

Production Line
Performance
Optimisation

TNO Public TNO 2025 R11609

August 2025

ICT, Strategy & Policy
www.tno.nl
+31 88 866 50 00
info@tno.nl

 TNO Public

TNO 2025 R11609 August 2025

Production Line Performance
Optimisation

 TNO Public

Author(s) Jacques Verriet

Classification report TNO Public

Title TNO Public

Report text TNO Public

Appendices TNO Public

Number of pages 38 (excl. front and back cover)

Number of appendices 1

Programme name AIMS

Project name AIMS 2024

Project number 060.59493/01.01

 TNO Public TNO 2025 R11609

 TNO Public

All rights reserved

No part of this publication may be reproduced and/or published by print, photoprint,

microfilm or any other means without the previous written consent of TNO.

The research is carried out as part of the AIMS program under the responsibility of TNO-ESI in
cooperation with Canon Production Printing. The research activities are co-funded by Holland
High Tech | TKI HSTM via the PPP Innovation Scheme (PPP-I) for public-private partnerships.

© 2025 TNO

 TNO Public TNO 2025 R11609

 TNO Public 3/38

Contents

Abstract ... 4

1 Introduction ... 5
1.1 Research questions .. 5
1.2 Contribution ... 6
1.3 Outline ... 6

2 Domain model... 7
2.1 Running example .. 8
2.2 Material language ... 9
2.3 Equipment language ... 11
2.4 Job language ... 13
2.5 Allocation language ... 15

3 Performance analysis .. 17
3.1 Constraint graphs ... 17
3.2 Constraint graph analysis ... 20

4 Performance optimisation .. 23
4.1 Constraint program .. 23
4.2 Allocation optimisation ... 30

5 Conclusion .. 32

References ... 33

Appendix A .. 34

Domain model.. 34

 TNO Public TNO 2025 R11609

 TNO Public 4/38

Abstract

To assess the practical performance of a system, one needs to consider the system in its

operating environment. This report presents an approach for analysing and optimising the

performance of High-Mix Low-Volume (HMLV) automated production lines. The approach

comprises three methods: (1) a method to specify

and allocation, (2) a method based on constraint graphs to compute the latency of a

specified allocation, and (3) a method based on constraint programming to find the optimal

 Experiment results show that

allocation analysis is feasible for large instances, but that allocation optimisation lacks

scalability, i.e. it is only feasible for small instances. The report suggests alternative methods

to improve this allocation optimisation scalability.

 TNO Public TNO 2025 R11609

 TNO Public 5/38

1 Introduction

Traditionally, the high-tech equipment industry is optimising the performance of the

equipment they are developing. However, the actual performance of the equipment

depends on the systems-of-systems context in which it operates. In the context of high-tech

equipment, these systems of systems often involve manufacturing systems with equipment

from various suppliers.

The AIMS program is a collaboration of TNO-ESI and Canon Production Printing to address

analysing and optimising the (timing) performance of manufacturing system of systems.

This report considers a specific type of manufacturing systems, namely automated

production lines. We defined a production line as a composition of multiple systems that are

coupled mechanically, i.e. material handling and transports do not involve human operators.

The AIMS program is particularly studying production systems with a highly variable

workload. Such systems are called High-Mix Low-Volume (HMLV) production systems, as

they produce a high variety of products in small series.

1.1 Research questions
The AIMS 2024 project addresses three research questions:

• RQ1. , its

workload, and the allocation of this workload onto the equipment?

• RQ2. How can the latency of a specific allocation of a HMLV production line

onto its equipment be computed in an fast and accurate manner?

• RQ3. How can a (near-)optimum allocation of a HMLV production line

equipment be found (in reasonable time)?

Research questions RQ1 and RQ2 have partially been answered in the AIMS 2023 project. In

AIMS 2023, a domain model was developed to describe a (HMLV) production line

equipment and workload and the allocation of the workload on the equipment. This domain

model allows fast and accurate analysis of the timing of the specified allocation [1].

Unfortunately, the AIMS 2023 domain model [1] has several limitations with respect to

addressing research questions RQ1 and RQ2:

1. The AIMS 2023 domain model does not support inline assembly and disassembly

operations. For instance, one cannot describe inline cutting of material.

2. The job specifications of the AIMS 2023 domain model are quite long, because one needs

to specify the operations of every individual piece of material.

With respect to RQ3, the AIMS 2023 domain model [1] does not provide any support; it can

only be used for manual optimisation. Because the domain model does not include

dependencies between job parts, the is responsible for guaranteeing

the feasibility of allocations of a job onto the available equipment.

 TNO Public TNO 2025 R11609

 TNO Public 6/38

1.2 Contribution
This report presents an update of the AIMS 2023 domain model, which addresses the

mentioned limitations with respect to RQ1 and RQ2 and supports performance optimisation,

i.e. provides a solution for RQ3.

Compared to the AIMS 2023 domain model, the AIMS 2024 domain model has the following

improvements:

1. It has concepts for (inline) assembly and disassembly operations.

2. It has concepts to express the sequence dependencies of parts of jobs.

3. It allows shorter job specifications.

4. It supports automatic identification of the optimum allocation of a job set onto available

optimisation.

A fifth contribution involves a visual tool to address research questions RQ1 and RQ2. PLOT

(Production Line Optimization Tool) [2] has been developed to provide a graphical frontend

for the textual domain model developed in AIMS 2024. Besides a graphical representation of

the domain model, it also provides a frontend for the corresponding performance analysis.

1.3 Outline
The updated domain model is described in Chapter 2, which shows both its textual syntaxes

in Xtext and the corresponding visual representations in PLOT. Chapter 3 explains how the

domain model can be used to analyse specific allocations of a job set onto available

equipment; this includes the graphical visualisation using PLOT. Chapter 4 does the same for

identifying the optimum allocation, but it lacks graphical support. summary and

conclusions can be found in Chapter 5. Appendix A presents the syntax of the domain

model

 TNO Public TNO 2025 R11609

 TNO Public 7/38

2 Domain model

This chapter describes the AIMS 2024 domain model. The domain model consists of four

languages (see Figure 2.1):

1. The material language describes the operations that

can be performed on these materials.

2. The equipment modules and their connections.

nclude the time they need to prepare for operations and to

execute operations.

3. The job language describes the work that a production line needs to perform.

4. The allocation language describes how the work is performed by the production line. This

involves

Figure 2.1 shows the two main analyses supported by the domain model.

1. Single allocation analysis: The left path from the allocation model involves the analysis of

a fully specified allocation using constraint graphs. This, typically very fast, single

allocation analysis is explained in Chapter 3.

2. Allocation optimisation: The right path from the allocation model corresponds to

modules using constraint programming. This, typically lengthy, allocation optimisation is

explained in Chapter 4.

Both analyses lead, if given sufficient time, to a schedule describing the execution of a

 TNO Public TNO 2025 R11609

 TNO Public 8/38

Figure 2.1: Production line optimisation context

Most elements in Figure 2.1 come with both a textual and a graphical representation. The

(textual) languages have been defined using Xtext [3] and have a visual representation in

PLOT [2]. The detailed syntax of the languages can be found in Appendix A. The analyses

involve transformations defined using Xtend [4]; they can be run from the Eclipse IDE. PLOT

[2] provides a graphical frontend for the single allocation analysis: it allows performing the

analysis and visualising the analysis results.

2.1 Running example
We will describe

fictitious cake bakery and decoration system. The corresponding production line consists of

seven modules (see Figure 2.2):

1. An oven which produces batches of cakes.

2. An input buffer in which baked cakes are stored.

3. A slicer in which a cake in sliced into a top and bottom half.

4. A top decorator where s decorated.

5. A bottom decorator s decorated.

6. An assembler where decorated tops and bottoms are reassembled into a cake.

7. An output buffer where decorated cakes are stored.

 TNO Public TNO 2025 R11609

 TNO Public 9/38

Figure 2.2: Cake decoration running example

For the running example, we will use a cake decoration scenario. The scenario assumes that

a batch of cakes have already been baked and these need to be decorated before they get

shipped. Decorating a cake involves cutting it into a top and a bottom slice, which are

decorated separately. After the slices have been decorated, the decorated slices are

combined to obtain a decorated cake, which can be shipped to a customer. As shown in

Figure 2.1, four elements are needed to describe a scenario. Sections 2.2, 2.3, 2.4, and 2.5

describe these four elements for the cake decoration scenario.

2.2 Material language
Material models consist of three elements, which are specified in a single file with a

.machine extension: material types, material instances, and operations. The material

language distinguishes basic material types and composite material types. The latter consist

of other material types.

The material types of the running example only involve basic materials: cakes and slices. The

syntax in Appendix A shows how composite materials can be defined. The running

 are defined using the following (textual) specification:

basic material type Cake

basic material type Slice

The bold words basic, material and type s. The

normal text Cake and Slice, corresponds to the (specific) parameter of the running

example.

Material types describe a class of material instances, which are identical with respect to

some characteristics, but different with respect to others. In the running example, we

consider cakes (and slices) of three sizes. The following specification describes them.

basic material Cake20 type Cake
basic material Cake24 type Cake
basic material Cake28 type Cake

The different slices sizes are defined similarly. Optionally, one can specify the dimensions

and weight of the material instances, but these are not used for the analyses explained in

this report.

SlicerOven
Output
BufferBottom

Decorator
Assembler

Top
Decorator

Input
Buffer

 TNO Public TNO 2025 R11609

 TNO Public 10/38

The operations in the material language are defined based on the material types that they

take as input and the material types they produce as output. We distinguish types of

operations based on their number of inputs and outputs:

1. Storage operations store material in a buffer. They have one input and no outputs.

2. Retrieval operations retrieve material from a buffer. They have no inputs and one output.

3. Assembly operations combine multiple materials into one. They have at least two inputs

and one output.

4. Disassembly operations decompose one material into multiple. They have one input and

multiple outputs.

5. Normal operations transform one material. They have one input and one output.

The following specification shows how the in the

material language.

retrieval operation RetrieveCake
 input
 output Cake

disassembly operation SliceCake
 input Cake
 output Slice, Slice

normal operation DecorateSlice
 input Slice
 output Slice

assembly operation AssembleCake
 input Slice, Slice
 output Cake

storage operation StoreCake
 input Cake
 output

Besides the textual representation using Xtext In the graphical editor PLOT (Production Line

Optimization Tool) [2], the material model is visualised as shown in Figure 2.3. The top part

shows the operations, the bottom part the materials.

 TNO Public TNO 2025 R11609

 TNO Public 11/38

Figure 2.3: Material model in PLOT

2.3 Equipment language
The equipment language can be used to specify available equipment modules and their

connections. The equipment is described as a directed graph, in which the nodes correspond

to the equipment modules and the arcs to the (mechanical) connections between them.

Per module, one needs to specify the duration of its supported operations and the

(sequence-dependent) setup times between its operations. The equipment language

distinguishes four types of modules/nodes:

1. Input nodes correspond to points where material enters a production line.

2. Output nodes correspond to points where material leaves a production line.

3. Buffer nodes are locations where multiple pieces of material can be stored.

4. Operation nodes are locations where operations are performed and only the materials of

the operation being performed can be stored.

The following specification describes two of the modules of the running example in the

equipment language. leaves via its outputs; the

operations perform the transformation from input material(s) to output material(s).

 TNO Public TNO 2025 R11609

 TNO Public 12/38

buffer node A_Input
 output out type Cake
 operation Retrieve
 output Cake20 duration 20 s
 after Retrieve output Cake20 setup 10 s
 after Retrieve output Cake24 setup 10 s
 after Retrieve output Cake28 setup 10 s
 output Cake24 duration 24 s
 after Retrieve output Cake20 setup 10 s
 after Retrieve output Cake24 setup 10 s
 after Retrieve output Cake28 setup 10 s
 output Cake28 duration 28 s
 after Retrieve output Cake20 setup 10 s
 after Retrieve output Cake24 setup 10 s
 after Retrieve output Cake28 setup 10 s

operation node B_Slicer
 input in type Cake
 output top type Slice
 output bottom type Slice
 operation Slice
 input Cake20 output Slice20, Slice20 duration 30 s
 after Slice input Cake20 output Slice20, Slice20 setup 5 s
 after Slice input Cake24 output Slice24, Slice24 setup 60 s
 after Slice input Cake28 output Slice28, Slice28 setup 60 s
 input Cake24 output Slice24, Slice24 duration 34 s
 after Slice input Cake20 output Slice20, Slice20 setup 60 s
 after Slice input Cake24 output Slice24, Slice24 setup 5 s
 after Slice input Cake28 output Slice28, Slice28 setup 60 s
 input Cake28 output Slice28, Slice28 duration 38 s
 after Slice input Cake20 output Slice20, Slice20 setup 60 s
 after Slice input Cake24 output Slice24, Slice24 setup 60 s
 after Slice input Cake28 output Slice28, Slice28 setup 5 s

The specification of an equipment node involves two types of durations: operation durations

and setup times. Operation durations depend on the material being handled. The example

above shows that the time of slice a cake depends on its size: slicing the smallest cake takes

30 seconds and slicing the largest takes 38 seconds. Setup times represent time that an

equipment node to prepare for the next material. They depend on the

previous operation and the corresponding materials handled. In the running example, 5

seconds of setup is needed if the next operation involves the cake size, but 60 seconds of

setup is needed if the cake size changes.

Per segment, one needs to specify the nodes that it connects and the travel time between

these nodes. Below is a specification of one segment of the running example in the

equipment language.

segment InputSlicer type Cake
 source node A_Input output out
 target node B_Slicer input in
 duration 10 s

 TNO Public TNO 2025 R11609

 TNO Public 13/38

Segments may have multiple sources and/or multiple targets. Such nodes are called

switches, which may require time to change source or target node. The running example

does not include switches.

The corresponding graphical visualisation in PLOT is shown in Figure 2.4. Note that the

visualisation in PLOT is similar to the one shown in Figure 2.2. The black circles in Figure 2.4

allow visualisation of switches: they may have multiple incoming and multiple outgoing

arcs.

Figure 2.4: Equipment model in PLOT

A part of the equipment model, which is not shown in the running example, is the initial

state of the equipment. This state is used to specify a starting point for timing analysis. It

consists of the initial position of the switches and the operations that have completed and

the time at which these were completed. This is used to keep the performance analysis

described in Chapter 3 scalable.

2.4 Job language
batch of work that is to be done. A batch

consists of products consisting of parts. The job language specifies the recipe that leads to

the production of the product parts. The following specification specifies the recipes needed

to decorate one cake in the running example.

 TNO Public TNO 2025 R11609

 TNO Public 14/38

product cake1
 parts
 part preslice consisting of 1 Cake20
 operations Retrieve, Slice

 part top consisting of 1 Slice20
 operations Decorate

 part bottom consisting of 1 Slice20
 operations Decorate

 part assemble consisting of 1 Cake20
 operations Assemble, Store

One may need many parts to produce a product. To keep short job specifications, identical

parts requiring the same recipe can be grouped. This is indicated by the multiplicity of the

parts.

Except for the part recipes, the job specification also specifies the precedence dependencies

between these recipes. To not overcomplicate the job language, part recipes are sequences

of operation. Using the part dependencies, one can create more complex recipes. There are

five types of recipe precedence constraints:

1. Assembly dependencies specify the dependency of inline assembly of multiple parts into

one part.

2. Disassembly dependencies specify the dependency of inline disassembly of one part into

multiple parts.

3. Storage-retrieval dependencies specify the dependencies between storing parts in a

buffer and retrieving them later.

4. Strict sequence dependencies specify logical sequence of part execution with strict timing

constraints, e.g. the time between the end of the source part and the start of the target

part is fixed by the transportation times between the corresponding equipment nodes.

5. Loose sequence dependencies specify logical sequence of part execution with loose

timing constraints, e.g. the time between the end of the source part and the start of the

target part is unbounded.

As products can be produced independently of each other, dependencies between (parts of)

different products are not supported by the job language. The following specification

illustrates the dependencies between the cake decoration recipes.

part dependencies

 disassembly preslice -> top, bottom

 assembly top, bottom -> assemble

The corresponding visualisation in PLOT is shown in Figure 2.5. For two cakes, it shows the

parts, i.e. the grey boxes with sequences of operations, and the sequence dependencies, i.e.

the arcs, between these parts. The types of dependency are not shown explicitly.

 TNO Public TNO 2025 R11609

 TNO Public 15/38

Figure 2.5: Job model in PLOT

2.5 Allocation language
The allocation language specifies

the sequence in which the recipes are to be executed. The following specification illustrates

the allocation of the decoration recipes of a single cake.

product cake1
 part preslice
 A_Input: Retrieve
 B_Slicer: Slice

 part top
 C_TopDecorator: Decorate

 part bottom
 D_BottomDecorator: Decorate

 part assemble
 E_Assembler: Assemble
 F_Output: Store

The corresponding allocation model in PLOT is shown in Figure 2.6. It (partially) shows the

allocation of two cake decorations. Just as in the textual representation, the allocation is

assumed to be done from top to bottom. PLOT allows easy reordering using drag-and-drop.

 TNO Public TNO 2025 R11609

 TNO Public 16/38

Figure 2.6: Allocation model in PLOT

If a job involves parts consisting of multiple sub-parts, i.e. part with a multiplicity of at least

two, these are assumed to be allocated consecutively. This keeps the allocation specification

short. If one would like to allocate the sub-parts differently, the individual sub-parts can be

specified and allocated individually. This will, however, lead to longer job and allocation

specifications.

 TNO Public TNO 2025 R11609

 TNO Public 17/38

3 Performance analysis

In Chapter 2, we explained the domain model, with which one can specify production line

allocation scenarios. This chapter explains the timing performance analysis of specified

scenarios. Section 3.1 explains constraint graphs, the formalism that is used for this analysis.

Section 3.2 describes how constraint graphs are used to analyse a scenario.

3.1 Constraint graphs
The performance analysis entails the generation of a so-called constraint graph [5] [6]. A

constraint graph is a directed graph whose nodes correspond to events. An arc between the

events 𝑒1 and 𝑒2 represent temporal constraints between these events. The temporal

constraints are of the form 𝑡2 ≥ 𝑡1 + 𝛥, where 𝑡1 and 𝑡2 represent the times at which events

𝑒1 and 𝑒2 occur and 𝛥 represents the minimum time between the events.

𝛥 may have both positive and negative values. Positive values of 𝛥 represent (relative) event

release dates for the target event of an arc: event 𝑒2 must occurs at least 𝛥 time units after

𝑒1. By specifying negative values of 𝛥, one can also specify maximum times between events.

As 𝑡1 ≤ 𝑡2 − 𝛥, 𝑒1 must occur at most −𝛥 time units before 𝑒2. In other words, negative

values of 𝛥 specify due dates for the source event of a constraint graph arc.

This dual effect can be used to capture the duration of a operation. An operation of (positive)

duration 𝛥 gets represented by a start event 𝑒1 and an end event 𝑒2 and two arcs: an arc

from 𝑒1 to 𝑒2 with weight 𝛥 and an arc from 𝑒2 to 𝑒1 with weight −𝛥. Suppose 𝑒1 occurs at

time 𝑡1 and 𝑒2 at time 𝑡2. The constraints of the arcs state that 𝑡2 ≥ 𝑡1 + 𝛥 and 𝑡1 ≥ 𝑡2 − 𝛥,

which guarantees that 𝑡2 = 𝑡1 + 𝛥.

The arc constraints along a path in a constraint graph add up: an arc of weight Δ1 from 𝑒1 to

𝑒2 and an arc with weight Δ2 from 𝑒2 to 𝑒3 specify a minimum delay Δ1 + Δ2 of between

𝑒1 and 𝑒3. As constraint graphs may be cyclic, events may have constraints with themselves.

If a constraint graph does not have cycles with a positive total weight, the timing constraints

can be satisfied. On the other hand, constraint graphs with positive-weight cycles represent

constraints that cannot be satisfied.

A constraint graph for an instance of Chapter 2 running example involving a 20-centimetre

cake followed by a 24-centimetre cake is shown in Figure 3.1. In this graph, the nodes

represent events, which can be either the start or end of an equipment operation or the start

or end of a transportation.

• The green nodes represent the starts of operations and the ends of transports.

• The yellowish nodes represent the ends of operations and the starts of transports.

• The blue node labelled ZERO represents an artificial event corresponding to the absolute

time 0. It is used to correctly deal with

Not shown in Figure 3.1 are nodes representing the history of the equipment, i.e. the end

time of the last operations performed by the equipment nodes. Examples of such nodes can

be found in the report describing the original domain model [1].

 TNO Public TNO 2025 R11609

 TNO Public 18/38

Figure 3.1: Running example constraint graph

The arcs represent the timing constraints between the corresponding events. Unidirectional

Retrieval @ Input

Departure @ Input Cake1

Input
Retrieve

(20 s)

To Slicer
(10 s)

Slicer
Setup time

(60 s)

Arrival @ Slicer

Cake1

Slicer
Slice
(30 s)

Input
Setup time

(10 s)

Cake1

Departure @ Slicer

Arrival @ Decorator

Top1

Decorator
Decorate

(60 s)

Decorator
Setup
(60 s)

Top1

To Decorator
(10 s)

Cake1

Assembler
Assemble

(10 s)

Cake1

Bot1

Decorator
Decorate

(60 s)

Bot1

To Assembler
(10 s)

To Decorator
(10 s)

Departure @ Decorator

Departure @ Assembler

Arrival @ Assembler

Storage @ Output

Arrival @ Output

Zero

Cake1

To Assembler
(10 s)

Cake1

Output
Store
(20 s)

Cake1

To Output
(10 s)

Cake2

Input
Retrieve

(24 s)

To Slicer
(10 s)

Cake2

Slicer
Slice
(34 s)

Cake2

Top2

Decorator
Decorate

(68 s)

Top2

To Decorator
(10 s)

Cake2

Assembler
Assemble

(12 s)

Cake2

Bot2

Decorator
Decorate

(68 s)

Bot2

To Assembler
(10 s)

 To Decorator
(10 s)

Cake2

To Assembler
(10 s)

Cake2

Output
Store
(24 s)

Cake2

To Output
(10 s)

Decorator
Setup
(60 s)

(0 s) (0 s)

 TNO Public TNO 2025 R11609

 TNO Public 19/38

The generated constraint

graph contains seven types of arcs:

1. The timing constraints that originate from the tightly coupled equipment, which does not

have buffer capacity, are captured by bidirectional arcs. These arcs represent either the

start and end of an operation, or the start and end of a transportation. Examples are the

black bidirectional arcs in Figure 3.1.

2. The timing constraints of storage-retrieval constraints are captured by unidirectional

arcs. They specify that a retrieval operation must start after the completion of a storage

operation. Figure 3.1 does not contain such arcs; examples can be found in the report

describing the AIMS 2023 domain language [1].

3. Setup timing constraints are captured by unidirectional arcs capture the setup timing

constraints. They specify the minimum time between the completion of one operation

and the start of the next one on the same equipment node. The orange arcs in Figure 3.1

are examples of these arcs.

4. The timing constraints of switch segments is captured by unidirectional arcs: if two pieces

of material follow a different path though a switch, then the time between completion of

switch time. Figure 3.1 does not contain such arcs; examples can be found in the report

describing the AIMS 2023 domain language [1].

5. Bidirectional arcs between the ZERO nodes and the history nodes are used to exactly

specify the times at which the (last) operations of the equipment node ended. Figure 3.1

does not contain such arcs; examples can be found in the report describing the AIMS

2023 domain language [1].

6. Unidirectional arcs from the ZERO node to the nodes corresponding to the first events of

a part specify that no events may happen before the ZERO event. Examples are the blue

arcs in Figure 3.1.

A visualisation of the same constraint graph in PLOT is shown in Figure 3.2. Note that the

structure is the same as that of the (manually drawn) graph in Figure 3.1.

Figure 3.2: Constraint graph in PLOT

 TNO Public TNO 2025 R11609

 TNO Public 20/38

3.2 Constraint graph analysis
From the generated constraint graph, one can compute a schedule. This involves computing

the longest paths from the ZERO node to all other nodes. In its general form, finding the

longest (simple) path in a (weighted) graph is an NP-hard problem [7]. The longest path can

however be found in polynomial time when a graph does not have positive cycles [8].

In constraint graphs, positive cycles describe infeasible constraints, and the absence of

positive cycles means a feasible solution exists [5]. The fastest feasible solution can be found

by the Bellman-Ford algorithm [8]. This algorithm either finds the shortest path from one

node to all other nodes in a weighted graph (without negative cycles), or it detects the

presence of a negative cycle. To make this algorithm find the longest paths from the ZERO

node, all arc weights need to be negated.

The lengths of the paths found by the Bellman-Ford algorithm correspond to the earliest

times at which events may happen. This can be translated into a Gantt chart showing the

. The Gantt chart in Figure

3.3 shows the timing of consecutively decorating six cakes. The operations for one cake all

have the same colour; one can clearly see the process that the cakes follow during

decoration.

Figure 3.3: Cake decoration schedule

PLOT allows a Gantt to be animated: shows the material flow over time

and the corresponding active machines. A screenshot is shown in Figure 3.4.

 TNO Public TNO 2025 R11609

 TNO Public 21/38

Figure 3.4: Gantt chart animation in PLOT

The Gantt chart in Figure 3.3 has a lot of idle time between the different cakes. This is

because the cakes have different sizes, and the equipment nodes need setup to adapt to a

new size. By reordering the allocation sequence such that cakes (and slices) of the same size

are handled consecutively, one obtains the much shorter Gantt chart in Figure 3.5, which

uses the same colours as Figure 3.3.

Figure 3.5: Optimised cake decoration schedule

 TNO Public TNO 2025 R11609

 TNO Public 22/38

Next, we assess the scalability of performance analysis using constraint graphs. We do this

by increasing numbers of cakes in the running example introduced in Chapter 2. For the

scalability assessment, we use laptop PC with an Intel Core i7-1255U processor and 16 GB of

RAM running Windows 11 version 24H2. Table 3.1 shows the time needed to compute a

schedule using constraint graph analysis and to generate the corresponding Gantt chart

(file).

Table 3.1: Constraint graph analysis scalability assessment

Number of cakes Constraint graph analysis

time

Gantt chart writing time Total time

100 0.04 s 0.6 s 0.6 s

200 0.2 s 2.3 s 2.5 s

300 0.3 s 5.4 s 5.7 s

400 0.6 s 10 s 11 s

500 1.0 s 16 s 17 s

600 1.4 s 23 s 24 s

700 2.0 s 31 s 33 s

800 2.7 s 49 s 52 s

900 3.6 s 64 s 68 s

1000 5.2 s 89 s 94 s

The results in Table 3.1 show that the creating a Gantt chart in the TRACE4CPS format [9] is

the most time-consuming step. Computing a schedule using the Bellman-Ford algorithm [8]

is quite fast for instances with at most a few hundred cakes, but then the analysis time

starts to increase non-linearly. This is due to the fact the Bellman-Ford algorithm is a worst-

case quadratic-time algorithm. The non-linear time increase may be avoided by using the

recently developed expected linear-time algorithms for computing shortest paths for graphs

with positive and negative arc weights [10] [11].

 TNO Public TNO 2025 R11609

 TNO Public 23/38

4 Performance optimisation

In Chapter 3, we have explained how the duration of production scenarios can be analysed

using constraint graphs. As there are typically very many possible allocations, it is

challenging to find an optimum or near-optimum allocation manually. In this chapter, we

will address automatic allocation optimisation using constraint programming. The

generation of a constraint program is explained in Section 4.1. Experimental optimisation

results are presented in Section 4.2.

4.1 Constraint program
Constraint programming (CP) is a declarative programming paradigm used to solve complex

computational problems, particularly combinatorial ones, by defining constraints that must

be satisfied by the solution [12].

We will use the running example introduced in Chapter 2 to illustrate how an allocation

optimising constraint program can be generated from the domain model also introduced in

Chapter 2. The constraint program is specified in the MiniZinc syntax [13]. MiniZinc is a well-

known frontend for multiple open-source and commercial constraint solvers.

The generation of the constraint program ignores most of the content of the input allocation

allocations specified by the user are ignored.1

The generated MiniZinc constraint program starts by defining an upper bound for the

makespan/schedule length:2

% Maximum makespan
int: max = 1000000;

Next, it defines a data structure for the equipment nodes:

% Equipment nodes
enum NODE = {A_Input, B_Slicer, C_TopDecorator, D_BottomDecorator,
E_Assembler, F_Output};

The next part is an enumeration of all combinations of operations and their possible inputs
and outputs and an array with the corresponding durations. The value 1,000,000 indicates
that an operation cannot be performed by an equipment node.

1 Including the allocations specified by the user is a straightforward extension of the generation process explained
in this chapter.

2 The maximum makespan is set to a constant value of 1,000,000 milliseconds or 1,000 seconds. This should be
based on the domain model instance, e.g. by setting the maximum to the sum of all operation, setup and travel
times.

 TNO Public TNO 2025 R11609

 TNO Public 24/38

% Operations
enum OPERATION = {Assemble__I_Slice20_Slice20__O_Cake20,
Assemble__I_Slice24_Slice24__O_Cake24,
Assemble__I_Slice28_Slice28__O_Cake28, Decorate__I_Slice20__O_Slice20,
Decorate__I_Slice24__O_Slice24, Decorate__I_Slice28__O_Slice28,
Retrieve__I__O_Cake20, Retrieve__I__O_Cake24, Retrieve__I__O_Cake28,
Slice__I_Cake20__O_Slice20_Slice20, Slice__I_Cake24__O_Slice24_Slice24,
Slice__I_Cake28__O_Slice28_Slice28, Store__I_Cake20__O, Store__I_Cake24__O,
Store__I_Cake28__O};

% Operation durations
array [NODE, OPERATION] of int: duration =
[|1000000, 1000000, 1000000, 1000000, 1000000, 1000000, 20000, 24000,
28000, 1000000, 1000000, 1000000, 1000000, 1000000, 1000000|
1000000, 1000000, 1000000, 1000000, 1000000, 1000000, 1000000, 1000000,
1000000, 30000, 34000, 38000, 1000000, 1000000, 1000000|
1000000, 1000000, 1000000, 60000, 68000, 76000, 1000000, 1000000, 1000000,
1000000, 1000000, 1000000, 1000000, 1000000, 1000000|
1000000, 1000000, 1000000, 60000, 68000, 76000, 1000000, 1000000, 1000000,
1000000, 1000000, 1000000, 1000000, 1000000, 1000000|
10000, 12000, 14000, 1000000, 1000000, 1000000, 1000000, 1000000, 1000000,
1000000, 1000000, 1000000, 1000000, 1000000, 1000000|

1000000, 1000000, 1000000, 1000000, 1000000, 1000000, 1000000, 1000000,

1000000, 1000000, 1000000, 1000000, 20000, 24000, 28000|];

The travel times are captured in a matrix with the equipment nodes on both axes. The value

1,000,000 is used for unconnected equipment nodes.

% Travel times
array [NODE, NODE] of int: travel =
[|0, 10000, 1000000, 1000000, 1000000, 1000000|
1000000, 0, 10000, 10000, 1000000, 1000000|
1000000, 1000000, 0, 1000000, 10000, 1000000|
1000000, 1000000, 1000000, 0, 10000, 1000000|
1000000, 1000000, 1000000, 1000000, 0, 10000|
1000000, 1000000, 1000000, 1000000, 1000000, 0|];

A three-
this array is large, only the setup times of one equipment are shown. If no setup
times are specified in the equipment model, we assume no setup time, i.e. a value
of 0. Below a part of a setup table is shown; it involves the setup times for the
A_Input node.

 TNO Public TNO 2025 R11609

 TNO Public 25/38

% Setup times
array [NODE, OPERATION, OPERATION] of int: setup =
[||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0|
0, 0, 0, 0, 0, 0, 5000, 5000, 5000, 0, 0, 0, 0, 0, 0|
0, 0, 0, 0, 0, 0, 5000, 5000, 5000, 0, 0, 0, 0, 0, 0|
0, 0, 0, 0, 0, 0, 5000, 5000, 5000, 0, 0, 0, 0, 0, 0|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0|,
…

The following data structures define the operations that are performed on all the job

parts. The subpart operations have two indices, both starting from 0.

1. The first index is used for part consisting of multiple subparts. This does not apply to the

running example; hence only the value 0 is used.

2. The second index corresponds to the position of an operation in the sequence. It

allows multiple occurrences of the same operation in the same sequence.

% Subpart operations
enum SUBPART = {cake1_assemble_0_0_Assemble, cake1_assemble_0_1_Store,
cake1_bottom_0_0_Decorate, cake1_preslice_0_0_Retrieve,
cake1_preslice_0_1_Slice, cake1_top_0_0_Decorate,
cake2_assemble_0_0_Assemble, cake2_assemble_0_1_Store,
cake2_bottom_0_0_Decorate, cake2_preslice_0_0_Retrieve,
cake2_preslice_0_1_Slice, cake2_top_0_0_Decorate,
cake3_assemble_0_0_Assemble, cake3_assemble_0_1_Store,
cake3_bottom_0_0_Decorate, cake3_preslice_0_0_Retrieve,
cake3_preslice_0_1_Slice, cake3_top_0_0_Decorate,
cake4_assemble_0_0_Assemble, cake4_assemble_0_1_Store,
cake4_bottom_0_0_Decorate, cake4_preslice_0_0_Retrieve,
cake4_preslice_0_1_Slice, cake4_top_0_0_Decorate,
cake5_assemble_0_0_Assemble, cake5_assemble_0_1_Store,
cake5_bottom_0_0_Decorate, cake5_preslice_0_0_Retrieve,
cake5_preslice_0_1_Slice, cake5_top_0_0_Decorate,
cake6_assemble_0_0_Assemble, cake6_assemble_0_1_Store,
cake6_bottom_0_0_Decorate, cake6_preslice_0_0_Retrieve,
cake6_preslice_0_1_Slice, cake6_top_0_0_Decorate};

Another array is used to specify the input and output materials of these part operations.

 TNO Public TNO 2025 R11609

 TNO Public 26/38

array [SUBPART] of OPERATION: operation =
[Assemble__I_Slice20_Slice20__O_Cake20, Store__I_Cake20__O,
Decorate__I_Slice20__O_Slice20, Retrieve__I__O_Cake20,
Slice__I_Cake20__O_Slice20_Slice20, Decorate__I_Slice20__O_Slice20,
Assemble__I_Slice24_Slice24__O_Cake24, Store__I_Cake24__O,
Decorate__I_Slice24__O_Slice24, Retrieve__I__O_Cake24,
Slice__I_Cake24__O_Slice24_Slice24, Decorate__I_Slice24__O_Slice24,
Assemble__I_Slice28_Slice28__O_Cake28, Store__I_Cake28__O,
Decorate__I_Slice28__O_Slice28, Retrieve__I__O_Cake28,
Slice__I_Cake28__O_Slice28_Slice28, Decorate__I_Slice28__O_Slice28,
Assemble__I_Slice20_Slice20__O_Cake20, Store__I_Cake20__O,
Decorate__I_Slice20__O_Slice20, Retrieve__I__O_Cake20,
Slice__I_Cake20__O_Slice20_Slice20, Decorate__I_Slice20__O_Slice20,
Assemble__I_Slice24_Slice24__O_Cake24, Store__I_Cake24__O,
Decorate__I_Slice24__O_Slice24, Retrieve__I__O_Cake24,
Slice__I_Cake24__O_Slice24_Slice24, Decorate__I_Slice24__O_Slice24,
Assemble__I_Slice28_Slice28__O_Cake28, Store__I_Cake28__O,
Decorate__I_Slice28__O_Slice28, Retrieve__I__O_Cake28,
Slice__I_Cake28__O_Slice28_Slice28, Decorate__I_Slice28__O_Slice28];

The following enumeration specifies the types of part dependencies. They are defined for the

subparts. For subparts of the same part, the new dependency type CONSECUTIVE is

introduced.

% Dependencies between operations

enum DEPENDENCY = {NONE, STRICT, STORAGERETRIEVAL, LOOSE, CONSECUTIVE};

The following two-dimensional array captures the part dependencies as specified in the job

model. To save space, only the dependencies of three subparts are shown.

array [SUBPART, SUBPART] of DEPENDENCY: dependency =
[|NONE, STRICT, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE,
NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE,
NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE|
NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE,
NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE,
NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE|
STRICT, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE,
NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE,
NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE|

What the constraint solver needs to do is find an optimum allocation. An allocation is

defined as an assignment of subparts to equipment nodes. These are combined with the

start and end times of this assignment.

 TNO Public TNO 2025 R11609

 TNO Public 27/38

% Allocation of operations to equipment nodes
array [SUBPART] of var NODE: alloc;

% Operation start and end times
array [SUBPART] of var 0..max: start;
array [SUBPART] of var 0..max: end;

% Makespan (maximum end time)

var 0..max: makespan;

The last part of the generated constraint program defines the constraints that constraint

solver must satisfy. The first constraints specify the relation between the start and end time

of subpart operations and the makespan.

% Start and end time constraints
constraint
 forall (t in SUBPART) (
 end[t] == start[t] + duration[alloc[t], operation[t]]
);

constraint
 forall (t in SUBPART) (
 start[t] >= 0
);

constraint
 forall (t in SUBPART) (
 makespan >= end[t]
);

Dependency constraints specify the timing constraints between subpart operations. For
STRICT dependencies, this includes travel time; for other dependencies, a simple start-after-
end constraint suffices.

% Dependency constraints
constraint
 forall (t1, t2 in SUBPART where t1 != t2) (
 if dependency[t1, t2] == STRICT
 then
 end[t1] + travel[alloc[t1], alloc[t2]] == start[t2]
 endif
);

constraint
 forall (t1, t2 in SUBPART where t1 != t2) (
 if dependency[t1, t2] == STORAGERETRIEVAL
 then
 end[t1] <= start[t2]
 endif
);

 TNO Public TNO 2025 R11609

 TNO Public 28/38

constraint
 forall (t1, t2 in SUBPART where t1 != t2) (
 if dependency[t1, t2] == LOOSE
 then
 end[t1] <= start[t2]
 endif
);

The equipment constraints specify that an equipment node can perform only one operation
at a time and that there are setup times between operations performed by the same
equipment node. Note that these setup times may be 0.

% Equipment constraints
constraint
 forall (t1, t2 in SUBPART where t1 != t2) (
 if allocation[t1] == allocation[t2]
 then
 start[t2] >= end[t1] + setup[alloc[t1], operation[t1], operation[t2]]
\/
 start[t1] >= end[t2] + setup[alloc[t2], operation[t2], operation[t1]]
 endif
);

Subpart allocation constraints specify how subpart operations must be allocated given their
dependencies. Some operations must be performed by the same equipment node, whereas
others must be performed by different equipment nodes. The last subpart allocation
constraint specifies the consecutive execution of the subparts of one part. The sequence
constraints are captured by the dependency constraints defined earlier.

% Subpart allocation constraints
constraint
 forall (t1, t2 in SUBPART where t1 != t2) (
 if dependency[t1, t2] == STRICT
 then
 alloc[t1] != alloc[t2]
 endif
);

constraint
 forall (t1, t2 in SUBPART where t1 != t2) (
 if dependency[t1, t2] == STORAGERETRIEVAL
 then
 alloc[t1] == alloc[t2]
 endif
);

constraint
 forall (t1, t2 in SUBPART where t1 != t2) (
 if dependency[t1, t2] == CONSECUTIVE
 then
 alloc[t1] == alloc[t2]
 endif
);

 TNO Public TNO 2025 R11609

 TNO Public 29/38

constraint
 forall (t1, t2 in SUBPART where t1 != t2) (
 if dependency[t1, t2] == CONSECUTIVE
 then
 start[t2] >= end[t1] + setup[alloc[t1], operation[t1], operation[t2]]
 endif
);

constraint
 forall (t1, t2, t3 in SUBPART where t1 != t2 /\ t1 != t3 /\ t2 != t3) (
 if dependency[t1, t2] == CONSECUTIVE /\
 alloc[t1] == alloc[t3] /\ alloc[t2] == alloc[t3]
 then
 end[t3] <= min(start[t1], start[t2]) \/
 start[t3] >= max(end[t1], end[t2])
 endif
);

The last part of the constraint program defines the makespan minimisation objective.

% Makespan constraints
constraint makespan <= max;

solve minimize makespan;

When running the constraint solver for this instance with six cakes, one gets the schedule in

Figure 4.1 with a makespan of 669 seconds. By decorating the largest cakes in the middle of

the schedule, one obtains a schedule which is slightly shorter than the manually optimised

schedule in Figure 3.5.

Figure 4.1: Automatically optimised cake decoration schedule

 TNO Public TNO 2025 R11609

 TNO Public 30/38

4.2 Allocation optimisation
The optimised cake decoration schedule was quickly found by running OR-Tools [14] from

MiniZinc [13]. This is not surprising as the instance is small, and the constraint solver only

must find the best sequence to decorate the cakes. By increasing the number of products to

be manufactured or introducing a greater variety of products, the optimisation challenge

becomes larger.

In this section, we assess the scalability of constraint solving. We do this by increasing the

number of cakes to be decorated in the running example introduced in Chapter 2. For the

scalability assessment, we run OR Tools CP-SAT 9.10.4067, a state-of-the-art constraint

solver, from MiniZinc 2.9.3 on a PC with an Intel Core i7-1255U processor and 16 GB of RAM

running Windows 11 version 24H2. As CP-SAT applies different strategies when using

multiple worker threads [15], we will use the solver both using its default mode, i.e. with a

single worker thread (see Table 4.1), and with 16 parallel worker threads (see Table 4.2).

The first column specifies the size of the instance being evaluated. The second column

contains the makespan of the first solution found and the time needed to find this first

solution. The third column contains the same values for the last, possibly optimum, solution

found. The fourth columns contains the total analysis time, which was maximised at 15

minutes. If the fourth column contains a value, the last solution found is guaranteed to be

the optimum. If a fourth column is empty, the last found solution may be suboptimal. If the

second and third column are empty, no solution has been found within 15 minutes.

Table 4.1: Constraint solving scalability assessment (1 worker thread)

Number of cakes First solution Last solution Total analysis time

1 180 s / 0.1 s 180 s / 0.1 s 0.2 s

2 314 s / 0.1 s 314 s / 0.1 s 0.2 s

3 456 s / 0.2 s 450 s / 0.2 s 0.3 s

4 564 s / 0.5 s 515 s / 19 s -

5 698 s / 0.4 s 594 s / 628 s -

6 840 s / 0.9 s 718 s / 395 s -

7 948 s / 1.3 s 844 s / 493 s -

8 978 s / 785 s 978 s / 785 s -

9 - / - - / - -

10 - / - - / - -

Table 4.2: Constraint solving scalability assessment (16 worker threads)

Number of cakes First solution Last solution Total analysis time

1 180 s / 0.1 s 180 s / 0.1 s 0.2 s

2 348 s / 0.2 s 314 s / 0.2 s 0.2 s

3 456 s / 0.3 s 450 s / 0.3 s 0.4 s

4 576 s / 0.3 s 515 s / 0.3 s 0.4 s

5 908 s / 0.4 s 588 s / 0.4 s 0.5 s

 TNO Public TNO 2025 R11609

 TNO Public 31/38

Number of cakes First solution Last solution Total analysis time

6 936 s / 0.6 s 669 s / 0.7 s 0.8 s

7 945 s / 1.4 s 734 s / 1.5 s 2.1 s

8 1,000 s / 1.3 s 807 s / 1.7 s 6.0 s

9 997 s / 1.7 s 888 s / 2.1 s 53 s

10 998 s / 2.9 s 953 s / 3.8 s 621 s

11 - / - - / - -

12 - / - - / - -

13 - / - - / - -

14 - / - - / - -

15 - / - - / - -

The results in Table 4.1 and Table 4.2 clearly show the benefits of using multiple search

strategies. With 16 worker threads, CP-SAT finds more and better solutions and in less time

than with a single worker thread, even with compensating for the extra workers.

Unfortunately, the tables also show that CP-SAT is not very scalable: no solution can be

found for an instance with more than ten cakes.

The research of Boonstoppel [16] confirms the lack of scalability of Constraint Programming

(CP), especially if there are sequence-dependent setup times. He has compared OR-Tools CP-

SAT [14] and IBM ILOG CP Optimizer [17]. Both solvers suffer from (long) setup times as well

as from long task execution times.

Boonstoppel [16] has also looked at a formalism that does not suffer from large execution

and setup times: Multi-valued Decision Diagrams (MDDs) [18]. MDDs are directed acyclic

graphs that describe the solution space of optimisation problems. The nodes in this graph

correspond to a partial solution, i.e. an assignment of values to some decision variables. The

outgoing arcs of a node correspond to the possible values of one (undecided) decision

variable. An MDD has a source and a sink node. In the source node, none of the decision

variables have received a value; in the sink node, all decision variables have received a value.

Any path from the source to the sink corresponds to a solution, whose cost can be

computed from the arcs on the path.

MDDs can be large, but there are strategies to limit their size and speed up the search, which

is not possible for CP. For instance, the width of MDDs can be maximised; if an MDD layer

exceeds the maximum width, the most promising partial solutions are selected and the

other partial solutions are merged [18]. Boonstoppel [16] shows that MDDs sometimes

outperform CP. He has shown that a solution can be found very quickly if the maximum MDD

width is kept small. Unfortunately, this initial solution is not always near optimal. This could

be overcome by defining better heuristics for selecting and merging partial solutions. MDD

solutions can also be used as a starting point for further searching. This could be

continuation of MDD exploration from the discarded partial solutions, but an MDD solution

could also be used to warm start CP. In , the latter did not allow

CP to find better solutions or to find solutions faster.

 TNO Public TNO 2025 R11609

 TNO Public 32/38

5 Conclusion

In this report, we have analysed the optimisation of high-mix low-volume (HMLV) production

systems, i.e. production systems which produce a high variety of products in small series, in

the context of the AIMS 2024 project.

This report addresses three research questions:

• RQ1. What is an

•

onto its equipment be computed in an fast and accurate manner?

• RQ3. How can a (near-

equipment be found (in reasonable time)?

Chapter 2 of this report provides an answer to RQ1; it describes domain languages to

describe the equipment of a (HMLV) production system, a workload and the allocation of this

workload to the equipment. Compared to the earlier AIMS 2023 results [1], the updated

domain languages allow more systems to be specified, and the specifications are shorter. In

particular, the new domain languages allows specification of assembly and disassembly

operations.

RQ2 is addressed by Chapter 3, which presents a transformation of the domain languages

introduced in Chapter 2 to constraint graphs. Constraint graphs provide a fast analysis of

fully specified allocations. Compared to the earlier AIMS 2023 results [1], the transformation

to constraint graphs generates smaller graphs, which may be beneficial for the analysis of

large instances. Experiments show that allocations of a few hundred products can be

analysed within a few seconds, but that the analysis times increases in a non-linear manner.

This non-linear scaling could be circumvented by using an alternative algorithm for the

underlying longest path computation.

Chapter 4 is concerned with RQ3. It presents a transformation from the domain languages

introduced in Chapter 2 to a constraint programming specification in MiniZinc notation. This

specification can be solved to optimality for workloads involving a few products. For slightly

larger instances, one runs into the lack of scalability of constraint programming: either a

suboptimal solution is found, or no solution at all. So the studied transformation to

constraint programs does not provide a sufficient answer to RQ3. To find near-optimum

allocations for realistic workloads in reasonable time, a heuristic approach is needed. A

promising formalism for such an approach would be Multi-valued Decision Diagrams, as they

have means to quickly find a solution and their search of the optimisation space can be

tailored using heuristics for combining and selecting partial solutions.

 TNO Public TNO 2025 R11609

 TNO Public 33/38

References

[1] J. Verriet,

[2] M. J. Vassalo, E. P. Y. Dekker, F. A. Bosneag, M. J. v. Bokhoven, P. Kostadinov, A. G. Anton,

D. Manolev, G. R. Ratolla, A. E. Mangos, Y. Lin

[3]

[4]

[5]

Management Science, vol. 38, no. 9, pp.

1245-1263, 1992.

[6]

for High- IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 11, no. 6, pp. 696-718, 1992.

[7] Complexity of Computer
Computations, New York, Plenum Press, 1972, pp. 85-103.

[8] Quarterly of Applied Mathematics, vol. 16, no. 1,

pp. 87-90, 1958.

[9] Eclipse

https://eclipse.dev/trace4cps/.

[10] A. Bernstein, D. Nanongkai and C. Wulff- -Weight Single-Source

Shortest Paths in Near- Communications of the ACM, vol. 68, no. 2, pp.

87-94, 2025.

[11] -Weight Single-Source Shortest Paths

in Near- 2023 IEEE 64th Annual Symposium on
Foundations of Computer Science (FOCS), Santa Cruz, CA, 2023.

[12] Google OR-

https://developers.google.com/optimization/cp.

[13]

[14] Google OR- -

https://developers.google.com/optimization/cp/cp_solver.

[15] -SAT Primer: Using and Understanding Google OR-Tools' CP-SAT

-krupke.github.io/cpsat-primer/.

[16] S.

[17]

https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-cp-optimizer.

[18] W.- Tutorials in
Operations Research, vol. 2024, pp. 117-145, 2024.

[19] -

 TNO Intern TNO 2025 R11609 Appendix A

 TNO Intern 34/38

Appendix A

Domain model

The domain model described in this report consists of four languages: a material language,

an equipment language, a job language and an allocation language. The syntaxes of these

languages are visualised in Figure 5.1, Figure 5.2, Figure 5.3, and Figure 5.4, respectively.

 TNO Intern TNO 2025 R11609 Appendix A

 TNO Intern 35/38

Figure 5.1: Material language syntax

 TNO Intern TNO 2025 R11609 Appendix A

 TNO Intern 36/38

Figure 5.2: Equipment language syntax

 TNO Intern TNO 2025 R11609 Appendix A

 TNO Intern 37/38

Figure 5.3: Job language syntax

 TNO Intern TNO 2025 R11609 Appendix A

 TNO Intern 38/38

Figure 5.4: Allocation language syntax

ICT, Strategy & Policy

High Tech Campus 25

5656 AE Eindhoven

www.tno.nl

