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MANAGEMENTUITTREKSEL TNO-RAPPORT: TNO 2024 R11057A

V2004-WP3.1: OpenRadioss as a
reliable replacement for

LS-DYNA

In V2004 heeft TNO het gebruik
onderzocht van de open source
eindige-elementenmethode
(e.e.m.) pakket OPENRADIOSS
als een (gedeeltelijke) vervanging
voor LS-DYNA. OPENRADIOSS
kan worden gebruikt om de (zeer)
dynamische en niet-lineaire struc-
turele responsie te bepalen van
constructies onder belasting.

Probleemstelling

Wij ontwikkelden de onderwater schok
code 3DCAV, 3DCAV gebruikt LS-DYNA
als een e.e.m. pakket om de struc-
turele responsie te bepalen van sche-
pen. In 2019 is LS-DYNA overgeno-
men door ANSYS. De hiermee ge-
paard gaande hogere kosten in combi-
natie met enkele andere factoren heb-
ben ertoe geleid dat besloten is om naar
alternatieven te kijken. In 2022 is RA-
DIOSS open source geworden onder de
naam OPENRADIOSS. OPENRADIOSS
heeft geen licensiekosten. Aanvullend,
OPENRADIOSS is open source, dus is
er een gemeenschap van ontwikkelaars
waarmee we rechtstreeks contact kun-
nen hebben. Het doel van dit rapport
is onderzoeken of LS-DYNA (gedeelte-
lijk) vervangen kan worden door OPEN-
RADIOSS.

Beschrijving van de werkzaam-
heden

We hebben onderzocht hoe je OPEN-
RADIOSS op servers kunt compile-

innovation

We hebben stan-

ren en gebruiken.
daard benchmarktests ontwikkeld om
de nauwkeurigheid van OPENRADIOSS

te verifieren.  Specifiek, ontwikkelen
we twee sets benchmarkstesten voor
beam-/shellelementen en veerelemen-
ten. Ten eerste, ontwikkelen en gebrui-
ken we een cantilever-test om shell- en
beamelementen te verifiéren. Specifiek
hebben we een resolutietest met ver-
schillende numerieke resoluties uitge-
voerd en vergeleken de numerieke op-
lossing met de analytische oplossing.
Ten tweede ontwikkelen we voor de
veerelementen één veerelementbench-
mark met een opgelegde kracht of
opgelegde snelheid om te verifiéren
of veerelement zich correct gedragen.
Verder, vergelijken we de resultaten van
deze benchmarks met de analytische
oplossing. Bovendien gebruiken we
deze benchmarks ook om de prestaties
van high-performance computing (HPC)
te onderzoeken voor OPENRADIOSS.
Specifiek vergelijken we verschillende
parallelisatiestrategieén en bepalen de
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ideale strategie op onze servers.

Resultaten en conclusies

We hebben verschillende structurele
dynamische benchmarkproblemen ge-
maakt die we hebben gebruikt om shell,
beam en eenvoudige veerelementen te
verifiéren.  Tijdens het werken aan
OPENRADIOSS werden een paar pro-
blemen gevonden en de ondersteu-
ning van de ontwikkelaars van OPEN-
RADIOSS was uitstekend. We hebben
goede prestaties gevonden voor beam,
shell, en veerelementen. Wij raden aan
om verder te onderzoeken of OPEN-
RADIOSS een goede (gedeeltelijke) ver-
vanging voor LS-DYNA is.

Toepasbaarheid

Dit werk is een eerste stap om in de
toekomst meer en nauwkeuriger simu-
laties te doen met OPENRADIOSS van
de responsie van onderwaterschokken
en bovenwater dreigingen voor schepen
en onderzeeboten.

for life meees ———
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MANAGEMENT SUMMARY TNO-REPORT: TNO 2024 R11057A

V2004-WP3.1: OpenRadioss as a
reliable replacement for

LS-DYNA

Within V2004, TNO investigated
the use of the open source finite
element method (FEM) package
OPENRADIOSS as a (partial) re-
placement for LS-DYNA. OPEN-
RADIOSS can be used to deter-
mine the (highly) dynamic and
non-linear structural response of
structures under loads.

Problem description

We developed the UNDEX (UNDer-
water EXplosion) code 3DCAvV, 3DCAV
uses LS-DYNA as a FEM package to
determine the structural response of
ships. In 2019, LS-DYNA was acquired
by ANSYS. This has resulted in in-
creased costs of licenses. These in-
creased costs together with some other
issues have led to the decision to inves-
tigate other options. In 2022, RADIOSS
has become open source as OPEN-
RADIOSS, and therefore OPENRADIOSS
does not have license costs. Addition-
ally, OPENRADIOSS is open source thus
there is a community of developers that
we can be in direct contact with. The
goal of this report is to investigate if LS-
DYNA can be replaced with OPENRA-
DIOSS.

Work performed
We investigated how to compile and use

Further-

OPENRADIOSS on servers.
more, we developed standard bench-
mark tests to verify the accuracy of

OPENRADIOSS.  Specifically, we de-
veloped two sets of benchmark tests
for beam/shell elements and spring el-
ements. Firstly, we developed and used
a cantilever beam test to verify shell and
beam elements. Specifically, we per-
formed a resolution test at different nu-
merical resolutions and compared the
numerical solution with the analytical
solution. Secondly, for spring elements
we developed and used a single spring
element benchmark with an imposed
force or imposed velocity to verify the
accuracy of spring elements. We com-
pared the results of these benchmarks
with the analytical solution. Moreover,
we also used these benchmarks to in-
vestigate the high-performance comput-
ing (HPC) performance of OPENRA-
DIOSS. Specifically, we compared differ-
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innovation

ent parallelisation strategies and deter-
mined the ideal strategy on our servers.

Results and conclusions

We created several structural dynamics
benchmark problems which we used to
verify shell, beam and simple spring el-
ements. While working on OPENRA-
DIOSS a few issues were found and the
support from the developers of OPEN-
RADIOSS was excellent. We found good
performance for beam, shell and spring
elements. We recommend continuing
investigating OPENRADIOSS as a re-
placement for LS-DYNA.

Applicability

This work is a first step towards do-
ing larger number of and more accu-
rate simulations with OPENRADIOSS in
the future of the response to underwa-
ter shocks and above-water threats for
ships and submarines.

for life meees ———
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1.1

Introduction

The aim of this report is to investigate OPENRADIOSS as a (partial) alternative for LS-
DYNA. LS-DYNA is intensively used in the Naval & Offshore Structures department
of TNO (TNO-NOS) to do structural analysis. LS-DYNA is used to calculate mainly
the structural response of highly non-linear and dynamic phenomena. The two main
motivations for changing from LS-DYNA to OPENRADIOSS are firstly the fact that
OPENRADIOSS is open source which means no licenses are required and the code
is accessible by TNO (without restrictions). Secondly, OPENRADIOSS has developers
supporting users and an open-source community where questions and problems can
be asked and discussed. The investigation in this report is mainly focused on the dif-
ferent element formulations and applying these to simulations for which an analytical
solution is known. This is done to verify OPENRADIOSS and find any potential prob-
lems and bugs such that they can be fixed and made aware of. While investigating
OPENRADIOSS the support of the OPENRADIOSS community is also considered.

Historical perspective of LS-DYNA and OPENRADIOSS

To get an impression of the difference and relation between LS-DYNA and OPENRA-
DIOSS a short overview of the history of both codes is given. Fig. T shows the DYNA
family tree. Originally, DYNA3D was developed to simulate the impact of the Full-
Fuzzing-Option (FUFO) or ‘Dial-a-yield’ nuclear bombs that would be released at low
altitudes. Because of the complicated physics of explosions, a full 3D simulation code
would be required to accurately simulate the non-linear dynamics using explicit time
integration. The original FUFO bomb (B77) was cancelled because its cost overrun,
however, some features developed using DYNA3D were later implemented in the B83
bomb. Despite the cancellation of the FUFO bomb the development of DYNA3D con-
tinued. DYNA3D quickly became a dominant code, and its source code was released
in the public domain without restrictions upon request from France (Benson, P007).
After this the development of DYNA3D continued and its main developer John Hall-
quist consulted over 60 different companies on how to use DYNA3D. After a change in
policy of the Lawrence Livermore National Laboratory (LLNL) John Hallquist left and
founded Livermore Software Technology Corporation (LSTC). LSTC started releasing
LS-DYNA and the source code of LS-DYNA was no longer released as compared
to DYNA3D (Benson, P007).

After the release of the source code of DYNA3D, the ESI group was founded by Alain
de Rouvray, Jacques Dubois, Iraj Farhoomand and Eberhard Haug. The ESI group
developed PAM-CRASH and used it to simulate the crash of a military fighter plane into
a nuclear power plant (Haud, 1981) and for the first successful crash simulation of a
frontal impact of a passenger car within a single night on a computer cluster (Haug
efall, 7986). After demonstrating the capabilities of PAM-CRASH it has been used
widely in the automotive industry. Solanki et all (2004) compared PAM-CRASH and
LS-DYNA and found that the differences between both codes are minimal for car
crash analysis. Based on PAM-CRASH, RADIOSS was developed and again widely
used for crash simulation analysis. Blfaii (20220) announced that RADIOSS will be
made open source under the name of OPENRADIOSS. Altair remains to release the
commercial RADIOSS parallel with OPENRADIOSS because three keywords of RA-
DIOSS are not supported in OPENRADIOSS. These keywords are related to encryp-
tion and finite volume method airbags (Sharg, P023c). These features are mainly

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC
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Figure 1.1 The DYNA family tree with the original DYNA3D code and its derived codes PAM-CRASH, later
RADIOSs and OPENRADIOSS, PRONTO-3D later ABACUS explicit, MSC-DYNA later DYTRAN,
and LS-DYNA. Many common explicit FEM codes are based on DYNA3D. Both LS-DYNA
and OPENRADIOSS are based on the same original code of DYNA3D (Walfer-and Bellshaw,

1993).

used in the automotive industry for airbags and dummy models, so these will not be

used much or at all in the TNO-NOS department.

This historical perspective of both LS-DYNA and OPENRADIOSS demonstrates that
both codes are based on an identical base code (DYNA3D). This means that the
basic structure of LS-DYNA and OPENRADIOSS is similar. Despite this, years of
development has resulted in codes with different features and functionalities. The
main aim of this report is to investigate how well OPENRADIOSS as a code performs,
understand how to run it most efficient, and to understand the current limitations and
advantages of using OPENRADIOSS as a possible partial replacement for LS-DYNA.
For the remainder of this report the same name will be used for both RADIOSS and

OPENRADIOSS because they are practically the same code for TNO-NOS.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC
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1.2

1.3

Comparison of OPENRADIOSS and LS-DYNA

The literature lacks many direct comparisons between OPENRADIOSS and LS-DYNA,
this means that the agreement between many features of OPENRADIOSS and LS-
DYNA is not directly known. In the PAM-CRASH time some comparisons have been
done between LS-DYNA and PAM-CRASH. Solankief all (?004) compared both for a
frontal car crash and found that the damage between both codes is not the same and
small differences exist in the deformation at the front of the car. Similarly, the internal
energy has a slight different evolution, the differences between both FEM solvers are
on the 5 to 10 per cent limit.

More recently, direct comparisons have been made between OPENRADIOSS and LS-
DYNA. Di Pasqual€ (P?015) found that the simulation of a crushed beam gives almost
identical results in OPENRADIOSS and LS-DYNA. Cina (P019) looked at the differ-
ence for composite seats using crash analysis, but unfortunate his results are not
publicly available, the library says that this thesis is classified as confidential, and
they do not know the limitation period. Furthermore, [lofrowaih et all (P027) used roof
crush resistance tests and found that the difference between both solvers is small.
Recently, ezdik et all (P023) simulated a tram collision with a crash dummy. They
found that the simulations with OPENRADIOSS and LS-DYNA roughly agree with
each other, however, the exact acceleration differs from experiments for both. Neither
of the solvers performs significantly better than the other. Furthermore, Bini T eite
et all (2027)) looked at a plane crash in the Hudson river and found that OPENRA-
DIOSS and LS-DYNA give similar results. Interestingly, OPENRADIOSS conserved
energy almost exactly, while LS-DYNA loses some four per cent of the total energy.

Overall, the impression from the literature is that both solvers are not too far off from
each other and have a similar (dis)agreement with experiments.

Recent developments and uses of OPENRADIOSS

The use cases and recent developments of OPENRADIOSS are extremely diverse.
Here a short overview of the most recent use cases and developments of OPEN-
RADIOSS will be summarised. These developments are inside OPENRADIOSS and
publicly available. Similarly, the FEM models of these recent use cases are freely
available online.

the welding of two steel plates including the melting of the metal. He measured the
resulted stress and temperature in the plate due to the welding. Nakanad (?023) used
OPENRADIOSS to model foam materials and tested foam blocks to see if they pro-
duce the behaviour of foam as expected, these foam models can directly be used in
car crashes. On the other hand, Pasligh et al] (?017) modelled and tested a simplified
model for rivets in OPENRADIOSS that use a calibrated cohesive element character-
istics method which does not require to model the rivets and bolts in detail. This
method can be used in large models for example car crash simulations.

OPENRADIOSS contains several examples from the car crash industry. The most
known example is the Toyota Yaris crash test on a pole with 40 km/h (Sharp, P023d).
But also a simple bumper beam impacting on a single pole (Sharg, 2023h).

With the recent development of electric vehicles (EVs), Bulla_ef all (?021]) developed
a material model for the separators of Lithium-lon batteries and tested their model

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC
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under high mechanical loads and found good agreement in three different directions
for their material model for separators. Bulla_ef all (?023) expanded this investigation
and simulated complete Lithium-lon batteries under high mechanical loads and found
good agreement with experiments. Shamchi ef all (P024) showed that the agree-
ment between the simulations and experiments is good but at high displacements the
pressure of the separators is slightly overestimated.

Furthermore, simulations to design protective structures (PS) have been performed
with OPENRADIOSS. Prashanth (?022) tested a roll over protective structures (ROPS),
similar Mitfal'ef all (?023) developed a new roll cage design for an all-terrain vehicle.
They iteratively performed simulations using OPENRADIOSS and improved the design
based on the maximum stresses found in the design. Brandaa (P023) performed sim-
ulations on a falling object protective structure (FOPS), he specifically reproduced the
standard 1ISO 3449 test to test the FOPS. This shows that performing standard ISO
tests in OPENRADIOSS is possible.

Tests in the air have also been performed with OPENRADIOSS. Sharg (2023a) used
OPENRADIOSS to simulate a bird strike on the windshield of an aeroplane. In this
case the bird was modelled as a cylinder of smoothed-particle hydrodynamics (SPH)
particles. Similarly, Eranke et all (?022) modelled the impact of a drone strike on aero-
plane wings and windows. They used this to recommend improvements on the aero-
plane design, especially, they recommended thicker windows to prevent too much
damage from a drone strike.

Other threats from the air (AIREX) can also be simulated in OPENRADIOSS. [overini
and RBoberd (P027) used OPENRADIOSS to simulate air burst threats and use this to
assess the survability of the target. They simulate this in two stages, the first stage
was the use of a mirrored 2D simulation to simulate the detonation of 250 kg TNT in-
cluding the reflection from the ground. The air was simulated with an ideal gas equa-
tion of state (EoS) while the explosive was simulated using the Jones-Wilkins-Lee
(JWL) EoS (lones and Miller, T948; Wilkins ef all, 1964); [Cee ef all, 1968). The sec-
ond stage was a 3D simulation of the targeted military vehicle that uses the loading
of the 2D simulation to assess the caused plastic strain and whether the explosion
intruded the vehicle. Coveriniand Roberi (2023) did the same but used a different
mass of TNT and distance from the military vehicle. Furthermore, Loverini (P0230d)
used OPENRADIOSS to model the detonation of a land mine based on the NATO reg-
ulations. They modelled the sand using a polynomial EoS and the air with an ideal
gas EoS. They also placed a 50-percentile dummy inside to test the impact of the
explosion on the dummy.

Besides AIREX, OPENRADIOSS is also ideal to investigate ballistics. [Ferry et all
(?023) used OPENRADIOSS to simulate the impact of a bullet on a steel plate. They
simulated only a quarter of the bullet and assumed the rest of the impact is symmet-
ric. They find that the bullet is stopped by this plate of steel as demonstrated from
experimentsm. “overini (20233d) used OPENRADIOSS to simulate the ballistic impact
on a water tank. They used brick elements to simulate the aluminium tank, the Cole
(T948) equation of state for water and the ideal gas law to model the air. Based
on this the total damage to the tank was determined. Besides ballistics, explosive
burning can also be simulated well. Coverini (P023d) simulated the propagation of
explosive burning for an array of two different explosives and found that their result is
as expected.

Fluid-structure interaction can also be simulated by OPENRADIOSS. Boberf ef all
(P023) simulated a bottle dropping to demonstrate the arbitrary Lagrangian-Eulerian

1 The experiments stopped a higher velocity bullet.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC
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1.4

(ALE) ability of OPENRADIOSS. They used thick-shell elements to model the bottle,
an ideal gas EoS for air, and Colé (T948) EoS to model the water. These results agree
with experiments of dropping water bottles. Bobert and Toverini (2023) modelled a
section of a boat using mirror symmetry to investigate the slamming of the boat using
the same methods. Zheng et all (2023) calculated the diving depth of pressure hulls
before they will implode. They used cylindrical pressure hulls which were compared
with experiments and gave good agreement.

Even more complicated simulations can be performed in OPENRADIOSS, notable,
simulations of UNDEX. Caoverini (?0230) simulated the hydroforming of spherical metal
vessels. This is the construction of spherical metal containers with the help of ex-
plosives such that they become perfectly spherically. This again models the water
using the Colé (1948) EoS and the air is simply modelled as a constant atmospheric
load on the outside of the tank. Coverini (P123€) modelled an UNDEX event using a
2D simulation of 22.5 m by 11 m water reservoir. The overall behaviour of UNDEX
in OPENRADIOSS is comparable to experiments. Only the peak pressure is slightly
lower, but this is not surprising because the hydrodynamics of OPENRADIOSS is prob-
ably over smoothing. It is even able to correctly calculate the rarefaction wave that
causes the cavitation in UNDEX events.

This wealth of different use cases shows that OPENRADIOSS is a widely used FEM
package which can be used for a diverse set of different problems. OPENRADIOSS
itself is not only a FEM package. It contains functionality to simulates fluids using
ALE or grids with a large variation of different EoS. Most of the fluids can be sim-
ulated using the /MAT/HYDRO keyword. Specific EoS can be called by using a
simpler keyword like /EOS/IDEAL-GAS for ideal gas EoS, /EOS/STIFF-GAS for
the Cole (1948) EoS, /EOS/NASG for the Noble-Abel stiffened-gas EoS (Le Métayer
and Saurel, P016), and /EOS/JWL for the JWL EoS (lones and Milled, 7948; Wilkins
ef all, T964; Cee ef all, T968).

This report

In this report we focus on how OPENRADIOSS performs and do not make a direct
comparison with LS-DYNA because TNO-NOS has experience with LS-DYNA and
we expect that LS-DYNA works well for the different test cases shown in this report.
For this report we used different versions of OPENRADIOSS between 01-09-2023 and
31-12-2023. The remainder of this report is structured as follows, Chapter B investi-
gates the performance of shell and beam elements by comparing the numerical solu-
tion of a cantilever beam with the theoretical predictions. Chapter B investigates the
performance of spring elements by comparing the numerical solution with the analyt-
ical or theoretical solutions. Chapter & investigates how to properly compile different
parallelisation versions of the code and how to design your .BASHRC in such a way
that working with OPENRADIOSS can be done as efficiently as possible. Chapter B
systematically investigates how to run OPENRADIOSS as efficiently as possible and
how to change compiler settings to improve the performance. Chapter B summarises
the advantages and disadvantages of OPENRADIOSS. Chapter @ summarises the
conclusions and recommendations of this report.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC
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2 Cantilever beam

This chapter focuses on verifying shell and beam elements in OPENRADIOSS. This is
achieved by designing a new benchmark based on the cantilever beam (see Fig. ).
A cantilever beam is a beam that is clamped on one side and is free on the other side
of the beam. When a force is applied to the free side of the beam, the beam will start
oscillating. Overall, the cantilever beam is an excellent benchmark because:

* Under general assumptionsm the solutions of the cantilever beam can be cal-
culated analytical. This means that the analytical solution can be directly com-
pared to the numerical solution.

+  The benchmark can be applied to both beam and shell elements with only a
small change.

+  The creation of finite element (FE) models requires only a rectangular grid with-
out needing to refine regionsE.

—> X

M

Mmax

Figure 2.1 A schematic view of a cantilever beam. The cantilever beam is attached to the left side to
a structure and has no degrees of freedom (DOF). On the right side all DOF are free and
the cantilever beam can move here. For a known force F and a known material model the
eigenfrequency and shape of the cantilever beam can be calculated analytically.

Furthermore, the cantilever beam simulations can be altered in a few ways to investi-
gate different behaviour:

+  Without damping: This is ideal to investigate the natural frequencies[3 and am-
plitudes of oscillations. The natural frequencies can be calculated directly from
theory and compared with simulations.

+  With Rayleigh damping: This is ideal to investigate the exact shape of the can-

1 These are that the material is purely elastic, the thickness of the cantilever beam is not important, and
the displacements are small.

2i.e. because the cantilever beam does not contain singularities. However, if smaller elements are used
on the clamped side, this will result in convergence of the displacement to the exact solution with fewer
elements

3Also known as the eigenfrequency
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tilever beam when it is in equilibrium with the imposed force. The exact shape
of the cantilever beam is also known from theory.

+  The number of elements can be varied: The resolution of the cantilever beam
can be varied by using a different number of elements to do a convergence test
and see when the cantilever beam behaves well.

+  The applied force can be rotated by 90°: This allows to also test the shell ele-
ments in the plane itself.

+ The grid shapes can be modified: For example, triangular grids or even more
arbitrary shapes to see how well the code converges when the grid is not rect-
angular (not done in this work).

The above text describes globally what the goal of this chapter is. The remainder of
this chapter focuses on creating and testing this benchmark.

Analytical solution

To calculate the analytical solution of a cantilever beam, the following assumptions
are made:

* |t is assumed that the cantilever beam has a rectangular cuboidal shape (a
hexahedron with only right angles@). Therefore, the length (L), width (b), and
thickness (d) describe the shape of the cantilever beam.

+  The material is assumed to be fully elastic, therefore, the material has only three
free parameters namely, its initial mass density p, its Young’s modulus E and its
Poisson’s ratio v.

Based on these two assumptions, the second moment of area can be calculated as:

b/2 d/2
o 9 bd?
1= y“ dr dy = Y dxdyzﬁ. (2.1)
R —b/2—d/2

Natural frequencies

One of the key properties of a system is its natural frequency (or eigenfrequency).
In the case of a cantilever beam it is possible to calculate this analytically. Using
the equation of motion (EoM) it is possible to calculate the natural frequencies of the
cantilever beam by solving the EoM (Meiroviich and Wesley|, T967):

2 2 92
% (EI(x)W) = pA(m)%, (2.2)

where A(z) is the area of the cross section and w(z,t) is the displacement of the
cantilever beam. Using separation of variables and assuming the time component is
harmonic, the displacement can be written as

w(z,t) = w(z)sin (wt + @), (2.3)

where w is the natural frequency and w(z) is the vertical displacement that only de-
pends on z. This means that the equation of motion reduces to

d? dw(z))
Epel (EI(I) o > = wpA(z)w(x). (2.4)
Equation (24) can be rewritten under the assumption that 7(z) = I and A(x) = A as:
4
@) i) = 0. (2.5)

dat

4F{ight angles are angles of exactly 90°.
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w3pA

where % = £

. Assuming that the displacement is given by:
w(z) = e, (2.6)

means that the \ should satisfy \* = 34, therefore there are a total of four solutions
namely:

)\IzﬂvAQ:_ﬁv)%:iBa)‘ﬁl:_iB‘ (27)
Rearranging these functions into standard functions gives the solution:
w(z) = Acosh(Bz) + Bsinh(Sz) + C cos(fx) + D sin(fSz). (2.8)

The solution and its coefficients can be constrained by using the boundary conditions.
For the cantilever beam the boundary conditions are:

w(0)=0—A+4+C =0, (2.9)
dw(0) —0-B+D=0, (2.10)
dx
d?w(0) 2 2 a2 CDA2 —
W 0 — Ap* cosh(Bl) + BB sinh(Bl) — C B~ cos(Bl) — DS* sin(Bl) = 0,
(2.11)
d3w(0) _ 3 . 3 g 3 o _ 3 —
R 0 — Ap°sinh(Bl) + BS° cosh(Bl) + CB° sin(Bl) — DS cos(Bl) = 0.
(2.12)
The first two equations give C = —A and D = —B. Using this to rewrite equa-
tion (E711), a relation between A and B can be found as:
B 7Acosh(5l) + cos(pl) (2.13)

sinh(B1) + sin(B1)
In order to remove A or B we need to use equation (Z12) Equation (Z12) gives
Asinh(pBl) + B cosh(Bl) — Asin(B8l) + B cos(Bl) = 0, (2.14)
because 3 # 0. The terms can be reordered as
A (sinh(Bl) — sin(Bl)) + B (cosh(Bl) + cos(pl)) = 0, (2.15)
Combining this with equation (EZ13) gives

) . (cosh(BI) + cos(B1))? B
A (smh(ﬂl) —sin(pBl) — Sinh(31) + sm(3l) ) =0. (2.16)
A nontrivial solution is desired, so A # 0,
sinh(B1)? — sin(B1)? — (cosh(B1) + cos(B1))? = 0, (2.17)

Because this expression contains many square terms, the equation can be reduced
to (e.g. cos(a)? + sin(a)? = 1 and cosh(a)? — sinh(a)? = 1)

cos(Bl) cosh(Bl) +1 = 0. (2.18)

The solution of equation (Z-18) need to be found with a root-finding aIgorithmB, if this
is done the first two solutions are
0.6
ﬂl = T,]T7
1.49
/82 = I 7T7

(2.19)

(2.20)

5By solving cos(wz) cosh(wz) 4+ 1 = 0 in order to find the coefficients of the following solutions.
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and for the later roots the solution is given by

1\«
Br = (n - 2) T (2.21)
for n > 38. This means that the general solution of the natural frequency is given by
EI ,
n = 1\| — B 2.22
wn =z (2.22)
which reduces to
_ )22
o — [ 3) . (2.23)

for n > 3. The benchmark in this chapter only requires the first five factors, these
are given by 82/1? = 3.55, B3/1?> = 21.91, 33/I1*> = 61.68, 53/1> = 120.90, B2/I1?> =
199.8612. For a rectangular cross section the second moment of area is given by
equation (Z1) and equation (E223) can be rewritten to

2
Ed? (n — %) 2
SR Judialh Gt 1 224
Wn, 12 B (2.24)

this means that the natural frequency geometrically only depends on the length of the
cantilever beam and its thickness 8.

Displacement

Here the equilibrium displacement is calculated. The EoM for a cantilever beam with
an imposed point force at = L is given by:

d*w

where Fj is the force on the cantilever beam and §(z) is the Dirac delta function. To
solve the EoMs, the equation is integrated four timesH:

d3
EISY — Fy 1 e, (2.26)
da3
d2
EISY — Fox + cra + co, (2.27)
dz?
dw 1 1
EISE = SFoa® + 10’ + con + ¢, (2.28)
dx 2 2
1 1 1
Elw = cFyr® + cew® + Sepa” + car+ e (2.29)

The left side of the cantilever beam is clamped, and this directly means that the
displacement (w(x)) and angle (dw/dz) are given by:

w(0) =0 — ¢4 =0, (2.30)
d
%(0):0—>C3:0. (2.31)

6We note that the solutions are rounded to two decimals.

7For (1 and B2 equations (E19) and (E=20) are used while for n > 3 equation (E2211) is used.
8And the physical properties of the material E and p.

9Note that the integral of the Dirac delta function is given by f o(xz)dx = 1.

— o0
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The bending moment at L is given by:

2
EIi—f(L) =0 FyL+ca+eL=0. (2.32)
a

The shearing force at L is given by:

d3w
EI@:Fo—)Fo—‘rCl:Fo—)Cl:O. (233)

The shearing force implies that the coefficients of the bending force result in:
Co = —F()L (234)

Therefore, the displacement becomes:

w(z) = —é% (32°L — 2°). (2.35)

This solution and solution of other boundary conditions are often known as [vergeet-
mij-nietjes]. This means that the maximal displacement is given by:

Fy

= = — . 2.

Wmax = w(L) Yol (2.36)

Based on the displacement the rotation angle can be calculated as:
_dw LR s

=1~ 2Bl (:c 2Lx). (2.37)

Corresponding the bending moment is given by:
d2w
M(z) = EI@ =F(z—1L). (2.38)
And the shearing force is given by:
d3w

These solutions can be used to test the performance of shell and beam elements.

A simulation without damping will on average reach the displacement and angle of
equations (E:39) - (2-34). By including damping it is possible to test the convergence
towards the analytical solution directly. This is what will be done later in this chapter.

Beam element formulations in Radioss

OPENRADIOSS uses the Timoshenka (1921, 7927) formulation for beam elements.
The assumptions of the limoshenka (19271, 1922) formulation are (Blfai, P0226):

*  No cross-section deformation in the plane of the beam.

*  No cross-section warping out of the plane of the beam.
In general, the equations describing the dynamics of a MTimoshenkd (1921, 1922)
beam are given by:

2
PAaiéu —q(x,t) = 9 KAG ow _ (2.40)
ot ox ox
P 0 o ow
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where G is the shear modulus, « is the Timoshenka (1921, 1922) shear coefficient,
q(z,t) is the distributed load, and ¢ is the angle of rotation of the normal to the mid-
surface of the beam. In OPENRADIOSS the user can change the beam formulation
flag from Ighear = 0 10 Ighear = 1, this allows the user to use Euler-Bernoulli beam
theory which follows a simpler EoM given by (Reddyi, P017):

Gl P Il 242
oa2 \Plopz | = ~PAge + 1@ (2.42)

The main take away point from this formulation is that equations (2240) and (2=41), but
also equation (242) fully take into account all the terms of equation (222), the beam
equation presented in § E-1. Therefore, numerical convergence of the beam element
formulations is expected because the analytical solution is one-on-one described by
the numerical solution. The numerical solution is expected to find the correct solution
if the time stepping of the simulation has a time step shorter than At = aL/c,, where
L is the beam length, ¢ is the speed of sound and « is a constant of around unity (for
details see Alfair, 20220).

Shell formulations

Plate theory is a mathematical model used to determine the deformation and corre-
sponding stresses in thin plates that are subjected to forces and moments. Generally,
there are two types of plate theory.

Kirchhoff-Love plate theory

The first type of plate theory is called Kirchhoff-Love (1888) (KL) plate theory. The
three main assumptions of KL plate theory are (Reddy], 2006):

+  Straight lines normal to the mid-surface remain straight after deformation.

»  Straight lines normal to the mid-surface remain normal to the mid-surface after
deformation.

+  The thickness of the plate does not change during deformation.

The consequences of these assumptions are examined by considering the position
vector of a point in an undeformed plate. The displacement of a point in a plate can
be expressed as:

u(x) = ufe; + uey + w'es, (2.43)

where e; are the Cartesian unit vectors, u? is in-plane displacement and w° is the
out-of-plane displacement in the x3 direction. This means that the displacement is
given by[m:

ow® 0

U (x) = Ul (21, 25) — Ty gL =ta 130,w°, a0 = 1,2 (2.44)
u3(x) = w(xy, 29). | (2.45)
When the strains are infinitesimal the strain-displacement relations are given by:
€af = % (0guq + Oqug) . (2.46)
This implies that
€a3 = % (Oguq + Oqus) , (2.47)
= —0qw’ + Opuw’ = 0. (2.48)

10The shortening of derivative operators is used, namely,

= Oa

0T
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233

Similarly, for
£33 = O3ug(x1,72) = 0. (2.49)

This means that there are only 3 non-zero components given by:
1
€ap = 5 (85ug + aau%) — 230, 05w". (2.50)

Kl plate theory is only valid when the plate is thin enough such that the assumptions
remain valid. This is the case when the ratio of the length and thickness does not
exceed 20 (Alfaid, P023). For ratios smaller than 20 it is important to use a plate
theory which considers this.

Reissner-Uflyand-Mindlin plate theory

To overcome the issue of thicker plates, a second plate theory was developed called
Reissnef-Uflyand-Mindiin (RUM) plate theory. The main assumptions of RUM plate
theory are:

+ Thereis a linear variation of the displacement across the plate thickness.
»  The thickness of the plate does not change during deformation.
+  The normal stress through the thickness is ignored (i.e. the plane stress condi-
tion).
Most importantly, the assumptions of RUM plate theory imply that the angles that
normal vectors make with the z3 axis are no longer given simply by ¢, = d,w’.
Instead, the displacement vector is given by:

U (%) = ud (21, 72) — T3¢0, = 1,2 (2.51)
0

uz(x) = w” (21, x2). (2.52)

Based on this the strain-displacement relations are given by:

€a3 = % (ag’ua + 8au3) , (253)

= % (Oa® — ¢a) - (2.54)
Again e33 = 0 because u3 does not depend on x3. Lastly, the other components are
given by:

1 T
€as = 5 (9510 + 0atu}) — 3 (90 + Dads) (2.55)

Because the shear strain is constant across the thickness and it is known the shear
stress should be parabolic it is required to incorporate a shear correction factor « in
equation (Z254). This means that equation (Z254)) reduces to:

5 (9au” = Data) (2.56)

€a3 =

Overall, in OPENRADIOSS the standard is to use RUM plate theory for shell ele-
ments (Alfaif, P023), this means that OPENRADIOSS by default takes into account
thick shells.

Shell formulations in OPENRADIOSS

This subsection will explain the different shell formulations that are available in OPEN-
RADIOSS.
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Belytschko-Tsay shell element

The first type of shell element is the Belytschko and Tsay (T983) shell element. In
OPENRADIOSS these are called the classic Q4 elements. OPENRADIOSS has a total
of four different hourglass penalisation methods to consider the Belytschko and Tsay
(T983) shell element.

The Belytschko and Tsay (T983) shell elements use perturbation stabilisation for the
hourglass energies. Hourglass modes are distortions of the mesh that have no strain
energy. Hourglass modes only apply to 4 node shell elements. The left of Fig. B2
shows the 12 translational motions of the 4 node shell elements and the three hour-
glass modes. The right of Fig. B2 shows the 12 rotational modes of 4 node shell
elements with the four rotational hourglass modes. Because hourglass modes do not
have strain energy it is required to stabilise them to prevent the mesh deformations
to take any random form. This is done using perturbation stabilisation.

'I — T ~ A
) : X !
‘ f [ N O
1-2 3-4
i /
7 4 4 \
z \
5-6 78
Fey
9 Q
10~
l‘l"_ - 7
I ::/ hourglass
11 =7 12

Figure 2.2 The different translational modes of 4 node shells with 7, 8 and 12 representing the three
translational hourglass modes (left) and the different rotational modes of 4 node shells with
9-12 representing the four rotational hourglass modes of 4 node shells.

Perturbation stabilisation can be done in several different ways. Hourglass viscous
forces relate the velocity of the nodes directly with a counteracting force, similar to
viscous forces in a fluid. Hourglass stiffness forces work as a spring in which the stiff-
ness force tries to counteract the force that wants to extend the nodes and therefore
is directly related to the displacement. The hourglass viscous forces can also be ap-
plied to the moments of the shell. This means that there is a total of three hourglass
forces that are required, namely an in-plane, out-of-plane and rotational hourglass
force.

For the hourglass viscous force, the hourglass velocity rate is given by (Kosloff and
Frazier, 1978):

dq;
8%5 =T, vi, = Vi1 — Vi2 + Vi3 — Vig- (2.57)

where Latin indices run over 1 and 2 and Greek indices run over 1 to 4. The hourglass
normalised vector is given by

= (1,-1,1,—1). (2.58)
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The in-plane hourglass resisting forces at node v and direction i are given by:
A dg;
hgr 1 )
pedr/hp— 5 Bt r,. (2.59)

Where d is the element thickness, and h,, is the shell membrane hourglass coeffi-
cient. The out-of-plane hourglass resisting forces are given by:

1 h
hgr - 2 [
fidt = 4pcd 1/ 0 (2.60)

Where hy is the shell out-of-plane hourglass coefficient (Blfair, 20220). The hourglass
coefficients can be modified in the input of OPENRADIOSS and are by default set to
hm = 0.01 and h¢ = 0.01 (Aiaid, P0223).

Similarly hourglass elastic stiffness forces can be calculated, OPENRADIOSS follows
the Flanagan and Belytschkd (1981) formulation to do this. The hourglass resultant
force is defined as:

fhgl — fhgr (261)

For the hourglass in-plane modes the hourglass energy is given by:

0611
8t

where ¢ is the current time, At is the time step, and E is the Young’s modulus. Similar
for out-of-plane modes:

FPE(E+ AL = [0 + ¢ L Ed

(2.62)

0q;
ot

FUE (4 At) = fhE () + %othdS At. (2.63)

The last hourglass modes is the hourglass viscous moments, similar to equation
(E27) the angular velocity rate can be defined as:

887;2 =Twi = wit — wio + w3 + wia. (2.64)
where w is the angular velocity. The hourglass viscous moments are given by
1 h or;
ngr _ pcAd* =T, 1 2.
Miv = 5 ot Lo, (2.65)

where h, is the shell rotation hourglass coefficient which by default is set to A, = 0.01
(Alfai, 20223).

The first penalisation method in OPENRADIOSS is I,y = 1 which corresponds to
the Kosloff and Frazier (T9/8) and Flanagan and Belytschka (1T981) formulation. This
simply uses the default values described above of h,, = hy = h, = 0.01. This method
always calculates the velocity orthogonal to the physical velocity such that the hour-
glass velocity always remains orthogonal to the physical velocity.

The second penalisation method in OPENRADIOSS is Ignen = 2. This method is
identical to the previous method but it does not use the fact that the hourglass velocity
remains orthogonal to the physical velocity (Aifail, P022d). In OPENRADIOSS this
approach is called the Hallquist method.

The third penalisation method in OPENRADIOSS is Iyen = 3. This method is called
elastoplastic hourglass force. The elastoplastic hourglass method modifies the ap-
proach of Flanagan and Belytschka (1981) by imposing a minimum hourglass force.
This means that equations (£62) and (Z53) are modified to

£ (¢ + At) = min <fhgr( )+ 3 Ly Ed%‘bm mayd\/z). (2.66)
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and

: 1 0g;
hgr . hgr 3 04q;
[i® (t + At) = min (f7 () + o htEd 5

1
At, 4hfayd2> . (2.67)
where oy is the yield stress (Alfair, 2022h). Also the default hourglass coefficients are
different and are h,,, = h, = 0.1 and h¢ = 0.01 (Alfair, PZ0223), this means that there is
a larger in-plane hourglass resistant force as compared to the other methods.

The fourth penalisation method in OPENRADIOSS is Ii,en = 4, this method specifi-
cally takes into account keeping the hourglass vectors orthogonal even in the case of
warped elements. This penalisation method is the best in general for the Belytschko
and Tsay (1983) shell element. I,y = 4 uses equations (E57)-(F&18) but uses a
slightly different hourglass vector (equation P-58) that always remains orthogonal.

Note that the use of Belytschko and Tsay (1983) shell element is not without issue.
One problem with Belytschko and Tsay| (1983) shell elements is that they do not sat-
isfy the [rons and Razzaque (1972) patch test (Haufe_ef-all, P013). The Irons_and
Razzaque (1972) patch test is a test of a couple of elements with solving a structure
of a few elements for which the exact solution is known. The cantilever beam sim-
ulation is comparable to the [rons and Razzaque (T972) patch test but it is slightly
more complicated by also including the dynamics. Based on this, convergence of
the Belytschko and Tsay (1983) elements is not expected. A second problem with
Belytschko and Tsay (1983) shell elements is that they show poor behaviour with ir-
regular geometries. This means that they are unable to pass [rons and Razzaque
(T972) patch tests with irregular geometries and are unable to pass the twisted beam
test (e.g. the twisted beam tests of Macneal and Harder 1985 or Zupan and Saje
2004). A third issue with Belytschko and Tsay (1T983) shell elements is that the hour-
glass coefficients are user inputs and are often taken as being constant, while in
reality the hourglass coefficients are problem-dependent.

Fully-integrated QBAT shell element

Shell element formulation I, = 12 is based on the Baioz and Dhafl (T990) Q4~24
shell element. The Bafoz and Dhatl (T990) shell element formulation has 4 nodes
with each 5 DOF (RUM theory). Furthermore, the QBAT shell elements use a Carte-
sian shell approach where the middle surface is curved (instead of straight). Con-
trary to the other two shell elements, the QBAT shell element is fully integrated and
uses four Gaussian quadrature points using 2 x 2 integration points. This means that
the integration points for a rectangular shell element with size L x K are present at

(50 95)- 5 (- 95))- (5 (- 5) (5 (1 55)))- (5 (14 55) 5 (1 55
and (% (1 + %) , (% (1 + %))) Furthermore, a reduced in-plane integration for
shear aims at preventing the QBAT from shear locking. Similar to the Belytschko and
[Tsay (1983) shell elements an hourglass force needs to be imposed, but contrary,
the hourglass force is physically motivated based on the Belytschko et all (1984)
formulation. In practice OPENRADIOSS uses an updated formulation based on the
Belyischko and Leviathan (1994) and Belytschko et all (1984) formulation. Because
the hourglass energy is modelled using a physical model this method does not output
any hourglass energies (Altair, P023).

Of all the shell element types QBAT is the most expensive because it is a full inte-
gration scheme. Due to this it is a scheme that is not often used in simulations that
use explicit time integration. Rather it is more commonly used in simulations that use
implicit time integration, still, this scheme can be used in simulations with explicit time
integration but might produce locking (e.g. Zeng and Combescure, 1998).
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Reduced-integration QEPH shell element

The last shell formulation is I,.n = 24, QEPH shell elements are cheaper than QBAT
shell elements because this shell formulation just requires one number of integration
point in the shell element because it is a reduced integration scheme with one instead
of four integration points. Similar to QBAT shell elements the hourglass energy is
modelled using a physical model using an updated Belytschko and Leviathan (1994)
and Belytschko et al] (1984) formulation, which is explained in Zeng and Combes
core (1T998). Zeng and Combescureg (1998) shell elements give nearly perfect agree-
ment with the fully integrated Bafoz and Dhafi (1990) Q424 shell elements for linear
problems. Compared to Baioz and Dhafi (1T990) Q4~24 shell elements, Zeng and
Combescure (1T998) shell elements only perform worse in the case of a significantly
coarser mesh for linear problems. The main advantage of Zeng and Combescure
(1998) shell elements is that compared to QBAT or Bafoz and Dhafi (T990) Q4~24
shell elements the number of computations is a factor of 4 to 5 lower. This means that
Zeng and Combescure (1T998) shell elements are only a factor of 20 per cent slower
than the Belytschko and Tsay (1983) shell elements.

It is noted that Zeng and Combescure (1998) shell elements have not been tested
extensively for nonlinear materials, for example anisotropic damaged materials. This
means that users should be careful when using Zeng and Combescure (1998) shell
elements for problems that involve nonlinear materials. Furthermore, LS-DYNA does
not have the option to run with Zeng and Combescure (1998) elements so no experi-
ence with these shell elements exists in TNO-NOS.

Thickness integration

This subsection explains how thickness integration is done for shell elements in OPEN-
RADIOSS. The thickness integration is based on Gaussian quadrature rules ((Gauss,
1815). In the parameter file the user specifies the amount of integration points n,
where n can range from 1 to 9. To integrate over the thickness of the shell the default
numerical integration approaches for functions of the shape

/ f(x)dz. (2.68)

are used. By default OPENRADIOSS uses Gauss-Lobatto quadrature (see page 888
of Abramowitz and Stegun, T965), this means that two of the integration points are
taken at the edge of the thickness. This means that the integral is calculated as:

1

n—1
[ Hadde = (1) waf )+ Y wif(e). (2.69)
1 1=2
where the endpoints have a weight of
2
Wi = Sy — (2.70)
and the other weights are given by simply the Gaussian Quadrature weights of:
vy — — 2n _ 2 . 2.71)

(1= 2Py () Ph(zi)  n(n— 1) (P_1(2:))”

Where z; is the i-th root of P,, where P, are the Legendre polynomials. OPENRA-
DIOSS has several types of shell elements, not to be confused with the Ighe element
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that can be selected in the standard shell element type (TYPE1). OPENRADIOSS has
several different shell element types that mainly differ in the way vertical integration
is done and if the material consists out of different materials. The simple shell el-
ement types (TYPE1) always use Gauss-Lobatto quadrature, and assume there is
just one type of material in the shell. In OPENRADIOSS it is possible to use Gauss-
Legendre quadrature (Gauss, 1815), however, this is not possible to do with the sim-
ple shell type. To use Gauss-Legendre quadrature element type 10 or 11 (TYPE10
or TYPE11) need to be used. Type 10 and 11 are the composite shell and sandwich
shell respectively. In the case of Gauss-Legendre the integral is calculated as:

1

/ﬂ@MZE:mﬂ%) (2.72)

-1
where the coefficients are given by:
2
(1 — )2 (P ()

So, what is the accuracy of both elements? In general Gaussian quadrature can
exactly integrate a polynomial of order 2rn—1. This means that for a correct calculation
of the cantilever beam having only 2 thickness integration points would be enough to
correctly calculate the displacement of the cantilever beam.

(2.73)

w; =

24 Constructing the cantilever beam simulations

To effectively run simulations of cantilever beams (clamped-free) and similar structural
elements with different boundary conditions a python module was designed to create
simple Radioss starter files. The details of the program can be found in Appendix O.
A short explanation will be given here. The python module can be run by executing

> python3 create_rectangular_test_grid.py parameter_file.yml >
output_radioss_file_0000.rad

Here CREATE_RECTANGULAR_TEST_GRID.PY is the python module, PARAMETER_FILE.YML
is the parameter file and OUTPUT_RADIOSS_FILE_0000.RAD is the resulting file for
Radioss. The parameter file for the simulation to create consists out of different sub-
sections for each component of the model with separate variables that can be easily

set by the user, the input looks like:

BeamDimension:
Length: 40.0
Width : 10.0
Thickness: 2.5
CoordinateSystemZeroPoint: [0.,0.,0.]

AppliedForce:
TotalForce: 0.1
TypeOfForce: "line force"

NumericalResolution:
TypeOfElement: "beam™
ShellElementSize: 5.0
BeamElementSize: 5.0
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BeamMembraneDamping : 0.0
BeamFlexuralDamping: 0.01
VerticallntegrationPoints: 5
ShellFourFormulation: 24
ShellNumericalDamping: 0.015
BeamFormulationFlag: 0
SmallStrainOptionFlag: 4

MaterialProperties:

LawNumber : 1
Density: 7.8e-6
YoungsModulus: 210.0
PoissonRatio: 0.3
YieldStress: 0.3

UltimateTensileEngineeringStress: 0.686
EngineeringStrainAtUTS : 0.129
StrainRateCoefficient: 0.0
FailureModel: False

InputTypeFlag: 1

InternalUnitSystem:

UnitMass: "kg"

UnitLength: "mm"

UnitTime: "ms"
MetaData:

RunName: "Cantilever beam"

Author: "Folkert Nobels"
Damping :

UseDamping: True

RayleighMassDamping: 4.0
RayleighStiffnessDamping: 1.0
StartTime: 0.0

EndTime: 1e30

The yield stress and ultimate tensile engineering stress were taken from another
example. In the linear analysis we do not use the yield stress and the ultimate tensile
engineering stress.

Cantilever beam simulation

Fixed dimensions are taken for the cantilever beam, the aim is to have shell and
beam element models with the same period, so the length and the thickness are
identical for the shell and beam element model simulations. Table EZ1 summarises the
physical parameters of the cantilever beams. For both the shell and beam elements,
simulations with different numerical resolutions are constructed. The shell elements
are constrained to have an initial squared shape, an additional requirement is that
there are nodes in the middle of the cantilever beam. This means, for the dimensions
in Table B, that the lowest resolution simulation for shell elements has 8 x 2 =
16 shell elements. For beam elements there is no such constraint because beam
elements are one dimensional and the simulation therefore can be done with just one
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beam elements. For shell elements six simulation variations are performed with shell
element sizes of:

AZghenl = 50()2%,71 —0,1,2,3,4,5. (2.74)
For beam elements 3 more resolution variations are performed and the beam element
size is given by:
Apeam = 4008$’n =0,1,2,3,4,5,6,7,8. (2.75)
The width of the shell and beam elements are all set to 8 mm. The highest resolution
simulation has a resolution size of 15.625 mm, this means that the thickness over
element size is at most 0.512. This means that the use of shell and beam elements
is appropriate. Also, for shell element we used a width of 1 m because the additional
constraint is that the shell element is rectangular. Furthermore, to not complicate
the story of beam elements we also use a width of 8 mm such that it is equal to
the thickness. Fig. P23 shows a snapshot of the cantilever beams at different spatial
resolutions, it shows the shell elements (black lines) and the vertical displacement at
the time of the snapshot. To be able to compare the displacement between the shell
and beam elements, the force put on the free side of the cantilever beam is taken such
that the maximal displacement is expected to be around 40 mm. A displacement
of 40 mm is taken because this corresponds to a 1 per cent vertical displacement
which should not cause significant thickness or bending effects such that comparison
with the theoretical predictions in § P11 and P12 can be done. Due to a relatively
slightly larger loading for the shell elements, which, in hindsight, should have been
1.6 x 1072 kg mm ms~2, there is a slight difference in displacement between shell
and beam elements.

Table 2.1 Physical dimensions of the cantilever beam for shell and beam elements.

shell elements beam elements
length (L) 4m 4m
width (b) im 8 mm
thickness (D) 8 mm 8 mm
force (F) 1.68 x 1072 kgmm ms~2  1.28 x 10~* kg mm ms—2
density (p) 7.8 x 1075 kg mm~—3 7.8 x 1075 kg mm~—3
Young'’s modulus 210 GPa 210 GPa

Two cases are considered for the cantilever beam simulations:

1. No damping: This allows verification that the solution is stable and there is no
artificial damping present in the simulation. This is crucial for determining the
natural frequencies of the solution and the comparison with § E1T1. Further-
more, this allows verification of the numerical integration scheme to check how
stable the solution is and no energy is lost or gained due to numerical errors.

2. Rayleigh damping: This will produce a stable static solution which can be com-
pared directly with the predicted displacement in § 12

The important question is: How good is the convergence expected to be? And is
there a difference between beam and shell elements?

The beam elements are modelled with the Timoshenko beam theory (equations E-40
and P-41), the cantilever beam can be modelled with equation (E22). Equation (22) is
a specific case of equations (E-40) and (E-41l), this means that very good convergence
is expected for the beam elements.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC



ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 29/498

Figure 2.3 A time snapshot impression of the cantilever beam from top view with different numerical
resolutions. The left shows from top to bottom the simulations with numerical resolutions of
500 mm, 250 mm and 125 mm, the right shows from top to bottom the numerical resolutions
of 62.5 mm, 31.25 mm and 15.6125 mm. The colour bar indicates the vertical displacement
(same in all plots) and the black squares show the edges of the shell elements.

For the shell elements the situation is different. Firstly, shell elements do not solve the
beam theory equations, they rather extend the beam theory equations and generalise
this to plates. Because of the assumptions of plate theory, the strains with z compo-
nents become ‘artificial’ and are more numerical corrections than actual strains in the
components e,3 and e33. Often this also means that €33 becomes zero™,

11 e33 becomes zero for KL and RUM plate theory, other plate theories do not have this equal to zero like
plate theories with stretchable cross-sections or non-straight cross-sections.
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2.5.1

Vertical displacement

Here quantitatively the result of the vertical displacement is compared with the the-
oretical predicted result for the cantilever beam simulations. A comparison is made
between shell and beam elements.
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Figure 2.4 Time evolution of the cantilever beam with the Zeng and Combescure (T998) shell elements
(top) and (921, 922) beam elements (bottom) for different numerical resolu-
tions (different colours). The displacement of the edge of the cantilever beam is shown at a
distance of 4000 mm. A comparison is made with the theoretical mean displacement (black
dashed line). Simulations with low resolutions are unable to get the correct mean displacement
when shell elements are used. Shell elements with low resolution have the wrong downwards
amplitude while the upper amplitude is well converged. Beam amplitudes initially have the
correct amplitude but beam elements with few resolution elements quickly artificially damp.

Fig. P-4 shows the time evolution of the cantilever beam for shell and beam elements
for around 100 cycles. The lower resolution shell elements do not have the correct
mean displacement, this is mainly because the oscillation does not extend to low
enough displacements. Only at a resolution of 125 mm, the solution becomes well
converged. The behaviour of beam elements is different, beam elements have the
correct upper and lower displacement. The lowest resolution simulations have the
problem that they artificially damp quickly within 200 seconds. The convergence of
beam elements is good when the cantilever beam is resolved by 4 beam elements
(resolution of 1000 mm).

Fig. 24 shows the vertical displacement and from this the natural frequency of the
oscillation can be determined. The most straightforward way of determining the nat-
ural frequencies is calculating the Fourier transform of the displacement. The Fourier
transform calculates the contributions of different frequencies v to the input signal, in
our case the vertical displacement. Ideally, the mean displacement is subtracted to
prevent an artificially peak around v = 0 which could reduce signals at the first natural
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Figure 2.5 Absolute value of the Fourier transfer of the displacement minus the mean displacement for
Zeng and Combescure (1T998) shell elements (left) and Timoshenka (1921, 1927) beam el-
ements (right). Different colours show the different numerical resolutions. The vertical black
dashed lines indicate natural frequencies of the cantilever beam. When the numerical resolu-
tion is increased the convergence of the natural frequencies improves. Beyond the fifth natural
frequency the amount of noise increases significantly.

frequency. Fig. P23 shows the absolute value of the Fourier transform and shows that
the natural frequencies (black dashed lines) converge well with resolution. For shell
elements all the natural frequencies are well converged even for the lowest resolution
simulations. For beam elements, the natural frequencies are converged when the
cantilever beam is resolved by four beam elements. This is partly as expected, we
see that for one beam element only one natural frequency is produced, for two beam
elements there are only two natural frequencies. This is because the model with N
beam elements has only N degrees of freedom and can describe N number of natural
frequencies at most. Overall, the agreement between both is good and indicates that
the solution is converged when the cantilever beam is resolved by 4 or 8 elements in
the length.

Fig. E3 also shows the slope of the Fourier transform. The slope can be determined
to be # x v 0412 Ap interesting property of a Fourier transform is the energy
power spectrum. The energy power spectrum is a measure of energy of the different
Fourier transformation modes and can be calculated as £ = .#“. In Fig. PH this
corresponds to slope of the energy power spectrum of E « v~%8. The energy of
the energy power spectrum does not matter much because it is directly related to
the displacement (i.e. a constant that can be taken outside of the Fourier transform).
Contrary, the slope tells how much the energy is divided between the different modes
in the system. For Fig. P13 the slope of the energy power spectrum follows almost
pink noise (pink noise has an energy spectrum of E o« v~!) besides the five peaks
at the natural frequencies. Pink noise is one of the most common energy power
spectra found in nature (e.g. tides, heart beats, neurons, black holes, etc.) Because
it is so common this implies it is understood quite well and implies that the energy
contribution of higher frequencies half when doubling the frequencies. However, in
the case that the energy power spectrum follows pink noise, this means that the total
energy of the cantilever beam does not converge with higher energy because:

Vmax

Eiotal o< / v ldv o< In (Vmax) ) (2.76)

Vmin

VYmin

where vmax and vpin are the maximum and minimum frequency in the simulation. in
the limit that vmax — oo this gives a diverging result, implying that if the numerical

12Here the symbol « shows that the two quantities are proportional to each other.
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resolution is increased the total energy keeps increasing. The maximal frequency
depends directly on the numerical resolution because simulations with high resolu-
tions have shorter time steps. For the shell element that we considered, the total
energy of the energy power spectrum converges even less slow as

VYmax

FElotal / v 98dy Vr}n/a‘?( — Z/i]{:, (2.77)

Vmin

implying that when the resolution is increased the total energy increases with the
fifth root of the maximum frequency. Overall, this result implies that convergence is
not quaranteed for these shell elements. Specifically, this means that the shell ele-
ments show ultraviolet divergence (i.e. the solution diverges at the highest energies
or frequencies).
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Figure 2.6 Convergence of the natural frequencies (different colours) for different numerical resolutions
(x-axis) for Zeng and Combescure (T998) shell (left) and Timoshenkd (19271, T922) beam ele-
ments (right). The n = 0 natural frequency is converged for all shell element sizes investigated
(i.e. from 500 mm onwards), the convergence of the beam elements starts at a spatial resolu-
tion of 500 mm, in excellent agreement between the two different element formulations. The
convergence of the higher natural frequencies (n > 0) is well converged for spatial resolution
of 250 mm and 125 mm for the shell and beam elements.

Fig. E8 shows the convergence of the five lowest natural frequencies in a more quan-
titative comparison. The convergence is excellent for both elements at a resolution
of 125 mm for all natural frequencies. This implies that over the length a total of 32
elements are required. Shell elements already converge well for a lower resolution
of 250 mm, so a total of 16 elements over the length are required. Lastly, the n = 0
natural frequency converges for the beam elements at a factor 2 or 4 lower resolution
than the higher natural frequencies. The convergence study for the shell elements
shows that most results are already converged for the coarsest model, making it im-
possible to judge for the shell elements how convergence of the n = 0 mode relates
to the other modes.

To investigate the exact mean displacement behaviour more quantitatively a fit to the
mean displacement curve is made with the curve of a damped mass-spring system:

2(t) = Asin (wt + @) exp (— > . (2.78)

decay
where A is the amplitude, w is the n = 0 natural frequency, ¢ is the phase offset,
and t4ecay IS the time decay. As the system is only lightly damped, it is expected that
w is close to wy, ¢ ~ 7/2, A = (z) and tqecay IS Very large. This equation is non-
linear in the parameters that are required to be fitted. There are a few issues with
this equation, firstly w and ¢ are partly degenerate, secondly, both parameters have
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Figure 2.7 Convergence of the fitted values as a function of spatial resolution (x-axis) for shell (left) and
beam elements (right). The relative difference of the frequency (top) converges very well
and at the highest resolutions is more accurate than 10~4. The amplitude (middle) is well
converging for the beam elements while for the shell elements the relative difference does not
get below 10~3. The delay time (bottom) also converges well for higher resolution but has
high values because the delay time is expected to be very long.

degeneracies at w + 27n, n € Z. This implies that using the Levenberd-Marquardi al-
gorithm would most likely get stuck in local minima and a fitting procedure is required
that uses bounds on both w and ¢. Additionally, A > 0 and tqecay > 0 SO additional
boundary conditions can be imposed. The Branch ef all (T999) trust region reflective
algorithm is used, this method converges well. Fig. E=2 shows the convergence of the
fitted parameters A, w and t4ccay as a function of spatial resolution. The frequency is
quite well converged and is converged better for shell elements than beam elements,
in-line with the findings in Fig. EZ6. The amplitude is less well converged for the sim-
ulation with shell elements while for beam elements the convergence is as good as
for the frequency. Good convergence is not expected for the decay time because
it can vary over many orders of magnitude. However, the decay time shows some
convergence, the convergence implies that models with lower resolutions are more
artificially damped than the highest resolution simulations.

Fig. 28 shows the mean displacement of the cantilever beam with the 16™ and 84"
percentile of the displacement indicated by the shaded colours™3. At higher resolu-
tions the simulations converge towards the equilibrium displacement. For the Zeng
and_Combesciire (1T998) shell elements the 84" percentile converges very rapidly
(In-line with the findings of Fig. E4). However, the 16" percentile converges much
slower, it requires a spatial resolution of at least 62.5 mm for convergence. This can
be seen in the figure that above the line there is an uniform brown shaded region,
while below there is a brown shaded region with more yellow colours below it that
correspond to higher resolution simulations. The situation is different for the Timo-
shenka (1921, T922) beam elements, the mean value converges rapidly even for the

13The 16! and 84t percentile correspond to +1¢ (standard deviation) for a normal distribution. For an
unknown distribution it is better to use percentiles instead of standard deviation because it applies to more
general distributions. Information about percentiles can be found here
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Comparison of the mean displacement (continuous lines) and the 16" and 84™ percentile
(shaded regions) for simulations of different spatial resolutions (different colours). For shell
elements the Zeng and Combescure (T998) formulation is used. Shell elements converge from
a spatial resolution of 62.5 mm (i.e. 64 resolution elements in the length), lower resolutions
do not converge in the mean displacement and the 16! percentile vertical displacement (the
lighter shaded regions). For Timoashenkd (T921, 1927) beam elements the convergence is
very good, the mean displacement is converged at 1000 mm (i.e. 4 resolution elements).

lowest resolutions. The two lowest resolution simulations do not predict the correct
amplitude because they are artificially damped but predict the correct mean displace-
ment. For simulations with only 4 elements (i.e. 1000 mm) the convergence of the
16" and 84™ is already excellent. We think that the difference might be related to
the high frequencies of Fig. PB. At the highest frequencies (higher than fifth natural
frequency) there are way more peaks for the shell elements. These peaks are likely
more present for shell elements because the FEM model with shell elements has
more DOF. Due to the higher number of DOF there are also more natural frequencies
that can perturb the result.
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Reduced x-squared of the mean displacement of Fig. E-8 using three different approaches for
Zeng and Combescure (T998) shell elements and Mimoshenka (1921, T927) beam elements.
The reduced chi-squared is calculated based on the displacement of the cantilever beam. Ei-
ther the difference is compared to the theoretical curve (theoretical) or the highest resolution
simulation (highres). Additionally, the resolution nodes or highres nodes are used as a mea-
surement position for the reduced chi-squared. The Timashenka (1921, T922) beam elements
show excellent convergence with respect to their highres simulations and good convergence
with respect to the theoretical solution which quickly converges towards 10—3. Zeng and
Combesciire (T998) shell elements show not so good convergence compared to the theoreti-
cal curves and show convergence a bit better than 10~2 with respect to the highest resolution
theoretical simulation.

Fig. B9 shows the x-squared difference between the mean displacement and the
highest resolution simulation. Timoshenka (1921, 1922) beam elements show excel-
lent convergence towards their highest resolution simulation. The convergence with
the theory is around 10~3. Clearly, this is not excellent, but it is not expected that
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25.2

this is perfect because the comparison with the theoretical solution does assume that
there is no change in the x-position of the cantilever beam, but because it deviates
slightly it is expected that the theoretical displacement will be slightly off. Given that
the deviation is 1 per cent of the cantilever beam a relative offset of slightly less than
one per mille is therefore not surprising. Lastly, the Timoshenkad (1927, T922) beam
elements clearly converge rapidly with resolution x o Az*, therefore increasing the
improvement with resolution is Axz?.

For iZeng and Combescure (1998) shell elements the convergence with the highest
resolution simulation is not that good, the model only converges towards a reduced
x-squared of ~ 3 x 10~2. The convergence with respect towards the theoretical
solution deviates around five per cent because the Zeng and Combescure (1998)
shell elements are too stiff. The convergence with respect to the highest resolution
simulation shows that x o Az?3, therefore the improvement with resolution is only
~ Az!''7 and this shell element model does not converge that fast.

Accuracy of the solution for different time step sizes

Like most codes that solve partial-differential equations (PDEs) that depend on time,
OPENRADIOSS uses the Courant et all (T928) (CEL) condition as a time step criterion
to constrain the maximal allowed time step. The CFL condition requires the time step
At to satisfy (CEL)

At < i—c (2.79)
where . is the characteristic element/resolution length and ¢, is the speed of sound.
This CEI condition corresponds to the time step that a sound wave travels through
a single resolution element without skipping a single resolution element. Because
this corresponds to the minimum time required for a sound wave to travel through a
resolution element, in general, a slightly stricter time step criterion is imposed, and it
is common to use

At < CCFLi—C, (2.80)
where Ccry, is the CEI constant. The CEI condition is required to be satisfied for a
stable solution of a PDE, this means that the CFL condition applies both on fluids and
solids. In general, for SPH and ALE the CETl condition is required to be smaller simply
because inside a SPH and ALE kernel there could be multiple resolution elements,
implying that [, is effectively smaller than the full width at half maximum (FWHM)
of the kernel width which is often denoted by h. In practice in SPH Ccpr, = 0.2
results in proper convergence. In the case of a regular grid I, = l4q. By default in
OPENRADIOSS the CFL condition uses Ccrr, 54 = 0.9, this is the same value as is
used in LS-DYNA. It is investigated if a varied range of CELl conditions give identical
results, the CEIl constant values are evenly spaced in log space following:

Cerr = CorLaa2™*,n € Z. (2.81)

This is done for both beam and shell elements. For the shell elements Ccpr, > 1.0703
is problematic T4 similar for the beam elements Ccpr, > 0.9 is problematic. Values
that are problematic result quickly in problems with the energy in the simulation. This
is something that OPENRADIOSS quickly indicates, and the simulation is stopped.
Because Ccrr, = 0.9 is just stable, it is not a good choice in general. This implies that

14This larger value than 1.0 is a bit surprising but is probably due to the way OPENRADIOSS rounds-off
numbers to calculate the CEL condition.
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a value of Ccrr, < 0.75 is recommended. It is noted that for each type of problem it
is important to verify that this condition is good enough. Especially when shocks with
high Mach numbers are present a smaller value will be required (e.g. shocks in air,
FSI of air shock).

For the CEL condition only an investigation at the spatial resolution of 125 mm is per-
formed, this corresponds to a total of 32 resolution elements in the length. When look-
ing at the spatial distribution of the cantilever beam with different CFL constants there
are no noticeable differences (not shown). Fig. P10 shows the determined natural
frequencies for the cantilever beam. Across all natural frequencies the convergence
of the natural frequencies is nearly perfect. Similarly, Fig. P11 shows that the verti-
cal displacement and its scatter are well converged for the different CELl conditions.
Overall, this indicates that a Ccrr, < 0.75 will produce good results in OPENRADIOSS.
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Figure 2.10 Comparison of the inferred natural frequencies for Zeng and Combescure (T998) shell (left)
and Mimoshenka (1921, T922) beam elements (right) as a function of CEI condition and for
different natural frequencies (different colours). Excellent convergence with the CFL condi-
tion is found, larger values than shown do not result in convergence of the result. Overall, it is
recommended to use at most Ccrr, = 0.9. Given that this will be problematic for shocks, an
overall recommendation is given of Ccopr, < 0.75 such that more non-linear and more rapid
phenomena are also described correctly.
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Figure 2.11 Comparison of the equilibrium displacement and the 16! and 84! percentile for the vertical
displacement for Zeng and Combescureg (1998) shell (left) and Timoshenka (1921, 1927)
beam elements (right). The different colours indicate the different CELl condition. The results
converge nearly perfect as a function of CEL condition. Larger values than shown do not
result in convergence. Overall, this figure shows that at least Corr, = 0.9 should be used. It
is recommended to at least use C'crr, < 0.75 for good convergence in general.

An important note of the investigation of the (CEIL) condition is that we only investi-
gated a regular mesh with square shells. This means that the impact of the (CEL)
condition is much bigger because all cells have the same time step. In a full ship or
submarine model there are many elements with different sizes and only a very limited
number of elements have the condition that they need to have a very small time step.
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This means that for a (CEL) condition of Ccrr, = 0.9 we do not expect much problems
for irregular models.

Compatrison of different hourglass and shell elements formulations

In § 233 an overview of the different shell formulations in OPENRADIOSS was given.
Here a direct comparison at six different resolutions is performed for all six shell el-
ement formulations in OPENRADIOSS. Fig. E12 shows a convergence test for the
Belytschko and Tsay (1983) shell elements with the four different hourglass penali-
sations. This demonstrates that the different hourglass penalisations produce nearly
identical results that are hard to distinguish. This is not surprising because o, ~ co
which means that I,y = 1 is identical to I,y = 3 because the second term of
equations (Z68) and (E&4) reduce to equations (E62) and (E63). Furthermore, the
cantilever beam also only has a small displacement, this means that the penalisation
model without orthogonality (7.1 = 2) and the penalisation model with orthogonali-
sation for warped elements (/L1 = 4) are not expected to show any difference with
respect to I.n = 1. Still for all the four different penalisation methods the conver-
gence of the shell elements is not perfect and as explained in § P-373 they are unable
to converge to the correct solution of the cantilever beam benchmark. Despite this
the numerical solution remains within 7 per cent of the analytical solution. That all
four hourglass penalisation methods produce almost identical results applies to most
linear tests, however, for more complicated models this conclusion might not apply
and it should be considered which of the four hourglass penalisation methods is most
appropriate.

Fig. 13 compares the three different element formulations in OPENRADIOSS. From
tOp to bottom Flg P13 shows Igwen = 4, Ighen = 12, and Ighen = 24. Ighen = 4
corresponds to the most advanced hourglass penalisation with the Belytschko and
[Tsay (1983) shell elements. This plot shows that the model converges when the
amount of resolution elements is increased from n = 4to n = 32. At n = 64 the
Belytschko and Tsay (1983) shell elements deviate again more from the analytical
solution and at n = 128 they are more converged again. This shows that the con-
vergence of the Belytschko and Tsay (1983) still deviates around 10 per cent from
the correct solution. Iy.n = 12 corresponds to the fully-integrated Baioz and Dhati
(1990) shell elements with the physical hourglass formulations following Belytschkg

too much stiffness which causes it to deviate around 13 per cent from the analytical
solution. The result of being too stiff is well converged from 64 and 128 element.
Iswen = 24 corresponds to the Zeng and Combescureg (1998) shell formulation using
physical hourglass formulations. Similar to Iy, = 12, the solution of this shell formu-
lation converges. Is,.1 = 24 shell elements are slightly too stiff which cause them to
deviate consistently by 5 per cent from the analytical solution. Overall, the best shell
element formulation to simulate the cantilever beam correspond to Is,en = 24 or the
Zeng and Combescure (1998) shell elements. These shell elements converge well
and converge quite close to the analytical solution. However, a deviation of 5 per cent
is still significant.
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Figure 2.12 Comparison of the different hourglass penalisation methods using the Belytschko and Tsay
(T983) shell elements for different numerical resolutions (colours). From top left to bottom
right, Ishennt = 1, Ishell = 2, Ishenl = 3, and Ighenn = 4. Ishen = 1 uses the Kosloff and Frazier
(T978) and Flanagan and Belytschkad (1T981) visco-elastic hourglass formulation. I = 2
uses the Kosloff and Fraziel (T978) and Flanagan and Belytschkd (T981) visco-elastic hour-
glass formulation without orthogonality following Hallquist (Bifaif, P0273), I, = 3 uses
a modified Flanagan and Belyfschkd (T981) elastoplastic hourglass formulation which set
a minimum value to the hourglass correction based on the material yield. Ishen = 4 uses
the Kaosloff and Frazieid (T978) and Fianagan and Belytschka (T98T) visco-elastic hourglass
formulation which includes a correction for warped elements such that the hourglass formu-
lation remains orthogonal. For the cantilever beam benchmark, the four different hourglass
penalisation methods give nearly identical results but the convergence is not amazing be-
cause even at high resolution the simulation can be off by around 7 per cent (orange line)

and is better for slightly higher and lower resolutions (yellow and dark orange) that have a
deviation of around 3 per cent and 1 per cent.
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Figure 2.13 Comparison of the three different shell formulations in OPENRADIOSS for different numerical
resolutions (colours). From top to bottom, I = 4, Ishen = 12, and Ighenn = 24. Igpen = 4
corresponds to the Belytschko and Tsay (T983) shell elements that include orthogonal visco-
elastic hourglass corrections following the Kosloff and Frazied (1978) and
(m98T) formulation which take into account warping of elements. I,.n = 12 corre-
sponds to the fully-integrated (T990) shell elements with the physical hour-
glass formulations following Belytschko and Leviathar (1T994) and (1984).
Ishenn = 24 corresponds to the Zeng and Combescureg (T998) shell formulation using physical
hourglass formulations. An important difference between Ignen = 4 and Iy = 12 = 24
is that Ishenn = 12 and 24 converge towards a single solution as the resolution is increased
while Ighe;1 = 4 is still not converged. Furthermore, the three different shell formulations have
different stiffness, the I Len = 4 elements are the least stiff while I o1 = 12 is most stiff
and I 1 = 24 is between. For the three different shell element formulations, I,e11 = 24 or
Zeng and Combescureg (1998) shell elements converges and agree best with the analytical
solution.
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2.54 Thickness integration

In § P34 the way thickness integration of shell elements is done in OPENRADIOSS is
explained. Here the importance of the number of integration points in investigated. To
investigate this a simultaneous variation of the resolution and the number of thickness
integration points is performed. Fig. P14 shows the impact of the number of thickness
integration points and the numerical resolution. As expected, based on § P=34 the
result quickly converges when the number of integration points is 2 or higher. Note
that the result here is for a linear problem, which means that all quantities involved are
either linear or quadratic. Gauss-Lobatto quadrature is accurate for any polynomial
2n — 1 which means that the result here does not generalise for non-linear problems.
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Figure 2.14 Comparison of the importance of number of thickness integration points (different column-
s/rows) and the numerical resolution (different colours) for the cantilever beam benchmark
using Belytschko and Tsay (T983) shell elements. The Kosloff_and Frazied (T978) and
Flanagan and Belyfschkad (T981)) visco-elastic hourglass formulation is used which includes
a correction for warped elements such that the hourglass formulation remains orthogonal
(Ishen = 4). The different panels show 1 (membrane behaviour), 2, 3, 5, 7 and 9 integration
points using Gauss-Lobatto quadrature. The result is converged from N = 2 integration
points as expected from theory.
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Force on the side of the cantilever beam

In the examples above only normal forces on the horizontal surface were place. Here
a rotated force is applied to test shell elements in their own plane. Fig. P18 shows
the procedure used in the previous sections in red, here all the last nodes obtain a
force. A different test is rotating the applied force by 90° and only forcing the force
on a single node, this is demonstrated by the blue arrow. This case is called the
alternative forced cantilever.

—

Figure 2.15 Schematic view of the cantilever beam and the applied force. The red arrows show how the
force is applied in the previous sections and the blue arrow indicates how the force is applied
in this subsection.

The cross section has a (much) larger inertia in the direction of the blue loading than
in the direction of the red loading. This means that the expected frequency is orders
of magnitudes larger for the blue case than in the case of the red case, it will be
different by /D ~ 125. We also increased the force by a factor of 10* such that the
displacement remains of the order of 20 mm.
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Figure 2.16 Comparison of the displacement at the end of the alternative forced cantilever beam for dif-
ferent numerical resolutions (colours) using Zeng and Combescure (T998) shell elements.
For the lowest resolution simulations the solution remains stable while for the highest resolu-
tion simulation the simulation diverges at only 200 ms.
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Fig. E18 shows the 400 ms of the simulation with the alternative forced cantilever
beam using Zeng and Combescure (1998) shell elements. For the three lowest res-
olution simulations the solution remains relatively stable, while the highest resolution
simulation quickly deviates at around 200 ms. Simulations for two- and four-times
higher resolution were also performed and resulted in diverging results, these simu-
lations are not shown here.
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Figure 2.17 Same as Fig. P18 but for a longer time. The simulation with a resolution of 125 mm starts
deviation at around 2000 ms. This indicates that the simulations of the alternative forced
cantilever beam are unstable when integrated over long times.

The theoretical frequency is around 125 x 2.6 Hz ~ 325 Hz. Fig. P18 shows that within
400 ms there are 20.5 periods, therefore the frequency is given by 27 x 20.5/400 ms =
322 Hz. This shows that the frequency in the simulation is in agreement with the
theoretical frequency.

Fig. P18 shows results when we perform the alternative forced cantilever beam for
different CEL conditions. It is found that a smaller CEIL condition can indeed improve
the stability of the solution. But that a CEIl condition of 0.45 still produces instability
after some 4000 ms.
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Figure 2.18 Comparison of the displacement at the end of the alternative forced cantilever beam for
different CEI conditions (colours) using Zeng and Combescure (1T998) shell elements at a
resolution of 125 mm. Reducing the CEL conditions improves the convergence of the results.

Fig. P19 shows the same as Fig. P18 but for a larger element resolution. This again
demonstrates that the stability of the solution can be improved when the CEL condi-
tion is decreased but that it is hard for the solution to remain stable for many cycles.

Fig. E220 shows the convergence at a spatial resolution of 125 mm and demonstrates
that this stability issue is present also for the Belytschko and Tsay (T983) shell ele-
ments.
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Figure 2.19 Comparison of the displacement at the end of the alternative forced cantilever beam for
different CEIl conditions (colours) using Zeng and Combescure (1T998) shell elements at a
resolution of 62.5 mm. Reducing the CEIL conditions improves the convergence of the results.
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Figure 2.20 Comparison of the displacement at the end of the alternative forced cantilever beam for dif-
ferent shell elements at a resolution of 125 mm and a CEI condition of 0.45. 24 correspond to
the [Zeng and Combescure (T998) shell elements and 1 and 4 correspond to the Belytschko
and Tsay (T983) shell element with different hourglass penalisation methods. At this resolu-
tion the Zeng and Combescurg (1998) shell elements obtain a less divergent result than the
Belytschko and Tsay (T983) shell elements.

The question is whether it is surprising that the oscillations deviate so much and the
system obtains additional energy. OPENRADIOSS uses central difference for the time
integration. Central differences has the problem that it does not conserve energy. As
shown in [Springel (P005), this can either mean that the system slowly loses energy
(dissipation) or that it gains energy. The central difference time integration in OPEN-
RADIOSS mainly breaks down when it gains energy rather than when it loses energy.
Fig. 24 showed that at low resolutions dissipation of energy takes place. To solve the
problem of losing and gaining energy it will be required for the time integration to con-
serve energy by construction. Symplectic time integration schemes always conserve
the total energy of the system because they are designed to do so. These are time
integration schemes like leapfrog integration (Birdsall and Langdon, T985) or Merlei
(T967) integration.

Damped cantilever beam

In this section we again focus on the cantilever beam in which the force is imposed
perpendicular to the plate of the cantilever beam (Red case of Fig. E15).
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Figure 2.21 Comparison of the vertical displacement at the edge of the cantilever beam with damping
for Belytschko and Tsay (T983) shell (top) and Mimoshenkd (1927, T927) beam (bottom) ele-
ments. We find that the static displacement is not converged for the three lowest resolutions
when using shell elements, contrary, when beam elements are used the static displacement
is converged already when 1 element is used.

To investigate specifically the static solution of the cantilever beam we apply Rayleigh
mass and stiffness damping to the problem. This damping results in a relatively quick
decrease of the amplitude such that we can compare well with the static solution
at different numerical resolutions. In Fig. 2223 we show the time evolution of the
displacement for shell and beam elements. We find that the beam elements are
very well converged in terms of their static vertical displacementﬂ:a and find that the
displacement is converged when a single beam element is used. The shell elements
are not as well converged at low element resolutions and require at least a resolution
of 125 mm in order for the static vertical displacement to be converged.

In Fig. we show the static displacement for all element resolutions in the sim-
ulations of the cantilever beam. We find again excellent convergence for the beam
elements which are very well converged even when damping is included. The conver-
gence for shell elements is slightly worse and they require a slightly higher resolution
of around 125 mm to converge. Overall, this result shows that there is correct con-
vergence when damping is used.

Fig. 2223 shows the reduced Chi-squared value of the different resolutions as a more
quantitative way of quantifying how good the convergence is between the theoretical
solution and the simulation itself. We find that the beam elements show excellent
agreement with the theoretical values at their node positions and the accuracy is quite

158ecause of a slightly different variable set, the mean displacement for the beam elements is slightly
smaller than 40.
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Figure 2.22 Comparison of the static vertical displacement of the analytical solution and the simulations
at different resolutions (different colours) for Belytschko and Tsay (T983) shell (left) and Tim-
oshenkd (1921, 1927) beam (right) elements. We find that beam elements converge very
well even at the lowest resolutions. Shell elements require slightly higher resolutions of 125
mm to have good convergence. This results shows that the results keep converging when
there is damping.

close to machine accuracy of float numbers of around 10~8. The overall convergence
of the exact shape converged very rapidly with almost o I>.. The shell elements
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Figure 2.23 Comparison of the reduced chi-squared as a function of numerical resolution for Belytschko
and Tsay (T983) shell (left) and Mimashenkd (1921, T922) beam (right) elements with damp-
ing. The convergence for beam elements is very good, for shell elements the convergence
is less good but is close to 103,

Cantilever beam with different damping

In Fig. we show simulations with slightly different mass damping for both shell
and beam elements at a spatial resolution of 125 mm. We see that both element
types converge to the desired mean displacement. This indicates that the result is
independent of the mass damping. All simulations were performed with a small stiff-
ness damping.

To not have oscillations at all times, instead of continuing the problem like it is, |
take a slightly different approach. For all nodes we will include Rayleigh damping.
Specifically, we will only consider Rayleigh mass damping as the stiffness damping is
not desired in the case of the cantilever beam because we want to find the equilibrium
solution. In general, it is possible to find the Rayleigh mass damping that is around
the critical value (£ = 1) by calculating the Rayleigh mass damping as

o= (2.82)

- )
2w71,
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Figure 2.24 Comparison of the vertical displacement at the edge of the cantilever beam with damping
for Belytschko and Tsay (T983) shell (top) and Timoshenkd (19271, T927) beam (bottom)
elements with damping. We find that the static displacement is converged for simulations
with different mass damping.

where w,, is the natural frequency, this means that we would expect the Rayleigh
mass damping to be around o = 2/(27 - 2.6 Hz) = 0.12 s. By performing tests, we
found this value to be almost a factor of 1000 smaller and therefore we use these
values around a = 4 x 10~* s instead. For the simulation of a spatial resolution of
125 mm we perform a few simulations with different Rayleigh mass damping factors
around this fiducial value. We space them with factors of 4. In general, the damping
shows the correct trend.

Conclusions

+ A cantilever beam benchmark was created and used to verify the different shell
and beam element formulations.

+ [Timoshenkd (1921, 1922) beam and [Zeng and Combescure (1998) shell el-
ements reproduce the correct natural frequencies, equilibrium position, and
normalisation for the cantilever beam benchmark. It is found that the natural
frequency up to n = 5 can be predicted well.

»  ACEI condition that is slightly stricter than the fiducial value of 0.9, but instead
is 0.75 improves the stability for a regular mesh and allows the cantilever beam
benchmark to be run correctly without divergence.

» The [Zeng and Combescure (1998) shell formulation is found to produce the
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most desired solution for the cantilever beam benchmark because; (i) it shows
converging results, (ii) it converges closely to the desired analytical solution.
The Bafozand Dhafl (T990) Q4+24 shell element do not converge to the correct
analytical solution, but they show clear convergence with a standard deviation
from the solution. Lastly, the Belytschko and Tsay (1983) shell element shows
that the result does not strictly converge in which a higher resolution means; a
solution closer to the analytical solution. The Belytschko and Tsay (T983) shell
element shows rather that the solution oscillates around the true solution and
the amount of convergence is difficult to know in advance.

*  An alternative cantilever beam was used that shows that the different shell ele-
ment formulations have trouble finding a converging solution when the oscilla-
tions of the cantilever beam have a very small period.

»  The cantilever beam benchmark was also performed with a damping factor
which let the solution converge to the equilibrium state as expected.
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3.1

Springs

This chapter verifies the simple spring elements in OPENRADIOSS. An extensive
investigation of ideal springs and non-ideal springs is performed. These are the first
steps to investigate spring elements that are used for UNDEX analysis.

Ideal spring

This section focuses on an ideal spring. The simulations performed are based on a
spring system which has a mass, this means there are 2 nodes for the spring, one
node for the orientation, and a single spring element. For a spring with a mass, it
is required to consider the effective mass of the spring-mass system. A spring with
mass m does not have a kinetic energy of %mv2, where v is the velocity at the end of
the spring. Only the very end of the spring will move with that velocity. The differential
kinetic energy is given by:

dK = %ugdm. (3.1)

To get the total kinetic energy equation (B) needs to be integrated over the total

length of the spring,
K= / dK = / %qum. (3.2)

spring spring

An ideal spring is stretched homogeneously, which means that its mass distribution is
uniform. Therefore dm = 5'ds, [ is the length of the spring measured at time ¢ and ds
is the differential of distance. Assuming a homogeneous stretch also gives that the

velocity is given by u(s) = v. This means that the kinetic energy becomes:

= %UQ/SQdS, (3.4)
0
1m ,

This means that the effective mass of the spring is simply ='.

How to test single springs? There is just one way of testing a spring properly, this
is by exerting a force along its direction and following the dynamic evolution of the
spring. The EoM of a spring can simply be calculated by setting Newfon'’s (1687)
second law equal to Hooke’s (1678) law and the EoM reduces to:

A2z k

" 3.6

dt? meffl (3.6)
where k is the spring constant and m.g is its effective mass. Based on this the
frequency of the oscillation is given by w = \/k/meg. And the homogeneous solution
is given by:

x(t) = ¢1 cos(wt + ). (3.7)
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If a force is imposed the EoM is given by:

2
o S = ez + FoO(1), (3.8)

de?
where Fj is the imposed force and O(t) is the Heaviside step function (AbramowitZ
and Stequn, T965). This can be reduced to:
2
Fi
dw k- T, (3.9)

dt2  meg Mot

The particular solution of this equation is given by:

x(t) = c20(t), (3.10)
= %G(t). (3.11)

Combining this with the homogeneous solution gives the general solution given by:

(1) = e1 cos(wt + ) + %@(t) (3.12)

The boundary conditions of the problem are given by:

z(t=0) =0, (3.13)
dx
— (t=0)=0. 14
i (t=0)=0 (3.14)
Imposing these conditions gives:
c1 cos(9) + % =0, (3.15)
—ciwsin(¢) = 0. (3.16)
This directly implies that ¢ = 0, therefore ¢; = —%. This means that the solution is
given by:
Fy
x(t) = - (O(t) — cos(wt)) . (3.17)

Using this relation there are two ways that the ideal spring can be tested:

«  Comparing the harmonic oscillations of the spring with the analytical expecta-
tions.
+  Comparing the displacement with the imposed force.

In theory it is possible to create a single numerical experiment to test both, but this
has the limitation that the displacement and force graph does not extend to large
displacements. Because of this, two different numerical experiments are performed:

* A constant force is imposed on the edge of the spring, the spring will start
oscillating with frequency w and will have a displacement following equation
(BX2). This set-up is ideal to check that the spring has the right frequency, and
the displacement is as expected.

+ A constant axial displacement is performed and while displacing the spring
the total force is calculated and logged. This is ideal to reproduce the force-
displacement graph over a large dynamical range and allows comparing the
input spring constant with the observed spring constant.

1The Heaviside step function is a function thatis 0 for ¢ < 0 and 1 for¢ > 0.
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3.1.1

Time evolution

Fig. B3 shows the time evolution of an ideal spring and compares it with the analytical
predictions of equation (B8314). The agreement is excellent, and for the time range
shown we cannot see a clear deviation in phase of the oscillation. There might be a
minuscule difference in the amplitude that is difficult to quantify. A better comparison
might be to check how well the numerical simulation performs in Fourier space. Based
on equation (B14) the Fourier transform has two components, one component that
is constant and transforms to a Dirac delta function at v = 0, that is « 4(v). And a
Dirac delta function at the frequency (and negative frequency) of the cosine, that is
x d(v — w).

—250 A

—500 A

—750 A

—1000 A

—1250 A

Displacement [mm)]

1
!

ot

=

@

g

<

—1500 -

—1750 A

—2000 A

0 25 50 5 100 125 150 175 200

time [ms]

Figure 3.1  Comparing the time evolution of a simulated spring (blue) with the analytical solution (black
dashed). The theoretical solution and the simulation are in excellent agreement.

Fig. B2 shows the FFT of the ideal spring system with an imposed force. Both the
theoretical prediction and the numerical simulation impose a clear peak that match
extremely well between both, this shows that OPENRADIOSS is working well in repro-
ducing the eigenfrequency of the spring.

Displacement force relation

Fig. B33 compares the force-displacement relation of an ideal spring with the theo-
retical predictions. This demonstrates that the agreement is excellent between the
theoretical model and the simulation, the difference is almost impossible to see in this
plot and the lines are on top of each other.

The conclusion for ideal spring elements is that they produce the correct behaviour
for both the displacement and the period.
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Figure 3.2 Compares the FFT spectrum of the theoretical prediction (blue and black dashed) and the
numerical result of the simulation (orange). The theoretical frequency (black dashed) shows
the input frequency w and the theoretical displacement shows the Fourier transform of equa-
tion (BX14). The percentage shown in the figure shows the difference between the simulated
and theoretical displacement, which is 0.0 per cent. Like the conclusion of Fig. B, the fre-
quency is in excellent agreement between the simulation and theoretical expectation.
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Figure 3.3 Comparing the theoretical (black dashed) force-displacement relation and the force-
displacement relation from the numerical simulation (blue). The agreement is perfect between
the theory and the simulation, the lines are on top of each other.
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3.2

Damped ideal spring

Most spring elements also have a dash-pot damper that can be attached parallel to
the spring element. When a damper is attached parallel to the spring its EOM changes
to:

2
in + c% + kx = Fy0O(t). (3.18)
where ¢ is the damping coefficient of the dash-pot damper. This means that the
homogeneous solution reduces to:

Meff

z(t) = cre % sin(wt\/1 — €2 + ¢). (3.19)
Where § = 5.<—. When the damping coefficient is small, the term inside the sine
reduces to:
VI—E -8 -t (3.20)
This means that when ¢ <« 1, equation (B2211) reduces to:
z(t) = cre @ sin(wt + ). (3.21)

This means that the change of frequency is small. For the damped spring, the only
relevant measurement is seeing how quickly it damps. Because of this, the same
set-up is used as for the ideal spring in § Bl Like in § Bl the general solution is:

2(t) = %@(t) e sin(win/1— & + ¢). (3.22)
Adding the two boundary conditions:
z(t=0)=0, (3.23)
%f (t = 0) = 0. (3.24)
This results in
a(t) = % (@(t) — e cos(wty/1 — 52)) . (3.25)

For the damped spring the displacement will be damped, and this is the main in-
terest of investigating the damped ideal spring. Fig. B4 shows the displacement of
the theory and the simulation. This shows that the agreement is excellent between
the theory and simulation. The damping changes the frequency, this still results in
excellent agreement between the simulation and theory.

Fig. B3 shows the Fourier transform of the displacement, this clearly shows that
both agree very well, there peak frequency agrees perfectly between the theory and
simulation. The shapes of the Fourier transforms are almost on top of each other
but show a small deviation between them that is not significant for the simulation
outcome.

As a side note, in OPENRADIOSS the time step size is given by (Blfaid, P0226)

(\/ mk + 02) —c
—
This implies that only a few time steps are required for a period of a spring, this cannot
produce accurate results and because of that Bifaif (20220) recommend to use a time
step that is a factor of at least 5 lower. The simulations performed here already use a
CFEI condition of 1/10. Therefore, the expectation would be that the correct solution
is produced. As a side check, simulations with a CEI condition of 1/100 (not shown)
were performed and results in identical results as for the CEII condition of 1/10.

At = (3.26)
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Figure 3.4 Comparing the theoretical displacement (black dashed) of a damped spring with the simulation
of a damped spring (blue). The period and the decay agree perfectly.
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Figure 3.5 Comparison of the FFT signal of the displacement for the simulation (orange) and the theoret-
ical prediction (blue and black dashed). The theoretical displacement (blue) shows the Fourier
transform of equation (B228). The theoretical frequency (black dashed) shows the theoretical
frequency based on equation (BZ28) which corresponds to w+/1 — £2. The percentage shown
in the figure shows the difference between the theoretical and simulated displacement. Like
Fig. B2 the peak of the frequency agrees perfectly between the theoretical and simulated dis-
placement.
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3.3

3.3.1

Non-ideal spring

For non-linear springs with large contributions from non-linear terms it is important to
only include terms that are producing periodic behaviour when periodic behaviour is
investigated. This means that springs should have energies that have even parabolas.
This means that non-linear terms can be

1 1
Uspring = *kuz + *k2u4 (327)
2 4
or more general,
Ui -:}k”lﬂ—‘rilk“u% (3.28)
spring 2 2 % i . .

where k and k; are spring constants that are either positive or zero. This implies that
the force is given by:

Fspring =ku+ Z kiu%*l. (329)
=0

Because equation (B2Z9) only has odd polynomials the force is always pointed to zero
displacement.

Time evolution

When the time evolution is calculated the most important property is the frequency of
the displacement. For a non-linear spring with only a single element, the energy is
given by

x

Uspring = /Fspringdxa (330)
0

where f(x) is the nonlinear function. The assumption is made that the non-linear
spring has only a single term and the term can be expressed as

Fupring = ka1, (3.31)

where n > 1 and k is the spring constant with unit N m'=2". The spring energy is
then given by:

k 2
spring — & " 3.32
Uspring 2nx ( )
This means that the energy of the system at maximal displacement is given by:
k n
Esystem = %G/Q . (333)

where a is the maximal displacement during a periodic oscillation, this corresponds
to the amplitude of the oscillation. The kinetic energy of the system is given by 1muv?.
This means that

Esystem = Uspring + Ekinetim (334)
can be written as
1 2 k 2n 2n
gmvt = o (a®" —2"). (3.35)

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC



ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 56 /98

Reordering gives

k
— 2n _ p2n
v = \/an (a x2m). (3.36)
This can simply be written as
1 dt nm
v dx k(a2n — x2n)' (3:37)

This equation can be integrated over a quarter of its period as

a a 1
p_ Aty _ [nm de L Jom [ dz
4_/dxdx_\/?/\/m_an1\/7/m' (3.38)

0 0 0

The integral has a standard solution given by:

(3.39)

C/ ar_
VAT Ve ()

where TI'(x) is the Gamma function. This means that the solution for the period is

given by
1 [m4y/nal (1+45)  C. [m
P= g 5“ ) _ o= (3.40)
a I (%) a k

C, can be calculated and gives the following result for the first few n, C; = 2m,
Co = 7.416299, C5 = 8.413093, Cy = 9.308741 and for large n the expression reduces
to C,, = 4/n. In this case the frequency can be determined to be

1 a vk
f= ]; < (3.41)

The way to interpretate this equation is as follows, m is the mass of the spring,
a" 'k is the classical spring constant that has the units of kgl/23‘1. Combined
a"~t\/k/m gives a frequency but due to the non-linearity an additional correction
factor is required. C, is the correction factor for the normal frequency. This correction
factor depends only on the order of the non-linear spring in equation (B=31).

Fig. BH shows the time evolution of the non-ideal spring with a cubic function versus
time. It is clear from this figure that the periodic behaviour of the non-linear spring
produces regular cycles as would be expected. There is no analytical solution shown
because the analytical solution is almost impossible to determine.

Fig. B2 compares the FFT of the non-linear spring with the analytical frequency
of equation (B21). Like ideal springs the frequency of the simulation is smaller by
around 8 per cent.

Next a septic polynomial is considered for the periodic oscillation. Here it is assumed
that Fipring = k27, Fig. B8 shows the periodic behaviour of this oscillation.

Fig. B9 compares the FFT of the non-linear septic spring with analytical frequency of
equation (B41). Here we see a more drastic difference in frequency of around 700
per cent. Reflecting on this problem, the centre of the potential of the spring is not
actually in the centre of this problem. Because we displace by a constant force the
potential is passing through only one side of the potential and not the other. This
means that the derived frequency is not applicable to our problem. We must come up
with a different problem to test exactly this frequency.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC



ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 57 /98

—250 A

—500 A

—750 1

—1000 ~

2 —1250 A

Displacement [mm]

—1500 A

—1750 A

—2000 A

0 25 50 75 100 125 150 175 200
time [s]

Figure 3.6 Non-linear springs show periodic behaviour when a force is imposed. As expected, the spring
produces a periodic oscillation. No comparison is done with a theoretical solution because it
is not possible to solve the problem analytically.
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Figure 3.7 Comparison of the theoretical frequency of the spring following equation (BZ1) with the FFT
of the displacement of the simulation. This shows the same simulation as in Fig. BB. The
non-linear springs following a F' = kx3 relation has a frequency of around 8 per cent smaller
than the theoretical expected value.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC



ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 58 /48

2000

1750 A

1500 A

1250 A

1000 ~

750 1

Displacement [mm]

500 A

250 A

0 25 50 75 100 125 150 175 200
time [s]

Figure 3.8 Non-linear springs following a septic polynomial shows periodic behaviour when a force is
imposed. The spring produces a periodic oscillation. No comparison is done with a theoretical
solution because it is not possible to solve the equation analytically.
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Figure 3.9 Comparison of the theoretical frequency of the spring following equation (B82) with the FFT
of the displacement of the simulation. The non-linear springs following a F' = k7 relation has
a frequency of around 750 per cent larger than the theoretical expected value.
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3.3.2

3.4

Constant extension

For non-ideal springs that are just extended, the additional requirement of producing a
periodic behaviour is not required and springs can be extended to any desired shape.
Fig. B10 shows a smooth function of the form

F = Ay(a2® + bx). (3.42)

where a, b are constants with units mm~=2 and mm~'. And A; is the unit that sets the
force scale. Fig. B10 shows excellent agreement between the input function and the
output function. Note that in this subsection the unit of force is given by kg mm ms—2.
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Figure 3.10 Extension of a non-linear spring under constant extension following equation (Z22). The
smooth input function is perfectly reproduced by the simulation, even the decrease in the
force while the spring is extending is modelled excellent.

Fig. B11 also shows the extension of a spring element but now the functional shape is
taken to be discontinuous, an abrupt change is incorporated at around v = 5000 mm
and a sine wave is inputted to investigate if OPENRADIOSS is able to match an irreg-
ular function like this. The agreement between the input function and the simulation
is almost perfectly, only at the abrupt change the lines slightly deviate because of
the sampling of the function. This shows that OPENRADIOSS is good in reproducing
arbitrary spring curves.

Spring used in UNDEX analysis

The default springs used in UNDEX analysis use the keyword MAT_NONLINEAR_-

ELASTIC_DISCRETE_BEAM or MAT_067. This keyword defines a non-linear elastic dis-
crete beam with 6 decoupled DOF which also allows preloading of the spring. In
OPENRADIOSS this keyword can be read using the LS-DYNA format. OPENRA-
DI0SS then maps this keyword to /MAT/LAW108/ or /MAT/SPR_GENE. /MAT/LAW108 is a
general spring material with 6 DOF and allows for non-linear stiffness, damping and
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3.5

Figure 3.11
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Extension of a non-linear spring under constant expansion. The irregular input function with
an abrupt change is well reproduced by the simulation. There is a small disagreement at the
displacement corresponding to the change of function, but this change is comparable to the
sampling size of the input function.

different unloading scenarios. Additionally, /MAT/SPR_GENE allows to use deformation,
force or energy based failure criteria for this element type (Alfaif, 20273).

Conclusions

+  The considered ideal spring performs extremely well for the force-displacement
relation and the oscillation frequency.
»  The considered damped ideal spring behaves similarly well as the undamped

spring.

. Non-

ideal springs do not produce the expected frequency for time evolution

because the centre of the potential is not consistent between the theory and
the simulation. Their force-displacement relation agrees perfectly with any input
function. For the frequency of the oscillation, we have to do simulations that
agree between the theory and simulation.
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4.1

Compiling the code

This chapter focuses on how to compile OPENRADIOSS on your system. If the reader
is not interested in compiling the code, the reader is referred to the next chapter.

There are two ways of obtaining OPENRADIOSS, the most straightforward way is
downloading the ‘day-release’ executable from the website and use this to run simu-
lations. However, this works but is not ideal for the following reasons:

1.  The code is compiled using the GNU FORTRAN compiler (https://gcc.gnu.org/tortran/).

2.  The code is not optimised for the current architecture.

Personal experience of the author and scientific research (Colfax_ Besearch, P017;
Halbiniak ef all, P022) show that the intel compiler is always faster even on AMD ar-
chitecturest. Secondly, OPENRADIOSS wants to release an executable that everyone
can use. This means that general instruction sets are used that are common on even
old processors from the 2000s. Instead, Intel recommends to use -xHost, this gener-
ates a program with the highest possible instruction set for the compilation host (see
Intel developers, 20710, P023).

This chapter is divided in three parts, firstly, general software and settings that are re-
quired to run the code. Secondly, how to compile the code to run with multiple threads
using OpenMP. Thirdly, how to compile the code to run with MPl and OpenMP to run
over different memory domains. Chapter B focuses on optimising the compilation of
the code.

Getting the code, required software and settings

OPENRADIOSS contains several large files, these large files contain third-party pack-
ages and their proprietary code for Altair’s h3d files. To download the code, you need
to make sure that you first install git Ifs (git Large File Storage). Secondly, To use git
Ifs you need to initialise it as:

git Ifs install

Once done, you can download the code from the GitHub repository:

git clone https ://github.com/OpenRadioss/OpenRadioss. git

This will download the most recent version of OPENRADIOSS with all the latest fixes
and additions. Because the released versions of OPENRADIOSS change daily, you
should keep well track of the current version used. the current version of the reposi-
tory can be determined by doing:

cd OpenRadioss
git log

The last command shows an output like the following:

commit 8e2cb72123b36b13a1e83c238327324854816f23 (HEAD -> main,
tag: latest -20230919, origin/main, origin/HEAD)

Author: servbotaltr <102742919+servbotaltr@users.noreply.
github .com>

Date: Tue Sep 19 03:47:29 2023 +0200

1 Note that NOS only has computers and servers with Intel Xeon processors
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Update Headers at Tue Sep 19 03:47:29 CEST 2023

commit c4b2e73a4ec7d7973e417cf87eeec87c336d8cd1 (tag: latest
-20230918)

Author: Thierry Schwoertzig <104987175+Schwoertzig@users.
noreply . github .com>

Date: Mon Sep 18 11:49:27 2023 +0200

/ALE/GRID/MASSFLOW:openMP  fix

commit 073e777f6426e4ceabb5665dc4b80c2b1b5820a3

This shows the version string after ‘commit’, so for this version of the code, the ver-
sion string is 8e2cb72123b36b13a1e83¢c238327324854816£23. If you have this string
stored for your project, it is always possible to retrieve this version of the code. The
additional tag, latest-20230919 is daily released by OPENRADIOSS and they have
a limit of 6 tags, so after 6 days this information is lost and this tag itself does not
say much. The other information main and origin/main indicate that you are on the
main branch, origin/head indicates that you are on the latest commit (HEAD) of the
branch.

The next step is making sure the required software is present. Table B shows the
required software (Wienholtz ef all, P023).

Table 4.1 Required software to run OPENRADIOSS

software version number
git Ifs >=3.0.2
cmake >=3.20.4
make >=4.2.1
perl >=5.26
python >=3.6.0
GFORTRAN >=11.X
g++ >=11.x
cpp >=11.X
gcc >=11.X
IFX >= 2021

To run with this software on the TNO-NOS Linux servers Goldfish or Marlin it is re-
quired to create symbolic links for the version 12 of the GNU compilers, this can be
done simply by:

mkdir ~/bin/

cd ~/bin/

In —s /usr/bin/gfortran-12 gfortran
In —s /usr/bin/cpp-12 cpp

In —s /usr/bin/g++-12 g++

In —s /usr/bin/gcc-12 gcc

This is required because otherwise the GNU-7 versions of the compilers are used.
If it is desired to use the intel compiler the following needs to be added to the run
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4.2

command (rc) file? on Goldfish:

alias intel="source /uhome/tuitmanjt/intel/oneapi/setvars.sh
intel64’

and for Marlin:

alias intel="source /Applications/oneapi2023/setvars.sh
intel64’

After adding this to your rc file, you can run

intel

which will result in the following output and the initialisation of the intel compiler

initializing oneAPl environment
—bash: BASH VERSION = 4.4.23(1)-release
args: Using "$§@" for setvars.sh arguments: intel64

advisor —— latest
ccl — latest
compiler —— latest
dal —— latest
debugger —- latest
dev—utilities —— latest
dnnl — latest
dpcpp-ct —— latest
dpl —— latest

ipp —— latest
ippcp —— latest
ipp —— latest

mkl — latest

mpi —— latest

tbb — latest

vpl —— latest
viune —- latest

oneAPl environment initialized

Single node and with OpenMP

The next step is compiling the starter. This can be done by:

cd OpenRadioss
cd starter
./ build_script.sh —arch-linux64_gf

This compiles the starter and results in an executable in OpenRadioss/exec. Similarly,
the engine can be compiled using GFORTRAN by

cd OpenRadioss
cd engine
./ build_script.sh —arch-linux64_gf

2The rc file depends on which shell environment is used, .BASHRC for BASH, .ZSHRC for ZSH, .CSHRC
for CSH, etc.
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4.3

It is also possible to compile the engine using the intel compiler using

./ build_script.sh —arch=linux64_intel

In OPENRADIOSS the compilation flags are accessible by the user, so it is possi-
ble to modify the compiler flags for better performance. This is possible to do with
OpenRadioss/engine/CMake_Compilers/cmake_linux64_intel.txt, this file indicates
the flags that are used in the code. Specifically, it is possible to modify lines 77 and
78. For some of the simulations at NOS, -axSSE3,COMMON-AVX512 -no-fma -03 was
replaced by -no-fma -Ofast -xHost -static. More details about changing this can
be found in Chapter B.

Lastly, before running the code you are left with two executables, the starter and
the engine. Before running simulations you need to initialise a few variables in your
.bashrc file:

export OPENRADIOSS PATH=/path/to/OpenRadioss

export RAD_CFG_PATH=$OPENRADIOSS PATH/hm_cfg_files

export LD _LIBRARY_PATH=$OPENRADIOSS PATH/ extlib /hm_reader/
linux64 /:$30PENRADIOSS_PATH/ extlib /h3d/lib/linux64 /:
$LD LIBRARY_ PATH

Running a simulation is performed in two steps, namely, the preparation of the simu-
lation using the starter:

./ dir_to_exec/starter_linux64_gf -i filename_0000.rad

followed by performing the actual simulation on N openMP threads using an engine
executable

./ dir_to_exec/engine_linux64_intel —nt N -i filename_0001.rad
or
./ dir_to_exec/engine_linux64_gf —-nt N -i filename_0001.rad

Run the code over MPI

On Goldfish and Marlin, the compilation of the code is very similar to the non-MPI
version of the code. The starter does not need to be recompiled. However, the
command to compile the engine is slightly different, to compile the code you will need
to use:

./ build_script.sh —arch=linux64_intel —-mpi=impi

where the last keyword of command specifies which type of mpi is used (intel mpi
here).

Importantly, you will need to indicate the number of threads per MPI rank as:

export OMP_NUM THREADS=<Nthreads >

The next step is running the code, importantly, when running the code over MPI you
should use the following command for the starter:

/directory/to/starter_linux64_gf —-np <N> —i input_file_0000.
rad
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4.5

4.5.1

where <N> indicates the amount of MPI ranks that you want to run on. This is followed
by a corresponding run that is performed on the same number of MPI ranks. Using
the command

mpirun —-np <N> —-map-by socket:PE=<Nthread> --bind-to core /
directory/to/engine_linux64_intel_impi —i filename_0001.
rad

where <Nthread> is the number of threads per MPI rank. If the engine is run with the
wrong number of MPI ranks this will produce an error.

Converting the output

OPENRADIOSS has three types of output. The output files are not directly readable
by any standard free tool. Therefore, it is required to compile the converters for these
files. OPENRADIOSS has three types of outputs. The first type is *.H3D files. In
general, use of this file type requires the use of HYPERVIEW. Because of this the
focus of this report is not on using this file type because it requires a commercial
license. Instead, the focus is on the ANIM files or *A* files. *.H3D and ANIM files
contain the same information, only the ANIM files can be converted to *.vTK files,
which can be opened with PARAVIEW. In order, to get the ANIM to *.vTK converter,
go to TOOLS/ANIM_TO_VTK/LINUX64 and execute

./ build .bash

This creates the ANIM converter in your EXEC directory named ANIM_TO_VTK_LINUX64_GF.

Now the ANIM files can be converted with:

./ dir/exec/anim_to_vtk_linux64_gf filenameAnumber >
filename_number. vtk

The third type of output are TH files or *T™ files. These files store a smaller number of
elements at a much higher frequency than the ANIM and *.H3D files. The time files
are therefore ideal if you want to know in detail what is happening to many elements.
The time files can be converted into a *.csV file. To get the TH files to *.CcSV converter
go to TOOLS/TH_TO_CSV/LINUX64 and execute

./ build .bash

This creates the TH files to *.csVv converter in your EXEC directory named TH_TO_CSV-
_LINUX64_GF. Converting TH files can be done as:

./ dir/exec/th_to_csv_linux64_gf filenameTO01

Wrapper functions and aliases

This section focuses on wrapper functions and aliases in your rc files that will make
working with OPENRADIOSS easier and more efficient.

Wrappers for converters

It is possible to create aliases in your .bashrc to quickly call the converter routines,
this can be done as:
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alias anim_to_vtk = /dir/exec/anim_to_vtk_linux64_gf
alias th_to_csv =/dir/exec/th_to_csv_linux64_gf

However, using these commands is still cumbersome if you want to convert many
files at the same time. To prevent this, you can combine converting to *.vTK files into
a single function as:

anim_to_vtk =’/dir/to/OpenRadioss/exec/anim_to_vtk_linux64_gf’
anim_to_vtk_all () {
number_of_files =$(Is -IR $1A« | wc -1I)
maximum_index =$(( number_of_files ))
start_index =1
for (( i= $start_index ; i<= $maximum_index ; i++ ))
do
printf —v output_i "%03d" $i
$anim_to_vtk $1A$output_i > $1_Soutput_i .vtk
done

}

Using this function, you can convert all ANIM files in one go as:

anim_to_vtk_all filename

where FILENAME is the filename without the extension. The next step is combining
this in a single function such that the TH files are also converted. This can be done
by adding:

alias th_to_csv= /dir/to/OpenRadioss/exec/th_to_csv_linux64_gf
convert_radioss () {

anim_to_ vtk _all $1

th_to_csv $1T01
}

Now, files can be converted as

convert_radioss filename

Overall, to combine all the functionality in your .BASHRC you can simply place the
following text in it:

# ANIM converter
alias anim_to_vtk = /dir/exec/anim_to_vtk_linux64_gf

anim_to_vtk =’/dir/to/OpenRadioss/exec/anim_to_vtk_linux64_gf’

anim_to_vtk_all () {

number_of_files =$(Is -IR $1A« | wc —I)
maximum_index =$(( number_of_files ))
start_index =1
for (( i= $start_index ; i<= $maximum_index ; i++ ))
do

printf —-v output_i "%03d" i

$anim_to_vtk $1AS$output_i > $1_Soutput_i .vtk
done
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}

# Converter for all file types
alias th_to_csv= /dir/to/OpenRadioss/exec/th_to_csv_linux64_gf

th_to_csv= ’/dir/to/OpenRadioss/exec/th_to_csv_linux64_gf’

convert_radioss () {
anim_to_vtk_all $1
th_to_csv $1T01

}

SMP version

For running all the processes of OPENRADIOSS in one go, it is most practically to
create a function, this can be done by adding:

radioss () {
radioss_starter —i $1_0000.rad
radioss_engine —i $1_0001.rad -nt $2
anim_to_vtk_all $1
th_to_csv $1T01

}

Now you can run OPENRADIOSS on 4 cores as:

radioss filename 4

MPI version
For MPI the code is slightly different, given by:

radioss_mpi () {
export OMP_NUM THREADS = $2
radioss_starter -np $3 —-i $1_0000.rad
mpirun -np $3 —-map -by socket:PE=$2 —-bind -to core /dir/to
/exec/engine_linux64_intel_impi —-i $1_0001.rad
anim_to_vtk_all $1
th_to_csv $1T01
}

Now you can run radios on 16 cores with 8 MPI ranks and 2 threads per MPI rank as:

radioss_mpi filename 2 8

The recommendation for the MPI version is to use only a single thread per MPI rank.

.BASHRC file

Based on the different components above the general recommendation is to add the
following lines of code to the .BASHRC file of users:

# aliases to radioss
radioss_starter = /dir/to/exec/starter_linux64_gf
radioss_engine = /dir/to/exec/engine_linux64_intel
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# ANIM converter
alias anim_to_vtk = /dir/exec/anim_to_vtk_linux64_gf

anim_to_vtk =’/dir/to/OpenRadioss/exec/anim_to_vtk_linux64_gf’

anim_to_vtk_all () {

number_of_files =$(Is -IR $1A« | wc -1I)
maximum_index =$(( number_of_files ))
start_index =1
for (( i= $start_index ; i<= $maximum_index ; i++ ))
do

printf —-v output_i "%03d" $i

$anim_to_vtk $1A$output_i > $1_Soutput_i .vtk
done

}

# Converter for all file types
alias th_to_csv= /dir/to/OpenRadioss/exec/th_to_csv_linux64_gf

th_to_csv= ’/dir/to/OpenRadioss/exec/th_to_csv_linux64_gf’

convert_radioss () {
anim_to_ vtk _all $1
th_to_csv $1T01

}

# Define the radioss command

radioss () {
radioss_starter —i $1_0000.rad
radioss_engine —i $1_0001.rad -nt $2
anim_to_vtk_all $1
th_to_csv $1T01

}

# Define the radioss MPI command
radioss_mpi () {
export OMP_NUM THREADS = $2
radioss_starter —np $3 —-i $1_0000.rad
mpirun -np $3 —-map -by socket:PE=$2 —-bind -to core /dir/to
/exec/engine_linux64_intel_impi —-i $1_0001.rad
anim_to_vtk_all $1
th_to_csv $1T01
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5.1

Computational performance

This chapter focuses on the performance of OPENRADIOSS and how well it scales
with number of CPUs and number of resolution elements, a set of benchmark sim-
ulations are performed to assess the computational performance of OPENRADIOSS.
For the performance analysis the cantilever beam simulation presented in Chapter B
is taken as a benchmark.

Performance of weak scaling test

Here we perform a weak scaling test, here the problem is not kept identical, but the
problem has more resolution elements. For our cantilever benchmark, this means that
the resolution elements are smaller and correspondingly, the time steps are smaller.
This means that the problem is harder to solve the more resolution elements are
present. The simulations at different resolutions are all performed on the same com-
puting nodes. The problem is not identical, therefore it is called a weak scaling test
instead of a strong scaling test (the definition of Pofter ef all, P014, is followed). De-
spite this it will give a good idea of how well the performance of the code is when
used on bigger problems.

When weak scaling a problem, this means that the time step is decreased by the
same factor as the resolution because At «x 1/Ax, therefore the number of calcu-
lations scales as 1/Az. Additionally, for beam elements when increasing the spatial
resolution, this also means that the amount of resolution elements increases with the
same amount and depends on « 1/Ax. For shell elements the situation is different
because there are also new elements appearing at the sides of shell elements and
therefore the dependence on the resolution is o 1/Ax?. For brick elements (3D) the
dependence scales even stronger with the resolution as « 1/Ax? (brick elements are
not considered in this reportm). This means the following scaling relations are found
for beam, shell, and brick elements:

1

twallclock,beam X @7 (5-1)
1

t - 5.2

wallclock,shell X Azd ( )
1

twallclock,brick < Azt (5.3)

However, this is not the whole story, to link this to the number of resolution elements,
this needs to be connected with the number of resolution elements. In the case of
beam, shell, and brick elements the scaling with resolution mass goes as Mes x Az,
Mies o< A2, and M,es oc Az® respectively. Furthermore, M,es directly correlates with
the amount of resolution elements as N « 1/Ms. This means that for the beam,

1 Brick elements are not common in FEM models of ships and submarines, these consist mainly out of
shell and beam elements. Sometimes engines or big structures are modelled as brick elements, but these
are often not important for the structural response.
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shell, and brick elements we have:

1
twallclock,beam O< x N2, (5.4)
wallclock,beam M2,
1
twallclock,shell X 372 X N3/2, (5.5)
res
1
twallclock,brick X a3 ox N4/3, (5.6)

res

This result might first seem counter intuitive but keep in mind that in the case of N
elements the resolution size for beam elements is much smaller than for shell and
brick. This is because the refinement is done in fewer dimensions. So what does it
mean for models if they are below equations (B4)-(BH8)? This means that the wall
clock time is not dominated by solving the equations but rather is dominated by the
overhead? of running OPENRADIOSS. If the scaling is steeper than equations (B4)-
(B8), it means that the implementation of the physics can be made more efficient.

—@— Beam elements —@— Beam elements
Shell elements Shell elements
10°4 10
o T 4 4
= 10t 4 Z 10
= e
) Bl
2 =R
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= =
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Figure 5.1 Different measures of the computational performance of OPENRADIOSS for simulations with
shells (orange) and beams (blue). We find that the performance of the shell elements follows
quite closely a scaling of < IV, which is weaker than theoretically would be expected. Similarly,
the beam elements scale close to o< N for low number of elements while for larger number of
elements the scaling approaches more oc N2 which is as expected.

In Fig. B we show how well OPENRADIOSS scales its wall clock time as a function
of resolution elements. The two highest resolution shell element simulations were
performed on 4 and 6 cores respectively and the wall clock time was corrected for
this. For beam elements the scaling first is linearly, less steep than theoretically

2Overhead is the extra indirect computation time required to perform the calculation that do not include
the main computation.

3Corrected as in including the wall clock time of all 4 or 6 cores.
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5.2

expected. At around 10? resolution elements it starts to scale extremely close to
NZ2. This indicates that the scaling of beam elements behaves as expected. For
shell elements the dependence on the number of resolution elements scales almost
linearly, while it is expected to scale as N3/2. This indicates that the scaling of shell
elements scales a lot less strong than expected, even at 10* resolution elements the
scaling is still weak with the number of resolution elements. This might be indicating
that the simulation time is dominated by something else than the calculation of the
EoM of the shell elements.

Performance of strong scaling test (SMP)

This section focuses more on strong scaling tests, following Poffer ef all (2017) and
Schaller ef all (?0186). A strong scaling test is calculating a fixed problem with a dif-
ferent number of CPUs or threads. This section focuses on multiprocessing using
shared-memory multiprocessing (SMP). This means that the same memory is ac-
cessed by multiple threads. To get an impression of the performance, simulations
with different number of threads are compared to each other. The GNU and intel
compilers are both investigated. The highest resolution simulation of the cantilever
beam is used (see chapter B) for a reduced time such that the simulation on one core
can be completed within 2 hours. In terms of computing time there are two important
times, firstly the wall clock time is the time it takes the simulation to run from the start
time to the end time. The wall clock time therefore is the total time that is measured
with a stopwatch while waiting for the simulation to complete@. The second time is the
CPU time, this is the total amount of time CPUs have used to perform the simulation.
This means that if multiple CPU work 100 per cent of the time for a certain wall clock
time, the total CPU time is the amount of cores times the wall clock time. OPENRA-
DIOSS does not explicitly log down the amount of CPU time that is used, because
of this the ideal CPU time is used which is the wall clock time times the number of
threads used. Fig. B2 shows the total CPU time and wall clock time as a function of
number of CPU cores. The dotted line shows the ideal scaling. Fig. B2 shows that up
to 4 cores the scaling is nearly perfect, for more cores the wall clock time is flattening,
this indicates that the extra computational resources (i.e. extra cores/threads) are not
performing more work in the same amount of times but rather the work to parallise
the problem becomes the dominant work performed by the program. This implies that
using 16 or more threads for this problem is not efficient. Similarly, the right shows
that up to 4 cores the total CPU time is almost identical, this indicates that the code
scales very well up to this point. Beyond this the code takes progressively more CPU
time. When the performance between the Intel and GNU compiler is checked it can
be noted that they are almost performing the same, GNU compiler is a bit slower than
the Intel compiler, but the difference is very small and sometimes the GNU compiler
is actually quicker.

The results of Fig. B2 are very focused on the test case of the cantilever beam. To
make the test applicable to more general problems, Fig. B3 shows the amount of
shell elements per core. Based on this 4 x 10 shell elements per core still give
excellent convergence, furthermore, using 10 or less shell elements per core does
not improve the performance.

To improve the performance of compiled code it is possible to use compilation flags
that optimise certain parts of the code. The only obvious drawback is that simulations

4OPEN RADIOSS measures this every time a simulation is performed.
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Figure 5.2 Comparison of the wall clock time (left) and CPU time (right) for the strong scaling test using
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the GNU and Intel compiler (different colours). The dotted line indicates the ideal scaling of
the problem. We find that the code scales very well up to 4 cores for the cantilever beam
problem.
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Figure 5.3 Comparison of the wall clock time (left) and CPU time (right) for the strong scaling test using

the GNU and Intel compiler (different colours), instead of number of CPU cores, the x-axis
shows the number of shell elements per core. The dotted line indicates the ideal scaling of
the problem. The problem scales very well up to around 4 x 103 shell elements per core.

with more improved compilation flags take longer to compile. Common flags are (T
Boston University, P023; Intel developers, P023):

-02, for more extensive optimisation.

-08, more aggressive optimisation with longer compilation times, especially
recommended when the code contains loops that involve intensive floating-point
calculations.

-OFAST, same as -O3 with -NO-PREC-DIV and -FP-MODEL=FAST 2B The first
extra compilation flag allows divisions to be calculated as multiplications with
the reciprocals and the second flag optimises the floating-point data more.
-XHOST, optimises the code for use on the specific type of CPU that is used.
-IPO Optimisation that checks if during the compilation more common functions
can be found such that the code can be optimised even more.

-STATIC can improve the start time and makes sure the code runs in limited
environments because it contains all the necessary libraries. The libraries are
not dynamically linked in this case.

-FAST, this is a shortcut for -OFAST -IPO -STATIC -XHOST.

5Normally, you want to avoid using -FP-MODEL=FAST 2 because it will change the accuracy and round-

ing off of numbers, this can cause many problems in libraries like BLAS or LAPACK.
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5.3

Of all these compiler flags, the -1PO flag does not work with OPENRADIOSS, therefore,
also the -FAST flag does not work. The other flags, they all work out of the box
with OPENRADIOSS. Fig. B4 shows the CPU time for the different compiler options.
This shows that -OFAST reduces the CPU time by a bit more than 10 per cent while
the inclusion of -XHOST results in a performance improvement of 25 per cent. Not
using the -AXSSE3,COMMON-AVX512 flag results in a slightly better performance
of another 5 per cent. Combining these changes results almost in a reduction with a
factor of two in the total computing time.

4 % 10*]
—@— GCC compiler
Intel compiler
3 % 10% Intel compiler (-Ofast)
Intel compiler (-Ofast -xHost -static)
Intel compiler (-Ofast -xHost -static -noax)
"""" twallclock X Ncores
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Figure 5.4 Comparison of the CPU time for the strong scaling test using the GNU and Intel compiler
(different colours) and compiler flags (line styles) as a function of number of CPU cores. The
black dotted line indicates the ideal scaling of the problem. Using different compilation flags
for OPENRADIOSS improves the speed with a factor of two.

Performance of strong scaling test (MPP)

§ B2 focused on the SMP version of OPENRADIOSS, here the focus is on the massive
parallel processing (MPP) version in combination with SMP. This version is recom-
mended to use because it is the fastest version (personal communication Lequiniou,
2023). The implementation of MPP is based on the messaging passing interface
(MPI). MPI is a standardised communication protocol used in parallel computing to
enable communication and coordination between processes in a distributed system
over multiple non-uniform memory access (NUMA)E regions or nodes that is used to
implement MPP. MPI allows for efficient data exchange and synchronisations among
multiple NUMA regions or nodes. In the case of using MPl it is also possible to use a
combination of MPI and openMP. This means that each node uses multithreading on
multiple cores at the same time. It depends on the application itself what combination

6For information see fhisTink,
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of MPI vs SMP is most efficient. In general, for ideal programs it is fastest to use one
MPI rank per NUMA region and use OpenMP for multithreading on the cores in the
NUMA region. This is expected to be fastest because it reduces the MPl communi-
cation to only different NUMA regions and nodes and has the lowest memory usage
inside a NUMA region because elements are not duplicated in memorym.

Additionally, an investigation of the different compiler flags is done similarly to § B2.
The compiler flags are systematically changed to investigate if the compiler flags have
impact on the performance of the code.

Fig. B8 shows the computing time of the cantilever beam benchmark as a function
of number of cores. The different line styles indicate the number of threads per MPI
rank and the colour indicates the compiler flags, all as a function of CPU cores. The
lowest line of the bottom figure corresponds to 1 thread per MPI rank, this means that
when 16 or 32 cores are used there are 16 or 32 MPI ranks running, respectively.
Some important conclusions from this are as follows:

*  Running with as many MPI ranks as possible results in the shortest simulation
time. However, this conclusion might not hold for 32 cores (every time), but
this might be related to the fact that the problem is too small for 32 cores or
unknown to us, someone else used the computer cluster while performing these
simulations.

*  When using MPI the compiler flags have barely an impact on the computing
time.

The results are interesting, but the result is surprising that changing the compiler flags
in this case does not influence the performance.

Bini Teite ef all (P021) investigated multiprocessing of OPENRADIOSS on many cores
for a large model. Fig. B shows the result of a strong scaling test for a large ditching
model. Their ditching model includes a FEM model for an aeroplane, a SPH mesh for
the water and Lagrangian solid elements (brick elements) for the water mesh that is
not close to the crashing plane. BiniTeite ef all (?021) shows that multi-domain simu-
lations with different time stepping sizes per domain region can reduce the computing
time by a factor of 3 for large simulations. They also show that the mono-domain sim-
ulation shows almost perfect scaling up to 150 cores and only at almost 300 cores
performs slightly less good but is still only 12 per cent off ideal scaling. The scaling of
the multi-domain simulation is less close to ideal scaling because there is most likely
more overhead. Despite this weaker scaling, the code takes a much shorter time
to complete for the multi-domain simulation. Note that performing a multi-domain
simulation requires a larger amount of preparations by the user because the multi-
domain needs to be constructed correctly and this often requires verification that the
used multi-domain approach works. For large simulations, the multi-domain approach
might be worth the effort given that it also reduces the computation time. It is noted
that within TNO-NOS, currently also 3DCAV simulations are performed with a multi-
domain approach for the fluid mesh using EXMESH (see Muifman, P0273).

High-performance computing options

In this section some advanced options of OPENRADIOSS are discussed that are of
interest at the TNO-NOS Linux servers and when using the queueing system on the
high-performance computing cluster of TNO.

7For MPI communication neighbouring elements that are around the region that is calculated on an
MPI rank are required to be in memory for each MPI rank, this means that all the border elements are
duplicated in memory.
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Figure 5.5 Comparison of the wall clock time (top) and CPU time (bottom) as a function of number of
cores for the strong scaling test using the different Intel compiler flags (different colours) and
different number of MPI ranks (different line styles). Running with as many MPI ranks as
possible gives the shortest runtime (lowest line in the bottom), using fewer MPI ranks increases
the total CPU time (e.g. top dashed transparent line). The compiler flags have limited effect
on the performance.
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Figure 5.6 Strong scaling performance comparison for a large dishing model — mono-domain (blue) vs
multi-domain (yellow). Ideal scaling is shown by the black dot-dashed line a) Linear speed up
versus number of cores. b) Run time versus number of cores. Multiprocessing is more effi-
cient for mono-domain simulations, multi-domain simulations still reduce the computing time
significantly. Multi-domain simulations are also much more computational efficient because
they take only a third of the time of a mono-domain simulation. Figure taken from Biniieife
Bfall (POZ7).

Control File

The control file is an optional file that can be created while a run is ongoing. The
control file is named as *.CFL with the same prefix as the parameter file for the engine
(see AItair, P023, for details). This file can specify to print more information or to make
more frequent outputs of the ongoing simulation. The main reasons to use a control
file are:

+  Stop the simulation directly, or at a specified time or cycle number.

+  Create an animation directly, or from a specified time or cycle number.

*  Retrieve more information of the current simulation like the simulation time, time
step, cycle, energy information and estimated remaining time.

In general, when the control file is created OPENRADIOSS will read the file as quickly
as possible and execute the instructions in the file. The control file has two options
to stop the simulation, the first is /KILL which stops the simulation and /STOP which
stops the program and creates a restart file. In general, it is preferred to use /STOP
because it creates a restart file. The control file is directly executed, except if ei-
ther the /TIME/TIMEVALUE or /CYCLE/CYCLENUMBER are written in the file with a
corresponding time value or cycle number when to terminate. Other comments are
/ANIM, /H3D, /RFILE, /INFO, /CHKPT which all create extra information during the
termination, namely, ANIM or H3D files, restart file, extra information, and a check
data file.

Multiple engine files

It is possible to have multiple engine files that modify the way in which the solution
of the simulation is obtained (Alfaii, 2Z023). Example of variations are for example
simulation time, output files, time stepping conditions or other numerical values. It
is also possible to use different damping strengths or remove parts of the boundary
conditions all while using the same starter file.

Checkpoint file

OPENRADIOSS allows the writing of a checkpoint file. This is a file that can be used to
continue running the used simulation (Aair, 2023). In OPENRADIOSS checkpoint files
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need to be created on the spot and currently no automatic way of creating checkpoint
files is done. Commonly used HPC codes often have checkpoint files that can be
specified in the input file itself, e.g. Gadget (Springel, 2Z005) or Swift (Schaller et af],
2073). This is extremely useful for a various of reasons. Firstly, if a code problem is
found, the problem can always be simulated from the last checkpoint which typically
are spanned between 3 to 6 hours in computing time. Secondly, using HPC facilities
can be done automatically because the checkpoint files are automatically created,
and this guarantees that simulations can be restarted with a resubmission script.

Currently, check-pointed simulations can be rerun using:

/dir/to/engine/engine_linux64_intel —-np 4 -checkpoint
runname_0000.rad

Overall, now it is not possible to use the full functionality of checkpoint files to per-
form large simulations. Because checkpoint files need to be created on demand and
cannot be created in an automatic way.
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6 Advantages and Disadvantages of OPENRADIOSS

In this chapter we summarise the different advantages and disadvantages of using
OPENRADIOSS as compared to commercial explicit solvers like LS-DYNA.

6.1 Advantages

*  Open source:

OPENRADIOSS is open-source software under the GNU Affero_(General Public

License (GNU AGPL) license. Using Open-source software has a large amount

of advantages compared to commercial packages like LS-DYNA, the following

are some of the advantages:
— There are no license costs for usage of OPENRADIOSS. This implies
that there is no limit for the number of simulations performed with OPEN-
RADIOSS, therefore, with OPENRADIOSS larger and/or more simulations
can be performed as compared to LS-DYNA. This implies more detailed
and/or more scenarios can be investigated in parallel. This is contrary to
LS-DYNA, for which the license costs have increased and might increase
more in the future.
—  Access to the source code:
= Itbecomes much easier to keep libraries developed by TNO up to date
(e.g. 3DcAv, SIT, etc.)

= It becomes possible to get access to more variables and with mod-
ifications of the code it is even possible to get access to almost all
variables.

= It becomes possible to solve small bugs and propose code changes
for this.

= |t is possible to collaborate with universities that want to develop ma-
terial routines or other features in OPENRADIOSS.
—  Access to the latest developments of OPENRADIOSS:
= The most recent version of OPENRADIOSS is available on GitHub and
allows us to directly access a new version of the code once a bug has
been solved.

= Transparency of current bugs and problems in the code.

= Transparency of what is currently being developed for future code re-
leases of OPENRADIOSS.

— It becomes possible to optimise the code for the CPUs of our servers, this
can save a factor of 2 to 3 in the computing time.

+  The support of OPENRADIOSS is outstanding on the GitHub and over e-mail.
Contrary, the support of LS-DYNA has decreased significantly after Ansys took
over LS-DYNA. Note that for OPENRADIOSS even small questions related to
unclear documentation are quickly answered by the support of OPENRADIOSS
or GitHub.

+  There is an open-source community that works with OPENRADIOSS and that
helps improve OPENRADIOSS faster than Altair can do on its own.

+  For some functionality OPENRADIOSS has more general and flexible structure
that allows the user to modify more variables.

+ OPENRADIOSS is one of the few FEM packages (to our knowledge) that has an
input and output unit system. This means that in OPENRADIOSS it is possible
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to do simulations in different unit systems and correspondingly have the models
(e.g. material models) with correctly converted units. One key feature of OPEN-
RADIOSS is that there is an input unit system and an output unit system that
is set by the user, this allows the user to use an input model in ms, g and cm
and have the output in SI, without needing to convert the input file of the FEM
model.

+  OPENRADIOSS has a list of (example) problems available that allows a new user
to try problems close to what they are intending to do. We note that this list is
not complete and some problems that were published are not included. Also
recently, OPENRADIOSS added all the papers on the website that use OPEN-
RADIOSS.

6.2 Disadvantages

»  The most obvious disadvantage is that many colleagues need to learn how to
work with OPENRADIOSS, this implies that colleagues need to spend a signifi-
cant time on this.

+ The team of OPENRADIOSS recently started working in an open-source way.
They tend to approach the issue system (a ticket system on GitHub) in a bit of
an unorthodox approach. Rather than replying directly to the issue (ticket) they
quickly send an email to the reporter (person reporting the problem). Then they
try to solve the problem over email or even an online meeting. This has the
drawback that not all OpenRadioss users can be aware of the ongoing issue.
This shows clearly that they want to be engaged with the users, however, this
makes the status of ongoing problems unclear for the community of other users.
This also indirectly impacts TNO because open issues of features that we (intent
to) use do not contain (much) information of the status of ongoing problems.

+ OPENRADIOSS does not use a proper version management for their release
versions. Rather, they daily release a new version of the code and keep only 6
versions of the code available for download (last 6 working days). This is highly
undesirable because it is unclear when certain features are implemented into
the code. Furthermore, it is harder to keep track of different versions of the
code. Also having a release of the code of the last 6 days seems unnecessary
because the last version can always be downloaded with git. Rather it would
be more beneficial for the users to have version releases when the number of
features implemented / bugs fixed exceeds a certain number. This also allows
the releases to include information about the new features and gives a much
clearer version management. We note that OPENRADIOSS is exploring vari-
ous strategies for improving version management, and their current approach
involves researching different options to determine which will be most effective.
Therefore, we expect this disadvantage to be resolved in the near future.

»  OPENRADIOSS lacks some of the functionality of LS-DYNA. A good example of
this is the shell elements. In OPENRADIOSS there are just three types of shell
elements for shells with four nodes® while in LS-DYNA there is much more
different shell elements. It is noted that the Belyischko and Tsay (1983) shell
element that TNO-NOS uses extensively is present in both OPENRADIOSS and
LS-DYNA. Therefore, we do not expect this to be a problem for TNO-NOS. The
lack of implementation of some features might extend to other functionality that
is desired for a FEM package. Note that the Zeng and Combescurg (1998) shell

1'rhree types of shell elements and for one type there are four different penalisation methods for the
hourglass.
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The following disadvantages of OPENRADIOSS are only OPENRADIOSS specific and
have no equivalent in for example LS-DYNA. Because OPENRADIOSS is open source
a detailed assessment can be made of some OPENRADIOSS specific disadvantages.

+  The quality of the code is not always good. For example, different pieces of
code lack proper naming of variables. For example, in some pieces of code the
variables names are e.g. called, A1, A2, A3, .. and B1, B2. In these cases,
it is possible to determine what exactly is happening but it requires more work
than in the case of a properly documented code. Furthermore, large parts of
the code are not commented at all and because of that it is unclear what is
happening to the specific variables or what is happening in the different files.
Also, the names of the different FORTRAN files have obscure names which do
not make the context of the different files directly clear. Some recent effort
has been made in using the free FORTRAN9O format for all new developments.
However, not much effort is put into using a clear naming convention for OPEN-
RADIOSS. We expect that when this is improved, contributing to OPENRADIOSS

will be more easy.
. OPENRADIOSS made the choice to use IFX instead of IFORT.

IFX is a next-

generation compiler developed by INTEL. However, it contains still bugs and it
does not support all the features of FORTRAN. Because of this INTEL itself does
not recommend to use IFX but rather says that it still needs to convince the
FORTRAN community that IFX is worth it (Greend, P022). Furthermore, IFX still
performs less well than IFORT and this might require a couple of more years of
work on INTEL’s side (Green, P023; Sai, 2021). Furthermore, some instructions
for MPI are not implemented in IFX and this means slower performance over
MPI as compared to using IFORT (IFX developers, P023). Fixing these issues is

work that needs to be resolved by INTEL and might take several years.

*  Running the code with MPI and OpenMP results in the conclusion that running
with as much MPI ranks as possible gives the best computational performance.
This is not what normally is the case given that using MPI causes overhead.
MPI causes overhead because it requires the different MPI ranks to commu-
nicate to each other, this makes the code slower. Additionally, information of
neighbouring elements needs to be send to each other, this means that in an
ideal program running with as many MPI ranks as possible is not the fastest
solution. Given that for OPENRADIOSS this is is the fastest solution implies that

there is some possible performance in the OpenMP part of the code.

+  Parts of the manual are unclear, incomplete, or outdated. The manual has for
example inconsistent use of the letter ¢ which is used in the same equation
both for time and thickness of the shell elements. In the theory manual there
are sometimes steps not shown which confuse the reader. Some parts are also
outdated like the best options to use for multiprocessing are completely different

from what the developers of OPENRADIOSS recommend.

+ OPENRADIOSS does not use a large set of verification problems using continu-
ous integration and continuous deployment (CI/CD). CI/CD allows developers of
the code to test the functionality of the program while developing the code. The
main focus of the CI/CD of OPENRADIOSS is on checking if the code still com-
piles on Linux and Windows rather than also verifying if the solution remains

correct.
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V4

7.1

Conclusions and Recommendations

For shell and beam elements OPENRADIOSS works well. Good performances for
spring elements are found, but complicated springs need additional investigation. It
is recommended that TNO-NOS continues investigating the applicability of OPENRA-
DIOSS for use as an explicit finite element solver. In § [ we discuss the conclusions
in detail, §§ [Z2 and [Z3 discuss the recommendations for TNO and Altair.

Conclusions

Chapter 0 gives a short overview of the motivation of investigating OPENRADIOSS as
a replacement for LS-DYNA. This is followed by a historical perspective on OPEN-
RADIOSS, recent comparisons of OPENRADIOSS and LS-DYNA, and a summary of
recent developments and use cases of OPENRADIOSS in the literature. We empha-
sise that the recent developments and use cases are publicly available.

Chapter B focuses on verifying shell and beam elements. A benchmark test following
a cantilever beam is constructed. The frequency and equilibrium conditions for a can-
tilever beam are derived and used for a comparison with shell and beam elements
in OPENRADIOSS. The different shell and beam formulations of OPENRADIOSS are
explained and the strengths and weaknesses of the different shell element formula-
tions are explained. It is found that the Belytschko and Tsay (1983) formulation does
not create converging results and match the analytical solution of the cantilever beam
within 7 per cent (depending on the resolution less, down to less than 2 per cent,
but without convergence). The Bafoz and Dhafi (T990) Q4~24 shell element also
has trouble reproducing the correct solution due to locking but clearly shows conver-
gence to a slightly wrong solution. The Zeng and Combescure (1T998) shell elements
are found to produce the best behaviour and agree well (within 5 per cent) with the
analytical solution of the cantilever beam. For stability of time integration it is recom-
mended to use a slightly more strict CELl condition of Ccry, < 0.75 than the standard
in OPENRADIOSS which corresponds to Ccrr, = 0.9 when using a regular mesh. We
expect that Copr, = 0.9 is fine for an irregular mesh where the smallest time steps are
caused by a few small resolution elements.

Chapter B constructs a simple spring model which consists out of two nodes and a
single spring element with a mass, a force is placed on one of the nodes such that the
spring starts oscillating, or a constant force is imposed while measuring the required
force to extend the spring. Using this model, the spring models of OPENRADIOSS
is tested for ideal and non-ideal springs. For ideal springs the force-displacement
relation and the frequency of the oscillation are as expected. For non-linear springs
with monotonically increasing spring energies the theoretical frequency is derived and
used to compare with the numerical simulations, however, not a one-to-one compari-
son was made, which caused a discrepancy between the theory and simulation. The
force-displacement relation is reproduced for arbitrary input functions, even functions
that show a decreasing force as the spring is extended can be reduced perfecily.

Chapter 8 explains how to compile OPENRADIOSS on the servers used by TNO NOS,
this is done for both the shared-memory multiprocessing (SMP) and message pass-
ing interface (MPI) version of OPENRADIOSS. A recommendation of functions to add

1This is because we imposed a force on the spring but this caused the spring to oscillate in only one
side of the potential, this means that we did not a one-to-one comparison. The comparison should be
performed on an already extended spring that oscillates instead of using a simulation of a non-extended
spring with an imposed force
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7.2

7.3

to the .BASHRC file for OPENRADIOSS users is given such that OPENRADIOSS sim-
ulations can be performed as efficiently as possible. This way simulations can be
performed and converted in a single command.

Chapter B investigates strong and weak scaling tests for OPENRADIOSS. The weak
scaling test indicates that the code scales very well for larger number of shell and
beam elements. The strong scaling test on the SMP version of OPENRADIOSS indi-
cates that 4 x 10® elements per core leads to excellent scaling while more elements
per core slows down the code more. Furthermore, different compiler flags are com-
pared and using a compiler flag that uses -XHOST and/or -OFAST results in a better
speed performance of around a factor of two. When using the MPI version of OPEN-
RADIOSS the results are different, the compiler flags do not seem to influence the
total CPU time much. For the MPI version of OPENRADIOSS the shortest simulation
time can be achieved by using as many MPI ranks as possible and only use a single
thread per MPI rank.

Chapter B summarises the advantages and disadvantages of OPENRADIOSS. Over-
all, the advantages of OPENRADIOSS outweight the disadvantages.

Recommendations for TNO

It is recommended that TNO-NOS continuous investigating the applicability of OPEN-
RADIOSS for use as an explicit finite element solver. For shell and beam elements
OPENRADIOSS has been working well. Recommendations for future improvements
are:

» Investigate further non-linear spring elements focused on their frequency.

+ Investigate how well complicated spring elements with 6 DOF perform, also
when subjected to large rotations.

+ Investigate how well brick elements perform.

* Investigate how a user subroutine can be constructed in OPENRADIOSS.

+ Investigate why the current compilation flags do not improve the performance of
the MPP version of OPENRADIOSS. It should be possible to optimise OPENRA-
DIOSS more and obtain a performance improvement of a factor of two.

* A set of benchmark problems should be created for 3DCAV that can be used to
investigate how well LS-DYNA and OPENRADIOSS are reproducing the correct
solution.

»  Couple 3bcAv with OPENRADIOSS to perform UNDEX simulations with OPEN-
RADIOSS.

To run and allow the conversion of LS-DYNA models to OPENRADIOSS models, it is
recommended to make an internal converter for TNO.

Given the large potential of using OPENRADIOSS in TNO-NOS, we recommend to
starting a local collaboration network on OPENRADIOSS inside the Netherlands. This
OPENRADIOSS-NL collaboration can be tremendously beneficial for the expansion
of physics inside OPENRADIOSS and this can lead to PhD projects in collaboration
within this OPENRADIOSS-NL collaboration.

Recommendations for Altair

Working in collaboration with Altair has been pleasant and productive. Besides the
following recommendations we would like to stress that Altair has put a lot of effort in
making OPENRADIOSS open source and that we can see that this is clearly helping
the community a lot. Despite this, there are always points that can be improved and
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we hope these can be included in the code. The recommendations for Altair are the
following:

+  Currently, OPENRADIOSS uses CI/CD to test if OPENRADIOSS compiles in 3
different situations for both the starter and engine in the case the codes are
compiled with single precision, double precision or with openMPI. The develop-
ers of OPENRADIOSS started implementing another test named QA. Itis unclear
what this is but, the recommendation for OPENRADIOSS is to extend the CI/CD
interface in a few different aspects:

— Extend the compilation testing of the engine to including testing that the
code compiles using the INTEL compiler.

— Extend the CI/CD to include tests of simple test problems like the sim-
ulation of shell element tests with different shell elements such that the
solution remains consistent. Similar thing can be done for testing beam
elements and different spring elements.

—  Extend the CI/CD to include big test cases that are run for a specified
number of time steps, for example 100- or 1000-time steps. Using this the
code is not allowed to crash or cause a segmentation fault.

—  Extend the CI/CD to include unit tests for commonly used functions.

Including these suggestions in OPENRADIOSS is expected to increase the trust-
worthiness of the code, make the code development easier, and will help pre-
vent the accidental creation of bugs that could have been prevented.

»  Because current variable names are often obscure, it is recommended to use
the snake case naming convention for all variables and file names. Additionally,
we also recommend that code that is implemented is properly documented and
is not accepted if it is not well documented. This will make the code more
readable and accessable for new users.

»  The current file format of the time file outputs is in a .cSV file (comma-separated
values). This is far from ideal because it is hard to read .CSV files because they
need to be read in completely. This is because .CcSV files are not structured.
Instead it is recommended for Altair to implement the time file outputs in the
HDFS5 file format (HDF groug, P024). The main advantage of HDF5 is that files
become structured, and it is not necessary to read in the complete file but only
the data that is required. Secondly, it is straightforward to compress HDF5 files
and therefore reduce the required storage space for HDF5 files. Fig. 1 shows
the schematic structure of a possible future HDF5 format for the OPENRADIOSS
time files. The HDF5 file is divided in different groups for the different element
formulations and the nodes. For the different element formulations variables
like stress and strain can be logged. The nodes can log variables like displace-
ment, position, velocity, acceleration, and others. Each variable has two main
attributes (atr.); firstly, the unit exponents for mass, time, and length such that in
an automatic way the unit of each variable can be determined. Secondly, a short
description for each variable is present such that users of the output understand
what the variable represent. Similarly, there is a group called time which stores
the time and its corresponding unit. An option is to make a link between the
/TIME group to each variable group, such that the time is also a subgroup in
each group. Storing the time centrally, also makes it possible to use different
time stepping sizes for logging the data of nodes and shell for example. Two
other important groups are the units, which stores the conversion between the
internal units and the Sl unit system. This will allow to read the HDF5 file and at
the same time assign units to the variables (e.g. similar to Borrow and Borrisou,
P020). Secondly, a group called /INFO will be used to store information about
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Figure 7.1 Schematic view of envisioned future time file structure for OPENRADIOSS using HDF5 files.
Each HDFS5 file has groups for the different element types and the nodes, which correspond-
ingly have different subgroups with the different variables of that element type that are logged.
These variables each have at least two attributes (Atr.), its unit exponents for mass, time, and
length. Secondly, a short description of what the variable is. Lastly, the data is stored in the
group. A separate group is present for the time. Also, a group is present for the units that are
used based on the Sl system and lastly an extra group is present for information about the
simulation like the simulation itself, version of the software or other details.

the simulation itself and the version of OPENRADIOSS that was used.

More extensions for this format can be added like a separate group for energies,
like the internal energy, contact energy, etc. such that energies can be easily
accessed. Also adding groups for rigid bodies is an option.

+ ltis recommended to include the documentation of RADIOSS in OPENRADIOSS
and require merge request to also update the different sections/chapters of the
documentation of OPENRADIOSS. This will make the documentation for the
users of OPENRADIOSS more up to date and will improve the quality of the
documentation for the users of RADIOSS because the manual is updated at the
same time that the merge request is done. This might require an initial big effort
because if the manual is not written in a text format like IKTEX it might require
initially a lot of work. However, in the long run having the manual in the RADIOSS
repository will significantly strengthen the code.

+ OPENRADIOSS should release different versions of the code that are tracking
recent changes. The use of daily releases is not considered useful for the de-
velopers because they can access the daily version using GitHub. Also, it is
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not useful that every day you download a different version of the code that is

tagged daily. This makes the releases sensitive for the introduction of bugs,

and it therefore should be avoided to daily release a version. It is recommended
that OPENRADIOSS only releases a tagged version every month? with the new
features compared to the previous version.

+ OpPENRADIOSS lacks fundamental examples. These are examples that test
the ‘fundamental’ properties of a single element formulation or material model.
These benchmark problems or tests are ideal to include in the CI/CD of OPEN-
RADIOSS. Examples of following problems are recommended to include in
OPENRADIOSS:

— The [rons and Razzaqu€ (1972) patch test (shell elements and solid ele-
ments).

—  Cantilever beam (like in this report) for both beam, shell and brick ele-
ments.

—  Cantilever beam with odd sized elements (e.g. fig. 4 of Macneal and
Harder, 1985) with trapezoidal/parallelogram shaped elements for shell
and brick elements.

—  The curved beam problem (e.g. fig. 5 of Macneal"and Harded, T985) for
beam, shell and brick elements.

—  The twisted beam problem (e.g. fig. 6 of Macneal"and Hardei, T985) for
(beam), shell and brick elements. This problem might already be in the
testing but is called ‘smoke test’.

—  The Scordelis—Lo Roof (e.g. fig. 8 of Macneal and Harder, 7985) for shell
elements.

—  The spherical shell problem (e.g. fig. 9 of Macneal and Harder, 1985) for
shell elements.

—  The thick-walled cylinder (e.g. fig. 10 of Macneal and Harded, 7985) for
brick elements.

—  The tensile test (example on OPENRADIOSS website for a single material
model) for as many material models as possible.

—  Spring-mass system tests for linear and non-linear springs (like in this re-
port).

—  Standard CFD test cases like Sedov blast, Sod (1978) shock tube, and the
Noh (T987) problem.

— Astandard test for trusses.

—  Standard tests for different contact types.

* Real case scenarios of OPENRADIOSS are sometimes hard to find, therefore
it is recommended that the publications that do use OPENRADIOSS are listed
on the website (We are happy that OPENRADIOSS has done this a few months
ago). This way people can see that OPENRADIOSS is widely used in industry
and it is easy to see the more recent developments of OPENRADIOSS as a code.
Additionally, it is recommended to include explicitly a directory of examples in
the source code, similar to codes like SWIFTSIM (Schaller et all, 2023).

+ OPENRADIOSS lacks the option to automatically create checkpoint files on de-
mand. Having the option of automatically check pointing OPENRADIOSS will
allow to do bigger simulations on HPC facilities that do not allow the code to be
run for unlimited time. Furthermore, having automatic checkpoint files will make
the code easier to debug.

2Or longer if no significant changes were made.
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A Getting started manual

For the internal flow of working with OpenRadioss a starting manual was created.
The starting manual describes the different aspects of the code that are commonly
used and gives a beginning user a good perspective on how to work with the code.
The main features in the manual that are discussed are:

*  How to get the code.

+  How to know the version that you use.

*  What are the dependencies of the code.

*  How to get all the dependencies on the TNO-NOS machines.
+  What are additional configuration options.
*  How to speed up the code.

*  How to run the code.

*  How to run an example.

*  What are the different runtime options.

*  How to convert the output.

*  How to analyse the output.
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A.2/Baa

Getting started OpenRadioss

Folkert Nobels (TNO Naval and Offshore structures)

January 29, 2024

Getting The Code

OpenRadioss contains large files that use git Ifs. Git Ifs (Git
Large File Storage) needs to be initialized as:
git 1fs install
The code is available from the GitHub repository. You can down-
load OpenRadioss by downloading it from the following location:
git clone https://github.com/OpenRadioss/OpenRadioss.

git

Keeping track of the version

The version of OpenRadioss changes rapidly, because of this
you should keep track of the current version that you use. You
can find the current version by
git log
The first line of this shows the current version that you use which
is the long combination of letters and numbers after commit.

Getting Help

Currently Folkert Nobels knowns the most about OpenRa-
dioss, so questions on how to start with OpenRadioss can be
asked to him. Specific questions can be asked online by creating
an issue on GitHub.

Dependencies
Git-LFS

Git Large File Storage is used to download the large files in
the repository.
cmake and make

Cmake version 3.20.4 and make version 4.2.1 or higher.
Perl and Python

Perl version 5.26 or higher and python 3.
Gfortran

Version 11.x or higher of gfortran is required.
used to compile the code.
IFort or IFx

For the fortran intel compilers version 2021 or higher is re-
quired (and tested).
g++, cpp and gcc

Version 11.x or higher is required.
Using version 12 of gfortran, g+, cpp and gcc

On Goldfish (openSUSE) you can use version 12 of these
software packages by including the following softlinks in your

/bin/ directory

Gfortran is

1n -s /usr/bin/gfortran-12 gfortran
1n -s /usr/bin/cpp-12 cpp
1n -s /usr/bin/g++-12 g++
1n -s /usr/bin/gcc-12 gcc

Using the intel compiler on Goldfish and Marlin
On Goldfish add:

alias intel=’source /uhome/tuitmanjt/intel/oneapi/
setvars.sh intel64’

And on Marlin add:

alias intel=’source /Applications/oneapi2023/setvars.
sh intel64’

To your rc file, and initialize this by running intel in the terminal.
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Initial Setup (SMP)

Here we describe the basics of setting the code up to be run
on a single node with shared-memory multiprocessing (SMP).
OpenRadioss uses git-lfs and Cmake for setup. To get a basic
version of the starter on most platforms, run
cd starter
./build_script.sh -arch=linux64_gf
The exectuble of the starter can be found in
OpenRadioss/exec
To get a basic version of the engine on most platforms, run cd
engine
./build_script.sh -arch=linux64_gf
Or

./build_script.sh -arch=linux64_intel

Useful Engine Configuration Options
A description of the available options can be found by using
./build script.sh .

-prec=[dp|sp]

There is the option to compile OpenRadioss in single and double
precision. Double precision is the default, single precision is 40%
faster.

-mpi=[ompilimpil

The option to use OpenMPI or MPI to get communication be-
tween different computing nodes or different NUMA regions (e.g.
a single chip).

~debug=[0]1]

Debug version of the code, 0 is no debug flags (default) and 1
has the usual debug flags.

-verbose

Increase the verbosity of the output during the build. Speed-
ing up the code with compiler flags It is possible to speed-
up OpenRadioss significantly when using the intel compiler
and when using different compiler flags on lines 77 and 78
of ./engine/CMake Compilers/cmake linux64 intel.txt .

-axSSE3,COMMON-AVX512 -no-fma -03
-no-fma -Ofast -xHost -static

Running the Code (SMP)

After compilation, you will be left with two binaries. One is
the called starter_linux gf and the other is either
called
The starter is used to create the simulation that will be sim-
ulated and the engine is used to do the actual simulation. Before
running simulations you need to initialize a few variables in your
.bashrc file:

Replace with

engine linux64 gf or engine linux64 intel .

export OPENRADIOSS_PATH=/path/to/OpenRadioss

export RAD_CFG_PATH=$0PENRADIOSS_PATH/hm_cfg_files

export LD_LIBRARY_PATH=$0PENRADIOSS_PATH/extlib/
hm_reader/linux64/: $OPENRADIOSS_PATH/extlib/h3d/
1ib/1linux64/: $LD_LIBRARY_PATH
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Running an Example

The OpenRadioss example repository contains a large num-
ber of examples that you can run. For example the cantilever
beam simulation. Each simulation is run in two steps, the first
step is running the starter

./dir_to_exec/starter_linux64_gf -i filename_0000.rad

This is followed by using the engine to run the simulation as

./dir_to_exec/engine_linux64_intel -i filename_0001.
rad

Or

./dir_to_exec/engine_linux64_gf -i filename_0001.rad

Initial Setup (MPI)

Especially when using big models, simulations will require
using more than one numa region. This means that the user
wants to use a version of the code that uses Message Passing
Interface (MPI). Obtaining the software on Goldfish and Marlin
is identical to the description above. The main difference is that
compiling the code is different. For our servers we only use the
intel MPI version of OpenRadioss. The engine can be build as:

./build_script.sh -arch=1linux64_intel -mpi=impi

Once, this is completed, your MPI version of OpenRadioss is
build.

Running the Code (MPI)

Running the code is different, because you will need to launch
several copies of the same program at the same time (i.e. in jar-
gon, several MPI ranks). Firstly, you need to specify the number
of desired threads:
export OMP_NUM_THREADS=<Nthreads>

followed by running the starter for the amount of MPI ranks that

you want:

./dir_to_exec/starter_linux64_gf -np <N_MPI> -i
filename_0000.rad

where <N_MPI> indicates the number of MPI ranks. This is fol-

lowed by running the code over mpi using the right number of

MPI ranks as:

mpirun -np <N_MPI> --map-by socket:PE=<Nthread> --bind

-to core /dir_to_exec/engine_linux64_intel_impi -i
filename_0001.rad

Runtime options

All  the run time options can be shown by
./dir_to_exec/engine linux64 gf -help. Some useful op-
tions are:

-nthread [integer] / -nt [integer]

This sets the number of SMP threads per Single Program Mul-
tiple Data (SPMD) domain.

-version / -v

Get the version of the current engine, note that this is not a
replacement for git log .

-output=[PATH]

Set the output file directory for all output and created files. Con-
trolling the time step It is possible to control the minimum time
step and the Courant-Friedrichs-Lewy (CFL) condition by:

/DT/NODA/CST/0

CFL_constant dTmin

‘Where the CFL constant by default is 0.9, but we find that you
should use at most 0.75. dTmin specifies the minimum allowed
timestep. Converting the output OpenRadioss has three types of
outputs. The first type is *.h3d files. In general, we do not use
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this file type. Instead we use the ANIM files or *Ax files. Both
types contain the same information, only the ANIM files can be
converted to *.vtk files, which can be opened with paraview .
During runtime the user needs to specify which information they
want to include for each element. In order, to get the ANIM
to vtk converter, go to tools/anim to_vtk/linux64 and ex-
ecute

./build.bash

This creates the ANIM converter in your exec directory named
anim to_vtk linux64 gf . Now you can convert ANIM files as

./dir/exec/anim_to_vtk_linux64_gf filenameAnumber >
filename_number.vtk

You can optionally add an alias in your | .bashrc file (or other

rc file e.g.  .zshrc) as

alias anim_to_vtk=/dir/exec/anim_to_vtk_linux64_gf

Such that you can convert files simply as

anim_to_vtk filenameAnumber > filename_number.vtk

The third type of output are time files, TH files or *T* files.
These files store a smaller number of elements at a much higher
frequency than the ANIM and *.h3d files. The time files are
therefore ideal if you want to know in detail what is happening
to a large number of elements. The time files can be converted
into a *.csv file. To get the TH file to *.csv converter go to
tools/th to_csv/linux64 and execute

./build.bash

This creates the th_to_csv converter in your exec directory
named th to_csv_1linux64 gf . Converting TH files can be
done as

./dir/exec/th_to_csv_linux64_gf filenameTO1
You can optionally add an alias in your .bashrc file:
alias th_to_csv=/dir/exec/th_to_csv_linux64_gf

The ANIM converter can be written such that it converts all files
by adding the following code to your .bashrc :

anim_to_vtk=’/dir/to/OpenRadioss/exec/
anim_to_vtk_linux64_gf’
anim_to_vtk_all () {
number_of_files=$(ls -1R $1A* | wc -1)
maximum_index=$ ((number_of_files))
start_index=1
for (( i=$start_index;
do
printf -v output_i "%03d" $i
$anim_to_vtk $1A$output_i > $1_$output_i.vtk
done

i<=$maximum_index; i++ ))

This way you can run to convert all ANIM files
anim_to_vtk_all filename

This can be combined in a single function such that also the time
file is converted:
alias th_to_csv= /dir/to/OpenRadioss/exec/
th_to_csv_linux64_gf
convert_radioss () {
anim_to_vtk_all $1
th_to_csv $1TO1

Such that all files can be converted as
convert_radioss filename
Running and converting in one line If you want to run radioss

(starter+engine) and the converter at the same time you can
create a function:

A3/Ba
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radioss () {
OR_starter -i $1_0000.rad
OR_engine -i $1_0001.rad -nt $2
anim_to_vtk_all $1
th_to_csv $1TO1

¥

Now you can run radios on 4 cores as:

radioss filename 4

Analysing the VTK files The VTK files can be analysed us-
ing Paraview. Paraview is installed on all our Linux servers
and you can send a software request for Paraview on win-
dows. For more information see www.paraview.org/tutorials/
The properties of the VIK files are specified in the engine file,
ie. filename_0001.rad. The most important setting is the
start time and time interval which can be specified by

/ANIM/DT

T_start T_freq

Variables that you want to output can be specified by:
/ANIM/NODA/<NAME>
/ANIM/VEC/<NAME>

For nodal scalar data, vector data for your specified variable.
Other options are available in the manual.

Analysing the CSV files

The time files can be extremely long, because of this TNO
wrote their own internal python module to analyse these files.
The package is named openradiosstimefilereader. This package
reads in the *.csv file and creates a class such that in this class
you can call each individual node or spring as:
timefile = OpenRadiossTimeFile("filenameTO1l.csv",

filename_0000.rad)
quantity = timefile.nodes["id"]["quantity"]
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or

quantity = timefile.springs["id"][quantity]

This allows the user to only know the id number of the element
and not needing to look up the exactly matching column/row.
Variables that are the same for each node like time can be sim-
ply called by timefile.time() . Warning: It is possible to load
CSV files into excel, only when the file is too large it does only
load part of the file. If your time file has more than 1000 lines
this is already a problem. Because of this we recommend to use
the module instead of using excel.

Example overview
The Radioss examples repository contains a large number of
simple test cases that can be easily downloaded and used.

Advanced options
Control file

The control file is an optional file that can be created while
a run is ongoing to safely stop the simulation or request addi-
tional outputs. Control files are named filename.cfl. In general,
the control file is executed as quickly as possible. There are two
optional keywords that allow it to stop only at a specific cycle or
time:

/CYCLE/cyclenumber
/TIME/timevalue

In order to kill the job you can use:

/STOP

This will kill the job and creates a restart file. It is also possible
to create more outputs, for that see the manual.
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B OPENRADIOSS time file reader

B.1/B38

OPENRADIOSS has the option to output more information of nodes, beams, shells
or other elements. This is a similar feature to the DEFINENAME feature of LS-DYNA
which is extensively used in 3DCAV simulations. Currently, the files that are created
can have many columns and because of this selecting the right columns is prone
to mistakes. Because of this a simple PYTHON library was created which reads the
desired columns based on the file itself instead of needing to look up the correct
column yourself. At the same time, the package also reads the correct units of the

different variables. This prevents that mistakes are made with units.

#!/usr/bin/env python3

import numpy as np

from unyt import kg, mm, ms, s, m, cm, unyt_quantity
import unyt

import csv

import re

import pandas as pd

import time

class OpenRadiossTimeFile:

def __init__(self, csv_file_name, rad_file_name):

# Store the string names of the files in the object
14 self.csv_file_name csv_file_name
s self.rad_file_name rad_file_name

# Load the internal units of the file

18 self.load_internal_units()

19

20 # open the file and store the data in variable data (use pandas because it is x10 faster)
21 self.data = pd.read_csv(self.csv_file_name) #, engine="pyarrow"

22 self.data = self.data.to_numpy()

2 with open(csv_file_name, ’'r’) as f:

25 for i, row in enumerate(csv.reader(f)):

26 self.csv_column_names = row

27 if i==0:

28 break

30 self.possible_numbers = []
31 for i, column_name in enumerate(self.csv_column_names):

32 new_element = re.findall(f"\d+", column_name)
33 if not new_element:

34 continue

35 else:

36 self.possible_numbers.append (new_element [0])

Q # Array of the possible node numbers
39 self.possible_numbers = list(set(self.possible_numbers))

0

41 # Set all types to False

a2 self.file_has_nodes = False

3 self.file_has_spring = False

4 self.file_has_shell = False
self.file_has_beam = False

# Determine if we have nodes, springs, beams, shells, etc.
8 for i, column_name in enumerate(self.csv_column_names):
9 if "Nodes" in column_name:
0 self.file_has_nodes = True
51 elif "spring" in column_name:
2 self.file_has_spring = True
3 elif "shell" in column_name:
4 self.file_has_shell = True
5 elif "beam" in column_name:
56 self.file_has_beam = True

57 else:

58 continue # unsupported element type or global variable

59

60

61 # Set an empty dictionary and add keys of possible numbers to it
62 if self.file_has_nodes:

63 self.nodes = {}
64 for key in self.possible_numbers:
6 self.nodes[key] = {}

67 if self.file_has_spring:
68 self.springs = {}

69 for key in self.possible_numbers:

o self.springs[key] = {}

1

2 for j, used_number in enumerate(self.possible_numbers):
3 #print (used_number)

4 for i,column_name in enumerate(self.csv_column_names):

type_name - column_name[-20:-1]
type_name = type_name.strip()
if (" "+used_number+" " in column_name) and ("Nodes" in column_name):

9 # Determine which unit is used

80 if type_name[0] == "F":

81 unit = self.unit_F

82 elif type_name[0] == "D" or type_name[0®] == "X" or type_name[0] == "Y" or type_name[0] == "Z"
83 unit = self.unit_L

84 elif type_name[0] == "V":

85 unit = self.unit_V
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123

124

129

elif type_name[0]

== "NM":

# Is this indeed the correct unit?
unit = self.unit_Moment

elif type_name[0]

= "A":

unit = self.unit_A

elif type_name[0]
unit = unyt.rad
else:
unit = 1.

—= "R":

# set the information of this node in its dictionary
self.nodes[used_number][type_name.lower ()] = self.data[:,i] + unit

elif (" "+used_number+"

in column_name) and ("spring" in column_name):

# Determine which unit is used

if type_name[0] == "0":
unit = 1.

elif type_name[0] == "F":
unit = self.unit_F

elif type_name[0] == "NM":
unit = self.unit_Moment

elif type_name[0] == "L":
unit = self.unit_L

elif type_name[0] == "R":
unit = unyt.rad

elif type_name[0] == "I":

unit = self.unit_E

else:
unit = 1.

# set the information of this spring in its dictionary
self.springs[used_number][type_name.lower ()] = self.data[:,i] + unit

def load_internal_units(self):

# Open the file pointer

fp = open(self.rad_file_name, "r")

# Get all the lines of the file

lines = fp.readlines()

# loop over the file

for i, line in enumerate(lines):
if line.strip()=="/BEGIN":

count = 1

string_units = lines[i+6].strip()
string_last_two_units = string_units[5:].strip()

string_last_unit =

# unit of mass

string_last_two_units[5:].strip(Q)

self.unit_M = unyt_quantity(l., string_units[:5].strip(Q))

# unit of length

self.unit_L = unyt_quantity(l., string_last_two_units[:5].strip())

# unit of time

self.unit_T = unyt_quantity(l., string_last_unit[:5].strip(Q))

break

# unit of velocity

self.unit_V = self.unit_L / self.unit_T

# unit of frequency
self.unit_Freq = 1.
# unit of acceleration

/ self.unit_T

self.unit_A = self.unit_L / self.unit_T«+2

# unit of energy

self.unit_E = self.unit_ M - self.unit_L+«+2 / self.unit_T:+2

# unit of momentum

self.unit_P = self.unit_ M - self.unit_L / self.unit_T

# unit of force

self.unit_F = self.unit_M - self.unit_L / self.unit_T«:2

# unit of Inertia

self.unit_I = self.unit_ M - self.unit_L««2

# unit of moment

self.unit_Moment = self.unit_F . self.unit_L

def time(self):
return self.data[:,0] -

def internal_energy(self):

return self.datal[:,1] ~

def kinetic_energy(self):
return self.data[:,2] -«

def momentum_x(self):
return self.data[:,3] ~

def momentum_y (self):
return self.data[:,4] +

def momentum_z(self):
return self.data[:,5] =

def momentum(self):
return self.data[:,3:6]

def mass(self):
return self.data[:,6] =

def time_step(self):
return self.datal[:,7] -

def rotation_energy(self):

return self.data[:,8] -

def external_work(self):
return self.data[:,9] -

def spring_energy(self):
return self.data[:,10]

self.unit_T

self.unit_E

self.unit_E

self.unit_P
self.unit_P

self.unit_P

« self.unit_P

self.unit_M

self.unit_T

self.unit_E

self.unit_E

self.unit_E
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def contact_energy(self):
return self.data[:,11] - self.unit_E

def hourglass_energy(self):
return self.data[:,12] - self.unit_E

def initialise_displacement_variables(self, start_id, end_id, time_fraction=0.5):
self.z_median = np.zeros(end_id - start_id + 1) « self.unit_L
self.x_median = np.zeros(end_id - start_id + 1) - self.unit_L
self.z_avg = np.zeros(end_id - start_id + 1) + self.unit_L
self.x_avg = np.zeros(end_id - start_id + 1) + self.unit_L
self.z_s_up = np.zeros(end_id - start_id + 1) » self.unit_L
self.z_s_down = np.zeros(end_id - start_id + 1) » self.unit_L

from_fraction = 1- time_fraction

self.length_array = len(self.time())

for index, node_id in enumerate(range(start_id, end_id + 1)):
z_node = self.nodes[f"{node_id:d}"]["dz"]
x_node = self.nodes[f"{node_id:d}"]1["x"]

self.z_avg[index] = np.average(z_node[int(self.length_array-from_fraction):])
self.x_avg[index] = np.average(x_node[int(self.length_array-from_fraction):])
self.z_median[index] = np.median(z_node[int(self.length_array+from_fraction):])
self.x_median[index] = np.median(x_node[int(self.length_array-«from_fraction):])

self.z_s_down[index] = np.percentile(z_node[int(self.length_array«from_fraction):],
self.z_s_up[index] = np.percentile(z_node[int(self.length_array«from_fraction):],

def initialise_displacement_variables_y(self, start_id, end_id, time_fraction=0.5):
self.y_median = np.zeros(end_id - start_id + 1) + self.unit_L
self.x_median = np.zeros(end_id - start_id + 1) » self.unit_L
self.y_avg = np.zeros(end_id - start_id + 1) » self.unit_L
self.x_avg = np.zeros(end_id - start_id + 1) » self.unit_L
self.y_s_up = np.zeros(end_id - start_id + 1) » self.unit_L
self.y_s_down = np.zeros(end_id - start_id + 1) » self.unit_L

from_fraction = 1- time_fraction
self.length_array = len(self.time())

for index, node_id in enumerate(range(start_id, end_id + 1)):
y_node = self.nodes[f"{node_id:d}"]["dy"]
x_node = self.nodes[f"{node_id:d}"J["x"

self.y_avg[index] = np.average(y_node[int(self.length_array«from_fraction):])
self.x_avg[index] = np.average(x_node[int(self.length_array«from_fraction):])
self.y_median[index] = np.median(y_node[int(self.length_array«from_fraction):])
self.x_median[index] = np.median(x_node[int(self.length_array«from_fraction):])

self.y_s_down[index] = np.percentile(y_node[int(self.length_array«from_fraction):],
self.y_s_up[index] = np.percentile(y_node[int(self.length_array+from_fraction):],

def set_FFT_spectrum(self, frequencies, abs_FFT):
self. frequencies = frequencies
self.absolute_FFT = abs_FFT

# Function that can be used to fit the displacement
def func_disp(t, A, t_decay, omega, phi):
return A « np.sin(omega + t + phi) « np.exp(- t / t_decay)

if __name == "__main__":

testdata = OpenRadiossTimeFile("tensile_ LAW2_BIQUADTOL.csv", "tensile LAW2_0000.rad")

print(testdata.time())

print(testdata.n102_DX)
print(testdata.n102_DY)
print(testdata.n616_DX)
print(testdata.n616_DY)

B.3/B8

Additionally, for this project an additional file of routines was written to specifically
compare different datasets. This also has routines that create specific plots that were

made in this report.

#!/usr/bin/env python3

import numpy as np

import matplotlib.pyplot as plt
import unyt

import numpy.fft as fft

import matplotlib

import scipy.optimize as sco
import scipy.interpolate as sci
import os

import sys

matplotlib.use("Agg")
from load_csv_file import OpenRadiossTimeFile

# Plot parameters
params = {

"axes.labelsize": 10,
"axes.titlesize": 10,
"font.size": 9,
"font.family": "serif",
"legend. fontsize
"xtick.labelsize 10,
"ytick.labelsize 10,

"text.usetex": True,
"figure.figsize": (5.15, 4.15),
"figure.subplot.left": 0.15,
"figure.subplot.right": 0.97,
"figure.subplot.bottom": .13,
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39 "figure.subplot.top": 0.97,

31 "figure.subplot.wspace": 0.15,
32 "figure.subplot.hspace": 0.12,
33 "lines.markersize": 6

5 "lines.linewidth": 1.9,
36 matplotlib.rcParams.update(params)

33 class DatasetCollection:

B.4/BE8

39 def __init__(self, directory, base_name, label_name, index_to_consider, default_save_dir=None):
40 # store the initialising variables in the class

41 self.directory = directory

a2 self.base_name = base_name

43 self.label_name = label_name

44 self.index_to_consider = index_to_consider

46 # set the default save directory to None if not specified
a7 self.save_dir = default_save_dir

49 # make the colour array one more longer than the amount of directories

50 # we do this because the last yellow colour is a bit difficult to see

51 self.colour_array = plt.cm.plasma(np.linspace(0,1,len(self.directory)))

52

53 # Load all the different datasets in this class using the dataset class

54 self.dataset_array = []

55 for direc, name in zip(self.directory, self.base_name):

56 dataset = OpenRadiossTimeFile(f"{direc}/{name}T01l.csv", f"{direc}/{name}_0000.rad")
57 self.dataset_array.append(dataset)

58

59 def plot_vertical_displacement(self):

60 # Loop over the different datasets

61 for dataset, node_id, label, colour in zip(self.dataset_array, self.index_to_consider,

label_name, self.colour_array):
62 # get the time
63 time = dataset.time()

65 # get the vertical displacement

66 z = dataset.nodes[f"{node_id:d}"]["dz"]

67

68 # Plot the resulting curve for the vertical displacement

69 plt.plot(time, z, label=label, color=colour)

70

71 return time.units, z.units

72

73 def plot_internal_energy(self):

74 # Loop over the different datasets

75 for dataset, node_id, label, colour in zip(self.dataset_array, self.index_to_consider,
label_name, self.colour_array):

76 # get the time

77 time = dataset.time()

78

79 # get the vertical displacement

80 internal_energy = dataset.internal_energy()

81

82 # Plot the resulting curve for the vertical displacement

83 plt.plot(time, internal_energy, label=label, color=colour)

84

85 return time.units, internal_energy.units

86

87 def plot_kinetic_energy(self):

88 # Loop over the different datasets

89 for dataset, node_id, label, colour in zip(self.dataset_array, self.index_to_consider,
label_name, self.colour_array):

90 # get the time

91 time = dataset.time()

92

93 # get the vertical displacement

94 kinetic_energy = dataset.kinetic_energy()

9 # Plot the resulting curve for the vertical displacement
97 plt.plot(time, kinetic_energy, label=label, color=colour)

99 return time.units, kinetic_energy.units

160

101 def check_that_we_can_save(self, save_dir):

162 # check that we have a place to store the figures
103 if save_dir is not None:

104 self.save_dir = save_dir

105 elif self.save_dir is None:

106 raise ValueError("The save directory should be defined when making plots!")
108 def make_vertical_displacement_plot(self, y_mean=-0.78, x_max = 200., save_dir=None):

110 self.check_that_we_can_save(save_dir)

112 matplotlib.rcParams.update({"figure.figsize": (10.15, 4.15)})

113

114 # Call the function to make a plot for each dataset

115 time_unit, z_unit = self.plot_vertical_displacement()

116

117 plt.axhline(y=y_mean, linestyle="--", color="k", label="Theoretical displacement")
118 plt.legend ()

119 plt.x1im(0,x_max)

120 plt.ylim(2+«y_mean, -0.1+y_mean)

121 plt.xlabel (f"time [${time_unit.latex_repr}$]")

122 plt.ylabel(f"displacement [${z_unit.latex_repr}$]")

123 plt.savefig(f"{self.save_dir}/cantileverbeamtest_l00percent.pdf")
124 plt.close()

125

126 matplotlib.rcParams.update({"figure.figsize": (10.15, 4.15)})

127

128 # Call the function to make a plot for each dataset

129 time_unit, z_unit = self.plot_vertical_displacement()

130

131 plt.axhline(y=y_mean, linestyle="--", color="k", label="Theoretical displacement")
132 plt.legend O

133 plt.x1lim(®,x_max / 2.)

134 plt.ylim(2+«y_mean, -0.25+y_mean)

135 plt.xlabel (f"time [${time_unit.latex_repr}$]")

136 plt.ylabel(f"displacement [${z_unit.latex_repr}$]")

137 plt.savefig(f"{self.save_dir}/cantileverbeamtest_50percent.pdf")
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138 plt.close()

139

140 matplotlib.rcParams.update({"figure.figsize": (5.15, 4.15)})

141 # Call the function to make a plot for each dataset

142 time_unit, z_unit = self.plot_vertical_displacement()

143

144 plt.axhline(y=y_mean, linestyle="--", color="k", label="Theoretical displacement")

145 plt.legend O

146 plt.xlabel (f"time [${time_unit.latex_repr}$]")

147 plt.ylabel(f"displacement [${z_unit.latex_repr}$]")

148 plt.x1lim(®,x_max/10.)

149 plt.ylim(2+y_mean, -0.25+~y_mean)

150 plt.savefig(f"{self.save_dir}/cantileverbeamtest_1l0Opercent.pdf")

151 plt.close()

152

153 matplotlib.rcParams.update({"figure.figsize": (5.15, 4.15)})

154

155 # Call the function to make a plot for each dataset

156 time_unit, z_unit = self.plot_vertical_displacement()

157

158 plt.axhline(y=y_mean, linestyle="--", color="k", label="Theoretical displacement")

159 plt.legend O

160 plt.x1im(0,0.3 « x_max)

161 plt.ylim(2+y_mean,0.0)

162 plt.xlabel (f"time [${time_unit.latex_repr}$]")

163 plt.ylabel(f"displacement [${z_unit.latex_repr}$]")

164 plt.savefig(f"{self.save_dir}/cantileverbeamtest_30Opercent.pdf")

165 plt.close()

166

167 def make_internal_energy_plot(self, x_max = 200., save_dir=None, y_lim=None):

168

169 self.check_that_we_can_save(save_dir)

170

171 matplotlib.rcParams.update({"figure.figsize": (10.15, 4.15)})

172

173 # Call the function to make a plot for each dataset

174 time_unit, internal_energy_unit = self.plot_internal_energy()

175

176 plt.legend O

177 plt.x1im(@, x_max)

178 if y_lim is not None:

179 plt.ylim(y_lim[0], y_lim[1])

180 plt.xlabel (f"time [${time_unit.latex_repr}$]")

181 plt.ylabel(f"internal energy [${internal_energy_unit.latex_repr}$]")

182 plt.savefig(f"{self.save_dir}/internal_energy_100percent.pdf")

183 plt.close()

184

185 matplotlib.rcParams.update({"figure.figsize": (10.15, 4.15)})

186

187 # Call the function to make a plot for each dataset

188 time_unit, internal_energy_unit = self.plot_internal_energy()
plt.legend O
plt.x1im(0,0.5+x_max)
if y_lim is not None:

plt.ylim(y_lim[0], y_lim[1])

plt.xlabel (f"time [${time_unit.latex_repr}$]")
plt.ylabel(f"internal energy [${internal_energy_unit.latex_repr}$]")
plt.savefig(f"{self.save_dir}/internal_energy_50percent.pdf")
plt.close()

199 def make_kinetic_energy_plot(self, x_max = 200., save_dir=None, y_lim=None):

200

201 self.check_that_we_can_save(save_dir)

202

203 matplotlib.rcParams.update({"figure.figsize": (10.15, 4.15)})

204

205 # Call the function to make a plot for each dataset

206 time_unit, kinetic_energy_unit = self.plot_kinetic_energy()

207

208 plt.legend O

209 plt.x1im(0, x_max)

210 if y_lim is not None:

211 plt.ylim(y_lim[0], y_lim[1])

212 plt.xlabel (f"time [${time_unit.latex_repr}$]")

213 plt.ylabel (f"kinetic energy [${kinetic_energy_unit.latex_repr}$]")

214 plt.savefig(f"{self.save_dir}/kinetic_energy_l00percent.pdf")

215 plt.close()

216

217 matplotlib.rcParams.update({"figure.figsize": (10.15, 4.15)})

218

219 # Call the function to make a plot for each dataset

220 time_unit, kinetic_energy_unit = self.plot_kinetic_energy()

221

222 plt.legend )

223 plt.x1im(0,0.5+x_max)

224 if y_lim is not None:

225 plt.ylim(y_lim[0], y_lim[1])

226 plt.xlabel (f"time [${time_unit.latex_repr}$]")

227 plt.ylabel (f"kinetic energy [${kinetic_energy_unit.latex_repr}$]")

228 plt.savefig(f"{self.save_dir}/kinetic_energy_50percent.pdf")

229 plt.close()

230

231 def set_problem_parameters(self, force, youngs_modulus, b, d, 1, density, type_of_problem="cantilever

"y

232 # Pick the first dataset which we use for the unit system

233 dataset = self.dataset_array[0]

234

235 self.force = force « dataset.unit_F

236 self.E = youngs_modulus « dataset.unit_F / dataset.unit_L«+2

237 self.b = b « dataset.unit_L

238 self.d = d - dataset.unit_L

239 self.1 = 1 - dataset.unit_L

240 self.area = self.b - self.d

241 self.moment_of_inertia = self.b - self.d««3 / 12.

242 self.density = density « dataset.unit_M / dataset.unit_L«+3

243

244

245 self.base_frequency = np.sqrt(self.E - self.moment_of_inertia / (self.density ~ self.area » self.l

*+4))
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self.natural_frequencies = np.zeros(5) / dataset.unit_T

249 if type_of_problem=="cantilever" or type_of_problem=="clamped-free":

250 self.natural_frequencies[0] = 3.52 - self.base_frequency

251 self.natural_frequencies[1] = 22.4 - self.base_frequency

252 self.natural_frequencies[2] = 61.7 » self.base_frequency

253 self.natural_frequencies[3] = 121.0 . self.base_frequency

254 self.natural_frequencies[4] = 200.0 - self.base_frequency

255 self.max_displacement = self.force - self.l1.+3 / (3 +» self.E « self.moment_of_inertia)

256 elif type_of_problem=="clamped-simply-supported" or type_of_problem=="simply-supported-free":

257 self.natural_frequencies[0] = 15.4 - self.base_frequency

258 self.natural_frequencies[1] = 50.0 - self.base_frequency

259 self.natural_frequencies[2] = 104.0 - self.base_frequency

260 self.natural_frequencies[3] = 178.0 - self.base_frequency

261 self.natural_frequencies[4] = 272.0 . self.base_frequency

262 elif type_of_problem=="clamped-clamped" or type_of_problem=="free-free":

263 self.natural_frequencies[0] = 22.4 . self.base_frequency

264 self.natural_frequencies[1] = 61.7 + self.base_frequency

265 self.natural_frequencies[2] = 121.0 - self.base_frequency

266 self.natural_frequencies[3] = 200.0 - self.base_frequency

267 self.natural_frequencies[4] = 296.0 - self.base_frequency

268

269

270

271 def average_equilibrium_state(self, lower_indices, higher_indices, time_fraction=0.5, x_max=40, y_min
= -1.0, res_axis=None, res_name="resolution axis [mm]"):

272 self.lower_indices = lower_indices

273 self.higher_indices = higher_indices

274

275 from_fraction = 1- time_fraction

276 matplotlib.rcParams.update({"figure.figsize": (6.15, 4.15)})

277

278 for dataset, start_id, end_id, label, colour in zip(self.dataset_array, self.lower_indices, self.

higher_indices, self.label_name, self.colour_array):
dataset.initialise_displacement_variables(start_id, end_id, time_fraction)

plt.plot(dataset.x_avg, dataset.z_avg, label=label, color=colour)
plt.fill_between(dataset.x_avg, dataset.z_s_down, dataset.z_s_up, color=colour, alpha=0.2)

# calculate the actual displacement

dx = self.l - dataset.x_avg

th_displacement = -(1./6.) + self.force / (self.E + self.moment_of_inertia) « (dx+«+3 - 3 + dx +
self.1++2 + 2+ self.1++3)

plt.plot(dataset.x_avg, th_displacement, color="k", linestyle="--", label="Equilibrium")

plt.legend O

plt.xlabel (f"x coordinate [${dataset.unit_L.units.latex_repr}$]")
plt.ylabel(f"z displacement [${dataset.unit_L.units.latex_repr}$]")
plt.x1im(0®,x_max)

plt.ylim(y_min,@)
plt.savefig(f"{self.save_dir}/average_equilibrium_state.pdf")
plt.close()

if res_axis is None:
return

dx_highres = dx

z_avg_highres = dataset.z_avg
x_avg_highres = dataset.x_avg
th_displacement_highres = th_displacement

chi_squared = np.zeros(len(res_axis))
307 chi_squared_fine = np.zeros(len(res_axis))
308 chi_squared_fine2 = np.zeros(len(res_axis))

310 for index, (dataset, start_id, end_id, label, colour) in enumerate(zip(self.dataset_array, self.
lower_indices, self.higher_indices, self.label_name, self.colour_array)):

312 x_avg = dataset.x_avg
313 z_avg = dataset.z_avg
314

315 dx = self.l - x_avg

316 th_displacement =-(1./6.) =« self.force / (self.E + self.moment_of_inertia) « (dx+«+3 - 3 » dx =«
self.1++2 + 2+ self.1:+3)

318 f = np.interp(x_avg_highres[1:], x_avg, z_avg) » z_avg.units

320 chi_squared[index] = np.sum((z_avg[1l:] - th_displacement[1:])+«+2) / len(z_avg[1l:])
321 chi_squared_fine[index] = np.sum((f - z_avg_highres[1:])++2) / len(f)

322 chi_squared_fine2[index] = np.sum((f - th_displacement_highres[1:])++2) / len(f)

323

324 plt.plot(res_axis, chi_squared, "o-", label="Resolution nodes, Chi(theoretical)", linestyle="--",
color="red")

325 plt.plot(res_axis, chi_squared_fine, "o-", label="Highres nodes, Chi(highres)", color="k")

326 plt.plot(res_axis, chi_squared_fine2, "o-", label="Highres nodes, Chi(theoretical)", linestyle="--"
, color="k")

327 plt.xlim(np.min(res_axis), np.max(res_axis))

plt.ylim(le-7,3el)
plt.legend O
chi_squared_unit = dataset.unit_L««2

331 plt.xlabel (res_name)

332 plt.ylabel (f"reduced chi-squared [${chi_squared_unit.units.latex_repr}$]")
333 plt.xscale("log")

334 plt.yscale("log")

335 plt.savefig(f"{self.save_dir}/reduced_chi_squared.pdf")
336 plt.close()

338 def get_fit_parameters(self, index_to_consider, res_axis=None, res_name="Numerical resolution [mm]"):
340 dataset = self.dataset_array[0]
self.fitted_parameters = {}

self. fitted_parameters["natural_frequencies"] = {}
self. fitted_parameters["natural_frequencies"]["n=0
self. fitted_parameters["natural_frequencies"]["
self.fitted_parameters["natural_frequencies"]J["
self.fitted_parameters["natural_frequencies"]["
self.fitted_parameters["natural_frequencies"]["n=4

np.zeros(len(index_to_consider)) » unyt.Hz

.zeros(len(index_to_consider)) =+ unyt.Hz
np.zeros(len(index_to_consider)) » unyt.Hz
np.zeros(len(index_to_consider)) » unyt.Hz
np.zeros(len(index_to_consider)) + unyt.Hz

o
]
T
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351 self.fitted_parameters["natural_frequencies"]["fitted n=0"] = np.zeros(len(index_to_consider)) =«

unyt.Hz
352
353 self.fitted_parameters["amplitude"] = np.zeros(len(index_to_consider)) « dataset.unit_L
354 self.fitted_parameters["amplitude error"] = np.zeros(len(index_to_consider)) - dataset.unit_L

356 self. fitted_parameters["decay time"] = np.zeros(len(index_to_consider)) + unyt.s
self.fitted_parameters["decay time error"] = np.zeros(len(index_to_consider)) =« unyt.s

self.fitted_parameters["phase offset"] = np.zeros(len(index_to_consider))
self.fitted_parameters["phase offset error"] = np.zeros(len(index_to_consider))

for index, (dataset, node_id, label, colour) in enumerate(zip(self.dataset_array, index_to_consider
, self.label_name, self.colour_array)):
time = dataset.time()
# possible mask, now we just use a dummy mask
mask = (time > 0.0 « unyt.ms)
# get the dt
dt = (time[mask][-1] - time[mask][0])/len(time[mask])

369 z = dataset.nodes[f"{node_id:d}"]1["dz"]
371 mean_displacement = -np.average(z[mask])

z += mean_displacement

# based on https://pythontic.com/visualization/signals/fouriertransform_fft
samplingFrequency = len(time[mask])

377 samplingInterval = 1. / samplingFrequency
378 samplingInterval = dt

379 samplingFrequency = 1./ samplingInterval

fourierTransform
fourierTransform

= fft.fft(z[mask])/len(z[mask])

= fourierTransform[range(int(len(z[mask])/2))]
tpCount = len(z[mask])

values = np.arange(int(tpCount/2))

timePeriod = tpCount/ samplingFrequency

frequencies = 2+np.pisvalues/timePeriod

abs_fourier = np.abs(fourierTransform)
dataset.set_FFT_spectrum(frequencies, abs_fourier)

plt.plot(frequencies, abs_fourier, label=label, color=colour)

for freq in self.natural_frequencies:
plt.axvline(x=freq, color="k", linestyle="--")

plt.xscale("log")

plt.yscale("log")

plt.ylim(le-5,1e2)

plt.xlim(frequencies[1]«30., frequencies[-1])

plt.legend ()

plt.xlabel (f"frequency [${dataset.unit_Freq.units.latex_repr}$]")
plt.ylabel (f"Fourier strength [Arbirary unit]")
plt.savefig(f"{self.save_dir}/frequency_plot.pdf")

plt.close()

407 for index, (dataset, node_id, label, colour) in enumerate(zip(self.dataset_array, index_to_consider
, self.label_name, self.colour_array)):

408 frequencies = dataset.frequencies

409 abs_fourier = dataset.absolute_FFT

411 frequencies.convert_to_units("Hz")

412 plt.plot(frequencies, abs_fourier, label=label, color=colour)
413

414 for freq in self.natural_frequencies:

a15 freq.convert_to_units("Hz")

416 plt.axvline(x=freq, color="k", linestyle="--")

417 plt.xscale("log")

418 plt.yscale("log")

419 plt.ylim(le-5,1e2)

420 plt.xlim(frequencies[1]+30., frequencies[-1])

421 plt.legend )

422 plt.xlabel (f"frequency [${frequencies.units.latex_repr}$]")

plt.ylabel (f"Fourier strength [Arbirary unit]")

plt.savefig(f"{self.save_dir}/frequency_plot_Hz.pdf")
plt.close()

# find the peaks in the frequencies

429 for index, (dataset, node_id, label, colour) in enumerate(zip(self.dataset_array, index_to_consider
, self.label_name, self.colour_array)):

430 frequencies = dataset.frequencies

431 abs_fourier = dataset.absolute_FFT

432 frequencies.convert_to_units("Hz")

433

434 natural_frequencies = self.natural_frequencies

435 natural_frequencies.convert_to_units("Hz")

436

137 for i, nat_freq in enumerate(natural_frequencies):

438 mask = (frequencies < 1.5snat_freq) & (frequencies > 0.75+nat_freq)

439

440 self.fitted_parameters["natural_frequencies"][f"n={i:d}"][index] = frequencies[mask][np.argmax(

abs_fourier[mask])]

’ if res_axis is None:
444 return

colour_array_nat_freq = plt.cm.plasma(np.linspace(0,1,len(natural_frequencies)+1))

for i in range(0,len(natural_frequencies)):

as0 plt.plot(res_axis, self.fitted_parameters["natural_frequencies"][f"n={i:d}"], "o-", label=f"n={i:
d}", color=colour_array_nat_freq[i])

451

452 plt.axhline(y=natural_frequencies[i], color="k", linestyle="--")

453

454 plt.xscale("log")

455 plt.yscale("log")
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plt.xlim(np.min(res_axis), np.max(res_axis))

plt.legend )

plt.ylabel (f"frequency [${frequencies.units.latex_repr}$]")
plt.xlabel (res_name)

plt.savefig(f"{self.save_dir}/natural_frequency_convergence.pdf")
plt.close()

# Initial value and boundary values guesses

# To be honest, this is a bit of feeling and is not completely
# obvious from any viewpoint because fitting is a bit random
A_guess = self.max_displacement

A_low = 0.9 + A_guess

A_upper = 2 » self.max_displacement

t_decay = le3 + unyt.s

t_decay_low = np.ones(len(index_to_consider)) + le-2 + t_decay
t_decay_low[1l] «= 4

t_decay_upper = le5 » t_decay

omega = natural_frequencies[0]

omega_low = 0.9 + omega

omega_upper = 1.1 « omega

p® = [A_guess.value, t_decay.value, omega.value, np.pi/2.]
phi_low = np.ones(len(index_to_consider)) « 0.9 « np.pi/2
phi_low[1] = 0.

for index, (dataset, node_id, label, colour) in enumerate(zip(self.dataset_array, index_to_consider
, self.label_name, self.colour_array)):

time=dataset.time ()

z = dataset.nodes[f"{node_id:d}"]["dz"]
mean_displacement = -np.average(z)

z += mean_displacement
time.convert_to_units("s")

bounds = ([A_low.value, t_decay_low.value[index], omega_low, phi_low[index]],[A_upper.value,
t_decay_upper.value, omega_upper, 1.1«p®[-1]]1)

popt, pcov = sco.curve_fit(func_disp, time, z, pO=p®, bounds=bounds)

self.fitted_parameters["natural_frequencies"]["fitted n=0"][index] = popt[2]

self.fitted_parameters["amplitude"][index] = popt[0]
self.fitted_parameters["amplitude error"][index] = np.sqrt(pcov[0][0])

self.fitted_parameters["decay time"][index] = popt[1]
self. fitted_parameters["decay time error"][index] = np.sqrt(pcov[1][1])

self.fitted_parameters["phase offset”][index] = popt[3]

self.fitted_parameters["phase offset error"][index] = np.sqrt(pcov[3]1[3])

plt.plot(time, z)

plt.plot(time, func_disp(time, popt[0®]+«unyt.mm, popt[l]+unyt.s, popt[2]/unyt.s, popt[3]))
plt.savefig(f"{self.save_dir}/test_{index:d}.pdf")

plt.close()

# Now that we stored all the different fitted values we can compare them and check the convergence

matplotlib.rcParams.update({"figure.figsize": (6.15, 8.15)})

fig, axs = plt.subplots(3, sharex=True)

base = self.fitted_parameters["natural_frequencies"]["fitted n=0"][-1]

axs[0].plot(res_axis, np.abs(base - self.fitted_parameters["natural_frequencies"]["fitted n=0"1)/
self.fitted_parameters["natural_frequencies"]["fitted n=0"], "o-")

base = self.fitted_parameters["amplitude"][-1]
axs[1].plot(res_axis, np.abs(base - self.fitted_parameters["amplitude"])/self.fitted_parameters["
amplitude"], "o-")

base = self.fitted_parameters["decay time"][-1]
axs[2].plot(res_axis, np.abs(base - self.fitted_parameters["decay time"])/ self.fitted_parameters["
decay time"], "o-")

axs[0].set_ylabel("rel. diff. $\\omega_03$")
axs[1l].set_ylabel("rel. diff. $A$")
axs[2].set_ylabel("rel. diff. $t_{\\rm delay}$")
axs[2].set_xlabel (res_name)
axs[0].set_xscale("log")
axs[0].set_ylim(le-5,1e0)
axs[1l].set_ylim(le-5,1e®)
axs[2].set_ylim(le-5,3e7)
for ii in range(9,3):
axs[ii].tick_params(axis="both", which="both", direction="in", bottom=True, top=True, right=True,
left=True)
axs[ii].set_yscale("log")
plt.subplots_adjust(wspace=0, hspace=0)

plt.savefig(f"{self.save_dir}/convergence_of_properties.pdf", bbox_inches="tight")
plt.close()

def func_disp(t, A, t_decay, omega, phi):
return A « np.sin(omega + t + phi) « np.exp(- t / t_decay)

if __name__ =

directory = "
CantileverBeam4Ommx10mmRes1.25mm", "CantileverBeam4®mmx10OmmRes®.625mm", "
CantileverBeam4Ommx10mmRes0.3125mm", "CantileverBeam4Ommx1OmmRes®.15625mm"]

base_name = ["cantileverbeam4OmmxlOmmres5mm", "cantileverbeam4®mmxl1Ommres2.5mm", "
cantileverbeam4®mmx10mmresl.25mm", "cantileverbeam4®mmx1Ommres®.625mm", "
cantileverbeam4®mmx10mmres®.3125mm", "cantileverbeam4Ommx10Ommres®.15625mm"]

label_name = ["5 mm", "2.5 mm", "1.25 mm", "0.625 mm", "0.3125 mm", "0.15625 mm"]

res_var = [5, 2.5, 1.25, 0.625, 0.3125, 0.15625]
index_to_consider = np.array([18, 51, 165, 585, 2193, 8481])

make_vertical_displacement_plot(directory, base_name, index_to_consider, label_name, colour_array)
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Radioss file creator

c.1/c1n

To create RADIOSS starter files for the studied problems a module was created that
effectively creates the model and other input in the OPENRADIOSS input format. Ad-
ditionally, this allows for an efficient way of creating different meshes with different

numerical resolutions.

#!/usr/bin/env python3

import numpy as np

import unyt

from unyt import mm, cm, m, kg, g, s
import yaml

from yaml.loader import Safeloader
import sys

class createRadiossFile:
def __init__(self, yaml_file_name):
"""I initialise the createRadiossFile class

@param self the instance of the class
@param yaml_file_name the yaml file name

@return initialised class
self.yaml_file_name = yaml_file_name

# Load the YAML file
self.load_YAML_file()

# initialise the node grid
self.initialise_nodes ()

def print_rad_file(self):
"""1 Print the rad file to the screen

@param self the instance of the class

gffturn Print the rad file to the screen

self.begin_section()

if self.material_number ==
self.mat_law_nol()

elif self.material_number ==
self.mat_law_no2()

if self.type_of_element == "shell":
self.create_sheet_of_nodes ()
elif self.type_of_element == "beam":

self.create_line_of_nodes()

self.create_boundary_condition(l, "111 111", 2)

if self.type_of_element == "shell":
self.group_of_nodes("Corresponding boundary nodes", 2, self.ID_nodes[:, 0])
elif self.type_of_element == "beam":

self.group_of_nodes("Corresponding boundary nodes", 2, [self.ID_nodes[0]])
self.create_boundary_condition(2, "000 000", 3)

if self.type_of_element == "shell":
self.group_of_nodes("Corresponding boundary nodes", 3, self.ID_nodes[:, -1]
self.create_quad_shell_elements ()
self.create_mov ()
self.write_shell_properties(l)
elif self.type_of_element == "beam":
self.group_of_nodes("Corresponding boundary nodes", 3, [self.ID_nodes[-1]])
self.create_beam_elements ()
self.write_beam_properties (1)

# Write a function to the screen
x = np.zeros(2)

x[1] = le30

y = np.ones(2)
self.write_function(l, x, y)

if self.type_of_element == "shell":
self.write_force_shell ()
elif self.type_of_element == "beam":

self.write_force_beam()

# Define the part
self.print_section_rad_file(" Parts")
print("/PART/3")

print("# part title")
print("Our_part")

print ("#prop_ID
print ("

——

mat_ID |subset_ID| virtual thickness| ")
2 ")

if self.use_damping == True:
self.damping(5)

# time outputs for nodes
self.print_section_rad_file(

"Input the desired information for the time file output"”
)

print("/TH/NODE/2")
print("# title of nodes to follow in depth")
print ("TH_Measuring_Nodes")
print(
"# var_ID1| var_ID2 | var_ID3| var_ID4 | var_IDS5| var_ID6 | var_ID7|
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119

145

147

191

def

var_ID10|"
)
print (" DEF XYz A DRX DRY DRZ")
print("# node ID| skew_ID or frame_ID")

# Select the middle nodes for shells and all nodes for beams
if self.type_of_element == "shell":
list_of_indices_in_text_file = self.ID_nodes[
int(np.floor(self.N_elements_width / 2.0)),

1
skew_ID = 1

elif self.type_of_element == "beam":
list_of_indices_in_text_file = self.ID_nodes
skew_ID = 0

for current_node_ID in list_of_indices_in_text_file:
print (f"{current_node_ID:10d}{skew_ID:10d}")

load_YAML_file(self):
"""1 Load the YAML file to variables in the class

@param self the instance of the class

@return nothing
# open the YAML file itself
# initialize all the different variables
with open(self.yaml_file_name) as f:
self.yaml_data = yaml.load(f, Loader=SafelLoader)

# read the strings of the units
self.unit_M_str = self.yaml_data["InternalUnitSystem"]["UnitMass"]
self.unit_L_str = self.yaml_data["InternalUnitSystem"]["UnitLength"]
self.unit_T_str = self.yaml_data["InternalUnitSystem"]["UnitTime"]
# set the correct units in the file
if self.unit_M_str == "kg":
self.unit_M = unyt.kg
elif self.unit_M_str == "g":
self.unit_M = unyt.g
else:
sys.exit("Undefined unit for mass!")
if self.unit_L_str == "mm":
self.unit_L = unyt.mm
elif self.unit_L_str == "m":
self.unit_L = unyt.m
elif self.unit L _str == "cm":
self.unit_L = unyt.cm
else:
sys.exit("Undefined unit for length!™)

if self.unit_T_str == "ms":
self.unit_T = unyt.ms
elif self.unit_T_str == "s":
self.unit_T = unyt.s
else:
sys.exit("Undefined unit for time!")

# set the dimensions of the beam element

self.thickness = (
float(self.yaml_data["BeamDimension"]["Thickness"]) » self.unit_L

)

self.width = float(self.yaml_data["BeamDimension"]["Width"]) + self.unit_L
self.length = float(self.yaml_data["BeamDimension"]["Length"]) « self.unit_L

self.area = self.thickness « self.width
self.I1_7ZZ = self.thickness +» self.width«+«3 / 12.
self.I_YY = self.thickness+«3 + self.width / 12.

# set the zero coordinates

self.x_0, self.y 0, self.z_0 = self.yaml_data["BeamDimension"][
"CoordinateSystemZeroPoint"

]

self.x_0 «= self.unit_L
self.y_0 += self.unit_L
self.z_0 «= self.unit_L

# set the type of element

self.type_of_element = self.yaml_data["NumericalResolution"][
"TypeOfElement"

]

self.small_strain_option_flag = (
int(self.yaml_data["NumericalResolution"]["SmallStrainOptionFlag"])
)

if self.type_of_element == "shell":

self.shell_element_size = (
float(self.yaml_data["NumericalResolution"]["ShellElementSize"])
« self.unit_L

)

self.vertical_integration_points = int(
self.yaml_data["NumericalResolution"]["VerticalIntegrationPoints"]

)

self.shell_thickness = self.thickness
self.shell_four_formulation = int(
self.yaml_data["NumericalResolution"]["ShellFourFormulation"]

)
try:
self.shell_numerical_damping = float(
self.yaml_data["NumericalResolution"]["ShellNumericalDamping"]
except:

self.shell_numerical_damping = 0.015
elif self.type_of_element "beam":
self.beam_element_size = (
float(self.yaml_data["NumericalResolution"]["BeamElementSize"])
« self.unit_L

)

self.beam_membrane_damping = (
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float(self.yaml_data["NumericalResolution"]["BeamMembraneDamping"])

self.beam_flexural_damping = (
float(self.yaml_data["NumericalResolution"]["BeamFlexuralDamping"])

self.beam_formulation_flag = (
int(self.yaml_data["NumericalResolution"]["BeamFormulationFlag"])

self.I_XX = self.beam_element_size » self.width««3 / 12.

# def write_shell_properties(shell_number, shell_thickness, node_4_formulation=24,
number_of_shell_integration_points=5):

# Read the metadata

self.run_name = self.yaml_data["MetaData"]["RunName"]

self.author = self.yaml_data["MetaData"]["Author"]

# Read the material data

self.material_number = int(
self.yaml_data["MaterialProperties"]["LawNumber"]

)

# Read general properties of the material

self.density = float(self.yaml_data["MaterialProperties"]["Density"])

self.youngs_modulus = float(
self.yaml_data["MaterialProperties"]["YoungsModulus"]

)

self.poisson_ratio = float(
self.yaml_data["MaterialProperties"]["PoissonRatio"]
)

if self.material_number == 2:
self.yield_stress = float(
self.yaml_data["MaterialProperties"]["YieldStress"]

)

self.material_input_type_flag = int(
self.yaml_data["MaterialProperties"]["InputTypeFlag"]

)

self.ultimate_tensile_eng_stress = float(
self.yaml_data["MaterialProperties"][
"UltimateTensileEngineeringStress"”

]

)
self.eng_strain_at_UTS = float(
self.yaml_data["MaterialProperties"]["EngineeringStrainAtUTS"]

self.strain_rate_coeff = float(
self.yaml_data["MaterialProperties"]["StrainRateCoefficient"]

self.material_failure_model = self.yaml_data["MaterialProperties"][
"FailureModel"
1

self.total_force = -float(self.yaml_data["AppliedForce"]["TotalForce"])
self.type_of_force = self.yaml_data["AppliedForce"]["TypeOfForce"]

try:

self.force_direction = str(self.yaml_data["AppliedForce"]["ForceDirection"])
except:

self. force_direction = "Z"

self.use_damping = self.yaml_data["Damping"]["UseDamping"]
# if we use damping read the parameters that are used
if self.use_damping == True:
self.rayleigh_mass_damping = float(
self.yaml_data["Damping"]["RayleighMassDamping"]

)

self.rayleigh_stiffness_damping = float(
self.yaml_data["Damping"]["RayleighStiffnessDamping"]

)

self.start_time = float(self.yaml_data["Damping"]["StartTime"])
self.end_time = float(self.yaml_data["Damping"]["EndTime"])

def initialise_nodes(self):
"""1 Initialise the nodes inside the class

@param self the instance of the class

@return nothing

if self.type_of_element == "shell":
self.initialise_nodes_shell ()
elif self.type_of_element == "beam":

self.initialise_nodes_beam()

def initialise_nodes_beam(self):
"""1 Initialise the nodes inside the class

@param self the instance of the class
@return nothing

self.N_elements_length = int(self.length / self.beam_element_size)

self.N_nodes = self.N_elements_length + 1
self.N_shell = self.N_elements_length

self.ID_nodes = np.arange(2, self.N_nodes + 2)
self.ID _orientation_node = 1
self.ID_beam = np.arange(l, self.N_shell + 1)

def initialise_nodes_shell(self):
"""1 Initialise the nodes inside the class

@param self the instance of the class

@return nothing
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316 self.N_elements_width = int(self.width / self.shell_element_size)

317 self.N_elements_length = int(self.length / self.shell_element_size)

318

319 self.N_nodes = (self.N_elements_width + 1) + (self.N_elements_length + 1)

320 self.N_shell = self.N_elements_width » self.N_elements_length

321

322 self.ID_nodes = np.arange(l, self.N_nodes + 1)

323 self.ID_nodes = self.ID_nodes.reshape(

324 (self.N_elements_width + 1, self.N_elements_length + 1)

325 )

326

327 self.ID_shell = np.arange(l, self.N_shell + 1)

328 self.ID_shell = self.ID_shell.reshape(

329 (self.N_elements_width, self.N_elements_length)

330 )

331

332 def print_section_rad_file(self, argument_name):

333 """1 Prints the argument name comment section

334

335 @param argument_name the name in the comment

336

337 @return prints the comment section

s Wi

339 print ("##")

340 print("##" + "-" .+ 98)

341 print (f"## {argument_name}")

342 print("##" + "-" )

343 self.print_numbers()

344

345 def print_numbers(self):

346 """I Prints the line indents for the different Radioss blocks

347

348 @param None

349

350 @return prints the ident blocks of radioss to the screen

o Wi

352 print(

353 "
#ommlome e | === 2————| === 3————|-=—= 4| = S5———=|-=—= 6-———]-——- 7| == LR 9-+

354 )

355

356 def print_header(self):

357 """ Print a comment section with the name of the test and the author

358

359 @param none

360

361 @return Print header information to the screen

o Wi

363 print ("#RADIOSS STARTER")

364 print("#" « 100)

365 print("# " + f"{self.run_name:<50}" + "#" + 48)

366 print("# " + f"made by: {self.author:<41}" + "#" + 48)

367 comment2 = "generated with the package of Folkert Nobels"

368 print("# " + f"{comment2:<50}" + "#" . 48)

369 print("#" « 100)

370

371 def begin_section(self):

372 """1 Print the begin section with the units to the screen

373

374 @param none

375

376 @return Print the header + begin section to the screen

- Wi

378 self.print_header ()

379

380 self.print_section_rad_file("UNIT section")

381 print("/BEGIN")

382 print("# Runname")

383 print("OpenRadioss test case")

384 print("# Input version")

385 print (" 2022 0")

386 print("# input mass unit | input length unit | input time unit | "

387 print(f"{self.unit_M_str:>20}{self.unit_L_str:>20}{self.unit_T_str:>20}")

388 print("# work mass unit | work length unit | work time unit |

389 print(f"{self.unit_M_str:>20}{self.unit_L_str:>20}{self.unit_T_str:>20}")

390 print ("##")

391

392 def mat_law_no2(self):

393 """1 Print the material law number 2 to the screen

394

395 @param none

396

397 @return Print the information of material law 2 to the screen

398 e

399 self.print_section_rad_file("Material Law No 2. JOHNSON-COOK ELASTOPLASTIC")

400 print("/MAT/PLAS_JOHNS/2")

401 print("# material title")

402 print("Steel _DP600 ")

403 print("# density ")

404 print(f"{self.density:20.14E}")

405 print("# Young’s modulus | Poisson’s ratio | input type flag [")

106 print(

407 f"{self.youngs_modulus:20.16f} {self.poisson_ratio:19.15f}{self.material_input_type_flag:10
arr

408 )

409 print(

410 "# yield stress | ultimate tensile | eng. strain at | strain rate coeff.|"

a11 )

412 print(

413 "# | eng. stress (UTS) | UTS | ¢>0,c=0->no strain|"

414 )

415 print(

416 f"{self.yield_stress:20.13e} {self.ultimate_tensile_eng_stress:19.13e} {self.
eng_strain_at_UTS:19.13e} {self.strain_rate_coeff:19.13e}"

417 )

418 print(

419 "# strain rate coef.|ref.strain rate(SR)| SR flag | SR smoo-|cutoff frequency Hardening
coeff. | "

420

421 print(
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422 "# def=0.0 | | thing fl.]|for SR smoothing | C
unloading) "

423 )

424 print(

425 "

426 )

427 print

428 "# temperature coef.|Melting temperature|specific heat per |Reference tempera- |"

429 )

430 print(

431 "# | Tmelt=0>no temp eff| unit volume | ture de=298K | "

432

433 print(

434 "

435 )

436

437 if self.material_failure_model:

438 self. failure_model ()

439

440 def mat_law_nol(self):

441 """1 Print the material law number 1 to the screen

442

443 @param none

444

445 @return Print the information of material law 2 to the screen

446 e

447 self.print_section_rad_file("Material Law No 1. Purely linearly elastic model")

448 print("/MAT/LAWL1/2")

449 print("# material title")

450 print("Steel_DP600 ")

451 print("# density ")

452 print(f"{self.density:20.14E}")

453 print("# Young’'s modulus | Poisson’s ratio "

454 print(f"{self.youngs_modulus:20.14f}{self.poisson_ratio:20.14f}")

455

456 def failure_model(

457 self,

458 failure_plastic_strain_in_unaxial_tension=0.75,

459 comment="Failure criterion of steel”,

460 )

Print the failure model to the screen

463 @param comment comment printed before the failure model block

464

465 @return print the failure criterion to the screen

466

467 e

468 self.print_section_rad_file(comment)

469 print("/FAIL/BIQUAD/2")

470 print("# Failure plastic strain at:")

471 dummy_string = " "

472 print(

473 "# uniaxial compres.| shear | in unaxial tension| plain strain tens.| biaxial
tension "

474 )

475 print(

476 £"{dummy_string:>20}{dummy_string:>20}{failure_plastic_strain_in_unaxial_tension:20.14f}"

477 )

478 print("# Damage accumulation parameters: ")

479 print(

480 "# Ratio of failed | Material|specific |instability start |element size factor|reference
element |"

481 )

182 print(

483 "# integ. points |sel. flag|behv.flag|for loc. necking |identifier | size, def
=1. "

484 )

485 # Do we want to make this also variables in the function?

486 print (" 2")

487

488 def print_item_string(self):

489 """1 print item identation to the screen

490

491 @param none

492

493 @return Print the item identation to the screen

494 e

195 print(

496 "#item_ID1| item_ID2| item_ID3| item_ID4| item_IDS5| item_ID6| item_ID7| item_ID8| item_ID9]|
item_ID10|"

497 )

498

499 def group_of_nodes(self, comment, number, group_of_nodes):

Create a group of nodes

502 @param comment group of nodes comment

503 @param number number of the group of nodes

504 @param group_of_nodes array of the ID of the nodes

505

506 @return Print the group to the screen

507 e

508 self.print_section_rad_file(comment)

509 print (£"/GRNOD/NODE/{number:d}")

510 print("# node group for example for bounary condtions")
511 self.print_item_string()

512 print(

513 "grnodnode", end=""

514 ) # we skip \n because that is included in the for loop
515

516 # loop through the different nodes

517 for i in range(®, len(group_of_nodes)):

518 # check if number is devisable by 10 because then we want a new line
519 if i % 10 0:

520 print("\n", end="")

521

522 # write the node number to the file

523 print (£"{group_of_nodes[i]:10d}", end="")
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525 # space because we want to go the next line and not have the next output starts on this line
526 print(" ")

527

528 def create_line_of_nodes(self):

529 """ Create a line of nodes

530

531 @param none

532

533 @return print the node information to the screen

) Wi

535 self.print_section_rad_file("NODES")

536 print("/NODE")

537 print("# node_ID| X coordinate | Y coordinate | Z coordinate ")
538 x = self.x 0

539 y = self.y_0 + self.length

540 = self.z_0

541 prlnt(f {self.ID _orientation_node:10d} {x.value:19.6f} {y.value:19.6f} {z.value:19.6£f}")
542 for i in range(®, self.N_elements_length + 1):

543 x = self.x_0 + self.length « i / (self.N_elements_length)

544 y = self.y_0

545 = self.z_0

546 prlnt(f"{self ID_nodes[i]:10d} {x.value:19.6f} {y.value:19.6f} {z.value:19.6£f}")
547

548 def create_sheet_of_nodes(self):

549 """ Create a sheet of nodes

550

551 @param none

552

553 @return print the node information to the screen

o Wi

555 self.print_section_rad_file("NODES")

556 print("/NODE")

557 prlnt("# node_ID| X coordinate | Y coordinate | Z coordinate ")
558 for i in range(@ self.N_elements_width + 1):

559 for j in range(®, self.N_elements_length + 1):

560 x = self.x_0 + self.length - j / (self.N_elements_length)
561 y = self.y_0 + self.width + i / (self.N_elements_width)

562 z = self.z @

563 print(

564 f"{self.ID_nodes[i,j]:10d} {x.value:19.6f} {y.value:19.6f} {z.value:19.6f}"
565 )

566

567 def create_boundary_condition(

568 self, boundary_ID, DOF_string, particle_group, skewnr=0

569 )

570 """1 print the boundary condition section to the screen

571

572 @param boundary_ID ID of this boundary condition

573 @param DOF_string degrees of freedom string

574 @particle_group ID of the particle group this should apply to
575 @skewnr (optional) skew number

576

577 @return print the boundary section to the screen

578 e

579 self.print_section_rad_file(f"Boundary Conditions {boundary_ID:d}")
580 print(£"/BCS/{boundary_ID:d}")

581 print("# boundary condition title")

582 print(f"constraint{boundary_ID:d}")

583 print("#Trarot | skew_ID | grnd_ID [|")

584 print (£"{DOF_string:>10}{skewnr:10d}{particle_group:10d}")

585

586 def create_mov(self):

print the mov part to the screen

589 @param none

590

591 @return print the mov section to the screen
592

593 # Define the relative motion

594 self.print_section_rad_file("Frames - Mov")
595 print("/FRAME/MOV/1")

596 print("# frame title")

597 print(" ")

598 ID1 = self.ID_nodes[0, 0]

599 ID2 = self.ID_nodes[0, 1]

600 ID3 = self.ID_nodes[1, 0]

601 print("#node_ID1| node_ID2| node_ID3| dir ID1 ID2 axis (def=X)")
602 print(£"{ID1:10d}{ID2:10d}{ID3:10d}")

603

604 def create_beam_elements(self):

print the quad shell output for the input ID_shell and ID_nodes

607 @param none

609 @return print the quad shell section to the screen

610 e

611 self.print_section_rad_file("Quad Shell Elements")

612 print ("/BEAM/3")

613 print("# beam ID| node_ID1| node_ID2| node_ID3|")

614 for i in range(®, self.N_elements_length):

615 current_node_IDs = [self.ID_nodes[i], self.ID_nodes[i+1], self.ID_orientation_node]

616 print(f"{self.ID_beam[i]:10d}{current_node_IDs[0]:10d}{current_node_IDs[1]:10d}{
current_node_IDs[2]:10d}")

617

618 def create_quad_shell_elements(self):

619 """ print the quad shell output for the input ID_shell and ID_nodes

620

621 @param none

622

623 @return print the quad shell section to the screen

624

625 self.print_section_rad_file("Quad Shell Elements")

626 print("/SHELL/3")

627 print(

628 "#shell ID| node_ID1| node_ID2| node_ID3| node_ID4| |Orthotropy angle | shell

thickness"

629 )

630 print(

631 "# |wrt element skew |default->

specified property"
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632 )

633 for i in range(0®, self.N_elements_width):

634 for j in range(0®, self.N_elements_length):

635 current_node_IDs = self.ID_nodes[i : i + 2, j : j + 2]

636 current_node_IDs = current_node_IDs.flatten()

637 print(

638 f"{self.ID_shell[i,j]:10d}{current_node_IDs[1]:10d}{current_node_IDs[3]:10d}{

current_node_IDs[2]:10d}{current_node_IDs[0]:10d}"

639 )

640 def write_beam_properties(self, beam_number):

641 """1 Print the shell properties of this type of shell

642

643 @param beam_number ID of beam type

644

645 @return print the beam properties to the screen

646

647

648 blanc = " "

649 self.print_section_rad_file(f"Beam Property Set (pid {beam_number:d})")

650 print (£"/PROP/BEAM/{beam_number:d}")

651 print("line_1.7")

652 print("# | I_SMSTR [|")

653 prlnt(f"{blanc <10}{self.small_strain_option_ flag 10d}™)

654 print("#beam membrane damp|beam flexural damp

655 prlnt(f {self.beam_membrane_ damplng 20. 13f}{self beam_flexural_ damplng 2@ 13£3}™)

656 print("# Area | ZZ | "

657 print(f"{self.area.value:20. 13f}{se1f I_YY.value: 20 13f}{self.I1_7Z. value 20.13f}{self.I_XX.

value:20.13£f}")

658 print ("#0megaDOF| I_shear|")

659 DOF = "000 000"

660 print (£"{DOF:>10}{self.beam_formulation_flag:10d}")

661

662 def write_shell_properties(self, shell_number):

663 """ Print the shell properties of this type of shell

664

665 @param shell_number ID of shell type

666

667 @return print the shell properties to the screen

668

669

670 blanc = " "

671 self.print_section_rad_file(f"Shell Property Set (pid {shell_number:d})")

672 print(£"/PROP/SHELL/{shell_number:d}")

673 print("# Shell properties title")

674 print("sheet_1.7")

675 print(

676 "# 4 node |shellsmall|3 node |drilling | pinch dof | ratio of through thickness"

677 )

678 print(

679 "# element|strain |element |dof stiff] | integration points that must"

680 )

681 print(

682 "# -formulation- | -ness | | fail bfore the element is
delated"

683 )

684 print(f"{self.shell_four_formulation:10d} ")

685

686 print(

687 "# Shell membrane | Shell out-of- | shell rotation | shell membrane | shell
numerical "

688 )

689 print(

690 "# hourglass coeff. | plane hourglass | hourglass coeff. | damping | damping

I

691 )

692 print(

693 f"{blanc:<20}{blanc:<20}{blanc:<20}{blanc:<20}{self.shell_numerical_damping:20.14f}"

694 )

695

696 print(

697 "# number of integra-| shell thickness | Shear factor | Shell resultant | Shell
plane stress|"

698 )

699 print(

760 "#tion points through| | stress calculation]|
plasticity flag "

701 )

702 print(

703 "#the thickness <10 |

"

704 )

705

706 print(

707 f"{self.vertical_integration_points:10d}{blanc:<10}{self.shell_thickness.value:20.14f}

1 1
708 )

710 def write_function(self, function_ID, x, y):
"""1 Write a function that can be called inside the radioss file to the screen

713 @param function_ID function ID (is used to call this function in other code blocks)
714 @param x array of x values

715 @param y array of y values

716

717 @return write the function to the screen

718

719 self.print_section_rad_file(f"Function {function_ID:d}")
720 print(£"/FUNCT/{function_ID:d}")

721 print("Load”)

722 print( #4018 + "X o+ " w19+ "Y")

723 for xi, yi in zip(x, y):

724 print(£"{xi:20.13e}{yi:20.13e}")

725

726 def write_force_beam(

727 self,

728 direction="Z"

729 group_ID_edge=1,

730 cload_ID_edge=3,

731 ):

Write the force with its group nodes
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def

@param direction (optional) direction of the force
@param group_ID_edge (optional) ID of the group of particles in the corner/edge
@param cloud_ID_edge (optional) ID of cload on the edge/corner particles

@return write the imposed force to the screen with the different nodel group that are required
for this force
if self.type_of_force == "line force":
# We only need the node at the very edge
nodes_boundary = [self.ID_nodes[-1]]

# Calculate the total force
force = self.total_force
# print information about the line testing
self.print_section_rad_file(
"Line loading for test"

)
print(£"/CLOAD/{cload_ID_edge}")
print("# title of the imposed load")
print("imposed_load")
print(
"#fct_IDT | Dir | skew_ID | sens_ID | grnd_ID | | Ascale_x
Fscale_y "

blanc =

fscale = force
print(
f"{1:10d}{direction:>10}{blanc:>10}{blanc:>10}{group_ID_edge:10d}{blanc:>10}{1.0:20.16f}{
fscale:20.16f}"
) # {" Mi<1OF{" ":<10}{" ":<10}{1.0:10.6f}{1.0:10.6f}")

# print the group of nodes of interest
self.group_of_nodes(
"Particles for load in the cente at the boundary",
group_ID_edge,
nodes_boundary ,
)

elif self.type_of_force == "area force":
error (0)

write_force_shell(
self,
direction="Z",
group_ID_centre=1,
group_ID_edge=4,
cload_ID_centre=3,
cload_ID_edge=4,

Write the force with its group nodes

@param direction (optional) direction of the force
@param group_ID_edge (optional) ID of the group of particles in the corner/edge
@param cloud_ID_edge (optional) ID of cload on the edge/corner particles

Illustration of the difference between corner/edge and centre particles

777777777 #--# <--- corner particle --> ——#--
| /edge |

--------- #--# <-—— centre particle --> —-#--
| |

————————— #--# <--- centre particle --> —-#--
| |

————————— #--# <--- corner particle --> —-#--

/edge

@return write the imposed force to the screen with the different nodel groups that are required
for this force

if self.type_of_force == "line force" and self.force_direction=="Z":
# Determine the nodes that are at the boundary
nodes_second_rigid = self.ID_nodes[:, -1:].flatten()

# Determine the nodes that are at the corner and not at the corner
nodes_not_edge = nodes_second_rigid[1:-1]
nodes_edge = [nodes_second_rigid[0], nodes_second_rigid[-1]]

# unit of force
# corners have half the force of the edge because they are just attached to
# a single shell element instead of two
force_corner_node = self.total_force / (
len(nodes_edge) + 2 + len(nodes_not_edge)

force_boundary_node = 2 « force_corner_node

if len(nodes_not_edge) < 1:
elements_in_centre = False
else:
elements_in_centre = True

if elements_in_centre:
# print information about the line testing
self.print_section_rad_file(
"Line loading for test (elements in centre of load)"
)

print (£"/CLOAD/{cload_ID_centre}")
print("# title of the imposed load")
print ("imposed_load")
print(
"#fct_IDT | Dir | skew_ID | sens_ID | grnd_ID | | Ascale_x
Fscale_y |

blanc =

fscale = force_boundary_node
print(
f"{1:10d}{direction:>10}{blanc:>10}{blanc:>10}{group_ID_centre:10d}{blanc
:>103{1.0:20.16f}{fscale:20.16£f}"
) # {" "i<103{" ":<10}{" ":<10}{1.0:10.6f}{1.0:10.6f}")

# print the group of nodes of interest
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839
840
841

843

878
879

self.group_of_nodes(
"Particles for load in the cente at the boundary",
group_ID_centre,
nodes_not_edge,

)

self.print_section_rad_file("Line loading for test (corner)")
print (£"/CLOAD/{cload_ID_edge}")

print("# title of the imposed load")

print("imposed_load")

print(
"#fct_IDT | Dir | skew_ID | sens_ID | grnd_ID | | Ascale_x
Fscale_y "
blanc = " "
direction = "Z"

fscale = force_corner_node
print (
£f"{1:10d}{direction:>10}{blanc:>10}{blanc:>10}{group_ID_edge:10d}{blanc:>10}{1.0:20.16f
}{fscale:20.16£f}"
) # {" Mi<10F{" ":<10}{" ":<10}{1.0:10.6f}{1.0:10.6£f}")

self.group_of_nodes(
"Particles for load at the edge", group_ID_edge, nodes_edge

)
elif self.type_of_force == "line force" and self.force_direction=="Y":

# Determine the nodes that are at the boundary
nodes_second_rigid = self.ID_nodes[:, -1:].flatten()

ID_of_node = nodes_second_rigid[0]

# get the applied force
force = -self.total_force

self.print_section_rad_file("point loading for test")
print(£"/CLOAD/{cload_ID_edge}")

print("# title of the imposed load")
print("imposed_load")

print(
"#fct_IDT | Dir | skew_ID | sens_ID | grnd_ID | | Ascale_x
Fscale_y "
blanc = " "
direction = "Y"
fscale = force
print(

£f"{1:10d}{direction:>10}{blanc:>10}{blanc:>10}{group_ID_edge:10d}{blanc:>103}{1.0:20.16f
:20.16£}"
1<10F{" ":<10}{1.0:10.6f}{1.0:10.6f}")

self.group_of_nodes(
"Particles for load at the edge", group_ID_edge, [ID_of_node]
)

elif self.type_of_force == "area force" and self.force_direction=="2":

# Determine the nodes that have 4 shells
nodes_four_shells = ID_nodes[1l:-1, 1:-1].flatten()

# Determine the nodes that have two shells, these are 3 boundaries, because
# for one boundary we impose a boundary condition.

nodes_two_shells = ID_nodes[:, -1].flatten()[1:-1]

nodes_two_shells = np.append(nodes_two_shells, ID_nodes[0, 1:].flatten())
nodes_two_shells = np.append(nodes_two_shells, ID_nodes[-1, 1:].flatten())

# determine the two nodes that have only 1 shell element
nodes_one_shell = np.array([ID_nodes[:, -1][0], ID_nodes[:, -1]1[1]11)

force_one_shell = force_total / (
len(nodes_one_shell)
+ 2 » len(nodes_two_shells)
+ 4 « len(nodes_four_shells)
)
force_two_shell = 2.0 « force_one_shell
force_four_shell = 4.0 » force_one_shell

# print information about the line testing
print_section_rad_file("Surface force for the central nodes")
print(£f"/CLOAD/{cload_ID_centre}")
print("# title of the imposed load")
print("imposed_load")
print(
"#fct_IDT | Dir | skew_ID | sens_ID | grnd_ID | | Ascale_x
Fscale_y "

blanc =

fscale = force_four_shell
print (
f"{1:10d}{direction:>10}{blanc:>10}{blanc:>10}{group_ID_centre:10d}{blanc
:>103{1.0:20.16f}{fscale:20.16£f}"
) # {" "i<10F{" ":<10}{" ":<10}{1.0:10.6f}{1.0:10.6f}")

# print the group of nodes of interest

group_of_nodes (
"Particles for load in the cente at the boundary",
group_ID_centre,
nodes_four_shells,

)

# Force on edge

print_section_rad_file("Line loading for test (edge)")
print(£"/CLOAD/{cload_ID_edge}")

print("# title of the imposed load")
print("imposed_load")

print(
"#fct_IDT | Dir | skew_ID | sens_ID | grnd_ID | | Ascale_x
Fscale_y "
)
blanc = " "
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943 direction = "Z"

944

945 fscale = force_two_shell

946 print(

947 f"{1:10d}{direction: >1@}{blanc >10}{blanc:>10}{group_ID_edge:10d}{blanc:>10}{1.0:20.16f

}{fscale:20.16f}"

948 ) # {" Mi<103{" ":<10}{" ":<103}{1.0:10.6f}{1.0:10.6£f}")

949

950 group_of_nodes (

951 "Particles for load at the edge", group_ID_edge, nodes_two_shells

952 )

953

954 group_ID_corner = group_ID_edge + 10

955 # Force on corner

956 print_section_rad_file("Line loading for test (edge)")

957 print (£"/CLOAD/{cload_ID_edge}")

958 print("# title of the imposed load")

959 print("imposed_load")

960 print(

961 "#fct_IDT | Dir | skew_ID | sens_ID | grnd_ID | | Ascale_x

Fscale_y "

962 )

963 blanc = " "

964 direction = "Z"

965

966 fscale = force_one_shell

967 print(

968 f"{1:10d}{direction:>10}{blanc: >1®}{blanc >10}{group_ID_corner:10d}{blanc

:>103{1.0:20.16f}{fscale:20.16

969 ) # {" " <1®}{” "r<10}{" ":<10}{1.0:10. 6f}{1.®.1®.6f?ﬁ

970

971 group_of_nodes (

972 "Particles for load at the edge", group_ID_corner, nodes_one_shell

973 )

974

975 def damping(self, group_ID):

976 self.group_of_nodes(

977 "All particles should be damped", group_ID, self.ID_nodes.flatten()

978 )

979

980 self.damping_parameters (group_ID)

981

982 def damping_parameters(self, group_ID, skew_ID=None, damp_ID=1, title="damp_title"):

983 """ Create a damping section

984

985 @param alpha Mass damping coefficient used for all DOF

986 @param beta Stiffness damping coefficient used for all DOF

987 @param group_ID The group ID on which the damping is applied

988 @param start_time Start time of the damping

989 @param end_time Stop time of the damping

999 @param skew_ID (optional) skew identifier

991 @param damp_ID (optional) damping identifier

992 @param title (optional) title name of the damping

993

994 @return Print the damping section to the screen

995

996

997 self.print_section_rad_file("Damping section")

998 print (£"/DAMP/{damp_ID:d}")

999 print("# Title of damping section")

1600 print(f"{title}")

1001 print(

1002 "# Mass damp coeff. |stiffness dampcoeff| grnd_ID | skew_ID | start time | end time
|

1003 )

1604 skew_string = ""

1005 if skew_ID is not None:

1006 skew_string = f"{skew_ID:10d}"

1007 print(

1608 f"{self.rayleigh_mass_damping:20.14f}{self.rayleigh_stiffness_damping:20.14f}{group_ID:10d

}{skew_string:<10}{self.start_time:20.13e}{self.end_time:20.13e}"
1609 )
1010

1012 HHARHRAHRARBHRHRRRRARAHRARRBHRARRRRARRHRARRRRARRARARRBRARRARAHRARARRARARRARAHRHHRA
1013 # Read the YAML file

1015 # the YAML file is the second argument after the script name
1016 yaml_file_name = str(sys.argv[1l])

1018 radioss_file = createRadiossFile(yaml_file_name)

120 radioss_file.print_rad_file(Q)
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