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Abstract: Even though Kemeny’s constant was first discovered in Markov chains and
expressed by Kemeny in terms of mean first passage times on a graph, it can also be
expressed using the pseudo-inverse of the Laplacian matrix representing the graph, which
facilitates the calculation of a sharp upper bound of Kemeny’s constant. We show that for
certain classes of graphs, a previously found bound is tight, which generalises previous
results for bipartite and (generalised) windmill graphs. Moreover, we show numerically
that for real-world networks, this bound can be used to find good numerical approximations
for Kemeny’s constant. For certain graphs consisting of up to 100 K nodes, we find a
speedup of a factor 30, depending on the accuracy of the approximation that can be
achieved. For networks consisting of over 500 K nodes, the approximation can be used
to estimate values for the Kemeny constant, where exact calculation is no longer feasible
within reasonable computation time.

Keywords: Kemeny’s constant; effective graph resistance; random walks; spectral graph
theory; pseudo-inverse Laplacian
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1. Introduction
Kemeny’s constant, a graph metric first proposed in 1960 [1], links random walks,

Markov chains, and spectral graph theory; see, for instance, [2–4]. An intuitive way to
understand Kemeny’s constant is by random walks on a graph, which was also how it was
originally presented by Kemeny [1]. For an undirected connected graph with an adjacency
matrix A, we can define a transition matrix Pij = Aij/di for the transition from state i to j,
where di is the degree of node i. This defines an irreducible finite-state Markov chain in
discrete time with an N × N transition matrix Pij [5]. If we also know the mean first-passage
time matrix mij denoting the average time to go from a vertex i to a vertex j (we take mii = 0
by convention), the Kemeny constant is defined by

K(P) =
N

∑
j=1

πjmij, (1)

where πj is the j-th component of the stationary solution of the random walk. The fact that
K(P) does not depend on the index i, which can be interpreted as the starting state of the
random walk and is therefore truly a constant, was discussed in a number of papers [6,7].
Hunter [8] and Kirkland [9] have analysed Relation (1) and established a connection with
generalised matrix inverses.
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The Kemeny constant also has an interpretation as a ’mixing time’, which was orig-
inally proposed by Hunter in [7]. Here, we briefly repeat the demonstration that the
Kemeny constant can be identified by a mixing time and show that this can be directly
interpreted in terms of entropy. Let us define the ’time to mixing’, T, of a Markov chain
{Xn} following [7], as the smallest index k at which Xk = Y, where Y is a random variable
distributed according to the stationary distribution of the Markov chain {πj}. We can now
calculate the conditional expectation value of T, E[T|Y, X(0) = i],

E[T|Y, X(0) = i] = ∑
j

E[T, Y = j|X(0) = i]P[Y = j]

= ∑
j

E[Tij|X(0) = i]πj = ∑
j

mijπj = K(P), (2)

where Tij is the mean first-passage time for going from node i to node j.
Expression Equation (2) for the mixing time permits an interpretation in terms of rela-

tive entropy or Kullback–Leiber divergence D(p||π), which measures the distance between
the distributions p and π; see also [10]. The relative entropy is defined as

Dn(p||π) = ∑
j

pj(n) log
pj(n)

πj
.

Since Dn(p||π) ≥ 0 with equality only when pj(n) = πj for all j = 1, . . . , N, the time
to mixing can be interpreted as the smallest value of n for which the relative entropy
Dn(p||π) = 0.

Kemeny’s constant has recently also been suggested as a metric to identify bottleneck
roads whose removal would greatly reduce the connectivity of the network [11] or as
a metric to determine the ‘superspreader’ links that transmit disease between different
communities [12].

It has already been established that there are several equivalent ways to express
Kemeny’s constant: using effective graph resistance, random walks, spectral graph theory,
and pseudo-inverse Laplacians; see [8].

The study of Kemeny’s constant is still an active and relevant research field, as was
showcased by the mini-symposium “Kemeny’s constant on networks and its application”,
which was organised as part of the 24th Conference of the International Linear Algebra
Society, which took place in Galway, Ireland, 20–24 June 2022 [13] as well as recent papers
addressing applications of Kemeny’s constant to different networks [14,15].

In 2017, Wang et al. [4] derived a closed-form formula for Kemeny’s constant, K(P)
for a random walk on a graph G with N nodes and L edges , where the transition matrix
was given by P = ∆−1 A(G), where A(G) is the adjacency matrix of G and ∆ is a diagonal
matrix containing the degrees of the nodes. In [4], it was shown that K(P) can be expressed
in terms of the Moore–Penrose pseudo-inverse Q† of the Laplacian matrix of G, as

K(P) = ζTd − dTQ†d
2L

, (3)

where the column vector ζ =
(
Q†

11, Q†
22, . . . , Q†

NN
)

and d(G) = (d1, d2, . . . , dN) denotes
the degree vector for the graph.

In [4], not only Equation (3) was derived, but also a closely connected upper bound:

K(P) ≤ ζTd − H(G)

D(G)µ1(G)
≡ KU(P), (4)
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where D(G) is the average degree and µ1(G) is the largest eigenvalue of the Laplacian
matrix ∆(G) − A(G) corresponding to graph G. Here, ∆(G) denotes the diagonal ma-
trix containing the degrees of the nodes. The heterogeneity index H(G), measuring the
variability in the degrees of the nodes (see [16]) is defined as

H(G) =
1
N

N

∑
i=1

(di − D(G))2,

where di is the degree of the i-th node.
It was shown in [17] that the upper bound given in Equation (4) is tight, meaning that

we have an equality in Equation (4), for two classes of graphs, namely complete bipartite
graphs and (generalised) windmill graphs. A windmill graph W(η, k) consists of η copies of
the complete graph Kk, with each node connected to a common node. Two generalisations
of windmill graphs were suggested by Kooij [18] in 2019. For both generalisations, we
replace the central node, connecting all η copies of the complete graph Kk, with l central
nodes. For the first generalisation, we assume that the l central nodes are all connected,
i.e., they form a clique Kl . We call this a generalised windmill graph of Type I and denote
it by W ′(η, k, l). For the second generalisation, we assume that the l central nodes have
no connections among each other. We will refer to it as a Type II generalised windmill
graph and denote it by W ′′(η, k, l). Figure 1 shows examples of a windmill graph and its
two generalisations,

Figure 1. A windmill graph and generalised windmills of Types I and II.

The aim of this paper is four-fold. First, we will consider a broad family of graphs,
which contain complete bipartite and (generalised) windmill graphs as special cases,
and show analytically that for these graphs, the bound Equation (4) is tight. Graphs
in this family have in common that they are bimodal and have a diameter of two. However,
we will also show that these conditions are not sufficient to ensure that Equation (4) is tight.
Next, we compare the complexity of the computation of the upper-bound Equation (4) with
the exact expression for Kemeny’s constant, given by Equation (3). In [17], we have already
compared the exact value of K(P) with the upper bound for some real-world networks.
However, the considered networks were of rather moderate size (N ≤ 754). Here, we will
assess the performance of KU(P) on real-world networks of sizes up to around 365 K nodes
and 1.72 M edges.

Finally, in addition to Equation (4), we also assess the performance of an upper bound
suggested by de Vriendt [19] based on the so-called resistance radius of a graph:

K(P) ≤ Lσ2 ≡ K∗, (5)

where the resistance radius σ2 is defined as

σ2 =
1
2
(uTΩ−1u)−1, (6)

with Ω denoting the resistance matrix and u the all-one vector. The upper-bound
Equation (5) is tight for vertex-transitive graphs. Here, we remark that vertex-transitive
graphs are rather exceptional and are typically highly symmetric; examples of vertex-
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transitive graphs are Cayley graphs and the Petersen graph [20]. We will show in this paper
that the bound K∗ is not a good estimate for the Kemeny constant for the classes of graphs
that are considered in this paper and that KU is in general a much better estimate.

2. A Family of Biregular Graphs with Diameter 2
2.1. Construction

The aim is to construct a family of graphs that contains the complete bipartite and
(generalised) windmill graphs as special cases and is commonly known as the combination
of two regular graphs, denoted G1 ∨ G2. We start the construction by considering a d1-
regular graph G1 on N1 nodes, and a k2-regular graph G2 on N2 nodes. We assume k1 ≥ 0
and also k2 ≥ 0. Finally, we connect every node in G1 to every node in G2 to obtain the
graph G. The nodes in G that are also in G1 have degree k1 + N2, while the nodes in G2 have
degree k2 + N1. This construction yields a graph G = G1 ∨ G2 that is a so-called biregular
graph in which all nodes of G1 have the same degree and the same holds for all nodes of
G2; see also [21]. Only if k1 + N2 = k2 + N1 is the graph G regular. By construction, G has
diameter 2.

The choice of k1 = 0 and k2 = 0 leads to the complete bipartite graph KN1,N2 . If we
take η isolated copies of the complete graph Kk as G1 and an isolated node for G2, then G
is the windmill graph W(η, k). If instead, we let G2 be a complete graph Kl , then G is a
generalised windmill graph of Type I, W ′(η, k, l), whereas if we let G2 consist of l isolated
nodes, G is a generalised windmill graph of Type II, W ′′(η, k, l).

Figure 2 shows an example of a graph that belongs to the suggested family of graphs.
Here, G1, on the left side of the figure, is a random regular graph with k1 = 3, on
N1 = 10 nodes, while G2 is a graph on N2 = 8 nodes, where each node has degree k2 = 5.
For the graph G, the nodes in G1 have degree 11, while the nodes in G2 have degree 15.

Figure 2. Graph G on 18 nodes, where G1 is a random 3-regular graph on 10 nodes, and G2 is a
5-regular graph on 8 nodes.

2.2. Tightness of the Upper Bound KU(G)

We will now show for the family of graphs proposed in the previous subsection that
the upper-bound Equation (4) for Kemeny’s constant is tight.

Theorem 1. Consider two graphs G1 and G2 with all vertices in G1 with degree d1 and those in G2

degree d2. If we connect each of the vertices in G2 with all nodes of G1, then Kemeny’s constant K(P)
for the resulting graph G is given by K(P) = ζTd − H(G)

Dµ1
, that is, the upper-bound Equation (4)

is tight.
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Proof. First, we give expressions for the average degree D and the heterogeneity index H,
which appear in the upper-bound Equation (4). Denoting the degrees of the nodes in G in
G1 and G2 as D1 and D2, respectively, we obtain

D1 = D(G1) + N2 = d1 + N2 (7)

and
D2 = D(G2) + N1 = d2 + N1 (8)

The average degree of G, D(G), which we abbreviate for notational convenience to D, is
defined by

D =
D1N1 + D2N2

N1 + N2
. (9)

The heterogeneity index H(G), a metric which quantifies the variability of the degree
distribution (see [16]), is defined as follows:

H(G) =
1
N

N

∑
i=1

(Di − D)2, (10)

where Di denotes the degree of node i in graph G. Using the expressions for degrees D1

and D2 found in (7) and (8) and expression (9) for D, we obtain

H(G) =
1

N1 + N2

(
N1

∑
i=1

(D1 − D)2 +
N2

∑
i=N1+1

(D2 − D)2

)

=
1

N1 + N2

(
N1(D1 − D)2 + N2(D2 − D)2

)
=

N1N2(D1 − D2)
2

(N1 + N2)2 .

(11)

We will now prove the statement by first calculating the Laplacian matrix Q for the
graph G, which has the following special structure:

Q =

(
A1 −JN1×N2

−JN2×N1 A2

)
, (12)

where JN2×N1 is an all-one N2 × N1 matrix, and the square matrices A1 and A2 are defined as

A1 = QG1 + N2 I[N1,N1]

A2 = QG2 + N1 I[N2,N2]
,

(13)

where QG1(G2)
, is the Laplacian of graph G1 (G2), and I[N1,N1]]

, I[N2,N2]
denote the identity

matrices of size N1 × N1 and N2 × N2, respectively. The decomposition of Q into 4 blocks
can be understood by realising that the upper right-hand block, −JN1×N2 , represents the N2

links that exist between each vertex of G1 and all the vertices of G2. Since Q is a Laplacian
matrix, we have to ensure that all rows sum up to zero, which can be achieved by adding
N2 to each of the diagonal entries of the N1 × N1 block in the upper left-hand corner, that
is, the block A1 should be as defined above. Analogously, we find that the lower left-hand
and right-hand blocks should be equal to −JN2×N1 and A2, respectively.

Two eigenvectors, v1 and vN , can be found by inspection. vN = (1, . . . , 1)T , which
corresponds to eigenvalue µN = 0, and v1 = (N2, . . . , N2,−N1, . . . ,−N1)

T , which has N1

entries equal to N2 and N2 entries equal to −N1 and corresponds to µ1 = N1 + N2.
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Because the largest Laplacian eigenvalue is upper-bounded by N, the number of nodes
in a graph (see [22]), we directly obtain that µ1 is the largest eigenvalue of Q. Combining
this with Equations (9)–(11), we obtain

H(G)

Dµ1
=

N1N2(D1 − D2)
2

(N1 + N2)2(D1N1 + D2N2)
. (14)

Since eigenvectors corresponding to different eigenvalues are all orthogonal and those
corresponding to the same eigenvalues can be chosen to be orthogonal, due to the symmetry
of Q, all eigenvectors v = (x1, x2, . . . , xN1+N2)

T that are not equal to v1 or vN are subject to

x1 + x2 + · · ·+ xN1+N2 = 0

N2(x1 + · · ·+ xN1)− N1(xN1+1 + · · ·+ xN1+N2) = 0,

which leads to

x1 + x2 + · · ·+ xN1 = 0

xN1+1 + · · ·+ xN1+N2 = 0. (15)

We next turn to the expression dTQ†d, where Q† = ∑N1+N2−1
i=1

1
µi

v̂i v̂T
i where µi is

the i-th eigenvalue of Q and v̂i is the normalised eigenvector. The conditions for the
eigenvectors (15) imply that all terms in the expression dTQ†d vanish except the term
associated with v1. More precisely, we find that

dTQ†d =
N1+N2−1

∑
i=2

(dT v̂i)
2

µi
+

(v̂T
1 d)2

µ1
=

N1N2(D1 − D2)
2

(N1 + N2)2 , (16)

where d = (D1, D2)
T , so the first N1 components all have degree D1 and the remaining

components have degree D2, which implies dTvi = 0 by Equation (15). Finally, because from
D = 2L

N , we obtain
2L = D1N1 + D2N2 (17)

it follows that dT Q†d
2L equals Equation (14), which proves the proposition.

2.3. Some Examples

As a first example, we consider the graph depicted in Figure 2, where N1 = 10,
d1 = 3, N2 = 8 and d2 = 5. Using Python (https://www.python.org/) code, we have
evaluated both K and KU . For this network, we obtain K = 16.33864, which is equal to KU

to numerical precision, as should be according to Theorem 1. On the other hand, the upper
bound K∗ based upon the resistance radius gives K∗ = 19.29615, which is reasonably close
to the actual value.

Next, we consider a graph where N1 = 50, d1 = 4, N2 = 10 and d2 = 6; see Figure 3.
Here, we get K = 59.19805, and again, K and KU are numerically extremely close. On the
other hand, for this graph, the bound Equation (5) is two orders larger than the actual value:
K∗ = 533.03153.

As a final example, we consider the case where N1 = 100, d1 = 10, N2 = 20 and d2 = 8;
see Figure 4. Now, K = 119.24078 and again K and KU are equal to numerical precision.
Again, the bound based on the resistance radius is much higher: K∗ = 1652.63986.

https://www.python.org/
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Figure 3. Graph G on 60 nodes, where G1 is a random 4-regular graph on 50 nodes, and G2 is a
random 6-regular graph on 10 nodes.

Figure 4. Graph G on 120 nodes, where G1 is a random 10-regular graph on 100 nodes, and G2 is a
random 8-regular graph on 20 nodes.

We end this subsection by noting that the choice for the examples in this subsection
was rather arbitrary. We also ran our Python script on several other graphs with sizes
up to 1500 nodes. Each time, it yielded the same result: K and KU have values that are
numerically very close (see also [4,17] for more numerical comparisons), while the upper
bound K∗ exceeds Kemeny’s constant by a few orders.

3. Graphs with Diameter 2 for Which KU(P) Is Not Tight
3.1. Bimodal Graphs with Diameter 2 for Which Equation (4) Is Not Tight

The numerical results of the examples on biregular graphs with diameter 2 from the
previous section showed that in all these cases, the approximation of K by KU is actually
exact. In other words, the bound KU is tight in these cases. Therefore, one might be tempted
to believe that Equation (4) is tight for all biregular graphs with diameter 2. In this section,
we prove that this is not the case by giving some counterexamples.

The simplest counterexample we could find consists of the cycle graph C5 with an
additional link; see Figure 5.

For this graph, we get K = 3.71212, KU = 3.72380 and K∗ = 4.21488. There is a simple
procedure to check whether or not a biregular graph G with diameter 2 belongs to the
graph family constructed in the previous section. First, partition the nodes into two sets
S1 and S2 where all the nodes in the set S1 have degree D1, while all the nodes in the set
S2 have degree D2. Next, verify if the number of links between the 2 sets is |S1 × S2| and
all nodes of S1 are linked to all nodes of S2. If this is not the case, the graph G ̸= S1 ∨ S2.
In the other case, remove all |S1 × S2| links between the sets S1 and S2. If the remaining
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two graphs are not both regular, then the original graph G does not belong to the family
constructed in the previous section, that is, G ̸= S1 ∨ S2.

Figure 5. Smallest biregular graph with diameter 2 for which the upper-bound Equation (4) is
not tight.

The second counterexample is constructed by adding a link to the Petersen graph; see
Figure 6.

Figure 6. Petersen graph with one additional link.

For this graph, we get K = 9.76597, KU = 9.77389 and K∗ = 10.26963.

3.2. Non-Biregular Graphs with Diameter 2

We now give an example of a non-biregular graph with diameter 2, for which the
upper-bound Equation (4) also does not equal Kemeny’s constant. We construct the graph
by first taking a complete graph KN on N nodes. Next, we add one node and connect it
to one node in KN and therefore the resulting graph has diameter 2. The resulting graph
has N − 1 nodes with degree N − 1, one node with degree N, and one node with degree 1.
Figure 7 shows an example with N = 10.

Figure 7. Non-biregular graph with diameter 2.
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Applying Equation (3), we get K = 9.26522, while the upper bound of Equation (4)
gives KU = 9.83439, while K∗ = 31.28000.

4. Regular Graphs
In this section, we consider regular graphs on N nodes with degree r. In this case,

the relation between Kemeny’s constant and the effective graph resistance was shown [23]
to be

K(P) =
r
N

RG, (18)

where RG denotes the effective graph resistance. Next, we show that for these graphs,
the upper-bound Equation (4) is also tight. For this, we will use the following expression
for the effective graph resistance (see [4]):

RG = N
N

∑
i=1

Q†
ii. (19)

For r-regular graphs, H = 0, and therefore Equation (4) gives

KU = ζTd = rζTu = r
N

∑
i=1

Q†
ii =

r
N

RG, (20)

hence KU = K according to Equation (18).
As an example, we consider a random 3-regular graph on 100 nodes (see Figure 8),

which has a diameter 10. We get numerically K = 195.30524, which is indeed equal to KU

up to the numerical precision of 10−17. Applying Equation (5) gives K∗ = 218.32805. In this
case, the upper-bound Equation (5) is not tight because the graph is not vertex-transitive.

Figure 8. Random 3-regular graph on 100 nodes.

5. Complexity for the Computation of KU(P)
The time complexity of K(P), computed via Equation (3), is dominated by the Lapla-

cian pseudo-inverse, which is as expensive as performing a dense matrix multiplication
and takes O(N3) in practice with standard tools. On the other hand, the time complexity
of KU(P) mainly depends on two operations: computing the largest Laplacian eigenvalue
and performing the dot product of a degree vector and the diagonal element vector of
the Laplacian pseudo-inverse. Interestingly, to compute KU(P), we can avoid the full
pseudo-inversion as it only requires the diagonal elements of the Laplacian pseudo-inverse.
Algorithms that approximate the diagonal (or the trace) of matrices often use iterative
methods, sparse direct methods [24], Monte Carlo [25] or deterministic probing tech-
niques [26]. Although faster than computing the full inversion, these approaches are still
time-consuming in practice for large graphs [27]. For that reason, we employ a recently
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proposed algorithm that approximates the diagonal entries of the Laplacian pseudo-inverse
using combinatorial connections [27]. This algorithm exploits the relation between effective
resistance and the pseudo-inverse Laplacian. In order to calculate the diagonal elements
of Q†, it is sufficient to compute the electrical farness fel(u) of each node u in the set of all
nodes V; the farness is defined by

fel(u) = ∑
v∈V/{u}

R(u, v) = NQ†
uu + Tr(Q†)

Here, R(u, v) is the effective resistance between node u and v, which is the potential
difference between u and v when a unit current is injected in graph G at node u and
extracted at node v [28]. Rather than calculate R(u, v) for each pair of nodes, we sam-
ple a set of uniform spanning trees. This approach provides a probabilistic absolute
approximation guarantee.

The algorithm’s time complexity is summarised in the following proposition:

Proposition 1 ([27]). Let G = (V, E) be an undirected and weighted graph with N nodes and
L edges. The sampling algorithm, briefly described above, gives an approximation of the diagonal
elements of Q† with absolute error ±ϵ with probability 1 − δ in an expected time O(L · ecc3(u) ·
ϵ−2 · log(L/δ)), where ecc(u) is the length of the longest shortest path (eccentricity) starting in
a selected node u. For small-world graphs and δ = 1/N (for high probability), this yields a time
complexity of O(L log4 N · ϵ−2).

For networks that have small-world characteristics, a common feature for many real-
world networks [29], the above algorithm obtains a ±ϵ-approximation with high probability,
in a time that is linear in L up to polylogarithmic terms and quadratic in 1/ϵ. Furthermore,
computing the largest Laplacian eigenvalue does not change the overall complexity bound.
More precisely, this step often takes O(L) time for sparse matrices using standard iterative
methods, such as the Lanczos algorithm [30]. In general, the actual running time for this
step highly depends on the desired accuracy and the eigenvalue distribution of the involved
matrix. Overall, the complexity bound for computing KU(P) for small-world graphs using
the above techniques is linear in the number of links L (up to a polylogarithmic factor).

6. Analysis of Some Large Real-World Networks
In this section, we analyse the performance of our proposed bound, KU(P), compared

to Kemeny’s constant, K(P), in terms of accuracy and running time results. For KU(P), our
implementation uses the NetworKit [31] graph library to compute the diagonal elements of
Q† (via the algorithm of Angriman et al. [27]) and the Slepc library (https://slepc.upv.es/)
(accessed on 2 December 2024) to compute the largest Laplacian eigenvalue. K(P), in turn,
is computed via Equation (3) and our implementation uses the Eigen library (http://eigen.
tuxfamily.org) (accessed on 2 December 2024) to compute the entire pseudo-inverse, Q†.
We do not include any comparisons against K∗ since, computationally, it is as expensive as
the exact computation of Kemeny’s constant. Our test machine is a shared-memory server
with a 2x 18-Core Intel Xeon 6154 CPU and a total of 1.5 TB RAM. To ensure reproducibility,
experiments are managed by SimexPal [32]. In Table 1, we list the real-world graphs that
are used in our experiments, downloaded from SNAP [33] and NR [34] public repositories.
In this context, we consider as medium graphs those whose vertex count is <57 K. The
largest graph has around 365 K nodes and 1.72 M edges.

For the medium graphs of Table 1, we are able to compare our bound KU(P) relatively
to Kemeny’s constant K(P), and the results are illustrated in Figure 9. KU(P) is computed
with different error bounds (ϵ) for the approximation of the diagonal elements (via the

https://slepc.upv.es/
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
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algorithm of Angriman et al. [27])—they correspond to the respective numbers next to the
names in Figure 9. Regarding the accuracy, we observe that our approach for computing
KU(P) is overall highly accurate for all values of ϵ and graphs. More precisely, on average
(computed via geometric mean) over the medium-size graphs, our approach is 0.33% 0.27%
0.25% and 1.26% away from the exact Kemeny’s constant for ϵ = 0.1, 0.3, 0.5 and 0.9,
respectively. Meanwhile, the running time is on average 2, 18, 48 and 141× faster than the
exact computation for each ϵ, respectively. Figure 9a shows that on individual graphs, a
larger ϵ value (ϵ = 0.9) may result in a slightly less accurate bound—up to 10% away from
the exact value (arx). Moreover, in Figure 9b, we observe that for the inf graph, computing
the exact Kemeny’s constant is much faster than computing KU(P) via Algorithm [27]. The
primary reason for that is the small size (6K edges) for which an exact computation of the
entire pseudo-inverse is still fast enough. A second reason for the slow performance of the
algorithm of Angriman et al. could be due to the high diameter of the graph in question
(≫log N).

Table 1. Summary of graph instances, providing (in order) network name, type, abbreviation, vertex
count, and edge count.

Graph Type ID |V | |E|
inf-power infrastructure inf 4 K 6 K
facebook-ego-combined social fac 4 K 8.8 K
p2p-Gnutella04 internet p2p 10 K 39 K
ca-HepPh collaboration ca- 11 K 117 K
arxiv-astro-ph collaboration arx 17 K 196 K
eat words eat 23 K 297 K
arenas-pgp infrastructure are 24 K 10 K
as-caida20071105 internet as- 26 K 53 K
ia-email-EU communication ia- 32 K 54.4 K

loc-brightkite social lob 57 K 213 K
soc-Slashdot0902 social soc 82 K 504 K
flickr images fli 106 K 2.31 M
livemocha social liv 104 K 2.19 M
loc-gowalla-edges social log 196 K 950 K
web-NotreDame web web 325 K 1.09 M
citeseer citation cit 365 K 1.72 M
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Figure 9. Relative quality (a) and speedup (b) results (per graph) for computing KU(P) for medium
graphs (n < 57 K) of Table 1. Results are relative to exact computation of K(P).

(a) (b)

In Table 2, we illustrate our results for the largest graphs of Table 1. For this experiment,
we set ϵ = 0.5 for the approximation of the diagonal elements of Q† as this offers the best
trade-off between accuracy and speed, according to the previous experiment. Unfortunately,
we were not able to compute exact values for Kemeny’s constant for these graphs, as all
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involved runs timed out at 18,000 s. This is due to the prohibitive time and space complexity
of the pseudo-inversion operation required by K(P).

Table 2. Absolute results for KU(P) on the largest graphs of Table 1. Comparison to K(P) is prohibitive
due to the (large) size of the graphs in question.

Graph KU(P) Time (h:min:s)

lob 80,903 48.83 s
soc 96,102 50.87 s
fli 122,185 1 min:38.11 s
liv 120,525 37.07 s
log 271,577 5 min:10.77 s
web 1,009,760 1 h:11 min:19.36 s
cit 508,244 1 h:16 min:11.51 s

7. Conclusions
We have investigated Kemeny’s constant K(P) for a number of networks using the

exact expression from [4] and compared this expression with two upper bounds: one K∗(P)
that was derived in Ref. [19] and is known to be tight for vertex-transitive graphs, and the
other bound KU(P) was derived in [4] and is written in terms of degrees of the nodes, the di-
agonal elements of the pseudo-inverse Laplacian, the largest eigenvalue of the Laplacian
matrix and the heterogeneity of the degrees of the nodes.

We have numerically demonstrated that the bound KU(P) is generally a much better
approximation for K(P) than K∗(P) for the networks that we have explored. Moreover,
we have proved that for any graph G composed of two regular graphs G1 and G2 with
all nodes of the graph G1 connected to each node of G2, the bound KU(P) is tight. This
generalises earlier findings that the bound KU(P) is tight for (generalised) windmill and
complete bipartite graphs.

As an illustration of the advantages of using the expression KU(P) to estimate the
Kemeny constant, we numerically calculated the Kemeny constant for a number of real-
world large networks. We find that the calculation of KU(P) can be performed very
efficiently, displaying efficiency gains in the order of a factor 100–1000, for networks up to
57 K nodes. The upper bound can still be obtained in a reasonable time for networks up to
365 K nodes.
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