
Tutorial Measuring and Modeling System
Performance

Gerrit Muller
University of South-Eastern Norway-NISE

Hasbergsvei 36 P.O. Box 235, NO-3603 Kongsberg Norway

gaudisite@gmail.com

Abstract

Performance is a key system level property. Performance, too, is affected by the
myriad of decisions and choices in the development and configuration of both
hardware and software components.
This tutorial focuses on measuring and modeling system performance. We will
discuss computer hardware architectures and execution architectures, the sofware
design concepts for the dynamic behavior of the system.

Distribution
This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve
by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is
published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the
document remains complete and unchanged.

All Gaudí documents are available at:
http://www.gaudisite.nl/

version: 1.1 status: draft August 16, 2025

Contents

1 Introduction to System Performance Design 1
1.1 Introduction . 1
1.2 What if ... 1
1.3 Problem Statement . 4
1.4 Summary . 5
1.5 Acknowledgements . 5

2 Performance Method Fundamentals 7
2.1 Introduction . 7
2.2 Incremental approach . 8
2.3 Multiple views needed to understand system performance 12

2.3.1 Construction Decomposition 12
2.3.2 Functional Decomposition 13
2.3.3 Execution Architecture 14

2.4 Benchmarking . 16
2.5 Acknowledgements . 18

3 Modeling and Analysis Fundamentals of Technology 19
3.1 Introduction . 19
3.2 Computing Technology Figures of Merit 20
3.3 Caching in Web Shop Example 23
3.4 Summary . 28

4 Modeling and Analysis: Measuring 29
4.1 introduction . 29
4.2 Measuring Approach . 31

4.2.1 What do we need? . 32
4.2.2 Define quantity to be measured. 33
4.2.3 Define required accuracy 34
4.2.4 Define the measurement circumstances 35
4.2.5 Determine expectation 35
4.2.6 Define measurement set-up 38

4.2.7 Expectation revisited . 39
4.2.8 Determine actual accuracy 39
4.2.9 Start measuring . 41
4.2.10 Perform sanity check . 44
4.2.11 Summary of measuring Context Switch time on ARM9 . . 44

4.3 Summary . 45
4.4 Acknowledgements . 46

5 Modeling and Analysis: Budgeting 47
5.1 Introduction . 47
5.2 Budget-Based Design method 48

5.2.1 Goal of the method . 48
5.2.2 Decomposition into smaller steps 49
5.2.3 Possible order of steps 49
5.2.4 Visualization . 50
5.2.5 Guidelines . 50
5.2.6 Example of overlay budget for wafersteppers 51
5.2.7 Example of memory budget for Medical Imaging Worksta-

tion . 52
5.2.8 Example of power budget visualizations in document han-

dling . 53
5.2.9 Evolution of budget over time 53
5.2.10 Potential applications of budget method 56

5.3 Summary . 56
5.4 Acknowledgements . 56

6 Formula Based Performance Design 58
6.1 Introduction . 58
6.2 Using n-order formulas . 58
6.3 Example of n-order formulas in MR reconstruction 59
6.4 Summary . 62
6.5 Acknowledgements . 63

Gerrit Muller
Tutorial Measuring and Modeling System Performance
August 16, 2025 version: 1.1

University of South-Eastern Norway-NISE

page: iii

Gerrit Muller
Tutorial Measuring and Modeling System Performance
August 16, 2025 version: 1.1

University of South-Eastern Norway-NISE

page: iv

Chapter 1

Introduction to System
Performance Design

UI process

screen

Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

What If....

store

1.1 Introduction

This article discusses a typical example of a performance problem during the creation
of an additional function in an existing system context. We will use this example
to formulate a problem statement. The problem statement is then used to identify
ingredients to address the problem.

1.2 What if ...

Let’s assume that the application asks for the display of 3 ·3 images to be displayed
“instanteneously”. The author of the requirements specification wants to sharpen
this specification and asks for the expected performance of feasible solutions. For
this purpose we assume a solution, for instance an image retrieval function with
code that looks like the code in Figure 1.1. How do we predict or estimate the
expected performance based on this code fragment?

If we want to estimate the performance we have to know what happens in the
system in the retrieve_image function. We may have a simple system, as shown in

Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

alternative application code:

event 3*3 -> show screen 3*3

<screen 3*3>

<row 1>

<col 1><image 1,1></col 1>

<col 2><image 1,2></col 2>

<col 3><image 1,3></col 3>

</row 1>
<row 2>

<col 1><image 1,1></col 1>

<col 2><image 1,2></col 2>

<col 3><image 1,3></col 3>

</row 1>

<row 2>

<col 1><image 1,1></col 1>

<col 2><image 1,2></col 2>

<col 3><image 1,3></col 3>

</row 3>

</screen 3*3>

application need:

at event 3*3 show 3*3 images

instanteneous
design

design

or

Figure 1.1: Image Retrieval Performance

Figure 1.2, where the retrieve_image function is part of a user interface process.
This process reads image data directly form the hard disk based store and renders
the image directly to the screen. Based on these assumptions we can estimate
the performance. This estimation will be based on the disk transfer rate and the
rendering rate.

UI process

screen

Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

What If....

store

Figure 1.2: Straight Forward Read and Display

However, the system might be slightly more complex, as shown in Figure 1.3.
Instead of one process we now have multiple processes involved: database, user
interface process and screen server. Process communication becomes an additional
contribution to the time needed for the image retrieval. If the process communi-
cation is image based (every call to retrieve_image triggers a database access and a
transfer to the screen server) then 2 · 9 process communications takes place. Every
process communication costs time due to overhead as well as due to copying image
data from one process context to another process context. Also the database access
will contribute to the total time. Database queries cost a significant amount of time.

The actual performance might be further negatively impacted by the overhead
costs of the meta-information. Meta-information is the describing information of
the image, typically tens to hundreds of attributes. The amount of data of meta-
information, measured in bytes, is normally orders of magnitude smaller than the

Gerrit Muller
Introduction to System Performance Design
August 16, 2025 version: 0.5

University of South-Eastern Norway-NISE

page: 2

Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

What If....

screen
server

9 *

retrieve

9 *

update

UI process

database

screen

Figure 1.3: More Process Communication

amount of pixel data. The initial estimation ignores the cost of meta-information,
because the of amount of data is insignificant. However, the chosen implemen-
tation does have a significant impact on the cost of meta-information handling.
Figure 1.4 shows an example where the attributes of the meta-information are inter-
nally mapped on COM objects. The implementation causes a complete “factory”
construction for every attribute that is retrieved. The cost of such a construction
is 80µsec. With 100 attributes per image we get a total construction overhead of
9 · 100 cdot80µs = 72ms. This cost is significant, because it is in the same order
of magnitude as image transfer and rendering operations.

Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

What If....

Meta

Image data

Attribute = 1 COM object

100 attributes / image

9 images = 900 COM objects

1 COM object = 80µs

9 images = 72 ms

Attributes

screen
server

9 *

retrieve

9 *

update

UI process

database

screen

Figure 1.4: Meta Information Realization Overhead

Figure 1.5 shows I/O overhead as a last example of potential hidden costs. If
the granularity of I/O transfers is rather fine, for instance based on image lines, then
the I/O overhead becomes very significant. If we assume that images are 5122, and
if we assume tI/O = 1ms, then the total overhead becomes 9 · 512 · 1ms ≈ 4.5s!

Gerrit Muller
Introduction to System Performance Design
August 16, 2025 version: 0.5

University of South-Eastern Norway-NISE

page: 3

Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

What If....

- I/O on line basis (512
2
 image)

- . . .

9 * 512 * tI/O

tI/O ~= 1ms

Figure 1.5: I/O overhead

1.3 Problem Statement

Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

can be:

fast, but very local

slow, but very generic

slow, but very robust

fast and robust

...

The emerging properties (behavior, performance)

cannot be seen from the code itself!

Underlying platform and neighbouring functions

determine emerging properties mostly.

Figure 1.6: Non Functional Requirements Require System View

In the previous section we have shown that the performance of a new function
cannot directly be derived from the code fragment belonging to this function. The
performance depends on many design and implementation choices in the SW layers
that are used. Figure 1.6 shows the conclusions based on the previous What if
examples.

Figure 1.7 shows the factors outside our new function that have impact on the
overall performance. All the layers used directly or indirectly by the function have
impact, ranging from the hardware itself, up to middleware providing services. But
also the neighboring functions that have no direct relation with our new function
have impact on our function. Finally the environment including the user have
impact on the performance.

Figure1.8 formulates a problem statement in terms of a challenge: How to
understand the performance of a function as a function of underlying layers and
surrounding functions expressed in a manageable number of parameters? Where
the size and complexity of underlying layers and neighboring functions is large
(tens, hundreds or even thousands man-years of software).

Gerrit Muller
Introduction to System Performance Design
August 16, 2025 version: 0.5

University of South-Eastern Norway-NISE

page: 4

usage context

HW HW HW

OS OS OS

MW MW MW MW

F

&

S

F

&

S

F

&

S

F

&

S

F

&

S

F

&

S

F

&

S

F

&

S

Functions &

Services

Middleware

Operating systems

Hardware

performance and behavior of a function

depend on realizations of used layers,

functions in the same context,

and the usage context

Figure 1.7: Function in System Context

HW HW HW

OS OS OS

MW MW MW MW

F

&

S

F

&

S

F

&

S

F

&

S

F

&

S

F

&

S

F

&

S

F

&

S

Functions & Services

Middleware

Operating systems

Hardware

Performance = Function (F&S, other F&S, MW, OS, HW)

MW, OS, HW >> 100 Manyear : very complex

Challenge: How to understand MW, OS, HW

with only a few parameters

Figure 1.8: Challenge

1.4 Summary

We have worked through a simple example of a new application level function.
The performance of this function cannot be predicted by looking at the code of the
function itself. The underlying platform, neighboring applications and user context
all have impact on the performance of this new function. The underlying platform,
neighboring applications and user context are often large and very complex. We
propose to use models to cope with this complexity.

1.5 Acknowledgements

The diagrams are a joined effort of Roland Mathijssen, Teun Hendriks and Gerrit
Muller. Most of the material is based on material from the EXARCH course created
by Ton Kostelijk and Gerrit Muller.

Gerrit Muller
Performance Method Fundamentals
August 16, 2025 version: 0.2

HSN-NISE

page: 5

Summary of Introduction to Problem

Resulting System Characteristics cannot be deduced from local code.

Underlying platform, neighboring applications and user context:

have a big impact on system characteristics

are big and complex

Models require decomposition, relations and representations to analyse.

Figure 1.9: Summary of Problem Introduction

Gerrit Muller
Performance Method Fundamentals
August 16, 2025 version: 0.2

HSN-NISE

page: 6

Chapter 2

Performance Method
Fundamentals

determine most

important and critical

requirements

model

analyse constraints

and design options

simulate

build proto

measure

evaluate

analyse

2.1 Introduction

The performance of a system is determined by the hardware deign, the software
design and the mapping of the software design on the hardware, the so-called
execution architecture. The execution architecture itself is the design step from
the conceptual view to the realization view. The justification for design decisions
has its roots in the customer objectives view and the application view, based on
often ill articulated needs, concerns and expectations of the customer. A good
understanding of mostly performance and timing related needs and expectations is
needed and used to get a specific and measurable product definition with respect
to performance and timing requirements. This definition is not a pure top down
approach, a priori know how of the possible solutions is used to converge more
quickly on relevant specification issues.

Figure 2.1 visualizes these relations in the CAFCR model. The top-down and
bottom-up iteration is shown as modeling and analyzing top down and simulating
and measuring bottom up.

We will discuss an incremental approach to ensure the link between the CAFCR
views. Then we discuss shortly the representations needed to understand system

diverse

complex

fuzzy

performance

expectations

needs

Customer

What

Customer

How

Product

What

Product

How

What does Customer need

 in Product and Why?

Customer

objectives

Application Functional Conceptual Realization

SMART

+ timing

requirements

+ external

interfaces

models
analysis

models
analysis

simulations
measurements

simulations
measurements

execution architecture

design
threads

interrupts

timers

queues

allocation

scheduling

synchronization

decoupling

Figure 2.1: Positioning in CAFCR

performance. Finally, we discuss benchmarking as a way to get quantified insight
for performance models.

2.2 Incremental approach

2A Measure performance at 3 levels

1A Collect most critical performance and timing requirements

1B Find system level diagrams

3 Evaluate performance, identify potential problems

2B Create Performance Model

4 Performance analysis and design

Re-iterate all steps

application, functions and micro benchmarks

granularity, synchronization, priorization,

allocation, resource management

are the right requirements addressed,

refine diagrams, measurements, models, and improve design

HW block diagram, SW diagram, functional model(s)

concurrency model, resource model, time-line

Figure 2.2: Top-level Performance Design Method

Figure 2.2 shows a stepwise approach for performance design. Step 1 is the
identification of the most critical timing and performance requirements, parallel
with the search for system level diagrams. During step 2 the performance of the
system is measured at multiple levels, and a performance model is created. Step 3

Gerrit Muller
Performance Method Fundamentals
August 16, 2025 version: 0.2

HSN-NISE

page: 8

is the evaluation of the performance and the identification of potential problems.
Step 4 is the actual performance analysis and design. All these steps are not purely
sequential, iteration is crucial.

determine most

important and critical

requirements

model

analyse constraints

and design options

simulate

build proto

measure

evaluate

analyse

Figure 2.3: Incremental approach

An incremental approach is strongly recommended. The problem and solution
domain is often so complex that no human being can understand and oversee it
entirely. The understanding and overview is build up in steps or passes, where all
aspects are touched in one pass. The next pass deepens and enriches the insights.
The reason that incremental approaches work is that it enables the humans to learn,
based on the short feedback cycles. Typical cycle times are days or weeks, not
months.

Figure 2.3 shows the spiral approach. First the what (requirements) and how
(design) are studied, than the implementation, verification and evaluation is done,
which closes the feedback cycle.

o
ri
g

in
a

l
b

y
 T

o
n

 K
o

s
te

lij
k

system

TR

hardware

TR

software

TR

ns

us

ms

s

most and hardest

TR handled by HW

new control TRs

Figure 2.4: Decomposition of system TR in HW and SW

Most timing requirements are handled by the hardware, especially the very

Gerrit Muller
Performance Method Fundamentals
August 16, 2025 version: 0.2

HSN-NISE

page: 9

short response times are implemented by means of dedicated hardware. However
this dedicated hardware itself needs some control, with more relaxed timing constraints.
The hardware design imposes also timing requirements on the software design.
Figure 2.4 visualizes this transformation of severe system timing requirements in
somewhat more relaxed software timing requirements.

The architect is continuously trying to improve his understanding of problem
and solution[4]. This understanding is based on many different interacting insights,
such as functionality, behavior, relationships et cetera. An important factor in
understanding is the quantification. Quantification helps to get grip on the many
vague aspects of problem and solution. Many aspects can be quantified, much
more than most designers are willing to quantify.

order of magnitude

guestimates

calibrated estimates

10

50 200

30 300

10030 300

70 140

90 115

feasibility
measure,

analyze,

simulate

back of the

envelope

benchmark,

spreadsheet

calculation

99.999 100.001
cycle

accurate

Figure 2.5: Successive quantification refined

The precision of the quantification increases during the project. Figure 2.5
shows the stepwise refinement of the quantification. In first instance it is important
to get a feeling for the problem by quantifying orders of magnitude. For example:

• How fast should the system respond, for instance zap?

• What is the affordable cost, how much is the customer willing and able to
spend?

• How many pictures/movies do they want to watch, transfer, store concur-
rently?

• How much storage and bandwidth is needed?

The order of magnitude numbers can be refined by making back of the envelop
calculations, making simple models and making assumptions and estimates. From
this work it becomes clear where the major uncertainties are and which measure-
ments or other data acquisitions will help to refine the numbers further.

Gerrit Muller
Performance Method Fundamentals
August 16, 2025 version: 0.2

HSN-NISE

page: 10

At the bottom of figure 2.5 the other extreme of the spectrum of quantification
is shown, in this example cycle accurate simulation of video frame processing
results in very accurate numbers. It is a challenge for an architect to bridge these
worlds.

zoom in on detail

aggregate to end-to-end performance

from coarse guestimate to reliable prediction

from typical case to boundaries of requirement space

from static understanding to dynamic understanding

from steady state to initialization, state change and shut down

discover unforeseen critical requirements

improve diagrams and designs

from old system to prototype to actual implementation

Figure 2.6: Directions of iterations

Figure 2.6 shows the many directions of potential iterations:

zoom in on detail Drill down to the essential detail, often based on historic data
and experience.

aggregate to end-to-end performance Add all numbers to estimate the end-to-
end time

from coarse guestimate to reliable prediction Work from coarse estimates, which
provide guidance and insight, towards more accurate numbers that are suffi-
ciently accurate and robust to be usable as prediction.

from typical case to boundaries of requirement space Start to understand the “typical”
use case that is frequently happening and then look at the more complicated
cases, such as the boundaries of the requirement space.

from static understanding to dynamic understanding Start by creating simple
insight by ignoring many dynamic aspects. Add dynamics step by step, when
the impact is significant.

from steady state to initialization, state change and shut down Start with the steady
state situation, where the application is continuously is repeating the same
operations. Later the singular moments are added, such as start-up, shut
down and state changes.

Gerrit Muller
Performance Method Fundamentals
August 16, 2025 version: 0.2

HSN-NISE

page: 11

discover unforeseen critical requirements Modeling of the system itself and exploring
its performance often triggers the discovery of requirements that were not yet
foreseen or that are more critical than foreseen.

improve diagrams and designs The increasing insight should be captured in the
diagrams and designs.

from old system to prototype to actual implementation The earlier fact finding
start the better the models are grounded in facts. Older, existing systems are
a gold-mine of factual information. In order to get facts about the impact of
design changes prototypes are needed. Finally the actual implementation
should be used for verification of the performance requirements and the
underlying designs, such as budgets.

2.3 Multiple views needed to understand system perfor-
mance

The decomposition can be done along different axes. Subsection 2.3.1 shows
construction as axis, and Subsection 2.3.2 shows the functional decomposition.
The decomposition into concurrent activities and the mapping on processes, threads
and processors is called the execution architecture, which is described in Subsection 2.3.3.

2.3.1 Construction Decomposition

The construction decomposition views the system from the construction point of
view, see Figure 2.7 for an example. In this example the decomposition is struc-
tured to show layers and the degree of domain know-how. The vertical layering
defines the dependencies: components in the higher layers depend on components
in the lower layers. Components are not dependent on components at the same or
higher layer. The amount of domain know how provides an indication of the added
value of the components. More generic components are more likely to be shared
in a broader application area, and are more likely to be purchased instead of being
developed.

The construction decomposition is mostly used for the design management. It
defines units of design, as these are created and stored in repositories and later
updated. The atomic units are aggregated into compound design units. In software
the compound design units are often called packages, in hardware they are called
modules. The blocks in Figure 2.7 are at the level of these packages and modules.
Packages and modules are used as unit for testing and release and they often
coincide with organizational ownership and responsibility.

In hardware this is quite often a very natural decomposition, for instance into
cabinets, racks, boards and finally integrated circuits, Intellectual property (IP)

Gerrit Muller
Performance Method Fundamentals
August 16, 2025 version: 0.2

HSN-NISE

page: 12

tuner
frame-

buffer
MPEG DSP CPU RAM

drivers scheduler OS

etc

audio video TXT
file-

system
networkingetc.

view PIP

browseviewport menu

adjust
view

TXT

hardware

driver

applications

services

toolboxes

domain specific generic

signal processing subsystem control subsystem

Figure 2.7: Example of a construction decomposition of a simple TV. The vertical
axis is used for layers, where higher layers depend on lower layers, but not vice
versa. In horizontal direction the left hand side shows the domain specific compo-
nents, the right hand side shows the more generic components.

cores and cells. The components in the hardware are very tangible. The relationship
with a number of other decompositions is reasonably one to one, for instance with
the work breakdown for project management purposes.

The construction decomposition in software is more ambiguous. The structure
of the code repository and the supporting build environment comes close to the
hardware equivalent. Here files and packages are the aggregating construction
levels. This decomposition is less tangible than the hardware decomposition and
the relationship with other decompositions is sometimes more complex.

2.3.2 Functional Decomposition

The functional decomposition decomposes end user functions into more elementary
functions. The elementary functions are internal, the decomposition in elementary
functions is not easily observable from outside the system. In other words, the
what is worked out in how. Be aware of the fact that the word function in system
design is heavily overloaded. No attempt is made to define the functional decompo-
sition more sharply, because a sharper definition does not provide more guidance to
architects. Main criterium for a good functional decomposition is its useability for
design. A functional decomposition provides insight how the system will accom-
plish its job.

Figure 2.8 shows an example of (part of) a functional decomposition for a
camera type device. It shows a data flow with communication, processing, and
storage functions and their relations. This functional decomposition is not addressing
the control aspects, which might be designed by means of a second functional
decomposition, this time taken from the control point of view.

Gerrit Muller
Performance Method Fundamentals
August 16, 2025 version: 0.2

HSN-NISE

page: 13

storage

acquisition

processing
compress

encoding

display

processing

de-

compress decoding
display

acquisition

Figure 2.8: Example functional decomposition camera type device

2.3.3 Execution Architecture

The execution architecture is the run-time architecture of a system. The process1

decomposition plays an important role in the execution architecture. Figure 2.9
shows an example of a process decomposition.

image handlingscan control

scan

control

acq

control

recon

control

xDAS recon

db

control

disk

scan

UI

image handling

UI

archiving

control

media

import

export

network

display

control

display device hardware

server

process

UI process

legend

Figure 2.9: An example of a process decomposition of a MRI scanner.

One of the main concerns for process decomposition is concurrency: which
concurrent activities are needed or running, and how do we synchronize these
activities? Two techniques to support asynchronous functionality are widely used
in operating systems: processes and threads. Processes are self sustained, which
own their own resources, especially memory. Threads have less overhead than
processes. Threads share resources, which makes them more mutually dependent.
In other words processes provide better means for separation of concerns.

The execution architecture must map the functional decomposition on the process
decomposition. This mapping must ensure that the timing behavior of the system
is within specification. The most critical timing behavior is defined by the dead
lines. Missing a dead line may result in loss of throughput or functionality. The

1Process in terms of the operating system

Gerrit Muller
Performance Method Fundamentals
August 16, 2025 version: 0.2

HSN-NISE

page: 14

other architecture

views

execution

architecture

functional

model

process

display

receive demux

store

Map

process

task

threadthreadthread

process

task

threadthreadthread

process

task
threadthreadthread

interrupt

handlersin
pu
t

hardware

tuner drive

CPU DSP RAM

in
pu
t

repository

structure

queue

DCTmenu

txt

tuner

foundation

classes

hardware

abstraction

list DVD drive

UI toolkit processing

Applications
play zap

input

dead lines

timing, throughput

requirements

execution architecture

issues:

concurrency

scheduling

synchronisation

mutual exclusion

priorities

granularity

Figure 2.10: Execution Architecture

timing behavior is also determined by the choice of the synchronization methods,
by the granularity of synchronization and by the scheduling behavior. The most
common technique to control the scheduling behavior is by means of priorities.
This requires, of course, that priorities are assigned. Subsystems with limited
concurrency complexity may not even need multiple threads, but these subsystems
can use a single thread that keeps repeating the same actions all the time. The
mapping is further influenced by hardware software allocation choices, and by the
construction decomposition. Figure 2.10 shows what views are combined to create
the execution architecture.

A well known method in the hard real time domain is DARTS (Design Approach
for Real Time Systems) [1]. This methods provides guidelines to identify hard
real time requirements, translate them in activities and to map activities on tasks.
DARTS then describes how to design the scheduling priorities.

In practice many components from the construction decomposition are used in
multiple functions, and are mapped on multiple processes. These shared compo-
nents are aggregated in shared or dynamic-link libraries (dll’s). Sharing the program
code run-time is advantageous from memory consumption point of view.

We promote iteration over hardware, software and functional design. In practice
this iteration is limited, amongst others due to different development life-cycles of
hardware, software and system. Often most hardware design choices are made
long before the software design is known. In other words the hardware is a fact,

Gerrit Muller
Performance Method Fundamentals
August 16, 2025 version: 0.2

HSN-NISE

page: 15

where only minor changes are possible. Another reality is that large amounts of
software are inherited from existing systems, which also severely limits the degrees
of freedom of the software design.

The remaining degrees of freedom for the execution architecture are limited to:

• allocation to tasks, processes or threads

• allocation of hardware resources

• priorities, scheduling strategy (limited by the operating system facilities)

• granularity

The art of designing a good execution architecture is to simplify the problems
sufficiently, by focusing on the real critical timing issues.

2.4 Benchmarking

CPU

cache

memory

bus

..

(computing) hardware

typical values

interference

variation

boundaries

operating system

services

applications

network transfer

database access

database query

services/functions

duration

CPU time

footprint

cache

end-to-end

function

duration

services

interrupts

task switches

OS services

CPU time

footprint

cache

latency

bandwidth

efficiency

interrupt

task switch

OS services

duration

footprint

interrupts

task switches

OS services

tools

locality

density

efficiency

overhead

Figure 2.11: Layered Benchmarking

We propose to tackle the dynamic analysis by measuring and analyzing the
system at several levels, as shown in Figure 2.11. The purpose of this approach is
to understand the system performance throughout the entire system. Unfortunately
the entire system is way too complex to understand in one single pass. Therefore
we look for natural layers or subsystems. For the medical imaging workstation a
reasonably generic four layer model is helpful:

Gerrit Muller
Performance Method Fundamentals
August 16, 2025 version: 0.2

HSN-NISE

page: 16

Hardware CPU, memory, bus, cache, disk, network, et cetera. At this level
latencies, bandwidth and resource efficiency are valuable data points.

Operating System (OS) Interrupt handling, task switching, process communication,
resource management, and other OS services. At this level duration and
footprint data needs to be known.

Services (or Middleware) Interoperability services based on networks or storage
devices, database functionality, and other higher level services. At this level
lots of performance data is needed: throughput, duration, CPU time, footprint,
cache impact, number of generated interrupts and context switches, and
number of invoked OS services.

Applications The end-to-end performance of functions, as perceived by the user
of the system. The same performance data is needed here as on the services
level, plus the amount of service invocations.

Tools Compilers, linkers, high level generators, configurators. These tools generally
influence most other layers. Typical data to be known is locality and density
of code, efficiency of generated output, run-time overhead induced by the
tools.

We will start simple by determining typical values for the mentioned parameters.
However, a lot of additional insight can be obtained by looking at the variation in
these numbers, and by thinking in terms of range boundaries. Special attention is
needed for interference aspects. For example sharing of computing resources often
results in degraded cache performance when functions run concurrently.

The actual characteristics of the technology being used must be measured
and understood in order to make a good (reliable, cost effective) design. The
basic understanding of the technology is created by performing micro-benchmarks:
measuring the elementary functions of the technology in isolation. Figure 2.12 lists
a typical set of micro-benchmarks to be performed. The list shows infrequent and
often slow operations and frequently applied operations that are often much faster.
This classification implies already a design rule: slow operations should not be
performed often2.

The results of micro-benchmarks should be used with great care. The measure-
ments show the performance in totally unrealistic circumstances, in other words
it is the best case performance. This best case performance is a good baseline
to understand performance, but when using the numbers the real life interference
(cache disturbance for instance) should be taken into account. Sometimes additional

2This really sounds as an open door. However, I have seen many violations of this entirely trivial
rule, such as setting up a connection for every message, performing I/O byte by byte et cetera.
Sometimes such a violation is offset by other benefits, especially when a slow operation is in fact not
very slow and when the brute force approach is both affordable as well as extremely simple.

Gerrit Muller
Performance Method Fundamentals
August 16, 2025 version: 0.2

HSN-NISE

page: 17

object creation

object destruction
method invocation

component creation

component destruction

open connection

close connection

method invocation
same scope

other context

start session

finish session

perform transaction

query

transfer data

function call

loop overhead

basic operations (add, mul, load, store)

infrequent operations,

often time-intensive

often repeated

operations

database

network,

I/O

high level

construction

low level

construction

basic

programming

memory allocation

memory free

task, thread creationOS task switch

interrupt response

HW cache flush

low level data transfer

power up, power down

boot

Figure 2.12: Typical micro-benchmarks for timing aspects

measurements are needed at a slightly higher level to calibrate the performance
estimates.

The standard work about performance issues in computer architectures is the
book by Hennesey and Patterson [2]. Here modelling and measurement methods
can be found that can serve as inspiration for performance analysis of embedded
systems.

2.5 Acknowledgements

The diagrams are a joined effort of Roland Mathijssen, Teun Hendriks and Gerrit
Muller. Most of the material is based on material from the EXARCH course created
by Ton Kostelijk and Gerrit Muller. Reinder Bril gave feedback which was used to
improve the sheets.

Gerrit Muller
Modeling and Analysis Fundamentals of Technology
August 16, 2025 version: 0.5

University of South-Eastern Norway-NISE

page: 18

Chapter 3

Modeling and Analysis
Fundamentals of Technology

ra
n
d
o
m

 d
a
ta

 p
ro

c
e
s
s
in

g

p
e

rf
o

rm
a

n
c
e

 in
 o

p
s
/s

data set size
in bytes

10
3

10
6

10
9

10
12

10
15

L1

cache

L3

cache

main

memory

hard

disk

disk

farm

robotized

media

10
9

10
3

10
6

3.1 Introduction

Figure 3.1 provides an overview of the content. In this article we discuss generic
know how of computing technology. We will start with a commonly used decom-
position and layering. We provide figures of merit for several generic computing
functions, such as storage and communication. Finally we discuss caching as
example of a technology that is related to storage figures of merit. We will apply
the caching in a web shop example, and discuss design considerations.

content of this presentation

generic layering and block diagrams

typical characteristics and concerns

figures of merit

example of picture caching in web shop application

Figure 3.1: Overview Content Fundamentals of Technology

When we model technology oriented design questions we often need feasi-
bility answers that are assessed at the level of non functional system requirements.
Figure 3.2 shows a set of potential technology questions and the required answers
at system level.

working range

dependencies

realization variability

scalability

required analysis :

How do parameters result in NFR's?

relevant non functional

requirements

parameters in design

space

system

design

latency
time from start

to finish

throughput
amount of information per time

transferred or processed

footprint (size)
amount of data&code

stored

message format
(e.g. XML)

network medium
(e.g. ethernet, ISDN)

communication protocol
(e.g. HTTPS, TCP)

Figure 3.2: What do We Need to Analyze?

From design point of view we need, for example, information about the working
range, dependencies, variability of the actual realization, or scalability.

3.2 Computing Technology Figures of Merit

In information and communication systems we can distinguish the following generic
technology functions:

storage ranging from short term volatile storage to long term persistent storage.
Storage technologies range from solid state static memories to optical disks
or tapes.

communication between components, subsystems and systems. Technologies
range from local interconnects and busses to distributed networks.

processing of data, ranging from simple control, to presentation to compute intensive
operations such as 3D rendering or data mining. Technologies range from
general purpose CPUs to dedicated I/O or graphics processors.

presentation to human beings, the final interaction point with the human users.
Technologies range from small mobile display devices to large “cockpit”
like control rooms with many flat panel displays.

Figure 3.3 shows these four generic technologies in the typical layering of
a Service Oriented Architecture (SOA). In such an architecture the repositories,
the bottom-tier of this figure, are decoupled from the business logic that is being

Gerrit Muller
Modeling and Analysis Fundamentals of Technology
August 16, 2025 version: 0.5

University of South-Eastern Norway-NISE

page: 20

data

base

server

web

server

client client

network

network

client

screen screen screen

presentation

computation

communication

storage

legend

Figure 3.3: Typical Block Diagram and Typical Resources

handled in the middle layer, called web server. The client tier is the access and
interaction layer, which can be highly distributed and heterogeneous.

The four generic technologies are recursively present: within a web-server, for
example, communication, storage and processing are present. If we would zoom
in further on the CPU itself, then we would again see the same technologies.

fast

volatile

archival

persistent

robotized

optical media

tape

disks

disk arrays

disk farms

main memory

processor cache

L1 cache

L2 cache

L3 cache

sub ns

ns

n kB

n MB

la
te

nc
y

ca
pa

ci
ty

tens ns n GB

n*100 GB

n*10 TB

n PB

ms

>s

Figure 3.4: Hierarchy of Storage Technology Figures of Merit

For every generic technology we can provide figures of merit for several charac-
teristics. Figure 3.4 shows a table with different storage technologies. The table
provides typical data for latency and storage capacity. Very fast storage technologies
tend to have a small capacity. For example, L1 caches, static memory as part of
the CPU chip, run typically at processor speeds of several GHz, but their capacity

Gerrit Muller
Modeling and Analysis Fundamentals of Technology
August 16, 2025 version: 0.5

University of South-Eastern Norway-NISE

page: 21

is limited to several kilobytes. The much higher capacity main memory, solid state
dynamic RAM, is much slower, but provides Gigabytes of memory. Non solid
state memories use block access: data is transferred in chunks of many kilobytes.
The consequence is that the access time for a single byte of information gets much
longer, milliseconds for hard disks. When mechanical constructions are needed
to transport physical media, such as robot arms for optical media, then the access
time gets dominated by the physical transport times.

ra
n

d
o

m
 d

a
ta

 p
ro

c
e

s
s
in

g

p
e

rf
o

rm
a

n
c
e

 in
 o

p
s
/s

data set size
in bytes

10
3

10
6

10
9

10
12

10
15

L1

cache

L3

cache

main

memory

hard

disk

disk

farm

robotized

media

10
9

10
3

10
6

Figure 3.5: Performance as Function of Data Set Size

Figure 3.5 shows the same storage figures of merit in a 2-dimensional graph.
The horizontal axis shows the capacity or the maximum data set size that we can
store. The vertical axis shows the latency if we axis a single byte of information
in the data set in a random order. Note that both axes are shown as a logarithmic
scale, both axes cover a dynamic range of many orders of magnitude! The resulting
graph shows a rather non-linear behavior with step-like transitions. We can access
data very fast up to several kilobytes; the access time increases significantly when
we exceed the L1 cache capacity. This effect repeats itself for every technology
transition.

The communication figures of merit are shown in the same way in Figure 3.6.
In this table we show latency, frequency and distance as critical characteristics.
The latency and the distance have a similar relationship as latency and capacity
for storage: longer distance capabilities result in longer latencies. The frequency
behavior, which relates directly to the transfer capacity, is different. On chip very
high frequencies can be realized. Off chip and on the printed circuit board these
high frequencies are much more difficult and costly. When we go to the long-

Gerrit Muller
Modeling and Analysis Fundamentals of Technology
August 16, 2025 version: 0.5

University of South-Eastern Norway-NISE

page: 22

PCB level

network

Serial I/O

LAN

on chip

n GHz

fre
qu

en
cy

di
st
an

ce

tens ns

n ms

n 10ms

network n ns

la
te

nc
y

sub ns

n GHz

n 100MHz

n mmconnection

n mm

n cm

n m

n km

globalWAN

n ms

n 100MHz

100MHz

n GHz

Figure 3.6: Communication Technology Figures of Merit

distance networks optical technologies are being used, with very high frequencies.

3.3 Caching in Web Shop Example

back

office

server

mid

office

server

client client

network

network

client

screen screen screen

network layer cache

file cache

application cache

 memory caches

L1, L2, L3

virtual memory

100 ms

10 ms

1 s

100 ns

1 ms

cache

miss

penalty

1 ms

10 µs

10 ms

1 ns

100 ns

cache hit
performance

network layer cache

file cache

application cache

 memory caches

L1, L2, L3

virtual memory

network layer cache

file cache

application cache

 memory caches

L1, L2, L3

virtual memory

network layer cache

file cache

application cache

 memory caches

L1, L2, L3

virtual memory
typical cache 2 orders

of magnitude faster

Figure 3.7: Multiple Layers of Caching

The speed differences in storage and communication often result in the use of a
cache design pattern. The cache is a local fast storage, where frequently used data
is stored to prevent repeated slow accesses to slow storage media. Figure 3.7 shows
that this caching pattern is applied at many levels within a system, for example:

network layer cache to avoid network latencies for distributed data. Many commu-
nication protocol stacks, such as http, have local caches.

file cache as part of the operating system. The file cache caches the stored data
itself as well as directory information in main memory to speed up many file
operations.

Gerrit Muller
Modeling and Analysis Fundamentals of Technology
August 16, 2025 version: 0.5

University of South-Eastern Norway-NISE

page: 23

application cache application programs have dedicated caches based on appli-
cation know how.

L1, L2, L3 memory caches A multi-level cache to bridge the speed gap between
on-chip speed and off chip dynamic memory.

virtual memory where the physical main memory is cache for the much slower
virtual memory that resides mostly on the hard disk.

Note that in the 3-tier SLA approach these caches are present in most of the tiers.

project risk

performance

response time

life cycle

cost

latency penalty once

overhead once

processing once

limit storage needs to fit

in fast local storage

low latency

low latency

less communication

design parameters

caching algorithm

storage location

cache size

chunk size

format

in (pre)processed format

larger chunks

local storage

fast storage

frequently used subset
long latency

mass storage

resource intensive

processing

overhead

communication

long latency

communication

Figure 3.8: Why Caching?

In Figure 3.8 we analyze the introduction of caches somewhat more. At the left
hand side we show that long latencies of storage and communication, communi-
cation overhead, and resource intensive processing are the main reasons to introduce
caching. In the background the project needs for performance and cost are seen as
driving factors. Potential performance problems could also be solved by over-
dimensioning, however this might conflict with the cost constraints on the project.

The design translates these performance reasons into a number of design choices:

frequently used subset enable the implementation to store this subset in the low
capacity, but faster type of memory.

fast storage relates immediately to low latency of the storage itself

local storage gives low latency for the communication with the storage (sub)system

larger chunks reduces the number of times that storage or communication latency
occurs and reduces the overhead.

cache in (pre)processed format to reduce processing latency and overhead

These design choices again translate in a number of design parameters:

• caching algorithm

Gerrit Muller
Modeling and Analysis Fundamentals of Technology
August 16, 2025 version: 0.5

University of South-Eastern Norway-NISE

page: 24

• storage location

• cache size

• chunk size

• format

data

base

server

web

server

client client

network

network

client

screen screen screen

product

descriptions

logistics

ERP

customer

relations
financial

exhibit products

sales & order intake

order handling

stock handling

financial bookkeeping

consumer

browse products

order

pay

track

customer relation

management

update catalogue

advertize

after sales support

enterprise

logistics

finance

product management

customer managment

Figure 3.9: Example Web Shop

As an example of caching we look at a web shop, as shown in Figure 3.9.
Customers at client level should be able to browse the product catalogue, to order
products, to pay, and to track the progress of the order. Other stakeholders at
client level have logistics functions, financial functions, and can do product and
customer management. The web server layer provides the logic for the exhibition
of products, the sales and order intake, the order handling, the stock handling, and
the financial bookkeeping. Also at the web server layer is the logic for customer
relation management, the update of the product catalogue, the advertisements, and
the after sales support. The data base layer has repositories for product descrip-
tions, logistics and resource planning, customer relations, and financial information.

We will zoom in on the product browsing by the customers. During this
browsing customers can see pictures of the products in the catalogue. The originals
of these pictures reside in the product catalogue repository in the data base layer.
The web server determines when and how to show products for customers. The
actual pictures are shown to many customers, who are distributed widely over the
country.

The customers expect a fast response when browsing. Slow response may
result in loss of customer attention and hence may cause a reduced sales. A picture
cache at the web server level decreases the load at web server level, and at the same
time improves the response time for customer browsing. It also reduces the server
load of the data base.

Gerrit Muller
Modeling and Analysis Fundamentals of Technology
August 16, 2025 version: 0.5

University of South-Eastern Norway-NISE

page: 25

back

office

server

mid

office

server

client client

network

network

client

screen screen screen

product

descriptions

logistics

ERP

customer

relations
financial

picture

cache

less load
less server costs

fast response

less load

less server costs

Figure 3.10: Impact of Picture Cache

project risk

cost

effort

performance

life cycle

cost

effortability to benefit from

technology improvements

robustness for application

changes

in (pre)processed format

larger chunks

robustness for changing

context (e.g. scalability)
local storage

fast storage

frequently used subset

failure modes in

exceptional user space

robustness for concurrent

applications

Figure 3.11: Risks of Caching

So far, the caching appears to be a no-brainer: improved response, reduces
server loads, what more do we want? However, Figure 3.11 shows the potential
risks of caching, caused mostly by increased complexity and decreased trans-
parency. These risks are:

• The robustness for application changes may decrease, because the assump-
tions are not true anymore.

• The design becomes specific for this technology, impacting the ability to
benefit from technology improvements.

• The robustness for changing context (e.g. scalability) is reduced

• The design is not robust for concurrent applications

Gerrit Muller
Modeling and Analysis Fundamentals of Technology
August 16, 2025 version: 0.5

University of South-Eastern Norway-NISE

page: 26

• Failure modes in exceptional user space may occur

All of these technical risks translate in project risks in terms of cost, effort and
performance.

Gerrit Muller
Modeling and Analysis Fundamentals of Technology
August 16, 2025 version: 0.5

University of South-Eastern Norway-NISE

page: 27

3.4 Summary

Conclusions

Technology characteristics can be discontinuous

Caches are an example to work around discontinuities

Caches introduce complexity and decrease transparancy

Techniques, Models, Heuristics of this module

Generic block diagram: Presentation, Computation,

Communication and Storage

Figures of merit

Local reasoning (e.g. cache example)

Figure 3.12: Summary

Figure 3.12 shows a summary of this paper. We showed a generic block
diagram with Presentation, Computation, Communication and Storage as generic
computing technologies. Technology characteristics of these generic technologies
have discontiuous characteristics. At the transition from one type of technology
to another type of technology a steep transition of characteristics takes place. We
have provided figures of merit for several technologies. Caches are an example
to work around these discontinuities. However, caches introduce complexity and
decrease the transparancy of the design. We have applied local reasoning graphs
to discuss the reasons of introduction of caches and the related design parameters.
later we applied the same type of graph to discuss potential risks caused by the
increased complexity and decreased transparancy.

Gerrit Muller
Modeling and Analysis: Measuring
August 16, 2025 version: 1.2

University of South-Eastern Norway-SE

page: 28

Chapter 4

Modeling and Analysis:
Measuring

measured
signal

noise resolution

value

measurement

error

time

va
lu

e

+ε1

calibrationoffset

characteristics

measurements have

stochastic variations and

systematic deviations

resulting in a range

rather than a single value

-ε2

+ε1
-ε2

measurement

instrument

system

under study

4.1 introduction

Measurements are used to calibrate and to validate models. Measuring is a specific
knowledge area and skill set. Some educations, such as Physics, extensively teach
experimentation. Unfortunately, the curriculum of studies such as software engineering
and computer sciences has abstracted away from this aspect. In this paper we will
address the fundamentals of modeling.

Figure 4.1 shows the content of this paper. The crucial aspects of measuring
are integrated into a measuring approach, see the next section.

content

What and How to measure

Impact of experiment and context on measurement

Validation of results, a.o. by comparing with expectation

Consolidation of measurement data

Analysis of variation and analysis of credibility

Figure 4.1: Presentation Content

Gerrit Muller
Modeling and Analysis: Measuring
August 16, 2025 version: 1.2

University of South-Eastern Norway-SE

page: 30

4.2 Measuring Approach

how

what

1. What do we need to know?

2. Define quantity to be measured.

4A. Define the measurement circumstances fe.g. by use cases

3. Define required accuracy

5. Determine actual accuracy

4C. Define measurement set-up

4B. Determine expectation

6. Start measuring

7. Perform sanity check expectation versus actual outcome

uncertainties, measurement error

historic data or estimation

initial model

purpose

it
e

ra
te

Figure 4.2: Measuring Approach: What and How

The measurement approach starts with preparation and fact finding and ends
with measurement and sanity check. Figure 4.2 shows all steps and emphasizes the
need for iteration over these steps.

1. What do we need? What is the problem to be addressed, so what do we need
to know?

2. Define quantity to be measured Articulate as sharp as possible what quantity
needs to be measured. Often we need to create a mental model to define this
quantity.

3. Define required accuracy The required accuracy is based on the problem to be
addressed and the purpose of the measurement.

4A. Define the measurement circumstances The system context, for instance the
amount of concurrent jobs, has a big impact on the result. This is a further
elaboration of step 1 What do we need?.

4B. Determine expectation The experimentator needs to have an expectation of
the quantity to be emasured to design the experiment and to be able to assess
the outcome.

4C. Define measurement set-up The actual design of the experiment, from input
stimuli, measurement equipment to outputs.

Note that the steps 4A, 4B and 4C mutually influence each other.

Gerrit Muller
Modeling and Analysis: Measuring
August 16, 2025 version: 1.2

University of South-Eastern Norway-SE

page: 31

5. Determine actual accuracy When the set-up is known, then the potential measurement
errors and uncertainties can be analyzed and accumulated into a total actual
accuracy.

6. Start measuring Perform the experiment. In practice this step has to be repated
many times to “debug” the experiment.

7. Perform sanity check Does the measurement result makes sense? Is the result
close to the expectation?

In the next subsections we will elaborate this approach further and illustrate
the approach by measuring a typical embedded controller platform: ARM9 and
VxWorks.

4.2.1 What do we need?

The first question is: “What is the problem to be addressed, so what do we need to
know?” Figure 4.3 provides an example. The problem is the need for guidance for
concurrency design and task granularity. Based on experience the designers know
that these aspects tend to go wrong. The effect of poor concurrency design and
task granularity is poor performance or outrageous resource consumption.

(computing) hardware

operating system

ARM 9

200 MHz CPU

100 MHz bus

VxWorks

test program

What:

context switch time of

VxWorks running on ARM9

estimation of total lost CPU

time due to

context switching

guidance of

concurrency design and

task granularity

Figure 4.3: What do We Need? Example Context Switching

The designers know, also based on experience, that context switching is costly
and critical. They have a need to estimate the total amount of CPU time lost due to
context switching. One of the inputs needed for this estimation is the cost in CPU
time of a single context switch. This cost is a function of the hardware platform,
the operating system and the circumstances. The example in Figure 4.3 is based on

Gerrit Muller
Modeling and Analysis: Measuring
August 16, 2025 version: 1.2

University of South-Eastern Norway-SE

page: 32

the following hardware: ARM9 CPU running internally at 200 MHz and externally
at 100 MHz. The operating system is VxWorks. VxWorks is a real-time executive
frequently used in embedded systems.

4.2.2 Define quantity to be measured.

What (original):

context switch time of

VxWorks running on ARM9

tp2tp1, before tscheduler

Process 1

Process 2

Scheduler

What (more explicit):

The amount of lost CPU time,

due to context switching on

VxWorks running on ARM9

on a heavy loaded CPU

tschedulertcontext switch = tp1, loss+

tscheduler tp1, after

tp1, no switching

tp1,losstp2,loss

p2 pre-empts p1 p1 resumes

= lost CPU time

legend

time

Figure 4.4: Define Quantity by Initial Model

As need we have defined the CPU cost of context switching. Before setting up
measurements we have to explore the required quantity some more so that we can
define the quantity more explicit. In the previous subsection we already mentioned
shortly that the context switching time depends on the circumstances. The a priori
knowledge of the designer is that context switching is especially significant in busy
systems. Lots of activities are running concurrently, with different periods and
priorities.

Figure 4.4 defines the quantity to be measured as the total cost of context
switching. This total cost is not only the overhead cost of the context switch itself
and the related administration, but also the negative impact on the cache perfor-
mance. In this case the a priori knowledge of the designer is that a context switch
causes additional cache loads (and hence also cache pollution). This cache effect
is the term tp1,loss in Figure 4.4. Note that these effects are not present in a lightly
loaded system that may completely run from cache.

Gerrit Muller
Modeling and Analysis: Measuring
August 16, 2025 version: 1.2

University of South-Eastern Norway-SE

page: 33

estimation of total

lost CPU time

due to

context switching

guidance of

concurrency

design and task

granularity
cost of context

switch
depends on OS and HW

number of

context switches
depends on application

purpose drives required accuracy

~10%

Figure 4.5: Define Required Accuracy

4.2.3 Define required accuracy

The required accuracy of the measurement is determined by the need we originally
formulated. In this example the need is the ability to estimate the total lost CPU
time due to context switching. The key word here is estimate. Estimations don’t
require the highest accuracy, we are more interested in the order of magnitude. If
we can estimate the CPU time with an accuracy of tens of percents, then we have
useful facts for further analysis of for instance task granularity.

CPU
HW

Timer

I/O

Logic analyzer /
Oscilloscope

High resolution (~ 10 ns)

Cope with limitations:

- Duration (16 / 32 bit

 counter)

- Requires Timer Access

High resolution (~ 10 ns)

requires

HW instrumentation
OS-

Timer

OS

Low resolution (~ µs - ms)

Easy access

Lot of instrumentation

Figure 4.6: How to Measure CPU Time?

The relevance of the required accuracy is shown by looking at available measurement
instruments. Figure 4.6 shows a few alternatives for measuring time on this type
of platforms. The most easy variants use the instrumentation provided by the
operating system. Unfortunately, the accuracy of the operating system timing is
often very limited. Large operating systems, such as Windows and Linux, often

Gerrit Muller
Modeling and Analysis: Measuring
August 16, 2025 version: 1.2

University of South-Eastern Norway-SE

page: 34

provide 50 to 100 Hz timers. The timing resolution is then 10 to 20 milliseconds.
More dedicated OS-timer services may provide a resolution of several microseconds.
Hardware assisted measurements make use of hardware timers or logic analyzers.
This hardware support increases the resolution to tens of nanoseconds.

4.2.4 Define the measurement circumstances

experimental set-up

tp2tp1, before tscheduler tscheduler tp1, aftertp1,losstp2,loss

p2 pre-empts p1
p1 resumes

= lost CPU time

P1 P2

real world

many concurrent processes, with

instructions >> I-cache

data >> D-cache

pre-
empts

causes

ca
ch

e
flu

sh

no other

CPU activities

Mimick relevant real world characteristics

Figure 4.7: Define the Measurement Set-up

We have defined that we need to know the context switching time under heavy
load conditions. In the final application heavy load means that we have lots of
cache activity from both instruction and data activities. When a context switch
occurs the most likely effect is that the process to be run is not in the cache. We
lose time to get the process back in cache.

Figure 4.7 shows that we are going to mimick this cache behavior by flushing
the cache in the small test processes. The overall set-up is that we create two small
processes that alternate running: Process P2 pre-empts process P1 over and over.

4.2.5 Determine expectation

Determining the expected outcome of the measurement is rather challenging. We
need to create a simple model of the context switch running on this platform.
Figures 4.8 and 4.9 provide a simple hardware model. Figure 4.10 provides a
simple software model. The hardware and software models are combined in Figure 4.11.
After substitution with assumed numbers we get a number for the expected outcome,
see Figure4.12.

Gerrit Muller
Modeling and Analysis: Measuring
August 16, 2025 version: 1.2

University of South-Eastern Norway-SE

page: 35

PCB
chip

CPU

Instruction

cache

Data

cache

memory
on-chip

bus

cache line size:

8 32-bit words

memory

bus

200 MHz 100 MHz

Figure 4.8: Case: ARM9 Hardware Block Diagram

Figure 4.8 shows the hardware block diagram of the ARM9. A typical chip
based on the ARM9 architecture has anno 2006 a clock-speed of 200 MHz. The
memory is off-chip standard DRAM. The CPU chip has on-chip cache memories
for instruction and data, because of the long latencies of the off-chip memory
access. The memory bus is often slower than the CPU speed, anno 2006 typically
100 MHz.

memory

request w
o

rd
 1

w
o

rd
 7

w
o

rd
 4

w
o

rd
 3

w
o

rd
 2

w
o

rd
 8

w
o

rd
 6

w
o

rd
 5

38 cycles

memory access time in case of a cache miss

200 Mhz, 5 ns cycle: 190 ns

data

memory

response

22 cycles

Figure 4.9: Key Hardware Performance Aspect

Figure 4.9 shows more detailed timing of the memory accesses. After 22
CPU cycles the memory responds with the first word of a memory read request.
Normally an entire cache line is read, consisting of 8 32-bit words. Every word
takes 2 CPU cycles = 1 bus cycle. So after 22+ 8 ∗ 2 = 38 cycles the cache-line is
loaded in the CPU.

Figure 4.10 shows the fundamental scheduling concepts in operating systems.
For context switching the most relevant process states are ready, running and
waiting. A context switch results in state changes of two processes and hence
in scheduling and administration overhead for these two processes.

Figure 4.11 elaborates the software part of context switching in five contributing
activities:

• save state P1

Gerrit Muller
Modeling and Analysis: Measuring
August 16, 2025 version: 1.2

University of South-Eastern Norway-SE

page: 36

New

Running

Waiting

Ready

Terminated

interrupt

create

exit

Scheduler

dispatch

IO or event

completion

Wait

(I/O / event)

Figure 4.10: OS Process Scheduling Concepts

input data HW:

tARM instruction = 5 ns

tmemory access = 190 ns

simple SW model of context switch:

save state P1

determine next runnable task

update scheduler administration

load state P2

run P2

Estimate how many

instructions and memory accesses

are needed per context switch

Calculate the estimated time

needed per context switch

Figure 4.11: Determine Expectation

• determine next runnable task

• update scheduler administration

• load state P2

• run P2

The cost of these 5 operations depend mostly on 2 hardware depending parameters:
the numbers of instruction needed for each activity and the amount of memory
accesses per activity. From the hardware models, Figure 4.9, we know that as
simplest approximation gives us an instruction time of 5ns (= 1 cycle at 200 MHz)
and memory accesses of 190ns. Combining all this data together allows us to
estimate the context switch time.

In Figure 4.12 we have substituted estimated number of instructions and memory
accesses for the 5 operations. The assumption is that very simple operations require
10 instructions, while the somewhat more complicated scheduling operation requires
scanning some data structure, assumed to take 50 cycles here. The estimation is
now reduced to a simple set of multipications and additions: (10 + 50 + 20 +

Gerrit Muller
Modeling and Analysis: Measuring
August 16, 2025 version: 1.2

University of South-Eastern Norway-SE

page: 37

input data HW:

tARM instruction = 5 ns

tmemory access = 190 ns

simple SW model of context switch:

save state P1

determine next runnable task

update scheduler administration

load state P2

run P2

Estimate how many

instructions and memory accesses

are needed per context switch

Calculate the estimated time

needed per context switch

m
e

m
o

ry

a
c
c
e

s
s
e

s

in
s
tr

u
c
ti
o

n
s

110

120

110

110

250

6100

+

500 ns

1140 ns
+

1640 ns

tcontext switch = 2 µsround up (as margin) gives expected

Figure 4.12: Determine Expectation Quantified

10 + 10)instructions · 5ns + (1 + 2 + 1 + 1 + 1)memoryaccesses · 190ns
= 500ns(instructions) + 1140ns(memoryaccesses) = 1640ns To add some
margin for unknown activities we round this value to 2µs.

4.2.6 Define measurement set-up

Task 2Task 1

Time Stamp End

Cache Flush

Time Stamp Begin

Context Switch

Time Stamp End

Cache Flush

Time Stamp Begin

Context Switch
Time Stamp End

Cache Flush

Time Stamp Begin

Context Switch Time Stamp End

Cache Flush

Time Stamp Begin

Context Switch

Figure 4.13: Code to Measure Context Switch

Figure 4.13 shows pseudo code to create two alternating processes. In this code
time stamps are generated just before and after the context switch. In the process
itself a cache flush is forced to mimick the loaded situation.

Figure 4.14 shows the CPU use as function of time for the two processes and
the scheduler.

Gerrit Muller
Modeling and Analysis: Measuring
August 16, 2025 version: 1.2

University of South-Eastern Norway-SE

page: 38

Time

C
o
n
te

xt sw
itch

C
o
n
te

xt sw
itch

T
im

e
 S

ta
m

p
 B

e
g
in

T
im

e
 S

ta
m

p
 E

n
d

T
im

e
 S

ta
m

p
 B

e
g
in

T
im

e
 S

ta
m

p
 E

n
d

S
ta

rt C
a
ch

e
 F

lu
sh

S
ta

rt C
a
ch

e
 F

lu
sh

S
ch

e
d
u
le

r

S
ch

e
d
u
le

r

C
o
n
te

xt sw
itch

T
im

e
 S

ta
m

p
 B

e
g
in

Process 1

Process 2

Scheduler

Figure 4.14: Measuring Context Switch Time

4.2.7 Expectation revisited

Once we have defined the measurement set-up we can again reason more about
the expected outcome. Figure 4.15 is again the CPU activity as function of time.
However, at the vertical axis the CPI (Clock cycles Per Instruction) is shown. The
CPI is an indicator showing the effectiveness of the cache. If the CPI is close to 1,
then the cache is rather effective. In this case little or no main memory acceses are
needed, so the CPU does not have to wait for the memory. When the CPU has to
wait for memory, then the CPI gets higher. This increase is caused by the waiting
cycles necessary for the main memory accesses.

Figure 4.15 clearly shows that every change from the execution flow increases
(worsens) the CPI. So the CPU is slowed down when entering the scheduler. The
CPI decreases while the scheduler is executing, because code and data gets more
and more from cache instead of main memory. When Process 2 is activitated the
CPI again worsens and then starts to improve again. This pattern repeats itself for
every discontinuity of the program flow. In other words we see this effect twice
for one context switch. One interruption of P1 by P2 causes two context swicthes
and hence four dips of the cache performance.

4.2.8 Determine actual accuracy

Measurement results are in principle a range instead of a single value. The signal to
be measured contains some noise and may have some offset. Also the measurement
instrument may add some noise and offset. Note that this is not limited to the
analog world. For instance concurrent background activities may cause noise as
well as offsets, when using bigger operating systems such as Windows or Linux.

Gerrit Muller
Modeling and Analysis: Measuring
August 16, 2025 version: 1.2

University of South-Eastern Norway-SE

page: 39

C
lo

c
k
 c

y
c
le

s
 P

e
r

In
s
tr

u
c
ti
o

n
 (

C
P

I)

1

2

3

S
ch

e
d
u
le

r

S
ch

e
d
u
le

r

T
a
sk 1

T
a
sk 2

T
a
sk 1

Task 1 Task 2

Time

Based on figure diagram

by Ton Kostelijk

Process 1

Process 2

Scheduler

Figure 4.15: Understanding: Impact of Context Switch

The (limited) resolution of the instrument also causes a measurement error. Known
systematic effects, such as a constant delay due to background processes, can be
removed by calibration. Such a calibration itself causes a new, hopefully smaller,
contribution to the measurement error.

Note that contributions to the measurement error can be stochatic, such as
noise, or systematic, such as offsets. Error accumulation works differently for
stochatic or systematic contributions: stochatic errors can be accumulated quadratic
εtotal =

√
ε21 + ε22, while systematic errors are accumulated linear εtotal = ε1+ε2.

Figure 4.17 shows the effect of error propagation. Special attention should
be paid to substraction of measurement results, because the values are substracted
while the errors are added. If we do a single measurement, as shown earlier in
Figure 4.13, then we get both a start and end value with a measurement error.
Substracting these values adds the errors. In Figure 4.17 the provided values result
in tduration = 4 + / − 4µs. In other words when substracted values are close to
zero then the error can become very large in relative terms.

The whole notion of measurement values and error ranges is more general than
the measurement sec. Especially models also work with ranges, rather than single
values. Input values to the models have uncertainties, errors et cetera that propagate
through the model. The way of propagation depends also on the nature of the error:
stochastic or systematic. This insight is captured in Figure 4.18.

Gerrit Muller
Modeling and Analysis: Measuring
August 16, 2025 version: 1.2

University of South-Eastern Norway-SE

page: 40

measured
signal

noise resolution

value

measurement

error

time
va

lu
e

+ε1

calibrationoffset

characteristics

measurements have

stochastic variations and

systematic deviations

resulting in a range

rather than a single value

-ε2

+ε1
-ε2

measurement

instrument

system

under study

Figure 4.16: Accuracy: Measurement Error

tduration = tend - tstart

tend

tstart = 10 +/- 2 µs

= 14 +/- 2 µs

tduration = 4 +/- ? µs

systematic errors: add linear

stochastic errors: add quadratic

Figure 4.17: Accuracy 2: Be Aware of Error Propagation

4.2.9 Start measuring

At OS level a micro-benchmark was performed to determine the context switch
time of a real-time executive on this hardware platform. The measurement results
are shown in Figure 4.19. The measurements were done under different condi-
tions. The most optimal time is obtained by simply triggering continuous context
switches, without any other activity taking place. The effect is that the context
switch runs entirely from cache, resulting in a 2µs context switch time. Unfortu-
nately, this is a highly misleading number, because in most real-world applications
many activities are running on a CPU. The interrupting context switch pollutes
the cache, which slows down the context switch itself, but it also slows down the
interrupted activity. This effect can be simulated by forcing a cache flush in the
context switch. The performance of the context switch with cache flush degrades
to 10µs. For comparison the measurement is also repeated with a disabled cache,
which decreases the context switch even more to 50µs. These measurements show

Gerrit Muller
Modeling and Analysis: Measuring
August 16, 2025 version: 1.2

University of South-Eastern Norway-SE

page: 41

Measurements have

stochastic variations and systematic deviations

resulting in a range rather than a single value.

The inputs of modeling,

"facts", assumptions, and measurement results,

also have stochastic variations and systematic deviations.

Stochastic variations and systematic deviations

propagate (add, amplify or cancel) through the model

resulting in an output range.

Figure 4.18: Intermezzo Modeling Accuracy

ARM9 200 MHz

as function of cache use

From cache 2 µs

After cache flush 10 µs

Cache disabled 50 µs

cache setting tcontext switch

tcontext switch

Figure 4.19: Actual ARM Figures

the importance of the cache for the CPU load. In cache unfriendly situations (a
cache flushed context switch) the CPU performance is still a factor 5 better than in
the situation with a disabled cache. One reason of this improvement is the locality
of instructions. For 8 consecutive instructions ”only” 38 cycles are needed to load
these 8 words. In case of a disabled cache 8 ∗ (22+2 ∗ 1) = 192 cycles are needed
to load the same 8 words.

We did estimate 2µs for the context switch time, however already taking into
account negative cache effects. The expectation is a factor 5 more optimistics than
the measurement. In practice expectations from scratch often deviate a factor from
reality, depending on the degree of optimism or conservatism of the estimator. The
challenging question is: Do we trust the measurement? If we can provide a credible
explanation of the difference, then the credibility of the measurement increases.

In Figure 4.20 some potential missing contributions in the original estimate are
presented. The original estimate assumes single cycle instruction fetches, which
is not true if the instruction code is not in the instruction cache. The Memory

Gerrit Muller
Modeling and Analysis: Measuring
August 16, 2025 version: 1.2

University of South-Eastern Norway-SE

page: 42

input data HW:

tARM instruction = 5 ns

tmemory access = 190 ns

simple SW model of context switch:

save state P1

determine next runnable task

update scheduler administration

load state P2

run P2

m
e

m
o

ry

a
c
c
e

s
s
e

s

in
s
tr

u
c
ti
o

n
s

110

120

110

110

250

6100

+

500 ns

1140 ns
+

1640 ns

tcontext switch = 2 µsexpected

tcontext switch = 10 µsmeasured

How to explain?

potentially missing in expectation:

memory accesses due to instructions

~10 instruction memory accesses ~= 2 µs

memory management (MMU context)

complex process model (parents,

permissions)

bookkeeping, e.g performance data

layering (function calls, stack handling)

the combination of above issues

However, measurement seems to make sense

Figure 4.20: Expectation versus Measurement

Management Unit (MMU) might be part of the process context, causing more state
information to be saved and restored. Often may small management activities take
place in the kernel. For example, the process model might be more complex than
assumed, with process hierarchy and permissions. May be hierarchy or permis-
sions are accessed for some reasons, may be some additional state information is
saved and restored. Bookkeeping information, for example performance counters,
can be maintained. If these activities are decomposed in layers and components,
then additional function calls and related stack handling for parameter transfers
takes place. Note that all these activities can be present as combination. This
combination not only cummulates, but might also multiply.

toverhead ncontext switch tcontext switch*=

ncontext switch

(s
-1

) toverhead
CPU load

overhead

tcontext switch = 10µs

500

5000

50000

5ms

50ms

500ms

0.5%

5%

50%

toverhead

1ms

10ms

100ms

0.1%

1%

10%

tcontext switch = 2µs

CPU load
overhead

Figure 4.21: Context Switch Overhead

Gerrit Muller
Modeling and Analysis: Measuring
August 16, 2025 version: 1.2

University of South-Eastern Norway-SE

page: 43

Figure 4.21 integrates the amount of context switching time over time. This
figure shows the impact of context switches on system performance for different
context switch rates. Both parameters tcontextswitch and ncontextswitch can easily
be measured and are quite indicative for system performance and overhead induced
by design choices. The table shows that for the realistic number of tcontextswitch =
10µs the number of context switches can be ignored with 500 context switches per
second, it becomes significant for a rate of 5000 per second, while 50000 context
switches per second consumes half of the available CPU power. A design based
on the too optimistic tcontextswitch = 2µs would assess 50000 context switches as
significant, but not yet problematic.

4.2.10 Perform sanity check

In the previous subsection the actual measurement result of a single context switch
including cache flush was 10µs. Our expected result was in the order of magnitude
of 2µs. The difference is significant, but the order of magnitude is comparable.
In geenral this means that we do not completely understand our system nor our
measurement. The value is usable, but we should be alert on the fact that our
measurement still introduces some additional systematic time. Or the operating
system might do more than we are aware of.

One approach that can be taken is to do a completely different measurement
and estimation. For instance by measuring the idle time, the remaining CPU time
that is avaliable after we have done the real work plus the overhead activities. If we
also can measure the time needed for the real work, then we have a different way
to estimate th overhead, but now averaged over a longer period.

4.2.11 Summary of measuring Context Switch time on ARM9

We have shown in this example that the goal of measurement of the ARM9 VxWorks
combination was to provide guidance for concurrency design and task granularity.
For that purpose we need an estimation of context switching overhead.

We provided examples of measurement, where we needed context switch overhead
of about 10% accuracy. For this measurement the instrumentation used toggling of
a HW pin in combination with small SW test program. We also provided simple
models of HW and SW layers to be able to determine an expectation. Finally we
found as measurement results for context switching on ARM9 a value of 10µs.

Gerrit Muller
Modeling and Analysis: Measuring
August 16, 2025 version: 1.2

University of South-Eastern Norway-SE

page: 44

4.3 Summary

Figure 4.22 summarizes the measurement approach and insights.

Conclusions

Measurements are an important source of factual data.

A measurement requires a well-designed experiment.

Measurement error, validation of the result determine the credibility.

Lots of consolidated data must be reduced to essential

understanding.

Techniques, Models, Heuristics of this module

experimentation

error analysis

estimating expectations

Figure 4.22: Summary Measuring Approach

Gerrit Muller
Modeling and Analysis: Measuring
August 16, 2025 version: 1.2

University of South-Eastern Norway-SE

page: 45

4.4 Acknowledgements

This work is derived from the EXARCH course at CTT developed by Ton Kostelijk
(Philips) and Gerrit Muller. The Boderc project contributed to the measurement
approach. Especially the work of Peter van den Bosch (Océ), Oana Florescu
(TU/e), and Marcel Verhoef (Chess) has been valuable. Teun Hendriks provided
feedback, based on teaching the Architecting System Performance course.

Gerrit Muller
Modeling and Analysis: Budgeting
August 16, 2025 version: 1.0

TNO-ESI, HSN-NISE

page: 46

Chapter 5

Modeling and Analysis:
Budgeting

budget
design

estimates;
simulations

V4aa

IO

micro benchmarks

aggregated functions

applications

measurements
existing system

model

tproc

tover

+

tdisp

tover

+

+

spec

SRS
tboot 0.5s

tzap 0.2s

measurements
new (proto)

system
form

micro benchmarks

aggregated functions

applications

profiles

traces

tuning

10

20

30

5

20

25

55

tproc

tover

tdisp

tover

Tproc

Tdisp

Ttotal

feedback

can be more complex

than additions

5.1 Introduction

Budgets are well known from the financial world as a means to balance expen-
ditures and income. The same mechanism can be used in the technical world to
balance for instance resource use and system performance.

A budget is

a quantified instantation of a conceptual model

A budget can

prescribe or describe the contributions

by parts of the solution

to the system quality under consideration

Figure 5.1: Definition of a budget in the technical world

Budgets are more than an arbitrary collection of numbers. The relationship

between the numbers is guided by an underlying model. Figure 5.1 shows what
a budget is. Technical budgets can be used to provide guidance by prescribing
allowed contributions per function or subsystem. Another use of budgets is as a
means for understanding, where the budget describes these contributions.

We will provide and illustrate a budget method with the following attributes:

• a goal

• a decomposition in smaller steps

• possible orders of taking these steps

• visualization(s) or representation(s)

• guidelines

5.2 Budget-Based Design method

In this section we illustrate a budget-based design method applied at waferstepper,
health care, and document handling systems, where it has been applied on different
resources: overlay, memory, and power.

5.2.1 Goal of the method

• to make the design explicit

• to provide a baseline to take decisions

• to specify the requirements for the detailed designs

• to have guidance during integration

• to provide a baseline for verification

• to manage the design margins explicitly

Figure 5.2: Goals of budget based design

The goal of the budget-based design method is to guide the implementation of
a technical system in the use of the most important resource constraints, such as
memory size, response time, or positioning accuracy. The budget serves multiple
purposes, as shown in Figure 5.2.

Gerrit Muller
Modeling and Analysis: Budgeting
August 16, 2025 version: 1.0

TNO-ESI, HSN-NISE

page: 48

budget
design

estimates;
simulations

V4aa

IO

micro benchmarks

aggregated functions

applications

measurements
existing system

model

tproc

tover

+

tdisp

tover

+

+

spec

SRS
tboot 0.5s

tzap 0.2s

measurements
new (proto)

system
form

micro benchmarks

aggregated functions

applications

profiles

traces

tuning

10

20

30

5

20

25

55

tproc

tover

tdisp

tover

Tproc

Tdisp

Ttotal

feedback

can be more complex

than additions

Figure 5.3: Visualization of Budget-Based Design Flow. This example shows a
response time budget.

5.2.2 Decomposition into smaller steps

Figure 5.3 visualizes the budget-based design flow. This visualization makes it
clear that although the budget plays a central role in this design flow, cooperation
with other methods is essential. In this figure other cooperating methods are perfor-
mance modeling, micro-benchmarking, measurement of aggregated functions, measure-
ments at system level, design estimates, simulations, and requirements specifi-
cation.

Measurements of all kinds are needed to provide substance to the budget.
Micro-benchmarks are measurements of elementary component characteristics.
The measured values of the micro-benchmarks can be used for a bottom-up budget.
Measurements at functional level provide information at a higher aggregated level;
many components have to cooperate actively to perform a function. The outcome
of these function measurements can be used to verify a bottom-up budget or can
be used as input for the system level budget. Measurements in the early phases of
the system integration are required to obtain feedback once the budget has been
made. This feedback will result in design changes and could even result in speci-
fication changes. The use of budgets can help to set up an integration plan. The
measurement of budget contributions should be done as early as possible, because
the measurements often trigger design changes.

5.2.3 Possible order of steps

Figure 5.4 shows a budget-based design flow (the order of the method). The
starting point of a budget is a model of the system, from the conceptual view.

Gerrit Muller
Modeling and Analysis: Budgeting
August 16, 2025 version: 1.0

TNO-ESI, HSN-NISE

page: 49

1B model the performance starting with old systems

1A measure old systems

1C determine requirements for new system

2 make a design for the new system

3 make a budget for the new system:

4 measure prototypes and new system

flow model and analytical model

micro-benchmarks, aggregated functions, applications

response time or throughput

explore design space, estimate and simulate

step example

models provide the structure

measurements and estimates provide initial numbers

specification provides bottom line

micro-benchmarks, aggregated functions, applications

profiles, traces

5 Iterate steps 1B to 4

Figure 5.4: Budget-based design steps

An existing system is used to get a first guidance to fill the budget. In general the
budget of a new system is equal to the budget of the old system, with a number
of explicit improvements. The improvements must be substantiated with design
estimates and simulations of the new design. Of course the new budget must fulfill
the specification of the new system; sufficient improvements must be designed to
achieve the required improvement.

5.2.4 Visualization

In the following three examples different actually used visualizations are shown.
These three examples show that a multi-domain method does not have to provide a
single solution, often several useful options exist. The method description should
provide some guidance in choosing a visualization.

5.2.5 Guidelines

A decomposition is the foundation of a budget. No universal recipe exists for
the decomposition direction. The construction decomposition and the functional
decomposition are frequently used for this purpose. Budgets are often used as part
of the design specification. From project management viewpoint a decomposition
is preferred that maps easily on the organization.

The architect must ensure the manageability of the budgets. A good budget has
tens of quantities described. The danger of having a more detailed budget is loss
of overview.

The simplification of the design into budgets introduces design constraints.
Simple budgets are entirely static. If such a simplification is too constraining or too

Gerrit Muller
Modeling and Analysis: Budgeting
August 16, 2025 version: 1.0

TNO-ESI, HSN-NISE

page: 50

costly then a dynamic budget can be made. A dynamic budget uses situationally
determined data to describe the budget in that situation. For instance, the amount
of memory used in the system may vary widely depending on the function or the
mode of the system. The budget in such a case can be made mode-dependent.

5.2.6 Example of overlay budget for wafersteppers

process

overlay

80 nm

reticle

15 nm

matched

machine

60 nm

process

dependency

sensor

5 nm

matching

accuracy

5 nm

single

machine

30 nm

lens

matching

25 nm

global

alignment

accuracy

6 nm

stage

overlay

12 nm

stage grid

accuracy

5 nm

system

adjustment

accuracy

2 nm

stage Al.

pos. meas.

accuracy

4 nm

off axis pos.

meas.

accuracy

4nm

metrology

stability

5 nm

alignment

repro

5 nm

position

accuracy

7 nm

frame

stability

2.5 nm

tracking

error phi

75 nrad

tracking

error X, Y

2.5 nm

interferometer

stability

1 nm

blue align

sensor

repro

3 nm

off axis

Sensor

repro

3 nm

tracking

error WS

2 nm

tracking

error RS

1 nm

Figure 5.5: Example of a quantified understanding of overlay in a waferstepper

Figure 5.5 shows a graphical example of an “overlay” budget for a wafer-
stepper. This figure is taken from the System Design Specification of the ASML
TwinScan system, although for confidentiality reasons some minor modifications
have been applied.

The goal of the overlay budget is:

• to provide requirements for subsystems and components.

• to enable measurements of the actual contributions to the overlay during the
design and integration process, on functional models or prototypes.

• to get early feedback of the overlay design by measurements.

The steps taken in the creation, use and validation of the budget follow the
description of Figure 5.4. This budget is based on a model of the overlay function-
ality in the waferstepper (step 1B). The system engineers made an explicit model
of the overlay. This explicit model captures the way in which the contributions
accumulate: quadratic summation for purely stochastic, linear addition for systematic
effects and some weighted addition for mixed effects. The waferstepper budget is
created by measuring the contributions in an existing system (step 1A). At the same
time a top-down budget is made, because the new generation of machines needs

Gerrit Muller
Modeling and Analysis: Budgeting
August 16, 2025 version: 1.0

TNO-ESI, HSN-NISE

page: 51

a much better overlay specification than the old generation (step 1C). In discus-
sions with the subsystem engineers, design alternatives are discussed to achieve
the required improvements (step 2 and 3). The system engineers also strive for
measurable contributions. The measurability of contributions influences the subsystem
specifications. If needed the budget or the design is changed on the basis of this
feedback (step 4).

Two visualizations were used for the overlay budget: tables and graphs, as
shown in Figure 5.5.

The overlay budget plays a crucial role in the development of wafersteppers.
The interaction between the system and the customer environment is taken into
account in the budget. However, many open issues remain at this interface level,
because the customer environment is outside the scope of control and a lot of
customer information is highly confidential. The translation of this system level
budget into mono-disciplinary design decisions is still a completely human activity
with lots of interaction between system engineers and mono-disciplinary engineers.

5.2.7 Example of memory budget for Medical Imaging Workstation

The goal of the memory budget for the medical imaging workstation is to obtain
predictable and acceptable system performance within the resource constraints
dictated by the cost requirements. The steps taken to create the budget follow
the order as described in Figure 5.4. The visualization was table based.

shared code

User Interface process

database server

print server

optical storage server

communication server

UNIX commands

compute server

system monitor

application SW total

UNIX Solaris 2.x

file cache

total

obj data

3.0

3.2

1.2

2.0

2.0

0.2

0.5

0.5

12.6

bulk data

12.0

3.0

9.0

1.0

4.0

0

6.0

0

35.0

code

11.0

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

13.4

total

11.0

15.3

6.5

10.5

3.3

6.3

0.5

6.8

0.8

61.0

10.0

3.0

74.0

memory budget in Mbytes

Figure 5.6: Example of a memory budget

The rationale behind the budget can be used to derive guidelines for the creation
of memory budgets. Figure 5.6 shows an example of an actual memory budget for a
medical imaging workstation from Philips Medical Systems. This budget decom-
poses the memory into three different types of memory use: code (”read only”
memory with the program), object data (all small data allocations for control and

Gerrit Muller
Modeling and Analysis: Budgeting
August 16, 2025 version: 1.0

TNO-ESI, HSN-NISE

page: 52

bookkeeping purposes) and bulk data (large data sets, such as images, which is
explicitly managed to fit the allocated amount and to prevent memory fragmen-
tation). The difference in behavior of these three memory types is an important
reason to separate into different budget entries. The operating system and the
system infrastructure, at the other hand, provide means to measure these three types
at any moment, which helps for the initial definition, for the integration, and for
the verification.

The second decomposition direction is the process. The number of processes
is manageable, since processes are related to specific development teams. Also in
this case the operating system and system infrastructure support measurement at
process level.

The memory budget played a crucial role in the development of this workstation.
The translation of this system level budget into mono-disciplinary design decisions
was, as in the case of overlay in wafersteppers, a purely human activity. The
software discipline likes to abstract away from physical constraints, such as memory
consumption and time. A lot of room for improvement exists at this interface
between system level design and mono-disciplinary design.

5.2.8 Example of power budget visualizations in document handling

Visualizations of a budget can help to share the design issues with a large multi-
disciplinary team. The tables and graphs, as shown in the previous subsections,
and as used in actual practice, contain all the information about the resource use.
However the hot spots are not emphasized. The visualization does not help to see
the contributions in perspective. Some mental activity by the reader of the table or
figure is needed to identify the design issues.

Figure 5.7 shows a visualization where at the top the physical layout is shown
and at the bottom the same layout is used, however the size of all units is scaled
with the allocated power contribution. The bottom visualization shows the power
foot print of the document handler units.

Figure 5.8 shows an alternative power visualization. In this visualization the
energy transformation is shown: incoming electrical power is in different ways
transformed into heat. The width of the arrows is proportional to the amount of
energy. This visualization shows two aspects at the same time: required electrical
power and required heat disposition capacity, two sides of the same coin.

5.2.9 Evolution of budget over time

Figure 5.9 shows a classification for budget types. It will be clear that already with
four different attributes the amount of different types of budgets is large. Every
type of budget might have its own peculiarities that have to be covered by the
method. For instance, worst case budgets need some kind of over-kill prevention.

Gerrit Muller
Modeling and Analysis: Budgeting
August 16, 2025 version: 1.0

TNO-ESI, HSN-NISE

page: 53

paper path

scanner
and feeder

procedé

UI and
control

finisher

paper input
module

power

supplies
s
c
a

n
n

e
r

fe
e

d
e

r

U
I
a

n
d

c
o

n
tr

o
l

cooling
power supplies

paper path

procedé fi
n

is
h

e
r

p
a

p
e

r

in
p

u
t

m
o

d
u

le

size

proportional

to power

physical

layout

legend

cooling

Figure 5.7: Power Budget Visualization for Document Handler

power supplies

cooling

UI and control

paper path

paper input
module

finisher paper

procedé

electrical
power

heat

Figure 5.8: Alternative Power Visualization

Add to these different types the potential different purposes of the budget (design
space exploration, design guidance, design verification, or quality assurance) and
the amount of method variations explodes even more.

We recommend to start with a budget as simple as possible:

• coarse guesstimate values

• typical case

• static, steady state system conditions

• derived from existing systems

This is also shown in Figure 5.10. This figure adds the later evolutionary incre-
ments, such as increased accuracy, more attention for boundary conditions and

Gerrit Muller
Modeling and Analysis: Budgeting
August 16, 2025 version: 1.0

TNO-ESI, HSN-NISE

page: 54

static

 is the budget based on

wish, empirical data, extrapolation,

educated guess, or expectation?

typical case

global

approximate

dynamic

worst case

detailed

accurate

Figure 5.9: What kind of budget is required?

dynamic behavior.

fact finding through details

aggregate to end-to-end performance

search for appropriate abstraction level(s)

from coarse guesstimate

to reliable prediction

from typical case

to boundaries of requirement space

from static understanding

 to dynamic understanding

from steady state

to initialization, state change and shut down

from old system

to prototype

to actual implementation

time

start later only if needed

Figure 5.10: Evolution of Budget over Time

However, some fact finding has to take place before making the budget, where
lots of details can not be avoided. Facts can be detailed technical data (memory
access speed, context switch time) or at customer requirement level (response time
for specific functions). The challenge is to mold these facts into information at
the appropriate abstraction level. Too much detail causes lack of overview and
understanding, too little detail may render the budget unusable.

Gerrit Muller
Modeling and Analysis: Budgeting
August 16, 2025 version: 1.0

TNO-ESI, HSN-NISE

page: 55

5.2.10 Potential applications of budget method

For instance the following list shows potential applications, but this list can be
extended much more. At the same time the question arises whether budget-based
design is really the right submethod for these applications.

• resource use (CPU, memory, disk, bus, network)

• timing (response time, latency, start up, shutdown)

• productivity (throughput, reliability)

• image quality (contrast, signal to noise ratio, deformation, overlay, depth-of-
focus)

• cost, space, time, effort (for instance expressed in lines of code)

5.3 Summary

A budget is a quantified instantiation of a model

A budget can prescribe or describe the contributions by parts of the solution

to the system quality under consideration

A budget uses a decomposition in tens of elements

The numbers are based on historic data, user needs, first principles and

measurements

Budgets are based on models and estimations

Budget visualization is critical for communication

Budgeting requires an incremental process

Many types of budgets can be made; start simple!

Figure 5.11: Summary of budget based design

5.4 Acknowledgements

The Boderc project contributed to the budget based design method. Figure 5.12
shows the main contributors.

Gerrit Muller
Formula Based Performance Design
August 16, 2025 version: 1.0

HSN-NISE

page: 56

The Boderc project contributed to Budget Based

Design. Especially the work of

Hennie Freriks, Peter van den Bosch (Océ),

Heico Sandee and Maurice Heemels (TU/e, ESI)

has been valuable.

Figure 5.12: Colophon

Gerrit Muller
Formula Based Performance Design
August 16, 2025 version: 1.0

HSN-NISE

page: 57

Chapter 6

Formula Based Performance
Design

6.1 Introduction

We recommend to model performance by using simple, secondary school, mathe-
matical formulas. Frequently designers tend to start using more advanced techniques
and formalisms, in an attempt to be accurate. In this paper we discuss an approach
using simple mathematical formulas, starting with the most simple formulas and
refining these formulas as far as needed.

6.2 Using n-order formulas

The basis for most performance models are simple mathematical formulas, using
secondary school math. The challenge is to keep the models as simple as possible,
as discussed in the section about control design. We can express the degree of detail
in formulas by the order of the formula. Figure 6.1 shows such classification.

Figure 6.2 shows an example of a highly simplified model of the CPU load for
image processing. This formula assumes that the CPU load is directly proportional
to the number of pixels plus some time to perform the user interface tasks. We call
such a formula, where only the main parameter is present, a zeroth order formula.

It could be that the 0-order formula does not work well enough, for example
because overhead is significant. In Figure 6.3 the biggest overhead contribution is
added to the formula, in this example the context switch overhead.

0
th
 order main function

parameters

order of magnitude

relevant for main function

1
st
 order add overhead

secondary function(s)
estimation

2
nd

 order interference effects

circumstances
more accurate, understanding

main function, overhead

and/or secondary functions

Figure 6.1: Theory Block 1: n Order Formulas

tcpu total tcpu processing=

nx tpixelny= * *

tUI+

tcpu processing

Figure 6.2: CPU Time Formula Zero Order

However, in a heavily loaded system may suffer additional loads due to the
context switches, the so-called second order effects. In Figure 6.4 these second
order effects are added to the formula. The second order impact may depend on
the type of system load. The second order terms might be parameterized to express
this relation. For example signal processing loads might cause low penalties, due
to high cache efficiency, while control processing might be much more sensitive to
these effects.

6.3 Example of n-order formulas in MR reconstruction

The reconstruction of MR images is a processing intensive operation. Fast recon-
structions are beneficial for the throughput of MRI scanners and are prerequisite

tcpu total tcpu processing

tcontext switch

overhead

+= tUI

+

Figure 6.3: CPU Time Formula First Order

Gerrit Muller
Formula Based Performance Design
August 16, 2025 version: 1.0

HSN-NISE

page: 59

tcpu total tcpu processing tcontext switch

overhead

tstall time due to

context switching

+=

+

+

tstall time due to

cache efficiency

signal processing: high efficiency

control processing: low/medium efficiency

+tUI

Figure 6.4: CPU Time Formula Second Order

Host

Acquisition

Storage
Viewing

&Printing

m
a

g
n

e
t

g
ra

d
ie

n
ts

R
F

A
D

C Reconstruction

control

Figure 6.5: MR Reconstruction Context

for a number of performance critical applications. Figure 6.5 shows a simplified
block diagram of an MRI scanner, the context of the MR reconstruction. The MR
data is digitized in the acquisition subsystem and transferred to the reconstruction
subsystem. The reconstructed images are stored in the data base and viewed at
the operator or viewing console. All subsystems are controlled by a central host
computer.

In Figure 6.6 a visualization and mathematical formulas are used in combi-
nation to model the performance of the MR reconstruction. The visualization
shows the processing steps that are performed as reconstruction. Above the arrows
it is shown what the size of the data matrices is at that phase.

This 0-order model uses the Fast Fourier Transform (FFT) as the dominating
term contributing to the performance Most operations are directly proportional to
the matrix size shown above the formulas. The FFT itself is an order nlog(n) term,
parameterized with its corresponding load cfft.

Gerrit Muller
Formula Based Performance Design
August 16, 2025 version: 1.0

HSN-NISE

page: 60

trecon = nraw-x * tfft(nraw-y)

ny * tfft(nraw-x)

+

tfft(n) = cfft * n * log(n)

filter FFT FFT
correc
tions

nraw-x

nraw-y

nraw-x

nraw-y

nraw-x

ny

nx

ny

nx

ny

Figure 6.6: MR Reconstruction Performance Zero Order

Typical FFT, 1k points ~ 5 msec

(scales with 2 * n * log (n))

nraw-x = 512

nraw-y = 256

ny = 256

nx = 256

using:

trecon = nraw-x * tfft(nraw-y)

ny * tfft(nraw-x)

+

+

512 * 1.2 + 256 * 2.4

~= 1.2 s

Figure 6.7: Zero Order Quantitative Example

Unfortunately the formulas don’t tell us much without quantification. Figure 6.7
provides us with some quantified input based on a FFT micro-benchmark: an FFT
on thousand points executes in about 5 msecs (typical performance figures for
processing hardware around 1990). The figure takes one typical use case, where a
512*256 raw image is reconstructed on a 256*256 image, to calculate the recon-
struction performance. For this use case and assumptions we get 1.2 seconds.

Figure 6.9 extends the model to also take the non-FFT processing into account.
These operations filter the raw data and perform some simple corrections on the
image. Both operations are proportional to the number of pixels that is processed.

Figure 6.9 provides the quantifications obtained by micro-benchmarking both
operations: 2 msec to process 1k points. Using the same numbers as Figure 6.7
we get for filtering 512 ∗ 256 ∗ 2/1024ms ≈ 0.26s and for correction 256 ∗ 256 ∗
2/1024ms ≈ 0.13s. Both processing steps can not be ignored compared to the
FFT operation!

Gerrit Muller
Formula Based Performance Design
August 16, 2025 version: 1.0

HSN-NISE

page: 61

trecon =

nraw-x * tfft(nraw-y)

ny * tfft(nraw-x)

tfilter(nraw-x ,nraw-y) +

+

+

tfft(n) = cfft * n * log(n)

filter FFT FFT
correc
tions

nraw-x

nraw-y

nraw-x

nraw-y

nraw-x

ny

nx

ny

nx

ny

tcorrections(nx ,ny)

Figure 6.8: MR Reconstruction Performance First Order

Typical FFT, 1k points ~ 5 msec

(scales with 2 * n * log (n))

Filter 1k points ~ 2 msec

(scales linearly with n)

Correction ~ 2 msec

(scales linearly with n)

Figure 6.9: First Order Quantitative Example

Finally we add bookkeeping and I/O type operations to the formula, see Figure 6.10.
In practice both terms often ruin the performance of well designed processing
kernels, mostly by a lack of attention.

6.4 Summary

We have shown that performance can be modeled by starting with the formula for
the main function and its parameters. This formula is refined by adding factors that
significantly contribute to the (non-)performance.

We used MRI reconstruction as an example of these types of formulas. The
formulas are limited to multiplications and logarithms. In this example we have to
add quite some factors outside of the main functionality to obtain a usable perfor-
mance model: simple correcion and filter functions, bookkeeping, data-restructuring,
and input/output. We also showed that the formulas provide insight, especially the
impact of the different parameters, but that actual quantifications also add insight
in actual performance numbers and the relevance of the different terms.

Gerrit Muller
Formula Based Performance Design
August 16, 2025 version: 1.0

HSN-NISE

page: 62

overhead

trecon = nraw-x * (tfft(nraw-y)

ny * (tfft(nraw-x)

tfilter(nraw-x ,nraw-y) + +

+

tfft(n) = cfft * n * log(n)

filter FFT FFT
correc
tions

tcol-overhead

tcorrections(nx ,ny)trow-overhead +tcontrol-overhead+

) +

) +

nraw-x

nraw-y

nraw-x

nraw-y

nraw-x

ny

FFT computations

column overhead

FFT computations

row overhead
correction computations

overhead

filter computations

read I/O

write I/O

malloc, free
transpose

bookkeeping

number
crunching

overhead

focus on overhead

reduction

is more important

than faster algorithms

this is not an excuse

for sloppy algorithms

read
I/O

write
I/O

trans-
pose

nraw-x

ny

nx

ny

nx

ny

tread I/O +twrite I/O+ttranspose

Figure 6.10: MR Reconstruction Performance Second Order

6.5 Acknowledgements

The diagrams are a joined effort of Roland Mathijssen, Teun Hendriks and Gerrit
Muller. The approach is based on the EXARCH course created by Ton Kostelijk
and Gerrit Muller.

Gerrit Muller
Formula Based Performance Design
August 16, 2025 version: 1.0

HSN-NISE

page: 63

Bibliography

[1] H Gomaa. Software Design Methods for Real-time Systems. Addison-Wesley,
1993.

[2] John L. Hennessy, David A. Patterson, and David Goldberg. Computer Archi-
tecture: A Quantitative Approach. Morgan Kaufmann, 1996.

[3] Gerrit Muller. The system architecture homepage. http://www.
gaudisite.nl/index.html, 1999.

[4] Gerrit Muller. Architectural reasoning explained. http://www.
gaudisite.nl/ArchitecturalReasoningBook.pdf, 2002.

History
Version: 1.1, date: March 19, 2008 changed by: Gerrit Muller

• added Elevator Modeling
Version: 0, date: September 4, 2007 changed by: Gerrit Muller

• Created, no changelog yet

http://www.gaudisite.nl/index.html
http://www.gaudisite.nl/index.html
http://www.gaudisite.nl/ArchitecturalReasoningBook.pdf
http://www.gaudisite.nl/ArchitecturalReasoningBook.pdf

	Introduction to System Performance Design
	Introduction
	What if ...
	Problem Statement
	Summary
	Acknowledgements

	Performance Method Fundamentals
	Introduction
	Incremental approach
	Multiple views needed to understand system performance
	Construction Decomposition
	Functional Decomposition
	Execution Architecture

	Benchmarking
	Acknowledgements

	Modeling and Analysis Fundamentals of Technology
	Introduction
	Computing Technology Figures of Merit
	Caching in Web Shop Example
	Summary

	Modeling and Analysis: Measuring
	introduction
	Measuring Approach
	What do we need?
	Define quantity to be measured.
	Define required accuracy
	Define the measurement circumstances
	Determine expectation
	Define measurement set-up
	Expectation revisited
	Determine actual accuracy
	Start measuring
	Perform sanity check
	Summary of measuring Context Switch time on ARM9

	Summary
	Acknowledgements

	Modeling and Analysis: Budgeting
	Introduction
	Budget-Based Design method
	Goal of the method
	Decomposition into smaller steps
	Possible order of steps
	Visualization
	Guidelines
	Example of overlay budget for wafersteppers
	Example of memory budget for Medical Imaging Workstation
	Example of power budget visualizations in document handling
	Evolution of budget over time
	Potential applications of budget method

	Summary
	Acknowledgements

	Formula Based Performance Design
	Introduction
	Using n-order formulas
	Example of n-order formulas in MR reconstruction
	Summary
	Acknowledgements

