m innovation
for life

Production Line
Performance
Optimisation

TNO Public ) TNO 2025 R11609
August 2025



) TNO Public mo inno_vation
for life

ICT, Strategy & Policy
www.tno.nl

+31 88 866 50 00
info@tno.nl

TNO 2025 R11609 - August 2025
Production Line Performance

Optimisation

Author(s) Jacques Verriet
Classification report TNO Public

Title TNO Public

Report text TNO Public
Appendices TNO Public
Number of pages 38 (excl. front and back cover)
Number of appendices 1

Programme name AIMS

Project name AIMS 2024

Project number 060.59493/01.01

) TNO Public



) TNO Public ) TNO 2025 R11609

All rights reserved

No part of this publication may be reproduced and/or published by print, photoprint,
microfilm or any other means without the previous written consent of TNO.

The research is carried out as part of the AIMS program under the responsibility of TNO-ESI in
cooperation with Canon Production Printing. The research activities are co-funded by Holland
High Tech | TKI HSTM via the PPP Innovation Scheme (PPP-I) for public-private partnerships.

© 2025 TNO

) TNO Public



) TNO Public ) TNO 2025 R11609

Contents

ADSTIACT ...ttt Rt e R £ Rt R £t R Rt E et R ettt ettt r et 4
1 INEFOAUCTION ... 5
1.1 RESEAICIN QUESTIONS .....vviiiii bbbttt en 5
12 CONTIBULION L.t bbbt 6
13 OULIINE .o b bbb bbb 6
2 DOMAIN MOUEL.....oee ettt 7
2.1 RUNNING EXAIMIPIE ...ttt ettt bbb e e ettt s e e s 8
2.2 MALETTAL TANGUAGE. ... ettt bbbttt 9
23 EQUIPMENT JANGQUAGE .....oocvviitiiiei sttt bbb 11
24 JOD TANQUAGE ... bbbkttt 13
25 AlIOCALION TANQUAGE ...t bbbt h bbbt bbbttt 15
3 Performance @NAIYSIS ...ttt es 17
31 CONSEIAINT GIAPNS ..o b bbb bbbttt 17
3.2 CONSLraiNt Graph @NAIYSIS ..ottt 20
4 Performance OPLIMISATION ... 23
4.1 (00T 1S3 1 =Tl o] oo iz o o T 23
4.2 PAN [ CoTor=uTo] g 1o ) 4] g1 ST 1] o ISP 30
5 CONCIUSION ... 32
RETEIEINCES. ...ttt bbb bbb bbb bbb bbbttt 33
APPENAIX A ettt R Rt E R R Rt R R Rt R et R e R et e R e r et e rer et enenn 34
] o F= 1T 18 (o To 1= S SRSRSPST 34

) TNO Public

3/38



) TNO Public ) TNO 2025 R11609

Abstract

To assess the practical performance of a system, one needs to consider the system in its
operating environment. This report presents an approach for analysing and optimising the
performance of High-Mix Low-Volume (HMLV) automated production lines. The approach
comprises three methods: (1) a method to specify a production line’s equipment, workload
and allocation, (2) a method based on constraint graphs to compute the latency of a
specified allocation, and (3) a method based on constraint programming to find the optimal
allocation of a production line’s workload on its equipment. Experiment results show that
allocation analysis is feasible for large instances, but that allocation optimisation lacks
scalability, i.e. it is only feasible for small instances. The report suggests alternative methods
to improve this allocation optimisation scalability.

) TNO Public 4/38



) TNO Public ) TNO 2025 R11609

1

1.1

Introduction

Traditionally, the high-tech equipment industry is optimising the performance of the
equipment they are developing. However, the actual performance of the equipment
depends on the systems-of-systems context in which it operates. In the context of high-tech
equipment, these systems of systems often involve manufacturing systems with equipment
from various suppliers.

The AIMS program is a collaboration of TNO-ESI and Canon Production Printing to address
analysing and optimising the (timing) performance of manufacturing system of systems.
This report considers a specific type of manufacturing systems, namely automated
production lines. We defined a production line as a composition of multiple systems that are
coupled mechanically, i.e. material handling and transports do not involve human operators.

The AIMS program is particularly studying production systems with a highly variable
workload. Such systems are called High-Mix Low-Volume (HMLV) production systems, as
they produce a high variety of products in small series.

Research questions

The AIMS 2024 project addresses three research questions:

e RQ1. What is an appropriate way to describe a HMLV production line’s equipment, its
workload, and the allocation of this workload onto the line’s equipment?

e RQ2.How can the latency of a specific allocation of a HMLV production line’s workload
onto its equipment be computed in an fast and accurate manner?

¢ RQ3. How can a (near-)optimum allocation of a HMLV production line’s workload into its
equipment be found (in reasonable time)?

Research questions RQ1 and RQ2 have partially been answered in the AIMS 2023 project. In
AIMS 2023, a domain model was developed to describe a (HMLV) production line’s
equipment and workload and the allocation of the workload on the equipment. This domain
model allows fast and accurate analysis of the timing of the specified allocation [1].

Unfortunately, the AIMS 2023 domain model [1] has several limitations with respect to

addressing research questions RQ1 and RQ2:

1. The AIMS 2023 domain model does not support inline assembly and disassembly
operations. For instance, one cannot describe inline cutting of material.

2. The job specifications of the AIMS 2023 domain model are quite long, because one needs
to specify the operations of every individual piece of material.

With respect to RQ3, the AIMS 2023 domain model [1] does not provide any support; it can
only be used for manual optimisation. Because the domain model does not include
dependencies between job parts, the domain model’s user is responsible for guaranteeing
the feasibility of allocations of a job onto the available equipment.

) TNO Public 5/38



) TNO Public ) TNO 2025 R11609

1.2

1.3

Contribution

This report presents an update of the AIMS 2023 domain model, which addresses the
mentioned limitations with respect to RQ1 and RQ2 and supports performance optimisation,
i.e. provides a solution for RQ3.

Compared to the AIMS 2023 domain model, the AIMS 2024 domain model has the following

improvements:

1. It has concepts for (inline) assembly and disassembly operations.

2. It has concepts to express the sequence dependencies of parts of jobs.

3. It allows shorter job specifications.

4. It supports automatic identification of the optimum allocation of a job set onto available
optimisation.

A fifth contribution involves a visual tool to address research questions RQ1 and RQ2. PLOT
(Production Line Optimization Tool) [2] has been developed to provide a graphical frontend
for the textual domain model developed in AIMS 2024. Besides a graphical representation of
the domain model, it also provides a frontend for the corresponding performance analysis.

Outline

The updated domain model is described in Chapter 2, which shows both its textual syntaxes
in Xtext and the corresponding visual representations in PLOT. Chapter 3 explains how the
domain model can be used to analyse specific allocations of a job set onto available
equipment; this includes the graphical visualisation using PLOT. Chapter 4 does the same for
identifying the optimum allocation, but it lacks graphical support. The report’s summary and
conclusions can be found in Chapter 5. Appendix A presents the syntax of the domain
model’s languages.

) TNO Public 6/38



) TNO Public ) TNO 2025 R11609

2 Domain model

This chapter describes the AIMS 2024 domain model. The domain model consists of four
languages (see Figure 2.1):

1.

2.

w

The material language describes a production line’s materials and the operations that
can be performed on these materials.

The equipment language describes the production line’s modules and their connections.
The modules’ descriptions include the time they need to prepare for operations and to
execute operations.

The job language describes the work that a production line needs to perform.

The allocation language describes how the work is performed by the production line. This
involves sequences of operations assigned to the production line’s modules.

Figure 2.1 shows the two main analyses supported by the domain model.

1.

Single allocation analysis: The left path from the allocation model involves the analysis of
a fully specified allocation using constraint graphs. This, typically very fast, single
allocation analysis is explained in Chapter 3.

Allocation optimisation. The right path from the allocation model corresponds to
automatically finding the optimum allocation of a job set onto a production line’s
modules using constraint programming. This, typically lengthy, allocation optimisation is
explained in Chapter 4.

Both analyses lead, if given sufficient time, to a schedule describing the execution of a
production line’s jobs on its equipment modules.

) TNO Public

7/38



) TNO Public ) TNO 2025 R11609

Material model

Job model Equipment model

Allocation model

Constraint Constraint
graph gen rogram gen

Constraint graph Constraint program

Constraint Constraint
scheduler solver

Schedule

Figure 2.1: Production line optimisation context

Most elements in Figure 2.1 come with both a textual and a graphical representation. The
(textual) languages have been defined using Xtext [3] and have a visual representation in
PLOT [2]. The detailed syntax of the languages can be found in Appendix A. The analyses
involve transformations defined using Xtend [4]; they can be run from the Eclipse IDE. PLOT
[2] provides a graphical frontend for the single allocation analysis: it allows performing the
analysis and visualising the analysis results.

2.1 Running example

We will describe domain model’s languages using a running example, which involves a
fictitious cake bakery and decoration system. The corresponding production line consists of
seven modules (see Figure 2.2):

An oven which produces batches of cakes.

An /input bufferin which baked cakes are stored.

A slicerin which a cake in sliced into a top and bottom half.

A top decoratorwhere a cake’s top half gets decorated.

A bottom decorator where a cake’s bottom half gets decorated.

An assembler where decorated tops and bottoms are reassembled into a cake.

An output buffer where decorated cakes are stored.

Nous~wdhpE

) TNO Public 8/38



) TNO Public ) TNO 2025 R11609

2.2

Top
Decorator
® o P ./'.—>0
Input Output
Oven Buffer Slicer Bottom Assembler Buffer
Decorator

Figure 2.2: Cake decoration running example

For the running example, we will use a cake decoration scenario. The scenario assumes that
a batch of cakes have already been baked and these need to be decorated before they get
shipped. Decorating a cake involves cutting it into a top and a bottom slice, which are
decorated separately. After the slices have been decorated, the decorated slices are
combined to obtain a decorated cake, which can be shipped to a customer. As shown in
Figure 2.1, four elements are needed to describe a scenario. Sections 2.2, 2.3, 2.4, and 2.5
describe these four elements for the cake decoration scenario.

Material language

Material models consist of three elements, which are specified in a single file with a
.machine extension: material types, material instances, and operations. The material
language distinguishes basic material types and composite material types. The latter consist
of other material types.

The material types of the running example only involve basic materials: cakes and slices. The
syntax in Appendix A shows how composite materials can be defined. The running
example’s material types are defined using the following (textual) specification:

basic material type Cake

basic material type Slice

The bold words basic, material and type represent the language’s (generic) keywords. The
normal text Cake and S1lice, corresponds to the (specific) parameter of the running
example.

Material types describe a class of material instances, which are identical with respect to
some characteristics, but different with respect to others. In the running example, we
consider cakes (and slices) of three sizes. The following specification describes them.

basic material Cake20 type Cake
basic material Cake24 type Cake
basic material Cake28 type Cake

The different slices sizes are defined similarly. Optionally, one can specify the dimensions
and weight of the material instances, but these are not used for the analyses explained in
this report.

) TNO Public 9/38




) TNO Public ) TNO 2025 R11609

The operations in the material language are defined based on the material types that they

take as input and the material types they produce as output. We distinguish types of

operations based on their number of inputs and outputs;

1. Storage operations store material in a buffer. They have one input and no outputs.

2. Retrieval operations retrieve material from a buffer. They have no inputs and one output.

3. Assembly operations combine multiple materials into one. They have at least two inputs
and one output.

4. Disassembly operations decompose one material into multiple. They have one input and
multiple outputs.

5. Normal operations transform one material. They have one input and one output.

The following specification shows how the running example’s operations are defined in the
material language.

retrieval operation RetrieveCake
input
output Cake

disassembly operation SliceCake
input Cake
output Slice, Slice

normal operation DecorateSlice
input Slice
output Slice

assembly operation AssembleCake
input Slice, Slice
output Cake

storage operation StoreCake
input Cake
output

Besides the textual representation using Xtext In the graphical editor PLOT (Production Line
Optimization Tool) [2], the material model is visualised as shown in Figure 2.3. The top part
shows the operations, the bottom part the materials.

) TNO Public 10/38



) TNO Public ) TNO 2025 R11609

2.3

) TNO Public

Ho Edit Madel

-
I I 8 1
cad s e Sy caq
N .
Reirigye lici Dg?:joﬁte A;%’e?#ﬂe tor
/ b N N N
PN
Cak : ¢ P N sm: c;m:
‘ N
v X » v v
Material Types A
Name Type Composed Of Actions
Cake basic m

Figure 2.3: Material model in PLOT

Equipment language
The equipment language can be used to specify available equipment modules and their

connections. The equipment is described as a directed graph, in which the nodes correspond
to the equipment modules and the arcs to the (mechanical) connections between them.

Per module, one needs to specify the duration of its supported operations and the

(sequence-dependent) setup times between its operations. The equipment language

distinguishes four types of modules/nodes:

1. /nput nodes correspond to points where material enters a production line.

2. Output nodes correspond to points where material leaves a production line.

3. Buffer nodes are locations where multiple pieces of material can be stored.

4. QOperation nodes are locations where operations are performed and only the materials of
the operation being performed can be stored.

The following specification describes two of the modules of the running example in the

equipment language. Materials arrive at a node’s inputs and leaves via its outputs; the
operations perform the transformation from input material(s) to output material(s).

11/38



) TNO Public ) TNO 2025 R11609

buffer node A_Input
output out type Cake
operation Retrieve
output Cake20 duration 20 s
after Retrieve output Cake20
after Retrieve output Cake24
after Retrieve output Cake28
output Cake24 duration 24 s
after Retrieve output Cake20
after Retrieve output Cake24
after Retrieve output Cake28
output Cake28 duration 28 s
after Retrieve output Cake20
after Retrieve output Cake24
after Retrieve output Cake28

operation node B_Slicer
input in type Cake
output top type Slice
output bottom type Slice
operation Slice

setup
setup
setup

setup
setup
setup

setup
setup
setup

10
10
10

10
10
10

10
10
10

input Cake20 output
after Slice input
after Slice input
after Slice input
input Cake24 output
after Slice input
after Slice input
after Slice input
input Cake28 output
after Slice input
after Slice input
after Slice input

Slice20, Slice20 duration 30 s
Cake20 output Slice20, Slice20
Cake24 output Slice24, Slice24
Cake28 output Slice28, Slice28
Slice24, Slice24 duration 34 s
Cake20 output Slice20, Slice20
Cake24 output Slice24, Slice24
Cake28 output Slice28, Slice28
Slice28, Slice28 duration 38 s
Cake20 output Slice20, Slice20
Cake24 output Slice24, Slice24
Cake28 output Slice28, Slice28

setup
setup
setup

setup
setup
setup

setup
setup
setup

5s
60 s
60 s

60 s
5s
60 s

60 s
60 s
5s

The specification of an equipment node involves two types of durations: operation durations
and setup times. Operation durations depend on the material being handled. The example
above shows that the time of slice a cake depends on its size: slicing the smallest cake takes
30 seconds and slicing the largest takes 38 seconds. Setup timesrepresent time that an
equipment node to prepare for the next material. They depend on the equipment node’s
previous operation and the corresponding materials handled. In the running example, 5
seconds of setup is needed if the next operation involves the cake size, but 60 seconds of
setup is needed if the cake size changes.

Per segment, one needs to specify the nodes that it connects and the travel time between

these nodes. Below is a specification of one segment of the running example in the

equipment language.

segment InputSlicer type Cake
source node A _Input output out
target node B_Slicer input in
duration 10 s

) TNO Public

12/38




) TNO Public ) TNO 2025 R11609

2.4

Segments may have multiple sources and/or multiple targets. Such nodes are called
switches, which may require time to change source or target node. The running example
does not include switches.

The corresponding graphical visualisation in PLOT is shown in Figure 2.4. Note that the
visualisation in PLOT is similar to the one shown in Figure 2.2. The black circles in Figure 2.4
allow visualisation of switches: they may have multiple incoming and multiple outgoing
arcs.

Fo Edit Medel

C. f.-

Figure 2.4: Equipment model in PLOT

A part of the equipment model, which is not shown in the running example, is the initial
state of the equipment. This state is used to specify a starting point for timing analysis. It
consists of the initial position of the switches and the operations that have completed and
the time at which these were completed. This is used to keep the performance analysis
described in Chapter 3 scalable.

Job language

The domain model’s job language specifies the batch of work that is to be done. A batch
consists of products consisting of parts. The job language specifies the recipe that leads to
the production of the product parts. The following specification specifies the recipes needed
to decorate one cake in the running example.

) TNO Public 13/38



) TNO Public ) TNO 2025 R11609

product cakel
parts
part preslice consisting of 1 Cake20
operations Retrieve, Slice

part top consisting of 1 Slice20
operations Decorate

part bottom consisting of 1 Slice20
operations Decorate

part assemble consisting of 1 Cake20
operations Assemble, Store

One may need many parts to produce a product. To keep short job specifications, identical
parts requiring the same recipe can be grouped. This is indicated by the multiplicity of the
parts.

Except for the part recipes, the job specification also specifies the precedence dependencies

between these recipes. To not overcomplicate the job language, part recipes are sequences

of operation. Using the part dependencies, one can create more complex recipes. There are
five types of recipe precedence constraints:

1. Assembly dependencies specify the dependency of inline assembly of multiple parts into
one part.

2. Disassembly dependencies specify the dependency of inline disassembly of one part into
multiple parts.

3. Storage-retrieval dependencies specify the dependencies between storing parts in a
buffer and retrieving them later.

4. Strict sequence dependencies specify logical sequence of part execution with strict timing
constraints, e.g. the time between the end of the source part and the start of the target
part is fixed by the transportation times between the corresponding equipment nodes.

5. Loose sequence dependencies specify logical sequence of part execution with loose
timing constraints, e.g. the time between the end of the source part and the start of the
target part is unbounded.

As products can be produced independently of each other, dependencies between (parts of)
different products are not supported by the job language. The following specification
illustrates the dependencies between the cake decoration recipes.

part dependencies

disassembly preslice -> top, bottom

assembly top, bottom -> assemble

The corresponding visualisation in PLOT is shown in Figure 2.5. For two cakes, it shows the
parts, i.e. the grey boxes with sequences of operations, and the sequence dependencies, i.e.
the arcs, between these parts. The types of dependency are not shown explicitly.

) TNO Public 14/38



) TNO Public ) TNO 2025 R11609

cakel cakel
fop assemble
1x Slice20 1x Cake20

@ :

cake2 \
I — cake2

cake2 1 Slice24 accembl
1x Cake24

preslice
Tx Cake2a

cake2
boftom
@ T Slice2d

o
S >
] e
EE >

Figure 2.5: Job model in PLOT

2.5 Allocation language

The allocation language specifies which equipment that is used to execute a job’s recipe and
the sequence in which the recipes are to be executed. The following specification illustrates
the allocation of the decoration recipes of a single cake.

product cakel
part preslice

A_Input: Retrieve

B_Slicer: Slice
part top

C_TopDecorator: Decorate

part bottom
D_BottomDecorator: Decorate

part assemble
E_Assembler: Assemble
F_Output: Store

The corresponding allocation model in PLOT is shown in Figure 2.6. It (partially) shows the
allocation of two cake decorations. Just as in the textual representation, the allocation is
assumed to be done from top to bottom. PLOT allows easy reordering using drag-and-drop.

) TNO Public 15/38



) TNO Public ) TNO 2025 R11609

Ho Edit Madel

Alocation

Product: cakel

preslice
Retrieve | Alnput ¥

Slice B_Slicer v

top

Decorate | C_TopDecorator

bottom

Decorate  D_BottomDecarator ¥

assemble

Assemble | E Assembler ¥

Store F_Qutpat ¥

Product: cake2

preslice

Retrieve | A Input ¥

Figure 2.6: Allocation model in PLOT

If a job involves parts consisting of multiple sub-parts, i.e. part with a multiplicity of at least
two, these are assumed to be allocated consecutively. This keeps the allocation specification
short. If one would like to allocate the sub-parts differently, the individual sub-parts can be
specified and allocated individually. This will, however, lead to longer job and allocation

specifications.

) TNO Public

16/38



) TNO Public ) TNO 2025 R11609

3 Performance analysis

In Chapter 2, we explained the domain model, with which one can specify production line
allocation scenarios. This chapter explains the timing performance analysis of specified
scenarios. Section 3.1 explains constraint graphs, the formalism that is used for this analysis.
Section 3.2 describes how constraint graphs are used to analyse a scenario.

3.1 Constraint graphs

The performance analysis entails the generation of a so-called constraint graph [5] [6]. A
constraint graphis a directed graph whose nodes correspond to events. An arc between the
events e; and e, represent temporal constraints between these events. The temporal
constraints are of the form t, > t, + 4, where t; and t, represent the times at which events
e; and e, occur and 4 represents the minimum time between the events.

A may have both positive and negative values. Positive values of 4 represent (relative) event
release dates for the target event of an arc: event e, must occurs at least 4 time units after
e,. By specifying negative values of 4, one can also specify maximum times between events.
Ast; <t, — A4, e; must occur at most —4 time units before e,. In other words, negative
values of 4 specify due dates for the source event of a constraint graph arc.

This dual effect can be used to capture the duration of a operation. An operation of (positive)
duration 4 gets represented by a start event e; and an end event e, and two arcs: an arc
from e, to e, with weight 4 and an arc from e, to e; with weight —A. Suppose e; occurs at
time t, and e, at time t,. The constraints of the arcs state that ¢, >t; +4dandt; > t, — 4,
which guarantees that t, = t; + 4.

The arc constraints along a path in a constraint graph add up: an arc of weight A, from e, to
e, and an arc with weight A, from e, to e; specify a minimum delay A, + A, of between

e; and e;. As constraint graphs may be cyclic, events may have constraints with themselves.
If a constraint graph does not have cycles with a positive total weight, the timing constraints
can be satisfied. On the other hand, constraint graphs with positive-weight cycles represent
constraints that cannot be satisfied.

A constraint graph for an instance of Chapter 2’s running example involving a 20-centimetre

cake followed by a 24-centimetre cake is shown in Figure 3.1. In this graph, the nodes

represent events, which can be either the start or end of an equipment operation or the start

or end of a transportation.

e The green nodes represent the starts of operations and the ends of transports.

e The yellowish nodes represent the ends of operations and the starts of transports.

e The blue node labelled ZERO represents an artificial event corresponding to the absolute
time 0. It is used to correctly deal with the equipment’s initial state.

Not shown in Figure 3.1 are nodes representing the history of the equipment, i.e. the end

time of the last operations performed by the equipment nodes. Examples of such nodes can
be found in the report describing the original domain model [1].

) TNO Public 17/38



) TNO Public ) TNO 2025 R11609

/

(0s) (0 ),

Retrieval @ Input

J

Input Input Input
Retrieve Setup time Retrieve
(209) (10s) (24)

Departure @ Input

A

To Slicer To Slicer
(10s) (10s)

Arrival @ Slicer

It

Slicer Slicer Slicer
Slice Setup time Slice
(305) (60s) (34s)

Departure @ Slicer

g

To Decorator To Decorator To Decorator To Decorator
(10's) (105s) (105) (10's)

Arrival @ Decorator

¢

Decorator DecoratorDecorator Decorator D or Decorator
Decorate Decorate  Setup Setup  Decorate Decorate
(60s)  (60s) (60s)  (685s) (68's)

Departure @ Decorator

O

To Assembler To Assembler To Assembler To Assembler
(10's) (10s) (105) (105)
Arrival @ Assembler é,/ é/
Assembler Assembler
Assemble Assemble
(10s) (12's)
v
Departure @ Assembler @
To Output To Output
(105) (105)
Arrival @ Output é é
Output Output
Store Store
(20s) (245)

Storage @ Output

94

Figure 3.1: Running example constraint graph
The arcs represent the timing constraints between the corresponding events. Unidirectional

arcs indicate that the target node’s event must occur at least the arc weight time units after
the source node’s event. Bidirectional arcs indicate that the target node’s event must occur

) TNO Public 18/38



) TNO Public ) TNO 2025 R11609

exactly the arc weight time units after the source node’s event. The generated constraint
graph contains seven types of arcs:

1.

The timing constraints that originate from the tightly coupled equipment, which does not
have buffer capacity, are captured by bidirectional arcs. These arcs represent either the
start and end of an operation, or the start and end of a transportation. Examples are the
black bidirectional arcs in Figure 3.1.

The timing constraints of storage-retrieval constraints are captured by unidirectional
arcs. They specify that a retrieval operation must start after the completion of a storage
operation. Figure 3.1 does not contain such arcs; examples can be found in the report
describing the AIMS 2023 domain language [1].

Setup timing constraints are captured by unidirectional arcs capture the setup timing
constraints. They specify the minimum time between the completion of one operation
and the start of the next one on the same equipment node. The orange arcs in Figure 3.1
are examples of these arcs.

The timing constraints of switch segments is captured by unidirectional arcs: if two pieces
of material follow a different path though a switch, then the time between completion of
the first piece’s path and the start of the second piece’s must be at least the switch’s
switch time. Figure 3.1 does not contain such arcs; examples can be found in the report
describing the AIMS 2023 domain language [1].

Bidirectional arcs between the ZERO nodes and the history nodes are used to exactly
specify the times at which the (last) operations of the equipment node ended. Figure 3.1
does not contain such arcs; examples can be found in the report describing the AIMS
2023 domain language [1].

Unidirectional arcs from the ZERO node to the nodes corresponding to the first events of
a part specify that no events may happen before the ZERO event. Examples are the blue
arcs in Figure 3.1.

A visualisation of the same constraint graph in PLOT is shown in Figure 3.2. Note that the
graph’s structure is the same as that of the (manually drawn) graph in Figure 3.1.

Filter by

Graph Options J

e Type: | All

ype: Toggle Edge Type

Figure 3.2: Constraint graph in PLOT

) TNO Public

19/38



) TNO Public ) TNO 2025 R11609

3.2

Constraint graph analysis

From the generated constraint graph, one can compute a schedule. This involves computing
the longest paths from the ZERO node to all other nodes. In its general form, finding the
longest (simple) path in a (weighted) graph is an NP-hard problem [7]. The longest path can
however be found in polynomial time when a graph does not have positive cycles [8].

In constraint graphs, positive cycles describe infeasible constraints, and the absence of
positive cycles means a feasible solution exists [5]. The fastest feasible solution can be found
by the Bellman-Ford algorithm [8]. This algorithm either finds the shortest path from one
node to all other nodes in a weighted graph (without negative cycles), or it detects the
presence of a negative cycle. To make this algorithm find the longest paths from the ZERO
node, all arc weights need to be negated.

The lengths of the paths found by the Bellman-Ford algorithm correspond to the earliest
times at which events may happen. This can be translated into a Gantt chart showing the
equipment’s operations and the travel between these operations. The Gantt chart in Figure
3.3 shows the timing of consecutively decorating six cakes. The operations for one cake all
have the same colour; one can clearly see the process that the cakes follow during
decoration.

; e End of tace
- D I I I I

B_Slicer

C_TopDecorator

D_BottomDecorator

—

E_Assembler

0 20 40 6 80 100 120 140 160 180 200 220 240 260 280 3C0 320 340 360 380 400 420 440 460 430 500 520 540 560 580 600 620 640 6E0 680 700 720 740 780 780 800 820 840 860 86O
Time (seconds)

Figure 3.3: Cake decoration schedule

PLOT allows a Gantt to be animated: PLOT’s animation shows the material flow over time
and the corresponding active machines. A screenshot is shown in Figure 3.4.

) TNO Public 20/38



) TNO Public ) TNO 2025 R11609

i mor

& Bt View Wincow kelp

- o x
Home Edit Model Analysis
Select View: Splitscreen v
:
A

[ime: 180.52s
7o @ S % 5 e N8 10 W 1D W5 9 GH G0 1B N0 U6 MR 15 U0 T G0 @ 0 e A0 W a0 2w @

C_TopDecorator

1

| oo . .
: E_Assembler F_Output

1

D_BnttomDecoratcr:
1

\,,,,f )

Figure 3.4: Gantt chart animation in PLOT

The Gantt chart in Figure 3.3 has a lot of idle time between the different cakes. This is
because the cakes have different sizes, and the equipment nodes need setup to adapt to a
new size. By reordering the allocation sequence such that cakes (and slices) of the same size

are handled consecutively, one obtains the much shorter Gantt chart in Figure 3.5, which
uses the same colours as Figure 3.3.

End of trce
A Input

B_Slicer

C_TopDecorator

D_BottomDecorator

E_Assembler

F_Output

0 0 40 & 80 100 120 140 160 160 200 220 240 260 280 300 320 340 360 B0 400 420 440 460 480 500 520 540 560 580 600 620 640 6D GHO

Time (seconds)

Figure 3.5: Optimised cake decoration schedule

) TNO Public 21/38



) TNO Public ) TNO 2025 R11609

Next, we assess the scalability of performance analysis using constraint graphs. We do this
by increasing numbers of cakes in the running example introduced in Chapter 2. For the
scalability assessment, we use laptop PC with an Intel Core i7-1255U processor and 16 GB of
RAM running Windows 11 version 24H2. Table 3.1 shows the time needed to compute a
schedule using constraint graph analysis and to generate the corresponding Gantt chart
(file).

Table 3.1: Constraint graph analysis scalability assessment

Number of cakes Constraint graph analysis | Gantt chart writing time Total time
time
100 0.04s 06s 0.6s
200 02s 23s 25s
300 03s 54s 57s
400 0.6s 10s 11s
500 10s 16s 17s
600 14s 23s 24s
700 20s 31ls 33s
800 27s 49s 52s
900 36s 64s 68s
1000 52s 89s 94 s

The results in Table 3.1 show that the creating a Gantt chart in the TRACE4CPS format [9] is
the most time-consuming step. Computing a schedule using the Bellman-Ford algorithm [8]
is quite fast for instances with at most a few hundred cakes, but then the analysis time
starts to increase non-linearly. This is due to the fact the Bellman-Ford algorithm is a worst-
case quadratic-time algorithm. The non-linear time increase may be avoided by using the
recently developed expected linear-time algorithms for computing shortest paths for graphs
with positive and negative arc weights [10] [11].

) TNO Public 22/38



) TNO Public ) TNO 2025 R11609

A

4.1

Performance optimisation

In Chapter 3, we have explained how the duration of production scenarios can be analysed
using constraint graphs. As there are typically very many possible allocations, it is
challenging to find an optimum or near-optimum allocation manually. In this chapter, we
will address automatic allocation optimisation using constraint programming. The
generation of a constraint program is explained in Section 4.1. Experimental optimisation
results are presented in Section 4.2.

Constraint program

Constraint programming (CP) is a declarative programming paradigm used to solve complex
computational problems, particularly combinatorial ones, by defining constraints that must
be satisfied by the solution [12].

We will use the running example introduced in Chapter 2 to illustrate how an allocation
optimising constraint program can be generated from the domain model also introduced in
Chapter 2. The constraint program is specified in the MiniZinc syntax [13]. MiniZinc is a well-
known frontend for multiple open-source and commercial constraint solvers.

The generation of the constraint program ignores most of the content of the input allocation
model. The generation only uses the allocation model’s batch and its equipment; all
allocations specified by the user are ignored.?

The generated MiniZinc constraint program starts by defining an upper bound for the
makespan/schedule length:?

% Maximum makespan
int: max = 1000000;

Next, it defines a data structure for the equipment nodes:

% Equipment nodes
enum NODE = {A_Input, B_Slicer, C_TopDecorator, D_BottomDecorator,
E_Assembler, F_Output};

The next part is an enumeration of all combinations of operations and their possible inputs
and outputs and an array with the corresponding durations. The value 1,000,000 indicates
that an operation cannot be performed by an equipment node.

7 Including the allocations specified by the user is a straightforward extension of the generation process explained
in this chapter.

2 The maximum makespan is set to a constant value of 1,000,000 milliseconds or 1,000 seconds. This should be
based on the domain model instance, e.g. by setting the maximum to the sum of all operation, setup and travel
times.

) TNO Public 23/38




) TNO Public ) TNO 2025 R11609

% Operations

enum OPERATION = {Assemble I Slice20 Slice20__0_Cake20,

Assemble I Slice24 Slice24_ 0 _Cake24,

Assemble I Slice28 Slice28 0O Cake28, Decorate I Slice20 0O Slice29,
Decorate I _Slice24 0_Slice24, Decorate__ I Slice28__0_Slice28,
Retrieve__ I 0_Cake20, Retrieve__I_ 0 Cake24, Retrieve__I_ 0 _Cake28,

Slice_ I Cake20 0 Slice20 Slice20, Slice I Cake24_ 0 Slice24 Slice24,
Slice I Cake28 0 Slice28 Slice28, Store__ I Cake20 0, Store__ I Cake24 O,
Store__ I Cake28 0}%;

% Operation durations

array [NODE, OPERATION] of int: duration =

[ | 1000000, 1000000, 1000000, 1000000, 1000000, 1000000, 20000, 24000,
28000, 1000000, 1000000, 1000000, 1000000, 1000000, 1000000 |

1000000, 1000000, 1000000, 1000000, 1000000, 1000000, 1000000, 1000000,
1000000, 30000, 34000, 38000, 1000000, 1000000, 1000000 |

1000000, 1000000, 1000000, 60000, 68000, 76000, 1000000, 1000000, 1000000,
1000000, 1000000, 1000000, 1000000, 1000000, 1000000 |

1000000, 1000000, 1000000, 60000, 68000, 76000, 1000000, 1000000, 1000000,
1000000, 1000000, 1000000, 1000000, 1000000, 1000000 |

10000, 12000, 14000, 1000000, 1000000, 1000000, 1000000, 1000000, 1000000,
1000000, 1000000, 1000000, 1000000, 1000000, 1000000 |

1000000, 1000000, 1000000, 1000000, 1000000, 1000000, 1000000, 1000000,
1000000, 1000000, 1000000, 1000000, 20000, 24000, 28000|];

The travel times are captured in a matrix with the equipment nodes on both axes. The value
1,000,000 is used for unconnected equipment nodes.

% Travel times

array [NODE, NODE] of int: travel =

[|0, 10000, 1000000, 1000000, 1000000, 1000000 |
1000000, O, 10000, 10000, 1000000, 1000000 |
1000000, 1000000, O, 1000000, 10000, 1000000 |
1000000, 1000000, 1000000, ©, 10000, 1000000 |
1000000, 1000000, 1000000, 1000000, 0, 10000 |
1000000, 1000000, 1000000, 1000000, 1000000, 0|];

A three-dimensional array is used to capture the equipment nodes’ setup times. As
this array is large, only the setup times of one equipment are shown. If no setup
times are specified in the equipment model, we assume no setup time, i.e. a value
of 0. Below a part of a setup table is shown; it involves the setup times for the
A_Input node.

) TNO Public 24/38



) TNO Public ) TNO 2025 R11609

% Setup times
array [NODE, OPERATION, OPERATION] of int: setup =
(1]

(]
-
-
-

-
®®®®®®®\.®®®®®®®®
®®®®®®®\.®®®®®®®®
®®®®®®®P®®®®®®®
®®®®®®®P®®®®®®®
®®®®®®®\.®®®®®®®®

-

-

-

- -
OO0 0

- -
OCO0OO0OOOO0

- -
®®\.®®®

-

®®®®®®®\.®®®®®®®®
®®®®®®®\.®®®®®®®®
OO0 0O OOPODOOOOOOOOO®

-

(ORI ]

-

(ORI

-

()

-

-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-

-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
Nt
-
-

5000, 5000, 5000,
5000, 5000, 5000,
5000, 5000, 5000,

-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-

-
(]
-
(W]
-
(]
-

-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-

®®®®®®P®®®®®®®

-

-
®®P®®
®®P®®
®®P®®
®®P®®®
®®9®®
®®9®®

—_

-
-
-
-
-
-
-
-
-

The following data structures define the operations that are performed on all the job

model’s parts. The subpart operations have two indices, both starting from 0.

1. The firstindex is used for part consisting of multiple subparts. This does not apply to the
running example; hence only the value 0 is used.

2. The second index corresponds to the position of an operation in the part’s sequence. It
allows multiple occurrences of the same operation in the same sequence.

% Subpart operations

enum SUBPART = {cakel_assemble 0 0 Assemble, cakel _assemble 0 1 Store,
cakel_bottom_0_©_Decorate, cakel_preslice © 0 Retrieve,
cakel preslice_©_1 Slice, cakel_top_© 0 Decorate,
cake2_assemble_0_0 Assemble, cake2_assemble_©_1 Store,
cake2_bottom_©_© Decorate, cake2 preslice_0_0_ Retrieve,
cake2_preslice_©_1 Slice, cake2_top_© 0 Decorate,
cake3_assemble_0_0 Assemble, cake3_assemble_©_1 Store,
cake3_bottom_0_0_Decorate, cake3_preslice 0 0 Retrieve,
cake3_preslice_©_1 Slice, cake3_top_© 0 Decorate,
caked_assemble_© 0O Assemble, caked4_assemble_0_1 Store,
caked_bottom_0_© Decorate, caked4_preslice_©_0 Retrieve,
cake4_preslice_©_1 Slice, cake4_top_© 0 Decorate,
cake5_assemble_0_© Assemble, cake5_assemble_©_1 Store,
cake5_bottom_0_© Decorate, cake5_preslice_©_0 Retrieve,
cake5 preslice 0 1 Slice, cake5_top_©_© Decorate,
cake6_assemble_0_0 Assemble, cake6_assemble_©_1 Store,
cake6_bottom_0_0 Decorate, cake6_preslice_0_0 Retrieve,
cake6_preslice_©_1 Slice, cake6_top_© 0 Decorate};

Another array is used to specify the input and output materials of these part operations.

) TNO Public 25/38



) TNO Public ) TNO 2025 R11609

array [SUBPART] of OPERATION: operation =

[Assemble I Slice20 Slice20_ 0O Cake20, Store__I Cake20_ O,
Decorate I Slice20 0 _Slice20, Retrieve_I 0 Cake20,

Slice I Cake20 O Slice20 Slice20, Decorate_ I Slice20 0 _Slice20,
Assemble_ I Slice24_Slice24__ 0 _Cake24, Store__I Cake24_ O,
Decorate__ I Slice24 0_Slice24, Retrieve__I_ 0 _Cake24,

Slice I Cake24 0 Slice24 Slice24, Decorate_ I Slice24 0 _Slice24,
Assemble I Slice28 Slice28 0 Cake28, Store I Cake28 O,
Decorate I Slice28 0 _Slice28, Retrieve I 0 Cake28,

Slice I Cake28_ 0 _Slice28_Slice28, Decorate__I Slice28 0_Slice28,
Assemble_ I Slice20_Slice20__0_Cake20, Store__I Cake20_ O,
Decorate I Slice20 0 _Slice20, Retrieve I 0 Cake20,

Slice I Cake20 0O Slice20 Slice20, Decorate_ I Slice20 0 _Slice20,
Assemble I Slice24_Slice24_ 0 _Cake24, Store__I Cake24_ O,
Decorate__I Slice24 0_Slice24, Retrieve__I_ 0 _Cake24,

Slice_ I Cake24__ 0 _Slice24 Slice24, Decorate__I Slice24 0 _Slice24,
Assemble_ I Slice28 Slice28_ 0 _Cake28, Store__I Cake28 O,
Decorate_ I Slice28_ 0 _Slice28, Retrieve__I_ 0 _Cake28,

Slice_ I _Cake28__0_Slice28_Slice28, Decorate_ I _Slice28_ 0_Slice28];

The following enumeration specifies the types of part dependencies. They are defined for the
subparts. For subparts of the same part, the new dependency type CONSECUTIVE is
introduced.

% Dependencies between operations
enum DEPENDENCY = {NONE, STRICT, STORAGERETRIEVAL, LOOSE, CONSECUTIVE},;

The following two-dimensional array captures the part dependencies as specified in the job
model. To save space, only the dependencies of three subparts are shown.

array [SUBPART, SUBPART] of DEPENDENCY: dependency =

[ |INONE, STRICT, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE,
NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE,
NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE|
NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE,
NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE,
NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE |
STRICT, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE,
NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE,
NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE|

What the constraint solver needs to do is find an optimum allocation. An allocation is
defined as an assignment of subparts to equipment nodes. These are combined with the
start and end times of this assignment.

) TNO Public 26/38



) TNO Public ) TNO 2025 R11609

% Allocation of operations to equipment nodes
array [SUBPART] of var NODE: alloc;

% Operation start and end times
array [SUBPART] of var @..max: start;
array [SUBPART] of var @..max: end;

% Makespan (maximum end time)
var 0..max: makespan;

The last part of the generated constraint program defines the constraints that constraint
solver must satisfy. The first constraints specify the relation between the start and end time
of subpart operations and the makespan

% Start and end time constraints
constraint
forall (t in SUBPART) (
end[t] == start[t] + duration[alloc[t], operation[t]]
)

constraint
forall (t in SUBPART) (
start[t] >= 0
)5

constraint
forall (t in SUBPART) (
makespan >= end[t]

)s

Dependency constraints specify the timing constraints between subpart operations. For
STRICT dependencies, this includes travel time; for other dependencies, a simple start-after-
end constraint suffices.

% Dependency constraints
constraint
forall (t1, t2 in SUBPART where t1 != t2) (
if dependency[tl, t2] == STRICT

then
end[tl] + travel[alloc[tl], alloc[t2]] == start[t2]
endif
)5
constraint

forall (tl1, t2 in SUBPART where t1 != t2) (
if dependency[tl, t2] == STORAGERETRIEVAL
then
end[tl] <= start[t2]
endif

)5

) TNO Public 27/38




) TNO Public ) TNO 2025 R11609

constraint
forall (t1, t2 in SUBPART where t1 != t2) (
if dependency[tl, t2] == LOOSE
then
end[tl] <= start[t2]
endif

)5

The equipment constraints specify that an equipment node can perform only one operation
at a time and that there are setup times between operations performed by the same
equipment node. Note that these setup times may be 0.

% Equipment constraints
constraint
forall (t1, t2 in SUBPART where t1 != t2) (
if allocation[tl] == allocation[t2]
then
start[t2] >= end[t1l] + setup[alloc[tl], operation[tl], operation[t2]]
\/
start[tl] >= end[t2] + setup[alloc[t2], operation[t2], operation[tl]]
endif

)5

Subpart allocation constraints specify how subpart operations must be allocated given their
dependencies. Some operations must be performed by the same equipment node, whereas
others must be performed by different equipment nodes. The last subpart allocation
constraint specifies the consecutive execution of the subparts of one part. The sequence
constraints are captured by the dependency constraints defined earlier.

% Subpart allocation constraints
constraint
forall (t1, t2 in SUBPART where t1 != t2) (
if dependency[tl, t2] == STRICT

then
alloc[tl] !'= alloc[t2]
endif
)5
constraint

forall (t1, t2 in SUBPART where t1 != t2) (
if dependency[tl, t2] == STORAGERETRIEVAL

then
alloc[t1l] == alloc[t2]
endif
)5
constraint

forall (t1, t2 in SUBPART where t1 != t2) (
if dependency[tl, t2] == CONSECUTIVE
then
alloc[tl] == alloc[t2]
endif

)5

) TNO Public 28/38




) TNO Public ) TNO 2025 R11609

constraint
forall (t1, t2 in SUBPART where t1 != t2) (
if dependency[tl, t2] == CONSECUTIVE

then
start[t2] >= end[tl] + setup[alloc[tl], operation[tl], operation[t2]]
endif
)
constraint

forall (tl1, t2, t3 in SUBPART where t1 != t2 /\ t1 != t3 /\ t2 !I= t3) (
if dependency[tl, t2] == CONSECUTIVE /\
alloc[t1l] == alloc[t3] /\ alloc[t2] == alloc[t3]
then
end[t3] <= min(start[tl], start[t2]) \/
start[t3] >= max(end[tl], end[t2])
endif

)5

The last part of the constraint program defines the makespan minimisation objective.

% Makespan constraints
constraint makespan <= max;

solve minimize makespan;

When running the constraint solver for this instance with six cakes, one gets the schedule in
Figure 4.1 with a makespan of 669 seconds. By decorating the largest cakes in the middle of
the schedule, one obtains a schedule which is slightly shorter than the manually optimised

schedule in Figure 3.5.

B_Slicer

C_TopDecorator

D_BottomDecorator

E_Assembler

\ | \ \ |
o l I I I I

0 20 40 6 680 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 40 440 460 480 500 520 540 560 SBO 600 620 H40 660 6O OO
Time (seconds)

Figure 4.1: Automatically optimised cake decoration schedule

) TNO Public 29/38



) TNO Public ) TNO 2025 R11609

4.2 Allocation optimisation

The optimised cake decoration schedule was quickly found by running OR-Tools [14] from
MiniZinc [13]. This is not surprising as the instance is small, and the constraint solver only
must find the best sequence to decorate the cakes. By increasing the number of products to
be manufactured or introducing a greater variety of products, the optimisation challenge
becomes larger.

In this section, we assess the scalability of constraint solving. We do this by increasing the
number of cakes to be decorated in the running example introduced in Chapter 2. For the
scalability assessment, we run OR Tools CP-SAT 9.10.4067, a state-of-the-art constraint
solver, from MinizZinc 2.9.3 on a PC with an Intel Core i7-1255U processor and 16 GB of RAM
running Windows 11 version 24H2. As CP-SAT applies different strategies when using
multiple worker threads [15], we will use the solver both using its default mode, i.e. with a
single worker thread (see Table 4.1), and with 16 parallel worker threads (see Table 4.2).

The first column specifies the size of the instance being evaluated. The second column
contains the makespan of the first solution found and the time needed to find this first
solution. The third column contains the same values for the last, possibly optimum, solution
found. The fourth columns contains the total analysis time, which was maximised at 15
minutes. If the fourth column contains a value, the last solution found is guaranteed to be
the optimum. If a fourth column is empty, the last found solution may be suboptimal. If the
second and third column are empty, no solution has been found within 15 minutes.

Table 4.1: Constraint solving scalability assessment (1 worker thread)

Number of cakes First solution Last solution Total analysis time
1 180s/0.1s 180s/0.1s 02s
2 314s/01s 314s/0.1s 0.2s
3 456s/0.2s 450s/0.2s 03s
4 564s/05s 515s/19s -
5 698s/04s 594s/628s -
6 840s/0.9s 718s/395s -
7 948s/1.3s 844 s/493s -
8 978s/785s 978s/785s -
9 -/ - -/- -
10 -/ - -/ - -

Table 4.2: Constraint solving scalability assessment (16 worker threads)

Number of cakes First solution Last solution Total analysis time
1 180s/0.1s 180s/0.1s 0.2s
2 348s/0.2s 314s/0.2s 0.2s
3 456s/0.3s 450s/0.3s 0.4s
4 576s/03s 515s/03s 04s
5 908s/04s 588s/04s 05s

) TNO Public 30/38



) TNO Public ) TNO 2025 R11609

Number of cakes

First solution

Last solution

6 9365/065 6695/0.7s 08s
7 9455/145s 7345/15s 21s
8 1,000s/1.3s 807s/1.7s 6.0s
9 9975s/1.7s 8885s/2.1s 53s
10 9985/2.9s 9535/3.8s 621s
11 -/- /- -
12 -/- -/- -
13 -/- /- -
14 -/- -/- -
15 -/- -/- -

Total analysis time ‘

The results in Table 4.1 and Table 4.2 clearly show the benefits of using multiple search
strategies. With 16 worker threads, CP-SAT finds more and better solutions and in less time
than with a single worker thread, even with compensating for the extra workers.
Unfortunately, the tables also show that CP-SAT is not very scalable: no solution can be
found for an instance with more than ten cakes.

The research of Boonstoppel [16] confirms the lack of scalability of Constraint Programming
(CP), especially if there are sequence-dependent setup times. He has compared OR-Tools CP-
SAT [14] and IBM ILOG CP Optimizer [17]. Both solvers suffer from (long) setup times as well
as from long task execution times.

Boonstoppel [16] has also looked at a formalism that does not suffer from large execution
and setup times: Multi-valued Decision Diagrams (MDDs) [18]. MDDs are directed acyclic
graphs that describe the solution space of optimisation problems. The nodes in this graph
correspond to a partial solution, i.e. an assignment of values to some decision variables. The
outgoing arcs of a node correspond to the possible values of one (undecided) decision
variable. An MDD has a source and a sink node. In the source node, none of the decision
variables have received a value; in the sink node, all decision variables have received a value.
Any path from the source to the sink corresponds to a solution, whose cost can be
computed from the arcs on the path.

MDDs can be large, but there are strategies to limit their size and speed up the search, which
is not possible for CP. For instance, the width of MDDs can be maximised,; if an MDD layer
exceeds the maximum width, the most promising partial solutions are selected and the
other partial solutions are merged [18]. Boonstoppel [16] shows that MDDs sometimes
outperform CP. He has shown that a solution can be found very quickly if the maximum MDD
width is kept small. Unfortunately, this initial solution is not always near optimal. This could
be overcome by defining better heuristics for selecting and merging partial solutions. MDD
solutions can also be used as a starting point for further searching. This could be
continuation of MDD exploration from the discarded partial solutions, but an MDD solution
could also be used to warm start CP. In Boonstoppel’s experiments, the latter did not allow
CP to find better solutions or to find solutions faster.

) TNO Public 31/38



) TNO Public ) TNO 2025 R11609

5 Conclusion

In this report, we have analysed the optimisation of high-mix low-volume (HMLV) production
systems, i.e. production systems which produce a high variety of products in small series, in
the context of the AIMS 2024 project.

This report addresses three research questions:

e RQ1. What is an appropriate way to describe a HMLV production line’s equipment, its
workload, and the allocation of this workload onto the line’s equipment?

e RQ2.How can the latency of a specific allocation of a HMLV production line’s workload
onto its equipment be computed in an fast and accurate manner?

e RQ3. How can a (near-)optimum allocation of a HMLV production line’s workload into its
equipment be found (in reasonable time)?

Chapter 2 of this report provides an answer to RQ1; it describes domain languages to
describe the equipment of a (HMLV) production system, a workload and the allocation of this
workload to the equipment. Compared to the earlier AIMS 2023 results [1], the updated
domain languages allow more systems to be specified, and the specifications are shorter. In
particular, the new domain languages allows specification of assembly and disassembly
operations.

RQ2 is addressed by Chapter 3, which presents a transformation of the domain languages
introduced in Chapter 2 to constraint graphs. Constraint graphs provide a fast analysis of
fully specified allocations. Compared to the earlier AIMS 2023 results [1], the transformation
to constraint graphs generates smaller graphs, which may be beneficial for the analysis of
large instances. Experiments show that allocations of a few hundred products can be
analysed within a few seconds, but that the analysis times increases in a non-linear manner.
This non-linear scaling could be circumvented by using an alternative algorithm for the
underlying longest path computation.

Chapter 4 is concerned with RQ3. It presents a transformation from the domain languages
introduced in Chapter 2 to a constraint programming specification in MiniZinc notation. This
specification can be solved to optimality for workloads involving a few products. For slightly
larger instances, one runs into the lack of scalability of constraint programming: either a
suboptimal solution is found, or no solution at all. So the studied transformation to
constraint programs does not provide a sufficient answer to RQ3. To find near-optimum
allocations for realistic workloads in reasonable time, a heuristic approach is needed. A
promising formalism for such an approach would be Multi-valued Decision Diagrams, as they
have means to quickly find a solution and their search of the optimisation space can be
tailored using heuristics for combining and selecting partial solutions.

) TNO Public 32/38



) TNO Public

) TNO Public

) TNO 2025 R11609

References

[1] J. Verriet, “Compositional Performance Prediction for Tightly Coupled Manufacturing
Systemns,” TNO, Eindhoven, 2023.

[2] M. J.Vassalo, E. P. Y. Dekker, F. A. Bosneag, M. J. v. Bokhoven, P. Kostadinov, A. G. Anton,
D. Manolev, G. R. Ratolla, A. E. Mangos, Y. Lin and E. W. P. J. Kuppens, “PLOT Software
User Manual,” Eindhoven University of Technology, Eindhoven, 2024,

[3] Eclipse Foundation, “Xtext,” 2025. [Online]. Available: https://eclipse.dev/Xtext/.

[4] Eclipse Foundation, “Xtend,” 2025. [Online]. Available: https://eclipse.dev/Xtext/xtend/.

[5] S.E.Elmaghraby and J. Kamburowski, “The Analysis of Activity Networks Under

Generalized Precedence Relations (GPRs),” Management Science, vol. 38, no. 9, pp.
1245-1263, 1992.

[6] D.C.Kuand G. De Micheli, “Relative Scheduling under Timing Constraints: Algorithms
for High-Level Synthesis of Digital Circuits,” /EEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 11, no. 6, pp. 696-718, 1992.

[71 R.M.Karp, “Reducibility among Combinatorial Problems,” in Complexity of Computer
Computations, New York, Plenum Press, 1972, pp. 85-103.

[8] R.E.Bellman, “On a Routing Problem,” Quarterly of Applied Mathematics, vol. 16, no. 1,
pp. 87-90, 1958.

[9] Eclipse Foundation, “Eclipse TRACE4CPS,” 2025. [Online]. Available:
https://eclipse.dev/trace4cps/.

[10] A. Bernstein, D. Nanongkai and C. Wulff-Nilsen, “Negative-Weight Single-Source
Shortest Paths in Near-Linear Time,” Communications of the ACM, vol. 68, no. 2, pp.
87-94, 2025.

[11] K. Bringmann, A. Cassis and N. Fischer, “Negative-Weight Single-Source Shortest Paths
in Near-Linear Time: Now Faster!,” in 2023 IEEE 64th Annual Symposium on
Foundations of Computer Science (FOCS), Santa Cruz, CA, 2023.

[12] Google OR-Tools, “Constraint Optimization,” 2025. [Online]. Available:
https://developers.google.com/optimization/cp.

[13] MiniZinc, “MiniZinc,” 2025, [Online]. Available: https://www.minizinc.org/.

[14] Google OR-Tools, “CP-SAT Solver,” 2025. [Online]. Available:
https://developers.google.com/optimization/cp/cp_solver.

[15] D. Krupke, “The CP-SAT Primer: Using and Understanding Google OR-Tools' CP-SAT
Solver,” 2025. [Online]. Available: https://d-krupke.github.io/cpsat-primer/.

[16] S. Boonstoppel, “Solving the Flexible Job Shop Scheduling Problem with Alternative
Process Plans,” Utrecht University, Utrecht, 2025.

[17] IBM, “IBM ILOG CP Optimizer,” 2024. [Online]. Available:
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-cp-optimizer.

[18] W.-J. van Hoeve, “An Introduction to Decision Diagrams for Optimization,” Tutorials in
Operations Research, vol. 2024, pp. 117-145, 2024.

[19] X. Gillard, P. Schaus and V. Coppé, “DDO a generic and efficient framework for MDD-
based optimization.,” 2025. [Online]. Available: https://github.com/xgillard/ddo.

33/38



) TNO Intern ) TNO 2025 R11609 ) Appendix A

Appendix A
Domain model

The domain model described in this report consists of four languages: a material language,
an equipment language, a job language and an allocation language. The syntaxes of these
languages are visualised in Figure 5.1, Figure 5.2, Figure 5.3, and Figure 5.4, respectively.

) TNO Intern 34/38



) Appendix A

) TNO Intern ) TNO 2025 R11609

uopeRdoieuaiey

Oy e
@ -
] 3]

flguiassesip

abeiols adf uoieiadneuaie
\ uor ol 3]

|Ewiou

uoijesado Iunb.cc_«m.uno_m_.u«ms T uaoneiadoEU1EY

ybus| SUOISUS LU [EUSIE |

[IFCRLIET] Iu#mbn_..:bu H_| SoURISU|[EUSIRA

|euaELL Iu:an_EDU T adA) jeuayepy

IduBISUELRIEY

1eu3e|A

Figure 5.1: Material language syntax

35/38

) TNO Intern



) Appendix A

) TNO Intern ) TNO 2025 R11609

Figure 5.2: Equipment language syntax

36/38

) TNO Intern



) Appendix A

) TNO Intern ) TNO 2025 R11609

suoiesado

\qaiu—u:uiuﬂtﬂntﬂﬂ_ﬂ-n ;ﬂl sauapuadap _|_ yed

\B‘ uoiyesadogor

\_ |eraul=a-abeaols _‘ adA) fouapuadaguegionpoig
/|_ asuanbas-3ou3s _|\
/|_ azuanbas-asoo| _l\

adf) fouspuadaguedionpoig “_‘ FAouapuadaguedgionpoiyg

Bunsisuos B E HE4IDnpold

vedinpolg

@[} oo

Figure 5.3: Job language syntax

37/38

) TNO Intern



) TNO Intern) TNO 2025 R11609 ) Appendix A

Allocation — batch —.— equipment

ProductAllocation — product w
ProductPartillocation — part 1—& /L

ProductPartOperationdllocation —.—El—.—

Figure 5.4: Allocation language syntax

) TNO Intern 38/38



ICT, Strategy & Policy

High Tech Campus 25
5656 AE Eindhoven
www.tno.nl

m innovation
for life




