and APP datasets
(continued).

Alternative Process Plans Blocking

CP Optimizer OR-Tools CP Optimizer OR-Tools

Name UB LB t (s) UB LB t (s) UB LB t (s) UB LB t (s)
abz8 349 5 349 1 592 1048 60 613 1103 60
abz9 304 9 304 1 589 1024 60 616 1054 60
car1 2596 < 1 2596 < 1 6194 7022 60 6338 7022 60
car2 3128 < 1 3128 < 1 6214 7409 60 6176 7435 60
car3 2351 < 1 2351 < 1 6825 7947 60 6874 7856 60
car4 3182 2 3182 < 1 7789 8474 60 7792 8405 60
car5 3366 < 1 3366 < 1 7932 16 7932 22
car6 4576 < 1 4576 < 1 8289 4 8289 4
car7 2864 < 1 2864 < 1 6270 < 1 6270 < 1
car8 3947 < 1 3947 < 1 8130 5 8130 2
la01 322 < 1 322 < 1 791 17 791 37
la02 302 < 1 302 < 1 758 27 731 758 60
la03 274 < 1 274 < 1 653 13 653 8
la04 320 < 1 320 < 1 689 11 689 32
la05 286 < 1 286 < 1 619 13 619 27
la06 434 < 1 434 < 1 833 1109 60 838 1107 60
la07 450 < 1 450 < 1 749 989 60 752 1017 60
la08 377 < 1 377 < 1 845 1109 60 850 1051 60
la09 455 2 455 < 1 854 1198 60 870 1147 60
la10 404 < 1 404 < 1 866 1122 60 887 1093 60
la11 508 3 508 < 1 1043 1486 60 1015 1466 60
la12 478 2 478 < 1 960 1297 60 943 1310 60
la13 608 2 608 < 1 1053 1474 60 1056 1388 60
la14 462 1 462 < 1 1121 1480 60 1124 1468 60
la15 426 2 426 < 1 1136 1499 60 1152 1501 60
la16 516 < 1 516 < 1 845 1020 60 970 1038 60
la17 432 < 1 432 < 1 723 866 60 807 866 60
la18 540 < 1 540 < 1 809 999 60 944 990 60
la19 535 1 535 < 1 743 992 60 896 1023 60
la20 658 < 1 658 < 1 998 49 981 998 60
la21 557 2 557 < 1 930 1581 60 976 1532 60
la22 447 2 447 < 1 869 1325 60 938 1300 60
la23 679 < 1 679 < 1 950 1518 60 977 1453 60
la24 538 2 538 < 1 899 1424 60 945 1412 60
la25 477 2 477 < 1 919 1421 60 975 1397 60
la26 623 6 623 < 1 1106 1981 60 1099 2056 60
la27 704 2 704 < 1 1181 1995 60 1191 2047 60
la28 592 2 592 < 1 1126 1984 60 1142 2153 60
la29 583 4 583 < 1 1072 1813 60 1090 1894 60
la30 659 4 659 < 1 1148 1812 60 1186 2078 60
la31 927 25 927 5 1490 2870 60 1455 2949 60
la32 955 12 955 3 1698 3005 60 1698 3013 60

71

B. Results B.3. Blocking & APP — Constraint Programming

Table B.5.: Results from CP Optimizer and OR-Tools for the Blocking and APP datasets
(continued).

Alternative Process Plans Blocking

CP Optimizer OR-Tools CP Optimizer OR-Tools

Name UB LB t (s) UB LB t (s) UB LB t (s) UB LB t (s)
la33 937 11 937 1 1547 2597 60 1548 3171 60
la34 876 41 876 4 1603 3009 60 1577 3131 60
la35 858 21 858 6 1736 2902 60 1736 3158 60
la36 590 3 590 < 1 1090 1753 60 1174 1726 60
la37 808 3 808 < 1 1397 1872 60 1414 1831 60
la38 597 2 597 < 1 1068 1840 60 1137 1721 60
la39 753 2 753 < 1 1160 1735 60 1210 1639 60
la40 833 < 1 833 < 1 1069 1604 60 1148 1747 60
mt06 34 < 1 34 < 1 58 < 1 58 < 1
mt10 529 < 1 529 < 1 821 1110 60 928 1021 60
mt20 584 < 1 584 < 1 1088 1417 60 1091 1460 60
orb1 538 2 538 < 1 872 1121 60 999 1111 60
orb2 602 2 602 < 1 815 1009 60 941 1035 60
orb3 435 1 435 < 1 880 1080 60 997 1097 60
orb4 476 < 1 476 < 1 900 1135 60 1053 1134 60
orb5 509 < 1 509 < 1 829 966 60 916 966 60
orb6 491 2 491 < 1 874 1153 60 1019 1152 60
orb7 225 < 1 225 < 1 362 464 60 424 484 60
orb8 552 2 552 < 1 955 36 931 955 60
orb9 639 1 639 < 1 1001 53 1001 36
orb10 543 < 1 543 < 1 920 1110 60 1054 1110 60

Hurink rdata

abz5 534 < 1 534 < 1 927 1187 60 983 1205 60
abz6 413 < 1 413 < 1 807 877 60 811 937 60
abz7 304 2 304 2 448 816 60 452 934 60
abz8 280 2 280 2 469 899 60 478 1000 60
abz9 289 1 289 1 491 861 60 483 991 60
car1 2706 4 2706 < 1 3614 5946 60 3679 6100 60
car2 1598 3229 60 3229 1 4078 6977 60 4266 6781 60
car3 2379 9 2379 < 1 3979 6443 60 4057 6734 60
car4 3098 41 3098 < 1 4521 7389 60 4850 7339 60
car5 3034 4 3034 < 1 4813 6701 60 5280 6783 60
car6 3600 < 1 3600 < 1 6364 2 6364 6
car7 2985 < 1 2985 < 1 4763 2 4763 3
car8 3511 < 1 3511 < 1 6036 3 6036 11
la01 344 < 1 344 < 1 443 674 60 500 660 60
la02 297 < 1 297 < 1 426 629 60 503 627 60
la03 237 1 237 < 1 394 564 60 421 548 60
la04 248 < 1 248 < 1 381 600 60 483 608 60
la05 314 < 1 314 < 1 380 553 60 426 553 60
la06 326 481 60 481 1 502 950 60 522 986 60

72

B. Results B.3. Blocking & APP — Constraint Programming

Table B.5.: Results from CP Optimizer and OR-Tools for the Blocking and APP datasets
(continued).

Alternative Process Plans Blocking

CP Optimizer OR-Tools CP Optimizer OR-Tools

Name UB LB t (s) UB LB t (s) UB LB t (s) UB LB t (s)
la07 245 365 60 364 8 453 873 60 512 916 60
la08 382 22 382 < 1 451 924 60 530 906 60
la09 279 416 60 414 4 560 1022 60 576 1027 60
la10 413 19 413 2 480 987 60 535 979 60
la11 212 463 60 320 462 60 668 1276 60 625 1374 60
la12 284 430 60 353 428 60 634 1095 60 593 1167 60
la13 257 478 60 351 477 60 541 1196 60 581 1304 60
la14 298 544 60 386 544 60 658 1258 60 645 1335 60
la15 287 532 60 367 531 60 631 1268 60 642 1366 60
la16 572 < 1 572 < 1 717 811 60 723 829 60
la17 397 < 1 397 < 1 646 686 60 648 692 60
la18 450 < 1 450 < 1 673 729 60 699 776 60
la19 575 < 1 575 < 1 691 846 60 721 836 60
la20 536 < 1 536 < 1 756 803 60 776 846 60
la21 594 < 1 594 < 1 731 1219 60 752 1184 60
la22 489 3 489 1 690 1078 60 714 1189 60
la23 540 1 540 < 1 674 1175 60 703 1252 60
la24 441 23 441 17 736 1194 60 732 1164 60
la25 540 < 1 540 < 1 736 1113 60 744 1212 60
la26 414 497 60 420 495 60 717 1511 60 727 1668 60
la27 512 557 60 529 552 60 776 1619 60 790 1793 60
la28 509 563 60 509 559 60 758 1509 60 763 1790 60
la29 552 4 552 2 738 1432 60 750 1605 60
la30 553 584 60 556 586 60 821 1482 60 840 1590 60
la31 459 744 60 489 741 60 1006 2179 60 936 2622 60
la32 459 817 60 555 812 60 976 2449 60 943 2899 60
la33 527 820 60 538 819 60 801 2208 60 785 2626 60
la34 630 849 60 630 847 60 874 2183 60 868 2661 60
la35 495 883 60 518 883 60 813 2269 60 823 2700 60
la36 580 3 580 < 1 1025 1331 60 1027 1479 60
la37 711 < 1 711 < 1 1030 1455 60 1048 1640 60
la38 666 < 1 666 < 1 955 1283 60 972 1408 60
la39 692 1 692 1 1008 1383 60 999 1499 60
la40 637 4 637 < 1 955 1319 60 955 1451 60
mt06 28 < 1 28 < 1 48 < 1 48 < 1
mt10 438 1 438 < 1 686 754 60 711 751 60
mt20 253 506 60 388 502 60 632 1234 60 630 1305 60
orb1 467 < 1 467 < 1 746 857 60 773 857 60
orb2 454 < 1 454 < 1 758 45 722 812 60
orb3 400 < 1 400 < 1 695 815 60 736 852 60
orb4 398 < 1 398 < 1 753 856 60 770 830 60
orb5 357 < 1 357 < 1 629 739 60 678 735 60

73

B. Results B.3. Blocking & APP — Constraint Programming

Table B.5.: Results from CP Optimizer and OR-Tools for the Blocking and APP datasets
(continued).

Alternative Process Plans Blocking

CP Optimizer OR-Tools CP Optimizer OR-Tools

Name UB LB t (s) UB LB t (s) UB LB t (s) UB LB t (s)
orb6 439 2 439 < 1 774 916 60 798 851 60
orb7 250 < 1 250 < 1 289 349 60 310 363 60
orb8 471 1 471 < 1 710 49 680 730 60
orb9 346 < 1 346 < 1 708 767 60 731 759 60
orb10 455 < 1 455 < 1 730 832 60 789 850 60

Hurink vdata

abz5 560 < 1 560 < 1 859 3 859 1033 60
abz6 592 < 1 592 < 1 742 < 1 742 761 60
abz7 345 2 345 10 410 704 60 410 1242 60
abz8 312 8 312 6 443 710 60 443 1411 60
abz9 382 1 382 4 467 692 60 467 1264 60
car1 1564 2387 60 2386 27 3315 5704 60 3507 5853 60
car2 1551 3144 60 3144 7 3794 6621 60 3777 6455 60
car3 1928 2719 60 2248 2709 60 3518 6458 60 3573 6528 60
car4 1937 3445 60 3444 9 3883 7285 60 3899 7347 60
car5 3181 < 1 3181 < 1 4037 5758 60 4202 6050 60
car6 3158 < 1 3158 < 1 5486 < 1 5486 2
car7 2883 < 1 2883 < 1 4281 < 1 4281 1
car8 3837 < 1 3837 < 1 4613 < 1 4613 23
la01 292 5 292 1 413 627 60 454 652 60
la02 234 3 234 < 1 394 582 60 468 581 60
la03 223 7 223 2 349 546 60 410 539 60
la04 281 < 1 281 < 1 388 583 60 444 584 60
la05 201 2 201 < 1 380 553 60 401 553 60
la06 251 372 60 305 372 60 441 912 60 466 953 60
la07 292 319 60 319 18 422 868 60 432 886 60
la08 157 303 60 221 303 60 370 856 60 437 902 60
la09 287 449 60 346 448 60 407 939 60 475 1004 60
la10 262 414 60 330 413 60 443 871 60 465 931 60
la11 255 562 60 317 562 60 448 1186 60 494 1261 60
la12 258 466 60 282 466 60 416 1051 60 452 1099 60
la13 230 507 60 314 507 60 444 1152 60 469 1222 60
la14 269 550 60 319 550 60 443 1160 60 461 1278 60
la15 296 567 60 329 567 60 401 1188 60 433 1277 60
la16 471 < 1 471 1 717 < 1 717 722 60
la17 369 < 1 369 < 1 646 < 1 646 24
la18 420 < 1 420 < 1 663 < 1 663 37
la19 336 < 1 336 < 1 617 < 1 617 691 60
la20 475 < 1 475 < 1 756 < 1 756 23
la21 416 3 416 8 717 995 60 717 1089 60
la22 469 < 1 469 3 619 922 60 619 1151 60

74

B. Results B.4. FJSP — Multivalued Decision Diagrams

Table B.5.: Results from CP Optimizer and OR-Tools for the Blocking and APP datasets
(continued).

Alternative Process Plans Blocking

CP Optimizer OR-Tools CP Optimizer OR-Tools

Name UB LB t (s) UB LB t (s) UB LB t (s) UB LB t (s)
la23 379 4 379 3 640 1037 60 640 1183 60
la24 397 1 397 3 704 962 60 704 1071 60
la25 452 1 452 2 723 917 60 723 1048 60
la26 450 500 60 450 508 60 717 1169 60 717 1614 60
la27 474 593 60 474 597 60 686 1188 60 686 1752 60
la28 581 631 60 581 653 60 756 1170 60 756 1748 60
la29 616 1 616 2 723 1132 60 723 1520 60
la30 616 734 60 616 755 60 726 1192 60 726 1755 60
la31 521 849 60 521 876 60 717 1693 60 717 3687 60
la32 457 845 60 457 865 60 756 1823 60 756 3018 60
la33 594 808 60 594 836 60 723 1642 60 723 — 60
la34 622 804 60 622 869 60 656 1676 60 656 3045 60
la35 471 785 60 471 812 60 647 1693 60 647 3020 60
la36 738 2 738 3 948 < 1 948 1769 60
la37 644 3 644 5 986 2 986 1593 60
la38 758 1 758 3 943 < 1 943 1326 60
la39 585 6 585 4 922 4 922 1509 60
la40 784 < 1 784 3 955 < 1 955 1456 60
mt06 30 < 1 30 < 1 47 < 1 47 < 1
mt10 476 < 1 476 < 1 655 < 1 655 697 60
mt20 259 524 60 321 524 60 387 1127 60 446 1198 60
orb1 492 < 1 492 < 1 695 < 1 695 27
orb2 544 < 1 544 < 1 620 < 1 620 46
orb3 557 < 1 557 < 1 648 < 1 648 51
orb4 556 < 1 556 < 1 753 < 1 753 36
orb5 419 < 1 419 < 1 584 < 1 584 609 60
orb6 503 < 1 503 < 1 715 < 1 715 747 60
orb7 197 < 1 197 < 1 275 < 1 275 302 60
orb8 445 < 1 445 < 1 573 < 1 573 47
orb9 526 < 1 526 < 1 659 < 1 659 17
orb10 518 < 1 518 < 1 681 < 1 681 688 60

Kacem

1 8 < 1 8 < 1 11 < 1 11 < 1
2 8 < 1 8 < 1 11 < 1 11 1
3 3 < 1 3 < 1 7 < 1 7 < 1
4 7 < 1 7 < 1 10 12 60 10 12 60

B.4. FJSP — Multivalued Decision Diagrams

In Table B.6, we present the results of DDO for all classic datasets (see Section 6.1.1). The
maximum allowed runtime was set to 60 seconds. The lower-bound values as reported by DDO

75

B. Results B.4. FJSP — Multivalued Decision Diagrams

are incorrect due to the time-limit cutoff. Instances which are ‘solved to optimality’ are solved
to optimality with respect to their allowed width, but may not have reached the optimal value
for that instance.

Table B.6.: DDO results for all classic datasets.
Restricted Relaxed

w = 1 w = 5 w = 1 w = 5
Name UB LB t (s) UB LB t (s) UB LB t (s) UB LB t (s)

Barnes

mt10c1 1296 < 1 1207 < 1 216 1017 60 219 1006 61
mt10cc 1306 < 1 1207 < 1 216 1003 60 219 997 60
mt10x 1173 < 1 1118 < 1 216 1021 61 261 1008 61
mt10xx 1173 < 1 1058 < 1 216 1025 60 261 1008 60
mt10xxx 1173 < 1 1129 < 1 216 1025 60 261 1016 61
mt10xy 1243 < 1 1166 < 1 216 1027 60 249 995 60
mt10xyz 1060 < 1 1044 < 1 216 936 60 246 907 61
setb4c9 1367 < 1 1305 < 1 750 1138 60 342 1048 60
setb4cc 1298 < 1 1229 < 1 750 1179 60 284 1055 60
setb4x 1359 < 1 1254 < 1 750 1147 60 369 1044 60
setb4xx 1288 < 1 1383 < 1 750 1181 60 369 1073 60
setb4xxx 1205 < 1 1288 < 1 750 1205 60 369 1091 60
setb4xy 1076 < 1 1112 < 1 750 1073 60 300 1033 60
setb4xyz 1134 < 1 1113 < 1 750 1032 60 308 1019 60
seti5c12 1612 < 1 1461 < 1 1140 1349 60 501 1281 60
seti5cc 1401 < 1 1408 < 1 1140 1265 60 501 1218 60
seti5x 1523 < 1 1533 < 1 1140 1363 60 501 1298 60
seti5xx 1581 < 1 1368 < 1 1140 1368 60 501 1297 60
seti5xxx 1570 < 1 1579 < 1 1140 1363 60 501 1314 60
seti5xy 1566 < 1 1502 < 1 1140 1265 60 501 1207 60
seti5xyz 1562 < 1 1521 < 1 1140 1282 60 449 1253 60

Brandimarte

Mk01 51 < 1 61 < 1 51 < 1 26 42 61
Mk02 53 < 1 50 < 1 53 < 1 28 32 62
Mk03 302 < 1 293 < 1 150 268 61 77 236 60
Mk04 83 < 1 83 < 1 83 < 1 39 70 60
Mk05 248 < 1 207 < 1 248 < 1 180 1
Mk06 76 < 1 73 < 1 76 < 1 64 66 60
Mk07 234 < 1 209 < 1 100 180 64 46 170 61
Mk08 711 < 1 572 < 1 711 < 1 333 543 60
Mk09 439 < 1 463 < 1 439 < 1 332 382 60
Mk10 409 < 1 380 < 1 409 < 1 321 12

Dauzère-Paulli

01a 3202 < 1 2918 < 1 2027 2879 60 1202 2748 60
02a 2806 < 1 2657 < 1 2027 2672 60 1107 2505 60
03a 2846 < 1 2969 < 1 2027 2599 60 1061 2474 60

76

B. Results B.4. FJSP — Multivalued Decision Diagrams

Table B.6.: DDO results for all classic datasets (continued).
Restricted Relaxed

w = 1 w = 5 w = 1 w = 5
Name UB LB t (s) UB LB t (s) UB LB t (s) UB LB t (s)
04a 3104 < 1 2911 < 1 2885 < 1 1339 2708 60
05a 3057 < 1 2917 < 1 2260 2653 60 1310 2440 60
06a 2947 < 1 2523 < 1 2218 2481 60 1256 2459 61
07a 3703 < 1 3316 < 1 2957 3129 60 855 2745 60
08a 3081 < 1 2708 < 1 2818 2 823 2400 60
09a 2672 < 1 2682 < 1 2672 < 1 776 2417 60
10a 3799 < 1 2816 < 1 3453 < 1 1411 2774 60
11a 2704 < 1 2662 < 1 2704 < 1 1133 2336 60
12a 2500 < 1 2471 < 1 2500 < 1 1249 2291 61
13a 3616 < 1 3105 < 1 3616 < 1 1335 2913 61
14a 3119 < 1 2769 < 1 3119 2 1134 2644 61
15a 3026 < 1 2821 < 1 3026 2 1111 2752 61
16a 3282 < 1 3251 < 1 3282 < 1 1493 2909 60
17a 3023 < 1 2676 < 1 3023 2 1450 2468 63
18a 2735 < 1 2954 < 1 2735 2 1500 2586 62

Fattahi

SFJS1 91 < 1 66 < 1 66 < 1 66 < 1
SFJS2 128 < 1 107 < 1 107 < 1 107 < 1
SFJS3 298 < 1 221 < 1 221 < 1 221 < 1
SFJS4 531 < 1 367 < 1 355 < 1 355 < 1
SFJS5 144 < 1 119 < 1 119 < 1 119 < 1
SFJS6 330 < 1 320 < 1 320 < 1 320 < 1
SFJS7 397 < 1 397 < 1 397 < 1 397 < 1
SFJS8 273 < 1 256 < 1 253 < 1 253 < 1
SFJS9 257 < 1 215 < 1 210 < 1 210 < 1
SFJS10 608 < 1 533 < 1 608 < 1 516 < 1
MFJS1 610 < 1 601 < 1 610 < 1 491 < 1
MFJS2 601 < 1 601 < 1 601 < 1 508 < 1
MFJS3 761 < 1 503 < 1 761 < 1 498 < 1
MFJS4 745 < 1 623 < 1 745 < 1 512 565 61
MFJS5 878 < 1 593 < 1 878 < 1 593 < 1
MFJS6 1102 < 1 995 < 1 1102 < 1 614 647 61
MFJS7 1428 < 1 1199 < 1 1428 < 1 905 14
MFJS8 1562 < 1 1312 < 1 1332 < 1 843 905 61
MFJS9 1806 < 1 1534 < 1 1575 < 1 827 1249 61
MFJS10 1887 < 1 1630 < 1 1887 < 1 854 1446 61

Hurink edata

abz5 1493 < 1 1349 < 1 1493 < 1 1249 < 1
abz6 1145 < 1 1219 < 1 1145 < 1 656 991 60
abz7 968 < 1 849 < 1 968 < 1 699 763 61
abz8 902 < 1 827 < 1 902 < 1 724 798 60
abz9 959 < 1 904 < 1 959 < 1 747 821 60

77

B. Results B.4. FJSP — Multivalued Decision Diagrams

Table B.6.: DDO results for all classic datasets (continued).
Restricted Relaxed

w = 1 w = 5 w = 1 w = 5
Name UB LB t (s) UB LB t (s) UB LB t (s) UB LB t (s)
car1 8786 < 1 7144 < 1 1305 6844 63 1190 6481 61
car2 7776 < 1 7476 < 1 874 6814 63 1003 6532 61
car3 9480 < 1 8188 < 1 6047 7926 62 2667 7514 61
car4 9213 < 1 9013 < 1 995 8227 63 918 7958 61
car5 8366 < 1 8267 < 1 1477 7632 62 2180 7591 61
car6 9950 < 1 9064 < 1 2154 8421 61 1998 8245 61
car7 6766 < 1 6664 < 1 2288 6393 62 2041 6123 62
car8 9453 < 1 8662 < 1 2022 8352 61 1899 7689 61
la01 843 < 1 761 < 1 605 665 63 381 639 61
la02 875 < 1 813 < 1 596 690 63 375 658 61
la03 734 < 1 649 < 1 359 608 63 220 595 62
la04 817 < 1 735 < 1 254 626 63 179 599 62
la05 678 < 1 655 < 1 257 552 63 218 520 61
la06 1277 < 1 1133 < 1 544 932 61 362 918 61
la07 1044 < 1 913 < 1 613 840 61 424 820 61
la08 1080 < 1 979 < 1 374 935 61 209 915 61
la09 1115 < 1 1040 < 1 525 927 61 353 907 61
la10 1238 < 1 1281 < 1 413 1003 61 216 960 61
la11 1382 < 1 1336 < 1 698 1284 61 409 1220 61
la12 1280 < 1 1184 < 1 500 1096 61 264 1016 61
la13 1280 < 1 1287 < 1 512 1216 61 320 1157 60
la14 1411 < 1 1529 < 1 500 1344 61 276 1272 61
la15 1349 < 1 1284 < 1 595 1262 61 397 1204 61
la16 1160 < 1 1041 < 1 725 1012 60 402 949 61
la17 859 < 1 915 < 1 510 781 60 301 777 60
la18 1064 < 1 1060 < 1 531 923 60 347 904 61
la19 1271 < 1 1018 < 1 526 860 60 292 831 60
la20 1217 < 1 1050 < 1 603 995 60 311 912 61
la21 1325 < 1 1509 < 1 1054 1280 60 387 1200 60
la22 1342 < 1 1126 < 1 767 1095 60 351 1045 60
la23 1288 < 1 1456 < 1 762 1131 60 260 1070 60
la24 1455 < 1 1285 < 1 750 1168 60 294 1055 60
la25 1330 < 1 1430 < 1 749 1262 60 284 1112 60
la26 1690 < 1 1546 < 1 1395 1464 60 562 1408 60
la27 1856 < 1 1841 < 1 1009 1660 60 406 1549 60
la28 1698 < 1 1753 < 1 1013 1555 60 349 1388 60
la29 1645 < 1 1646 < 1 999 1514 60 331 1453 60
la30 1777 < 1 1635 < 1 1012 1628 60 429 1506 60
la31 2119 < 1 2007 < 1 1502 1940 60 590 1912 60
la32 2401 < 1 2401 < 1 1504 2241 60 489 2115 61
la33 2246 < 1 2131 < 1 1497 2039 60 352 1958 60
la34 2206 < 1 2067 < 1 1512 2043 60 574 1959 60
la35 2338 < 1 2222 < 1 1502 2181 60 457 2048 60

78

B. Results B.4. FJSP — Multivalued Decision Diagrams

Table B.6.: DDO results for all classic datasets (continued).
Restricted Relaxed

w = 1 w = 5 w = 1 w = 5
Name UB LB t (s) UB LB t (s) UB LB t (s) UB LB t (s)
la36 1656 < 1 1696 < 1 1535 23 601 1426 60
la37 2048 < 1 1607 < 1 1150 1637 60 458 1537 60
la38 1588 < 1 1626 < 1 1126 1465 60 479 1370 60
la39 1600 < 1 1555 < 1 1140 1465 60 466 1359 60
la40 1461 < 1 1452 < 1 1140 1341 60 464 1258 60
mt06 72 < 1 66 < 1 37 55 67 37 55 73
mt10 1162 < 1 1054 < 1 216 1005 60 255 955 61
mt20 1424 < 1 1337 < 1 202 1281 61 196 1203 61
orb1 1225 < 1 1207 < 1 521 1115 60 307 1053 60
orb2 1168 < 1 1055 < 1 610 935 60 366 941 60
orb3 1169 < 1 1115 < 1 516 1084 60 357 1038 61
orb4 1274 < 1 1384 < 1 508 1149 60 321 1118 60
orb5 1098 < 1 1011 < 1 501 966 60 244 925 61
orb6 1210 < 1 1123 < 1 620 1053 60 323 990 60
orb7 524 < 1 486 < 1 51 422 60 198 413 60
orb8 1215 < 1 1082 < 1 497 943 60 265 929 61
orb9 1254 < 1 1199 < 1 520 1064 60 243 1000 61
orb10 1095 < 1 1251 < 1 502 1042 60 326 974 60

Hurink rdata

abz5 1310 < 1 1192 < 1 1310 < 1 1110 < 1
abz6 1065 < 1 946 < 1 1065 < 1 628 864 60
abz7 898 < 1 764 < 1 898 < 1 647 662 61
abz8 837 < 1 930 < 1 837 < 1 687 9
abz9 825 < 1 829 < 1 825 < 1 614 698 61
car1 6932 < 1 6596 < 1 758 5771 62 753 5421 61
car2 7315 < 1 7081 < 1 696 6376 64 614 6168 61
car3 7437 < 1 7461 < 1 5924 6429 61 2608 6167 61
car4 9363 < 1 8558 < 1 852 7167 63 753 6888 61
car5 8562 < 1 7463 < 1 1245 6677 61 1134 6334 61
car6 7855 < 1 7258 < 1 1716 6700 61 1334 6299 61
car7 6210 < 1 5961 < 1 1167 4938 61 1129 4550 62
car8 8311 < 1 6809 < 1 1425 6308 61 2008 5989 61
la01 735 < 1 749 < 1 605 627 62 344 605 61
la02 732 < 1 710 < 1 596 611 62 309 590 61
la03 723 < 1 586 < 1 359 546 62 203 519 61
la04 681 < 1 701 < 1 254 585 62 173 528 61
la05 691 < 1 728 < 1 252 507 63 161 501 61
la06 1081 < 1 1142 < 1 544 893 61 278 858 61
la07 1029 < 1 856 < 1 613 836 61 394 787 61
la08 1158 < 1 908 < 1 374 910 61 184 849 61
la09 1148 < 1 971 < 1 525 944 61 319 894 61
la10 1178 < 1 1096 < 1 399 931 61 223 895 61

79

B. Results B.4. FJSP — Multivalued Decision Diagrams

Table B.6.: DDO results for all classic datasets (continued).
Restricted Relaxed

w = 1 w = 5 w = 1 w = 5
Name UB LB t (s) UB LB t (s) UB LB t (s) UB LB t (s)
la11 1366 < 1 1309 < 1 696 1213 62 379 1152 61
la12 1166 < 1 1110 < 1 500 1070 62 188 1015 61
la13 1311 < 1 1263 < 1 512 1162 61 287 1137 61
la14 1369 < 1 1244 < 1 500 1201 61 259 1141 60
la15 1326 < 1 1236 < 1 595 1216 61 363 1168 61
la16 1029 < 1 953 < 1 725 865 60 409 793 60
la17 787 < 1 914 < 1 510 737 60 293 701 60
la18 1127 < 1 1044 < 1 531 742 60 266 730 60
la19 1032 < 1 919 < 1 526 821 60 203 792 60
la20 1187 < 1 994 < 1 603 919 60 264 826 60
la21 1187 < 1 1258 < 1 1054 1071 60 427 993 60
la22 1108 < 1 1201 < 1 767 1021 60 285 932 60
la23 1483 < 1 1114 < 1 758 1058 60 262 985 60
la24 1177 < 1 1232 < 1 750 1044 60 267 1012 60
la25 1307 < 1 1177 < 1 749 1087 60 276 1013 60
la26 1690 < 1 1402 < 1 1394 14 506 1305 60
la27 1554 < 1 1520 < 1 1009 1448 60 403 1370 60
la28 1710 < 1 1678 < 1 1013 1538 60 455 1454 60
la29 1614 < 1 1430 < 1 999 1346 61 333 1291 60
la30 1741 < 1 1566 < 1 1012 1473 60 480 1409 60
la31 2121 < 1 1940 < 1 1502 1893 60 572 1823 60
la32 2336 < 1 2160 < 1 1504 2119 60 476 1993 61
la33 2142 < 1 1941 < 1 1497 1864 60 437 1857 61
la34 2127 < 1 1921 < 1 1512 1947 60 553 1869 61
la35 2199 < 1 2187 < 1 1502 1955 60 503 1876 60
la36 1545 < 1 1697 < 1 1545 < 1 746 1275 60
la37 1656 < 1 1346 < 1 1150 1317 60 452 1230 60
la38 1369 < 1 1507 < 1 1126 1245 60 424 1180 60
la39 1586 < 1 1457 < 1 1140 1323 60 366 1201 60
la40 1396 < 1 1227 < 1 1140 1217 60 367 1148 60
mt06 61 < 1 53 < 1 37 50 62 26 47 62
mt10 1021 < 1 941 < 1 216 840 60 191 759 61
mt20 1379 < 1 1252 < 1 202 1219 61 198 1129 61
orb1 1027 < 1 1053 < 1 521 911 60 194 849 60
orb2 910 < 1 915 < 1 610 798 61 316 757 60
orb3 931 < 1 840 < 1 516 857 61 325 810 60
orb4 1104 < 1 944 < 1 508 879 61 263 823 60
orb5 1179 < 1 853 < 1 501 791 60 234 725 60
orb6 961 < 1 1010 < 1 620 920 60 308 849 60
orb7 415 < 1 387 < 1 45 343 61 205 322 60
orb8 787 < 1 860 < 1 497 723 61 213 683 61
orb9 967 < 1 875 < 1 509 854 60 281 760 60
orb10 1160 < 1 1054 < 1 502 898 60 286 845 60

80

B. Results B.4. FJSP — Multivalued Decision Diagrams

Table B.6.: DDO results for all classic datasets (continued).
Restricted Relaxed

w = 1 w = 5 w = 1 w = 5
Name UB LB t (s) UB LB t (s) UB LB t (s) UB LB t (s)

Hurink vdata

abz5 993 < 1 945 < 1 993 < 1 945 < 1
abz6 861 < 1 902 < 1 861 < 1 579 764 60
abz7 773 < 1 711 < 1 773 2 534 618 61
abz8 753 < 1 723 < 1 753 2 545 628 61
abz9 740 < 1 781 < 1 740 2 569 651 61
car1 6644 < 1 6176 < 1 650 5755 62 511 5412 61
car2 6877 < 1 6906 < 1 625 6410 62 461 6080 61
car3 9448 < 1 6746 < 1 5924 6465 62 2393 6276 61
car4 7660 < 1 7805 < 1 852 7010 62 595 6740 61
car5 7051 < 1 7076 < 1 1245 5924 62 1132 5558 61
car6 7469 < 1 7469 < 1 1716 5486 61 843 5486 60
car7 5372 < 1 4800 < 1 796 4367 62 747 4326 61
car8 5811 < 1 6124 < 1 1425 4968 62 1199 4707 61
la01 698 < 1 654 < 1 605 607 62 310 591 61
la02 676 < 1 593 < 1 593 5 254 565 61
la03 667 < 1 603 < 1 359 552 62 204 535 61
la04 713 < 1 726 < 1 254 606 62 133 549 61
la05 625 < 1 616 < 1 252 522 63 194 508 61
la06 1117 < 1 991 < 1 544 916 62 317 903 61
la07 1029 < 1 894 < 1 613 836 62 360 804 60
la08 1083 < 1 977 < 1 374 891 61 222 844 61
la09 1055 < 1 1048 < 1 525 916 62 295 887 61
la10 1098 < 1 1000 < 1 399 939 62 211 874 61
la11 1299 < 1 1324 < 1 696 1170 62 334 1138 61
la12 1145 < 1 1101 < 1 500 1031 62 255 995 61
la13 1255 < 1 1232 < 1 512 1143 62 303 1091 61
la14 1351 < 1 1374 < 1 500 1227 62 242 1159 61
la15 1303 < 1 1226 < 1 595 1186 62 325 1132 61
la16 886 < 1 790 < 1 725 739 60 339 734 60
la17 764 < 1 752 < 1 510 680 61 219 664 60
la18 804 < 1 754 < 1 531 663 61 259 663 60
la19 812 < 1 782 < 1 526 693 61 222 672 60
la20 1066 < 1 821 < 1 603 790 60 180 761 60
la21 1089 < 1 1072 < 1 1039 2 413 975 60
la22 1086 < 1 941 < 1 767 936 61 272 872 60
la23 1241 < 1 1250 < 1 758 1034 61 269 979 61
la24 1275 < 1 1086 < 1 750 1003 61 218 988 60
la25 1243 < 1 1097 < 1 749 1006 61 233 951 61
la26 1436 < 1 1357 < 1 1385 3 498 1249 61
la27 1666 < 1 1549 < 1 1009 1383 61 431 1336 61
la28 1554 < 1 1460 < 1 1013 1458 61 392 1395 60
la29 1584 < 1 1482 < 1 999 1277 61 343 1292 60

81

B. Results B.4. FJSP — Multivalued Decision Diagrams

Table B.6.: DDO results for all classic datasets (continued).
Restricted Relaxed

w = 1 w = 5 w = 1 w = 5
Name UB LB t (s) UB LB t (s) UB LB t (s) UB LB t (s)
la30 1623 < 1 1538 < 1 1012 1425 61 323 1407 60
la31 2022 < 1 2130 < 1 1502 1901 61 555 1777 62
la32 2266 < 1 2162 < 1 1504 2094 61 464 2022 61
la33 1974 < 1 1850 < 1 1497 1849 61 537 1775 60
la34 2067 < 1 1940 < 1 1512 1887 62 540 1814 61
la35 2043 < 1 1983 < 1 1502 1901 60 477 1828 60
la36 1263 < 1 1217 < 1 1263 1 396 1044 61
la37 1301 < 1 1138 < 1 1150 1183 63 318 1098 61
la38 1332 < 1 1143 < 1 1124 3 242 1043 61
la39 1610 < 1 1078 < 1 1129 6 356 1008 60
la40 1502 < 1 1004 < 1 1060 3 367 1004 61
mt06 54 < 1 60 < 1 37 47 62 17 47 61
mt10 748 < 1 795 < 1 216 693 60 187 684 60
mt20 1272 < 1 1215 < 1 202 1178 62 188 1100 61
orb1 834 < 1 813 < 1 521 759 61 261 721 60
orb2 933 < 1 899 < 1 610 724 61 290 682 60
orb3 920 < 1 823 < 1 516 696 61 304 662 60
orb4 919 < 1 948 < 1 508 771 61 235 753 60
orb5 890 < 1 706 < 1 501 648 60 231 602 60
orb6 798 < 1 829 < 1 620 718 61 229 715 60
orb7 449 < 1 354 < 1 45 337 61 112 312 60
orb8 821 < 1 814 < 1 497 614 61 162 574 60
orb9 916 < 1 731 < 1 509 698 60 253 702 60
orb10 1208 < 1 809 < 1 502 739 61 209 712 60

Kacem

1 12 < 1 12 < 1 11 < 1 11 16
2 16 < 1 16 < 1 16 < 1 14 < 1
3 8 < 1 8 < 1 8 < 1 8 < 1
4 17 < 1 14 < 1 17 < 1 14 < 1

In Table B.7, we present the results of both CP solvers for the modern datasets (see Sec-
tion 6.1.1). The maximum allowed runtime was set to 60 seconds. The lower-bound values
as reported by DDO are incorrect due to the time-limit cutoff. Instances which are ‘solved
to optimality’ are solved to optimality with respect to their allowed width, but may not have
reached the optimal value for that instance.

82

B. Results B.4. FJSP — Multivalued Decision Diagrams

Table B.7.: Results of DDO for modern datasets.
Restricted Relaxed

w = 1 w = 5 w = 1 w = 5
Name UB LB t (s) UB LB t (s) UB LB t (s) UB LB t (s)

Behnke

1 103 < 1 97 < 1 103 < 1 99 < 1
2 111 < 1 106 < 1 111 < 1 99 < 1
3 106 < 1 105 < 1 106 < 1 105 < 1
4 106 < 1 109 < 1 106 < 1 113 < 1
5 100 < 1 105 < 1 100 < 1 105 < 1
6 147 < 1 143 < 1 147 < 1 138 < 1
7 152 < 1 140 < 1 152 < 1 141 < 1
8 146 < 1 141 < 1 146 < 1 143 < 1
9 134 < 1 146 < 1 134 < 1 143 < 1
10 150 < 1 152 < 1 150 < 1 139 < 1
11 261 < 1 258 < 1 261 2 252 4
12 249 < 1 240 < 1 249 2 246 4
13 266 < 1 268 < 1 266 2 265 4
14 271 < 1 259 < 1 271 2 257 45
15 268 < 1 262 < 1 268 2 261 4
16 452 < 1 450 5 452 13 450 23
17 447 < 1 446 5 447 12 433 23
18 439 < 1 434 5 439 12 442 22
19 436 < 1 439 5 436 13 436 23
20 445 < 1 435 5 445 12 424 22
21 103 < 1 106 < 1 103 < 1 103 < 1
22 104 < 1 97 < 1 104 < 1 93 2
23 104 < 1 90 < 1 104 < 1 90 < 1
24 98 < 1 99 < 1 98 < 1 99 < 1
25 104 < 1 103 < 1 104 < 1 103 < 1
26 145 < 1 129 < 1 145 < 1 127 1
27 138 < 1 140 < 1 138 < 1 137 23
28 127 < 1 130 < 1 127 < 1 128 1
29 140 < 1 137 < 1 140 < 1 133 2
30 137 < 1 138 < 1 137 < 1 124 134 61
31 257 < 1 252 2 257 5 249 8
32 248 < 1 246 2 248 4 239 58
33 251 < 1 247 2 251 5 219 242 61
34 243 < 1 242 2 243 4 235 8
35 232 < 1 235 2 232 5 225 60
36 417 1 415 7 417 27 412 405 61
37 411 1 421 7 411 26 426 43
38 427 1 421 7 427 27 423 45
39 423 1 418 7 423 28 419 44
40 454 1 445 7 454 26 448 43
41 96 < 1 96 < 1 96 < 1 96 1
42 101 < 1 101 < 1 101 < 1 93 96 61

83

B. Results B.4. FJSP — Multivalued Decision Diagrams

Table B.7.: Results of DDO for modern datasets (continued).
Restricted Relaxed

w = 1 w = 5 w = 1 w = 5
Name UB LB t (s) UB LB t (s) UB LB t (s) UB LB t (s)
43 96 < 1 99 < 1 96 < 1 99 < 1
44 95 < 1 95 < 1 95 < 1 95 < 1
45 102 < 1 92 < 1 102 < 1 92 1
46 127 < 1 127 < 1 127 < 1 131 2
47 138 < 1 138 < 1 138 < 1 133 3
48 132 < 1 141 < 1 132 < 1 132 2
49 125 < 1 119 < 1 125 < 1 124 2
50 137 < 1 135 < 1 137 1 137 3
51 247 < 1 247 3 247 8 246 14
52 234 < 1 232 3 234 8 238 14
53 243 < 1 233 3 243 8 232 14
54 247 < 1 244 3 247 8 241 13
55 244 < 1 239 3 244 8 235 13
56 421 2 413 11 421 46 414 64
57 423 2 422 11 423 46 417 64
58 429 2 421 11 429 48 424 64
59 432 2 422 11 432 45 420 64
60 435 2 435 10 435 43 427 64

Naderi

1 1365 < 1 1234 < 1 1365 < 1 575 1190 61
2 1473 < 1 1442 < 1 1473 < 1 618 1331 60
3 1367 < 1 1323 < 1 1367 < 1 570 1184 61
4 1388 < 1 1363 < 1 1388 < 1 642 1293 61
5 2935 < 1 2650 < 1 2935 2 911 2663 62
6 3487 < 1 3174 < 1 3487 2 1208 2942 62
7 2882 < 1 2818 < 1 2882 4 896 2511 62
8 3049 < 1 2897 < 1 3049 4 1318 2772 63
9 921 < 1 888 < 1 921 < 1 455 868 61
10 1041 < 1 1057 < 1 1041 < 1 493 879 61
11 942 < 1 840 < 1 942 2 553 827 61
12 1069 < 1 994 < 1 1069 1 486 972 64
13 1859 < 1 2043 < 1 1859 3 888 1736 62
14 2504 < 1 2084 < 1 2504 3 1092 2036 66
15 2126 < 1 2099 1 2126 7 903 1987 67
16 2733 < 1 2705 1 2733 6 1033 2570 69
17 839 < 1 868 < 1 839 1 446 773 61
18 948 < 1 960 < 1 948 1 493 827 62
19 834 < 1 804 < 1 834 2 528 696 65
20 974 < 1 991 < 1 974 2 475 858 65
21 1692 < 1 1936 1 1692 5 930 1632 63
22 2250 < 1 2118 1 2250 5 1109 1971 64
23 1534 < 1 1671 2 1534 8 882 1436 70

84

B. Results B.4. FJSP — Multivalued Decision Diagrams

Table B.7.: Results of DDO for modern datasets (continued).
Restricted Relaxed

w = 1 w = 5 w = 1 w = 5
Name UB LB t (s) UB LB t (s) UB LB t (s) UB LB t (s)
24 1857 < 1 1822 2 1857 8 931 1782 71
25 2265 < 1 2168 < 1 2265 2 757 2035 61
26 2291 < 1 2212 < 1 2291 2 869 2070 61
27 2307 < 1 2131 1 2307 3 731 2158 62
28 2392 < 1 2212 1 2392 3 846 2224 63
29 4597 < 1 4591 2 4597 7 1498 4227 70
30 4909 < 1 5046 2 4909 8 1860 4703 66
31 4354 < 1 4095 2 4354 13 1411 3940 64
32 5437 < 1 5106 3 5437 13 1456 4946 63
33 1497 < 1 1468 < 1 1497 3 575 1287 61
34 1849 < 1 1668 1 1849 3 913 1583 61
35 1637 < 1 1501 2 1637 6 753 1430 65
36 1803 < 1 1766 2 1803 6 899 1651 65
37 3073 < 1 2979 2 3073 12 1447 2996 69
38 4000 < 1 3389 2 4000 12 1558 3424 67
39 2889 < 1 2987 4 2889 21 989 3035 67
40 3508 < 1 3386 4 3508 20 1464 3303 60
41 1403 < 1 1305 2 1403 4 777 1167 61
42 1379 < 1 1325 2 1379 4 689 1307 61
43 1117 < 1 1113 3 1117 9 646 1023 69
44 1243 < 1 1189 3 1243 9 666 1186 68
45 2714 < 1 2508 4 2714 18 1138 2478 62
46 2708 < 1 2798 4 2708 17 1443 2527 64
47 2300 1 2319 6 2300 31 2343 68
48 2718 1 2655 6 2718 27 1479 2676 60
49 3132 < 1 2981 2 3132 5 1056 2832 64
50 3479 < 1 3281 2 3479 5 1185 3031 63
51 2885 < 1 2843 3 2885 7 1070 2602 69
52 3176 < 1 3208 3 3176 8 1213 3027 66
53 6387 < 1 6103 3 6387 18 1863 5833 64
54 7027 < 1 6982 3 7027 17 2103 6439 61
55 6121 1 5657 6 6121 33 5641 70
56 6703 1 6501 6 6703 32 6600 70
57 2156 < 1 1925 2 2156 7 964 1888 68
58 2491 < 1 2326 2 2491 7 1016 2170 69
59 2044 < 1 1885 4 2044 14 908 1862 63
60 2531 < 1 2392 5 2531 15 1263 2277 63
61 4697 < 1 4336 5 4697 31 4362 72
62 4719 1 4384 6 4719 31 4331 71
63 3916 2 3878 9 3916 50 3748 69
64 4687 2 4285 10 4687 51 4318 68
65 1670 < 1 1640 4 1670 10 850 1502 68
66 1978 < 1 1836 4 1978 11 864 1783 66

85

B. Results B.5. SDST — Multivalued Decision Diagrams

Table B.7.: Results of DDO for modern datasets (continued).
Restricted Relaxed

w = 1 w = 5 w = 1 w = 5
Name UB LB t (s) UB LB t (s) UB LB t (s) UB LB t (s)
67 1490 1 1546 7 1490 20 798 1497 61
68 1854 1 1763 7 1854 21 952 1844 60
69 3566 1 3498 7 3566 44 3418 69
70 3595 1 3396 8 3595 38 3602 69
71 3022 2 2929 13 3022 69 2933 66
72 3623 3 3477 14 3623 68 3496 66
73 4358 < 1 4173 4 4358 13 1426 4109 62
74 4474 < 1 4367 5 4474 12 1529 4231 64
75 4013 1 3711 8 4013 21 1255 3765 68
76 4512 1 4303 8 4512 21 4380 68
77 8610 2 8447 8 8610 48 8254 69
78 9160 2 8901 9 9160 47 8754 69
79 8497 3 8340 15 8497 70 8204 66
80 9449 3 8970 16 9449 70 8964 67
81 2751 1 2748 6 2751 19 1560 2665 61
82 3026 1 3047 6 3026 18 1185 3002 62
83 2687 2 2558 12 2687 35 2619 67
84 3202 2 3103 12 3202 36 3059 65
85 5871 3 5691 13 5871 70 5922 67
86 6688 3 6471 15 6688 70 6309 67
87 6058 4 5850 24 6058 69 5711 66
88 6299 5 6052 24 6299 70 6094 63
89 2204 2 2176 10 2204 27 2148 66
90 2243 2 2069 9 2243 24 1366 2236 60
91 2129 3 2106 17 2129 53 2111 63
92 2479 3 2317 17 2479 52 2419 64
93 4333 4 4300 19 4333 68 4351 65
94 4989 4 4733 20 4989 68 4894 65
95 4302 7 4121 37 4302 66 4192 61
96 4950 7 4828 36 4950 66 4978 61

B.5. SDST — Multivalued Decision Diagrams

In Table B.8, we present the results of DDO for all SDST datasets (see Section 6.1.2). The
maximum allowed runtime was set to 60 seconds: any instance for which this runtime is reached
is not solved to optimality.

86

B. Results B.5. SDST — Multivalued Decision Diagrams

Table B.8.: Results of DDO for SDST datasets.
Restricted Relaxed

w = 1 w = 100 w = 1 w = 100
Name UB LB t (s) UB LB t (s) UB LB t (s) UB LB t (s)

Fattahi

SFJS1 99 < 1 70 < 1 70 < 1 70 < 1
SFJS2 138 < 1 112 < 1 112 < 1 112 < 1
SFJS3 324 < 1 233 < 1 233 < 1 233 < 1
SFJS4 562 < 1 374 < 1 389 < 1 374 < 1
SFJS5 151 < 1 126 < 1 126 < 1 126 < 1
SFJS6 337 < 1 334 < 1 334 < 1 334 < 1
SFJS7 397 < 1 397 < 1 397 < 1 397 < 1
SFJS8 336 < 1 262 < 1 262 < 1 262 < 1
SFJS9 259 < 1 220 < 1 221 < 1 220 < 1
SFJS10 633 < 1 541 < 1 633 < 1 541 < 1
MFJS1 686 < 1 522 < 1 686 < 1 522 < 1
MFJS2 627 < 1 485 < 1 627 < 1 485 < 1
MFJS3 698 < 1 544 < 1 698 < 1 544 < 1
MFJS4 775 < 1 655 < 1 775 < 1 655 < 1
MFJS5 680 < 1 621 < 1 680 < 1 621 < 1
MFJS6 1148 < 1 744 < 1 1148 < 1 744 < 1
MFJS7 1530 < 1 1077 < 1 1530 < 1 926 990 62
MFJS8 1646 < 1 1121 < 1 1646 < 1 973 1
MFJS9 1811 < 1 1529 < 1 1811 < 1 1024 1297 62
MFJS10 1912 < 1 1594 < 1 1912 < 1 1156 1483 62

Hurink edata

la21 843 < 1 695 < 1 605 665 62 377 623 65
la22 875 < 1 702 < 1 596 690 63 367 655 65
la23 734 < 1 664 < 1 359 607 63 226 577 69
la24 817 < 1 663 < 1 254 620 63 206 599 68
la25 678 < 1 586 < 1 257 553 63 243 518 64
la26 1277 < 1 980 < 1 544 938 61 363 870 62
la27 1044 < 1 835 < 1 613 846 61 396 810 61
la28 1080 < 1 995 < 1 374 935 61 229 883 62
la29 1115 < 1 952 < 1 525 927 61 346 899 61
la30 1238 < 1 996 < 1 413 1001 61 290 938 61
la31 1382 < 1 1262 < 1 698 1284 61 404 1181 62
la32 1280 < 1 1015 < 1 500 1070 61 266 1003 61
la33 1280 < 1 1186 < 1 512 1216 61 359 1144 61
la34 1411 < 1 1393 < 1 500 1344 61 275 1213 61
la35 1349 < 1 1252 < 1 595 1262 61 346 1179 61
la36 1160 < 1 982 < 1 725 1013 60 429 917 61
la37 859 < 1 846 < 1 510 782 60 306 760 62
la38 1064 < 1 963 < 1 531 923 60 358 913 61
la39 1271 < 1 962 < 1 526 860 60 292 801 61

87

B. Results B.6. Blocking — Multivalued Decision Diagrams

Table B.8.: Results of DDO for SDST datasets (continued).
Restricted Relaxed

w = 1 w = 100 w = 1 w = 100
Name UB LB t (s) UB LB t (s) UB LB t (s) UB LB t (s)
la40 1217 < 1 1025 < 1 603 995 60 381 913 61

B.6. Blocking — Multivalued Decision Diagrams

In Table B.9, we present the results of DDO for all Blocking datasets (see Section 6.1.3). The
maximum allowed runtime was set to 60 seconds: any instance for which this runtime is reached
is not solved to optimality.

Table B.9.: Results of DDO for Blocking datasets.
Restricted Relaxed

w = 1 w = 100 w = 1 w = 100
Name UB LB t (s) UB LB t (s) UB LB t (s) UB LB t (s)

Barnes

mt10c1 1178 2378 61 1332 2277 63 < 1 < 1
mt10cc 1029 2380 61 1083 2264 62 < 1 < 1
mt10x 1568 2251 61 2198 50 < 1 < 1
mt10xx 1243 2351 61 1247 2266 62 < 1 < 1
mt10xxx 1092 2513 61 1101 2269 62 < 1 < 1
mt10xy 931 2432 61 960 2214 62 < 1 < 1
mt10xyz 588 61 601 2158 61 < 1 < 1
setb4c9 750 60 649 61 < 1 < 1
setb4cc 750 61 510 61 < 1 < 1
setb4x 750 60 576 61 < 1 < 1
setb4xx 750 60 622 61 < 1 < 1
setb4xxx 750 60 611 60 < 1 < 1
setb4xy 750 60 441 60 < 1 < 1
setb4xyz 750 60 489 60 < 1 < 1
seti5c12 1352 60 951 60 < 1 < 1
seti5cc 1352 60 725 60 < 1 < 1
seti5x 1352 60 863 60 < 1 < 1
seti5xx 1352 60 837 60 < 1 < 1
seti5xxx 1352 60 756 60 < 1 < 1
seti5xy 1352 60 718 60 < 1 < 1
seti5xyz 1352 60 717 60 < 1 < 1

Brandimarte

Mk01 54 68 62 33 61 64 < 1 < 1
Mk02 57 68 63 39 53 63 < 1 < 1
Mk03 150 62 124 61 < 1 < 1
Mk04 90 61 55 61 < 1 < 1

88

B. Results B.6. Blocking — Multivalued Decision Diagrams

Table B.9.: Results of DDO for Blocking datasets (continued).
Restricted Relaxed

w = 1 w = 100 w = 1 w = 100
Name UB LB t (s) UB LB t (s) UB LB t (s) UB LB t (s)
Mk05 525 61 211 412 61 < 1 < 1
Mk06 149 61 72 398 61 < 1 < 1
Mk07 100 62 76 349 61 < 1 < 1
Mk08 1120 60 375 61 < 1 < 1
Mk09 1195 61 453 61 < 1 < 1
Mk10 1195 61 342 61 < 1 < 1

Dauzère-Paulli

01a 3402 60 8794 40 < 1 < 1
02a 3351 60 4217 61 < 1 < 1
03a 2223 60 2192 61 < 1 < 1
04a 3570 60 8716 38 < 1 < 1
05a 3557 61 4313 61 < 1 < 1
06a 3534 60 2207 61 < 1 < 1
07a 3253 60 2599 60 < 1 < 1
08a 2953 61 1733 60 < 1 < 1
09a 2939 61 1717 61 < 1 < 1
10a 4701 60 2868 61 < 1 < 1
11a 4409 60 1780 60 < 1 < 1
12a 3243 61 1594 60 < 1 < 1
13a 3861 60 1188 60 < 1 < 1
14a 3861 61 797 61 < 1 < 1
15a 3861 61 1315 61 < 1 < 1
16a 5406 60 2659 60 < 1 < 1
17a 4250 61 1676 61 < 1 < 1
18a 4249 61 1140 61 < 1 < 1

Fattahi

SFJS1 66 < 1 66 < 1 91 < 1 66 < 1
SFJS2 107 < 1 107 < 1 128 < 1 107 < 1
SFJS3 261 < 1 256 < 1 298 < 1 256 < 1
SFJS4 396 < 1 396 < 1 396 < 1 396 < 1
SFJS5 128 < 1 128 < 1 128 < 1 128 < 1
SFJS6 320 < 1 320 < 1 320 < 1 320 < 1
SFJS7 397 < 1 397 < 1 397 < 1 397 < 1
SFJS8 253 < 1 253 < 1 345 < 1 253 < 1
SFJS9 220 < 1 215 < 1 317 < 1 275 < 1
SFJS10 555 < 1 533 < 1 555 < 1 533 < 1
MFJS1 551 < 1 601 < 1 551 < 1 601 < 1
MFJS2 677 < 1 504 < 1 677 < 1 610 < 1
MFJS3 643 < 1 537 < 1 643 < 1 718 < 1
MFJS4 710 < 1 656 < 1 710 < 1 656 < 1
MFJS5 686 < 1 612 < 1 686 < 1 745 < 1
MFJS6 1055 < 1 801 < 1 1055 < 1 941 < 1

89

B. Results B.6. Blocking — Multivalued Decision Diagrams

Table B.9.: Results of DDO for Blocking datasets (continued).
Restricted Relaxed

w = 1 w = 100 w = 1 w = 100
Name UB LB t (s) UB LB t (s) UB LB t (s) UB LB t (s)
MFJS7 1308 < 1 1003 1097 61 1575 < 1 1480 < 1
MFJS8 1419 < 1 916 1046 61 1419 < 1 1472 < 1
MFJS9 1671 < 1 1355 1 1856 < 1 1837 < 1
MFJS10 1863 < 1 1163 1506 61 2106 < 1 2088 < 1

Hurink edata

abz5 4950 60 2203 61 < 1 < 1
abz6 1990 61 1340 62 < 1 < 1
abz7 3296 60 875 60 < 1 < 1
abz8 3289 60 990 60 < 1 < 1
abz9 3294 60 1399 60 < 1 < 1
car1 7252 56 7252 28 9326 < 1 9918 < 1
car2 9031 8 6110 7667 67 < 1 < 1
car3 6155 8321 63 8055 66 11214 < 1 9653 < 1
car4 9149 9 5246 9134 65 < 1 10191 < 1
car5 8078 10 8066 13 < 1 < 1
car6 9201 2 8873 2 < 1 10336 < 1
car7 6788 < 1 6788 < 1 8000 < 1 7626 < 1
car8 8473 3 8473 4 13200 < 1 9427 < 1
la01 1310 21 1380 4 < 1 < 1
la02 1222 14 1186 9 < 1 < 1
la03 1001 8 1001 3 < 1 < 1
la04 1229 4 1156 3 < 1 < 1
la05 994 18 1031 5 < 1 < 1
la06 767 62 1164 1999 64 < 1 < 1
la07 1110 62 1354 1836 64 < 1 < 1
la08 602 61 1189 1888 63 < 1 < 1
la09 715 62 2107 30 < 1 < 1
la10 783 62 949 2101 64 < 1 < 1
la11 698 62 827 62 < 1 < 1
la12 694 62 962 62 < 1 < 1
la13 992 62 1051 63 < 1 < 1
la14 526 62 63 < 1 < 1
la15 609 62 1052 62 < 1 < 1
la16 1589 60 1311 2997 62 < 1 < 1
la17 931 60 1196 2692 61 < 1 < 1
la18 1064 60 1333 3115 62 < 1 < 1
la19 60 1240 61 < 1 < 1
la20 1124 60 1442 3175 62 < 1 < 1
la21 1199 60 603 61 < 1 < 1
la22 767 61 684 61 < 1 < 1
la23 906 60 558 61 < 1 < 1
la24 750 61 729 61 < 1 < 1

90

B. Results B.6. Blocking — Multivalued Decision Diagrams

Table B.9.: Results of DDO for Blocking datasets (continued).
Restricted Relaxed

w = 1 w = 100 w = 1 w = 100
Name UB LB t (s) UB LB t (s) UB LB t (s) UB LB t (s)
la25 749 61 400 61 < 1 < 1
la26 1395 60 782 61 < 1 < 1
la27 1399 60 1048 61 < 1 < 1
la28 1209 60 741 60 < 1 < 1
la29 999 60 418 60 < 1 < 1
la30 1012 60 925 61 < 1 < 1
la31 1796 60 1101 60 < 1 < 1
la32 1799 60 1167 60 < 1 < 1
la33 1497 60 568 61 < 1 < 1
la34 1512 60 1068 60 < 1 < 1
la35 1502 60 640 61 < 1 < 1
la36 1590 60 955 60 < 1 < 1
la37 1586 60 1196 60 < 1 < 1
la38 1346 60 644 60 < 1 < 1
la39 1140 60 774 60 < 1 < 1
la40 1573 60 610 60 < 1 < 1
mt06 107 < 1 104 < 1 < 1 < 1
mt10 1294 2294 61 1713 2172 64 < 1 < 1
mt20 500 61 557 62 < 1 < 1
orb1 1324 2198 61 2073 46 < 1 < 1
orb2 1304 60 1898 2742 63 < 1 < 1
orb3 1184 1784 61 1408 1648 63 < 1 < 1
orb4 2017 3123 61 2992 40 < 1 < 1
orb5 1139 2551 60 1473 2047 63 < 1 < 1
orb6 1288 2728 61 2289 53 < 1 < 1
orb7 623 1495 60 896 1242 63 < 1 < 1
orb8 1610 61 1199 1525 63 < 1 < 1
orb9 1790 2704 61 2580 24 < 1 < 1
orb10 3367 60 1753 2709 63 < 1 < 1

Hurink rdata

abz5 4950 60 1440 62 < 1 < 1
abz6 1990 61 944 61 < 1 < 1
abz7 3296 60 794 60 < 1 < 1
abz8 3289 60 1010 60 < 1 < 1
abz9 3293 60 690 60 < 1 < 1
car1 2624 8242 62 2575 7291 63 < 1 < 1
car2 2471 7947 64 2626 7624 65 < 1 9303 < 1
car3 5924 8128 62 4597 7887 63 < 1 < 1
car4 2383 9113 64 2382 8838 63 < 1 < 1
car5 3446 9082 62 3432 8298 63 < 1 < 1
car6 4404 10456 61 4401 9027 62 < 1 < 1
car7 4272 6680 62 4166 6608 64 < 1 < 1

91

B. Results B.6. Blocking — Multivalued Decision Diagrams

Table B.9.: Results of DDO for Blocking datasets (continued).
Restricted Relaxed

w = 1 w = 100 w = 1 w = 100
Name UB LB t (s) UB LB t (s) UB LB t (s) UB LB t (s)
car8 4353 9227 62 6984 9195 63 < 1 < 1
la01 605 991 63 532 927 64 < 1 < 1
la02 596 930 63 362 819 64 < 1 < 1
la03 945 63 556 756 64 < 1 < 1
la04 316 992 63 314 844 64 < 1 < 1
la05 838 64 285 795 64 < 1 < 1
la06 686 1612 63 708 1369 62 < 1 < 1
la07 613 63 515 1399 62 < 1 < 1
la08 374 63 350 1375 63 < 1 < 1
la09 525 63 323 63 < 1 < 1
la10 399 62 573 1327 62 < 1 < 1
la11 696 62 404 62 < 1 < 1
la12 500 62 475 62 < 1 < 1
la13 512 62 670 62 < 1 < 1
la14 500 62 372 62 < 1 < 1
la15 595 62 515 62 < 1 < 1
la16 817 61 552 2385 62 < 1 < 1
la17 510 61 363 61 < 1 < 1
la18 994 60 412 61 < 1 < 1
la19 526 61 429 61 < 1 < 1
la20 603 61 302 61 < 1 < 1
la21 1199 61 645 60 < 1 < 1
la22 916 61 751 61 < 1 < 1
la23 760 60 450 60 < 1 < 1
la24 750 61 434 61 < 1 < 1
la25 749 61 383 60 < 1 < 1
la26 1395 61 591 61 < 1 < 1
la27 1399 61 559 61 < 1 < 1
la28 1013 61 958 61 < 1 < 1
la29 999 61 455 61 < 1 < 1
la30 1013 61 614 61 < 1 < 1
la31 1796 60 795 61 < 1 < 1
la32 1504 61 603 61 < 1 < 1
la33 1497 60 542 60 < 1 < 1
la34 1512 61 776 61 < 1 < 1
la35 1502 61 729 61 < 1 < 1
la36 1823 60 925 60 < 1 < 1
la37 1150 60 587 60 < 1 < 1
la38 1132 60 559 60 < 1 < 1
la39 1140 60 535 60 < 1 < 1
la40 1352 60 535 60 < 1 < 1
mt06 68 34 68 26 < 1 < 1
mt10 225 60 61 < 1 < 1

92

B. Results B.6. Blocking — Multivalued Decision Diagrams

Table B.9.: Results of DDO for Blocking datasets (continued).
Restricted Relaxed

w = 1 w = 100 w = 1 w = 100
Name UB LB t (s) UB LB t (s) UB LB t (s) UB LB t (s)
mt20 230 62 359 1985 62 < 1 < 1
orb1 522 60 459 61 < 1 < 1
orb2 610 61 410 61 < 1 < 1
orb3 516 2109 61 604 1898 63 < 1 < 1
orb4 508 61 425 2854 62 < 1 < 1
orb5 501 61 374 62 < 1 < 1
orb6 620 61 590 61 < 1 < 1
orb7 51 61 303 61 < 1 < 1
orb8 497 2371 61 372 1708 62 < 1 < 1
orb9 509 61 348 2468 62 < 1 < 1
orb10 61 444 61 < 1 < 1

Hurink vdata

abz5 4950 62 1355 2315 61 < 1 < 1
abz6 1850 7 691 1479 61 < 1 < 1
abz7 3296 63 706 61 < 1 < 1
abz8 3289 62 836 61 < 1 < 1
abz9 3293 61 995 61 < 1 < 1
car1 1680 8242 62 1680 7051 62 < 1 < 1
car2 1938 8691 64 1980 7303 63 < 1 9649 < 1
car3 5924 8565 64 3458 7630 63 < 1 < 1
car4 2174 8889 63 3068 8121 62 < 1 < 1
car5 2099 8040 62 2625 6777 62 < 1 < 1
car6 1716 8971 62 999 7782 61 < 1 < 1
car7 2688 6287 62 2123 5893 62 < 1 8802 < 1
car8 1425 8095 62 2029 7341 61 < 1 < 1
la01 605 899 63 500 767 63 < 1 < 1
la02 596 778 63 382 719 63 < 1 1214 < 1
la03 359 904 63 245 698 63 < 1 < 1
la04 254 845 64 240 790 64 < 1 < 1
la05 268 735 64 329 674 65 < 1 < 1
la06 686 62 1259 62 < 1 < 1
la07 1110 63 722 1337 62 < 1 < 1
la08 374 1676 62 261 1098 62 < 1 < 1
la09 525 62 334 1350 62 < 1 < 1
la10 399 61 713 1182 62 < 1 < 1
la11 696 61 394 1738 61 < 1 < 1
la12 500 62 391 62 < 1 < 1
la13 992 61 593 2145 61 < 1 < 1
la14 500 62 375 61 < 1 < 1
la15 595 61 301 1884 61 < 1 < 1
la16 725 1425 61 302 1274 61 < 1 < 1
la17 510 1109 61 247 975 61 < 1 < 1

93

B. Results B.6. Blocking — Multivalued Decision Diagrams

Table B.9.: Results of DDO for Blocking datasets (continued).
Restricted Relaxed

w = 1 w = 100 w = 1 w = 100
Name UB LB t (s) UB LB t (s) UB LB t (s) UB LB t (s)
la18 531 2136 61 262 1323 61 < 1 < 1
la19 526 1521 61 248 1401 61 < 1 < 1
la20 603 1570 61 345 1197 61 < 1 < 1
la21 1054 61 535 61 < 1 < 1
la22 767 2171 62 465 2053 61 < 1 < 1
la23 758 61 582 61 < 1 < 1
la24 750 61 318 61 < 1 < 1
la25 749 61 252 2532 61 < 1 < 1
la26 1395 61 741 61 < 1 < 1
la27 1009 61 464 61 < 1 < 1
la28 1013 61 563 61 < 1 < 1
la29 999 61 417 61 < 1 < 1
la30 1012 62 422 61 < 1 < 1
la31 1502 61 599 61 < 1 < 1
la32 1504 61 516 61 < 1 < 1
la33 1497 61 761 61 < 1 < 1
la34 1512 61 622 61 < 1 < 1
la35 1502 61 616 61 < 1 < 1
la36 1590 60 457 61 < 1 < 1
la37 1150 60 568 61 < 1 < 1
la38 1126 61 351 62 < 1 < 1
la39 1140 61 373 61 < 1 < 1
la40 1140 60 577 60 < 1 < 1
mt06 37 54 64 32 53 64 < 1 < 1
mt10 216 1452 61 187 1212 61 < 1 1934 < 1
mt20 202 61 356 1491 61 < 1 < 1
orb1 521 61 274 1591 61 < 1 < 1
orb2 610 1796 62 323 1247 61 < 1 < 1
orb3 516 1432 61 359 1217 61 < 1 < 1
orb4 508 1440 62 235 1200 61 < 1 < 1
orb5 501 1392 61 241 1027 61 < 1 1919 < 1
orb6 620 1370 61 311 1085 61 2367 < 1 < 1
orb7 45 919 62 245 666 61 < 1 1078 < 1
orb8 497 1442 61 165 1288 61 < 1 < 1
orb9 509 62 202 1425 61 < 1 < 1
orb10 502 61 333 1921 61 < 1 < 1

Kacem

1 11 < 1 11 < 1 12 < 1 12 < 1
2 16 < 1 14 < 1 16 < 1 15 < 1
3 10 < 1 9 < 1 10 < 1 9 < 1
4 25 < 1 18 < 1 25 < 1 19 < 1

94

B. Results B.7. APP — Multivalued Decision Diagrams

B.7. APP — Multivalued Decision Diagrams

In Table B.10, we present the results of DDO for all APP datasets (see Section 6.1.4). The
maximum allowed runtime was set to 60 seconds. The lower-bound values as reported by DDO
are incorrect due to the time-limit cutoff. Instances which are ‘solved to optimality’ are solved
to optimality with respect to their allowed width, but may not have reached the optimal value
for that instance.

Table B.10.: DDO results for all APP datasets.
Restricted Relaxed

w = 1 w = 5 w = 1 w = 5
Name UB LB t (s) UB LB t (s) UB LB t (s) UB LB t (s)

Barnes

mt10c1 76 631 60 78 620 60 880 < 1 816 < 1
mt10cc 73 673 60 80 599 60 838 < 1 869 < 1
mt10x 118 671 60 124 650 61 825 < 1 737 < 1
mt10xx 84 593 60 86 562 60 848 < 1 714 < 1
mt10xxx 74 723 60 75 611 60 946 < 1 879 < 1
mt10xy 49 772 60 61 690 60 843 < 1 870 < 1
mt10xyz 81 698 60 69 629 60 786 < 1 768 < 1
setb4c9 86 797 60 56 733 60 1137 < 1 1124 < 1
setb4cc 89 862 60 66 738 60 960 < 1 1005 < 1
setb4x 49 802 60 53 753 60 942 < 1 842 < 1
setb4xx 52 799 60 50 751 60 880 < 1 832 < 1
setb4xxx 48 922 60 46 909 60 994 < 1 1159 < 1
setb4xy 43 754 60 45 706 60 811 < 1 879 < 1
setb4xyz 50 683 60 52 645 60 844 < 1 880 < 1
seti5c12 71 911 60 48 850 60 1028 < 1 975 < 1
seti5cc 123 908 60 92 828 60 1027 < 1 961 < 1
seti5x 81 874 60 54 928 60 903 < 1 1057 < 1
seti5xx 149 870 60 106 812 60 885 < 1 982 < 1
seti5xxx 129 863 60 99 824 60 941 < 1 933 < 1
seti5xy 104 829 60 67 825 60 904 < 1 833 < 1
seti5xyz 100 937 60 59 861 60 1249 < 1 1020 < 1

Brandimarte

Mk01 6 20 61 5 19 63 20 < 1 26 < 1
Mk02 17 60 3 16 63 35 < 1 28 < 1
Mk03 10 141 60 6 138 60 190 < 1 147 < 1
Mk04 6 31 60 4 28 61 34 < 1 45 < 1
Mk05 31 110 60 16 102 61 134 < 1 113 < 1
Mk06 10 35 60 5 35 60 37 < 1 42 < 1
Mk07 5 96 60 4 91 61 116 < 1 113 < 1
Mk08 50 317 60 15 301 60 391 < 1 348 < 1
Mk09 55 266 60 17 238 61 319 < 1 260 < 1
Mk10 55 144 60 18 165 61 287 < 1 191 < 1

Dauzère-Paulli

95

B. Results B.7. APP — Multivalued Decision Diagrams

Table B.10.: DDO results for all APP datasets (continued).
Restricted Relaxed

w = 1 w = 5 w = 1 w = 5
Name UB LB t (s) UB LB t (s) UB LB t (s) UB LB t (s)

01a 261 1589 60 178 1510 60 2057 < 1 1696 < 1
02a 182 1262 60 154 1185 60 1655 < 1 1352 < 1
03a 212 1943 60 124 1747 60 2437 < 1 1906 < 1
04a 282 1422 60 196 1352 60 1428 < 1 1446 < 1
05a 197 1505 60 121 1412 60 1758 < 1 1654 < 1
06a 322 1622 60 221 1532 60 2022 < 1 1727 < 1
07a 166 1950 60 85 1724 60 2391 < 1 1960 < 1
08a 173 1677 60 105 1550 61 2228 < 1 1942 < 1
09a 227 1387 60 129 1365 61 1587 < 1 1484 < 1
10a 266 1685 60 154 1663 60 2161 < 1 2070 < 1
11a 305 1556 60 161 1521 61 1869 < 1 1613 < 1
12a 261 1405 60 136 1410 61 1617 < 1 1511 < 1
13a 184 1512 60 111 1635 61 1783 < 1 1903 < 1
14a 242 1709 61 116 1670 60 1991 < 1 1820 < 1
15a 236 1922 61 2007 63 2120 < 1 2007 < 1
16a 317 1856 60 133 1780 61 2098 < 1 1886 < 1
17a 173 1611 60 1716 62 1616 < 1 1716 < 1
18a 222 1421 61 1625 63 1604 < 1 1625 < 1

Fattahi

SFJS1 24 < 1 24 < 1 24 < 1 24 < 1
SFJS2 43 < 1 43 < 1 64 < 1 43 < 1
SFJS3 106 < 1 106 < 1 130 < 1 106 < 1
SFJS4 179 < 1 179 < 1 179 < 1 179 < 1
SFJS5 73 < 1 73 < 1 73 < 1 73 < 1
SFJS6 160 < 1 160 < 1 197 < 1 197 < 1
SFJS7 247 < 1 247 < 1 247 < 1 247 < 1
SFJS8 146 < 1 146 < 1 162 < 1 152 < 1
SFJS9 80 < 1 80 < 1 117 < 1 97 < 1
SFJS10 238 < 1 238 < 1 384 < 1 260 < 1
MFJS1 285 4 285 2 378 < 1 345 < 1
MFJS2 273 2 273 < 1 290 < 1 283 < 1
MFJS3 160 2 160 < 1 246 < 1 246 < 1
MFJS4 202 269 60 269 39 332 < 1 269 < 1
MFJS5 165 223 60 192 223 69 337 < 1 248 < 1
MFJS6 170 215 60 193 215 67 300 < 1 283 < 1
MFJS7 215 607 60 223 560 63 880 < 1 880 < 1
MFJS8 150 567 60 154 544 62 712 < 1 712 < 1
MFJS9 165 624 60 167 570 61 790 < 1 954 < 1
MFJS10 180 803 60 192 773 62 1109 < 1 863 < 1

Hurink edata

abz5 400 990 60 149 856 60 1202 < 1 1069 < 1

96

B. Results B.7. APP — Multivalued Decision Diagrams

Table B.10.: DDO results for all APP datasets (continued).
Restricted Relaxed

w = 1 w = 5 w = 1 w = 5
Name UB LB t (s) UB LB t (s) UB LB t (s) UB LB t (s)
abz6 146 621 60 94 547 60 918 < 1 905 < 1
abz7 122 524 60 45 501 60 626 < 1 518 < 1
abz8 147 492 60 54 465 61 669 < 1 488 < 1
abz9 154 569 60 58 514 60 587 < 1 600 < 1
car1 551 3159 60 717 2933 61 3620 < 1 3982 < 1
car2 490 4070 60 520 3587 61 5243 < 1 4012 < 1
car3 537 3223 60 571 2930 61 3850 < 1 3184 < 1
car4 428 4051 60 440 3837 61 4928 < 1 4457 < 1
car5 876 3814 60 890 3570 61 5582 < 1 6148 < 1
car6 948 5353 60 973 4690 61 5489 < 1 5489 < 1
car7 915 3460 60 1040 3038 61 4409 < 1 3460 < 1
car8 1034 4597 60 1210 4378 61 6234 < 1 6167 < 1
la01 75 421 60 77 394 61 516 < 1 457 < 1
la02 95 351 60 95 326 62 485 < 1 416 < 1
la03 100 308 60 113 279 63 333 < 1 331 < 1
la04 75 375 60 78 341 62 449 < 1 435 < 1
la05 67 353 60 78 303 62 443 < 1 368 < 1
la06 76 499 60 73 473 61 564 < 1 539 < 1
la07 52 500 60 58 474 61 580 < 1 540 < 1
la08 53 529 60 57 454 61 546 < 1 513 < 1
la09 57 558 60 59 528 60 699 < 1 575 < 1
la10 67 543 60 74 500 60 739 < 1 640 < 1
la11 36 581 60 35 576 60 714 < 1 581 < 1
la12 26 651 60 29 612 61 722 < 1 710 < 1
la13 52 783 60 54 720 60 895 < 1 753 < 1
la14 32 662 60 36 639 60 727 < 1 753 < 1
la15 45 706 60 45 639 60 891 < 1 687 < 1
la16 86 669 60 61 605 60 916 < 1 696 < 1
la17 63 529 60 66 525 60 686 < 1 611 < 1
la18 118 676 60 120 617 60 779 < 1 660 < 1
la19 71 598 60 82 550 60 763 < 1 737 < 1
la20 122 793 60 77 695 60 937 < 1 889 < 1
la21 60 820 60 47 807 60 903 < 1 883 < 1
la22 43 533 60 35 547 60 821 < 1 805 < 1
la23 46 836 60 43 767 60 929 < 1 988 < 1
la24 66 784 60 53 688 60 983 < 1 814 < 1
la25 101 736 60 85 724 60 801 < 1 814 < 1
la26 66 967 60 50 890 60 1103 < 1 985 < 1
la27 79 1043 60 61 896 60 1335 < 1 1028 < 1
la28 49 870 60 35 884 60 1045 < 1 1008 < 1
la29 88 960 60 59 803 60 1045 < 1 963 < 1
la30 52 1124 60 44 917 60 1388 < 1 1236 < 1
la31 56 1420 60 30 1307 61 1440 < 1 1430 < 1

97

B. Results B.7. APP — Multivalued Decision Diagrams

Table B.10.: DDO results for all APP datasets (continued).
Restricted Relaxed

w = 1 w = 5 w = 1 w = 5
Name UB LB t (s) UB LB t (s) UB LB t (s) UB LB t (s)
la32 49 1599 60 30 1416 60 1646 < 1 1704 < 1
la33 47 1474 60 25 1402 61 1474 < 1 1653 < 1
la34 128 1398 60 51 1338 61 1483 < 1 1517 < 1
la35 41 1393 60 29 1389 60 1393 < 1 1473 < 1
la36 101 1001 60 82 872 60 1348 < 1 1032 < 1
la37 106 1039 60 71 966 60 1341 < 1 1064 < 1
la38 62 732 60 41 677 60 732 < 1 834 < 1
la39 69 962 60 53 881 60 1138 < 1 1031 < 1
la40 84 1035 60 47 965 60 1215 < 1 1085 < 1
mt06 19 34 60 27 34 71 43 < 1 39 < 1
mt10 76 661 60 78 553 60 721 < 1 665 < 1
mt20 24 707 60 30 664 60 812 < 1 744 < 1
orb1 83 631 60 94 617 60 676 < 1 731 < 1
orb2 58 737 60 63 713 60 924 < 1 814 < 1
orb3 50 663 60 50 656 60 791 < 1 821 < 1
orb4 96 541 60 80 522 61 783 < 1 617 < 1
orb5 87 675 60 75 559 60 787 < 1 697 < 1
orb6 97 677 60 75 647 60 868 < 1 847 < 1
orb7 28 289 60 27 252 60 307 < 1 304 < 1
orb8 66 713 60 71 665 60 799 < 1 760 < 1
orb9 63 740 60 57 732 60 841 < 1 786 < 1
orb10 73 712 60 75 650 60 850 < 1 774 < 1

Hurink rdata

abz5 338 672 60 175 640 60 868 < 1 761 < 1
abz6 121 626 60 67 572 60 794 < 1 781 < 1
abz7 128 412 60 44 403 61 459 < 1 451 < 1
abz8 121 434 60 31 451 61 532 < 1 465 < 1
abz9 123 390 60 41 375 60 424 < 1 425 < 1
car1 672 3254 60 485 3178 62 4038 < 1 3459 < 1
car2 302 3870 60 345 3548 61 4354 < 1 3994 < 1
car3 1100 2982 60 680 2769 61 3342 < 1 3101 < 1
car4 251 3973 60 333 3712 61 5119 < 1 4228 < 1
car5 558 3936 60 588 3740 61 4872 < 1 4429 < 1
car6 561 4391 60 625 3625 61 6048 < 1 5026 < 1
car7 785 2998 60 874 2985 61 4762 < 1 3622 < 1
car8 852 4291 60 777 3511 61 5717 < 1 5152 < 1
la01 77 396 60 83 364 62 522 < 1 460 < 1
la02 67 366 60 67 327 62 461 < 1 444 < 1
la03 41 326 60 42 292 61 411 < 1 359 < 1
la04 45 347 60 56 309 62 512 < 1 378 < 1
la05 52 394 60 54 362 62 505 < 1 443 < 1
la06 54 630 60 55 571 61 655 < 1 663 < 1

98

B. Results B.7. APP — Multivalued Decision Diagrams

Table B.10.: DDO results for all APP datasets (continued).
Restricted Relaxed

w = 1 w = 5 w = 1 w = 5
Name UB LB t (s) UB LB t (s) UB LB t (s) UB LB t (s)
la07 39 435 60 44 404 61 464 < 1 494 < 1
la08 27 541 60 27 509 60 664 < 1 580 < 1
la09 46 552 60 51 538 60 697 < 1 657 < 1
la10 48 554 60 51 515 61 736 < 1 654 < 1
la11 31 646 60 28 624 60 680 < 1 667 < 1
la12 22 571 60 22 542 60 721 < 1 674 < 1
la13 27 604 60 28 606 60 841 < 1 693 < 1
la14 25 697 60 25 647 60 932 < 1 715 < 1
la15 38 701 60 38 648 60 857 < 1 741 < 1
la16 133 595 60 109 572 60 751 < 1 636 < 1
la17 68 495 60 62 433 60 601 < 1 547 < 1
la18 53 492 60 49 483 60 697 < 1 565 < 1
la19 72 702 60 82 622 60 869 < 1 740 < 1
la20 59 587 60 55 548 60 659 < 1 605 < 1
la21 75 746 60 48 689 60 871 < 1 925 < 1
la22 53 688 60 38 642 60 804 < 1 765 < 1
la23 61 757 60 50 709 60 1011 < 1 925 < 1
la24 101 675 60 87 642 60 800 < 1 970 < 1
la25 47 757 60 22 687 60 880 < 1 896 < 1
la26 67 833 60 40 755 60 871 < 1 904 < 1
la27 40 880 60 29 882 61 1149 < 1 1105 < 1
la28 97 1019 60 79 953 61 1091 < 1 1147 < 1
la29 47 900 60 26 894 61 1057 < 1 1056 < 1
la30 129 962 60 75 865 60 1043 < 1 1065 < 1
la31 97 1153 60 42 1123 61 1359 < 1 1128 < 1
la32 43 1470 61 28 1327 61 1516 < 1 1479 < 1
la33 47 1395 60 27 1325 61 1420 < 1 1350 < 1
la34 52 1355 60 26 1205 63 1475 < 1 1301 < 1
la35 49 1238 60 26 1167 61 1418 < 1 1251 < 1
la36 93 764 60 63 802 60 1042 < 1 880 < 1
la37 140 879 60 108 873 61 987 < 1 1057 < 1
la38 67 821 60 38 775 60 970 < 1 798 < 1
la39 69 876 60 43 851 60 1066 < 1 923 < 1
la40 118 936 60 54 878 61 1053 < 1 1009 < 1
mt06 10 29 60 11 28 62 53 < 1 42 < 1
mt10 94 586 60 69 520 60 888 < 1 720 < 1
mt20 31 634 60 31 592 60 794 < 1 704 < 1
orb1 66 597 60 55 525 60 825 < 1 699 < 1
orb2 97 544 60 58 470 60 741 < 1 665 < 1
orb3 53 536 60 53 471 60 701 < 1 701 < 1
orb4 47 556 60 51 532 60 753 < 1 695 < 1
orb5 409 60 66 388 60 609 < 1 404 < 1
orb6 113 549 60 55 567 60 847 < 1 715 < 1

99

B. Results B.7. APP — Multivalued Decision Diagrams

Table B.10.: DDO results for all APP datasets (continued).
Restricted Relaxed

w = 1 w = 5 w = 1 w = 5
Name UB LB t (s) UB LB t (s) UB LB t (s) UB LB t (s)
orb7 38 290 60 25 256 60 344 < 1 292 < 1
orb8 129 568 60 75 519 60 673 < 1 663 < 1
orb9 115 501 60 114 477 60 728 < 1 669 < 1
orb10 101 622 60 113 488 60 786 < 1 702 < 1

Hurink vdata

abz5 313 596 61 132 596 60 628 < 1 677 < 1
abz6 236 592 60 148 600 60 667 < 1 755 < 1
abz7 144 446 61 38 368 61 537 < 1 368 < 1
abz8 126 376 62 33 421 63 511 < 1 511 < 1
abz9 159 478 61 62 472 65 494 < 1 549 < 1
car1 590 2745 60 514 2662 61 4587 < 1 2969 < 1
car2 239 3970 60 302 3598 61 4530 < 1 4507 < 1
car3 443 4133 60 359 3792 61 5267 < 1 4965 < 1
car4 321 4704 60 321 4518 61 5133 < 1 5126 < 1
car5 731 3661 60 720 3543 61 4557 < 1 4448 < 1
car6 392 3660 60 483 3703 61 4296 < 1 4246 < 1
car7 483 2883 60 565 2883 61 3588 < 1 3904 < 1
car8 1186 3837 60 1262 3837 61 4617 < 1 3976 < 1
la01 69 389 60 66 389 61 532 < 1 425 < 1
la02 87 371 60 81 325 61 454 < 1 413 < 1
la03 41 319 60 41 291 61 446 < 1 372 < 1
la04 22 315 60 19 300 61 391 < 1 372 < 1
la05 65 301 60 72 248 61 522 < 1 336 < 1
la06 52 470 60 49 434 61 513 < 1 511 < 1
la07 84 448 60 65 425 61 512 < 1 525 < 1
la08 34 421 60 35 375 61 551 < 1 469 < 1
la09 34 554 60 37 532 61 629 < 1 656 < 1
la10 96 524 60 51 490 61 615 < 1 516 < 1
la11 60 645 60 30 617 61 750 < 1 645 < 1
la12 26 571 60 26 563 60 741 < 1 717 < 1
la13 38 667 60 38 619 60 762 < 1 701 < 1
la14 25 732 60 20 660 60 874 < 1 707 < 1
la15 39 696 60 36 652 60 742 < 1 741 < 1
la16 148 523 61 108 503 60 679 < 1 555 < 1
la17 84 449 60 64 449 60 478 < 1 459 < 1
la18 142 478 60 62 449 61 614 < 1 543 < 1
la19 53 478 60 38 367 60 502 < 1 554 < 1
la20 48 517 60 23 502 61 780 < 1 569 < 1
la21 133 652 61 104 636 60 733 < 1 666 < 1
la22 55 598 60 37 557 61 661 < 1 732 < 1
la23 44 584 60 33 571 61 787 < 1 707 < 1
la24 48 594 60 23 609 61 783 < 1 835 < 1

100

B. Results B.7. APP — Multivalued Decision Diagrams

Table B.10.: DDO results for all APP datasets (continued).
Restricted Relaxed

w = 1 w = 5 w = 1 w = 5
Name UB LB t (s) UB LB t (s) UB LB t (s) UB LB t (s)
la25 98 584 60 62 590 61 739 < 1 763 < 1
la26 60 842 61 36 846 61 922 < 1 945 < 1
la27 121 909 60 48 935 61 1036 < 1 964 < 1
la28 60 1026 60 38 949 61 1135 < 1 1079 < 1
la29 44 800 60 33 803 60 1077 < 1 902 < 1
la30 57 1064 60 38 1007 61 1076 < 1 1056 < 1
la31 56 1321 61 1326 62 1371 < 1 1326 < 1
la32 1418 61 1486 63 1418 < 1 1486 < 1
la33 1345 61 1257 63 1345 < 1 1257 < 1
la34 1234 61 1304 63 1234 < 1 1304 < 1
la35 1279 61 1172 62 1279 < 1 1172 < 1
la36 171 764 61 105 797 62 1140 < 1 936 < 1
la37 71 813 61 39 771 64 813 < 1 839 < 1
la38 114 783 61 83 758 62 863 < 1 786 < 1
la39 100 654 69 58 682 62 883 < 1 710 < 1
la40 78 784 60 32 784 62 825 < 1 784 < 1
mt06 7 30 60 8 30 62 37 < 1 32 < 1
mt10 29 525 60 29 510 60 599 < 1 548 < 1
mt20 25 726 60 22 642 60 861 < 1 775 < 1
orb1 67 492 60 42 492 60 565 < 1 646 < 1
orb2 64 560 60 47 544 60 621 < 1 544 < 1
orb3 64 574 60 48 574 60 654 < 1 604 < 1
orb4 106 556 60 43 556 60 764 < 1 573 < 1
orb5 133 441 60 86 419 60 583 < 1 499 < 1
orb6 73 503 61 45 503 61 759 < 1 620 < 1
orb7 15 197 60 15 197 60 209 < 1 206 < 1
orb8 45 447 60 31 445 60 528 < 1 499 < 1
orb9 56 535 60 33 526 60 725 < 1 666 < 1
orb10 47 551 60 34 539 60 647 < 1 628 < 1

Kacem

1 8 2 8 1 9 < 1 8 < 1
2 2 9 61 2 8 71 10 < 1 10 < 1
3 2 4 60 2 3 67 5 < 1 5 < 1
4 3 9 60 2 9 67 11 < 1 9 < 1

101

Bibliography

L. R. Abreu and M. S. Nagano (2022). “A new hybridization of adaptive large neighborhood
search with constraint programming for open shop scheduling with sequence-dependent setup
times”. In: Computers & Industrial Engineering 168, p. 108128. doi: 10.1016/j.cie.2022.
108128.

A. Ali, H. Elaswad, and A. Jabuda (Apr. 2025). “Optimizing Job Shop Scheduling with
Alternative Routes: A Metaheuristic Approach”. In: African Journal of Advanced Pure and
Applied Sciences 4, pp. 146–151.

A. Azzouz, A. Chaabani, M. Ennigrou, and L. Ben Said (2020). “Handling Sequence-dependent
Setup Time Flexible Job Shop Problem with Learning and Deterioration Considerations
using Evolutionary Bi-level Optimization”. In: Applied Artificial Intelligence 34.6, pp. 433–
455. doi: 10.1080/08839514.2020.1723871.

A. Azzouz, M. Ennigrou, and L. Ben Said (2016). “Flexible Job-shop Scheduling Problem with
Sequence-dependent Setup Times using Genetic Algorithm”. In: International Conference
on Enterprise Information Systems. url: 10.5220/0005821900470053.

A. Azzouz, M. Ennigrou, and L. Ben Said (Jan. 2017). “A hybrid algorithm for flexible job-shop
scheduling problem with setup times”. In: International Journal of Production Management
and Engineering 5, p. 23. doi: 10.4995/ijpme.2017.6618.

J. W. Barnes and J. B. Chambers (1995). “Solving the job shop scheduling problem with tabu
search”. In: IIE Transactions 27.2, pp. 257–263. doi: 10.1080/07408179508936739.

D. Behnke andM. J. Geiger (Jan. 2012). Test Instances for the Flexible Job Shop Scheduling Prob-
lem with Work Centers. Arbeitspapier RR-12-01-01. Hamburg: Helmut-Schmidt-Universität,
Universität der Bundeswehr. url: https://d-nb.info/1023241773/34.

K. Ben Ali, H. Louati, and S. Bechikh (Aug. 2024). “A Self-learning Particle Swarm Optimiza-
tion Algorithm for Dynamic Job Shop Scheduling Problem with New Jobs Insertion”. In:
Singapore: Springer, pp. 70–84. doi: 10.1007/978-981-97-7181-3_6.

D. Bergman, A. A. Cire, W.-J. van Hoeve, and J. Hooker (Oct. 2016). Decision Diagrams for
Optimization. Cham: Springer. doi: 10.1007/978-3-319-42849-9.

J. Blazewicz, J. K. Lenstra, and A. H. G. Rinnooy Kan (1983). “Scheduling subject to resource
constraints: classification and complexity”. In: Discrete Applied Mathematics 5.1, pp. 11–24.
doi: 10.1016/0166-218X(83)90012-4.

F. Boutet and G. Motet (1998). “Use of constraints in Petri nets for modelling and solving
scheduling problems in preliminary system design”. In: SMC’98 Conference Proceedings.
1998 IEEE International Conference on Systems, Man, and Cybernetics. Vol. 1, pp. 576–581.
doi: 10.1109/ICSMC.1998.725474.

P. Brandimarte (Sept. 1993). “Routing and scheduling in a flexible job shop by tabu search”.
In: Annals of Operations Research 41, pp. 157–183. doi: 10.1007/BF02023073.

P. Brucker and R. Schlie (1991). “Job-shop scheduling with multi-purpose machines”. In: Com-
puting 45, pp. 369–375. url: https://api.semanticscholar.org/CorpusID:13262880.

R. E. Bryant (1986). “Graph-Based Algorithms for Boolean Function Manipulation”. In: IEEE
Transactions on Computers C-35.8, pp. 677–691. doi: 10.1109/TC.1986.1676819.

R. Čapek, P. Š̊ucha, and Z. Hanzálek (2012). “Production scheduling with alternative process
plans”. In: European Journal of Operational Research 217.2, pp. 300–311. doi: 10.1016/j.
ejor.2011.09.018.

102

https://doi.org/10.1016/j.cie.2022.108128
https://doi.org/10.1016/j.cie.2022.108128
https://doi.org/10.1080/08839514.2020.1723871
10.5220/0005821900470053
https://doi.org/10.4995/ijpme.2017.6618
https://doi.org/10.1080/07408179508936739
https://d-nb.info/1023241773/34
https://doi.org/10.1007/978-981-97-7181-3_6
https://doi.org/10.1007/978-3-319-42849-9
https://doi.org/10.1016/0166-218X(83)90012-4
https://doi.org/10.1109/ICSMC.1998.725474
https://doi.org/10.1007/BF02023073
https://api.semanticscholar.org/CorpusID:13262880
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1016/j.ejor.2011.09.018
https://doi.org/10.1016/j.ejor.2011.09.018

Bibliography Bibliography

R. Chen, B. Yang, S. Li, and S. Wang (2020). “A self-learning genetic algorithm based on
reinforcement learning for flexible job-shop scheduling problem”. In: Computers & Industrial
Engineering 149, p. 106778. doi: 10.1016/j.cie.2020.106778.

A. A. Cire and W.-J. van Hoeve (Jan. 2012). “MDD Propagation for Disjunctive Scheduling”.
In: Proceedings of the Twenty-Second International Conference on Automated Planning and
Scheduling, pp. 11–19.

V. Coppé, X. Gillard, and P. Schaus (Nov. 2024). “Decision Diagram-Based Branch-and-Bound
with Caching for Dominance and Suboptimality Detection”. In: INFORMS Journal on
Computing 36.6, pp. 1522–1542. doi: 10.1287/ijoc.2022.0340.

S. Dauzère-Pérès, J. Ding, L. Shen, and K. Tamssaouet (2024). “The flexible job shop scheduling
problem: A review”. In: European Journal of Operational Research 314.2, pp. 409–432. doi:
10.1016/j.ejor.2023.05.017.

S. Dauzère-Pérès and J. Paulli (1994). Solving the General Multiprocessor Job-shop Scheduling
Problem.

T.L. Dean and M.S. Boddy (1988). “An Analysis of Time-Dependent Planning”. In: AAAI.
Vol. 88, pp. 49–54.

P. Fattahi, M. Saidi-Mehrabad, and F. Jolai (July 2007). “Mathematical modeling and heuristic
approaches to flexible job shop scheduling problems”. In: Journal of Intelligent Manufac-
turing 18, pp. 331–342. doi: 10.1007/s10845-007-0026-8.

G. Fernández, M. Ángel, C. Vela, and R. Arias (June 2013). “An Efficient Memetic Algorithm
for the Flexible Job Shop with Setup Times”. In: ICAPS 2013 - Proceedings of the 23rd
International Conference on Automated Planning and Scheduling, pp. 91–99. doi: 10.1609/
icaps.v23i1.13542.

R. Fontaine, J. Dibangoye, and C. Solnon (2023). “Exact and anytime approach for solving the
time dependent traveling salesman problem with time windows”. In: European Journal of
Operational Research 311.3, pp. 833–844. doi: 10.1016/j.ejor.2023.06.001.

Z.L. Gan, S.M. Musa, and H.J. Yap (2023). “A Review of the High-Mix, Low-Volume Manufac-
turing Industry”. In: Applied Sciences 13.3. doi: 10.3390/app13031687.

M. R. Garey, D. S. Johnson, and R. Sethi (1976). “The Complexity of Flowshop and Jobshop
Scheduling”. In: Mathematics of Operations Research 1, pp. 117–129. url: https://www.
jstor.org/stable/3689278.

X. Gillard, P. Schaus, and V. Coppé (2020). “DDO, a generic and efficient framework for MDD-
based optimization”. In: IJCAI-20 - Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence. Available from https://github.com/xgillard/ddo,
Pages 5243–5245. doi: 10.24963/ijcai.2020/757.

R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan (1979). “Optimization
and Approximation in Deterministic Sequencing and Scheduling: a Survey”. In: Discrete
Optimization II. Vol. 5. Annals of Discrete Mathematics. Elsevier, pp. 287–326. doi:
10.1016/S0167-5060(08)70356-X.

P. Hart, N. Nilsson, and B. Raphael (1968). “A Formal Basis for the Heuristic Determination
of Minimum Cost Paths”. In: IEEE Transactions on Systems Science and Cybernetics 4.2,
pp. 100–107. doi: 10.1109/TSSC.1968.300136.

V. A. Hauder, A. Beham, S. Raggl, S. N. Parragh, and M. Affenzeller (2020). “Resource-
constrained multi-project scheduling with activity and time flexibility”. In: Computers &
Industrial Engineering 150, p. 106857. doi: 10.1016/j.cie.2020.106857.

V. Heinz, A. Novák, M. Vlk, and Z. Hanzálek (2022). “Constraint Programming and constructive
heuristics for parallel machine scheduling with sequence-dependent setups and common
servers”. In: Computers & Industrial Engineering 172, p. 108586. doi: 10.1016/j.cie.
2022.108586.

103

https://doi.org/10.1016/j.cie.2020.106778
https://doi.org/10.1287/ijoc.2022.0340
https://doi.org/10.1016/j.ejor.2023.05.017
https://doi.org/10.1007/s10845-007-0026-8
https://doi.org/10.1609/icaps.v23i1.13542
https://doi.org/10.1609/icaps.v23i1.13542
https://doi.org/10.1016/j.ejor.2023.06.001
https://doi.org/10.3390/app13031687
https://www.jstor.org/stable/3689278
https://www.jstor.org/stable/3689278
https://github.com/xgillard/ddo
https://doi.org/10.24963/ijcai.2020/757
https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1016/j.cie.2020.106857
https://doi.org/10.1016/j.cie.2022.108586
https://doi.org/10.1016/j.cie.2022.108586

Bibliography Bibliography

M. Horn, J. Maschler, G. R. Raidl, and E. Rönnberg (2021). “A*-based construction of decision
diagrams for a prize-collecting scheduling problem”. In: Computers & Operations Research
126, p. 105125. doi: 10.1016/j.cor.2020.105125.

J. Hurink, B. Jurisch, and M. Thole (Dec. 1994). “Tabu search for the job-shop scheduling
problem with multi-purpose machines”. In: OR Spektrum 15, pp. 205–215. doi: 10.1007/
BF01719451.

S. M. Johnson (1954). “Optimal two- and three-stage production schedules with setup times
included”. In: Naval Research Logistics Quarterly 1, pp. 61–68. url: https://api.
semanticscholar.org/CorpusID:62713652.

B. Jurish (Dec. 1992). “Scheduling jobs in shops with multi-purpose machines”. PhD thesis.
Osnabrück: Fachbereich Mathematik/Informatik, Universität Osnabrück.

I. Kacem, S. Hammadi, and P. Borne (2002). “Pareto-optimality approach for flexible job-
shop scheduling problems: hybridization of evolutionary algorithms and fuzzy logic”. In:
Mathematics and Computers in Simulation 60.3, pp. 245–276. doi: 10.1016/S0378-
4754(02)00019-8.

T. Kis (2003). “Job-shop scheduling with processing alternatives”. In: European Journal of
Operational Research 151.2, pp. 307–332. doi: 10.1016/S0377-2217(02)00828-7.

D. Kowalczyk and R. Leus (Dec. 2018). “A branch-and-price algorithm for parallel machine
scheduling using ZDDs and generic branching”. In: INFORMS Journal on Computing.
Vol. 30, pp. 768–782. doi: 10.1287/ijoc.2018.0809.

A. Kusiak and G. Finke (1988). “Selection of process plans in automated manufacturing systems”.
In: IEEE Journal on Robotics and Automation 4.4, pp. 397–402. doi: 10.1109/56.803.

P. Laborie (2018). “An Update on the Comparison of MIP, CP and Hybrid Approaches for Mixed
Resource Allocation and Scheduling”. In: Integration of Constraint Programming, Artificial
Intelligence, and Operations Research. Springer International Publishing, pp. 403–411. isbn:
978-3-319-93031-2.

L. Lan and J. Berkhout (2025). PyJobShop: Solving scheduling problems with constraint pro-
gramming in Python. arXiv: 2502.13483. url: https://arxiv.org/abs/2502.13483.

K. Lei, P. Guo, W. Zhao, Y. Wang, L. Qian, X. Meng, and L. Tang (2022). “A multi-action
deep reinforcement learning framework for flexible Job-shop scheduling problem”. In: Expert
Systems with Applications 205, p. 117796. doi: 10.1016/j.eswa.2022.117796.

H. Li, Y. Zheng, B. Sun, and B. Du (2024). “A Job Sequence Optimization Approach for Parallel
Machine Scheduling Problem in Printing Manufacturing Systems”. In: IEEE Access 12,
pp. 63462–63476. doi: 10.1109/ACCESS.2024.3396455.

X. Li and L. Gao (2016). “An effective hybrid genetic algorithm and tabu search for flexible
job shop scheduling problem”. In: International Journal of Production Economics 174,
pp. 93–110. doi: 10.1016/j.ijpe.2016.01.016.

Chi-Shiuan Lin, Pei-Yi Li, Jun-Min Wei, and Muh-Cherng Wu (2020). “Integration of process
planning and scheduling for distributed flexible job shops”. In: Computers & Operations
Research 124, p. 105053. doi: https://doi.org/10.1016/j.cor.2020.105053.

W. T. Lunardi, E. G. Birgin, P. Laborie, D. P. Ronconi, and H. Voos (2020). “Mixed Integer linear
programming and constraint programming models for the online printing shop scheduling
problem”. In: Computers & Operations Research 123, p. 105020. doi: https://doi.org/
10.1016/j.cor.2020.105020.

K. Matsumoto, K. Hatano, and E. Takimoto (2018). “Decision Diagrams for Solving a Job
Scheduling Problem Under Precedence Constraints”. In: 17th International Symposium
on Experimental Algorithms (SEA 2018). Vol. 103. Leibniz International Proceedings in
Informatics (LIPIcs). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, pp. 1–12. doi:
10.4230/LIPIcs.SEA.2018.5.

104

https://doi.org/10.1016/j.cor.2020.105125
https://doi.org/10.1007/BF01719451
https://doi.org/10.1007/BF01719451
https://api.semanticscholar.org/CorpusID:62713652
https://api.semanticscholar.org/CorpusID:62713652
https://doi.org/10.1016/S0378-4754(02)00019-8
https://doi.org/10.1016/S0378-4754(02)00019-8
https://doi.org/10.1016/S0377-2217(02)00828-7
https://doi.org/10.1287/ijoc.2018.0809
https://doi.org/10.1109/56.803
https://arxiv.org/abs/2502.13483
https://arxiv.org/abs/2502.13483
https://doi.org/10.1016/j.eswa.2022.117796
https://doi.org/10.1109/ACCESS.2024.3396455
https://doi.org/10.1016/j.ijpe.2016.01.016
https://doi.org/https://doi.org/10.1016/j.cor.2020.105053
https://doi.org/https://doi.org/10.1016/j.cor.2020.105020
https://doi.org/https://doi.org/10.1016/j.cor.2020.105020
https://doi.org/10.4230/LIPIcs.SEA.2018.5

Bibliography Bibliography

B. Naderi and V. Roshanaei (Aug. 2021). “Critical-Path-Search Logic-Based Benders Decomposi-
tion Approaches for Flexible Job Shop Scheduling”. In: INFORMS Journal on Optimization
4. doi: 10.1287/ijoo.2021.0056.

B. Naderi, R. Ruiz, and V. Roshanaei (2023). “Mixed-Integer Programming vs. Constraint
Programming for Shop Scheduling Problems: New Results and Outlook”. In: INFORMS
Journal on Computing 35.4, pp. 817–843. doi: 10.1287/ijoc.2023.1287.

N. M. Najid, S. Dauzère-Pérès, and A. Zaidat (2002). “A modified simulated annealing method
for flexible job shop scheduling problem”. In: IEEE International Conference on Systems,
Man and Cybernetics. Vol. 5, p. 6. doi: 10.1109/ICSMC.2002.1176334.

A. Oddi, R. Rasconi, A. Cesta, and S. Smith (Jan. 2011). “Applying iterative flattening search
to the job shop scheduling problem with alternative resources and sequence dependent
setup times”. In: COPLAS 2011 - Proceedings of the Workshop on Constraint Satisfaction
Techniques for Planning and Scheduling Problems, pp. 15–22. doi: 10.5555/2283696.
2283733.

C. Özgüven, Y. Yavuz, and L. Özbakır (2012). “Mixed integer goal programming models for the
flexible job-shop scheduling problems with separable and non-separable sequence dependent
setup times”. In: Applied Mathematical Modelling 36.2, pp. 846–858. doi: 10.1016/j.apm.
2011.07.037.

M. Pinedo (Jan. 2022). Scheduling: Theory, Algorithms, and Systems. Cham: Springer. doi:
10.1007/978-3-031-05921-6.

R. Čapek, P. Š̊ucha, and Z. Hanzálek (2015). “Scheduling of Production with Alternative Process
Plans”. In: Handbook on Project Management and Scheduling Vol. 2. Springer International
Publishing, pp. 1187–1204. doi: 10.1007/978-3-319-05915-0_23.

R. Reijnen, I. G. Smit, H. Zhang, Y. Wu, Z. Bukhsh, and Y. Zhang (2025). Job Shop Scheduling
Benchmark: Environments and Instances for Learning and Non-learning Methods. arXiv:
2308.12794 [cs.AI]. url: https://arxiv.org/abs/2308.12794.

P. Richard, N. Jacquet, C. Cavalier, and C. Proust (Nov. 1995). “Solving scheduling problems
using Petri nets and constraint logic programming”. In: Emerging Technologies and Factory
Automation, 1995. ETFA ’95, Proceedings., 1995 INRIA/IEEE Symposium. Vol. 1, pp. 59–
67. doi: 10.1109/ETFA.1995.496763.

A. Rossi (2014). “Flexible job shop scheduling with sequence-dependent setup and transportation
times by ant colony with reinforced pheromone relationships”. In: International Journal of
Production Economics 153, pp. 253–267. doi: 10.1016/j.ijpe.2014.03.006.

T. Servranckx, J. Coelho, and M. Vanhoucke (2024). “A genetic algorithm for the Resource-
Constrained Project Scheduling Problem with Alternative Subgraphs using a boolean sat-
isfiability solver”. In: European Journal of Operational Research 316.3, pp. 815–827. doi:
10.1016/j.ejor.2024.02.041.

L. Shen, S. Dauzère-Pérès, and J. S. Neufeld (2018). “Solving the flexible job shop schedul-
ing problem with sequence-dependent setup times”. In: European Journal of Operational
Research 265.2, pp. 503–516. doi: 10.1016/j.ejor.2017.08.021.

R. L. Sisson (1959). “Methods of Sequencing in Job Shops - A Review”. In: Operations Research
7.1, pp. 10–29. issn: 0030364X, 15265463. url: http://www.jstor.org/stable/167590
(visited on 01/14/2025).

S. Tao and Z. S. Dong (2017). “Scheduling resource-constrained project problem with alternative
activity chains”. In: Computers & Industrial Engineering 114, pp. 288–296. doi: 10.1016/
j.cie.2017.10.027.

S. Tao and Z. S. Dong (2018). “Multi-mode resource-constrained project scheduling problem with
alternative project structures”. In: Computers & Industrial Engineering 125, pp. 333–347.
doi: 10.1016/j.cie.2018.08.027.

105

https://doi.org/10.1287/ijoo.2021.0056
https://doi.org/10.1287/ijoc.2023.1287
https://doi.org/10.1109/ICSMC.2002.1176334
https://doi.org/10.5555/2283696.2283733
https://doi.org/10.5555/2283696.2283733
https://doi.org/10.1016/j.apm.2011.07.037
https://doi.org/10.1016/j.apm.2011.07.037
https://doi.org/10.1007/978-3-031-05921-6
https://doi.org/10.1007/978-3-319-05915-0_23
https://arxiv.org/abs/2308.12794
https://arxiv.org/abs/2308.12794
https://doi.org/10.1109/ETFA.1995.496763
https://doi.org/10.1016/j.ijpe.2014.03.006
https://doi.org/10.1016/j.ejor.2024.02.041
https://doi.org/10.1016/j.ejor.2017.08.021
http://www.jstor.org/stable/167590
https://doi.org/10.1016/j.cie.2017.10.027
https://doi.org/10.1016/j.cie.2017.10.027
https://doi.org/10.1016/j.cie.2018.08.027

Bibliography Bibliography

M. E. Tayebi-Araghi, F. Jolai, and M. Rabiee (2014). “Incorporating learning effect and deterio-
ration for solving a SDST flexible job-shop scheduling problem with a hybrid meta-heuristic
approach”. In: International Journal of Computer Integrated Manufacturing 27.8, pp. 733–
746. doi: 10.1080/0951192X.2013.834465. eprint: https://doi.org/10.1080/
0951192X.2013.834465.

P. van den Bogaerdt (2018). “Multi-machine scheduling lower bounds using decision diagrams”.
MA thesis. Delft University of Technology, Department of Software Technology. url: https:
//repository.tudelft.nl/file/File_8ac51167-90e9-411d-9663-b6c18dc3d7f9.

P. van den Bogaerdt and M. de Weerdt (2019). “Lower Bounds for Uniform Machine Scheduling
Using Decision Diagrams”. In: Integration of Constraint Programming, Artificial Intelligence,
and Operations Research. Vol. 11494. Lecture Notes in Computer Science. Springer, pp. 565–
580. doi: 10.1007/978-3-030-19212-9_38.

W.-J. van Hoeve (Oct. 2024). “An Introduction to Decision Diagrams for Optimization”.
In: Tutorials in Operations Research: Smarter Decisions for a Better World. INFORMS.
Chap. 4, pp. 117–145. doi: 10.1287/educ.2024.0276.

L. Wan, L. Fu, C. Li, and K. Li (2024). “Flexible job shop scheduling via deep reinforcement
learning with meta-path-based heterogeneous graph neural network”. In: Knowledge-Based
Systems 296, p. 111940. doi: 10.1016/j.knosys.2024.111940.

H. Xiong, S. Shi, D. Ren, and J. Hu (2022). “A survey of job shop scheduling problem: The
types and models”. In: Computers & Operations Research 142, p. 105731. doi: 10.1016/j.
cor.2022.105731.

106

https://doi.org/10.1080/0951192X.2013.834465
https://doi.org/10.1080/0951192X.2013.834465
https://doi.org/10.1080/0951192X.2013.834465
https://repository.tudelft.nl/file/File_8ac51167-90e9-411d-9663-b6c18dc3d7f9
https://repository.tudelft.nl/file/File_8ac51167-90e9-411d-9663-b6c18dc3d7f9
https://doi.org/10.1007/978-3-030-19212-9_38
https://doi.org/10.1287/educ.2024.0276
https://doi.org/10.1016/j.knosys.2024.111940
https://doi.org/10.1016/j.cor.2022.105731
https://doi.org/10.1016/j.cor.2022.105731

	Introduction
	Motivation
	Orders: the customer viewpoint
	The production floor: the shop viewpoint
	Processing orders: the operator viewpoint
	The production schedule
	Goal
	Example instance
	Contribution
	Outline

	Literature review
	History
	Three-field notation
	Flexible Job Shop
	Modelling
	Sequence-dependent Setup Times
	Alternative Process Plans

	Problem description
	Notation
	Description

	Constraint Programming
	Background
	Notation
	Flexible Job Shop model
	Sequence-Dependent Setup Times
	Blocking tasks
	Alternative Process Plans
	Warmstart
	Summary

	Multivalued Decision Diagrams
	Background
	Structure and functions
	MDDs for Scheduling
	Framework
	Flexible Job Shop model
	Restricting the FJS model
	Relaxing the FJS model
	Relaxation in DDO
	Sequence-Dependent Setup Times
	Blocking tasks
	Alternative Process Plans
	Warmstart
	Summary

	Computational results
	Benchmark instances
	FJSP
	SDST
	Blocking
	APP

	Constraint Programming
	Progression of bounds
	Summary

	Multivalued Decision Diagrams
	FJSP
	SDST
	Blocking
	APP
	Summary

	Combining MDD and CP

	Discussion
	Constraint Programming
	Multivalued Decision Diagrams
	MDD + CP
	Conclusion
	Future work

	CP model for OR-Tools
	Flexible Job Shop model
	Sequence-Dependent Setup Times
	Alternative Process Plans

	Results
	FJSP | Constraint Programming
	SDST | Constraint Programming
	Blocking & APP | Constraint Programming
	FJSP | Multivalued Decision Diagrams
	SDST | Multivalued Decision Diagrams
	Blocking | Multivalued Decision Diagrams
	APP | Multivalued Decision Diagrams

	Bibliography

