
IFAC PapersOnLine 59-5 (2025) 169–174

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2025 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2025.07.100

1. INTRODUCTION

Lithium-ion batteries (LIBs) are fundamental energy stor-
age technologies for the energy transition, particularly im-
portant for decarbonizing transport through battery elec-
tric vehicles (BEVs). However, despite their crucial role,
BEVs face adoption challenges due to longer refuelling
(charging) times in comparison to combustion vehicles, as
well as performance loss and safety risks due to battery
degradation. To address these challenges, it is crucial to
develop fast charging strategies that optimize charging
speed and mitigate degradation.

While fast-charging strategies have been developed using
data-driven equivalent-circuit models (Drees et al., 2022)
and deep learning approaches (Park et al., 2022), physics-
based approaches, which leverage electrochemical Physics-
Based Models (PBMs), offer the unique advantage of cap-
turing the underlying electrochemical and thermal pro-
cesses within the battery. Through control strategies based
on non-invasive estimation of the system’s electrochemi-
cal states derived from PBMs, health-aware fast charging
strategies can be designed to modulate inputs that reduce
ageing and maximise charging speed. This includes lim-
iting internal conditions that thermodynamically induce
degradation, such as limiting the anode potential to reduce
lithium plating (Rangarajan et al., 2020), as well as using
PBMs with additional physics to directly model ageing
phenomena, allowing for direct control of degradation as
done by Medina et al. (2023); Khalik et al. (2020).

Having determined that PBMs are well suited for fast
charging control, PBMs remain a critical area of re-
search, with key remaining challenges including 1) model
parametrisation of real cells, 2) which model equations and
parameter realisations should be used to model the elec-
trochemical behaviour, and 3) computational performance

⋆ This research has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agree-
ment No 101103898 under title of NEXTBMS (https://nextbms.eu).

of PBM solvers to achieve real-time applicability. To tackle
these challenges, the academic community has developed
a number of open-source battery modelling suites, an
overview of which is shown in Table 1. Differences between
the suites lie in the employed electrochemical models,
including variants of the Doyle Fuller Newman (DFN) and
Single Particle Model (with electrolyte) (SPM(e)); model
approximations and order reduction techniques; program-
ming language and software architecture; numerical solver
implementation; and portability to embedded systems.
Certain suites are also more complete than others by
including thermal models, ageing models, and parametri-
sation capabilities. However, determining which suite is
most suitable for fast charging control or comparing suites
in terms of model accuracy and computational perfor-
mance is far from trivial due to model equation differences,
parameter inconsistencies, solver tolerances, etc.

This paper presents a methodology for comparing open-
source PBM suites with a focus on employing PBMs in
real-time control applications, making a first direct com-
parison PyBaMM and TOOFAB, two of the most com-
plete suites currently in the literature (see Table 1). The
proposed comparison methodology enables the use of a
single parameter set through a unified porting framework
based on the BPX (Battery Parameter eXchange, see Ko-
rotkin et al. (2023)) standard. It also provides a method
for solver tolerance selection critical for comparison of
computational speed. This comparison sheds light on fun-
damental differences between suites, providing a roadmap
for selecting and optimizing PBM simulators for real-time
applications, particularly for fast charging.

2. COMPARISON METHODOLOGY

Differences in model equations and parameters employed
make it a non-trivial process to model the same cell across
software suites. To tackle this, we leverage the BPX open
information exchange standard, which defines the param-
eters used in PBMs to model a cell, the electrochemical

Keywords: Lithium ion batteries; physics-based model; fast charging; PyBaMM; TOOFAB

Abstract: This paper presents a methodology to compare open-source suites for electrochemical
battery simulations in terms of simulation output and computation time. The proposed
approach leverages the Battery Parameter eXchange standard to introduce a parameter porting
framework that supports the implementation of equivalent cell parameters across suites, and
provides a method for solver tolerance selection used for computational speed comparison. The
methodology is showcased by comparing two of the most comprehensive open-source suites,
PyBaMM and TOOFAB. While both provide lean model implementation, PyBaMM shows more
versatility and faster mean simulation times, with TOOFAB closing the gap on simulations with
coarser discretizations, particularly when order reductions are applied. Furthermore, considering
portability to C and implementation simplicity, TOOFAB has a strong advantage.

Copyright © 2025 The Authors. This is an open access article under the CC BY-NC-ND license
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

∗ Powertrains Dept., TNO Mobility & Built Environment, Helmond,
The Netherlands (e-mail: alessio.lodge@tno.nl)

Andres M. Diaz Aguilar, Alessio A. Lodge, and Feye S.J. Hoekstra ∗

Unlocking electrochemical battery modelling:
an open-source suite comparison methodology ⋆

170 Andres M. Diaz Aguilar et al. / IFAC PapersOnLine 59-5 (2025) 169–174

Table 1. Open-source battery modelling software.

Suite Language Model Ageing Parameterization Thermal model Original source

PyBaMM Python DFN, SPM(e) ✓ ✓1 ✓ Sulzer et al. (2021)
TOOFAB MATLAB DFN ✓ ✓ ✓ Khalik et al. (2021a)
SPMeT2 MATLAB SPMe ✓ ✓ Wassiliadis et al. (2022)
COBRAPRO MATLAB DFN ✓ Ha et al. (2024)
LIONSIMBA MATLAB DFN ✓ Torchio et al. (2016)
DEARLIBS MATLAB DFN Lee et al. (2021)
PETLION Julia DFN ✓ ✓ Berliner et al. (2021)
JuBat Julia DFN, SPM(e) ✓ Ai et al. (2024)
Liibra Julia Reduced DFN Planden et al. (2022)
BatterySimulator C++ DFN, SPM Jiang et al. (2022)
batP2dFoam C++ DFN Yin et al. (2023)

1 While not natively part of PyBaMM, PyBOP (see Planden et al. (2024)) may be used to parameterize PyBaMM models
2 Based on the model developed by Perez et al. (2016); Moura et al. (2017).

model equations employing these parameters, and a spe-
cific JSON schema to store and share cell parameters,
which may be used for portability across simulators. In
this paper, we make use of the 12.5 Ah NMC111-graphite
pouch cell parametrised by About:Energy, available in the
BPX format at About:Energy (2023). To accommodate
for the differences in parameter definitions between suites,
porting tools are required to map BPX parameters to
suite-specific ones. While such a porting tool is provided
natively for PyBaMM, the same must be developed for
other software suites to ensure accurate parameter defini-
tions tailored to each suite’s modelling approach. Devel-
oping one for TOOFAB exposed a number of parameter
discrepancies, highlighted in Section 3.

Solver tolerances can have a significant effect on compu-
tation times, as stricter tolerances increase the computa-
tional effort required for accuracy improvement. Depend-
ing on the solver, different tolerances may yield similar
accuracies, meaning that tolerances for each suite must be
determined individually based on the simulation accuracy
they yield. One approach to do so has been proposed by
Khalik et al. (2021a), in which the tolerance is set as the
largest possible value such that the Normalized Root Mean
Square Error (NRMSE) between the tested model and a
reference model (with a fixed standard tolerance, typically
10−6) remains below 10−4, ensuring consistency in terms
of achieved accuracy. The NRMSE is given by

1

|Z|
∑

p,q∈Z

√
1
K

∑K
k=0(pk − qk)2

maxk
{

1
2 (pk + qk)

}
−mink

{
1
2 (pk + qk)

} , (1)

with k the time index, K the maximum time, p = q ∈
Z = {V, ϕe, ce, cs,surf , jn} with p the reference solution and
q the reduced tolerance solution, |Z| the cardinality of Z,
V the terminal voltage, ϕe the electrolyte potential, ce
electrolyte concentration, cs,surf solid surface concentra-
tion, and jn the particle interfacial molar flux. With the
tolerance determined, for dynamic time-stepping solvers,
the maximum allowable time-step setting for which the
simulation remained stable was used, as limiting it drasti-
cally increases computation time. For static time-stepping
solvers, such as TOOFAB’s in-house solver, the default
time-stepping of dt = 1s was used.

To compare the performance of different suites, we con-
sider as input three different current profiles (illustrated
in Figure 1), namely

(1) Constant Current (CC) charge at 1C, 2C, 3C, 4C, 5C,
and 6C.

(2) US06 drive cycle test starting at 0.8 SOC
(3) Fast charge profile starting at 0.1 SOC (inspired by

Wassiliadis et al. (2022))

CC inputs at different C-rates are used as higher C-rates
exacerbate model non-linearities, revealing differences be-
tween the suites. The drive cycle is applied due to its
dynamic nature, which presents a challenge to solvers
applying dynamic time stepping. Lastly, the fast charge
cycle is primarily intended as a demonstration to showcase
the application we are ultimately pursuing.

3. HIGH-LEVEL SUITE COMPARISON

PyBaMM (Python Battery Mathematical Modeling) is
currently the most popular battery modelling suite as well
as the one with the most features, seeing community-
based development and continuous funding. Introduced
by Sulzer et al. (2021), PyBaMM is a Python-based suite
defined by its modularity, explicitly separating the battery
model selection, discretization approach, numerical solver,
parameter choice, and solver settings in the simulation
environment. Paired with a broad set of predefined elec-
trochemical models (e.g. DFN, SPMe, SPM); a set of
15 python-based numerical solvers as well as the C++
based IDAKLU solver; a variety of sub-models to cap-
ture additional physics and electrochemical reactions (e.g.
thermal effects, side reactions or stress related ageing); a
comprehensive list of predefined parameter set for various
cell formats and chemistries derived from literature; and a
combination of predefined post-processing functionalities;
PyBaMM allows for users to easily create and modify
their simulations to accommodate their requirements, with
full documentation, examples and video tutorials. Further-
more, PyBaMM provides a series of additional libraries
which build upon their electrochemical simulation capabil-
ities, such as LiionPack for the modelling of battery packs,
and PyBOP for cell model parametrization.

In contrast, TOOFAB, developed by Khalik et al. (2021a)
and le Roux et al. (2023), proposes a MATLAB-based suite
for DFN-type battery modelling. While it does not include
other PBMs and has fewer predefined parameter sets, it
provides a lean DFN solver implementation that does not
rely on any toolboxes to perform its computations, as all
governing equations are discretized and solved numerically
with an in-house Newton-based approach. TOOFAB also
offers the ability to toggle thermal and ageing models, as

Andres M. Diaz Aguilar et al. / IFAC PapersOnLine 59-5 (2025) 169–174 171

0 1000 2000 3000
Time [s]

0

2

4

6
C
u
rr

en
t
[C

-r
a
te

]

(a) Constant Current (CC): 1C to 6C

0 1000 2000 3000 4000
Time [s]

-4

-2

0

2

C
u
rr

en
t
[C

-r
a
te

]

(b) Drive Cycle (DC)

0 500 1000
Time [s]

0

1

2

3

4

C
u
rr

en
t
[C

-r
a
te

]

(c) Fast Charge (FC)

Fig. 1. Input current profiles used to compare the suites.

well as a number of pre-defined model simplifications to
increase computational speed, including:

[S1] A linearization of the Butler-Volmer equation with
respect to the overpotential η around the origin,
resulting in jn = i0

RT (ϕs − ϕe − U)
[S2] A zeroth-order Taylor approximation of concentration-

dependent parameters (κ, De, ν, and Ds), with eval-
uation points either chosen as [S2-I] the values of
the concentration-dependent parameters at the pre-
vious time step, [S2-II] or at a constant expected
average concentration and stoichiometry (c̃e = ce,0;

θ̃ = (θ100% + θ0%/2)).
[S3] A two-parameter polynomial approximation of the

solid-phase diffusion, assuming a parabolic concen-
tration profile over the radial particle dimension.

Besides this, TOOFAB includes a parameter estimation
routine with positive electrode OCP function fitting (as-
suming a standard graphite OCP), using parameter group-
ing in the fitting procedure to improve identifiability, re-
flecting earlier works of Khalik et al. (2021b).

While PyBaMM and TOOFAB differ greatly in their im-
plementations, they make up the most complete suites in
terms of features as illustrated in Table 1. Both include
modelling of ageing processes, a lumped thermal model,
and thermal/concentration-dependent parameters. Addi-
tionally, both include model reduction options to improve
simulation times, such as the modification of spatial dis-
cretization along the x direction and particle r direction,
or the substitution of the Fickian Diffusion Law (in the
particle mass transfer equation) with a polynomial approx-
imation. Only TOOFAB however includes the zeroth-order
Taylor approximation of concentration-dependent param-
eters and the linearization of the Butler-Volmer equation.

Concerning usability, while both suites include the option
to provide input current data as a time-series, PyBaMM
allows the current to be given as a ”recipe”. This refers to
a list of commands provided as a Python string (such as:
”1C discharge until 2.5V”), from which the input current
is derived. PyBaMM also allows for power, voltage, and
resistance to be considered as simulation inputs. On the
other hand, TOOFAB allows for the input current to be
provided as a function handle, allowing users to specify
the input freely for dynamic testing strategies.

Regarding parameter definitions, even if the same DFN
modelling framework is adopted by PyBaMM, TOOFAB,
and the BPX standard, discrepancies in their model equa-

tions are reflected by the usage of differing parameters. For
example, the thermodynamic factor ν from the electrolyte
charge conservation equation, commonly defined as

ν(ce, T) =
(
1− t0+

)(
1 +

d ln f±
d ln ce

)
, (2)

with t0+ the transference number and f± the mean molar
salt activity coefficient (Valøen et al., 2005), is not present
in the BPX DFN equations. While t0+ is defined in BPX,
f± is not, as it is not used in their charge conservation for-
mulation. As such, the direct porting of these parameters,
which are used in both PyBaMM and TOOFAB model
equations, is not possible. The native PyBaMM BPX

porting tool follows the typical assumption of d ln f±
d ln ce

≈ 0
to circumvent this, which has been implemented in the
TOOFAB porting process to ensure parameter harmoniza-

tion. Importantly, while TOOFAB defines d ln f±
d ln ce

and t0+
as individual parameters, PyBaMM defines the thermo-

dynamic factor as νPy(ce, T) = 1 + d ln f±
d ln ce

. This naming

discrepancy means that to define d ln f±
d ln ce

as a parameter in
PyBaMM, it must be defined as νPy and shifted by 1.

The BPX electrolyte charge conservation equation also
does not include the Bruggeman constant b, required
by TOOFAB and PyBaMM. However, by including the
transport efficiency B (also known as inverse MacMullin
number), which relates these parameters through B(x) =
ϵb, where ϵ is the electrolyte porosity, b can be extracted.
The native PyBaMM BPX porting tool employed in this
paper does not take this into account, and instead sets
b = 1.5 for any BPX parameter set, a feature that is
recommended to be changed in future PyBaMM updates.

Another important difference between the model equations
from BPX, TOOFAB and PyBaMM lies in the Bulter-
Volmer kinetics, specifically as they relate to the exchange
current density j0. The BPX standard defines j0 with
ratios to reference maximum solid concentration cs,max

and electrolyte concentration ce,0, while TOOFAB and
PyBaMM omit these ratios. To account for this, the ported
reaction rate KPy,TF adjusts for these ratios, as well as the
Faraday constant F included in the BPX’s expression of
j0, also not present in the suites, resulting in

KPy,TF =
KBPXF

cs,maxc0.5e,0

. (3)

Regarding C-code portability, the programming language
of each suite plays a defining role, as portability of-
ten relies on language-specific properties. MATLAB-based

172 Andres M. Diaz Aguilar et al. / IFAC PapersOnLine 59-5 (2025) 169–174

Table 2. Simulation results with Vt in [mV], c−bulk and c−s,surf in [mol
m3], and t/ts in [-]×10−3.

CC (mean over C-rates) Drive cycle Fast charge

RMSD Time RMSD Time RMSD Time

Vt c−
bulk

c−
s,surf

t/ts Vt c−
bulk

c−
s,surf

t/ts Vt c−
bulk

c−
s,surf

t/ts

Py20 0.0 0.0 0.0 2.3 0.0 0.0 0.0 10.7 0.0 0.0 0.0 1.3

Py10 3.7 5.4 28.4 1.5 0.6 1.0 15.2 5.7 0.3 3.2 16.8 0.8

Py3 19.4 75.6 351.8 1.4 2.4 14.8 72.7 3.5 1.2 45.3 204.8 0.8

Py20,rcp 36.9 16.3 54.2 3.4 - - - - - - - -

Py10,rcp 37.4 13.0 57.2 2.3 - - - - - - - -

Py3,rcp 81.8 72.0 359.4 2.0 - - - - - - - -

PyIDA
20 0.0 0.0 0.6 2.1 0.1 2.0 2.0 4.4 0.0 0.3 0.3 1.1

PyIDA
10 3.7 5.4 28.4 1.7 0.6 1.2 15.3 2.7 0.2 3.8 17.3 0.8

PyIDA
3 19.4 75.6 351.8 1.2 2.4 15.8 72.7 1.8 1.2 45.9 204.9 0.7

PyIDA
20,rcp 18.8 9.9 12.4 2.7 - - - - - - - -

PyIDA
10,rcp 19.5 4.6 27.4 2.3 - - - - - - - -

PyIDA
3,rcp 28.3 65.8 352.2 2.1 - - - - - - - -

TF20 5.1 25.0 1018.4 15.3 1.1 22.4 27.7 21.5 0.8 19.1 436.5 13.3

TF10 4.1 40.8 1028.7 2.4 1.2 21.2 23.7 3.4 0.7 27.8 439.0 2.3

TF3 18.6 171.4 1181.4 1.2 3.1 68.9 76.9 1.5 1.1 125.0 492.3 0.9

TF20,s 5.1 25.0 1018.3 8.0 1.1 22.4 27.7 8.5 0.8 19.1 436.5 8.0

TF10,s 4.1 40.8 1028.5 1.8 1.2 21.2 23.6 1.8 0.7 27.8 439.0 1.6

TF3,s 18.6 171.4 1181.2 0.9 3.1 68.8 76.9 1.0 1.1 124.9 492.3 0.9

suites have the unique ability to utilize the Coder toolbox
to automatically generate C-code for a subset of MAT-
LAB functions. This is particularly relevant for TOOFAB,
which provides its full DFN model and solver within one
standalone .m file, without relying on toolboxes or external
solvers. However, other MATLAB-based suites that use
non-compatible toolboxes or structures unsupported by
MATLAB Coder will present issues for C-code generation.

Differently to MATLAB, Python-based suites, such as Py-
BaMM, generally do not offer good portability to C-code.
PyBaMM’s use of dynamic typing and object-oriented
features does not directly translate into the static typing,
procedural design, and manual memory management re-
quirements of C, and would thus need manual integration
and dependency management. This is without accounting
for PyBaMM’s usage of Python libraries, which would
need to be ported for full functionality. Nevertheless, there
is the possibility to export PyBaMM C-code through the
SUNDIALS generate function, the results of which, how-
ever, are not directly deployable on an embedded system.

4. RESULTS

The complete set of model realisations compared in this
study is presented in Table 3, with tolerances determined
using the approach described in Section 2. Pyd and TFd

denote PyBaMM and TOOFAB respectively, and d ∈
{3, 10, 20} the spatial discretisation of all cell domains,
including discretization in x of both electrodes and sep-
arator, and r of the electrode particles.

All simulation outputs are directly compared to Py20,
taken as reference, which uses the default CASADI solver
and the finest mesh option of the study. Furthermore, this
setup uses time-series based input current allowing for di-
rect comparison of results. When recipe-based simulations
are compared, interpolation is used to match the sample
times of the time-based reference. To compare simulation
outputs, the Root Mean Square Difference (RMSD) is used

to quantify the deviation of model outputs of interest from
the reference model. The RMSD for c−bulk is given by

√√√√ 1

K

K∑
k=0

(
ckbulk,ref − ckbulk,sim

)2

, (4)

and for c−s,surf by√√√√ 1

K

K∑
k=0

1

X

X∑
x=0

(
ck,xs,surf,ref |rmax − ck,xs,surf,sim|rmax

)2

, (5)

with x the position along the cell length and X the total
cell thickness. Furthermore, simulation times (real-time
taken to complete the simulation) have been normalized
by the experiment duration. All RMSD and normalized
simulation time results are presented in Table 2.

It must be noted that the RMSD is not a true simula-
tion error, but instead highlights the difference between a
particular simulation and its reference counterpart. Fur-
thermore, the comparison of concentrations between time-
series and recipe-based inputs is not entirely fair: since the
current input is different, the capacity through time will
vary and naturally so will the bulk and surface concentra-
tions. It is displayed here purely for reflection, reinforcing

Table 3. Considered model forms

simulation simp. solver input abs. tolerance

Pyd - CASADI* time-series 4× 10−6

Pyd,rcp - CASADI* recipe based 4× 10−6

PyIDA
d - IDAKLU time-series 2× 10−6

PyIDA
d,rcp - IDAKLU recipe based 2× 10−6

TFd - in-house time-series 0.05

TFd,s [S2-I] in-house time-series 0.05

* The ”safe” configuration was used for CC simulations (with the
default dtmax = 600s for 1C, and dtmax = 50s for higher C-rates),
and the ”fast” configuration for the drive cycle and fast charge.

Andres M. Diaz Aguilar et al. / IFAC PapersOnLine 59-5 (2025) 169–174 173

0 5 10
Capacity [Ah]

3

3.5

4

T
er
m
in
a
l
vo

lt
a
g
e

V
[V

]

0.5 1
3.8

3.9

4

0 5 10
Capacity [Ah]

0

0.5

1

A
n
o
d
e
p
o
te
n
ti
a
l
?
!
j se

p
[V

]

5 6 7 8
-0.2

-0.1

0

(a) Constant Current (CC): 1C to 6C

0 1000 2000 3000 4000
Time [s]

3

3.5

4

T
er

m
in

a
l
v
o
lt
a
g
e

V
[V

]

Py10 TF10

100 150
3.7

4

0 1000 2000 3000 4000
Time [s]

0

0.2

0.4

0.6

A
n
o
d
e

p
o
te

n
ti
a
l
?
!
j se

p
[V

]
100 150
0

0.2

(b) Drive Cycle (DC)

0 500 1000
Time [s]

3.4

3.6

3.8

4

T
er

m
in

a
l
vo

lt
a
g
e

V
[V

]

0 10 20
3.5

3.8

0 500 1000
Time [s]

0

0.05

0.1

0.15

0.2

A
n
o
d
e

p
o
te

n
ti
a
l
?
!
j se

p
[V

]

0 100 200
0

0.01
0.02

(c) Fast Charge (FC)

Fig. 2. Comparison of the terminal voltage and anode potential of Py10 and TF10 simulated with inputs from Figure 1.

the herein proposed use of time-series based comparisons
as the prime methodology for future studies.

While both suites show good agreement on terminal volt-
age at different C-rates, the TOOFAB anode potential
displays an increased difference to PyBaMM for higher C-
rates, as showcased in Figure 2. This difference is largely
caused by a discrepancy in spatially resolved open-circuit
potential, a component of anode potential, itself a func-
tion of solid surface concentration. As can be observed in
Figure 3, the surface concentration of particles near the
separator increases more rapidly over time in TOOFAB
than in PyBaMM, whereas particles closer to the current
collectors see a slower increase of the same. This indicates
a faster lithiation of particles near the separator and slower
lithiation for those near the current collectors. This does
not impact the bulk concentration over time, as the dif-
ference in c−s,surf is orders of magnitude greater than in

c−bulk. This spatial imbalance in lithiation could have im-
plications on simulated degradation, especially during fast
charging, where higher local lithiation (and thus higher
surface concentration) near the separator may increase
lithium plating in TOOFAB more than PyBaMM.

The model simplification [S2-I] in TOOFAB minimally
influences simulation accuracy, as demonstrated by con-
sistently low RMSD values across all input current types.
Meanwhile, it remarkably accelerates computation times,
particularly with coarser mesh discretizations. TOOFAB
offers additional simplifications to [S2-I] as discussed in
3, which may be implemented for further improvements
in computation times. While these will lead to decreased
accuracy as compared to the simplifications used in this
paper, they also display stability issues, particularly ob-
served for [S3], and hence were excluded in the study.

TOOFAB also exhibits very consistent computation times
regardless of the input current used. This is different from
PyBaMM, which is more sensitive to dynamic current
profiles, resulting in a higher fraction of real-time taken

to simulate drive cycle current profiles, particularly true
for CASADI-based simulations. Nevertheless, TOOFAB is
less well optimized for simulations with very fine mesh
discretizations, showing a disproportionate increase in
computation times for simulations in which d = 20.

Regarding PyBaMM solver discrepancies, while time-
series based simulations show a faster mean computation
time over C-rates in comparison to recipe-based simula-
tions, this does not hold true generally for all C-rates. For
low C-rates, recipe-based simulations have a marginally
faster computation time, which is quickly lost as C-rates
increase. Furthermore, a larger RMSD is observed for
recipe-based CC simulations when compared to time-series
based due to the coarser time discretization exhibited in
these simulations. This is reflected in Figure 4, where very
large time steps can be observed at the beginning of the
CASADI-based Py10,rec simulation. It is important to keep
in mind that RMSEs were calculated based on the number
of discretizations of the reference simulation, and as such
points in between the time discretization points of Py10,rec
had to be interpolated, at the root of the large difference.

However, while IDAKLU recipe-based simulations also see
fewer time steps than their time-series based counterparts,
the simulation portions in which more time steps are
taken are much more wisely achieved than for CASADI
simulations (fewer time steps when linear increase, more
when non-linear). This is particularly visible in Figure 4,
where PyIDA

10,rec has a more refined time discretization
around the origin than time-series based simulations, while
still having less total time steps (139 and 362 respectively).
This shows that IDAKLU is very well suited for dynamic
time stepping with recipe-based simulation to achieve
smoother curves, and maintains overall very good fidelity
with the reference simulations. Nevertheless, this smart
time stepping does not translate to large improvements
in computation times. If anything, while the recipe-based
IDAKLU experiments have fewer total time steps than
time-series based, computation times are longer overall,

174 Andres M. Diaz Aguilar et al. / IFAC PapersOnLine 59-5 (2025) 169–174

0 2 4 6 8
Capacity [Ah]

0

1

2

3
S
u
rf
a
ce
co
n
c.

c s
;s
u
rf
[m
o
l.
m
3
]

#104

Py10: cs;surf jcc
Py10: cs;surf jsep
TF10: cs;surf jcc
TF10: cs;surf jsep

0 2 4 6 8
Capacity [Ah]

0

5

10

B
u
lk
el
ec
t.
co
n
c.

c b
u
lk
[m
o
l.
m
3
]

#103

Py10: cbulk
TF10: cbulk

Fig. 3. Comparison of negative electrode surface concentra-
tion at different spatial points (top) and bulk concen-
tration (bottom) for Py10 and TF10 during 6C charge.

0 2 4 6 8
Capacity [Ah]

3

3.5

4

T
er

m
in

al
v
ol

ta
ge

V
[V

]

Py10

PyIDA
10

Py10;rcp

PyIDA
10;rcp

0 0.01 0.02 0.03

3.2

3.3

3.4

Fig. 4. Comparison of CASADI and IDAKLU time-series
and recipe-based input for 6C CC charge.

which is likely the result of the solver having to optimize
for time step size over the full simulation.

5. CONCLUSION

This paper has presented a comprehensive methodology
for comparing open-source PBM software suites. A de-
tailed comparison of PyBaMM and TOOFAB has exempli-
fied this framework and revealed key differences between
them. TOOFAB demonstrated consistent and fast simula-
tion times, particularly with order reductions applied and
coarser spatial discretizations, making it particularly well-
suited for embedded applications with code that offers easy
portability to C. PyBaMM, with its modular architecture
and diverse solver options, offered better computation
times overall, with consistent simulation times as the mesh
was refined compared to TOOFAB, but more sensitivity
to dynamic current profiles. Furthermore, it presented
greater flexibility, with the possibility to model accurate
and fast recipe-based simulations with the IDAKLU solver.

Future work should expand the comparison to a wider ar-
ray of suites and include additional modelling effects, such
as ageing and thermal phenomena for a more complete
picture of the modelling capabilities of each suite.

REFERENCES

(2023). About:energy 12.5 Ah NMC111—graphite pouch
cell parameterisation for BPX.

Ai, W. et al. (2024). Jubat: A julia-based framework for
battery modelling using fem. SoftwareX.

Berliner, M.D. et al. (2021). Methods—PETLION: Open-
source software for millisecond-scale porous electrode
theory-based Li-ion battery simulations. JES.

Drees, R. et al. (2022). Durable fast charging of Li-
ion batteries based on simulations with an electrode
equivalent circuit model. Batteries.

Ha, S. et al. (2024). Cobrapro: An open-source software
for the doyle-fuller-newman model with co-simulation
parameter optimization framework. JES.

Jiang, Y. et al. (2022). A user-friendly Li battery simulator
based on open-source cfd. Digital Chemical Engineering.

Khalik, Z. et al. (2020). Ageing-aware charging of Li-ion
batteries using an electrochemistry-based model with
capacity-loss side reactions. In Proc. IEEE ACC.

Khalik, Z. et al. (2021a). Model simplifications and
their impact on computational complexity for an
electrochemistry-based battery modeling toolbox. J.
Power Sources.

Khalik, Z. et al. (2021b). Parameter estimation of the
doyle–fuller–newman model for Li-ion batteries by pa-
rameter normalization, grouping, and sensitivity analy-
sis. J. Power Sources.

Korotkin, I. et al. (2023). Battery parameter exchange.
le Roux, F.A. et al. (2023). Improved parameter estima-
tion of the doyle-fuller-newman model by incorporating
temperature dependence. IFAC-PapersOnLine.

Lee, S.B. et al. (2021). A robust and sleek electrochemical
battery model implementation: A MATLAB framework.
JES.

Medina, R. et al. (2023). Health-conscious charging of Li-
ion battery cells: Using PBMs to minimize calendar and
cyclic ageing effects. In Proc. IEEE VPPC.

Moura, S.J. et al. (2017). Battery state estimation for a
SPM with electrolyte dynamics. IEEE TCST.

Park, S. et al. (2022). A deep reinforcement learning
framework for fast charging of Li-ion batteries. IEEE
T TRANSP ELECTR.

Perez, H.E. et al. (2016). Optimal charging of batteries
via a SPM with electrolyte and thermal dynamics. In
Proc. IEEE ACC.

Planden, B. et al. (2024). Python battery optimisation
and parameterisation (pybop).

Planden, B. et al. (2022). A computationally informed
realisation algorithm for Li-ion batteries implemented
with liibra.jl. J. Energy Storage.

Rangarajan, S.P. et al. (2020). Anode potential controlled
charging prevents Li plating. J. Mater. Chem. A.

Sulzer, V. et al. (2021). Python battery mathematical
modelling (pybamm). JORS.

Torchio, M. et al. et al. (2016). Lionsimba: a matlab
framework based on a finite volume model suitable for
Li-ion battery design, simulation, and control. JES.

Valøen, L.O. et al. (2005). Transport properties of LiPF6-
based Li-ion battery electrolytes. JES.

Wassiliadis, N. et al. (2022). A systematic approach for
the parameter identification of electrochemical battery
models enabling health-aware fast charging control of
battery electric vehicles. J. Energy Storage.

Yin, X. et al. (2023). batP2dFoam: An efficient segregated
solver for the P2D model of Li-ion batteries. JES.

