
Mobility & Built Environment
Molengraaffsingel 8
2629 JD Delft
P.O. Box 49
2600 AA Delft
The Netherlands

www.tno.nl

T +31 88 866 22 00

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

TNO report

TNO 2024 R11057A | Final

V2004-WP3.1: OpenRadioss as a
reliable replacement for LS-DYNA

Date April 23, 2025

Author(s) F.S.J. Nobels M.Sc.

Classified by ir J.A.A. Vaders
Classification date 25-10-2024

This classification will not change

Title Ongerubriceerd, releasable to the public
Management summary Ongerubriceerd, releasable to the public
Report text Ongerubriceerd, releasable to the public
Appendices Ongerubriceerd, releasable to the public

Copy no
No. of copies 2
Number of Pages 120 (incl. appendices excl. distribution list)
Number of appendices 3

Sponsor COMMIT
Project name V2004 WP3.1 Overall UNDEX simulatietool
Project number 060.43015/01.01

The classification designation Ongerubriceerd is equivalent to Unclassified, Departementaal
Vertrouwelijk is equivalent to Restricted, Stg. Confidentieel is equivalent to Confidential and
Stg. Geheim is equivalent to Secret.

All rights reserved. No part of this report may be reproduced in any form by print, photoprint,
microfilm or any other means without the previous written permission from TNO.
All information which is classified according to Dutch regulations shall be treated by the
recipient in the same way as classified information of corresponding value in his own country.
No part of this information will be disclosed to any third party.
In case this report was drafted on instructions from the Ministry of Defence the rights and
obligations of the principal and TNO are subject to the standard conditions for research and
development instructions, established by the Ministry of Defence and TNO, if these conditions
are declared applicable, or the relevant agreement concluded between the contracting parties.

© 2024 TNO

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

MANAGEMENTUITTREKSEL TNO-RAPPORT: TNO 2024 R11057A

V2004-WP3.1: OpenRadioss as a
reliable replacement for
LS-DYNA
In V2004 heeft TNO het gebruik
onderzocht van de open source
eindige-elementenmethode
(e.e.m.) pakket OPENRADIOSS

als een (gedeeltelijke) vervanging
voor LS-DYNA. OPENRADIOSS

kan worden gebruikt om de (zeer)
dynamische en niet-lineaire struc-
turele responsie te bepalen van
constructies onder belasting.

Probleemstelling
Wij ontwikkelden de onderwater schok
code 3DCAV, 3DCAV gebruikt LS-DYNA
als een e.e.m. pakket om de struc-
turele responsie te bepalen van sche-
pen. In 2019 is LS-DYNA overgeno-
men door ANSYS. De hiermee ge-
paard gaande hogere kosten in combi-
natie met enkele andere factoren heb-
ben ertoe geleid dat besloten is om naar
alternatieven te kijken. In 2022 is RA-
DIOSS open source geworden onder de
naam OPENRADIOSS. OPENRADIOSS

heeft geen licensiekosten. Aanvullend,
OPENRADIOSS is open source, dus is
er een gemeenschap van ontwikkelaars
waarmee we rechtstreeks contact kun-
nen hebben. Het doel van dit rapport
is onderzoeken of LS-DYNA (gedeelte-
lijk) vervangen kan worden door OPEN-
RADIOSS.

Beschrijving van de werkzaam-
heden
We hebben onderzocht hoe je OPEN-
RADIOSS op servers kunt compile-

ren en gebruiken. We hebben stan-
daard benchmarktests ontwikkeld om
de nauwkeurigheid van OPENRADIOSS

te verifiëren. Specifiek, ontwikkelen
we twee sets benchmarkstesten voor
beam-/shellelementen en veerelemen-
ten. Ten eerste, ontwikkelen en gebrui-
ken we een cantilever-test om shell- en
beamelementen te verifiëren. Specifiek
hebben we een resolutietest met ver-
schillende numerieke resoluties uitge-
voerd en vergeleken de numerieke op-
lossing met de analytische oplossing.
Ten tweede ontwikkelen we voor de
veerelementen één veerelementbench-
mark met een opgelegde kracht of
opgelegde snelheid om te verifiëren
of veerelement zich correct gedragen.
Verder, vergelijken we de resultaten van
deze benchmarks met de analytische
oplossing. Bovendien gebruiken we
deze benchmarks ook om de prestaties
van high-performance computing (HPC)
te onderzoeken voor OPENRADIOSS.
Specifiek vergelijken we verschillende
parallelisatiestrategieën en bepalen de

ideale strategie op onze servers.

Resultaten en conclusies
We hebben verschillende structurele
dynamische benchmarkproblemen ge-
maakt die we hebben gebruikt om shell,
beam en eenvoudige veerelementen te
verifiëren. Tijdens het werken aan
OPENRADIOSS werden een paar pro-
blemen gevonden en de ondersteu-
ning van de ontwikkelaars van OPEN-
RADIOSS was uitstekend. We hebben
goede prestaties gevonden voor beam,
shell, en veerelementen. Wij raden aan
om verder te onderzoeken of OPEN-
RADIOSS een goede (gedeeltelijke) ver-
vanging voor LS-DYNA is.

Toepasbaarheid
Dit werk is een eerste stap om in de
toekomst meer en nauwkeuriger simu-
laties te doen met OPENRADIOSS van
de responsie van onderwaterschokken
en bovenwater dreigingen voor schepen
en onderzeeboten.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

MANAGEMENT SUMMARY TNO-REPORT: TNO 2024 R11057A

V2004-WP3.1: OpenRadioss as a
reliable replacement for
LS-DYNA
Within V2004, TNO investigated
the use of the open source finite
element method (FEM) package
OPENRADIOSS as a (partial) re-
placement for LS-DYNA. OPEN-
RADIOSS can be used to deter-
mine the (highly) dynamic and
non-linear structural response of
structures under loads.

Problem description
We developed the UNDEX (UNDer-
water EXplosion) code 3DCAV, 3DCAV

uses LS-DYNA as a FEM package to
determine the structural response of
ships. In 2019, LS-DYNA was acquired
by ANSYS. This has resulted in in-
creased costs of licenses. These in-
creased costs together with some other
issues have led to the decision to inves-
tigate other options. In 2022, RADIOSS

has become open source as OPEN-
RADIOSS, and therefore OPENRADIOSS

does not have license costs. Addition-
ally, OPENRADIOSS is open source thus
there is a community of developers that
we can be in direct contact with. The
goal of this report is to investigate if LS-
DYNA can be replaced with OPENRA-
DIOSS.

Work performed
We investigated how to compile and use

OPENRADIOSS on servers. Further-
more, we developed standard bench-
mark tests to verify the accuracy of
OPENRADIOSS. Specifically, we de-
veloped two sets of benchmark tests
for beam/shell elements and spring el-
ements. Firstly, we developed and used
a cantilever beam test to verify shell and
beam elements. Specifically, we per-
formed a resolution test at different nu-
merical resolutions and compared the
numerical solution with the analytical
solution. Secondly, for spring elements
we developed and used a single spring
element benchmark with an imposed
force or imposed velocity to verify the
accuracy of spring elements. We com-
pared the results of these benchmarks
with the analytical solution. Moreover,
we also used these benchmarks to in-
vestigate the high-performance comput-
ing (HPC) performance of OPENRA-
DIOSS. Specifically, we compared differ-

ent parallelisation strategies and deter-
mined the ideal strategy on our servers.

Results and conclusions
We created several structural dynamics
benchmark problems which we used to
verify shell, beam and simple spring el-
ements. While working on OPENRA-
DIOSS a few issues were found and the
support from the developers of OPEN-
RADIOSS was excellent. We found good
performance for beam, shell and spring
elements. We recommend continuing
investigating OPENRADIOSS as a re-
placement for LS-DYNA.

Applicability
This work is a first step towards do-
ing larger number of and more accu-
rate simulations with OPENRADIOSS in
the future of the response to underwa-
ter shocks and above-water threats for
ships and submarines.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 6 / 96

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 7 / 96

Contents

1 Introduction . 9

1.1 Historical perspective of LS-DYNA and OPENRADIOSS 10

1.2 Comparison of OPENRADIOSS and LS-DYNA 10

1.3 Recent developments and uses of OPENRADIOSS 11

1.4 This report . 13

2 Cantilever beam . 15

2.1 Analytical solution . 16

2.1.1 Natural frequencies . 16

2.1.2 Displacement . 18

2.2 Beam element formulations in Radioss 19

2.3 Shell formulations . 20

2.3.1 Kirchhoff-Love plate theory . 20

2.3.2 Reissner-Uflyand-Mindlin plate theory 21

2.3.3 Shell formulations in OPENRADIOSS 21

2.3.4 Thickness integration . 25

2.4 Constructing the cantilever beam simulations 26

2.5 Cantilever beam simulation . 27

2.5.1 Vertical displacement . 30

2.5.2 Accuracy of the solution for different time step sizes 35

2.5.3 Comparison of different hourglass and shell elements formula-
tions . 36

2.5.4 Thickness integration . 40

2.5.5 Force on the side of the cantilever beam 41

2.6 Damped cantilever beam . 43

2.7 Cantilever beam with different damping 45

2.8 Conclusions . 46

3 Springs . 49

3.1 Ideal spring . 49

3.1.1 Time evolution . 51

3.1.2 Displacement force relation . 51

3.2 Damped ideal spring . 53

3.3 Non-ideal spring . 55

3.3.1 Time evolution . 55

3.3.2 Constant extension . 59

3.4 Spring used in UNDEX analysis . 59

3.5 Conclusions . 60

4 Compiling the code . 61

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 8 / 96

4.1 Getting the code, required software and settings 61

4.2 Single node and with OpenMP . 63

4.3 Run the code over MPI . 64

4.4 Converting the output . 65

4.5 Wrapper functions and aliases . 65

4.5.1 Wrappers for converters . 65

4.5.2 SMP version . 67

4.5.3 MPI version . 67

4.5.4 .BASHRC file . 67

5 Computational performance . 69

5.1 Performance of weak scaling test . 69

5.2 Performance of strong scaling test (SMP) 71

5.3 Performance of strong scaling test (MPP) 73

5.4 High-performance computing options 74

5.4.1 Control File . 76

5.4.2 Multiple engine files . 76

5.4.3 Checkpoint file . 76

6 Advantages and Disadvantages of OPENRADIOSS 79

6.1 Advantages . 79

6.2 Disadvantages . 80

6.3 Disadvantages OPENRADIOSS specific 81

7 Conclusions and Recommendations . 83

7.1 Conclusions . 83

7.2 Recommendations for TNO . 84

7.3 Recommendations for Altair . 84

8 References . 89

9 Approval . 95

Appendices

A Getting started manual . A.1

B OPENRADIOSS time file reader . B.1

C Radioss file creator . C.1

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 9 / 96

1 Introduction

The aim of this report is to investigate OPENRADIOSS as a (partial) alternative for LS-
DYNA. LS-DYNA is intensively used in the Naval & Offshore Structures department
of TNO (TNO-NOS) to do structural analysis. LS-DYNA is used to calculate mainly
the structural response of highly non-linear and dynamic phenomena. The two main
motivations for changing from LS-DYNA to OPENRADIOSS are firstly the fact that
OPENRADIOSS is open source which means no licenses are required and the code
is accessible by TNO (without restrictions). Secondly, OPENRADIOSS has developers
supporting users and an open-source community where questions and problems can
be asked and discussed. The investigation in this report is mainly focused on the dif-
ferent element formulations and applying these to simulations for which an analytical
solution is known. This is done to verify OPENRADIOSS and find any potential prob-
lems and bugs such that they can be fixed and made aware of. While investigating
OPENRADIOSS the support of the OPENRADIOSS community is also considered.

1.1 Historical perspective of LS-DYNA and OPENRADIOSS

To get an impression of the difference and relation between LS-DYNA and OPENRA-
DIOSS a short overview of the history of both codes is given. Fig. 1.1 shows the DYNA
family tree. Originally, DYNA3D was developed to simulate the impact of the Full-
Fuzzing-Option (FUFO) or ‘Dial-a-yield’ nuclear bombs that would be released at low
altitudes. Because of the complicated physics of explosions, a full 3D simulation code
would be required to accurately simulate the non-linear dynamics using explicit time
integration. The original FUFO bomb (B77) was cancelled because its cost overrun,
however, some features developed using DYNA3D were later implemented in the B83
bomb. Despite the cancellation of the FUFO bomb the development of DYNA3D con-
tinued. DYNA3D quickly became a dominant code, and its source code was released
in the public domain without restrictions upon request from France (Benson, 2007).
After this the development of DYNA3D continued and its main developer John Hall-
quist consulted over 60 different companies on how to use DYNA3D. After a change in
policy of the Lawrence Livermore National Laboratory (LLNL) John Hallquist left and
founded Livermore Software Technology Corporation (LSTC). LSTC started releasing
LS-DYNA and the source code of LS-DYNA was no longer released as compared
to DYNA3D (Benson, 2007).

After the release of the source code of DYNA3D, the ESI group was founded by Alain
de Rouvray, Jacques Dubois, Iraj Farhoomand and Eberhard Haug. The ESI group
developed PAM-CRASH and used it to simulate the crash of a military fighter plane into
a nuclear power plant (Haug, 1981) and for the first successful crash simulation of a
frontal impact of a passenger car within a single night on a computer cluster (Haug
et al., 1986). After demonstrating the capabilities of PAM-CRASH it has been used
widely in the automotive industry. Solanki et al. (2004) compared PAM-CRASH and
LS-DYNA and found that the differences between both codes are minimal for car
crash analysis. Based on PAM-CRASH, RADIOSS was developed and again widely
used for crash simulation analysis. Altair (2022c) announced that RADIOSS will be
made open source under the name of OPENRADIOSS. Altair remains to release the
commercial RADIOSS parallel with OPENRADIOSS because three keywords of RA-
DIOSS are not supported in OPENRADIOSS. These keywords are related to encryp-
tion and finite volume method airbags (Sharp, 2023c). These features are mainly

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 10 / 96

Figure 1.1 The DYNA family tree with the original DYNA3D code and its derived codes PAM-CRASH, later
RADIOSS and OPENRADIOSS, PRONTO-3D later ABACUS explicit, MSC-DYNA later DYTRAN,
and LS-DYNA. Many common explicit FEM codes are based on DYNA3D. Both LS-DYNA
and OPENRADIOSS are based on the same original code of DYNA3D (Walter and Bellshaw,
1993).

used in the automotive industry for airbags and dummy models, so these will not be
used much or at all in the TNO-NOS department.

This historical perspective of both LS-DYNA and OPENRADIOSS demonstrates that
both codes are based on an identical base code (DYNA3D). This means that the
basic structure of LS-DYNA and OPENRADIOSS is similar. Despite this, years of
development has resulted in codes with different features and functionalities. The
main aim of this report is to investigate how well OPENRADIOSS as a code performs,
understand how to run it most efficient, and to understand the current limitations and
advantages of using OPENRADIOSS as a possible partial replacement for LS-DYNA.
For the remainder of this report the same name will be used for both RADIOSS and
OPENRADIOSS because they are practically the same code for TNO-NOS.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 11 / 96

1.2 Comparison of OPENRADIOSS and LS-DYNA

The literature lacks many direct comparisons between OPENRADIOSS and LS-DYNA,
this means that the agreement between many features of OPENRADIOSS and LS-
DYNA is not directly known. In the PAM-CRASH time some comparisons have been
done between LS-DYNA and PAM-CRASH. Solanki et al. (2004) compared both for a
frontal car crash and found that the damage between both codes is not the same and
small differences exist in the deformation at the front of the car. Similarly, the internal
energy has a slight different evolution, the differences between both FEM solvers are
on the 5 to 10 per cent limit.

More recently, direct comparisons have been made between OPENRADIOSS and LS-
DYNA. Di Pasquale (2015) found that the simulation of a crushed beam gives almost
identical results in OPENRADIOSS and LS-DYNA. Cina (2019) looked at the differ-
ence for composite seats using crash analysis, but unfortunate his results are not
publicly available, the library says that this thesis is classified as confidential, and
they do not know the limitation period. Furthermore, Tofrowaih et al. (2021) used roof
crush resistance tests and found that the difference between both solvers is small.
Recently, Jezdik et al. (2023) simulated a tram collision with a crash dummy. They
found that the simulations with OPENRADIOSS and LS-DYNA roughly agree with
each other, however, the exact acceleration differs from experiments for both. Neither
of the solvers performs significantly better than the other. Furthermore, Bini Leite
et al. (2021) looked at a plane crash in the Hudson river and found that OPENRA-
DIOSS and LS-DYNA give similar results. Interestingly, OPENRADIOSS conserved
energy almost exactly, while LS-DYNA loses some four per cent of the total energy.

Overall, the impression from the literature is that both solvers are not too far off from
each other and have a similar (dis)agreement with experiments.

1.3 Recent developments and uses of OPENRADIOSS

The use cases and recent developments of OPENRADIOSS are extremely diverse.
Here a short overview of the most recent use cases and developments of OPEN-
RADIOSS will be summarised. These developments are inside OPENRADIOSS and
publicly available. Similarly, the FEM models of these recent use cases are freely
available online.

OPENRADIOSS is used for simple models, Mestres (2023b) used OPENRADIOSS to
model the bolts between two plates under rotation and displacement of one of the
plates and see when the bolt fails. On a similar scale, Mestres (2023a) modelled
the welding of two steel plates including the melting of the metal. He measured the
resulted stress and temperature in the plate due to the welding. Nakano (2023) used
OPENRADIOSS to model foam materials and tested foam blocks to see if they pro-
duce the behaviour of foam as expected, these foam models can directly be used in
car crashes. On the other hand, Pasligh et al. (2017) modelled and tested a simplified
model for rivets in OPENRADIOSS that use a calibrated cohesive element character-
istics method which does not require to model the rivets and bolts in detail. This
method can be used in large models for example car crash simulations.

OPENRADIOSS contains several examples from the car crash industry. The most
known example is the Toyota Yaris crash test on a pole with 40 km/h (Sharp, 2023d).
But also a simple bumper beam impacting on a single pole (Sharp, 2023b).

With the recent development of electric vehicles (EVs), Bulla et al. (2021) developed
a material model for the separators of Lithium-Ion batteries and tested their model

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 12 / 96

under high mechanical loads and found good agreement in three different directions
for their material model for separators. Bulla et al. (2023) expanded this investigation
and simulated complete Lithium-Ion batteries under high mechanical loads and found
good agreement with experiments. Shamchi et al. (2024) showed that the agree-
ment between the simulations and experiments is good but at high displacements the
pressure of the separators is slightly overestimated.

Furthermore, simulations to design protective structures (PS) have been performed
with OPENRADIOSS. Prashanth (2022) tested a roll over protective structures (ROPS),
similar Mittal et al. (2023) developed a new roll cage design for an all-terrain vehicle.
They iteratively performed simulations using OPENRADIOSS and improved the design
based on the maximum stresses found in the design. Brandão (2023) performed sim-
ulations on a falling object protective structure (FOPS), he specifically reproduced the
standard ISO 3449 test to test the FOPS. This shows that performing standard ISO
tests in OPENRADIOSS is possible.

Tests in the air have also been performed with OPENRADIOSS. Sharp (2023a) used
OPENRADIOSS to simulate a bird strike on the windshield of an aeroplane. In this
case the bird was modelled as a cylinder of smoothed-particle hydrodynamics (SPH)
particles. Similarly, Franke et al. (2022) modelled the impact of a drone strike on aero-
plane wings and windows. They used this to recommend improvements on the aero-
plane design, especially, they recommended thicker windows to prevent too much
damage from a drone strike.

Other threats from the air (AIREX) can also be simulated in OPENRADIOSS. Loverini
and Robert (2022) used OPENRADIOSS to simulate air burst threats and use this to
assess the survability of the target. They simulate this in two stages, the first stage
was the use of a mirrored 2D simulation to simulate the detonation of 250 kg TNT in-
cluding the reflection from the ground. The air was simulated with an ideal gas equa-
tion of state (EoS) while the explosive was simulated using the Jones-Wilkins-Lee
(JWL) EoS (Jones and Miller, 1948; Wilkins et al., 1964; Lee et al., 1968). The sec-
ond stage was a 3D simulation of the targeted military vehicle that uses the loading
of the 2D simulation to assess the caused plastic strain and whether the explosion
intruded the vehicle. Loverini and Robert (2023) did the same but used a different
mass of TNT and distance from the military vehicle. Furthermore, Loverini (2023c)
used OPENRADIOSS to model the detonation of a land mine based on the NATO reg-
ulations. They modelled the sand using a polynomial EoS and the air with an ideal
gas EoS. They also placed a 50-percentile dummy inside to test the impact of the
explosion on the dummy.

Besides AIREX, OPENRADIOSS is also ideal to investigate ballistics. Ferry et al.
(2023) used OPENRADIOSS to simulate the impact of a bullet on a steel plate. They
simulated only a quarter of the bullet and assumed the rest of the impact is symmet-
ric. They find that the bullet is stopped by this plate of steel as demonstrated from
experiments1. Loverini (2023a) used OPENRADIOSS to simulate the ballistic impact
on a water tank. They used brick elements to simulate the aluminium tank, the Cole
(1948) equation of state for water and the ideal gas law to model the air. Based
on this the total damage to the tank was determined. Besides ballistics, explosive
burning can also be simulated well. Loverini (2023d) simulated the propagation of
explosive burning for an array of two different explosives and found that their result is
as expected.

Fluid-structure interaction can also be simulated by OPENRADIOSS. Robert et al.
(2023) simulated a bottle dropping to demonstrate the arbitrary Lagrangian-Eulerian

1The experiments stopped a higher velocity bullet.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 13 / 96

(ALE) ability of OPENRADIOSS. They used thick-shell elements to model the bottle,
an ideal gas EoS for air, and Cole (1948) EoS to model the water. These results agree
with experiments of dropping water bottles. Robert and Loverini (2023) modelled a
section of a boat using mirror symmetry to investigate the slamming of the boat using
the same methods. Zheng et al. (2023) calculated the diving depth of pressure hulls
before they will implode. They used cylindrical pressure hulls which were compared
with experiments and gave good agreement.

Even more complicated simulations can be performed in OPENRADIOSS, notable,
simulations of UNDEX. Loverini (2023b) simulated the hydroforming of spherical metal
vessels. This is the construction of spherical metal containers with the help of ex-
plosives such that they become perfectly spherically. This again models the water
using the Cole (1948) EoS and the air is simply modelled as a constant atmospheric
load on the outside of the tank. Loverini (2023e) modelled an UNDEX event using a
2D simulation of 22.5 m by 11 m water reservoir. The overall behaviour of UNDEX
in OPENRADIOSS is comparable to experiments. Only the peak pressure is slightly
lower, but this is not surprising because the hydrodynamics of OPENRADIOSS is prob-
ably over smoothing. It is even able to correctly calculate the rarefaction wave that
causes the cavitation in UNDEX events.

This wealth of different use cases shows that OPENRADIOSS is a widely used FEM
package which can be used for a diverse set of different problems. OPENRADIOSS

itself is not only a FEM package. It contains functionality to simulates fluids using
ALE or grids with a large variation of different EoS. Most of the fluids can be sim-
ulated using the /MAT/HYDRO keyword. Specific EoS can be called by using a
simpler keyword like /EOS/IDEAL-GAS for ideal gas EoS, /EOS/STIFF-GAS for
the Cole (1948) EoS, /EOS/NASG for the Noble-Abel stiffened-gas EoS (Le Métayer
and Saurel, 2016), and /EOS/JWL for the JWL EoS (Jones and Miller, 1948; Wilkins
et al., 1964; Lee et al., 1968).

1.4 This report

In this report we focus on how OPENRADIOSS performs and do not make a direct
comparison with LS-DYNA because TNO-NOS has experience with LS-DYNA and
we expect that LS-DYNA works well for the different test cases shown in this report.
For this report we used different versions of OPENRADIOSS between 01-09-2023 and
31-12-2023. The remainder of this report is structured as follows, Chapter 2 investi-
gates the performance of shell and beam elements by comparing the numerical solu-
tion of a cantilever beam with the theoretical predictions. Chapter 3 investigates the
performance of spring elements by comparing the numerical solution with the analyt-
ical or theoretical solutions. Chapter 4 investigates how to properly compile different
parallelisation versions of the code and how to design your .BASHRC in such a way
that working with OPENRADIOSS can be done as efficiently as possible. Chapter 5
systematically investigates how to run OPENRADIOSS as efficiently as possible and
how to change compiler settings to improve the performance. Chapter 6 summarises
the advantages and disadvantages of OPENRADIOSS. Chapter 7 summarises the
conclusions and recommendations of this report.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 14 / 96

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 15 / 96

2 Cantilever beam

This chapter focuses on verifying shell and beam elements in OPENRADIOSS. This is
achieved by designing a new benchmark based on the cantilever beam (see Fig. 2.1).
A cantilever beam is a beam that is clamped on one side and is free on the other side
of the beam. When a force is applied to the free side of the beam, the beam will start
oscillating. Overall, the cantilever beam is an excellent benchmark because:

• Under general assumptions1 the solutions of the cantilever beam can be cal-
culated analytical. This means that the analytical solution can be directly com-
pared to the numerical solution.

• The benchmark can be applied to both beam and shell elements with only a
small change.

• The creation of finite element (FE) models requires only a rectangular grid with-
out needing to refine regions2.

Figure 2.1 A schematic view of a cantilever beam. The cantilever beam is attached to the left side to
a structure and has no degrees of freedom (DOF). On the right side all DOF are free and
the cantilever beam can move here. For a known force F and a known material model the
eigenfrequency and shape of the cantilever beam can be calculated analytically.

Furthermore, the cantilever beam simulations can be altered in a few ways to investi-
gate different behaviour:

• Without damping: This is ideal to investigate the natural frequencies3 and am-
plitudes of oscillations. The natural frequencies can be calculated directly from
theory and compared with simulations.

• With Rayleigh damping: This is ideal to investigate the exact shape of the can-

1These are that the material is purely elastic, the thickness of the cantilever beam is not important, and
the displacements are small.

2i.e. because the cantilever beam does not contain singularities. However, if smaller elements are used
on the clamped side, this will result in convergence of the displacement to the exact solution with fewer
elements

3Also known as the eigenfrequency

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 16 / 96

tilever beam when it is in equilibrium with the imposed force. The exact shape
of the cantilever beam is also known from theory.

• The number of elements can be varied: The resolution of the cantilever beam
can be varied by using a different number of elements to do a convergence test
and see when the cantilever beam behaves well.

• The applied force can be rotated by 90◦: This allows to also test the shell ele-
ments in the plane itself.

• The grid shapes can be modified: For example, triangular grids or even more
arbitrary shapes to see how well the code converges when the grid is not rect-
angular (not done in this work).

The above text describes globally what the goal of this chapter is. The remainder of
this chapter focuses on creating and testing this benchmark.

2.1 Analytical solution

To calculate the analytical solution of a cantilever beam, the following assumptions
are made:

• It is assumed that the cantilever beam has a rectangular cuboidal shape (a
hexahedron with only right angles4). Therefore, the length (L), width (b), and
thickness (d) describe the shape of the cantilever beam.

• The material is assumed to be fully elastic, therefore, the material has only three
free parameters namely, its initial mass density ρ, its Young’s modulus E and its
Poisson’s ratio ν.

Based on these two assumptions, the second moment of area can be calculated as:

I =
∫∫
R

y2 dx dy =
b/2∫

−b/2

d/2∫
−d/2

y2 dx dy = bd3

12
. (2.1)

2.1.1 Natural frequencies
One of the key properties of a system is its natural frequency (or eigenfrequency).
In the case of a cantilever beam it is possible to calculate this analytically. Using
the equation of motion (EoM) it is possible to calculate the natural frequencies of the
cantilever beam by solving the EoM (Meirovitch and Wesley, 1967):

∂2

∂x2

(
EI(x)∂2w(x, t)

∂x2

)
= ρA(x)∂2w(x, t)

∂t2 , (2.2)

where A(x) is the area of the cross section and w(x, t) is the displacement of the
cantilever beam. Using separation of variables and assuming the time component is
harmonic, the displacement can be written as

w(x, t) = w(x) sin (ωt + ϕ) , (2.3)

where ω is the natural frequency and w(x) is the vertical displacement that only de-
pends on x. This means that the equation of motion reduces to

d2

dx2

(
EI(x)d2w(x)

dx2

)
= ω2ρA(x)w(x). (2.4)

Equation (2.4) can be rewritten under the assumption that I(x) = I and A(x) = A as:

d4w(x)
dx4 − β4w(x) = 0. (2.5)

4Right angles are angles of exactly 90◦.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 17 / 96

where β4 = ω2ρA
EI . Assuming that the displacement is given by:

w(x) = eλx, (2.6)

means that the λ should satisfy λ4 = β4, therefore there are a total of four solutions
namely:

λ1 = β, λ2 = −β, λ3 = iβ, λ4 = −iβ. (2.7)

Rearranging these functions into standard functions gives the solution:

w(x) = A cosh(βx) + B sinh(βx) + C cos(βx) + D sin(βx). (2.8)

The solution and its coefficients can be constrained by using the boundary conditions.
For the cantilever beam the boundary conditions are:

w(0) = 0 → A + C = 0, (2.9)
dw(0)

dx
= 0 → B + D = 0, (2.10)

d2w(0)
dx2 = 0 → Aβ2 cosh(βl) + Bβ2 sinh(βl) − Cβ2 cos(βl) − Dβ2 sin(βl) = 0,

(2.11)

d3w(0)
dx3 = 0 → Aβ3 sinh(βl) + Bβ3 cosh(βl) + Cβ3 sin(βl) − Dβ3 cos(βl) = 0.

(2.12)

The first two equations give C = −A and D = −B. Using this to rewrite equa-
tion (2.11), a relation between A and B can be found as:

B = −A
cosh(βl) + cos(βl)
sinh(βl) + sin(βl)

. (2.13)

In order to remove A or B we need to use equation (2.12) Equation (2.12) gives

A sinh(βl) + B cosh(βl) − A sin(βl) + B cos(βl) = 0, (2.14)

because β ̸= 0. The terms can be reordered as

A (sinh(βl) − sin(βl)) + B (cosh(βl) + cos(βl)) = 0, (2.15)

Combining this with equation (2.13) gives

A

(
sinh(βl) − sin(βl) − (cosh(βl) + cos(βl))2

sinh(βl) + sin(βl)

)
= 0. (2.16)

A nontrivial solution is desired, so A ̸= 0,

sinh(βl)2 − sin(βl)2 − (cosh(βl) + cos(βl))2 = 0, (2.17)

Because this expression contains many square terms, the equation can be reduced
to (e.g. cos(a)2 + sin(a)2 = 1 and cosh(a)2 − sinh(a)2 = 1)

cos(βl) cosh(βl) + 1 = 0. (2.18)

The solution of equation (2.18) need to be found with a root-finding algorithm5, if this
is done the first two solutions are

β1 = 0.6π

l
, (2.19)

β2 = 1.49π

l
, (2.20)

5By solving cos(πx) cosh(πx) + 1 = 0 in order to find the coefficients of the following solutions.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 18 / 96

and for the later roots the solution is given by

βn =
(

n − 1
2

)
π

l
. (2.21)

for n ≥ 36. This means that the general solution of the natural frequency is given by

ωn =

√
EI

ρA
β2

n, (2.22)

which reduces to

ωn =

√
EI

ρA

(
n − 1

2
)2

π2

l2 , (2.23)

for n ≥ 3. The benchmark in this chapter only requires the first five factors, these
are given by β2

1/l2 = 3.55, β2
2/l2 = 21.91, β2

3/l2 = 61.68, β2
4/l2 = 120.90, β2

5/l2 =
199.8617. For a rectangular cross section the second moment of area is given by
equation (2.1) and equation (2.23) can be rewritten to

ωn =

√
Ed2

12ρ

(
n − 1

2
)2

π2

l2 . (2.24)

this means that the natural frequency geometrically only depends on the length of the
cantilever beam and its thickness d8.

2.1.2 Displacement
Here the equilibrium displacement is calculated. The EoM for a cantilever beam with
an imposed point force at x = L is given by:

EI
d4w

dx4 = F0δ(x − L). (2.25)

where F0 is the force on the cantilever beam and δ(x) is the Dirac delta function. To
solve the EoMs, the equation is integrated four times9:

EI
d3w

dx3 = F0 + c1, (2.26)

EI
d2w

dx2 = F0x + c1x + c2, (2.27)

EI
dw

dx
= 1

2
F0x2 + 1

2
c1x2 + c2x + c3, (2.28)

EIw = 1
6

F0x3 + 1
6

c1x3 + 1
2

c2x2 + c3x + c4. (2.29)

The left side of the cantilever beam is clamped, and this directly means that the
displacement (w(x)) and angle (dw/dx) are given by:

w(0) = 0 → c4 = 0, (2.30)
dw

dx
(0) = 0 → c3 = 0. (2.31)

6We note that the solutions are rounded to two decimals.
7For β1 and β2 equations (2.19) and (2.20) are used while for n ≥ 3 equation (2.21) is used.
8And the physical properties of the material E and ρ.

9Note that the integral of the Dirac delta function is given by
∞∫

−∞
δ(x) dx = 1.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 19 / 96

The bending moment at L is given by:

EI
d2w

dx2 (L) = 0 → F0L + c2 + c1L = 0. (2.32)

The shearing force at L is given by:

EI
d3w

dx3 = F0 → F0 + c1 = F0 → c1 = 0. (2.33)

The shearing force implies that the coefficients of the bending force result in:

c2 = −F0L. (2.34)

Therefore, the displacement becomes:

w(x) = −1
6

F0

EI

(
3x2L − x3) . (2.35)

This solution and solution of other boundary conditions are often known as ‘vergeet-
mij-nietjes’. This means that the maximal displacement is given by:

wmax = w(L) = − F0

3EI
L3. (2.36)

Based on the displacement the rotation angle can be calculated as:

θx = dw

dx
= 1

2
F0

EI

(
x2 − 2Lx

)
. (2.37)

Corresponding the bending moment is given by:

M(x) = EI
d2w

dx2 = F0 (x − L) . (2.38)

And the shearing force is given by:

V (x) = EI
d3w

dx3 = F0. (2.39)

These solutions can be used to test the performance of shell and beam elements.

A simulation without damping will on average reach the displacement and angle of
equations (2.35) - (2.37). By including damping it is possible to test the convergence
towards the analytical solution directly. This is what will be done later in this chapter.

2.2 Beam element formulations in Radioss

OPENRADIOSS uses the Timoshenko (1921, 1922) formulation for beam elements.
The assumptions of the Timoshenko (1921, 1922) formulation are (Altair, 2022b):

• No cross-section deformation in the plane of the beam.
• No cross-section warping out of the plane of the beam.

In general, the equations describing the dynamics of a Timoshenko (1921, 1922)
beam are given by:

ρA
∂2w

∂t2 − q(x, t) = ∂

∂x

[
κAG

(
∂w

∂x
− φ

)]
(2.40)

ρI
∂2φ

∂t2 = ∂

∂x

(
EI

∂φ

∂x

)
+ κAG

(
∂w

∂x
− φ

)
, (2.41)

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

https://nl.wikipedia.org/wiki/Vergeet-mij-nietje_(mechanica)
https://nl.wikipedia.org/wiki/Vergeet-mij-nietje_(mechanica)

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 20 / 96

where G is the shear modulus, κ is the Timoshenko (1921, 1922) shear coefficient,
q(x, t) is the distributed load, and ϕ is the angle of rotation of the normal to the mid-
surface of the beam. In OPENRADIOSS the user can change the beam formulation
flag from Ishear = 0 to Ishear = 1, this allows the user to use Euler-Bernoulli beam
theory which follows a simpler EoM given by (Reddy, 2017):

∂2

∂x2

(
EI

∂2w

∂x2

)
= −ρA

∂2w

∂t2 + q(x). (2.42)

The main take away point from this formulation is that equations (2.40) and (2.41), but
also equation (2.42) fully take into account all the terms of equation (2.2), the beam
equation presented in § 2.1. Therefore, numerical convergence of the beam element
formulations is expected because the analytical solution is one-on-one described by
the numerical solution. The numerical solution is expected to find the correct solution
if the time stepping of the simulation has a time step shorter than ∆t = aL/cs, where
L is the beam length, cs is the speed of sound and a is a constant of around unity (for
details see Altair, 2022b).

2.3 Shell formulations

Plate theory is a mathematical model used to determine the deformation and corre-
sponding stresses in thin plates that are subjected to forces and moments. Generally,
there are two types of plate theory.

2.3.1 Kirchhoff-Love plate theory
The first type of plate theory is called Kirchhoff-Love (1888) (KL) plate theory. The
three main assumptions of KL plate theory are (Reddy, 2006):

• Straight lines normal to the mid-surface remain straight after deformation.
• Straight lines normal to the mid-surface remain normal to the mid-surface after

deformation.
• The thickness of the plate does not change during deformation.

The consequences of these assumptions are examined by considering the position
vector of a point in an undeformed plate. The displacement of a point in a plate can
be expressed as:

u(x) = u0
1e1 + u0

2e2 + w0e3, (2.43)

where ei are the Cartesian unit vectors, u0
α is in-plane displacement and w0 is the

out-of-plane displacement in the x3 direction. This means that the displacement is
given by10:

uα(x) = u0
α(x1, x2) − x3

∂w0

∂xα
≡ u0

α − x3∂αw0, α = 1, 2 (2.44)

u3(x) = w0(x1, x2). (2.45)

When the strains are infinitesimal the strain-displacement relations are given by:

ϵαβ = 1
2

(∂βuα + ∂αuβ) . (2.46)

This implies that

ϵα3 = 1
2

(∂3uα + ∂αu3) , (2.47)

= −∂αw0 + ∂αw0 = 0. (2.48)

10The shortening of derivative operators is used, namely, ∂
∂xα

= ∂α

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 21 / 96

Similarly, for

ε33 = ∂3u3(x1, x2) = 0. (2.49)

This means that there are only 3 non-zero components given by:

ϵαβ = 1
2
(
∂βu0

α + ∂αu0
β

)
− x3∂α∂βw0. (2.50)

KL plate theory is only valid when the plate is thin enough such that the assumptions
remain valid. This is the case when the ratio of the length and thickness does not
exceed 20 (Altair, 2023). For ratios smaller than 20 it is important to use a plate
theory which considers this.

2.3.2 Reissner-Uflyand-Mindlin plate theory
To overcome the issue of thicker plates, a second plate theory was developed called
Reissner-Uflyand-Mindlin (RUM) plate theory. The main assumptions of RUM plate
theory are:

• There is a linear variation of the displacement across the plate thickness.
• The thickness of the plate does not change during deformation.
• The normal stress through the thickness is ignored (i.e. the plane stress condi-

tion).

Most importantly, the assumptions of RUM plate theory imply that the angles that
normal vectors make with the x3 axis are no longer given simply by ϕα = ∂αw0.
Instead, the displacement vector is given by:

uα(x) = u0
α(x1, x2) − x3ϕα, α = 1, 2 (2.51)

u3(x) = w0(x1, x2). (2.52)

Based on this the strain-displacement relations are given by:

ϵα3 = 1
2

(∂3uα + ∂αu3) , (2.53)

= 1
2
(
∂αw0 − ϕα

)
. (2.54)

Again ϵ33 = 0 because u3 does not depend on x3. Lastly, the other components are
given by:

ϵαβ = 1
2
(
∂βu0

α + ∂αu0
β

)
− x3

2
(∂βϕα + ∂αϕβ) . (2.55)

Because the shear strain is constant across the thickness and it is known the shear
stress should be parabolic it is required to incorporate a shear correction factor κ in
equation (2.54). This means that equation (2.54) reduces to:

ϵα3 = κ

2
(
∂αw0 − ∂αϕα

)
. (2.56)

Overall, in OPENRADIOSS the standard is to use RUM plate theory for shell ele-
ments (Altair, 2023), this means that OPENRADIOSS by default takes into account
thick shells.

2.3.3 Shell formulations in OPENRADIOSS

This subsection will explain the different shell formulations that are available in OPEN-
RADIOSS.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 22 / 96

2.3.3.1 Belytschko-Tsay shell element
The first type of shell element is the Belytschko and Tsay (1983) shell element. In
OPENRADIOSS these are called the classic Q4 elements. OPENRADIOSS has a total
of four different hourglass penalisation methods to consider the Belytschko and Tsay
(1983) shell element.

The Belytschko and Tsay (1983) shell elements use perturbation stabilisation for the
hourglass energies. Hourglass modes are distortions of the mesh that have no strain
energy. Hourglass modes only apply to 4 node shell elements. The left of Fig. 2.2
shows the 12 translational motions of the 4 node shell elements and the three hour-
glass modes. The right of Fig. 2.2 shows the 12 rotational modes of 4 node shell
elements with the four rotational hourglass modes. Because hourglass modes do not
have strain energy it is required to stabilise them to prevent the mesh deformations
to take any random form. This is done using perturbation stabilisation.

Figure 2.2 The different translational modes of 4 node shells with 7, 8 and 12 representing the three
translational hourglass modes (left) and the different rotational modes of 4 node shells with
9-12 representing the four rotational hourglass modes of 4 node shells.

Perturbation stabilisation can be done in several different ways. Hourglass viscous
forces relate the velocity of the nodes directly with a counteracting force, similar to
viscous forces in a fluid. Hourglass stiffness forces work as a spring in which the stiff-
ness force tries to counteract the force that wants to extend the nodes and therefore
is directly related to the displacement. The hourglass viscous forces can also be ap-
plied to the moments of the shell. This means that there is a total of three hourglass
forces that are required, namely an in-plane, out-of-plane and rotational hourglass
force.

For the hourglass viscous force, the hourglass velocity rate is given by (Kosloff and
Frazier, 1978):

∂qi

∂t
= Γνviν = vi1 − vi2 + vi3 − vi4. (2.57)

where Latin indices run over 1 and 2 and Greek indices run over 1 to 4. The hourglass
normalised vector is given by

Γ = (1, −1, 1, −1). (2.58)

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 23 / 96

The in-plane hourglass resisting forces at node ν and direction i are given by:

fhgr
iν = 1

4
ρcd
√

hm
A

2
∂qi

∂t
Γν . (2.59)

Where d is the element thickness, and hm is the shell membrane hourglass coeffi-
cient. The out-of-plane hourglass resisting forces are given by:

fhgr
iν = 1

4
ρcd2

√
hf

10
. (2.60)

Where hf is the shell out-of-plane hourglass coefficient (Altair, 2022b). The hourglass
coefficients can be modified in the input of OPENRADIOSS and are by default set to
hm = 0.01 and hf = 0.01 (Altair, 2022a).

Similarly hourglass elastic stiffness forces can be calculated, OPENRADIOSS follows
the Flanagan and Belytschko (1981) formulation to do this. The hourglass resultant
force is defined as:

fhgr
iν = fhgr

i Γν . (2.61)

For the hourglass in-plane modes the hourglass energy is given by:

fhgr
i (t + ∆t) = fhgr

i (t) + 1
8

hmEd
∂qi

∂t
∆t. (2.62)

where t is the current time, ∆t is the time step, and E is the Young’s modulus. Similar
for out-of-plane modes:

fhgr
i (t + ∆t) = fhgr

i (t) + 1
40

hfEd3 ∂qi

∂t
∆t. (2.63)

The last hourglass modes is the hourglass viscous moments, similar to equation
(2.57) the angular velocity rate can be defined as:

∂ri

∂t
= Γνωiν = ωi1 − ωi2 + ωi3 + ωi4. (2.64)

where ω is the angular velocity. The hourglass viscous moments are given by

mhgr
iν = 1

50

√
hr

2
ρcAd2 ∂ri

∂t
Γν , ł (2.65)

where hr is the shell rotation hourglass coefficient which by default is set to hr = 0.01
(Altair, 2022a).

The first penalisation method in OPENRADIOSS is Ishell = 1 which corresponds to
the Kosloff and Frazier (1978) and Flanagan and Belytschko (1981) formulation. This
simply uses the default values described above of hm = hf = hr = 0.01. This method
always calculates the velocity orthogonal to the physical velocity such that the hour-
glass velocity always remains orthogonal to the physical velocity.

The second penalisation method in OPENRADIOSS is Ishell = 2. This method is
identical to the previous method but it does not use the fact that the hourglass velocity
remains orthogonal to the physical velocity (Altair, 2022a). In OPENRADIOSS this
approach is called the Hallquist method.

The third penalisation method in OPENRADIOSS is Ishell = 3. This method is called
elastoplastic hourglass force. The elastoplastic hourglass method modifies the ap-
proach of Flanagan and Belytschko (1981) by imposing a minimum hourglass force.
This means that equations (2.62) and (2.63) are modified to

fhgr
i (t + ∆t) = min

(
fhgr

i (t) + 1
8

hmEd
∂qi

∂t
∆t,

1
2

hmσyd
√

A

)
. (2.66)

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 24 / 96

and

fhgr
i (t + ∆t) = min

(
fhgr

i (t) + 1
40

hfEd3 ∂qi

∂t
∆t,

1
4

hfσyd2
)

. (2.67)

where σy is the yield stress (Altair, 2022b). Also the default hourglass coefficients are
different and are hm = hr = 0.1 and hf = 0.01 (Altair, 2022a), this means that there is
a larger in-plane hourglass resistant force as compared to the other methods.

The fourth penalisation method in OPENRADIOSS is Ishell = 4, this method specifi-
cally takes into account keeping the hourglass vectors orthogonal even in the case of
warped elements. This penalisation method is the best in general for the Belytschko
and Tsay (1983) shell element. Ishell = 4 uses equations (2.57)-(2.65) but uses a
slightly different hourglass vector (equation 2.58) that always remains orthogonal.

Note that the use of Belytschko and Tsay (1983) shell element is not without issue.
One problem with Belytschko and Tsay (1983) shell elements is that they do not sat-
isfy the Irons and Razzaque (1972) patch test (Haufe et al., 2013). The Irons and
Razzaque (1972) patch test is a test of a couple of elements with solving a structure
of a few elements for which the exact solution is known. The cantilever beam sim-
ulation is comparable to the Irons and Razzaque (1972) patch test but it is slightly
more complicated by also including the dynamics. Based on this, convergence of
the Belytschko and Tsay (1983) elements is not expected. A second problem with
Belytschko and Tsay (1983) shell elements is that they show poor behaviour with ir-
regular geometries. This means that they are unable to pass Irons and Razzaque
(1972) patch tests with irregular geometries and are unable to pass the twisted beam
test (e.g. the twisted beam tests of Macneal and Harder 1985 or Zupan and Saje
2004). A third issue with Belytschko and Tsay (1983) shell elements is that the hour-
glass coefficients are user inputs and are often taken as being constant, while in
reality the hourglass coefficients are problem-dependent.

2.3.3.2 Fully-integrated QBAT shell element
Shell element formulation Ishell = 12 is based on the Batoz and Dhatt (1990) Q4γ24
shell element. The Batoz and Dhatt (1990) shell element formulation has 4 nodes
with each 5 DOF (RUM theory). Furthermore, the QBAT shell elements use a Carte-
sian shell approach where the middle surface is curved (instead of straight). Con-
trary to the other two shell elements, the QBAT shell element is fully integrated and
uses four Gaussian quadrature points using 2 × 2 integration points. This means that
the integration points for a rectangular shell element with size L × K are present at(

L
2

(
1 − 1√

3

)
, K

2

(
1 − 1√

3

))
,
(

L
2

(
1 − 1√

3

)
,
(

K
2

(
1 + 1√

3

)))
,
(

L
2

(
1 + 1√

3

)
, K

2

(
1 − 1√

3

))
,

and
(

L
2

(
1 + 1√

3

)
,
(

K
2

(
1 + 1√

3

)))
. Furthermore, a reduced in-plane integration for

shear aims at preventing the QBAT from shear locking. Similar to the Belytschko and
Tsay (1983) shell elements an hourglass force needs to be imposed, but contrary,
the hourglass force is physically motivated based on the Belytschko et al. (1984)
formulation. In practice OPENRADIOSS uses an updated formulation based on the
Belytschko and Leviathan (1994) and Belytschko et al. (1984) formulation. Because
the hourglass energy is modelled using a physical model this method does not output
any hourglass energies (Altair, 2023).

Of all the shell element types QBAT is the most expensive because it is a full inte-
gration scheme. Due to this it is a scheme that is not often used in simulations that
use explicit time integration. Rather it is more commonly used in simulations that use
implicit time integration, still, this scheme can be used in simulations with explicit time
integration but might produce locking (e.g. Zeng and Combescure, 1998).

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 25 / 96

2.3.3.3 Reduced-integration QEPH shell element
The last shell formulation is Ishell = 24, QEPH shell elements are cheaper than QBAT
shell elements because this shell formulation just requires one number of integration
point in the shell element because it is a reduced integration scheme with one instead
of four integration points. Similar to QBAT shell elements the hourglass energy is
modelled using a physical model using an updated Belytschko and Leviathan (1994)
and Belytschko et al. (1984) formulation, which is explained in Zeng and Combes-
cure (1998). Zeng and Combescure (1998) shell elements give nearly perfect agree-
ment with the fully integrated Batoz and Dhatt (1990) Q4γ24 shell elements for linear
problems. Compared to Batoz and Dhatt (1990) Q4γ24 shell elements, Zeng and
Combescure (1998) shell elements only perform worse in the case of a significantly
coarser mesh for linear problems. The main advantage of Zeng and Combescure
(1998) shell elements is that compared to QBAT or Batoz and Dhatt (1990) Q4γ24
shell elements the number of computations is a factor of 4 to 5 lower. This means that
Zeng and Combescure (1998) shell elements are only a factor of 20 per cent slower
than the Belytschko and Tsay (1983) shell elements.

It is noted that Zeng and Combescure (1998) shell elements have not been tested
extensively for nonlinear materials, for example anisotropic damaged materials. This
means that users should be careful when using Zeng and Combescure (1998) shell
elements for problems that involve nonlinear materials. Furthermore, LS-DYNA does
not have the option to run with Zeng and Combescure (1998) elements so no experi-
ence with these shell elements exists in TNO-NOS.

2.3.4 Thickness integration
This subsection explains how thickness integration is done for shell elements in OPEN-
RADIOSS. The thickness integration is based on Gaussian quadrature rules (Gauss,
1815). In the parameter file the user specifies the amount of integration points n,
where n can range from 1 to 9. To integrate over the thickness of the shell the default
numerical integration approaches for functions of the shape

1∫
−1

f(x)dx. (2.68)

are used. By default OPENRADIOSS uses Gauss-Lobatto quadrature (see page 888
of Abramowitz and Stegun, 1965), this means that two of the integration points are
taken at the edge of the thickness. This means that the integral is calculated as:

1∫
−1

f(x)dx = w1f(−1) + wnf(1) +
n−1∑
i=2

wif(xi). (2.69)

where the endpoints have a weight of

w1,n = 2
n(n − 1)

, (2.70)

and the other weights are given by simply the Gaussian Quadrature weights of:

wi = − 2n

(1 − x2
i)P ′′

n−1(xi)P ′
m(xi)

= 2
n(n − 1) (Pn−1(xi))2 . (2.71)

Where xi is the i-th root of Pn, where Pn are the Legendre polynomials. OPENRA-
DIOSS has several types of shell elements, not to be confused with the Ishell element

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 26 / 96

that can be selected in the standard shell element type (TYPE1). OPENRADIOSS has
several different shell element types that mainly differ in the way vertical integration
is done and if the material consists out of different materials. The simple shell el-
ement types (TYPE1) always use Gauss-Lobatto quadrature, and assume there is
just one type of material in the shell. In OPENRADIOSS it is possible to use Gauss-
Legendre quadrature (Gauss, 1815), however, this is not possible to do with the sim-
ple shell type. To use Gauss-Legendre quadrature element type 10 or 11 (TYPE10
or TYPE11) need to be used. Type 10 and 11 are the composite shell and sandwich
shell respectively. In the case of Gauss-Legendre the integral is calculated as:

1∫
−1

f(x)dx =
n∑

i=1
wif(xi). (2.72)

where the coefficients are given by:

wi = 2
(1 − xi)2 (P ′

n(xi))2 (2.73)

So, what is the accuracy of both elements? In general Gaussian quadrature can
exactly integrate a polynomial of order 2n−1. This means that for a correct calculation
of the cantilever beam having only 2 thickness integration points would be enough to
correctly calculate the displacement of the cantilever beam.

2.4 Constructing the cantilever beam simulations

To effectively run simulations of cantilever beams (clamped-free) and similar structural
elements with different boundary conditions a python module was designed to create
simple Radioss starter files. The details of the program can be found in Appendix C.
A short explanation will be given here. The python module can be run by executing

> python3 c r e a t e _ r e c t a n g u l a r _ t e s t _ g r i d . py pa rame te r_ f i l e . yml >
ou tpu t_ rad ioss_ f i l e_0000 . rad

Here CREATE_RECTANGULAR_TEST_GRID.PY is the python module, PARAMETER_FILE.YML

is the parameter file and OUTPUT_RADIOSS_FILE_0000.RAD is the resulting file for
Radioss. The parameter file for the simulation to create consists out of different sub-
sections for each component of the model with separate variables that can be easily
set by the user, the input looks like:

BeamDimension :
Length : 40.0
Width : 10.0
Thickness : 2.5
CoordinateSystemZeroPoint : [0 . , 0 . , 0 .]

Appl iedForce :
Tota lForce : 0.1
TypeOfForce : " l i n e fo rce "

Numer ica lResolut ion :
TypeOfElement : "beam"
Shel lElementSize : 5.0
BeamElementSize : 5.0

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 27 / 96

BeamMembraneDamping : 0.0
BeamFlexuralDamping : 0.01
V e r t i c a l I n t e g r a t i o n P o i n t s : 5
Shel lFourFormula t ion : 24
ShellNumericalDamping : 0.015
BeamFormulationFlag : 0
Smal lS t ra inOpt ionF lag : 4

M a t e r i a l P r o p e r t i e s :
LawNumber : 1
Densi ty : 7.8e−6
YoungsModulus : 210.0
PoissonRat io : 0.3
Y ie ldS t ress : 0.3
U l t imateTens i leEng ineer ingSt ress : 0.686
Engineer ingStrainAtUTS : 0.129
S t r a i n R a t e C o e f f i c i e n t : 0.0
Fai lureModel : False
InputTypeFlag : 1

In te rna lUn i tSys tem :
UnitMass : " kg "
Uni tLength : "mm"
UnitTime : "ms"

MetaData :
RunName: " Can t i l eve r beam"
Author : " F o l k e r t Nobels "

Damping :
UseDamping : True
RayleighMassDamping : 4.0
Rayle ighSt i f fnessDamping : 1.0
Star tT ime : 0.0
EndTime : 1e30

The yield stress and ultimate tensile engineering stress were taken from another
example. In the linear analysis we do not use the yield stress and the ultimate tensile
engineering stress.

2.5 Cantilever beam simulation

Fixed dimensions are taken for the cantilever beam, the aim is to have shell and
beam element models with the same period, so the length and the thickness are
identical for the shell and beam element model simulations. Table 2.1 summarises the
physical parameters of the cantilever beams. For both the shell and beam elements,
simulations with different numerical resolutions are constructed. The shell elements
are constrained to have an initial squared shape, an additional requirement is that
there are nodes in the middle of the cantilever beam. This means, for the dimensions
in Table 2.1, that the lowest resolution simulation for shell elements has 8 × 2 =
16 shell elements. For beam elements there is no such constraint because beam
elements are one dimensional and the simulation therefore can be done with just one

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 28 / 96

beam elements. For shell elements six simulation variations are performed with shell
element sizes of:

∆xshell = 500 mm
2n

, n = 0, 1, 2, 3, 4, 5. (2.74)

For beam elements 3 more resolution variations are performed and the beam element
size is given by:

∆xbeam = 4000 mm
2n

, n = 0, 1, 2, 3, 4, 5, 6, 7, 8. (2.75)

The width of the shell and beam elements are all set to 8 mm. The highest resolution
simulation has a resolution size of 15.625 mm, this means that the thickness over
element size is at most 0.512. This means that the use of shell and beam elements
is appropriate. Also, for shell element we used a width of 1 m because the additional
constraint is that the shell element is rectangular. Furthermore, to not complicate
the story of beam elements we also use a width of 8 mm such that it is equal to
the thickness. Fig. 2.3 shows a snapshot of the cantilever beams at different spatial
resolutions, it shows the shell elements (black lines) and the vertical displacement at
the time of the snapshot. To be able to compare the displacement between the shell
and beam elements, the force put on the free side of the cantilever beam is taken such
that the maximal displacement is expected to be around 40 mm. A displacement
of 40 mm is taken because this corresponds to a 1 per cent vertical displacement
which should not cause significant thickness or bending effects such that comparison
with the theoretical predictions in § 2.1.1 and 2.1.2 can be done. Due to a relatively
slightly larger loading for the shell elements, which, in hindsight, should have been
1.6 × 10−2 kg mm ms−2, there is a slight difference in displacement between shell
and beam elements.

Table 2.1 Physical dimensions of the cantilever beam for shell and beam elements.

shell elements beam elements
length (L) 4 m 4 m
width (b) 1 m 8 mm

thickness (D) 8 mm 8 mm
force (F) 1.68 × 10−2 kg mm ms−2 1.28 × 10−4 kg mm ms−2

density (ρ) 7.8 × 10−6 kg mm−3 7.8 × 10−6 kg mm−3

Young’s modulus 210 GPa 210 GPa

Two cases are considered for the cantilever beam simulations:

1. No damping: This allows verification that the solution is stable and there is no
artificial damping present in the simulation. This is crucial for determining the
natural frequencies of the solution and the comparison with § 2.1.1. Further-
more, this allows verification of the numerical integration scheme to check how
stable the solution is and no energy is lost or gained due to numerical errors.

2. Rayleigh damping: This will produce a stable static solution which can be com-
pared directly with the predicted displacement in § 2.1.2

The important question is: How good is the convergence expected to be? And is
there a difference between beam and shell elements?

The beam elements are modelled with the Timoshenko beam theory (equations 2.40
and 2.41), the cantilever beam can be modelled with equation (2.2). Equation (2.2) is
a specific case of equations (2.40) and (2.41), this means that very good convergence
is expected for the beam elements.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 29 / 96

Figure 2.3 A time snapshot impression of the cantilever beam from top view with different numerical
resolutions. The left shows from top to bottom the simulations with numerical resolutions of
500 mm, 250 mm and 125 mm, the right shows from top to bottom the numerical resolutions
of 62.5 mm, 31.25 mm and 15.6125 mm. The colour bar indicates the vertical displacement
(same in all plots) and the black squares show the edges of the shell elements.

For the shell elements the situation is different. Firstly, shell elements do not solve the
beam theory equations, they rather extend the beam theory equations and generalise
this to plates. Because of the assumptions of plate theory, the strains with z compo-
nents become ‘artificial’ and are more numerical corrections than actual strains in the
components ϵα3 and ϵ33. Often this also means that ϵ33 becomes zero11.

11ϵ33 becomes zero for KL and RUM plate theory, other plate theories do not have this equal to zero like
plate theories with stretchable cross-sections or non-straight cross-sections.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 30 / 96

2.5.1 Vertical displacement
Here quantitatively the result of the vertical displacement is compared with the the-
oretical predicted result for the cantilever beam simulations. A comparison is made
between shell and beam elements.

0 25000 50000 75000 100000 125000 150000 175000 200000

time [ms]

−80

−70

−60

−50

−40

−30

−20

−10

0

d
is

p
la

ce
m

en
t

[m
m

] 500 mm

250 mm

125 mm

62.5 mm

31.25 mm

15.625 mm

Theoretical displacement

0 25000 50000 75000 100000 125000 150000 175000 200000

time [ms]

−80

−70

−60

−50

−40

−30

−20

−10

0

d
is

p
la

ce
m

en
t

[m
m

]

4000 mm

2000 mm

1000 mm

500 mm

250 mm

125 mm

62.5 mm

31.25 mm

15.625 mm

Theoretical displacement

Figure 2.4 Time evolution of the cantilever beam with the Zeng and Combescure (1998) shell elements
(top) and Timoshenko (1921, 1922) beam elements (bottom) for different numerical resolu-
tions (different colours). The displacement of the edge of the cantilever beam is shown at a
distance of 4000 mm. A comparison is made with the theoretical mean displacement (black
dashed line). Simulations with low resolutions are unable to get the correct mean displacement
when shell elements are used. Shell elements with low resolution have the wrong downwards
amplitude while the upper amplitude is well converged. Beam amplitudes initially have the
correct amplitude but beam elements with few resolution elements quickly artificially damp.

Fig. 2.4 shows the time evolution of the cantilever beam for shell and beam elements
for around 100 cycles. The lower resolution shell elements do not have the correct
mean displacement, this is mainly because the oscillation does not extend to low
enough displacements. Only at a resolution of 125 mm, the solution becomes well
converged. The behaviour of beam elements is different, beam elements have the
correct upper and lower displacement. The lowest resolution simulations have the
problem that they artificially damp quickly within 200 seconds. The convergence of
beam elements is good when the cantilever beam is resolved by 4 beam elements
(resolution of 1000 mm).

Fig. 2.4 shows the vertical displacement and from this the natural frequency of the
oscillation can be determined. The most straightforward way of determining the nat-
ural frequencies is calculating the Fourier transform of the displacement. The Fourier
transform calculates the contributions of different frequencies ν to the input signal, in
our case the vertical displacement. Ideally, the mean displacement is subtracted to
prevent an artificially peak around ν = 0 which could reduce signals at the first natural

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 31 / 96

100 101 102

frequency [Hz]

10−5

10−4

10−3

10−2

10−1

100

101

102

F
ou

ri
er

st
re

n
g
th

[A
rb

ir
ar

y
u

n
it

]

500 mm

250 mm

125 mm

62.5 mm

31.25 mm

15.625 mm

100 101 102

frequency [Hz]

10−5

10−4

10−3

10−2

10−1

100

101

102

F
ou

ri
er

st
re

n
g
th

[A
rb

ir
ar

y
u

n
it

]

4000 mm

2000 mm

1000 mm

500 mm

250 mm

125 mm

62.5 mm

31.25 mm

15.625 mm

Figure 2.5 Absolute value of the Fourier transfer of the displacement minus the mean displacement for
Zeng and Combescure (1998) shell elements (left) and Timoshenko (1921, 1922) beam el-
ements (right). Different colours show the different numerical resolutions. The vertical black
dashed lines indicate natural frequencies of the cantilever beam. When the numerical resolu-
tion is increased the convergence of the natural frequencies improves. Beyond the fifth natural
frequency the amount of noise increases significantly.

frequency. Fig. 2.5 shows the absolute value of the Fourier transform and shows that
the natural frequencies (black dashed lines) converge well with resolution. For shell
elements all the natural frequencies are well converged even for the lowest resolution
simulations. For beam elements, the natural frequencies are converged when the
cantilever beam is resolved by four beam elements. This is partly as expected, we
see that for one beam element only one natural frequency is produced, for two beam
elements there are only two natural frequencies. This is because the model with N
beam elements has only N degrees of freedom and can describe N number of natural
frequencies at most. Overall, the agreement between both is good and indicates that
the solution is converged when the cantilever beam is resolved by 4 or 8 elements in
the length.

Fig. 2.5 also shows the slope of the Fourier transform. The slope can be determined
to be F ∝ ν−0.412. An interesting property of a Fourier transform is the energy
power spectrum. The energy power spectrum is a measure of energy of the different
Fourier transformation modes and can be calculated as E = F 2. In Fig. 2.5 this
corresponds to slope of the energy power spectrum of E ∝ ν−0.8. The energy of
the energy power spectrum does not matter much because it is directly related to
the displacement (i.e. a constant that can be taken outside of the Fourier transform).
Contrary, the slope tells how much the energy is divided between the different modes
in the system. For Fig. 2.5 the slope of the energy power spectrum follows almost
pink noise (pink noise has an energy spectrum of E ∝ ν−1) besides the five peaks
at the natural frequencies. Pink noise is one of the most common energy power
spectra found in nature (e.g. tides, heart beats, neurons, black holes, etc.) Because
it is so common this implies it is understood quite well and implies that the energy
contribution of higher frequencies half when doubling the frequencies. However, in
the case that the energy power spectrum follows pink noise, this means that the total
energy of the cantilever beam does not converge with higher energy because:

Etotal ∝
νmax∫

νmin

ν−1dν ∝ ln
(

νmax

νmin

)
, (2.76)

where νmax and νmin are the maximum and minimum frequency in the simulation. in
the limit that νmax → ∞ this gives a diverging result, implying that if the numerical

12Here the symbol ∝ shows that the two quantities are proportional to each other.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 32 / 96

resolution is increased the total energy keeps increasing. The maximal frequency
depends directly on the numerical resolution because simulations with high resolu-
tions have shorter time steps. For the shell element that we considered, the total
energy of the energy power spectrum converges even less slow as

Etotal ∝
νmax∫

νmin

ν−0.8dν ∝ ν
1/5
max − ν

1/5
min , (2.77)

implying that when the resolution is increased the total energy increases with the
fifth root of the maximum frequency. Overall, this result implies that convergence is
not quaranteed for these shell elements. Specifically, this means that the shell ele-
ments show ultraviolet divergence (i.e. the solution diverges at the highest energies
or frequencies).

102

Numerical resolution [mm]

101

102

fr
eq

u
en

cy
[H

z]

n=0

n=1

n=2

n=3

n=4

102 103

Numerical resolution [mm]

101

102

fr
eq

u
en

cy
[H

z]

n=0

n=1

n=2

n=3

n=4

Figure 2.6 Convergence of the natural frequencies (different colours) for different numerical resolutions
(x-axis) for Zeng and Combescure (1998) shell (left) and Timoshenko (1921, 1922) beam ele-
ments (right). The n = 0 natural frequency is converged for all shell element sizes investigated
(i.e. from 500 mm onwards), the convergence of the beam elements starts at a spatial resolu-
tion of 500 mm, in excellent agreement between the two different element formulations. The
convergence of the higher natural frequencies (n > 0) is well converged for spatial resolution
of 250 mm and 125 mm for the shell and beam elements.

Fig. 2.6 shows the convergence of the five lowest natural frequencies in a more quan-
titative comparison. The convergence is excellent for both elements at a resolution
of 125 mm for all natural frequencies. This implies that over the length a total of 32
elements are required. Shell elements already converge well for a lower resolution
of 250 mm, so a total of 16 elements over the length are required. Lastly, the n = 0
natural frequency converges for the beam elements at a factor 2 or 4 lower resolution
than the higher natural frequencies. The convergence study for the shell elements
shows that most results are already converged for the coarsest model, making it im-
possible to judge for the shell elements how convergence of the n = 0 mode relates
to the other modes.

To investigate the exact mean displacement behaviour more quantitatively a fit to the
mean displacement curve is made with the curve of a damped mass-spring system:

z(t) = A sin (ωt + ϕ) exp
(

− t

tdecay

)
. (2.78)

where A is the amplitude, ω is the n = 0 natural frequency, ϕ is the phase offset,
and tdecay is the time decay. As the system is only lightly damped, it is expected that
ω is close to ω0, ϕ ≈ π/2, A ≈ ⟨z⟩ and tdecay is very large. This equation is non-
linear in the parameters that are required to be fitted. There are a few issues with
this equation, firstly ω and ϕ are partly degenerate, secondly, both parameters have

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 33 / 96

10−5

10−4

10−3

10−2

10−1

100

re
l.

d
iff

.
ω

0

10−5

10−4

10−3

10−2

10−1

100

re
l.

d
iff

.
A

102

Resolution [mm]

10−5

10−3

10−1

101

103

105

107

re
l.

d
iff

.
t d

e
la

y

10−5

10−4

10−3

10−2

10−1

100

re
l.

d
iff

.
ω

0

10−5

10−4

10−3

10−2

10−1

100

re
l.

d
iff

.
A

102 103

Resolution [mm]

10−5

10−3

10−1

101

103

105

107

re
l.

d
iff

.
t d

e
la

y

Figure 2.7 Convergence of the fitted values as a function of spatial resolution (x-axis) for shell (left) and
beam elements (right). The relative difference of the frequency (top) converges very well
and at the highest resolutions is more accurate than 10−4. The amplitude (middle) is well
converging for the beam elements while for the shell elements the relative difference does not
get below 10−3. The delay time (bottom) also converges well for higher resolution but has
high values because the delay time is expected to be very long.

degeneracies at ω + 2πn, n ∈ Z. This implies that using the Levenberg-Marquardt al-
gorithm would most likely get stuck in local minima and a fitting procedure is required
that uses bounds on both ω and ϕ. Additionally, A > 0 and tdecay > 0 so additional
boundary conditions can be imposed. The Branch et al. (1999) trust region reflective
algorithm is used, this method converges well. Fig. 2.7 shows the convergence of the
fitted parameters A, ω and tdecay as a function of spatial resolution. The frequency is
quite well converged and is converged better for shell elements than beam elements,
in-line with the findings in Fig. 2.6. The amplitude is less well converged for the sim-
ulation with shell elements while for beam elements the convergence is as good as
for the frequency. Good convergence is not expected for the decay time because
it can vary over many orders of magnitude. However, the decay time shows some
convergence, the convergence implies that models with lower resolutions are more
artificially damped than the highest resolution simulations.

Fig. 2.8 shows the mean displacement of the cantilever beam with the 16th and 84th

percentile of the displacement indicated by the shaded colours13. At higher resolu-
tions the simulations converge towards the equilibrium displacement. For the Zeng
and Combescure (1998) shell elements the 84th percentile converges very rapidly
(In-line with the findings of Fig. 2.4). However, the 16th percentile converges much
slower, it requires a spatial resolution of at least 62.5 mm for convergence. This can
be seen in the figure that above the line there is an uniform brown shaded region,
while below there is a brown shaded region with more yellow colours below it that
correspond to higher resolution simulations. The situation is different for the Timo-
shenko (1921, 1922) beam elements, the mean value converges rapidly even for the

13The 16th and 84th percentile correspond to ±1σ (standard deviation) for a normal distribution. For an
unknown distribution it is better to use percentiles instead of standard deviation because it applies to more
general distributions. Information about percentiles can be found here

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

https://en.wikipedia.org/wiki/Percentile

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 34 / 96

0 500 1000 1500 2000 2500 3000 3500 4000

x coordinate [mm]

−80

−70

−60

−50

−40

−30

−20

−10

0

z
d

is
p

la
ce

m
en

t
[m

m
]

500 mm

250 mm

125 mm

62.5 mm

31.25 mm

15.625 mm

Equilibrium

0 500 1000 1500 2000 2500 3000 3500 4000

x coordinate [mm]

−80

−70

−60

−50

−40

−30

−20

−10

0

z
d

is
p

la
ce

m
en

t
[m

m
]

4000 mm

2000 mm

1000 mm

500 mm

250 mm

125 mm

62.5 mm

31.25 mm

15.625 mm

Equilibrium

Figure 2.8 Comparison of the mean displacement (continuous lines) and the 16th and 84th percentile
(shaded regions) for simulations of different spatial resolutions (different colours). For shell
elements the Zeng and Combescure (1998) formulation is used. Shell elements converge from
a spatial resolution of 62.5 mm (i.e. 64 resolution elements in the length), lower resolutions
do not converge in the mean displacement and the 16th percentile vertical displacement (the
lighter shaded regions). For Timoshenko (1921, 1922) beam elements the convergence is
very good, the mean displacement is converged at 1000 mm (i.e. 4 resolution elements).

lowest resolutions. The two lowest resolution simulations do not predict the correct
amplitude because they are artificially damped but predict the correct mean displace-
ment. For simulations with only 4 elements (i.e. 1000 mm) the convergence of the
16th and 84th is already excellent. We think that the difference might be related to
the high frequencies of Fig. 2.6. At the highest frequencies (higher than fifth natural
frequency) there are way more peaks for the shell elements. These peaks are likely
more present for shell elements because the FEM model with shell elements has
more DOF. Due to the higher number of DOF there are also more natural frequencies
that can perturb the result.

102

resolution axis [mm]

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

re
d

u
ce

d
ch

i-
sq

u
ar

ed
[m

m
2
]

Resolution nodes, Chi(theoretical)

Highres nodes, Chi(highres)

Highres nodes, Chi(theoretical)

102 103

resolution axis [mm]

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

re
d

u
ce

d
ch

i-
sq

u
ar

ed
[m

m
2
]

Resolution nodes, Chi(theoretical)

Highres nodes, Chi(highres)

Highres nodes, Chi(theoretical)

Figure 2.9 Reduced χ-squared of the mean displacement of Fig. 2.8 using three different approaches for
Zeng and Combescure (1998) shell elements and Timoshenko (1921, 1922) beam elements.
The reduced chi-squared is calculated based on the displacement of the cantilever beam. Ei-
ther the difference is compared to the theoretical curve (theoretical) or the highest resolution
simulation (highres). Additionally, the resolution nodes or highres nodes are used as a mea-
surement position for the reduced chi-squared. The Timoshenko (1921, 1922) beam elements
show excellent convergence with respect to their highres simulations and good convergence
with respect to the theoretical solution which quickly converges towards 10−3. Zeng and
Combescure (1998) shell elements show not so good convergence compared to the theoreti-
cal curves and show convergence a bit better than 10−2 with respect to the highest resolution
theoretical simulation.

Fig. 2.9 shows the χ-squared difference between the mean displacement and the
highest resolution simulation. Timoshenko (1921, 1922) beam elements show excel-
lent convergence towards their highest resolution simulation. The convergence with
the theory is around 10−3. Clearly, this is not excellent, but it is not expected that

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 35 / 96

this is perfect because the comparison with the theoretical solution does assume that
there is no change in the x-position of the cantilever beam, but because it deviates
slightly it is expected that the theoretical displacement will be slightly off. Given that
the deviation is 1 per cent of the cantilever beam a relative offset of slightly less than
one per mille is therefore not surprising. Lastly, the Timoshenko (1921, 1922) beam
elements clearly converge rapidly with resolution χ ∝ ∆x4, therefore increasing the
improvement with resolution is ∆x2.

For Zeng and Combescure (1998) shell elements the convergence with the highest
resolution simulation is not that good, the model only converges towards a reduced
χ-squared of ∼ 3 × 10−2. The convergence with respect towards the theoretical
solution deviates around five per cent because the Zeng and Combescure (1998)
shell elements are too stiff. The convergence with respect to the highest resolution
simulation shows that χ ∝ ∆x2.3, therefore the improvement with resolution is only
∼ ∆x1.17 and this shell element model does not converge that fast.

2.5.2 Accuracy of the solution for different time step sizes
Like most codes that solve partial-differential equations (PDEs) that depend on time,
OPENRADIOSS uses the Courant et al. (1928) (CFL) condition as a time step criterion
to constrain the maximal allowed time step. The CFL condition requires the time step
∆t to satisfy (CFL)

∆t ≤ lc
cs

. (2.79)

where lc is the characteristic element/resolution length and cs is the speed of sound.
This CFL condition corresponds to the time step that a sound wave travels through
a single resolution element without skipping a single resolution element. Because
this corresponds to the minimum time required for a sound wave to travel through a
resolution element, in general, a slightly stricter time step criterion is imposed, and it
is common to use

∆t ≤ CCFL
lc
cs

, (2.80)

where CCFL is the CFL constant. The CFL condition is required to be satisfied for a
stable solution of a PDE, this means that the CFL condition applies both on fluids and
solids. In general, for SPH and ALE the CFL condition is required to be smaller simply
because inside a SPH and ALE kernel there could be multiple resolution elements,
implying that lc is effectively smaller than the full width at half maximum (FWHM)
of the kernel width which is often denoted by h. In practice in SPH CCFL = 0.2
results in proper convergence. In the case of a regular grid lc = lgrid. By default in
OPENRADIOSS the CFL condition uses CCFL,fid = 0.9, this is the same value as is
used in LS-DYNA. It is investigated if a varied range of CFL conditions give identical
results, the CFL constant values are evenly spaced in log space following:

CCFL = CCFL,fid2n/4, n ∈ Z. (2.81)

This is done for both beam and shell elements. For the shell elements CCFL > 1.0703
is problematic 14, similar for the beam elements CCFL > 0.9 is problematic. Values
that are problematic result quickly in problems with the energy in the simulation. This
is something that OPENRADIOSS quickly indicates, and the simulation is stopped.
Because CCFL = 0.9 is just stable, it is not a good choice in general. This implies that

14This larger value than 1.0 is a bit surprising but is probably due to the way OPENRADIOSS rounds-off
numbers to calculate the CFL condition.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 36 / 96

a value of CCFL ≤ 0.75 is recommended. It is noted that for each type of problem it
is important to verify that this condition is good enough. Especially when shocks with
high Mach numbers are present a smaller value will be required (e.g. shocks in air,
FSI of air shock).

For the CFL condition only an investigation at the spatial resolution of 125 mm is per-
formed, this corresponds to a total of 32 resolution elements in the length. When look-
ing at the spatial distribution of the cantilever beam with different CFL constants there
are no noticeable differences (not shown). Fig. 2.10 shows the determined natural
frequencies for the cantilever beam. Across all natural frequencies the convergence
of the natural frequencies is nearly perfect. Similarly, Fig. 2.11 shows that the verti-
cal displacement and its scatter are well converged for the different CFL conditions.
Overall, this indicates that a CCFL ≤ 0.75 will produce good results in OPENRADIOSS.

1003× 10−1 4× 10−1 6× 10−1

CFL condition

101

102

fr
eq

u
en

cy
[H

z]

n=0

n=1

n=2

n=3

n=4

3× 10−1 4× 10−1 6× 10−1

CFL condition

101

102

fr
eq

u
en

cy
[H

z]

n=0

n=1

n=2

n=3

n=4

Figure 2.10 Comparison of the inferred natural frequencies for Zeng and Combescure (1998) shell (left)
and Timoshenko (1921, 1922) beam elements (right) as a function of CFL condition and for
different natural frequencies (different colours). Excellent convergence with the CFL condi-
tion is found, larger values than shown do not result in convergence of the result. Overall, it is
recommended to use at most CCFL = 0.9. Given that this will be problematic for shocks, an
overall recommendation is given of CCFL ≤ 0.75 such that more non-linear and more rapid
phenomena are also described correctly.

0 500 1000 1500 2000 2500 3000 3500 4000

x coordinate [mm]

−80

−70

−60

−50

−40

−30

−20

−10

0

z
d

is
p

la
ce

m
en

t
[m

m
]

1.0703

0.9

0.7568

0.6364

0.5351

0.45

0.3784

0.3182

0.2676

0.225

Equilibrium

0 500 1000 1500 2000 2500 3000 3500 4000

x coordinate [mm]

−80

−70

−60

−50

−40

−30

−20

−10

0

z
d

is
p

la
ce

m
en

t
[m

m
]

0.9

0.7568

0.6364

0.5351

0.45

0.3784

0.3182

0.2676

0.225

Equilibrium

Figure 2.11 Comparison of the equilibrium displacement and the 16th and 84th percentile for the vertical
displacement for Zeng and Combescure (1998) shell (left) and Timoshenko (1921, 1922)
beam elements (right). The different colours indicate the different CFL condition. The results
converge nearly perfect as a function of CFL condition. Larger values than shown do not
result in convergence. Overall, this figure shows that at least CCFL = 0.9 should be used. It
is recommended to at least use CCFL ≤ 0.75 for good convergence in general.

An important note of the investigation of the (CFL) condition is that we only investi-
gated a regular mesh with square shells. This means that the impact of the (CFL)
condition is much bigger because all cells have the same time step. In a full ship or
submarine model there are many elements with different sizes and only a very limited
number of elements have the condition that they need to have a very small time step.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 37 / 96

This means that for a (CFL) condition of CCFL = 0.9 we do not expect much problems
for irregular models.

2.5.3 Comparison of different hourglass and shell elements formulations
In § 2.3.3 an overview of the different shell formulations in OPENRADIOSS was given.
Here a direct comparison at six different resolutions is performed for all six shell el-
ement formulations in OPENRADIOSS. Fig. 2.12 shows a convergence test for the
Belytschko and Tsay (1983) shell elements with the four different hourglass penali-
sations. This demonstrates that the different hourglass penalisations produce nearly
identical results that are hard to distinguish. This is not surprising because σy ≈ ∞
which means that Ishell = 1 is identical to Ishell = 3 because the second term of
equations (2.66) and (2.67) reduce to equations (2.62) and (2.63). Furthermore, the
cantilever beam also only has a small displacement, this means that the penalisation
model without orthogonality (Ishell = 2) and the penalisation model with orthogonali-
sation for warped elements (Ishell = 4) are not expected to show any difference with
respect to Ishell = 1. Still for all the four different penalisation methods the conver-
gence of the shell elements is not perfect and as explained in § 2.3.3 they are unable
to converge to the correct solution of the cantilever beam benchmark. Despite this
the numerical solution remains within 7 per cent of the analytical solution. That all
four hourglass penalisation methods produce almost identical results applies to most
linear tests, however, for more complicated models this conclusion might not apply
and it should be considered which of the four hourglass penalisation methods is most
appropriate.

Fig. 2.13 compares the three different element formulations in OPENRADIOSS. From
top to bottom Fig. 2.13 shows Ishell = 4, Ishell = 12, and Ishell = 24. Ishell = 4
corresponds to the most advanced hourglass penalisation with the Belytschko and
Tsay (1983) shell elements. This plot shows that the model converges when the
amount of resolution elements is increased from n = 4 to n = 32. At n = 64 the
Belytschko and Tsay (1983) shell elements deviate again more from the analytical
solution and at n = 128 they are more converged again. This shows that the con-
vergence of the Belytschko and Tsay (1983) still deviates around 10 per cent from
the correct solution. Ishell = 12 corresponds to the fully-integrated Batoz and Dhatt
(1990) shell elements with the physical hourglass formulations following Belytschko
and Leviathan (1994) and Belytschko et al. (1984). Ishell = 12 converges but shows
too much stiffness which causes it to deviate around 13 per cent from the analytical
solution. The result of being too stiff is well converged from 64 and 128 element.
Ishell = 24 corresponds to the Zeng and Combescure (1998) shell formulation using
physical hourglass formulations. Similar to Ishell = 12, the solution of this shell formu-
lation converges. Ishell = 24 shell elements are slightly too stiff which cause them to
deviate consistently by 5 per cent from the analytical solution. Overall, the best shell
element formulation to simulate the cantilever beam correspond to Ishell = 24 or the
Zeng and Combescure (1998) shell elements. These shell elements converge well
and converge quite close to the analytical solution. However, a deviation of 5 per cent
is still significant.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 38 / 96

0 500 1000 1500 2000 2500 3000 3500 4000

x coordinate [mm]

−50

−40

−30

−20

−10

0

z
d

is
p

la
ce

m
en

t
[m

m
]

500 mm

250 mm

125 mm

62.5 mm

31.25 mm

15.625 mm

Equilibrium

0 500 1000 1500 2000 2500 3000 3500 4000

x coordinate [mm]

−50

−40

−30

−20

−10

0

z
d

is
p

la
ce

m
en

t
[m

m
]

500 mm

250 mm

125 mm

62.5 mm

31.25 mm

15.625 mm

Equilibrium

0 500 1000 1500 2000 2500 3000 3500 4000

x coordinate [mm]

−50

−40

−30

−20

−10

0

z
d

is
p

la
ce

m
en

t
[m

m
]

500 mm

250 mm

125 mm

62.5 mm

31.25 mm

15.625 mm

Equilibrium

0 500 1000 1500 2000 2500 3000 3500 4000

x coordinate [mm]

−50

−40

−30

−20

−10

0

z
d

is
p

la
ce

m
en

t
[m

m
]

500 mm

250 mm

125 mm

62.5 mm

31.25 mm

15.625 mm

Equilibrium

Figure 2.12 Comparison of the different hourglass penalisation methods using the Belytschko and Tsay
(1983) shell elements for different numerical resolutions (colours). From top left to bottom
right, Ishell = 1, Ishell = 2, Ishell = 3, and Ishell = 4. Ishell = 1 uses the Kosloff and Frazier
(1978) and Flanagan and Belytschko (1981) visco-elastic hourglass formulation. Ishell = 2
uses the Kosloff and Frazier (1978) and Flanagan and Belytschko (1981) visco-elastic hour-
glass formulation without orthogonality following Hallquist (Altair, 2022a), Ishell = 3 uses
a modified Flanagan and Belytschko (1981) elastoplastic hourglass formulation which set
a minimum value to the hourglass correction based on the material yield. Ishell = 4 uses
the Kosloff and Frazier (1978) and Flanagan and Belytschko (1981) visco-elastic hourglass
formulation which includes a correction for warped elements such that the hourglass formu-
lation remains orthogonal. For the cantilever beam benchmark, the four different hourglass
penalisation methods give nearly identical results but the convergence is not amazing be-
cause even at high resolution the simulation can be off by around 7 per cent (orange line)
and is better for slightly higher and lower resolutions (yellow and dark orange) that have a
deviation of around 3 per cent and 1 per cent.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 39 / 96

0 500 1000 1500 2000 2500 3000 3500 4000

x coordinate [mm]

−50

−40

−30

−20

−10

0

z
d

is
p

la
ce

m
en

t
[m

m
]

500 mm

250 mm

125 mm

62.5 mm

31.25 mm

15.625 mm

Equilibrium

0 500 1000 1500 2000 2500 3000 3500 4000

x coordinate [mm]

−50

−40

−30

−20

−10

0

z
d

is
p

la
ce

m
en

t
[m

m
]

500 mm

250 mm

125 mm

62.5 mm

31.25 mm

15.625 mm

Equilibrium

0 500 1000 1500 2000 2500 3000 3500 4000

x coordinate [mm]

−50

−40

−30

−20

−10

0

z
d

is
p

la
ce

m
en

t
[m

m
]

500 mm

250 mm

125 mm

62.5 mm

31.25 mm

15.625 mm

Equilibrium

Figure 2.13 Comparison of the three different shell formulations in OPENRADIOSS for different numerical
resolutions (colours). From top to bottom, Ishell = 4, Ishell = 12, and Ishell = 24. Ishell = 4
corresponds to the Belytschko and Tsay (1983) shell elements that include orthogonal visco-
elastic hourglass corrections following the Kosloff and Frazier (1978) and Flanagan and Be-
lytschko (1981) formulation which take into account warping of elements. Ishell = 12 corre-
sponds to the fully-integrated Batoz and Dhatt (1990) shell elements with the physical hour-
glass formulations following Belytschko and Leviathan (1994) and Belytschko et al. (1984).
Ishell = 24 corresponds to the Zeng and Combescure (1998) shell formulation using physical
hourglass formulations. An important difference between Ishell = 4 and Ishell = 12 = 24
is that Ishell = 12 and 24 converge towards a single solution as the resolution is increased
while Ishell = 4 is still not converged. Furthermore, the three different shell formulations have
different stiffness, the Ishell = 4 elements are the least stiff while Ishell = 12 is most stiff
and Ishell = 24 is between. For the three different shell element formulations, Ishell = 24 or
Zeng and Combescure (1998) shell elements converges and agree best with the analytical
solution.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 40 / 96

2.5.4 Thickness integration
In § 2.3.4 the way thickness integration of shell elements is done in OPENRADIOSS is
explained. Here the importance of the number of integration points in investigated. To
investigate this a simultaneous variation of the resolution and the number of thickness
integration points is performed. Fig. 2.14 shows the impact of the number of thickness
integration points and the numerical resolution. As expected, based on § 2.3.4 the
result quickly converges when the number of integration points is 2 or higher. Note
that the result here is for a linear problem, which means that all quantities involved are
either linear or quadratic. Gauss-Lobatto quadrature is accurate for any polynomial
2n − 1 which means that the result here does not generalise for non-linear problems.

0 500 1000 1500 2000 2500 3000 3500 4000

x coordinate [mm]

−50

−40

−30

−20

−10

0

z
d

is
p

la
ce

m
en

t
[m

m
]

500 mm

250 mm

125 mm

62.5 mm

31.25 mm

15.625 mm

Equilibrium

0 500 1000 1500 2000 2500 3000 3500 4000

x coordinate [mm]

−50

−40

−30

−20

−10

0

z
d

is
p

la
ce

m
en

t
[m

m
]

500 mm

250 mm

125 mm

62.5 mm

31.25 mm

15.625 mm

Equilibrium

0 500 1000 1500 2000 2500 3000 3500 4000

x coordinate [mm]

−50

−40

−30

−20

−10

0

z
d

is
p

la
ce

m
en

t
[m

m
]

500 mm

250 mm

125 mm

62.5 mm

31.25 mm

15.625 mm

Equilibrium

0 500 1000 1500 2000 2500 3000 3500 4000

x coordinate [mm]

−50

−40

−30

−20

−10

0

z
d

is
p

la
ce

m
en

t
[m

m
]

500 mm

250 mm

125 mm

62.5 mm

31.25 mm

15.625 mm

Equilibrium

0 500 1000 1500 2000 2500 3000 3500 4000

x coordinate [mm]

−50

−40

−30

−20

−10

0

z
d

is
p

la
ce

m
en

t
[m

m
]

500 mm

250 mm

125 mm

62.5 mm

31.25 mm

15.625 mm

Equilibrium

0 500 1000 1500 2000 2500 3000 3500 4000

x coordinate [mm]

−50

−40

−30

−20

−10

0

z
d

is
p

la
ce

m
en

t
[m

m
]

500 mm

250 mm

125 mm

62.5 mm

31.25 mm

15.625 mm

Equilibrium

Figure 2.14 Comparison of the importance of number of thickness integration points (different column-
s/rows) and the numerical resolution (different colours) for the cantilever beam benchmark
using Belytschko and Tsay (1983) shell elements. The Kosloff and Frazier (1978) and
Flanagan and Belytschko (1981) visco-elastic hourglass formulation is used which includes
a correction for warped elements such that the hourglass formulation remains orthogonal
(Ishell = 4). The different panels show 1 (membrane behaviour), 2, 3, 5, 7 and 9 integration
points using Gauss-Lobatto quadrature. The result is converged from N = 2 integration
points as expected from theory.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 41 / 96

2.5.5 Force on the side of the cantilever beam
In the examples above only normal forces on the horizontal surface were place. Here
a rotated force is applied to test shell elements in their own plane. Fig. 2.15 shows
the procedure used in the previous sections in red, here all the last nodes obtain a
force. A different test is rotating the applied force by 90◦ and only forcing the force
on a single node, this is demonstrated by the blue arrow. This case is called the
alternative forced cantilever.

Figure 2.15 Schematic view of the cantilever beam and the applied force. The red arrows show how the
force is applied in the previous sections and the blue arrow indicates how the force is applied
in this subsection.

The cross section has a (much) larger inertia in the direction of the blue loading than
in the direction of the red loading. This means that the expected frequency is orders
of magnitudes larger for the blue case than in the case of the red case, it will be
different by b/D ≈ 125. We also increased the force by a factor of 104 such that the
displacement remains of the order of 20 mm.

0 50 100 150 200 250 300 350 400

time [ms]

−60

−40

−20

0

20

40

60

d
is

p
la

ce
m

en
t

[m
m

]

500 mm

250 mm

125 mm

62.5 mm

Figure 2.16 Comparison of the displacement at the end of the alternative forced cantilever beam for dif-
ferent numerical resolutions (colours) using Zeng and Combescure (1998) shell elements.
For the lowest resolution simulations the solution remains stable while for the highest resolu-
tion simulation the simulation diverges at only 200 ms.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 42 / 96

Fig. 2.16 shows the 400 ms of the simulation with the alternative forced cantilever
beam using Zeng and Combescure (1998) shell elements. For the three lowest res-
olution simulations the solution remains relatively stable, while the highest resolution
simulation quickly deviates at around 200 ms. Simulations for two- and four-times
higher resolution were also performed and resulted in diverging results, these simu-
lations are not shown here.

0 500 1000 1500 2000 2500 3000 3500 4000

time [ms]

−60

−40

−20

0

20

40

60

d
is

p
la

ce
m

en
t

[m
m

]

500 mm

250 mm

125 mm

62.5 mm

Figure 2.17 Same as Fig. 2.16 but for a longer time. The simulation with a resolution of 125 mm starts
deviation at around 2000 ms. This indicates that the simulations of the alternative forced
cantilever beam are unstable when integrated over long times.

The theoretical frequency is around 125×2.6 Hz ≈ 325 Hz. Fig. 2.16 shows that within
400 ms there are 20.5 periods, therefore the frequency is given by 2π×20.5/400 ms =
322 Hz. This shows that the frequency in the simulation is in agreement with the
theoretical frequency.

Fig. 2.18 shows results when we perform the alternative forced cantilever beam for
different CFL conditions. It is found that a smaller CFL condition can indeed improve
the stability of the solution. But that a CFL condition of 0.45 still produces instability
after some 4000 ms.

0 500 1000 1500 2000 2500 3000 3500 4000

time [ms]

−20

−10

0

10

20

30

40

d
is

p
la

ce
m

en
t

[m
m

]

CCFL = 0.75

CCFL = 0.45

CCFL = 0.225

Theoretical displacement

Figure 2.18 Comparison of the displacement at the end of the alternative forced cantilever beam for
different CFL conditions (colours) using Zeng and Combescure (1998) shell elements at a
resolution of 125 mm. Reducing the CFL conditions improves the convergence of the results.

Fig. 2.19 shows the same as Fig. 2.18 but for a larger element resolution. This again
demonstrates that the stability of the solution can be improved when the CFL condi-
tion is decreased but that it is hard for the solution to remain stable for many cycles.

Fig. 2.20 shows the convergence at a spatial resolution of 125 mm and demonstrates
that this stability issue is present also for the Belytschko and Tsay (1983) shell ele-
ments.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 43 / 96

0 500 1000 1500 2000 2500 3000 3500 4000

time [ms]

−20

−10

0

10

20

30

40

d
is

p
la

ce
m

en
t

[m
m

]
CCFL = 0.75

CCFL = 0.45

CCFL = 0.225

Theoretical displacement

Figure 2.19 Comparison of the displacement at the end of the alternative forced cantilever beam for
different CFL conditions (colours) using Zeng and Combescure (1998) shell elements at a
resolution of 62.5 mm. Reducing the CFL conditions improves the convergence of the results.

0 500 1000 1500 2000 2500 3000 3500 4000

time [ms]

−20

−10

0

10

20

30

40

d
is

p
la

ce
m

en
t

[m
m

]

Ishell = 24

Ishell = 1

Ishell = 4

Theoretical displacement

Figure 2.20 Comparison of the displacement at the end of the alternative forced cantilever beam for dif-
ferent shell elements at a resolution of 125 mm and a CFL condition of 0.45. 24 correspond to
the Zeng and Combescure (1998) shell elements and 1 and 4 correspond to the Belytschko
and Tsay (1983) shell element with different hourglass penalisation methods. At this resolu-
tion the Zeng and Combescure (1998) shell elements obtain a less divergent result than the
Belytschko and Tsay (1983) shell elements.

The question is whether it is surprising that the oscillations deviate so much and the
system obtains additional energy. OPENRADIOSS uses central difference for the time
integration. Central differences has the problem that it does not conserve energy. As
shown in Springel (2005), this can either mean that the system slowly loses energy
(dissipation) or that it gains energy. The central difference time integration in OPEN-
RADIOSS mainly breaks down when it gains energy rather than when it loses energy.
Fig. 2.4 showed that at low resolutions dissipation of energy takes place. To solve the
problem of losing and gaining energy it will be required for the time integration to con-
serve energy by construction. Symplectic time integration schemes always conserve
the total energy of the system because they are designed to do so. These are time
integration schemes like leapfrog integration (Birdsall and Langdon, 1985) or Verlet
(1967) integration.

2.6 Damped cantilever beam

In this section we again focus on the cantilever beam in which the force is imposed
perpendicular to the plate of the cantilever beam (Red case of Fig. 2.15).

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 44 / 96

0 10000 20000 30000 40000 50000 60000 70000

time [ms]

−80

−70

−60

−50

−40

−30

−20

−10

0

d
is

p
la

ce
m

en
t

[m
m

]

500 mm

250 mm

125 mm

62.5 mm

31.25 mm

15.625 mm

Theoretical displacement

0 10 20 30 40 50 60 70

time [s]

−70

−60

−50

−40

−30

−20

−10

0

d
is

p
la

ce
m

en
t

[m
m

]

4000 mm

2000 mm

1000 mm

500 mm

250 mm

125 mm

62.5 mm

31.25 mm

15.625 mm

Theoretical displacement

Figure 2.21 Comparison of the vertical displacement at the edge of the cantilever beam with damping
for Belytschko and Tsay (1983) shell (top) and Timoshenko (1921, 1922) beam (bottom) ele-
ments. We find that the static displacement is not converged for the three lowest resolutions
when using shell elements, contrary, when beam elements are used the static displacement
is converged already when 1 element is used.

To investigate specifically the static solution of the cantilever beam we apply Rayleigh
mass and stiffness damping to the problem. This damping results in a relatively quick
decrease of the amplitude such that we can compare well with the static solution
at different numerical resolutions. In Fig. 2.21 we show the time evolution of the
displacement for shell and beam elements. We find that the beam elements are
very well converged in terms of their static vertical displacement15 and find that the
displacement is converged when a single beam element is used. The shell elements
are not as well converged at low element resolutions and require at least a resolution
of 125 mm in order for the static vertical displacement to be converged.

In Fig. 2.22 we show the static displacement for all element resolutions in the sim-
ulations of the cantilever beam. We find again excellent convergence for the beam
elements which are very well converged even when damping is included. The conver-
gence for shell elements is slightly worse and they require a slightly higher resolution
of around 125 mm to converge. Overall, this result shows that there is correct con-
vergence when damping is used.

Fig. 2.23 shows the reduced Chi-squared value of the different resolutions as a more
quantitative way of quantifying how good the convergence is between the theoretical
solution and the simulation itself. We find that the beam elements show excellent
agreement with the theoretical values at their node positions and the accuracy is quite

15Because of a slightly different variable set, the mean displacement for the beam elements is slightly
smaller than 40.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 45 / 96

0 500 1000 1500 2000 2500 3000 3500 4000

x coordinate [mm]

−80

−70

−60

−50

−40

−30

−20

−10

0

z
d

is
p

la
ce

m
en

t
[m

m
]

500 mm

250 mm

125 mm

62.5 mm

31.25 mm

15.625 mm

Equilibrium

0 500 1000 1500 2000 2500 3000 3500 4000

x coordinate [mm]

−80

−70

−60

−50

−40

−30

−20

−10

0

z
d

is
p

la
ce

m
en

t
[m

m
]

4000 mm

2000 mm

1000 mm

500 mm

250 mm

125 mm

62.5 mm

31.25 mm

15.625 mm

Equilibrium

Figure 2.22 Comparison of the static vertical displacement of the analytical solution and the simulations
at different resolutions (different colours) for Belytschko and Tsay (1983) shell (left) and Tim-
oshenko (1921, 1922) beam (right) elements. We find that beam elements converge very
well even at the lowest resolutions. Shell elements require slightly higher resolutions of 125
mm to have good convergence. This results shows that the results keep converging when
there is damping.

close to machine accuracy of float numbers of around 10−8. The overall convergence
of the exact shape converged very rapidly with almost ∝ l5

res. The shell elements
show less strong convergence and show only converged up to a few times 10−3.

102

resolution axis [mm]

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

re
d

u
ce

d
ch

i-
sq

u
ar

ed
[m

m
2
]

Resolution nodes, Chi(theoretical)

Highres nodes, Chi(highres)

Highres nodes, Chi(theoretical)

102 103

resolution axis [mm]

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101
re

d
u

ce
d

ch
i-

sq
u

ar
ed

[m
m

2
]

Resolution nodes, Chi(theoretical)

Highres nodes, Chi(highres)

Highres nodes, Chi(theoretical)

Figure 2.23 Comparison of the reduced chi-squared as a function of numerical resolution for Belytschko
and Tsay (1983) shell (left) and Timoshenko (1921, 1922) beam (right) elements with damp-
ing. The convergence for beam elements is very good, for shell elements the convergence
is less good but is close to 10−3.

2.7 Cantilever beam with different damping

In Fig. 2.24 we show simulations with slightly different mass damping for both shell
and beam elements at a spatial resolution of 125 mm. We see that both element
types converge to the desired mean displacement. This indicates that the result is
independent of the mass damping. All simulations were performed with a small stiff-
ness damping.

To not have oscillations at all times, instead of continuing the problem like it is, I
take a slightly different approach. For all nodes we will include Rayleigh damping.
Specifically, we will only consider Rayleigh mass damping as the stiffness damping is
not desired in the case of the cantilever beam because we want to find the equilibrium
solution. In general, it is possible to find the Rayleigh mass damping that is around
the critical value (ξ = 1) by calculating the Rayleigh mass damping as

α = 2ξ

2ωn
, (2.82)

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 46 / 96

0 10000 20000 30000 40000 50000 60000 70000

time [s]

−80

−70

−60

−50

−40

−30

−20

−10

0

d
is

p
la

ce
m

en
t

[m
m

]

α = 0.25× 10−4 s

α = 1× 10−4 s

α = 4× 10−4 s

α = 16× 10−4 s

α = 64× 10−4 s

Theoretical displacement

0 10000 20000 30000 40000 50000 60000 70000

time [s]

−70

−60

−50

−40

−30

−20

−10

0

d
is

p
la

ce
m

en
t

[m
m

]

α = 0.25× 10−4 s

α = 1× 10−4 s

α = 4× 10−4 s

α = 16× 10−4 s

α = 64× 10−4 s

Theoretical displacement

Figure 2.24 Comparison of the vertical displacement at the edge of the cantilever beam with damping
for Belytschko and Tsay (1983) shell (top) and Timoshenko (1921, 1922) beam (bottom)
elements with damping. We find that the static displacement is converged for simulations
with different mass damping.

where ωn is the natural frequency, this means that we would expect the Rayleigh
mass damping to be around α = 2/(2π · 2.6 Hz) = 0.12 s. By performing tests, we
found this value to be almost a factor of 1000 smaller and therefore we use these
values around α = 4 × 10−4 s instead. For the simulation of a spatial resolution of
125 mm we perform a few simulations with different Rayleigh mass damping factors
around this fiducial value. We space them with factors of 4. In general, the damping
shows the correct trend.

2.8 Conclusions

• A cantilever beam benchmark was created and used to verify the different shell
and beam element formulations.

• Timoshenko (1921, 1922) beam and Zeng and Combescure (1998) shell el-
ements reproduce the correct natural frequencies, equilibrium position, and
normalisation for the cantilever beam benchmark. It is found that the natural
frequency up to n = 5 can be predicted well.

• A CFL condition that is slightly stricter than the fiducial value of 0.9, but instead
is 0.75 improves the stability for a regular mesh and allows the cantilever beam
benchmark to be run correctly without divergence.

• The Zeng and Combescure (1998) shell formulation is found to produce the

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 47 / 96

most desired solution for the cantilever beam benchmark because; (i) it shows
converging results, (ii) it converges closely to the desired analytical solution.
The Batoz and Dhatt (1990) Q4γ24 shell element do not converge to the correct
analytical solution, but they show clear convergence with a standard deviation
from the solution. Lastly, the Belytschko and Tsay (1983) shell element shows
that the result does not strictly converge in which a higher resolution means; a
solution closer to the analytical solution. The Belytschko and Tsay (1983) shell
element shows rather that the solution oscillates around the true solution and
the amount of convergence is difficult to know in advance.

• An alternative cantilever beam was used that shows that the different shell ele-
ment formulations have trouble finding a converging solution when the oscilla-
tions of the cantilever beam have a very small period.

• The cantilever beam benchmark was also performed with a damping factor
which let the solution converge to the equilibrium state as expected.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 48 / 96

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 49 / 96

3 Springs

This chapter verifies the simple spring elements in OPENRADIOSS. An extensive
investigation of ideal springs and non-ideal springs is performed. These are the first
steps to investigate spring elements that are used for UNDEX analysis.

3.1 Ideal spring

This section focuses on an ideal spring. The simulations performed are based on a
spring system which has a mass, this means there are 2 nodes for the spring, one
node for the orientation, and a single spring element. For a spring with a mass, it
is required to consider the effective mass of the spring-mass system. A spring with
mass m does not have a kinetic energy of 1

2 mv2, where v is the velocity at the end of
the spring. Only the very end of the spring will move with that velocity. The differential
kinetic energy is given by:

dK = 1
2

u2dm. (3.1)

To get the total kinetic energy equation (3.1) needs to be integrated over the total
length of the spring,

K =
∫

spring

dK =
∫

spring

1
2

u2dm. (3.2)

An ideal spring is stretched homogeneously, which means that its mass distribution is
uniform. Therefore dm = m

l ds, l is the length of the spring measured at time t and ds

is the differential of distance. Assuming a homogeneous stretch also gives that the
velocity is given by u(s) = s

l v. This means that the kinetic energy becomes:

K =
l∫

0

1
2

(s

l
v
)2 (m

l

)
ds, (3.3)

= m

2l3 v2
l∫

0

s2ds, (3.4)

= 1
2

m

3
v2. (3.5)

This means that the effective mass of the spring is simply m
3 .

How to test single springs? There is just one way of testing a spring properly, this
is by exerting a force along its direction and following the dynamic evolution of the
spring. The EoM of a spring can simply be calculated by setting Newton’s (1687)
second law equal to Hooke’s (1678) law and the EoM reduces to:

d2x

dt2 = − k

meff
x. (3.6)

where k is the spring constant and meff is its effective mass. Based on this the
frequency of the oscillation is given by ω =

√
k/meff . And the homogeneous solution

is given by:

x(t) = c1 cos(ωt + ϕ). (3.7)

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 50 / 96

If a force is imposed the EoM is given by:

meff
d2x

dt2 = −kx + F0Θ(t). (3.8)

where F0 is the imposed force and Θ(t) is the Heaviside step function1 (Abramowitz
and Stegun, 1965). This can be reduced to:

d2x

dt2 + k

meff
x = F0

meff
Θ(t). (3.9)

The particular solution of this equation is given by:

x(t) = c2Θ(t), (3.10)

= F0

k
Θ(t). (3.11)

Combining this with the homogeneous solution gives the general solution given by:

x(t) = c1 cos(ωt + ϕ) + F0

k
Θ(t) (3.12)

The boundary conditions of the problem are given by:

x(t = 0) = 0, (3.13)
dx

dt
(t = 0) = 0. (3.14)

Imposing these conditions gives:

c1 cos(ϕ) + F0

k
= 0, (3.15)

−c1ω sin(ϕ) = 0. (3.16)

This directly implies that ϕ = 0, therefore c1 = − F0
k . This means that the solution is

given by:

x(t) = F0

k
(Θ(t) − cos(ωt)) . (3.17)

Using this relation there are two ways that the ideal spring can be tested:

• Comparing the harmonic oscillations of the spring with the analytical expecta-
tions.

• Comparing the displacement with the imposed force.

In theory it is possible to create a single numerical experiment to test both, but this
has the limitation that the displacement and force graph does not extend to large
displacements. Because of this, two different numerical experiments are performed:

• A constant force is imposed on the edge of the spring, the spring will start
oscillating with frequency ω and will have a displacement following equation
(3.17). This set-up is ideal to check that the spring has the right frequency, and
the displacement is as expected.

• A constant axial displacement is performed and while displacing the spring
the total force is calculated and logged. This is ideal to reproduce the force-
displacement graph over a large dynamical range and allows comparing the
input spring constant with the observed spring constant.

1The Heaviside step function is a function that is 0 for t < 0 and 1 for t ≥ 0.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 51 / 96

3.1.1 Time evolution
Fig. 3.1 shows the time evolution of an ideal spring and compares it with the analytical
predictions of equation (3.17). The agreement is excellent, and for the time range
shown we cannot see a clear deviation in phase of the oscillation. There might be a
minuscule difference in the amplitude that is difficult to quantify. A better comparison
might be to check how well the numerical simulation performs in Fourier space. Based
on equation (3.17) the Fourier transform has two components, one component that
is constant and transforms to a Dirac delta function at ν = 0, that is ∝ δ(ν). And a
Dirac delta function at the frequency (and negative frequency) of the cosine, that is
∝ δ(ν − ω).

0 25 50 75 100 125 150 175 200

time [ms]

−2000

−1750

−1500

−1250

−1000

−750

−500

−250

0

D
is

p
la

ce
m

en
t

[m
m

]

simulation

theory

Figure 3.1 Comparing the time evolution of a simulated spring (blue) with the analytical solution (black
dashed). The theoretical solution and the simulation are in excellent agreement.

Fig. 3.2 shows the FFT of the ideal spring system with an imposed force. Both the
theoretical prediction and the numerical simulation impose a clear peak that match
extremely well between both, this shows that OPENRADIOSS is working well in repro-
ducing the eigenfrequency of the spring.

3.1.2 Displacement force relation
Fig. 3.3 compares the force-displacement relation of an ideal spring with the theo-
retical predictions. This demonstrates that the agreement is excellent between the
theoretical model and the simulation, the difference is almost impossible to see in this
plot and the lines are on top of each other.

The conclusion for ideal spring elements is that they produce the correct behaviour
for both the displacement and the period.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 52 / 96

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

frequency [rad s−1]

0.0

0.2

0.4

0.6

0.8

1.0

ab
so

lu
te

F
F

T
sp

ec
tr

u
m

[a
rb

it
ra

ry
u

n
it

s]

0.0 per cent

theoretical frequency

theoretical displacement

simulation displacement

Figure 3.2 Compares the FFT spectrum of the theoretical prediction (blue and black dashed) and the
numerical result of the simulation (orange). The theoretical frequency (black dashed) shows
the input frequency ω and the theoretical displacement shows the Fourier transform of equa-
tion (3.17). The percentage shown in the figure shows the difference between the simulated
and theoretical displacement, which is 0.0 per cent. Like the conclusion of Fig. 3.1, the fre-
quency is in excellent agreement between the simulation and theoretical expectation.

0 2500 5000 7500 10000 12500 15000 17500 20000

u [mm]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

F
or

ce
[k

g
·m

m
m

s2
]

theory

simulation

Figure 3.3 Comparing the theoretical (black dashed) force-displacement relation and the force-
displacement relation from the numerical simulation (blue). The agreement is perfect between
the theory and the simulation, the lines are on top of each other.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 53 / 96

3.2 Damped ideal spring

Most spring elements also have a dash-pot damper that can be attached parallel to
the spring element. When a damper is attached parallel to the spring its EoM changes
to:

meff
d2x

dt2 + c
dx

dt
+ kx = F0Θ(t). (3.18)

where c is the damping coefficient of the dash-pot damper. This means that the
homogeneous solution reduces to:

x(t) = c1e−ωtξ sin(ωt
√

1 − ξ2 + ϕ). (3.19)

Where ξ = c
2meffω . When the damping coefficient is small, the term inside the sine

reduces to: √
1 − ξ2 ≈ 1 − 1

2
ξ2 − 1

8
ξ4. (3.20)

This means that when ξ ≪ 1, equation (3.21) reduces to:

x(t) = c1e−ωtξ sin(ωt + ϕ). (3.21)

This means that the change of frequency is small. For the damped spring, the only
relevant measurement is seeing how quickly it damps. Because of this, the same
set-up is used as for the ideal spring in § 3.1. Like in § 3.1 the general solution is:

x(t) = F0

k
Θ(t) + c1e−ωtξ sin(ωt

√
1 − ξ2 + ϕ). (3.22)

Adding the two boundary conditions:

x(t = 0) = 0, (3.23)
dx

dt
(t = 0) = 0. (3.24)

This results in

x(t) = F0

k

(
Θ(t) − e−ωtξ cos(ωt

√
1 − ξ2)

)
. (3.25)

For the damped spring the displacement will be damped, and this is the main in-
terest of investigating the damped ideal spring. Fig. 3.4 shows the displacement of
the theory and the simulation. This shows that the agreement is excellent between
the theory and simulation. The damping changes the frequency, this still results in
excellent agreement between the simulation and theory.

Fig. 3.5 shows the Fourier transform of the displacement, this clearly shows that
both agree very well, there peak frequency agrees perfectly between the theory and
simulation. The shapes of the Fourier transforms are almost on top of each other
but show a small deviation between them that is not significant for the simulation
outcome.

As a side note, in OPENRADIOSS the time step size is given by (Altair, 2022b)

∆t =
(√

mk + c2
)

− c

k
. (3.26)

This implies that only a few time steps are required for a period of a spring, this cannot
produce accurate results and because of that Altair (2022b) recommend to use a time
step that is a factor of at least 5 lower. The simulations performed here already use a
CFL condition of 1/10. Therefore, the expectation would be that the correct solution
is produced. As a side check, simulations with a CFL condition of 1/100 (not shown)
were performed and results in identical results as for the CFL condition of 1/10.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 54 / 96

0 25 50 75 100 125 150 175 200

time [ms]

−1750

−1500

−1250

−1000

−750

−500

−250

0

D
is

p
la

ce
m

en
t

[m
m

]

simulation

theory

Figure 3.4 Comparing the theoretical displacement (black dashed) of a damped spring with the simulation
of a damped spring (blue). The period and the decay agree perfectly.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

frequency [rad s−1]

0.0

0.2

0.4

0.6

0.8

1.0

ab
so

lu
te

F
F

T
sp

ec
tr

u
m

[a
rb

it
ra

ry
u

n
it

s]

0.0 per cent

theoretical frequency

theoretical displacement

simulation displacement

Figure 3.5 Comparison of the FFT signal of the displacement for the simulation (orange) and the theoret-
ical prediction (blue and black dashed). The theoretical displacement (blue) shows the Fourier
transform of equation (3.25). The theoretical frequency (black dashed) shows the theoretical
frequency based on equation (3.25) which corresponds to ω

√
1 − ξ2. The percentage shown

in the figure shows the difference between the theoretical and simulated displacement. Like
Fig. 3.2 the peak of the frequency agrees perfectly between the theoretical and simulated dis-
placement.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 55 / 96

3.3 Non-ideal spring

For non-linear springs with large contributions from non-linear terms it is important to
only include terms that are producing periodic behaviour when periodic behaviour is
investigated. This means that springs should have energies that have even parabolas.
This means that non-linear terms can be

Uspring = 1
2

ku2 + 1
4

k2u4 (3.27)

or more general,

Uspring = 1
2

ku2 +
∞∑

i=1

1
2i

kiu
2i. (3.28)

where k and ki are spring constants that are either positive or zero. This implies that
the force is given by:

Fspring = ku +
∞∑

i=0
kiu

2i−1. (3.29)

Because equation (3.29) only has odd polynomials the force is always pointed to zero
displacement.

3.3.1 Time evolution
When the time evolution is calculated the most important property is the frequency of
the displacement. For a non-linear spring with only a single element, the energy is
given by

Uspring =
x∫

0

Fspringdx, (3.30)

where f(x) is the nonlinear function. The assumption is made that the non-linear
spring has only a single term and the term can be expressed as

Fspring = kx2n−1, (3.31)

where n ≥ 1 and k is the spring constant with unit N m1−2n. The spring energy is
then given by:

Uspring = k

2n
x2n. (3.32)

This means that the energy of the system at maximal displacement is given by:

Esystem = k

2n
a2n. (3.33)

where a is the maximal displacement during a periodic oscillation, this corresponds
to the amplitude of the oscillation. The kinetic energy of the system is given by 1

2 mv2.
This means that

Esystem = Uspring + Ekinetic, (3.34)

can be written as

1
2

mv2 = k

2n

(
a2n − x2n

)
. (3.35)

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 56 / 96

Reordering gives

v =
√

k

2mn
(a2n − x2n). (3.36)

This can simply be written as

1
v

= dt

dx
=
√

nm

k(a2n − x2n)
. (3.37)

This equation can be integrated over a quarter of its period as

p

4
=

a∫
0

dt

dx
dx =

√
nm

k

a∫
0

dx√
a2n − x2n

= 1
an−1

√
nm

k

1∫
0

dx√
1 − x2n

. (3.38)

The integral has a standard solution given by:

Cn

4
√

n
=

1∫
0

dx√
1 − x2n

=
√

πΓ
(
1 + 1

2n

)
Γ
(

n+1
2n

) , (3.39)

where Γ(x) is the Gamma function. This means that the solution for the period is
given by

p = 1
an−1

√
m

k

4
√

nπΓ
(
1 + 1

2n

)
Γ
(

n+1
2n

) = Cn

an−1

√
m

k
(3.40)

Cn can be calculated and gives the following result for the first few n, C1 = 2π,
C2 = 7.416299, C3 = 8.413093, C4 = 9.308741 and for large n the expression reduces
to Cn = 4

√
n. In this case the frequency can be determined to be

f = 1
p

= an−1

Cn

√
k

m
. (3.41)

The way to interpretate this equation is as follows, m is the mass of the spring,
an−1

√
k is the classical spring constant that has the units of kg1/2s−1. Combined

an−1
√

k/m gives a frequency but due to the non-linearity an additional correction
factor is required. Cn is the correction factor for the normal frequency. This correction
factor depends only on the order of the non-linear spring in equation (3.31).

Fig. 3.6 shows the time evolution of the non-ideal spring with a cubic function versus
time. It is clear from this figure that the periodic behaviour of the non-linear spring
produces regular cycles as would be expected. There is no analytical solution shown
because the analytical solution is almost impossible to determine.

Fig. 3.7 compares the FFT of the non-linear spring with the analytical frequency
of equation (3.41). Like ideal springs the frequency of the simulation is smaller by
around 8 per cent.

Next a septic polynomial is considered for the periodic oscillation. Here it is assumed
that Fspring = kx7. Fig. 3.8 shows the periodic behaviour of this oscillation.

Fig. 3.9 compares the FFT of the non-linear septic spring with analytical frequency of
equation (3.41). Here we see a more drastic difference in frequency of around 700
per cent. Reflecting on this problem, the centre of the potential of the spring is not
actually in the centre of this problem. Because we displace by a constant force the
potential is passing through only one side of the potential and not the other. This
means that the derived frequency is not applicable to our problem. We must come up
with a different problem to test exactly this frequency.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 57 / 96

0 25 50 75 100 125 150 175 200

time [s]

−2000

−1750

−1500

−1250

−1000

−750

−500

−250

0

D
is

p
la

ce
m

en
t

[m
m

]

Figure 3.6 Non-linear springs show periodic behaviour when a force is imposed. As expected, the spring
produces a periodic oscillation. No comparison is done with a theoretical solution because it
is not possible to solve the problem analytically.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

frequency [rad s−1]

0.0

0.2

0.4

0.6

0.8

1.0

ab
so

lu
te

F
F

T
sp

ec
tr

u
m

[a
rb

it
ra

ry
u

n
it

s]

7.6 per cent

theoretical frequency

simulation displacement

Figure 3.7 Comparison of the theoretical frequency of the spring following equation (3.41) with the FFT
of the displacement of the simulation. This shows the same simulation as in Fig. 3.6. The
non-linear springs following a F = kx3 relation has a frequency of around 8 per cent smaller
than the theoretical expected value.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 58 / 96

0 25 50 75 100 125 150 175 200

time [s]

0

250

500

750

1000

1250

1500

1750

2000

D
is

p
la

ce
m

en
t

[m
m

]

Figure 3.8 Non-linear springs following a septic polynomial shows periodic behaviour when a force is
imposed. The spring produces a periodic oscillation. No comparison is done with a theoretical
solution because it is not possible to solve the equation analytically.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

frequency [rad s−1]

0.0

0.2

0.4

0.6

0.8

1.0

ab
so

lu
te

F
F

T
sp

ec
tr

u
m

[a
rb

it
ra

ry
u

n
it

s]

755.2 per cent

theoretical frequency

simulation displacement

Figure 3.9 Comparison of the theoretical frequency of the spring following equation (3.41) with the FFT
of the displacement of the simulation. The non-linear springs following a F = kx7 relation has
a frequency of around 750 per cent larger than the theoretical expected value.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 59 / 96

3.3.2 Constant extension
For non-ideal springs that are just extended, the additional requirement of producing a
periodic behaviour is not required and springs can be extended to any desired shape.
Fig. 3.10 shows a smooth function of the form

F = A1(ax2 + bx). (3.42)

where a, b are constants with units mm−2 and mm−1. And A1 is the unit that sets the
force scale. Fig. 3.10 shows excellent agreement between the input function and the
output function. Note that in this subsection the unit of force is given by kg mm ms−2.

0 2500 5000 7500 10000 12500 15000 17500 20000

u [mm]

0.0

0.2

0.4

0.6

0.8

1.0

F
or

ce
[k

g
·m

m
m

s2
]

theory

simulation

Figure 3.10 Extension of a non-linear spring under constant extension following equation (3.42). The
smooth input function is perfectly reproduced by the simulation, even the decrease in the
force while the spring is extending is modelled excellent.

Fig. 3.11 also shows the extension of a spring element but now the functional shape is
taken to be discontinuous, an abrupt change is incorporated at around u = 5000 mm
and a sine wave is inputted to investigate if OPENRADIOSS is able to match an irreg-
ular function like this. The agreement between the input function and the simulation
is almost perfectly, only at the abrupt change the lines slightly deviate because of
the sampling of the function. This shows that OPENRADIOSS is good in reproducing
arbitrary spring curves.

3.4 Spring used in UNDEX analysis

The default springs used in UNDEX analysis use the keyword MAT_NONLINEAR_-
ELASTIC_DISCRETE_BEAM or MAT_067. This keyword defines a non-linear elastic dis-
crete beam with 6 decoupled DOF which also allows preloading of the spring. In
OPENRADIOSS this keyword can be read using the LS-DYNA format. OPENRA-
DIOSS then maps this keyword to /MAT/LAW108/ or /MAT/SPR_GENE. /MAT/LAW108 is a
general spring material with 6 DOF and allows for non-linear stiffness, damping and

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 60 / 96

0 2500 5000 7500 10000 12500 15000 17500 20000

u [mm]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

F
o
rc

e
[k

g
·m

m
m

s2
]

theory

simulation

Figure 3.11 Extension of a non-linear spring under constant expansion. The irregular input function with
an abrupt change is well reproduced by the simulation. There is a small disagreement at the
displacement corresponding to the change of function, but this change is comparable to the
sampling size of the input function.

different unloading scenarios. Additionally, /MAT/SPR_GENE allows to use deformation,
force or energy based failure criteria for this element type (Altair, 2022a).

3.5 Conclusions

• The considered ideal spring performs extremely well for the force-displacement
relation and the oscillation frequency.

• The considered damped ideal spring behaves similarly well as the undamped
spring.

• Non-ideal springs do not produce the expected frequency for time evolution
because the centre of the potential is not consistent between the theory and
the simulation. Their force-displacement relation agrees perfectly with any input
function. For the frequency of the oscillation, we have to do simulations that
agree between the theory and simulation.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 61 / 96

4 Compiling the code

This chapter focuses on how to compile OPENRADIOSS on your system. If the reader
is not interested in compiling the code, the reader is referred to the next chapter.

There are two ways of obtaining OPENRADIOSS, the most straightforward way is
downloading the ‘day-release’ executable from the website and use this to run simu-
lations. However, this works but is not ideal for the following reasons:

1. The code is compiled using the GNU FORTRAN compiler (https://gcc.gnu.org/fortran/).
2. The code is not optimised for the current architecture.

Personal experience of the author and scientific research (Colfax Research, 2017;
Halbiniak et al., 2022) show that the intel compiler is always faster even on AMD ar-
chitectures1. Secondly, OPENRADIOSS wants to release an executable that everyone
can use. This means that general instruction sets are used that are common on even
old processors from the 2000s. Instead, Intel recommends to use -xHost, this gener-
ates a program with the highest possible instruction set for the compilation host (see
Intel developers, 2010, 2023).

This chapter is divided in three parts, firstly, general software and settings that are re-
quired to run the code. Secondly, how to compile the code to run with multiple threads
using OpenMP. Thirdly, how to compile the code to run with MPI and OpenMP to run
over different memory domains. Chapter 5 focuses on optimising the compilation of
the code.

4.1 Getting the code, required software and settings

OPENRADIOSS contains several large files, these large files contain third-party pack-
ages and their proprietary code for Altair’s h3d files. To download the code, you need
to make sure that you first install git lfs (git Large File Storage). Secondly, To use git
lfs you need to initialise it as:

g i t l f s i n s t a l l

Once done, you can download the code from the GitHub repository:

g i t c lone h t t ps : / / g i thub . com/ OpenRadioss / OpenRadioss . g i t

This will download the most recent version of OPENRADIOSS with all the latest fixes
and additions. Because the released versions of OPENRADIOSS change daily, you
should keep well track of the current version used. the current version of the reposi-
tory can be determined by doing:

cd OpenRadioss
g i t log

The last command shows an output like the following:

commit 8e2cb72123b36b13a1e83c238327324854816f23 (HEAD −> main ,
tag : l a t e s t −20230919, o r i g i n / main , o r i g i n /HEAD)

Author : s e r v b o t a l t r <102742919+ servbota l t r@users . norep ly .
g i thub . com>

Date : Tue Sep 19 03:47:29 2023 +0200

1Note that NOS only has computers and servers with Intel Xeon processors

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

https://gcc.gnu.org/fortran/
https://github.com/OpenRadioss/OpenRadioss
https://www.intel.com/content/www/us/en/products/details/processors/xeon.html

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 62 / 96

Update Headers a t Tue Sep 19 03:47:29 CEST 2023

commit c4b2e73a4ec7d7973e417cf87eeec87c336d8cd1 (tag : l a t e s t
−20230918)

Author : Th ie r r y Schwoertzig <104987175+Schwoertzig@users .
norep ly . g i thub . com>

Date : Mon Sep 18 11:49:27 2023 +0200

/ALE / GRID /MASSFLOW: openMP f i x

commit 073e777f6426e4cea6b5665dc4b80c2b1b5820a3
. . .
. . .

This shows the version string after ‘commit’, so for this version of the code, the ver-
sion string is 8e2cb72123b36b13a1e83c238327324854816f23. If you have this string
stored for your project, it is always possible to retrieve this version of the code. The
additional tag, latest-20230919 is daily released by OPENRADIOSS and they have
a limit of 6 tags, so after 6 days this information is lost and this tag itself does not
say much. The other information main and origin/main indicate that you are on the
main branch, origin/head indicates that you are on the latest commit (HEAD) of the
branch.

The next step is making sure the required software is present. Table 4.1 shows the
required software (Wienholtz et al., 2023).

Table 4.1 Required software to run OPENRADIOSS

software version number
git lfs >=3.0.2

cmake >=3.20.4
make >= 4.2.1
perl >= 5.26

python >= 3.6.0
GFORTRAN >= 11.x

g++ >=11.x
cpp >=11.x
gcc >=11.x
IFX >= 2021

To run with this software on the TNO-NOS Linux servers Goldfish or Marlin it is re-
quired to create symbolic links for the version 12 of the GNU compilers, this can be
done simply by:

mkdir ~/ b in /
cd ~/ b in /
l n −s / usr / b in / g fo r t r an −12 g f o r t r a n
l n −s / usr / b in / cpp−12 cpp
l n −s / usr / b in / g++−12 g++
l n −s / usr / b in / gcc−12 gcc

This is required because otherwise the GNU-7 versions of the compilers are used.
If it is desired to use the intel compiler the following needs to be added to the run

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 63 / 96

command (rc) file2 on Goldfish:

a l i a s i n t e l = ’ source / uhome / t u i t m a n j t / i n t e l / oneapi / se tvars . sh
i n t e l 6 4 ’

and for Marlin:

a l i a s i n t e l = ’ source / Ap p l i c a t i ons / oneapi2023 / se tvars . sh
i n t e l 6 4 ’

After adding this to your rc file, you can run

i n t e l

which will result in the following output and the initialisation of the intel compiler

: : i n i t i a l i z i n g oneAPI environment . . .
−bash : BASH_VERSION = 4 .4 . 2 3 (1) −re lease
args : Using "$@" f o r se tvars . sh arguments : i n t e l 6 4

: : adv isor −− l a t e s t
: : c c l −− l a t e s t
: : compi ler −− l a t e s t
: : da l −− l a t e s t
: : debugger −− l a t e s t
: : dev− u t i l i t i e s −− l a t e s t
: : dnnl −− l a t e s t
: : dpcpp− c t −− l a t e s t
: : dp l −− l a t e s t
: : ipp −− l a t e s t
: : ippcp −− l a t e s t
: : ipp −− l a t e s t
: : mkl −− l a t e s t
: : mpi −− l a t e s t
: : tbb −− l a t e s t
: : vp l −− l a t e s t
: : vtune −− l a t e s t
: : oneAPI environment i n i t i a l i z e d : :

4.2 Single node and with OpenMP

The next step is compiling the starter. This can be done by:

cd OpenRadioss
cd s t a r t e r
. / b u i l d _ s c r i p t . sh −arch − l i nux64_g f

This compiles the starter and results in an executable in OpenRadioss/exec. Similarly,
the engine can be compiled using GFORTRAN by

cd OpenRadioss
cd engine
. / b u i l d _ s c r i p t . sh −arch − l i nux64_g f

2The rc file depends on which shell environment is used, .BASHRC for BASH, .ZSHRC for ZSH, .CSHRC
for CSH, etc.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

https://en.wikipedia.org/wiki/RUNCOM

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 64 / 96

It is also possible to compile the engine using the intel compiler using

. / b u i l d _ s c r i p t . sh −arch= l i n u x 6 4 _ i n t e l

In OPENRADIOSS the compilation flags are accessible by the user, so it is possi-
ble to modify the compiler flags for better performance. This is possible to do with
OpenRadioss/engine/CMake_Compilers/cmake_linux64_intel.txt, this file indicates
the flags that are used in the code. Specifically, it is possible to modify lines 77 and
78. For some of the simulations at NOS, -axSSE3,COMMON-AVX512 -no-fma -O3 was
replaced by -no-fma -Ofast -xHost -static. More details about changing this can
be found in Chapter 5.

Lastly, before running the code you are left with two executables, the starter and
the engine. Before running simulations you need to initialise a few variables in your
.bashrc file:

expor t OPENRADIOSS_PATH=/ path / to / OpenRadioss
expor t RAD_CFG_PATH=$OPENRADIOSS_PATH/ hm_cfg_ f i les
expor t LD_LIBRARY_PATH=$OPENRADIOSS_PATH/ e x t l i b / hm_reader /

l i nux64 / : $OPENRADIOSS_PATH/ e x t l i b / h3d / l i b / l i nux64 / :
$LD_LIBRARY_PATH

Running a simulation is performed in two steps, namely, the preparation of the simu-
lation using the starter:

. / d i r_ to_exec / s t a r t e r _ l i n u x 6 4 _ g f − i f i lename_0000 . rad

followed by performing the actual simulation on N openMP threads using an engine
executable

. / d i r_ to_exec / eng ine_ l i nux64_ in te l −n t N − i f i lename_0001 . rad

or

. / d i r_ to_exec / eng ine_ l inux64_gf −n t N − i f i lename_0001 . rad

4.3 Run the code over MPI

On Goldfish and Marlin, the compilation of the code is very similar to the non-MPI
version of the code. The starter does not need to be recompiled. However, the
command to compile the engine is slightly different, to compile the code you will need
to use:

. / b u i l d _ s c r i p t . sh −arch= l i n u x 6 4 _ i n t e l −mpi= impi

where the last keyword of command specifies which type of mpi is used (intel mpi
here).

Importantly, you will need to indicate the number of threads per MPI rank as:

expor t OMP_NUM_THREADS=<Nthreads >

The next step is running the code, importantly, when running the code over MPI you
should use the following command for the starter:

/ d i r e c t o r y / to / s t a r t e r _ l i n u x 6 4 _ g f −np <N> − i i npu t_ f i l e_0000 .
rad

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 65 / 96

where <N> indicates the amount of MPI ranks that you want to run on. This is followed
by a corresponding run that is performed on the same number of MPI ranks. Using
the command

mpirun −np <N> −−map−by socket :PE=<Nthread > −−bind − to core /
d i r e c t o r y / to / eng ine_ l i nux64_ in te l_ imp i − i f i lename_0001 .
rad

where <Nthread> is the number of threads per MPI rank. If the engine is run with the
wrong number of MPI ranks this will produce an error.

4.4 Converting the output

OPENRADIOSS has three types of output. The output files are not directly readable
by any standard free tool. Therefore, it is required to compile the converters for these
files. OPENRADIOSS has three types of outputs. The first type is *.H3D files. In
general, use of this file type requires the use of HYPERVIEW. Because of this the
focus of this report is not on using this file type because it requires a commercial
license. Instead, the focus is on the ANIM files or *A* files. *.H3D and ANIM files
contain the same information, only the ANIM files can be converted to *.VTK files,
which can be opened with PARAVIEW. In order, to get the ANIM to *.VTK converter,
go to TOOLS/ANIM_TO_VTK/LINUX64 and execute

. / b u i l d . bash

This creates the ANIM converter in your EXEC directory named ANIM_TO_VTK_LINUX64_GF.
Now the ANIM files can be converted with:

. / d i r / exec / an im_to_vtk_ l inux64_gf filenameAnumber >
filename_number . v t k

The third type of output are TH files or *T* files. These files store a smaller number of
elements at a much higher frequency than the ANIM and *.H3D files. The time files
are therefore ideal if you want to know in detail what is happening to many elements.
The time files can be converted into a *.CSV file. To get the TH files to *.CSV converter
go to TOOLS/TH_TO_CSV/LINUX64 and execute

. / b u i l d . bash

This creates the TH files to *.CSV converter in your EXEC directory named TH_TO_CSV-
_LINUX64_GF. Converting TH files can be done as:

. / d i r / exec / th_ to_csv_ l inux64_gf f i lenameT01

4.5 Wrapper functions and aliases

This section focuses on wrapper functions and aliases in your rc files that will make
working with OPENRADIOSS easier and more efficient.

4.5.1 Wrappers for converters
It is possible to create aliases in your .bashrc to quickly call the converter routines,
this can be done as:

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 66 / 96

a l i a s anim_to_vtk = / d i r / exec / an im_to_vtk_ l inux64_gf
a l i a s th_to_csv =/ d i r / exec / th_ to_csv_ l inux64_g f

However, using these commands is still cumbersome if you want to convert many
files at the same time. To prevent this, you can combine converting to *.VTK files into
a single function as:

anim_to_vtk = ’ / d i r / to / OpenRadioss / exec / an im_to_vtk_ l inux64_gf ’
an im_to_v tk_a l l () {

number_of_ f i les =$ (l s −lR $1A* | wc − l)
maximum_index =$ ((number_of_ f i les))
s t a r t _ i n d e x =1
f o r ((i = $s ta r t_ i ndex ; i <= $maximum_index ; i ++))
do

p r i n t f −v ou tpu t_ i "%03d " $ i
$anim_to_vtk $1A$output_i > $1_$output_ i . v t k

done
}

Using this function, you can convert all ANIM files in one go as:

an im_to_v tk_a l l f i lename

where FILENAME is the filename without the extension. The next step is combining
this in a single function such that the TH files are also converted. This can be done
by adding:

a l i a s th_to_csv= / d i r / to / OpenRadioss / exec / th_ to_csv_ l inux64_gf
conver t_ rad ioss () {

an im_to_v tk_a l l $1
th_to_csv $1T01

}

Now, files can be converted as

conver t_ rad ioss f i lename

Overall, to combine all the functionality in your .BASHRC you can simply place the
following text in it:

ANIM conver te r
a l i a s anim_to_vtk = / d i r / exec / an im_to_vtk_ l inux64_gf

anim_to_vtk = ’ / d i r / to / OpenRadioss / exec / an im_to_vtk_ l inux64_gf ’

an im_to_v tk_a l l () {
number_of_ f i les =$ (l s −lR $1A* | wc − l)
maximum_index =$ ((number_of_ f i les))
s t a r t _ i n d e x =1
f o r ((i = $s ta r t_ i ndex ; i <= $maximum_index ; i ++))
do

p r i n t f −v ou tpu t_ i "%03d " $ i
$anim_to_vtk $1A$output_i > $1_$output_ i . v t k

done

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 67 / 96

}

Converter f o r a l l f i l e types
a l i a s th_to_csv= / d i r / to / OpenRadioss / exec / th_ to_csv_ l inux64_gf

th_to_csv= ’ / d i r / to / OpenRadioss / exec / th_ to_csv_ l inux64_gf ’

conver t_ rad ioss () {
an im_to_v tk_a l l $1
th_to_csv $1T01

}

4.5.2 SMP version
For running all the processes of OPENRADIOSS in one go, it is most practically to
create a function, this can be done by adding:

rad ioss () {
r a d i o s s _ s t a r t e r − i $1_0000 . rad
radioss_engine − i $1_0001 . rad −nt $2
an im_to_v tk_a l l $1
th_to_csv $1T01

}

Now you can run OPENRADIOSS on 4 cores as:

rad ioss f i lename 4

4.5.3 MPI version
For MPI the code is slightly different, given by:

radioss_mpi () {
expor t OMP_NUM_THREADS = $2
r a d i o s s _ s t a r t e r −np $3 − i $1_0000 . rad
mpirun −np $3 −−map −by socket :PE=$2 −−bind − to core / d i r / to

/ exec / eng ine_ l i nux64_ in te l _ imp i − i $1_0001 . rad
an im_to_v tk_a l l $1
th_to_csv $1T01

}

Now you can run radios on 16 cores with 8 MPI ranks and 2 threads per MPI rank as:

radioss_mpi f i lename 2 8

The recommendation for the MPI version is to use only a single thread per MPI rank.

4.5.4 .BASHRC file
Based on the different components above the general recommendation is to add the
following lines of code to the .BASHRC file of users:

a l i ases to rad ioss
r a d i o s s _ s t a r t e r = / d i r / to / exec / s t a r t e r _ l i n u x 6 4 _ g f
radioss_engine = / d i r / to / exec / eng ine_ l i nux64_ in te l

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 68 / 96

ANIM conver te r
a l i a s anim_to_vtk = / d i r / exec / an im_to_vtk_ l inux64_gf

anim_to_vtk = ’ / d i r / to / OpenRadioss / exec / an im_to_vtk_ l inux64_gf ’

an im_to_v tk_a l l () {
number_of_ f i les =$ (l s −lR $1A* | wc − l)
maximum_index =$ ((number_of_ f i les))
s t a r t _ i n d e x =1
f o r ((i = $s ta r t_ i ndex ; i <= $maximum_index ; i ++))
do

p r i n t f −v ou tpu t_ i "%03d " $ i
$anim_to_vtk $1A$output_i > $1_$output_ i . v t k

done
}

Converter f o r a l l f i l e types
a l i a s th_to_csv= / d i r / to / OpenRadioss / exec / th_ to_csv_ l inux64_gf

th_to_csv= ’ / d i r / to / OpenRadioss / exec / th_ to_csv_ l inux64_gf ’

conver t_ rad ioss () {
an im_to_v tk_a l l $1
th_to_csv $1T01

}

Def ine the rad ioss command
rad ioss () {

r a d i o s s _ s t a r t e r − i $1_0000 . rad
radioss_engine − i $1_0001 . rad −nt $2
an im_to_v tk_a l l $1
th_to_csv $1T01

}

Def ine the rad ioss MPI command
radioss_mpi () {

expor t OMP_NUM_THREADS = $2
r a d i o s s _ s t a r t e r −np $3 − i $1_0000 . rad
mpirun −np $3 −−map −by socket :PE=$2 −−bind − to core / d i r / to

/ exec / eng ine_ l i nux64_ in te l _ imp i − i $1_0001 . rad
an im_to_v tk_a l l $1
th_to_csv $1T01

}

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 69 / 96

5 Computational performance

This chapter focuses on the performance of OPENRADIOSS and how well it scales
with number of CPUs and number of resolution elements, a set of benchmark sim-
ulations are performed to assess the computational performance of OPENRADIOSS.
For the performance analysis the cantilever beam simulation presented in Chapter 2
is taken as a benchmark.

5.1 Performance of weak scaling test

Here we perform a weak scaling test, here the problem is not kept identical, but the
problem has more resolution elements. For our cantilever benchmark, this means that
the resolution elements are smaller and correspondingly, the time steps are smaller.
This means that the problem is harder to solve the more resolution elements are
present. The simulations at different resolutions are all performed on the same com-
puting nodes. The problem is not identical, therefore it is called a weak scaling test
instead of a strong scaling test (the definition of Potter et al., 2017, is followed). De-
spite this it will give a good idea of how well the performance of the code is when
used on bigger problems.

When weak scaling a problem, this means that the time step is decreased by the
same factor as the resolution because ∆t ∝ 1/∆x, therefore the number of calcu-
lations scales as 1/∆x. Additionally, for beam elements when increasing the spatial
resolution, this also means that the amount of resolution elements increases with the
same amount and depends on ∝ 1/∆x. For shell elements the situation is different
because there are also new elements appearing at the sides of shell elements and
therefore the dependence on the resolution is ∝ 1/∆x2. For brick elements (3D) the
dependence scales even stronger with the resolution as ∝ 1/∆x3 (brick elements are
not considered in this report1). This means the following scaling relations are found
for beam, shell, and brick elements:

twallclock,beam ∝ 1
∆x2 , (5.1)

twallclock,shell ∝ 1
∆x3 , (5.2)

twallclock,brick ∝ 1
∆x4 . (5.3)

However, this is not the whole story, to link this to the number of resolution elements,
this needs to be connected with the number of resolution elements. In the case of
beam, shell, and brick elements the scaling with resolution mass goes as Mres ∝ ∆x,
Mres ∝ ∆x2, and Mres ∝ ∆x3 respectively. Furthermore, Mres directly correlates with
the amount of resolution elements as N ∝ 1/Mres. This means that for the beam,

1Brick elements are not common in FEM models of ships and submarines, these consist mainly out of
shell and beam elements. Sometimes engines or big structures are modelled as brick elements, but these
are often not important for the structural response.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 70 / 96

shell, and brick elements we have:

twallclock,beam ∝ 1
M2

res
∝ N2, (5.4)

twallclock,shell ∝ 1
M

3/2
res

∝ N3/2, (5.5)

twallclock,brick ∝ 1
M

4/3
res

∝ N4/3. (5.6)

This result might first seem counter intuitive but keep in mind that in the case of N

elements the resolution size for beam elements is much smaller than for shell and
brick. This is because the refinement is done in fewer dimensions. So what does it
mean for models if they are below equations (5.4)-(5.6)? This means that the wall
clock time is not dominated by solving the equations but rather is dominated by the
overhead2 of running OPENRADIOSS. If the scaling is steeper than equations (5.4)-
(5.6), it means that the implementation of the physics can be made more efficient.

102 103

Numerical resolution [mm]

102

103

104

105

W
al

l
cl

o
ck

ti
m

e
[s

]

Beam elements

Shell elements

100 101 102 103 104

Number of resolution elements

101

102

103

104

105

W
al

l
cl

o
ck

ti
m

e
[s

]

Beam elements

Shell elements

∝ N
∝ N4/3

∝ N3/2

∝ N2

100 101 102 103 104

Number of resolution elements

101

102

103

W
al

l
cl

o
ck

ti
m

e
[s

]/
N

u
m

b
er

of
re

s.
el

em
en

ts

Beam elements

Shell elements

∝ N
∝ N4/3

∝ N3/2

∝ N2

Figure 5.1 Different measures of the computational performance of OPENRADIOSS for simulations with
shells (orange) and beams (blue). We find that the performance of the shell elements follows
quite closely a scaling of ∝ N , which is weaker than theoretically would be expected. Similarly,
the beam elements scale close to ∝ N for low number of elements while for larger number of
elements the scaling approaches more ∝ N2 which is as expected.

In Fig. 5.1 we show how well OPENRADIOSS scales its wall clock time as a function
of resolution elements. The two highest resolution shell element simulations were
performed on 4 and 6 cores respectively and the wall clock time was corrected for
this3. For beam elements the scaling first is linearly, less steep than theoretically

2Overhead is the extra indirect computation time required to perform the calculation that do not include
the main computation.

3Corrected as in including the wall clock time of all 4 or 6 cores.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 71 / 96

expected. At around 102 resolution elements it starts to scale extremely close to
N2. This indicates that the scaling of beam elements behaves as expected. For
shell elements the dependence on the number of resolution elements scales almost
linearly, while it is expected to scale as N3/2. This indicates that the scaling of shell
elements scales a lot less strong than expected, even at 104 resolution elements the
scaling is still weak with the number of resolution elements. This might be indicating
that the simulation time is dominated by something else than the calculation of the
EoM of the shell elements.

5.2 Performance of strong scaling test (SMP)

This section focuses more on strong scaling tests, following Potter et al. (2017) and
Schaller et al. (2016). A strong scaling test is calculating a fixed problem with a dif-
ferent number of CPUs or threads. This section focuses on multiprocessing using
shared-memory multiprocessing (SMP). This means that the same memory is ac-
cessed by multiple threads. To get an impression of the performance, simulations
with different number of threads are compared to each other. The GNU and intel
compilers are both investigated. The highest resolution simulation of the cantilever
beam is used (see chapter 2) for a reduced time such that the simulation on one core
can be completed within 2 hours. In terms of computing time there are two important
times, firstly the wall clock time is the time it takes the simulation to run from the start
time to the end time. The wall clock time therefore is the total time that is measured
with a stopwatch while waiting for the simulation to complete4. The second time is the
CPU time, this is the total amount of time CPUs have used to perform the simulation.
This means that if multiple CPU work 100 per cent of the time for a certain wall clock
time, the total CPU time is the amount of cores times the wall clock time. OPENRA-
DIOSS does not explicitly log down the amount of CPU time that is used, because
of this the ideal CPU time is used which is the wall clock time times the number of
threads used. Fig. 5.2 shows the total CPU time and wall clock time as a function of
number of CPU cores. The dotted line shows the ideal scaling. Fig. 5.2 shows that up
to 4 cores the scaling is nearly perfect, for more cores the wall clock time is flattening,
this indicates that the extra computational resources (i.e. extra cores/threads) are not
performing more work in the same amount of times but rather the work to parallise
the problem becomes the dominant work performed by the program. This implies that
using 16 or more threads for this problem is not efficient. Similarly, the right shows
that up to 4 cores the total CPU time is almost identical, this indicates that the code
scales very well up to this point. Beyond this the code takes progressively more CPU
time. When the performance between the Intel and GNU compiler is checked it can
be noted that they are almost performing the same, GNU compiler is a bit slower than
the Intel compiler, but the difference is very small and sometimes the GNU compiler
is actually quicker.

The results of Fig. 5.2 are very focused on the test case of the cantilever beam. To
make the test applicable to more general problems, Fig. 5.3 shows the amount of
shell elements per core. Based on this 4 × 103 shell elements per core still give
excellent convergence, furthermore, using 103 or less shell elements per core does
not improve the performance.

To improve the performance of compiled code it is possible to use compilation flags
that optimise certain parts of the code. The only obvious drawback is that simulations

4OPENRADIOSS measures this every time a simulation is performed.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 72 / 96

100 101

Number of CPU cores

103

W
a
ll

cl
o
ck

ti
m

e
[s

]

GCC compiler

Intel compiler

∝ N−1
cores

100 101

Number of CPU cores

104

2× 104

3× 104

4× 104

T
o
ta

l
C

P
U

ti
m

e
[s

]

GCC compiler

Intel compiler

twallclock ∝ Ncores

Figure 5.2 Comparison of the wall clock time (left) and CPU time (right) for the strong scaling test using
the GNU and Intel compiler (different colours). The dotted line indicates the ideal scaling of
the problem. We find that the code scales very well up to 4 cores for the cantilever beam
problem.

103 104

Shell elements per core

103

W
al

l
cl

o
ck

ti
m

e
[s

]

GCC compiler

Intel compiler

∝ N−1
cores

103 104

Shell elements per core

104

2× 104

3× 104

4× 104

T
ot

al
C

P
U

ti
m

e
[s

]

GCC compiler

Intel compiler

twallclock ∝ Ncores

Figure 5.3 Comparison of the wall clock time (left) and CPU time (right) for the strong scaling test using
the GNU and Intel compiler (different colours), instead of number of CPU cores, the x-axis
shows the number of shell elements per core. The dotted line indicates the ideal scaling of
the problem. The problem scales very well up to around 4 × 103 shell elements per core.

with more improved compilation flags take longer to compile. Common flags are (IT
Boston University, 2023; Intel developers, 2023):

• -O2, for more extensive optimisation.
• -O3, more aggressive optimisation with longer compilation times, especially

recommended when the code contains loops that involve intensive floating-point
calculations.

• -OFAST, same as -O3 with -NO-PREC-DIV and -FP-MODEL=FAST 25. The first
extra compilation flag allows divisions to be calculated as multiplications with
the reciprocals and the second flag optimises the floating-point data more.

• -XHOST, optimises the code for use on the specific type of CPU that is used.
• -IPO Optimisation that checks if during the compilation more common functions

can be found such that the code can be optimised even more.
• -STATIC can improve the start time and makes sure the code runs in limited

environments because it contains all the necessary libraries. The libraries are
not dynamically linked in this case.

• -FAST, this is a shortcut for -OFAST -IPO -STATIC -XHOST.

5Normally, you want to avoid using -FP-MODEL=FAST 2 because it will change the accuracy and round-
ing off of numbers, this can cause many problems in libraries like BLAS or LAPACK.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 73 / 96

Of all these compiler flags, the -IPO flag does not work with OPENRADIOSS, therefore,
also the -FAST flag does not work. The other flags, they all work out of the box
with OPENRADIOSS. Fig. 5.4 shows the CPU time for the different compiler options.
This shows that -OFAST reduces the CPU time by a bit more than 10 per cent while
the inclusion of -XHOST results in a performance improvement of 25 per cent. Not
using the -AXSSE3,COMMON-AVX512 flag results in a slightly better performance
of another 5 per cent. Combining these changes results almost in a reduction with a
factor of two in the total computing time.

100 101

Number of CPU cores

104

6× 103

2× 104

3× 104

4× 104

T
ot

al
C

P
U

ti
m

e
[s

]

GCC compiler

Intel compiler

Intel compiler (-Ofast)

Intel compiler (-Ofast -xHost -static)

Intel compiler (-Ofast -xHost -static -noax)

twallclock ∝ Ncores

Figure 5.4 Comparison of the CPU time for the strong scaling test using the GNU and Intel compiler
(different colours) and compiler flags (line styles) as a function of number of CPU cores. The
black dotted line indicates the ideal scaling of the problem. Using different compilation flags
for OPENRADIOSS improves the speed with a factor of two.

5.3 Performance of strong scaling test (MPP)

§ 5.2 focused on the SMP version of OPENRADIOSS, here the focus is on the massive
parallel processing (MPP) version in combination with SMP. This version is recom-
mended to use because it is the fastest version (personal communication Lequiniou,
2023). The implementation of MPP is based on the messaging passing interface
(MPI). MPI is a standardised communication protocol used in parallel computing to
enable communication and coordination between processes in a distributed system
over multiple non-uniform memory access (NUMA)6 regions or nodes that is used to
implement MPP. MPI allows for efficient data exchange and synchronisations among
multiple NUMA regions or nodes. In the case of using MPI it is also possible to use a
combination of MPI and openMP. This means that each node uses multithreading on
multiple cores at the same time. It depends on the application itself what combination

6For information see this link.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

https://en.wikipedia.org/wiki/Non-uniform_memory_access

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 74 / 96

of MPI vs SMP is most efficient. In general, for ideal programs it is fastest to use one
MPI rank per NUMA region and use OpenMP for multithreading on the cores in the
NUMA region. This is expected to be fastest because it reduces the MPI communi-
cation to only different NUMA regions and nodes and has the lowest memory usage
inside a NUMA region because elements are not duplicated in memory7.

Additionally, an investigation of the different compiler flags is done similarly to § 5.2.
The compiler flags are systematically changed to investigate if the compiler flags have
impact on the performance of the code.

Fig. 5.5 shows the computing time of the cantilever beam benchmark as a function
of number of cores. The different line styles indicate the number of threads per MPI
rank and the colour indicates the compiler flags, all as a function of CPU cores. The
lowest line of the bottom figure corresponds to 1 thread per MPI rank, this means that
when 16 or 32 cores are used there are 16 or 32 MPI ranks running, respectively.
Some important conclusions from this are as follows:

• Running with as many MPI ranks as possible results in the shortest simulation
time. However, this conclusion might not hold for 32 cores (every time), but
this might be related to the fact that the problem is too small for 32 cores or
unknown to us, someone else used the computer cluster while performing these
simulations.

• When using MPI the compiler flags have barely an impact on the computing
time.

The results are interesting, but the result is surprising that changing the compiler flags
in this case does not influence the performance.

Bini Leite et al. (2021) investigated multiprocessing of OPENRADIOSS on many cores
for a large model. Fig. 5.6 shows the result of a strong scaling test for a large ditching
model. Their ditching model includes a FEM model for an aeroplane, a SPH mesh for
the water and Lagrangian solid elements (brick elements) for the water mesh that is
not close to the crashing plane. Bini Leite et al. (2021) shows that multi-domain simu-
lations with different time stepping sizes per domain region can reduce the computing
time by a factor of 3 for large simulations. They also show that the mono-domain sim-
ulation shows almost perfect scaling up to 150 cores and only at almost 300 cores
performs slightly less good but is still only 12 per cent off ideal scaling. The scaling of
the multi-domain simulation is less close to ideal scaling because there is most likely
more overhead. Despite this weaker scaling, the code takes a much shorter time
to complete for the multi-domain simulation. Note that performing a multi-domain
simulation requires a larger amount of preparations by the user because the multi-
domain needs to be constructed correctly and this often requires verification that the
used multi-domain approach works. For large simulations, the multi-domain approach
might be worth the effort given that it also reduces the computation time. It is noted
that within TNO-NOS, currently also 3DCAV simulations are performed with a multi-
domain approach for the fluid mesh using EXMESH (see Tuitman, 2023).

5.4 High-performance computing options

In this section some advanced options of OPENRADIOSS are discussed that are of
interest at the TNO-NOS Linux servers and when using the queueing system on the
high-performance computing cluster of TNO.

7For MPI communication neighbouring elements that are around the region that is calculated on an
MPI rank are required to be in memory for each MPI rank, this means that all the border elements are
duplicated in memory.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 75 / 96

100 101

Number of CPU cores

102

103

104

W
al

l
cl

o
ck

ti
m

e
[s

]

threads per MPI rank:

1

2

4

8

16

32

Compiler flags:

-axSSE3,COMMON-AVX512
-no-fma -O3 (default)

-no-fma -O3

-xHost -no-fma -O3

-Ofast -no-fma

-xHost -no-fma -static -O3

100 101

Number of CPU cores

104

6× 103

2× 104

T
o
ta

l
C

P
U

ti
m

e
[s

]

threads per MPI rank:

1

2

4

8

16

32

Compiler flags:

-axSSE3,COMMON-AVX512
-no-fma -O3 (default)

-no-fma -O3

-xHost -no-fma -O3

-Ofast -no-fma

-xHost -no-fma -static -O3

Figure 5.5 Comparison of the wall clock time (top) and CPU time (bottom) as a function of number of
cores for the strong scaling test using the different Intel compiler flags (different colours) and
different number of MPI ranks (different line styles). Running with as many MPI ranks as
possible gives the shortest runtime (lowest line in the bottom), using fewer MPI ranks increases
the total CPU time (e.g. top dashed transparent line). The compiler flags have limited effect
on the performance.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 76 / 96

Figure 5.6 Strong scaling performance comparison for a large dishing model – mono-domain (blue) vs
multi-domain (yellow). Ideal scaling is shown by the black dot-dashed line a) Linear speed up
versus number of cores. b) Run time versus number of cores. Multiprocessing is more effi-
cient for mono-domain simulations, multi-domain simulations still reduce the computing time
significantly. Multi-domain simulations are also much more computational efficient because
they take only a third of the time of a mono-domain simulation. Figure taken from Bini Leite
et al. (2021).

5.4.1 Control File
The control file is an optional file that can be created while a run is ongoing. The
control file is named as *.CFL with the same prefix as the parameter file for the engine
(see Altair, 2023, for details). This file can specify to print more information or to make
more frequent outputs of the ongoing simulation. The main reasons to use a control
file are:

• Stop the simulation directly, or at a specified time or cycle number.
• Create an animation directly, or from a specified time or cycle number.
• Retrieve more information of the current simulation like the simulation time, time

step, cycle, energy information and estimated remaining time.

In general, when the control file is created OPENRADIOSS will read the file as quickly
as possible and execute the instructions in the file. The control file has two options
to stop the simulation, the first is /KILL which stops the simulation and /STOP which
stops the program and creates a restart file. In general, it is preferred to use /STOP
because it creates a restart file. The control file is directly executed, except if ei-
ther the /TIME/TIMEVALUE or /CYCLE/CYCLENUMBER are written in the file with a
corresponding time value or cycle number when to terminate. Other comments are
/ANIM, /H3D, /RFILE, /INFO, /CHKPT which all create extra information during the
termination, namely, ANIM or H3D files, restart file, extra information, and a check
data file.

5.4.2 Multiple engine files
It is possible to have multiple engine files that modify the way in which the solution
of the simulation is obtained (Altair, 2023). Example of variations are for example
simulation time, output files, time stepping conditions or other numerical values. It
is also possible to use different damping strengths or remove parts of the boundary
conditions all while using the same starter file.

5.4.3 Checkpoint file
OPENRADIOSS allows the writing of a checkpoint file. This is a file that can be used to
continue running the used simulation (Altair, 2023). In OPENRADIOSS checkpoint files

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 77 / 96

need to be created on the spot and currently no automatic way of creating checkpoint
files is done. Commonly used HPC codes often have checkpoint files that can be
specified in the input file itself, e.g. Gadget (Springel, 2005) or Swift (Schaller et al.,
2023). This is extremely useful for a various of reasons. Firstly, if a code problem is
found, the problem can always be simulated from the last checkpoint which typically
are spanned between 3 to 6 hours in computing time. Secondly, using HPC facilities
can be done automatically because the checkpoint files are automatically created,
and this guarantees that simulations can be restarted with a resubmission script.

Currently, check-pointed simulations can be rerun using:

/ d i r / to / engine / eng ine_ l i nux64_ in te l −np 4 −checkpoint
runname_0000 . rad

Overall, now it is not possible to use the full functionality of checkpoint files to per-
form large simulations. Because checkpoint files need to be created on demand and
cannot be created in an automatic way.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 78 / 96

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 79 / 96

6 Advantages and Disadvantages of OPENRADIOSS

In this chapter we summarise the different advantages and disadvantages of using
OPENRADIOSS as compared to commercial explicit solvers like LS-DYNA.

6.1 Advantages

• Open source:

OPENRADIOSS is open-source software under the GNU Affero General Public
License (GNU AGPL) license. Using Open-source software has a large amount
of advantages compared to commercial packages like LS-DYNA, the following
are some of the advantages:
– There are no license costs for usage of OPENRADIOSS. This implies

that there is no limit for the number of simulations performed with OPEN-
RADIOSS, therefore, with OPENRADIOSS larger and/or more simulations
can be performed as compared to LS-DYNA. This implies more detailed
and/or more scenarios can be investigated in parallel. This is contrary to
LS-DYNA, for which the license costs have increased and might increase
more in the future.

– Access to the source code:

* It becomes much easier to keep libraries developed by TNO up to date
(e.g. 3DCAV, SIT, etc.)

* It becomes possible to get access to more variables and with mod-
ifications of the code it is even possible to get access to almost all
variables.

* It becomes possible to solve small bugs and propose code changes
for this.

* It is possible to collaborate with universities that want to develop ma-
terial routines or other features in OPENRADIOSS.

– Access to the latest developments of OPENRADIOSS:

* The most recent version of OPENRADIOSS is available on GitHub and
allows us to directly access a new version of the code once a bug has
been solved.

* Transparency of current bugs and problems in the code.

* Transparency of what is currently being developed for future code re-
leases of OPENRADIOSS.

– It becomes possible to optimise the code for the CPUs of our servers, this
can save a factor of 2 to 3 in the computing time.

• The support of OPENRADIOSS is outstanding on the GitHub and over e-mail.
Contrary, the support of LS-DYNA has decreased significantly after Ansys took
over LS-DYNA. Note that for OPENRADIOSS even small questions related to
unclear documentation are quickly answered by the support of OPENRADIOSS

or GitHub.
• There is an open-source community that works with OPENRADIOSS and that

helps improve OPENRADIOSS faster than Altair can do on its own.
• For some functionality OPENRADIOSS has more general and flexible structure

that allows the user to modify more variables.
• OPENRADIOSS is one of the few FEM packages (to our knowledge) that has an

input and output unit system. This means that in OPENRADIOSS it is possible

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

https://www.gnu.org/licenses/agpl-3.0.html
https://www.gnu.org/licenses/agpl-3.0.html

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 80 / 96

to do simulations in different unit systems and correspondingly have the models
(e.g. material models) with correctly converted units. One key feature of OPEN-
RADIOSS is that there is an input unit system and an output unit system that
is set by the user, this allows the user to use an input model in ms, g and cm
and have the output in SI, without needing to convert the input file of the FEM
model.

• OPENRADIOSS has a list of (example) problems available that allows a new user
to try problems close to what they are intending to do. We note that this list is
not complete and some problems that were published are not included. Also
recently, OPENRADIOSS added all the papers on the website that use OPEN-
RADIOSS.

6.2 Disadvantages

• The most obvious disadvantage is that many colleagues need to learn how to
work with OPENRADIOSS, this implies that colleagues need to spend a signifi-
cant time on this.

• The team of OPENRADIOSS recently started working in an open-source way.
They tend to approach the issue system (a ticket system on GitHub) in a bit of
an unorthodox approach. Rather than replying directly to the issue (ticket) they
quickly send an email to the reporter (person reporting the problem). Then they
try to solve the problem over email or even an online meeting. This has the
drawback that not all OpenRadioss users can be aware of the ongoing issue.
This shows clearly that they want to be engaged with the users, however, this
makes the status of ongoing problems unclear for the community of other users.
This also indirectly impacts TNO because open issues of features that we (intent
to) use do not contain (much) information of the status of ongoing problems.

• OPENRADIOSS does not use a proper version management for their release
versions. Rather, they daily release a new version of the code and keep only 6
versions of the code available for download (last 6 working days). This is highly
undesirable because it is unclear when certain features are implemented into
the code. Furthermore, it is harder to keep track of different versions of the
code. Also having a release of the code of the last 6 days seems unnecessary
because the last version can always be downloaded with git. Rather it would
be more beneficial for the users to have version releases when the number of
features implemented / bugs fixed exceeds a certain number. This also allows
the releases to include information about the new features and gives a much
clearer version management. We note that OPENRADIOSS is exploring vari-
ous strategies for improving version management, and their current approach
involves researching different options to determine which will be most effective.
Therefore, we expect this disadvantage to be resolved in the near future.

• OPENRADIOSS lacks some of the functionality of LS-DYNA. A good example of
this is the shell elements. In OPENRADIOSS there are just three types of shell
elements for shells with four nodes1 while in LS-DYNA there is much more
different shell elements. It is noted that the Belytschko and Tsay (1983) shell
element that TNO-NOS uses extensively is present in both OPENRADIOSS and
LS-DYNA. Therefore, we do not expect this to be a problem for TNO-NOS. The
lack of implementation of some features might extend to other functionality that
is desired for a FEM package. Note that the Zeng and Combescure (1998) shell

1three types of shell elements and for one type there are four different penalisation methods for the
hourglass.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 81 / 96

elements are not present in LS-DYNA but are present in OPENRADIOSS.

6.3 Disadvantages OPENRADIOSS specific

The following disadvantages of OPENRADIOSS are only OPENRADIOSS specific and
have no equivalent in for example LS-DYNA. Because OPENRADIOSS is open source
a detailed assessment can be made of some OPENRADIOSS specific disadvantages.

• The quality of the code is not always good. For example, different pieces of
code lack proper naming of variables. For example, in some pieces of code the
variables names are e.g. called, A1, A2, A3, .. and B1, B2. In these cases,
it is possible to determine what exactly is happening but it requires more work
than in the case of a properly documented code. Furthermore, large parts of
the code are not commented at all and because of that it is unclear what is
happening to the specific variables or what is happening in the different files.
Also, the names of the different FORTRAN files have obscure names which do
not make the context of the different files directly clear. Some recent effort
has been made in using the free FORTRAN90 format for all new developments.
However, not much effort is put into using a clear naming convention for OPEN-
RADIOSS. We expect that when this is improved, contributing to OPENRADIOSS

will be more easy.
• OPENRADIOSS made the choice to use IFX instead of IFORT. IFX is a next-

generation compiler developed by INTEL. However, it contains still bugs and it
does not support all the features of FORTRAN. Because of this INTEL itself does
not recommend to use IFX but rather says that it still needs to convince the
FORTRAN community that IFX is worth it (Green, 2022). Furthermore, IFX still
performs less well than IFORT and this might require a couple of more years of
work on INTEL’s side (Green, 2023; Sait, 2021). Furthermore, some instructions
for MPI are not implemented in IFX and this means slower performance over
MPI as compared to using IFORT (IFX developers, 2023). Fixing these issues is
work that needs to be resolved by INTEL and might take several years.

• Running the code with MPI and OpenMP results in the conclusion that running
with as much MPI ranks as possible gives the best computational performance.
This is not what normally is the case given that using MPI causes overhead.
MPI causes overhead because it requires the different MPI ranks to commu-
nicate to each other, this makes the code slower. Additionally, information of
neighbouring elements needs to be send to each other, this means that in an
ideal program running with as many MPI ranks as possible is not the fastest
solution. Given that for OPENRADIOSS this is is the fastest solution implies that
there is some possible performance in the OpenMP part of the code.

• Parts of the manual are unclear, incomplete, or outdated. The manual has for
example inconsistent use of the letter t which is used in the same equation
both for time and thickness of the shell elements. In the theory manual there
are sometimes steps not shown which confuse the reader. Some parts are also
outdated like the best options to use for multiprocessing are completely different
from what the developers of OPENRADIOSS recommend.

• OPENRADIOSS does not use a large set of verification problems using continu-
ous integration and continuous deployment (CI/CD). CI/CD allows developers of
the code to test the functionality of the program while developing the code. The
main focus of the CI/CD of OPENRADIOSS is on checking if the code still com-
piles on Linux and Windows rather than also verifying if the solution remains
correct.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 82 / 96

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 83 / 96

7 Conclusions and Recommendations

For shell and beam elements OPENRADIOSS works well. Good performances for
spring elements are found, but complicated springs need additional investigation. It
is recommended that TNO-NOS continues investigating the applicability of OPENRA-
DIOSS for use as an explicit finite element solver. In § 7.1 we discuss the conclusions
in detail, §§ 7.2 and 7.3 discuss the recommendations for TNO and Altair.

7.1 Conclusions

Chapter 1 gives a short overview of the motivation of investigating OPENRADIOSS as
a replacement for LS-DYNA. This is followed by a historical perspective on OPEN-
RADIOSS, recent comparisons of OPENRADIOSS and LS-DYNA, and a summary of
recent developments and use cases of OPENRADIOSS in the literature. We empha-
sise that the recent developments and use cases are publicly available.

Chapter 2 focuses on verifying shell and beam elements. A benchmark test following
a cantilever beam is constructed. The frequency and equilibrium conditions for a can-
tilever beam are derived and used for a comparison with shell and beam elements
in OPENRADIOSS. The different shell and beam formulations of OPENRADIOSS are
explained and the strengths and weaknesses of the different shell element formula-
tions are explained. It is found that the Belytschko and Tsay (1983) formulation does
not create converging results and match the analytical solution of the cantilever beam
within 7 per cent (depending on the resolution less, down to less than 2 per cent,
but without convergence). The Batoz and Dhatt (1990) Q4γ24 shell element also
has trouble reproducing the correct solution due to locking but clearly shows conver-
gence to a slightly wrong solution. The Zeng and Combescure (1998) shell elements
are found to produce the best behaviour and agree well (within 5 per cent) with the
analytical solution of the cantilever beam. For stability of time integration it is recom-
mended to use a slightly more strict CFL condition of CCFL ≤ 0.75 than the standard
in OPENRADIOSS which corresponds to CCFL = 0.9 when using a regular mesh. We
expect that CCFL = 0.9 is fine for an irregular mesh where the smallest time steps are
caused by a few small resolution elements.

Chapter 3 constructs a simple spring model which consists out of two nodes and a
single spring element with a mass, a force is placed on one of the nodes such that the
spring starts oscillating, or a constant force is imposed while measuring the required
force to extend the spring. Using this model, the spring models of OPENRADIOSS

is tested for ideal and non-ideal springs. For ideal springs the force-displacement
relation and the frequency of the oscillation are as expected. For non-linear springs
with monotonically increasing spring energies the theoretical frequency is derived and
used to compare with the numerical simulations, however, not a one-to-one compari-
son was made, which caused a discrepancy between the theory and simulation1. The
force-displacement relation is reproduced for arbitrary input functions, even functions
that show a decreasing force as the spring is extended can be reduced perfectly.

Chapter 4 explains how to compile OPENRADIOSS on the servers used by TNO NOS,
this is done for both the shared-memory multiprocessing (SMP) and message pass-
ing interface (MPI) version of OPENRADIOSS. A recommendation of functions to add

1This is because we imposed a force on the spring but this caused the spring to oscillate in only one
side of the potential, this means that we did not a one-to-one comparison. The comparison should be
performed on an already extended spring that oscillates instead of using a simulation of a non-extended
spring with an imposed force

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 84 / 96

to the .BASHRC file for OPENRADIOSS users is given such that OPENRADIOSS sim-
ulations can be performed as efficiently as possible. This way simulations can be
performed and converted in a single command.

Chapter 5 investigates strong and weak scaling tests for OPENRADIOSS. The weak
scaling test indicates that the code scales very well for larger number of shell and
beam elements. The strong scaling test on the SMP version of OPENRADIOSS indi-
cates that 4 × 103 elements per core leads to excellent scaling while more elements
per core slows down the code more. Furthermore, different compiler flags are com-
pared and using a compiler flag that uses -XHOST and/or -OFAST results in a better
speed performance of around a factor of two. When using the MPI version of OPEN-
RADIOSS the results are different, the compiler flags do not seem to influence the
total CPU time much. For the MPI version of OPENRADIOSS the shortest simulation
time can be achieved by using as many MPI ranks as possible and only use a single
thread per MPI rank.

Chapter 6 summarises the advantages and disadvantages of OPENRADIOSS. Over-
all, the advantages of OPENRADIOSS outweight the disadvantages.

7.2 Recommendations for TNO

It is recommended that TNO-NOS continuous investigating the applicability of OPEN-
RADIOSS for use as an explicit finite element solver. For shell and beam elements
OPENRADIOSS has been working well. Recommendations for future improvements
are:

• Investigate further non-linear spring elements focused on their frequency.
• Investigate how well complicated spring elements with 6 DOF perform, also

when subjected to large rotations.
• Investigate how well brick elements perform.
• Investigate how a user subroutine can be constructed in OPENRADIOSS.
• Investigate why the current compilation flags do not improve the performance of

the MPP version of OPENRADIOSS. It should be possible to optimise OPENRA-
DIOSS more and obtain a performance improvement of a factor of two.

• A set of benchmark problems should be created for 3DCAV that can be used to
investigate how well LS-DYNA and OPENRADIOSS are reproducing the correct
solution.

• Couple 3DCAV with OPENRADIOSS to perform UNDEX simulations with OPEN-
RADIOSS.

To run and allow the conversion of LS-DYNA models to OPENRADIOSS models, it is
recommended to make an internal converter for TNO.

Given the large potential of using OPENRADIOSS in TNO-NOS, we recommend to
starting a local collaboration network on OPENRADIOSS inside the Netherlands. This
OPENRADIOSS-NL collaboration can be tremendously beneficial for the expansion
of physics inside OPENRADIOSS and this can lead to PhD projects in collaboration
within this OPENRADIOSS-NL collaboration.

7.3 Recommendations for Altair

Working in collaboration with Altair has been pleasant and productive. Besides the
following recommendations we would like to stress that Altair has put a lot of effort in
making OPENRADIOSS open source and that we can see that this is clearly helping
the community a lot. Despite this, there are always points that can be improved and

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 85 / 96

we hope these can be included in the code. The recommendations for Altair are the
following:

• Currently, OPENRADIOSS uses CI/CD to test if OPENRADIOSS compiles in 3
different situations for both the starter and engine in the case the codes are
compiled with single precision, double precision or with openMPI. The develop-
ers of OPENRADIOSS started implementing another test named QA. It is unclear
what this is but, the recommendation for OPENRADIOSS is to extend the CI/CD
interface in a few different aspects:

– Extend the compilation testing of the engine to including testing that the
code compiles using the INTEL compiler.

– Extend the CI/CD to include tests of simple test problems like the sim-
ulation of shell element tests with different shell elements such that the
solution remains consistent. Similar thing can be done for testing beam
elements and different spring elements.

– Extend the CI/CD to include big test cases that are run for a specified
number of time steps, for example 100- or 1000-time steps. Using this the
code is not allowed to crash or cause a segmentation fault.

– Extend the CI/CD to include unit tests for commonly used functions.

Including these suggestions in OPENRADIOSS is expected to increase the trust-
worthiness of the code, make the code development easier, and will help pre-
vent the accidental creation of bugs that could have been prevented.

• Because current variable names are often obscure, it is recommended to use
the snake case naming convention for all variables and file names. Additionally,
we also recommend that code that is implemented is properly documented and
is not accepted if it is not well documented. This will make the code more
readable and accessable for new users.

• The current file format of the time file outputs is in a .CSV file (comma-separated
values). This is far from ideal because it is hard to read .CSV files because they
need to be read in completely. This is because .CSV files are not structured.
Instead it is recommended for Altair to implement the time file outputs in the
HDF5 file format (HDF group, 2024). The main advantage of HDF5 is that files
become structured, and it is not necessary to read in the complete file but only
the data that is required. Secondly, it is straightforward to compress HDF5 files
and therefore reduce the required storage space for HDF5 files. Fig. 7.1 shows
the schematic structure of a possible future HDF5 format for the OPENRADIOSS

time files. The HDF5 file is divided in different groups for the different element
formulations and the nodes. For the different element formulations variables
like stress and strain can be logged. The nodes can log variables like displace-
ment, position, velocity, acceleration, and others. Each variable has two main
attributes (atr.); firstly, the unit exponents for mass, time, and length such that in
an automatic way the unit of each variable can be determined. Secondly, a short
description for each variable is present such that users of the output understand
what the variable represent. Similarly, there is a group called time which stores
the time and its corresponding unit. An option is to make a link between the
/TIME group to each variable group, such that the time is also a subgroup in
each group. Storing the time centrally, also makes it possible to use different
time stepping sizes for logging the data of nodes and shell for example. Two
other important groups are the units, which stores the conversion between the
internal units and the SI unit system. This will allow to read the HDF5 file and at
the same time assign units to the variables (e.g. similar to Borrow and Borrisov,
2020). Secondly, a group called /INFO will be used to store information about

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

https://en.wikipedia.org/wiki/Snake_case

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 86 / 96

HDF5 time file

/nodes /time

/displacement

/position

/velocity

/acceleration

Atr: unit exp

Atr: description

data

/etc ...

Atr: unit exp

Atr: description

data

Atr: unit exp

Atr: description

data

Atr: unit exp

Atr: description

data

Atr: unit exp

Atr: description

data

Atr: unit exp

Atr: description

data

/shells

/stress

Atr: unit exp

Atr: description

data

/strain

/etc ...

/beam

/spring

/etc ...

/units

Atr: unit mass

Atr: unit time

Atr: unit length

/info

Atr: sim. info

Atr: version info

Atr: etc ...

Figure 7.1 Schematic view of envisioned future time file structure for OPENRADIOSS using HDF5 files.
Each HDF5 file has groups for the different element types and the nodes, which correspond-
ingly have different subgroups with the different variables of that element type that are logged.
These variables each have at least two attributes (Atr.), its unit exponents for mass, time, and
length. Secondly, a short description of what the variable is. Lastly, the data is stored in the
group. A separate group is present for the time. Also, a group is present for the units that are
used based on the SI system and lastly an extra group is present for information about the
simulation like the simulation itself, version of the software or other details.

the simulation itself and the version of OPENRADIOSS that was used.
More extensions for this format can be added like a separate group for energies,
like the internal energy, contact energy, etc. such that energies can be easily
accessed. Also adding groups for rigid bodies is an option.

• It is recommended to include the documentation of RADIOSS in OPENRADIOSS

and require merge request to also update the different sections/chapters of the
documentation of OPENRADIOSS. This will make the documentation for the
users of OPENRADIOSS more up to date and will improve the quality of the
documentation for the users of RADIOSS because the manual is updated at the
same time that the merge request is done. This might require an initial big effort
because if the manual is not written in a text format like LATEX it might require
initially a lot of work. However, in the long run having the manual in the RADIOSS

repository will significantly strengthen the code.
• OPENRADIOSS should release different versions of the code that are tracking

recent changes. The use of daily releases is not considered useful for the de-
velopers because they can access the daily version using GitHub. Also, it is

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 87 / 96

not useful that every day you download a different version of the code that is
tagged daily. This makes the releases sensitive for the introduction of bugs,
and it therefore should be avoided to daily release a version. It is recommended
that OPENRADIOSS only releases a tagged version every month2 with the new
features compared to the previous version.

• OPENRADIOSS lacks fundamental examples. These are examples that test
the ‘fundamental’ properties of a single element formulation or material model.
These benchmark problems or tests are ideal to include in the CI/CD of OPEN-
RADIOSS. Examples of following problems are recommended to include in
OPENRADIOSS:
– The Irons and Razzaque (1972) patch test (shell elements and solid ele-

ments).
– Cantilever beam (like in this report) for both beam, shell and brick ele-

ments.
– Cantilever beam with odd sized elements (e.g. fig. 4 of Macneal and

Harder, 1985) with trapezoidal/parallelogram shaped elements for shell
and brick elements.

– The curved beam problem (e.g. fig. 5 of Macneal and Harder, 1985) for
beam, shell and brick elements.

– The twisted beam problem (e.g. fig. 6 of Macneal and Harder, 1985) for
(beam), shell and brick elements. This problem might already be in the
testing but is called ‘smoke test’.

– The Scordelis–Lo Roof (e.g. fig. 8 of Macneal and Harder, 1985) for shell
elements.

– The spherical shell problem (e.g. fig. 9 of Macneal and Harder, 1985) for
shell elements.

– The thick-walled cylinder (e.g. fig. 10 of Macneal and Harder, 1985) for
brick elements.

– The tensile test (example on OPENRADIOSS website for a single material
model) for as many material models as possible.

– Spring-mass system tests for linear and non-linear springs (like in this re-
port).

– Standard CFD test cases like Sedov blast, Sod (1978) shock tube, and the
Noh (1987) problem.

– A standard test for trusses.
– Standard tests for different contact types.

• Real case scenarios of OPENRADIOSS are sometimes hard to find, therefore
it is recommended that the publications that do use OPENRADIOSS are listed
on the website (We are happy that OPENRADIOSS has done this a few months
ago). This way people can see that OPENRADIOSS is widely used in industry
and it is easy to see the more recent developments of OPENRADIOSS as a code.
Additionally, it is recommended to include explicitly a directory of examples in
the source code, similar to codes like SWIFTSIM (Schaller et al., 2023).

• OPENRADIOSS lacks the option to automatically create checkpoint files on de-
mand. Having the option of automatically check pointing OPENRADIOSS will
allow to do bigger simulations on HPC facilities that do not allow the code to be
run for unlimited time. Furthermore, having automatic checkpoint files will make
the code easier to debug.

2Or longer if no significant changes were made.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 88 / 96

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 89 / 96

8 References

Abramowitz, M. and Stegun, I. (1965). Handbook of Mathematical Functions: With
Formulas, Graphs, and Mathematical Tables. Applied mathematics series. Dover
Publications.

Altair (2022a). Altair radioss 2022: Reference manual.

Altair (2022b). Altair radioss 2022: Theory manual.

Altair (2022c). Industry-proven altair radioss finite element analysis solver now avail-
able as open-source solution.

Altair (2023). Altair radioss 2023: user guide.

Batoz, J.-L. and Dhatt, G. (1990). Modélisation des structures par éléments finis.
Presses Université Laval.

Belytschko, T. and Leviathan, I. (1994). Physical stabilization of the 4-node shell
element with one point quadrature. Computer Methods in Applied Mechanics and
Engineering, 113(3-4):321 – 350.

Belytschko, T., Lin, J. I., and Chen-Shyh, T. (1984). Explicit algorithms for the nonlin-
ear dynamics of shells. Computer Methods in Applied Mechanics and Engineering,
42(2):225 – 251. Cited by: 526.

Belytschko, T. and Tsay, C.-S. (1983). A stabilization procedure for the quadrilat-
eral plate element with one-point quadrature. International Journal for Numerical
Methods in Engineering, 19(3):405–419.

Benson, D. J. (2007). The history of ls-dyna.

Bini Leite, R., Barriga, A. d., Olivares, G., and Gomez, L. (2021). Scalability study of a
large ditching model using radioss multi-domain technique to reduce computational
time. In AIAA AVIATION 2021 FORUM, page 2993.

Birdsall, C. K. and Langdon, A. B. (1985). Plasma physics via computer simulation.
CRC press.

Borrow, J. and Borrisov, A. (2020). swiftsimio: A python library for reading swift data.
Journal of Open Source Software, 5(52):2430.

Branch, M. A., Coleman, T. F., and Li, Y. (1999). A subspace, interior, and conjugate
gradient method for large-scale bound-constrained minimization problems. SIAM
Journal on Scientific Computing, 21(1):1–23.

Brandão, G. (2023). Falling object protective structure (fops) using altair radioss.

Bulla, M., Kolling, S., and Sahraei, E. (2021). A material model for the orthotropic
and viscous behavior of separators in lithium-ion batteries under high mechanical
loads. Energies, 14(15):4585.

Bulla, M., Schmandt, C., Kolling, S., Kisters, T., and Sahraei, E. (2023). An ex-
perimental and numerical study on charged 21700 lithium-ion battery cells under
dynamic and high mechanical loads. Energies, 16(1):211.

Cina, S. (2019). Study of a seat in composite material: Fem modelling and solver
influence. PhD thesis, Politecnico di Torino.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 90 / 96

Cole, R. (1948). Underwater Explosions. Dover books on engineering and engineer-
ing physics. Dover Publications.

Colfax Research (2017). A performance-based comparison of c/c++ compilers. Col-
fax Research.

Courant, R., Friedrichs, K., and Lewy, H. (1928). Über die partiellen Differenzengle-
ichungen der mathematischen Physik. Mathematische Annalen, 100:32–74.

Di Pasquale, E. (2015). On automatic crash model translation.

Ferry, E., Robert, A., and Loverini, M. (2023). 5.56x45 ss109 impact on an armox
500t plate.

Flanagan, D. and Belytschko, T. (1981). A uniform strain hexahedron and quadrilat-
eral with orthogonal hourglass control. International journal for numerical methods
in engineering, 17(5):679–706.

Franke, F., Slowik, T., Burger, U., and Hühne, C. (2022). Numerical investigation of
drone strikes with various aircraft targets. In AIAA SCITECH 2022 Forum, page
2603.

Gauss, C. F. (1815). Methodus nova integralium valores per approximationem inve-
niendi. H. Dieterich (Gottingae).

Green, R. (2022). The next chapter for the intel fortran compiler.
https://community.intel.com/t5/Blogs/Tech-Innovation/Tools/The-Next-Chapter-
for-the-Intel-Fortran-Compiler/post/1439297.

Green, R. (2023). Ifx vs ifort performance difference.
https://community.intel.com/t5/Intel-Fortran-Compiler/IFX-vs-IFORT-performance-
difference/m-p/1471952.

Halbiniak, K., Wyrzykowski, R., Szustak, L., Kulawik, A., Meyer, N., and Gepner, P.
(2022). Performance exploration of various c/c++ compilers for amd epyc proces-
sors in numerical modeling of solidification. Advances in Engineering Software,
166:103078.

Haufe, A., Schweizerhof, K., and DuBois, P. (2013). Properties & limits: Review of
shell element formulations.

Haug, E. (1981). Engineering safety analysis via destructive numerical experiments.
Engineering Transactions, 29(1).

Haug, E., Scharnhorst, T., and Du Bois, P. (1986). Fem-crash, berechnung eines
fahrzeugfrontalaufpralls. VDI Berichte, 613:479–505.

HDF group (2024). The hdf5 library & file format.

Hooke, R. (1678). Lectures de Potentia Restitutiva, Or of Spring Explaining the Power
of Springing Bodies. [Cutlerian lecture. John Martyn.

IFX developers (2023). Porting guide for intel fortran compiler.
https://www.intel.com/content/www/us/en/developer/articles/guide/porting-guide-
for-ifort-to-ifx.html.

Intel developers (2010). Quick-reference guide to optimization with intel compilers
version 12.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 91 / 96

Intel developers (2023). Intel oneapi dpc++/c++ compiler developer guide and refer-
ence.

Irons, B. M. and Razzaque, A. (1972). Experience with the patch test for convergence
of finite elements. In Aziz, A., editor, The Mathematical Foundations of the Finite
Element Method with Applications to Partial Differential Equations, pages 557–587.
Academic Press.

IT Boston University (2023). Intel compiler flags.

Jezdik, R., Rulc, V., Kubovy, P., Kemka, V., Kovanda, J., Mlejnkova, B., and Tikkanen,
T. (2023). Analysis of pedestrian-tram collision phenomena: Possibilities of simu-
lation models validation. MM Science Journal, 2023-June:6594 – 6601. Cited by:
0; All Open Access, Bronze Open Access.

Jones, H. and Miller, A. R. (1948). The detonation of solid explosives: the equilibrium
conditions in the detonation wave-front and the adiabatic expansion of the products
of detonation. Proc. R. Soc. Lond., (A194):480–507.

Kosloff, D. and Frazier, G. A. (1978). Treatment of hourglass patterns in low order
finite element codes. International Journal for Numerical and Analytical Methods in
Geomechanics, 2(1):57 – 72.

Le Métayer, O. and Saurel, R. (2016). The noble-abel stiffened-gas equation of state.
Physics of Fluids, 28(4). Cited by: 97; All Open Access, Green Open Access.

Lee, E. L., Hornig, H. C., and Kury, J. W. (1968). Adiabatic expansion of high explosive
detonation products.

Lequiniou, E. (2023). Personal communication.

Levenberg, K. (1944). A method for the solution of certain non-linear problems in
least squares. Quarterly of Applied Mathematics, 2(2):164–168.

Love, A. E. H. (1888). The Small Free Vibrations and Deformation of a Thin Elas-
tic Shell. Philosophical Transactions of the Royal Society of London Series A,
179:491–546.

Loverini, M. (2023a). Altair solution for ballistic impact on water tank.

Loverini, M. (2023b). Altair solutions for sphere hydroforming with explosive.

Loverini, M. (2023c). Altair solutions for vehicle assessment according to stanag
regulation.

Loverini, M. (2023d). Multiple explosives detonation simulation.

Loverini, M. (2023e). Underwater explosion – validation study.

Loverini, M. and Robert, A. (2022). Air burst explosion.

Loverini, M. and Robert, A. (2023). Air burst explosion.

Macneal, R. H. and Harder, R. L. (1985). A proposed standard set of problems to test
finite element accuracy. Finite Elements in Analysis and Design, 1(1):3–20.

Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear pa-
rameters. Journal of the Society for Industrial and Applied Mathematics, 11(2):431–
441.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 92 / 96

Meirovitch, L. and Wesley, D. A. (1967). On the dynamic characteristics of a variable-
mass slender elastic body under high accelerations. AIAA Journal, 5(8):1439 –
1447. All Open Access, Green Open Access.

Mestres, E. (2023a). Radioss sample for welding line process.

Mestres, E. (2023b). threaded bolt process sample.

Mindlin, R. (1951). Influence of rotatory inertia and shear on flexural motions of
isotropic, elastic plates.

Mittal, A., Mahato, A. C., Sharma, M., Mukhopadhyay, A., and Kadian, A. K. (2023).
Explicit dynamic frontal crash analysis of an all-terrain vehicle roll cage. Applica-
tions of Modelling and Simulation, 7:85–92.

Nakano, R. (2023). Modeling foam material with /mat/law70.

Newton, I. (1687). Philosophiae naturalis principia mathematica. Early English books
online. Jussu Societas Regiæ ac typis Josephi Streater, prostant venales apud
Sam. Smith.

Noh, W. F. (1987). Errors for calculations of strong shocks using an artificial viscosity
and an artificial heat flux. Journal of Computational Physics, 72(1):78–120.

Pasligh, N., Schilling, R., and Bulla, M. (2017). Modeling of rivets using a cohesive
approach for crash simulation of vehicles in radioss. SAE International journal of
transportation safety, 5(2).

Potter, D., Stadel, J., and Teyssier, R. (2017). PKDGRAV3: beyond trillion particle
cosmological simulations for the next era of galaxy surveys. Computational Astro-
physics and Cosmology, 4(1):2.

Prashanth, A. R. (2022). Rops test scenario analysis with radioss explicit.

Reddy, J. (2006). Theory and Analysis of Elastic Plates and Shells. CRC Press.

Reddy, J. (2017). Energy principles and variational methods in applied mechanics.

Reissner, E. (1945). The effect of transverse shear deformation on the bending of
elastic plates.

Robert, A. and Loverini, M. (2023). Boat section slamming simulation.

Robert, A., Loverini, M., and Nordgren, F. (2023). Bottle drop simulation.

Sait, U. (2021). Ifort vs ifx speed issue. https://community.intel.com/t5/Intel-Fortran-
Compiler/Ifort-vs-ifx-speed-issue/m-p/1295644.

Schaller, M., Borrow, J., Draper, P. W., Ivkovic, M., McAlpine, S., Vandenbroucke,
B., Bahé, Y., Chaikin, E., Chalk, A. B. G., Chan, T. K., Correa, C., van Daalen,
M., Elbers, W., Gonnet, P., Hausammann, L., Helly, J., Huško, F., Kegerreis, J. A.,
Nobels, F. S. J., Ploeckinger, S., Revaz, Y., Roper, W. J., Ruiz-Bonilla, S., Sandnes,
T. D., Uyttenhove, Y., Willis, J. S., and Xiang, Z. (2023). Swift: A modern highly-
parallel gravity and smoothed particle hydrodynamics solver for astrophysical and
cosmological applications. arXiv e-prints, page arXiv:2305.13380.

Schaller, M., Gonnet, P., Chalk, A. B. G., and Draper, P. W. (2016). SWIFT: Using
Task-Based Parallelism, Fully Asynchronous Communication, and Graph Partition-
Based Domain Decomposition for Strong Scaling on more than 100,000 Cores.
In Proceedings of the Platform for Advanced Scientific Computing Conference,
page 2.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 93 / 96

Shamchi, S., Farahani, B. V., Bulla, M., and Kolling, S. (2024). Mechanical behav-
ior of lithium-ion battery separators under uniaxial and biaxial loading conditions.
Polymers, 16(8):1174.

Sharp, P. (2023a). Bird strike on windshield.

Sharp, P. (2023b). Bumper beam.

Sharp, P. (2023c). Openradioss user documentation.

Sharp, P. (2023d). Yaris impact on pole at 40km/h.

Sod, G. A. (1978). Review. A Survey of Several Finite Difference Methods for Systems
of Nonlinear Hyperbolic Conservation Laws. Journal of Computational Physics,
27(1):1–31.

Solanki, K., Oglesby, D., Burton, C., Fang, H., and Horstemeyer, M. (2004). Crash-
worthiness simulations comparing pam-crash and ls-dyna. SAE Technical Papers.
Cited by: 7.

Springel, V. (2005). The cosmological simulation code GADGET-2. MNRAS,
364(4):1105–1134.

Timoshenko, S. P. (1921). Lxvi. on the correction for shear of the differential equa-
tion for transverse vibrations of prismatic bars. Philosophical Magazine Series 1,
41:744–746.

Timoshenko, S. P. (1922). X. on the transverse vibrations of bars of uniform cross-
section. Philosophical Magazine Series 1, 43:125–131.

Tofrowaih, K., Sulaiman, S., Samad, M. A., Azlan, K., Ab Razak, M., Rahman, M. A.,
Lubis, A. S., and Joehary, A. A. (2021). Evaluation of suv roof crush analysis
using alternative non-linear structural analysis solver. Journal of the Society of
Automotive Engineers Malaysia, 5(2):176–184.

Tuitman, J. T. (2023). Program to create 3DCAV fluid mesh for existing structural
models – V1418 WP8.7 (U).

Uflyand, Y. S. (1948). The propagation of waves in the transverse vibrations of bars
and plates. Akad. Nauk. SSSR, Prikl. Mat. Mech, 12(287-300):8.

Verlet, L. (1967). Computer “Experiments” on Classical Fluids. I. Thermodynamical
Properties of Lennard-Jones Molecules. Physical Review, 159(1):98–103.

Walter, J. W. and Bellshaw, D. (1993). Survey to determine the value of dyna.

Wienholtz, O., Villeneuve, S., and Altair, L. (2023). How to build openradioss.

Wilkins, M. L., Squier, B., and Halperin, B. (1964). The equation of state of pbx 9404
and lx04-01.

Zeng, Q. and Combescure, A. (1998). New one-point quadrature, general non-linear
quadrilateral shell element with physical stabilization. International Journal for Nu-
merical Methods in Engineering, 42(7):1307 – 1338. Cited by: 31.

Zheng, J., He, Y., Zhao, M., and Xia, J. (2023). Dynamic response analysis of spheri-
cal pressure hull implosion inside adjacent underwater structure. Ocean Engineer-
ing, 283. Cited by: 0.

Zupan, D. and Saje, M. (2004). On “a proposed standard set of problems to test finite
element accuracy”: the twisted beam. Finite Elements in Analysis and Design,
40(11):1445–1451.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 94 / 96

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 95 / 96

9 Approval

F.S.J. Nobels M.Sc. (author) -

dr ir J.T. Tuitman (checked) -

ir W. Trouwborst (checked) -

R.C. Dragt M.Sc. (approved) -

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final 96 / 96

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final A.1/A.4

A Getting started manual

For the internal flow of working with OpenRadioss a starting manual was created.
The starting manual describes the different aspects of the code that are commonly
used and gives a beginning user a good perspective on how to work with the code.
The main features in the manual that are discussed are:

• How to get the code.
• How to know the version that you use.
• What are the dependencies of the code.
• How to get all the dependencies on the TNO-NOS machines.
• What are additional configuration options.
• How to speed up the code.
• How to run the code.
• How to run an example.
• What are the different runtime options.
• How to convert the output.
• How to analyse the output.

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final A.2/A.4

Getting started OpenRadioss

Folkert Nobels (TNO Naval and Offshore structures)

January 29, 2024

Getting The Code
OpenRadioss contains large files that use git lfs. Git lfs (Git

Large File Storage) needs to be initialized as:

git lfs install

The code is available from the GitHub repository. You can down-
load OpenRadioss by downloading it from the following location:

git clone https :// github.com/OpenRadioss/OpenRadioss.

git

Keeping track of the version
The version of OpenRadioss changes rapidly, because of this

you should keep track of the current version that you use. You
can find the current version by

git log

The first line of this shows the current version that you use which
is the long combination of letters and numbers after commit.

Getting Help
Currently Folkert Nobels knowns the most about OpenRa-

dioss, so questions on how to start with OpenRadioss can be
asked to him. Specific questions can be asked online by creating
an issue on GitHub.

Dependencies
Git-LFS

Git Large File Storage is used to download the large files in
the repository.

cmake and make
Cmake version 3.20.4 and make version 4.2.1 or higher.

Perl and Python
Perl version 5.26 or higher and python 3.

Gfortran
Version 11.x or higher of gfortran is required. Gfortran is

used to compile the code.

IFort or IFx
For the fortran intel compilers version 2021 or higher is re-

quired (and tested).

g++, cpp and gcc
Version 11.x or higher is required.

Using version 12 of gfortran, g++, cpp and gcc
On Goldfish (openSUSE) you can use version 12 of these

software packages by including the following softlinks in your
/bin/ directory

ln -s /usr/bin/gfortran -12 gfortran

ln -s /usr/bin/cpp -12 cpp

ln -s /usr/bin/g++-12 g++

ln -s /usr/bin/gcc -12 gcc

Using the intel compiler on Goldfish and Marlin
On Goldfish add:

alias intel=’source /uhome/tuitmanjt/intel/oneapi/

setvars.sh intel64 ’

And on Marlin add:

alias intel=’source /Applications/oneapi2023/setvars.

sh intel64 ’

To your rc file, and initialize this by running intel in the terminal.

Initial Setup (SMP)
Here we describe the basics of setting the code up to be run

on a single node with shared-memory multiprocessing (SMP).

OpenRadioss uses git-lfs and Cmake for setup. To get a basic
version of the starter on most platforms, run

cd starter

./ build_script.sh -arch=linux64_gf

The exectuble of the starter can be found in

OpenRadioss/exec

To get a basic version of the engine on most platforms, run cd
engine

./ build_script.sh -arch=linux64_gf

Or

./ build_script.sh -arch=linux64_intel

Useful Engine Configuration Options
A description of the available options can be found by using

./build script.sh .

-prec=[dp|sp]

There is the option to compile OpenRadioss in single and double
precision. Double precision is the default, single precision is 40%
faster.

-mpi=[ompi|impi]

The option to use OpenMPI or MPI to get communication be-
tween different computing nodes or different NUMA regions (e.g.
a single chip).

-debug =[0|1]

Debug version of the code, 0 is no debug flags (default) and 1
has the usual debug flags.

-verbose

Increase the verbosity of the output during the build. Speed-
ing up the code with compiler flags It is possible to speed-
up OpenRadioss significantly when using the intel compiler
and when using different compiler flags on lines 77 and 78
of ./engine/CMake Compilers/cmake linux64 intel.txt .

Replace -axSSE3,COMMON-AVX512 -no-fma -O3 with

-no-fma -Ofast -xHost -static

Running the Code (SMP)
After compilation, you will be left with two binaries. One is

the called starter linux gf and the other is either

called engine linux64 gf or engine linux64 intel .

The starter is used to create the simulation that will be sim-
ulated and the engine is used to do the actual simulation. Before
running simulations you need to initialize a few variables in your
.bashrc file:

export OPENRADIOSS_PATH =/path/to/OpenRadioss

export RAD_CFG_PATH=$OPENRADIOSS_PATH/hm_cfg_files
export LD_LIBRARY_PATH=$OPENRADIOSS_PATH/extlib/

hm_reader/linux64 /: $OPENRADIOSS_PATH/extlib/h3d/
lib/linux64 /: $LD_LIBRARY_PATH

1

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final A.3/A.4

Running an Example
The OpenRadioss example repository contains a large num-

ber of examples that you can run. For example the cantilever
beam simulation. Each simulation is run in two steps, the first
step is running the starter

./ dir_to_exec/starter_linux64_gf -i filename_0000.rad

This is followed by using the engine to run the simulation as

./ dir_to_exec/engine_linux64_intel -i filename_0001.

rad

Or

./ dir_to_exec/engine_linux64_gf -i filename_0001.rad

Initial Setup (MPI)
Especially when using big models, simulations will require

using more than one numa region. This means that the user
wants to use a version of the code that uses Message Passing
Interface (MPI). Obtaining the software on Goldfish and Marlin
is identical to the description above. The main difference is that
compiling the code is different. For our servers we only use the
intel MPI version of OpenRadioss. The engine can be build as:

./ build_script.sh -arch=linux64_intel -mpi=impi

Once, this is completed, your MPI version of OpenRadioss is
build.

Running the Code (MPI)
Running the code is different, because you will need to launch

several copies of the same program at the same time (i.e. in jar-
gon, several MPI ranks). Firstly, you need to specify the number
of desired threads:

export OMP_NUM_THREADS=<Nthreads >

followed by running the starter for the amount of MPI ranks that
you want:

./ dir_to_exec/starter_linux64_gf -np <N_MPI > -i

filename_0000.rad

where <N MPI> indicates the number of MPI ranks. This is fol-
lowed by running the code over mpi using the right number of
MPI ranks as:

mpirun -np <N_MPI > --map -by socket:PE=<Nthread > --bind

-to core /dir_to_exec/engine_linux64_intel_impi -i

filename_0001.rad

Runtime options
All the run time options can be shown by

./dir to exec/engine linux64 gf -help . Some useful op-
tions are:

-nthread [integer] / -nt [integer]

This sets the number of SMP threads per Single Program Mul-
tiple Data (SPMD) domain.

-version / -v

Get the version of the current engine, note that this is not a
replacement for git log .

-output =[PATH]

Set the output file directory for all output and created files. Con-
trolling the time step It is possible to control the minimum time
step and the Courant-Friedrichs-Lewy (CFL) condition by:

/DT/NODA/CST/0

CFL_constant dTmin

Where the CFL constant by default is 0.9, but we find that you
should use at most 0.75. dTmin specifies the minimum allowed
timestep. Converting the output OpenRadioss has three types of
outputs. The first type is *.h3d files. In general, we do not use

this file type. Instead we use the ANIM files or *A* files. Both

types contain the same information, only the ANIM files can be

converted to *.vtk files, which can be opened with paraview .

During runtime the user needs to specify which information they
want to include for each element. In order, to get the ANIM

to vtk converter, go to tools/anim to vtk/linux64 and ex-
ecute

./build.bash

This creates the ANIM converter in your exec directory named

anim to vtk linux64 gf . Now you can convert ANIM files as

./dir/exec/anim_to_vtk_linux64_gf filenameAnumber >

filename_number.vtk

You can optionally add an alias in your .bashrc file (or other

rc file e.g. .zshrc) as:

alias anim_to_vtk =/dir/exec/anim_to_vtk_linux64_gf

Such that you can convert files simply as

anim_to_vtk filenameAnumber > filename_number.vtk

The third type of output are time files, TH files or *T* files.
These files store a smaller number of elements at a much higher
frequency than the ANIM and *.h3d files. The time files are
therefore ideal if you want to know in detail what is happening
to a large number of elements. The time files can be converted
into a *.csv file. To get the TH file to *.csv converter go to

tools/th to csv/linux64 and execute

./build.bash

This creates the th to csv converter in your exec directory

named th to csv linux64 gf . Converting TH files can be

done as

./dir/exec/th_to_csv_linux64_gf filenameT01

You can optionally add an alias in your .bashrc file:

alias th_to_csv =/dir/exec/th_to_csv_linux64_gf

The ANIM converter can be written such that it converts all files

by adding the following code to your .bashrc :

anim_to_vtk =’/dir/to/OpenRadioss/exec/

anim_to_vtk_linux64_gf ’

anim_to_vtk_all () {

number_of_files=$(ls -lR $1A* | wc -l)

maximum_index=$((number_of_files))
start_index =1

for ((i=$start_index; i<= $maximum_index; i++))

do

printf -v output_i "%03d" $i
$anim_to_vtk $1A$output_i > $1_$output_i.vtk

done

}

This way you can run to convert all ANIM files

anim_to_vtk_all filename

This can be combined in a single function such that also the time
file is converted:

alias th_to_csv= /dir/to/OpenRadioss/exec/

th_to_csv_linux64_gf

convert_radioss () {

anim_to_vtk_all $1
th_to_csv $1T01

}

Such that all files can be converted as

convert_radioss filename

Running and converting in one line If you want to run radioss
(starter+engine) and the converter at the same time you can
create a function:

2

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final A.4/A.4

radioss () {

OR_starter -i $1_0000.rad
OR_engine -i $1_0001.rad -nt $2
anim_to_vtk_all $1
th_to_csv $1T01

}

Now you can run radios on 4 cores as:

radioss filename 4

Analysing the VTK files The VTK files can be analysed us-
ing Paraview. Paraview is installed on all our Linux servers
and you can send a software request for Paraview on win-
dows. For more information see www.paraview.org/tutorials/
The properties of the VTK files are specified in the engine file,

i.e. filename 0001.rad . The most important setting is the
start time and time interval which can be specified by

/ANIM/DT

T_start T_freq

Variables that you want to output can be specified by:

/ANIM/NODA/<NAME >

/ANIM/VEC/<NAME >

For nodal scalar data, vector data for your specified variable.
Other options are available in the manual.

Analysing the CSV files
The time files can be extremely long, because of this TNO

wrote their own internal python module to analyse these files.
The package is named openradiosstimefilereader. This package
reads in the *.csv file and creates a class such that in this class
you can call each individual node or spring as:

timefile = OpenRadiossTimeFile (" filenameT01.csv",

filename_0000.rad)

quantity = timefile.nodes["id"][" quantity "]

or

quantity = timefile.springs ["id"][quantity]

This allows the user to only know the id number of the element
and not needing to look up the exactly matching column/row.
Variables that are the same for each node like time can be sim-
ply called by timefile.time() . Warning: It is possible to load

CSV files into excel, only when the file is too large it does only
load part of the file. If your time file has more than 1000 lines
this is already a problem. Because of this we recommend to use
the module instead of using excel.

Example overview
The Radioss examples repository contains a large number of

simple test cases that can be easily downloaded and used.

Advanced options
Control file

The control file is an optional file that can be created while
a run is ongoing to safely stop the simulation or request addi-
tional outputs. Control files are named filename.cfl. In general,
the control file is executed as quickly as possible. There are two
optional keywords that allow it to stop only at a specific cycle or
time:

/CYCLE/cyclenumber

/TIME/timevalue

In order to kill the job you can use:

/STOP

This will kill the job and creates a restart file. It is also possible
to create more outputs, for that see the manual.

3

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final B.1/B.8

B OPENRADIOSS time file reader

OPENRADIOSS has the option to output more information of nodes, beams, shells
or other elements. This is a similar feature to the DEFINENAME feature of LS-DYNA
which is extensively used in 3DCAV simulations. Currently, the files that are created
can have many columns and because of this selecting the right columns is prone
to mistakes. Because of this a simple PYTHON library was created which reads the
desired columns based on the file itself instead of needing to look up the correct
column yourself. At the same time, the package also reads the correct units of the
different variables. This prevents that mistakes are made with units.

1 #!/usr/bin/env python3
2 import numpy as np
3 from unyt import kg, mm, ms, s, m, cm, unyt_quantity
4 import unyt
5 import csv
6 import re
7 import pandas as pd
8 import time
9

10 class OpenRadiossTimeFile:
11

12 def __init__(self, csv_file_name , rad_file_name):
13 # Store the string names of the files in the object
14 self.csv_file_name = csv_file_name
15 self.rad_file_name = rad_file_name
16

17 # Load the internal units of the file
18 self.load_internal_units()
19

20 # open the file and store the data in variable data (use pandas because it is x10 faster)
21 self.data = pd.read_csv(self.csv_file_name) #, engine="pyarrow"
22 self.data = self.data.to_numpy()
23

24 with open(csv_file_name , ’r’) as f:
25 for i, row in enumerate(csv.reader(f)):
26 self.csv_column_names = row
27 if i==0:
28 break
29

30 self.possible_numbers = []
31 for i, column_name in enumerate(self.csv_column_names):
32 new_element = re.findall(f"\d+", column_name)
33 if not new_element:
34 continue
35 else:
36 self.possible_numbers.append(new_element[0])
37

38 # Array of the possible node numbers
39 self.possible_numbers = list(set(self.possible_numbers))
40

41 # Set all types to False
42 self.file_has_nodes = False
43 self.file_has_spring = False
44 self.file_has_shell = False
45 self.file_has_beam = False
46

47 # Determine if we have nodes, springs, beams, shells, etc.
48 for i, column_name in enumerate(self.csv_column_names):
49 if "Nodes" in column_name:
50 self.file_has_nodes = True
51 elif "spring" in column_name:
52 self.file_has_spring = True
53 elif "shell" in column_name:
54 self.file_has_shell = True
55 elif "beam" in column_name:
56 self.file_has_beam = True
57 else:
58 continue # unsupported element type or global variable
59

60

61 # Set an empty dictionary and add keys of possible numbers to it
62 if self.file_has_nodes:
63 self.nodes = {}
64 for key in self.possible_numbers:
65 self.nodes[key] = {}
66

67 if self.file_has_spring:
68 self.springs = {}
69 for key in self.possible_numbers:
70 self.springs[key] = {}
71

72 for j, used_number in enumerate(self.possible_numbers):
73 #print(used_number)
74 for i,column_name in enumerate(self.csv_column_names):
75 type_name = column_name[−20:−1]
76 type_name = type_name.strip()
77 if (" "+used_number+" " in column_name) and ("Nodes" in column_name):
78

79 # Determine which unit is used
80 if type_name[0] == "F":
81 unit = self.unit_F
82 elif type_name[0] == "D" or type_name[0] == "X" or type_name[0] == "Y" or type_name[0] == "Z"

:
83 unit = self.unit_L
84 elif type_name[0] == "V":
85 unit = self.unit_V

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final B.2/B.8

86 elif type_name[0] == "M":
87 # Is this indeed the correct unit?
88 unit = self.unit_Moment
89 elif type_name[0] == "A":
90 unit = self.unit_A
91 elif type_name[0] == "R":
92 unit = unyt.rad
93 else:
94 unit = 1.
95

96 # set the information of this node in its dictionary
97 self.nodes[used_number][type_name.lower()] = self.data[:,i] * unit
98 elif (" "+used_number+" " in column_name) and ("spring" in column_name):
99

100 # Determine which unit is used
101 if type_name[0] == "O":
102 unit = 1.
103 elif type_name[0] == "F":
104 unit = self.unit_F
105 elif type_name[0] == "M":
106 unit = self.unit_Moment
107 elif type_name[0] == "L":
108 unit = self.unit_L
109 elif type_name[0] == "R":
110 unit = unyt.rad
111 elif type_name[0] == "I":
112 unit = self.unit_E
113 else:
114 unit = 1.
115 # set the information of this spring in its dictionary
116 self.springs[used_number][type_name.lower()] = self.data[:,i] * unit
117

118

119

120

121 def load_internal_units(self):
122

123 # Open the file pointer
124 fp = open(self.rad_file_name , "r")
125

126 # Get all the lines of the file
127 lines = fp.readlines()
128

129 # loop over the file
130 for i, line in enumerate(lines):
131 if line.strip()=="/BEGIN":
132 count = i
133

134 string_units = lines[i+6].strip()
135 string_last_two_units = string_units[5:].strip()
136 string_last_unit = string_last_two_units[5:].strip()
137

138 # unit of mass
139 self.unit_M = unyt_quantity(1., string_units[:5].strip())
140 # unit of length
141 self.unit_L = unyt_quantity(1., string_last_two_units[:5].strip())
142 # unit of time
143 self.unit_T = unyt_quantity(1., string_last_unit[:5].strip())
144

145 break
146

147 # unit of velocity
148 self.unit_V = self.unit_L / self.unit_T
149 # unit of frequency
150 self.unit_Freq = 1. / self.unit_T
151 # unit of acceleration
152 self.unit_A = self.unit_L / self.unit_T * *2
153 # unit of energy
154 self.unit_E = self.unit_M * self.unit_L * *2 / self.unit_T * *2
155 # unit of momentum
156 self.unit_P = self.unit_M * self.unit_L / self.unit_T
157 # unit of force
158 self.unit_F = self.unit_M * self.unit_L / self.unit_T * *2
159 # unit of Inertia
160 self.unit_I = self.unit_M * self.unit_L * *2
161 # unit of moment
162 self.unit_Moment = self.unit_F * self.unit_L
163

164 def time(self):
165 return self.data[:,0] * self.unit_T
166

167 def internal_energy(self):
168 return self.data[:,1] * self.unit_E
169

170 def kinetic_energy(self):
171 return self.data[:,2] * self.unit_E
172

173 def momentum_x(self):
174 return self.data[:,3] * self.unit_P
175 def momentum_y(self):
176 return self.data[:,4] * self.unit_P
177 def momentum_z(self):
178 return self.data[:,5] * self.unit_P
179

180 def momentum(self):
181 return self.data[:,3:6] * self.unit_P
182

183 def mass(self):
184 return self.data[:,6] * self.unit_M
185

186 def time_step(self):
187 return self.data[:,7] * self.unit_T
188

189 def rotation_energy(self):
190 return self.data[:,8] * self.unit_E
191

192 def external_work(self):
193 return self.data[:,9] * self.unit_E
194

195 def spring_energy(self):
196 return self.data[:,10] * self.unit_E

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final B.3/B.8

197

198 def contact_energy(self):
199 return self.data[:,11] * self.unit_E
200

201 def hourglass_energy(self):
202 return self.data[:,12] * self.unit_E
203

204 def initialise_displacement_variables(self, start_id , end_id, time_fraction=0.5):
205 self.z_median = np.zeros(end_id − start_id + 1) * self.unit_L
206 self.x_median = np.zeros(end_id − start_id + 1) * self.unit_L
207 self.z_avg = np.zeros(end_id − start_id + 1) * self.unit_L
208 self.x_avg = np.zeros(end_id − start_id + 1) * self.unit_L
209 self.z_s_up = np.zeros(end_id − start_id + 1) * self.unit_L
210 self.z_s_down = np.zeros(end_id − start_id + 1) * self.unit_L
211

212 from_fraction = 1− time_fraction
213

214 self.length_array = len(self.time())
215

216 for index, node_id in enumerate(range(start_id , end_id + 1)):
217 z_node = self.nodes[f"{node_id:d}"]["dz"]
218 x_node = self.nodes[f"{node_id:d}"]["x"]
219

220 self.z_avg[index] = np.average(z_node[int(self.length_array * from_fraction):])
221 self.x_avg[index] = np.average(x_node[int(self.length_array * from_fraction):])
222 self.z_median[index] = np.median(z_node[int(self.length_array * from_fraction):])
223 self.x_median[index] = np.median(x_node[int(self.length_array * from_fraction):])
224

225 self.z_s_down[index] = np.percentile(z_node[int(self.length_array * from_fraction):], 16)
226 self.z_s_up[index] = np.percentile(z_node[int(self.length_array * from_fraction):], 84)
227

228 def initialise_displacement_variables_y(self, start_id , end_id, time_fraction=0.5):
229 self.y_median = np.zeros(end_id − start_id + 1) * self.unit_L
230 self.x_median = np.zeros(end_id − start_id + 1) * self.unit_L
231 self.y_avg = np.zeros(end_id − start_id + 1) * self.unit_L
232 self.x_avg = np.zeros(end_id − start_id + 1) * self.unit_L
233 self.y_s_up = np.zeros(end_id − start_id + 1) * self.unit_L
234 self.y_s_down = np.zeros(end_id − start_id + 1) * self.unit_L
235

236 from_fraction = 1− time_fraction
237

238 self.length_array = len(self.time())
239

240 for index, node_id in enumerate(range(start_id , end_id + 1)):
241 y_node = self.nodes[f"{node_id:d}"]["dy"]
242 x_node = self.nodes[f"{node_id:d}"]["x"]
243

244 self.y_avg[index] = np.average(y_node[int(self.length_array * from_fraction):])
245 self.x_avg[index] = np.average(x_node[int(self.length_array * from_fraction):])
246 self.y_median[index] = np.median(y_node[int(self.length_array * from_fraction):])
247 self.x_median[index] = np.median(x_node[int(self.length_array * from_fraction):])
248

249 self.y_s_down[index] = np.percentile(y_node[int(self.length_array * from_fraction):], 16)
250 self.y_s_up[index] = np.percentile(y_node[int(self.length_array * from_fraction):], 84)
251

252 def set_FFT_spectrum(self, frequencies , abs_FFT):
253 self.frequencies = frequencies
254 self.absolute_FFT = abs_FFT
255

256 # Function that can be used to fit the displacement
257 def func_disp(t, A, t_decay, omega, phi):
258 return A * np.sin(omega * t + phi) * np.exp(− t / t_decay)
259

260 if __name__ == "__main__":
261 testdata = OpenRadiossTimeFile("tensile_LAW2_BIQUADT01.csv", "tensile_LAW2_0000.rad")
262

263

264 print(testdata.time())
265

266 print(testdata.n102_DX)
267 print(testdata.n102_DY)
268 print(testdata.n616_DX)
269 print(testdata.n616_DY)

Additionally, for this project an additional file of routines was written to specifically
compare different datasets. This also has routines that create specific plots that were
made in this report.

1 #!/usr/bin/env python3
2 import numpy as np
3 import matplotlib.pyplot as plt
4 import unyt
5 import numpy.fft as fft
6 import matplotlib
7 import scipy.optimize as sco
8 import scipy.interpolate as sci
9 import os
10 import sys
11

12 matplotlib.use("Agg")
13

14 from load_csv_file import OpenRadiossTimeFile
15

16 # Plot parameters
17 params = {
18 "axes.labelsize": 10,
19 "axes.titlesize": 10,
20 "font.size": 9,
21 "font.family": "serif",
22 "legend.fontsize": 9,
23 "xtick.labelsize": 10,
24 "ytick.labelsize": 10,
25 "text.usetex": True,
26 "figure.figsize": (5.15, 4.15),
27 "figure.subplot.left": 0.15,
28 "figure.subplot.right": 0.97,
29 "figure.subplot.bottom": 0.13,

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final B.4/B.8

30 "figure.subplot.top": 0.97,
31 "figure.subplot.wspace": 0.15,
32 "figure.subplot.hspace": 0.12,
33 "lines.markersize": 6,
34 "lines.linewidth": 1.0,
35 }
36 matplotlib.rcParams.update(params)
37

38 class DatasetCollection:
39 def __init__(self, directory , base_name , label_name , index_to_consider , default_save_dir=None):
40 # store the initialising variables in the class
41 self.directory = directory
42 self.base_name = base_name
43 self.label_name = label_name
44 self.index_to_consider = index_to_consider
45

46 # set the default save directory to None if not specified
47 self.save_dir = default_save_dir
48

49 # make the colour array one more longer than the amount of directories
50 # we do this because the last yellow colour is a bit difficult to see
51 self.colour_array = plt.cm.plasma(np.linspace(0,1,len(self.directory)))
52

53 # Load all the different datasets in this class using the dataset class
54 self.dataset_array = []
55 for direc, name in zip(self.directory , self.base_name):
56 dataset = OpenRadiossTimeFile(f"{direc}/{name}T01.csv", f"{direc}/{name}_0000.rad")
57 self.dataset_array.append(dataset)
58

59 def plot_vertical_displacement(self):
60 # Loop over the different datasets
61 for dataset, node_id, label, colour in zip(self.dataset_array , self.index_to_consider , self.

label_name , self.colour_array):
62 # get the time
63 time = dataset.time()
64

65 # get the vertical displacement
66 z = dataset.nodes[f"{node_id:d}"]["dz"]
67

68 # Plot the resulting curve for the vertical displacement
69 plt.plot(time, z, label=label, color=colour)
70

71 return time.units, z.units
72

73 def plot_internal_energy(self):
74 # Loop over the different datasets
75 for dataset, node_id, label, colour in zip(self.dataset_array , self.index_to_consider , self.

label_name , self.colour_array):
76 # get the time
77 time = dataset.time()
78

79 # get the vertical displacement
80 internal_energy = dataset.internal_energy()
81

82 # Plot the resulting curve for the vertical displacement
83 plt.plot(time, internal_energy , label=label, color=colour)
84

85 return time.units, internal_energy.units
86

87 def plot_kinetic_energy(self):
88 # Loop over the different datasets
89 for dataset, node_id, label, colour in zip(self.dataset_array , self.index_to_consider , self.

label_name , self.colour_array):
90 # get the time
91 time = dataset.time()
92

93 # get the vertical displacement
94 kinetic_energy = dataset.kinetic_energy()
95

96 # Plot the resulting curve for the vertical displacement
97 plt.plot(time, kinetic_energy , label=label, color=colour)
98

99 return time.units, kinetic_energy.units
100

101 def check_that_we_can_save(self, save_dir):
102 # check that we have a place to store the figures
103 if save_dir is not None:
104 self.save_dir = save_dir
105 elif self.save_dir is None:
106 raise ValueError("The save directory should be defined when making plots!")
107

108 def make_vertical_displacement_plot(self, y_mean=−0.78, x_max = 200., save_dir=None):
109

110 self.check_that_we_can_save(save_dir)
111

112 matplotlib.rcParams.update({"figure.figsize": (10.15, 4.15)})
113

114 # Call the function to make a plot for each dataset
115 time_unit , z_unit = self.plot_vertical_displacement()
116

117 plt.axhline(y=y_mean, linestyle="−−", color="k", label="Theoretical displacement")
118 plt.legend()
119 plt.xlim(0,x_max)
120 plt.ylim (2 * y_mean , −0.1*y_mean)
121 plt.xlabel(f"time [${time_unit.latex_repr}$]")
122 plt.ylabel(f"displacement [${z_unit.latex_repr}$]")
123 plt.savefig(f"{self.save_dir}/cantileverbeamtest_100percent.pdf")
124 plt.close()
125

126 matplotlib.rcParams.update({"figure.figsize": (10.15, 4.15)})
127

128 # Call the function to make a plot for each dataset
129 time_unit , z_unit = self.plot_vertical_displacement()
130

131 plt.axhline(y=y_mean, linestyle="−−", color="k", label="Theoretical displacement")
132 plt.legend()
133 plt.xlim(0,x_max / 2.)
134 plt.ylim (2 * y_mean , −0.25*y_mean)
135 plt.xlabel(f"time [${time_unit.latex_repr}$]")
136 plt.ylabel(f"displacement [${z_unit.latex_repr}$]")
137 plt.savefig(f"{self.save_dir}/cantileverbeamtest_50percent.pdf")

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final B.5/B.8

138 plt.close()
139

140 matplotlib.rcParams.update({"figure.figsize": (5.15, 4.15)})
141 # Call the function to make a plot for each dataset
142 time_unit , z_unit = self.plot_vertical_displacement()
143

144 plt.axhline(y=y_mean, linestyle="−−", color="k", label="Theoretical displacement")
145 plt.legend()
146 plt.xlabel(f"time [${time_unit.latex_repr}$]")
147 plt.ylabel(f"displacement [${z_unit.latex_repr}$]")
148 plt.xlim(0,x_max/10.)
149 plt.ylim (2 * y_mean , −0.25*y_mean)
150 plt.savefig(f"{self.save_dir}/cantileverbeamtest_10percent.pdf")
151 plt.close()
152

153 matplotlib.rcParams.update({"figure.figsize": (5.15, 4.15)})
154

155 # Call the function to make a plot for each dataset
156 time_unit , z_unit = self.plot_vertical_displacement()
157

158 plt.axhline(y=y_mean, linestyle="−−", color="k", label="Theoretical displacement")
159 plt.legend()
160 plt.xlim(0,0.3 * x_max)
161 plt.ylim (2 * y_mean ,0.0)
162 plt.xlabel(f"time [${time_unit.latex_repr}$]")
163 plt.ylabel(f"displacement [${z_unit.latex_repr}$]")
164 plt.savefig(f"{self.save_dir}/cantileverbeamtest_30percent.pdf")
165 plt.close()
166

167 def make_internal_energy_plot(self, x_max = 200., save_dir=None, y_lim=None):
168

169 self.check_that_we_can_save(save_dir)
170

171 matplotlib.rcParams.update({"figure.figsize": (10.15, 4.15)})
172

173 # Call the function to make a plot for each dataset
174 time_unit , internal_energy_unit = self.plot_internal_energy()
175

176 plt.legend()
177 plt.xlim(0,x_max)
178 if y_lim is not None:
179 plt.ylim(y_lim[0], y_lim[1])
180 plt.xlabel(f"time [${time_unit.latex_repr}$]")
181 plt.ylabel(f"internal energy [${internal_energy_unit.latex_repr}$]")
182 plt.savefig(f"{self.save_dir}/internal_energy_100percent.pdf")
183 plt.close()
184

185 matplotlib.rcParams.update({"figure.figsize": (10.15, 4.15)})
186

187 # Call the function to make a plot for each dataset
188 time_unit , internal_energy_unit = self.plot_internal_energy()
189

190 plt.legend()
191 plt.xlim(0 ,0.5*x_max)
192 if y_lim is not None:
193 plt.ylim(y_lim[0], y_lim[1])
194 plt.xlabel(f"time [${time_unit.latex_repr}$]")
195 plt.ylabel(f"internal energy [${internal_energy_unit.latex_repr}$]")
196 plt.savefig(f"{self.save_dir}/internal_energy_50percent.pdf")
197 plt.close()
198

199 def make_kinetic_energy_plot(self, x_max = 200., save_dir=None, y_lim=None):
200

201 self.check_that_we_can_save(save_dir)
202

203 matplotlib.rcParams.update({"figure.figsize": (10.15, 4.15)})
204

205 # Call the function to make a plot for each dataset
206 time_unit , kinetic_energy_unit = self.plot_kinetic_energy()
207

208 plt.legend()
209 plt.xlim(0,x_max)
210 if y_lim is not None:
211 plt.ylim(y_lim[0], y_lim[1])
212 plt.xlabel(f"time [${time_unit.latex_repr}$]")
213 plt.ylabel(f"kinetic energy [${kinetic_energy_unit.latex_repr}$]")
214 plt.savefig(f"{self.save_dir}/kinetic_energy_100percent.pdf")
215 plt.close()
216

217 matplotlib.rcParams.update({"figure.figsize": (10.15, 4.15)})
218

219 # Call the function to make a plot for each dataset
220 time_unit , kinetic_energy_unit = self.plot_kinetic_energy()
221

222 plt.legend()
223 plt.xlim(0 ,0.5*x_max)
224 if y_lim is not None:
225 plt.ylim(y_lim[0], y_lim[1])
226 plt.xlabel(f"time [${time_unit.latex_repr}$]")
227 plt.ylabel(f"kinetic energy [${kinetic_energy_unit.latex_repr}$]")
228 plt.savefig(f"{self.save_dir}/kinetic_energy_50percent.pdf")
229 plt.close()
230

231 def set_problem_parameters(self, force, youngs_modulus , b, d, l, density, type_of_problem="cantilever
"):

232 # Pick the first dataset which we use for the unit system
233 dataset = self.dataset_array[0]
234

235 self.force = force * dataset.unit_F
236 self.E = youngs_modulus * dataset.unit_F / dataset.unit_L * *2
237 self.b = b * dataset.unit_L
238 self.d = d * dataset.unit_L
239 self.l = l * dataset.unit_L
240 self.area = self.b * self.d
241 self.moment_of_inertia = self.b * self.d * *3 / 12.
242 self.density = density * dataset.unit_M / dataset.unit_L * *3
243

244

245 self.base_frequency = np.sqrt(self.E * self.moment_of_inertia / (self.density * self.area * self.l
* *4))

246

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final B.6/B.8

247 self.natural_frequencies = np.zeros(5) / dataset.unit_T
248

249 if type_of_problem=="cantilever" or type_of_problem=="clamped −free":
250 self.natural_frequencies[0] = 3.52 * self.base_frequency
251 self.natural_frequencies[1] = 22.4 * self.base_frequency
252 self.natural_frequencies[2] = 61.7 * self.base_frequency
253 self.natural_frequencies[3] = 121.0 * self.base_frequency
254 self.natural_frequencies[4] = 200.0 * self.base_frequency
255 self.max_displacement = self.force * self.l * *3 / (3 * self.E * self.moment_of_inertia)
256 elif type_of_problem=="clamped −simply −supported" or type_of_problem=="simply −supported −free":
257 self.natural_frequencies[0] = 15.4 * self.base_frequency
258 self.natural_frequencies[1] = 50.0 * self.base_frequency
259 self.natural_frequencies[2] = 104.0 * self.base_frequency
260 self.natural_frequencies[3] = 178.0 * self.base_frequency
261 self.natural_frequencies[4] = 272.0 * self.base_frequency
262 elif type_of_problem=="clamped −clamped" or type_of_problem=="free −free":
263 self.natural_frequencies[0] = 22.4 * self.base_frequency
264 self.natural_frequencies[1] = 61.7 * self.base_frequency
265 self.natural_frequencies[2] = 121.0 * self.base_frequency
266 self.natural_frequencies[3] = 200.0 * self.base_frequency
267 self.natural_frequencies[4] = 296.0 * self.base_frequency
268

269

270

271 def average_equilibrium_state(self, lower_indices , higher_indices , time_fraction=0.5, x_max=40, y_min
= −1.0, res_axis=None, res_name="resolution axis [mm]"):

272 self.lower_indices = lower_indices
273 self.higher_indices = higher_indices
274

275 from_fraction = 1− time_fraction
276 matplotlib.rcParams.update({"figure.figsize": (6.15, 4.15)})
277

278 for dataset, start_id , end_id, label, colour in zip(self.dataset_array , self.lower_indices , self.
higher_indices , self.label_name , self.colour_array):

279 dataset.initialise_displacement_variables(start_id , end_id, time_fraction)
280

281 plt.plot(dataset.x_avg, dataset.z_avg, label=label, color=colour)
282 plt.fill_between(dataset.x_avg, dataset.z_s_down, dataset.z_s_up, color=colour, alpha=0.2)
283

284 # calculate the actual displacement
285 dx = self.l − dataset.x_avg
286 th_displacement = −(1./6.) * self.force / (self.E * self.moment_of_inertia) * (dx * *3 − 3 * dx *

self.l * *2 + 2 * self.l * *3)
287

288 plt.plot(dataset.x_avg, th_displacement , color="k", linestyle="−−", label="Equilibrium")
289

290 plt.legend()
291 plt.xlabel(f"x coordinate [${dataset.unit_L.units.latex_repr}$]")
292 plt.ylabel(f"z displacement [${dataset.unit_L.units.latex_repr}$]")
293 plt.xlim(0,x_max)
294 plt.ylim(y_min ,0)
295 plt.savefig(f"{self.save_dir}/average_equilibrium_state.pdf")
296 plt.close()
297

298 if res_axis is None:
299 return
300

301 dx_highres = dx
302 z_avg_highres = dataset.z_avg
303 x_avg_highres = dataset.x_avg
304 th_displacement_highres = th_displacement
305

306 chi_squared = np.zeros(len(res_axis))
307 chi_squared_fine = np.zeros(len(res_axis))
308 chi_squared_fine2 = np.zeros(len(res_axis))
309

310 for index, (dataset, start_id , end_id, label, colour) in enumerate(zip(self.dataset_array , self.
lower_indices , self.higher_indices , self.label_name , self.colour_array)):

311

312 x_avg = dataset.x_avg
313 z_avg = dataset.z_avg
314

315 dx = self.l − x_avg
316 th_displacement =−(1./6.) * self.force / (self.E * self.moment_of_inertia) * (dx * *3 − 3 * dx *

self.l * *2 + 2 * self.l * *3)
317

318 f = np.interp(x_avg_highres[1:], x_avg, z_avg) * z_avg.units
319

320 chi_squared[index] = np.sum((z_avg[1:] − th_displacement[1:]) * *2) / len(z_avg[1:])
321 chi_squared_fine[index] = np.sum((f − z_avg_highres[1:]) * *2) / len(f)
322 chi_squared_fine2[index] = np.sum((f − th_displacement_highres[1:]) * *2) / len(f)
323

324 plt.plot(res_axis , chi_squared , "o−", label="Resolution nodes, Chi(theoretical)", linestyle="−−",
color="red")

325 plt.plot(res_axis , chi_squared_fine , "o−", label="Highres nodes, Chi(highres)", color="k")
326 plt.plot(res_axis , chi_squared_fine2 , "o−", label="Highres nodes, Chi(theoretical)", linestyle="−−"

, color="k")
327 plt.xlim(np.min(res_axis), np.max(res_axis))
328 plt.ylim(1e−7,3e1)
329 plt.legend()
330 chi_squared_unit = dataset.unit_L * *2
331 plt.xlabel(res_name)
332 plt.ylabel(f"reduced chi −squared [${chi_squared_unit.units.latex_repr}$]")
333 plt.xscale("log")
334 plt.yscale("log")
335 plt.savefig(f"{self.save_dir}/reduced_chi_squared.pdf")
336 plt.close()
337

338 def get_fit_parameters(self, index_to_consider , res_axis=None, res_name="Numerical resolution [mm]"):
339

340 dataset = self.dataset_array[0]
341

342 self.fitted_parameters = {}
343

344 self.fitted_parameters["natural_frequencies"] = {}
345 self.fitted_parameters["natural_frequencies"]["n=0"] = np.zeros(len(index_to_consider)) * unyt.Hz
346 self.fitted_parameters["natural_frequencies"]["n=1"] = np.zeros(len(index_to_consider)) * unyt.Hz
347 self.fitted_parameters["natural_frequencies"]["n=2"] = np.zeros(len(index_to_consider)) * unyt.Hz
348 self.fitted_parameters["natural_frequencies"]["n=3"] = np.zeros(len(index_to_consider)) * unyt.Hz
349 self.fitted_parameters["natural_frequencies"]["n=4"] = np.zeros(len(index_to_consider)) * unyt.Hz
350

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final B.7/B.8

351 self.fitted_parameters["natural_frequencies"]["fitted n=0"] = np.zeros(len(index_to_consider)) *
unyt.Hz

352

353 self.fitted_parameters["amplitude"] = np.zeros(len(index_to_consider)) * dataset.unit_L
354 self.fitted_parameters["amplitude error"] = np.zeros(len(index_to_consider)) * dataset.unit_L
355

356 self.fitted_parameters["decay time"] = np.zeros(len(index_to_consider)) * unyt.s
357 self.fitted_parameters["decay time error"] = np.zeros(len(index_to_consider)) * unyt.s
358

359 self.fitted_parameters["phase offset"] = np.zeros(len(index_to_consider))
360 self.fitted_parameters["phase offset error"] = np.zeros(len(index_to_consider))
361

362 for index, (dataset, node_id, label, colour) in enumerate(zip(self.dataset_array , index_to_consider
, self.label_name , self.colour_array)):

363 time = dataset.time()
364 # possible mask, now we just use a dummy mask
365 mask = (time > 0.0 * unyt.ms)
366 # get the dt
367 dt = (time[mask][−1] − time[mask][0])/len(time[mask])
368

369 z = dataset.nodes[f"{node_id:d}"]["dz"]
370

371 mean_displacement = −np.average(z[mask])
372

373 z += mean_displacement
374

375 # based on https://pythontic.com/visualization/signals/fouriertransform_fft
376 samplingFrequency = len(time[mask])
377 samplingInterval = 1. / samplingFrequency
378 samplingInterval = dt
379 samplingFrequency = 1./ samplingInterval
380

381 fourierTransform = fft.fft(z[mask])/len(z[mask])
382 fourierTransform = fourierTransform[range(int(len(z[mask])/2))]
383

384 tpCount = len(z[mask])
385 values = np.arange(int(tpCount/2))
386 timePeriod = tpCount/ samplingFrequency
387 frequencies = 2 * np.pi * values/timePeriod
388

389 abs_fourier = np.abs(fourierTransform)
390 dataset.set_FFT_spectrum(frequencies , abs_fourier)
391

392 plt.plot(frequencies , abs_fourier , label=label, color=colour)
393

394 for freq in self.natural_frequencies:
395 plt.axvline(x=freq, color="k", linestyle="−−")
396

397 plt.xscale("log")
398 plt.yscale("log")
399 plt.ylim(1e−5,1e2)
400 plt.xlim(frequencies[1]*30. , frequencies[−1])
401 plt.legend()
402 plt.xlabel(f"frequency [${dataset.unit_Freq.units.latex_repr}$]")
403 plt.ylabel(f"Fourier strength [Arbirary unit]")
404 plt.savefig(f"{self.save_dir}/frequency_plot.pdf")
405 plt.close()
406

407 for index, (dataset, node_id, label, colour) in enumerate(zip(self.dataset_array , index_to_consider
, self.label_name , self.colour_array)):

408 frequencies = dataset.frequencies
409 abs_fourier = dataset.absolute_FFT
410

411 frequencies.convert_to_units("Hz")
412 plt.plot(frequencies , abs_fourier , label=label, color=colour)
413

414 for freq in self.natural_frequencies:
415 freq.convert_to_units("Hz")
416 plt.axvline(x=freq, color="k", linestyle="−−")
417 plt.xscale("log")
418 plt.yscale("log")
419 plt.ylim(1e−5,1e2)
420 plt.xlim(frequencies[1]*30. , frequencies[−1])
421 plt.legend()
422 plt.xlabel(f"frequency [${frequencies.units.latex_repr}$]")
423 plt.ylabel(f"Fourier strength [Arbirary unit]")
424

425 plt.savefig(f"{self.save_dir}/frequency_plot_Hz.pdf")
426 plt.close()
427

428 # find the peaks in the frequencies
429 for index, (dataset, node_id, label, colour) in enumerate(zip(self.dataset_array , index_to_consider

, self.label_name , self.colour_array)):
430 frequencies = dataset.frequencies
431 abs_fourier = dataset.absolute_FFT
432 frequencies.convert_to_units("Hz")
433

434 natural_frequencies = self.natural_frequencies
435 natural_frequencies.convert_to_units("Hz")
436

437 for i, nat_freq in enumerate(natural_frequencies):
438 mask = (frequencies < 1.5 * nat_freq) & (frequencies > 0.75* nat_freq)
439

440 self.fitted_parameters["natural_frequencies"][f"n={i:d}"][index] = frequencies[mask][np.argmax(
abs_fourier[mask])]

441

442

443 if res_axis is None:
444 return
445

446 colour_array_nat_freq = plt.cm.plasma(np.linspace(0,1,len(natural_frequencies)+1))
447

448 for i in range(0,len(natural_frequencies)):
449

450 plt.plot(res_axis , self.fitted_parameters["natural_frequencies"][f"n={i:d}"], "o−", label=f"n={i:
d}", color=colour_array_nat_freq[i])

451

452 plt.axhline(y=natural_frequencies[i], color="k", linestyle="−−")
453

454 plt.xscale("log")
455 plt.yscale("log")

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final B.8/B.8

456 plt.xlim(np.min(res_axis), np.max(res_axis))
457 plt.legend()
458 plt.ylabel(f"frequency [${frequencies.units.latex_repr}$]")
459 plt.xlabel(res_name)
460

461 plt.savefig(f"{self.save_dir}/natural_frequency_convergence.pdf")
462 plt.close()
463

464 # Initial value and boundary values guesses
465 # To be honest, this is a bit of feeling and is not completely
466 # obvious from any viewpoint because fitting is a bit random
467 A_guess = self.max_displacement
468 A_low = 0.9 * A_guess
469 A_upper = 2 * self.max_displacement
470

471 t_decay = 1e3 * unyt.s
472 t_decay_low = np.ones(len(index_to_consider)) * 1e−2 * t_decay
473 t_decay_low[1] *= 4
474 t_decay_upper = 1e5 * t_decay
475

476 omega = natural_frequencies[0]
477 omega_low = 0.9 * omega
478 omega_upper = 1.1 * omega
479 p0 = [A_guess.value, t_decay.value, omega.value, np.pi/2.]
480 phi_low = np.ones(len(index_to_consider)) * 0.9 * np.pi/2
481 phi_low[1] = 0.
482

483

484 for index, (dataset, node_id, label, colour) in enumerate(zip(self.dataset_array , index_to_consider
, self.label_name , self.colour_array)):

485

486 time=dataset.time()
487 z = dataset.nodes[f"{node_id:d}"]["dz"]
488 mean_displacement = −np.average(z)
489 z += mean_displacement
490 time.convert_to_units("s")
491

492 bounds = ([A_low.value, t_decay_low.value[index], omega_low , phi_low[index]],[A_upper.value,
t_decay_upper.value, omega_upper , 1.1 *p0[−1]])

493 popt, pcov = sco.curve_fit(func_disp , time, z, p0=p0, bounds=bounds)
494 self.fitted_parameters["natural_frequencies"]["fitted n=0"][index] = popt[2]
495

496 self.fitted_parameters["amplitude"][index] = popt[0]
497 self.fitted_parameters["amplitude error"][index] = np.sqrt(pcov[0][0])
498

499 self.fitted_parameters["decay time"][index] = popt[1]
500 self.fitted_parameters["decay time error"][index] = np.sqrt(pcov[1][1])
501

502 self.fitted_parameters["phase offset"][index] = popt[3]
503 self.fitted_parameters["phase offset error"][index] = np.sqrt(pcov[3][3])
504 plt.plot(time, z)
505 plt.plot(time, func_disp(time, popt [0] * unyt.mm, popt [1] * unyt.s, popt[2]/unyt.s, popt[3]))
506 plt.savefig(f"{self.save_dir}/test_{index:d}.pdf")
507 plt.close()
508

509 # Now that we stored all the different fitted values we can compare them and check the convergence
510

511 matplotlib.rcParams.update({"figure.figsize": (6.15, 8.15)})
512 fig, axs = plt.subplots(3, sharex=True)
513 base = self.fitted_parameters["natural_frequencies"]["fitted n=0"][−1]
514 axs[0].plot(res_axis , np.abs(base − self.fitted_parameters["natural_frequencies"]["fitted n=0"])/

self.fitted_parameters["natural_frequencies"]["fitted n=0"], "o−")
515

516 base = self.fitted_parameters["amplitude"][−1]
517 axs[1].plot(res_axis , np.abs(base − self.fitted_parameters["amplitude"])/self.fitted_parameters["

amplitude"], "o−")
518

519 base = self.fitted_parameters["decay time"][−1]
520 axs[2].plot(res_axis , np.abs(base − self.fitted_parameters["decay time"])/ self.fitted_parameters["

decay time"], "o−")
521

522 axs[0].set_ylabel("rel. diff. $\\omega_0$")
523 axs[1].set_ylabel("rel. diff. A")
524 axs[2].set_ylabel("rel. diff. $t_{\\rm delay}$")
525 axs[2].set_xlabel(res_name)
526 axs[0].set_xscale("log")
527 axs[0].set_ylim(1e−5,1e0)
528 axs[1].set_ylim(1e−5,1e0)
529 axs[2].set_ylim(1e−5,3e7)
530 for ii in range(0,3):
531 axs[ii].tick_params(axis="both", which="both", direction="in", bottom=True, top=True, right=True,

left=True)
532 axs[ii].set_yscale("log")
533 plt.subplots_adjust(wspace=0, hspace=0)
534

535 plt.savefig(f"{self.save_dir}/convergence_of_properties.pdf", bbox_inches="tight")
536 plt.close()
537

538

539

540

541 def func_disp(t, A, t_decay, omega, phi):
542 return A * np.sin(omega * t + phi) * np.exp(− t / t_decay)
543

544

545

546 if __name__ == "__main__":
547 directory = ["CantileverBeam40mmx10mmRes5mm", "CantileverBeam40mmx10mmRes2.5mm", "

CantileverBeam40mmx10mmRes1.25mm", "CantileverBeam40mmx10mmRes0.625mm", "
CantileverBeam40mmx10mmRes0.3125mm", "CantileverBeam40mmx10mmRes0.15625mm"]

548 base_name = ["cantileverbeam40mmx10mmres5mm", "cantileverbeam40mmx10mmres2.5mm", "
cantileverbeam40mmx10mmres1.25mm", "cantileverbeam40mmx10mmres0.625mm", "
cantileverbeam40mmx10mmres0.3125mm", "cantileverbeam40mmx10mmres0.15625mm"]

549

550 label_name = ["5 mm", "2.5 mm", "1.25 mm", "0.625 mm", "0.3125 mm", "0.15625 mm"]
551 res_var = [5, 2.5, 1.25, 0.625, 0.3125, 0.15625]
552

553 index_to_consider = np.array([18, 51, 165, 585, 2193, 8481])
554

555 make_vertical_displacement_plot(directory , base_name , index_to_consider , label_name , colour_array)

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final C.1/C.10

C Radioss file creator

To create RADIOSS starter files for the studied problems a module was created that
effectively creates the model and other input in the OPENRADIOSS input format. Ad-
ditionally, this allows for an efficient way of creating different meshes with different
numerical resolutions.

1 #!/usr/bin/env python3
2 import numpy as np
3 import unyt
4 from unyt import mm, cm, m, kg, g, s
5 import yaml
6 from yaml.loader import SafeLoader
7 import sys
8

9

10 class createRadiossFile:
11 def __init__(self, yaml_file_name):
12 """! initialise the createRadiossFile class
13

14 @param self the instance of the class
15 @param yaml_file_name the yaml file name
16

17 @return initialised class
18 """
19 self.yaml_file_name = yaml_file_name
20

21 # Load the YAML file
22 self.load_YAML_file()
23

24 # initialise the node grid
25 self.initialise_nodes()
26

27 def print_rad_file(self):
28 """! Print the rad file to the screen
29

30 @param self the instance of the class
31

32 @return Print the rad file to the screen
33 """
34 self.begin_section()
35

36 if self.material_number == 1:
37 self.mat_law_no1()
38 elif self.material_number == 2:
39 self.mat_law_no2()
40

41 if self.type_of_element == "shell":
42 self.create_sheet_of_nodes()
43 elif self.type_of_element == "beam":
44 self.create_line_of_nodes()
45

46 self.create_boundary_condition(1, "111 111", 2)
47

48 if self.type_of_element == "shell":
49 self.group_of_nodes("Corresponding boundary nodes", 2, self.ID_nodes[:, 0])
50 elif self.type_of_element == "beam":
51 self.group_of_nodes("Corresponding boundary nodes", 2, [self.ID_nodes[0]])
52

53 self.create_boundary_condition(2, "000 000", 3)
54

55 if self.type_of_element == "shell":
56 self.group_of_nodes("Corresponding boundary nodes", 3, self.ID_nodes[:, −1])
57 self.create_quad_shell_elements()
58 self.create_mov()
59 self.write_shell_properties(1)
60 elif self.type_of_element == "beam":
61 self.group_of_nodes("Corresponding boundary nodes", 3, [self.ID_nodes[−1]])
62 self.create_beam_elements()
63 self.write_beam_properties(1)
64

65 # Write a function to the screen
66 x = np.zeros(2)
67 x[1] = 1e30
68 y = np.ones(2)
69 self.write_function(1, x, y)
70

71 if self.type_of_element == "shell":
72 self.write_force_shell()
73 elif self.type_of_element == "beam":
74 self.write_force_beam()
75

76 # Define the part
77 self.print_section_rad_file(" Parts")
78 print("/PART/3")
79 print("# part title")
80 print("Our_part")
81 print("#prop_ID | mat_ID |subset_ID| virtual thickness| ")
82 print(" 1 2 ")
83

84 if self.use_damping == True:
85 self.damping(5)
86

87 # time outputs for nodes
88 self.print_section_rad_file(
89 "Input the desired information for the time file output"
90)
91 print("/TH/NODE/2")
92 print("# title of nodes to follow in depth")
93 print("TH_Measuring_Nodes")
94 print(
95 "# var_ID1| var_ID2| var_ID3| var_ID4| var_ID5| var_ID6| var_ID7| var_ID8| var_ID9|

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final C.2/C.10

var_ID10|"
96)
97 print(" DEF XYZ A DRX DRY DRZ")
98 print("# node ID| skew_ID or frame_ID")
99

100 # Select the middle nodes for shells and all nodes for beams
101 if self.type_of_element == "shell":
102 list_of_indices_in_text_file = self.ID_nodes[
103 int(np.floor(self.N_elements_width / 2.0)), :
104]
105 skew_ID = 1
106 elif self.type_of_element == "beam":
107 list_of_indices_in_text_file = self.ID_nodes
108 skew_ID = 0
109

110 for current_node_ID in list_of_indices_in_text_file:
111 print(f"{current_node_ID:10d}{skew_ID:10d}")
112

113 def load_YAML_file(self):
114 """! Load the YAML file to variables in the class
115

116 @param self the instance of the class
117

118 @return nothing
119 """
120 # open the YAML file itself
121 # initialize all the different variables
122 with open(self.yaml_file_name) as f:
123 self.yaml_data = yaml.load(f, Loader=SafeLoader)
124

125 # read the strings of the units
126 self.unit_M_str = self.yaml_data["InternalUnitSystem"]["UnitMass"]
127 self.unit_L_str = self.yaml_data["InternalUnitSystem"]["UnitLength"]
128 self.unit_T_str = self.yaml_data["InternalUnitSystem"]["UnitTime"]
129

130 # set the correct units in the file
131 if self.unit_M_str == "kg":
132 self.unit_M = unyt.kg
133 elif self.unit_M_str == "g":
134 self.unit_M = unyt.g
135 else:
136 sys.exit("Undefined unit for mass!")
137

138 if self.unit_L_str == "mm":
139 self.unit_L = unyt.mm
140 elif self.unit_L_str == "m":
141 self.unit_L = unyt.m
142 elif self.unit_L_str == "cm":
143 self.unit_L = unyt.cm
144 else:
145 sys.exit("Undefined unit for length!")
146

147 if self.unit_T_str == "ms":
148 self.unit_T = unyt.ms
149 elif self.unit_T_str == "s":
150 self.unit_T = unyt.s
151 else:
152 sys.exit("Undefined unit for time!")
153

154 # set the dimensions of the beam element
155 self.thickness = (
156 float(self.yaml_data["BeamDimension"]["Thickness"]) * self.unit_L
157)
158 self.width = float(self.yaml_data["BeamDimension"]["Width"]) * self.unit_L
159 self.length = float(self.yaml_data["BeamDimension"]["Length"]) * self.unit_L
160

161 self.area = self.thickness * self.width
162 self.I_ZZ = self.thickness * self.width * *3 / 12.
163 self.I_YY = self.thickness * *3 * self.width / 12.
164

165 # set the zero coordinates
166 self.x_0, self.y_0, self.z_0 = self.yaml_data["BeamDimension"][
167 "CoordinateSystemZeroPoint"
168]
169 self.x_0 *= self.unit_L
170 self.y_0 *= self.unit_L
171 self.z_0 *= self.unit_L
172

173 # set the type of element
174 self.type_of_element = self.yaml_data["NumericalResolution"][
175 "TypeOfElement"
176]
177

178 self.small_strain_option_flag = (
179 int(self.yaml_data["NumericalResolution"]["SmallStrainOptionFlag"])
180)
181

182 if self.type_of_element == "shell":
183 self.shell_element_size = (
184 float(self.yaml_data["NumericalResolution"]["ShellElementSize"])
185 * self.unit_L
186)
187 self.vertical_integration_points = int(
188 self.yaml_data["NumericalResolution"]["VerticalIntegrationPoints"]
189)
190 self.shell_thickness = self.thickness
191 self.shell_four_formulation = int(
192 self.yaml_data["NumericalResolution"]["ShellFourFormulation"]
193)
194 try:
195 self.shell_numerical_damping = float(
196 self.yaml_data["NumericalResolution"]["ShellNumericalDamping"]
197)
198 except:
199 self.shell_numerical_damping = 0.015
200 elif self.type_of_element == "beam":
201 self.beam_element_size = (
202 float(self.yaml_data["NumericalResolution"]["BeamElementSize"])
203 * self.unit_L
204)
205 self.beam_membrane_damping = (

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final C.3/C.10

206 float(self.yaml_data["NumericalResolution"]["BeamMembraneDamping"])
207)
208 self.beam_flexural_damping = (
209 float(self.yaml_data["NumericalResolution"]["BeamFlexuralDamping"])
210)
211 self.beam_formulation_flag = (
212 int(self.yaml_data["NumericalResolution"]["BeamFormulationFlag"])
213)
214

215 self.I_XX = self.beam_element_size * self.width * *3 / 12.
216

217 # def write_shell_properties(shell_number , shell_thickness , node_4_formulation=24,
number_of_shell_integration_points=5):

218 # Read the metadata
219 self.run_name = self.yaml_data["MetaData"]["RunName"]
220 self.author = self.yaml_data["MetaData"]["Author"]
221

222 # Read the material data
223 self.material_number = int(
224 self.yaml_data["MaterialProperties"]["LawNumber"]
225)
226

227 # Read general properties of the material
228 self.density = float(self.yaml_data["MaterialProperties"]["Density"])
229 self.youngs_modulus = float(
230 self.yaml_data["MaterialProperties"]["YoungsModulus"]
231)
232 self.poisson_ratio = float(
233 self.yaml_data["MaterialProperties"]["PoissonRatio"]
234)
235

236 if self.material_number == 2:
237 self.yield_stress = float(
238 self.yaml_data["MaterialProperties"]["YieldStress"]
239)
240 self.material_input_type_flag = int(
241 self.yaml_data["MaterialProperties"]["InputTypeFlag"]
242)
243 self.ultimate_tensile_eng_stress = float(
244 self.yaml_data["MaterialProperties"][
245 "UltimateTensileEngineeringStress"
246]
247)
248 self.eng_strain_at_UTS = float(
249 self.yaml_data["MaterialProperties"]["EngineeringStrainAtUTS"]
250)
251 self.strain_rate_coeff = float(
252 self.yaml_data["MaterialProperties"]["StrainRateCoefficient"]
253)
254 self.material_failure_model = self.yaml_data["MaterialProperties"][
255 "FailureModel"
256]
257

258 self.total_force = −float(self.yaml_data["AppliedForce"]["TotalForce"])
259 self.type_of_force = self.yaml_data["AppliedForce"]["TypeOfForce"]
260

261 try:
262 self.force_direction = str(self.yaml_data["AppliedForce"]["ForceDirection"])
263 except:
264 self.force_direction = "Z"
265

266 self.use_damping = self.yaml_data["Damping"]["UseDamping"]
267

268 # if we use damping read the parameters that are used
269 if self.use_damping == True:
270 self.rayleigh_mass_damping = float(
271 self.yaml_data["Damping"]["RayleighMassDamping"]
272)
273 self.rayleigh_stiffness_damping = float(
274 self.yaml_data["Damping"]["RayleighStiffnessDamping"]
275)
276 self.start_time = float(self.yaml_data["Damping"]["StartTime"])
277 self.end_time = float(self.yaml_data["Damping"]["EndTime"])
278

279 def initialise_nodes(self):
280 """! Initialise the nodes inside the class
281

282 @param self the instance of the class
283

284 @return nothing
285 """
286 if self.type_of_element == "shell":
287 self.initialise_nodes_shell()
288 elif self.type_of_element == "beam":
289 self.initialise_nodes_beam()
290

291 def initialise_nodes_beam(self):
292 """! Initialise the nodes inside the class
293

294 @param self the instance of the class
295

296 @return nothing
297 """
298 self.N_elements_length = int(self.length / self.beam_element_size)
299

300 self.N_nodes = self.N_elements_length + 1
301 self.N_shell = self.N_elements_length
302

303 self.ID_nodes = np.arange(2, self.N_nodes + 2)
304

305 self.ID_orientation_node = 1
306

307 self.ID_beam = np.arange(1, self.N_shell + 1)
308

309 def initialise_nodes_shell(self):
310 """! Initialise the nodes inside the class
311

312 @param self the instance of the class
313

314 @return nothing
315 """

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final C.4/C.10

316 self.N_elements_width = int(self.width / self.shell_element_size)
317 self.N_elements_length = int(self.length / self.shell_element_size)
318

319 self.N_nodes = (self.N_elements_width + 1) * (self.N_elements_length + 1)
320 self.N_shell = self.N_elements_width * self.N_elements_length
321

322 self.ID_nodes = np.arange(1, self.N_nodes + 1)
323 self.ID_nodes = self.ID_nodes.reshape(
324 (self.N_elements_width + 1, self.N_elements_length + 1)
325)
326

327 self.ID_shell = np.arange(1, self.N_shell + 1)
328 self.ID_shell = self.ID_shell.reshape(
329 (self.N_elements_width , self.N_elements_length)
330)
331

332 def print_section_rad_file(self, argument_name):
333 """! Prints the argument name comment section
334

335 @param argument_name the name in the comment
336

337 @return prints the comment section
338 """
339 print("##")
340 print("##" + "−" * 98)
341 print(f"## {argument_name}")
342 print("##" + "−" * 98)
343 self.print_numbers()
344

345 def print_numbers(self):
346 """! Prints the line indents for the different Radioss blocks
347

348 @param None
349

350 @return prints the ident blocks of radioss to the screen
351 """
352 print(
353 "

#− − −1− − − −|− − − −2− − − −|− − − −3− − − −|− − − −4− − − −|− − − −5− − − −|− − − −6− − − −|− − − −7− − − −|− − − −8− − − −|− − − −9− − − −|− − −10− − − −|
"

354)
355

356 def print_header(self):
357 """! Print a comment section with the name of the test and the author
358

359 @param none
360

361 @return Print header information to the screen
362 """
363 print("#RADIOSS STARTER")
364 print("#" * 100)
365 print("# " + f"{self.run_name:<50}" + "#" * 48)
366 print("# " + f"made by: {self.author:<41}" + "#" * 48)
367 comment2 = "generated with the package of Folkert Nobels"
368 print("# " + f"{comment2:<50}" + "#" * 48)
369 print("#" * 100)
370

371 def begin_section(self):
372 """! Print the begin section with the units to the screen
373

374 @param none
375

376 @return Print the header + begin section to the screen
377 """
378 self.print_header()
379

380 self.print_section_rad_file("UNIT section")
381 print("/BEGIN")
382 print("# Runname")
383 print("OpenRadioss test case")
384 print("# Input version")
385 print(" 2022 0")
386 print("# input mass unit | input length unit | input time unit |")
387 print(f"{self.unit_M_str:>20}{self.unit_L_str:>20}{self.unit_T_str:>20}")
388 print("# work mass unit | work length unit | work time unit |")
389 print(f"{self.unit_M_str:>20}{self.unit_L_str:>20}{self.unit_T_str:>20}")
390 print("##")
391

392 def mat_law_no2(self):
393 """! Print the material law number 2 to the screen
394

395 @param none
396

397 @return Print the information of material law 2 to the screen
398 """
399 self.print_section_rad_file("Material Law No 2. JOHNSON −COOK ELASTOPLASTIC")
400 print("/MAT/PLAS_JOHNS/2")
401 print("# material title")
402 print("Steel_DP600 ")
403 print("# density |")
404 print(f"{self.density:20.14E}")
405 print("# Young’s modulus | Poisson’s ratio | input type flag |")
406 print(
407 f"{self.youngs_modulus:20.16f} {self.poisson_ratio:19.15f}{self.material_input_type_flag:10

d}"
408)
409 print(
410 "# yield stress | ultimate tensile | eng. strain at | strain rate coeff.|"
411)
412 print(
413 "# | eng. stress (UTS) | UTS | c>0,c=0−>no strain|"
414)
415 print(
416 f"{self.yield_stress:20.13e} {self.ultimate_tensile_eng_stress:19.13e} {self.

eng_strain_at_UTS:19.13e} {self.strain_rate_coeff:19.13e}"
417)
418 print(
419 "# strain rate coef.|ref.strain rate(SR)| SR flag | SR smoo −|cutoff frequency | Hardening

coeff. |"
420)
421 print(

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final C.5/C.10

422 "# def=0.0 | | |thing fl.|for SR smoothing | (
unloading) |"

423)
424 print(
425 "

"
426)
427 print(
428 "# temperature coef.|Melting temperature|specific heat per |Reference tempera − |"
429)
430 print(
431 "# |Tmelt=0>no temp eff| unit volume |ture de=298K |"
432)
433 print(
434 "

"
435)
436

437 if self.material_failure_model:
438 self.failure_model()
439

440 def mat_law_no1(self):
441 """! Print the material law number 1 to the screen
442

443 @param none
444

445 @return Print the information of material law 2 to the screen
446 """
447 self.print_section_rad_file("Material Law No 1. Purely linearly elastic model")
448 print("/MAT/LAW1/2")
449 print("# material title")
450 print("Steel_DP600 ")
451 print("# density |")
452 print(f"{self.density:20.14E}")
453 print("# Young’s modulus | Poisson’s ratio |")
454 print(f"{self.youngs_modulus:20.14f}{self.poisson_ratio:20.14f}")
455

456 def failure_model(
457 self,
458 failure_plastic_strain_in_unaxial_tension=0.75,
459 comment="Failure criterion of steel",
460):
461 """! Print the failure model to the screen
462

463 @param comment comment printed before the failure model block
464

465 @return print the failure criterion to the screen
466

467 """
468 self.print_section_rad_file(comment)
469 print("/FAIL/BIQUAD/2")
470 print("# Failure plastic strain at:")
471 dummy_string = " "
472 print(
473 "# uniaxial compres.| shear | in unaxial tension| plain strain tens.| biaxial

tension |"
474)
475 print(
476 f"{dummy_string:>20}{dummy_string:>20}{failure_plastic_strain_in_unaxial_tension:20.14f}"
477)
478 print("# Damage accumulation parameters: ")
479 print(
480 "# Ratio of failed | Material|specific |instability start |element size factor|reference

element |"
481)
482 print(
483 "# integ. points |sel. flag|behv.flag|for loc. necking |identifier | size, def

=1.0 |"
484)
485 # Do we want to make this also variables in the function?
486 print(" 2 2")
487

488 def print_item_string(self):
489 """! print item identation to the screen
490

491 @param none
492

493 @return Print the item identation to the screen
494 """
495 print(
496 "#item_ID1| item_ID2| item_ID3| item_ID4| item_ID5| item_ID6| item_ID7| item_ID8| item_ID9|

item_ID10|"
497)
498

499 def group_of_nodes(self, comment, number, group_of_nodes):
500 """! Create a group of nodes
501

502 @param comment group of nodes comment
503 @param number number of the group of nodes
504 @param group_of_nodes array of the ID of the nodes
505

506 @return Print the group to the screen
507 """
508 self.print_section_rad_file(comment)
509 print(f"/GRNOD/NODE/{number:d}")
510 print("# node group for example for bounary condtions")
511 self.print_item_string()
512 print(
513 "grnodnode", end=""
514) # we skip \n because that is included in the for loop
515

516 # loop through the different nodes
517 for i in range(0, len(group_of_nodes)):
518 # check if number is devisable by 10 because then we want a new line
519 if i % 10 == 0:
520 print("\n", end="")
521

522 # write the node number to the file
523 print(f"{group_of_nodes[i]:10d}", end="")

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final C.6/C.10

524

525 # space because we want to go the next line and not have the next output starts on this line
526 print(" ")
527

528 def create_line_of_nodes(self):
529 """! Create a line of nodes
530

531 @param none
532

533 @return print the node information to the screen
534 """
535 self.print_section_rad_file("NODES")
536 print("/NODE")
537 print("# node_ID| X coordinate | Y coordinate | Z coordinate |")
538 x = self.x_0
539 y = self.y_0 + self.length
540 z = self.z_0
541 print(f"{self.ID_orientation_node:10d} {x.value:19.6f} {y.value:19.6f} {z.value:19.6f}")
542 for i in range(0, self.N_elements_length + 1):
543 x = self.x_0 + self.length * i / (self.N_elements_length)
544 y = self.y_0
545 z = self.z_0
546 print(f"{self.ID_nodes[i]:10d} {x.value:19.6f} {y.value:19.6f} {z.value:19.6f}")
547

548 def create_sheet_of_nodes(self):
549 """! Create a sheet of nodes
550

551 @param none
552

553 @return print the node information to the screen
554 """
555 self.print_section_rad_file("NODES")
556 print("/NODE")
557 print("# node_ID| X coordinate | Y coordinate | Z coordinate |")
558 for i in range(0, self.N_elements_width + 1):
559 for j in range(0, self.N_elements_length + 1):
560 x = self.x_0 + self.length * j / (self.N_elements_length)
561 y = self.y_0 + self.width * i / (self.N_elements_width)
562 z = self.z_0
563 print(
564 f"{self.ID_nodes[i,j]:10d} {x.value:19.6f} {y.value:19.6f} {z.value:19.6f}"
565)
566

567 def create_boundary_condition(
568 self, boundary_ID , DOF_string , particle_group , skewnr=0
569):
570 """! print the boundary condition section to the screen
571

572 @param boundary_ID ID of this boundary condition
573 @param DOF_string degrees of freedom string
574 @particle_group ID of the particle group this should apply to
575 @skewnr (optional) skew number
576

577 @return print the boundary section to the screen
578 """
579 self.print_section_rad_file(f"Boundary Conditions {boundary_ID:d}")
580 print(f"/BCS/{boundary_ID:d}")
581 print("# boundary condition title")
582 print(f"constraint{boundary_ID:d}")
583 print("#Trarot | skew_ID | grnd_ID |")
584 print(f"{DOF_string:>10}{skewnr:10d}{particle_group:10d}")
585

586 def create_mov(self):
587 """! print the mov part to the screen
588

589 @param none
590

591 @return print the mov section to the screen
592 """
593 # Define the relative motion
594 self.print_section_rad_file("Frames − Mov")
595 print("/FRAME/MOV/1")
596 print("# frame title")
597 print(" ")
598 ID1 = self.ID_nodes[0, 0]
599 ID2 = self.ID_nodes[0, 1]
600 ID3 = self.ID_nodes[1, 0]
601 print("#node_ID1| node_ID2| node_ID3| dir ID1 ID2 axis (def=X)")
602 print(f"{ID1:10d}{ID2:10d}{ID3:10d}")
603

604 def create_beam_elements(self):
605 """! print the quad shell output for the input ID_shell and ID_nodes
606

607 @param none
608

609 @return print the quad shell section to the screen
610 """
611 self.print_section_rad_file("Quad Shell Elements")
612 print("/BEAM/3")
613 print("# beam ID| node_ID1| node_ID2| node_ID3|")
614 for i in range(0, self.N_elements_length):
615 current_node_IDs = [self.ID_nodes[i], self.ID_nodes[i+1], self.ID_orientation_node]
616 print(f"{self.ID_beam[i]:10d}{current_node_IDs[0]:10d}{current_node_IDs[1]:10d}{

current_node_IDs[2]:10d}")
617

618 def create_quad_shell_elements(self):
619 """! print the quad shell output for the input ID_shell and ID_nodes
620

621 @param none
622

623 @return print the quad shell section to the screen
624 """
625 self.print_section_rad_file("Quad Shell Elements")
626 print("/SHELL/3")
627 print(
628 "#shell ID| node_ID1| node_ID2| node_ID3| node_ID4| |Orthotropy angle |shell

thickness"
629)
630 print(
631 "# |wrt element skew |default −>

specified property"

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final C.7/C.10

632)
633 for i in range(0, self.N_elements_width):
634 for j in range(0, self.N_elements_length):
635 current_node_IDs = self.ID_nodes[i : i + 2, j : j + 2]
636 current_node_IDs = current_node_IDs.flatten()
637 print(
638 f"{self.ID_shell[i,j]:10d}{current_node_IDs[1]:10d}{current_node_IDs[3]:10d}{

current_node_IDs[2]:10d}{current_node_IDs[0]:10d}"
639)
640 def write_beam_properties(self, beam_number):
641 """! Print the shell properties of this type of shell
642

643 @param beam_number ID of beam type
644

645 @return print the beam properties to the screen
646 """
647

648 blanc = " "
649 self.print_section_rad_file(f"Beam Property Set (pid {beam_number:d})")
650 print(f"/PROP/BEAM/{beam_number:d}")
651 print("line_1.7")
652 print("# | I_SMSTR |")
653 print(f"{blanc:<10}{self.small_strain_option_flag:10d}")
654 print("#beam membrane damp|beam flexural damp |")
655 print(f"{self.beam_membrane_damping:20.13f}{self.beam_flexural_damping:20.13f}")
656 print("# Area | I_YY | I_ZZ | I_XX |")
657 print(f"{self.area.value:20.13f}{self.I_YY.value:20.13f}{self.I_ZZ.value:20.13f}{self.I_XX.

value:20.13f}")
658 print("#OmegaDOF| I_shear|")
659 DOF = "000 000"
660 print(f"{DOF:>10}{self.beam_formulation_flag:10d}")
661

662 def write_shell_properties(self, shell_number):
663 """! Print the shell properties of this type of shell
664

665 @param shell_number ID of shell type
666

667 @return print the shell properties to the screen
668 """
669

670 blanc = " "
671 self.print_section_rad_file(f"Shell Property Set (pid {shell_number:d})")
672 print(f"/PROP/SHELL/{shell_number:d}")
673 print("# Shell properties title")
674 print("sheet_1.7")
675 print(
676 "# 4 node |shellsmall|3 node |drilling | pinch dof | ratio of through thickness"
677)
678 print(
679 "# element|strain |element |dof stiff| | integration points that must"
680)
681 print(
682 "# −formulation − |−ness | | fail bfore the element is

delated"
683)
684 print(f"{self.shell_four_formulation:10d} ")
685

686 print(
687 "# Shell membrane | Shell out −of− | shell rotation | shell membrane | shell

numerical |"
688)
689 print(
690 "# hourglass coeff. | plane hourglass | hourglass coeff. | damping | damping

|"
691)
692 print(
693 f"{blanc:<20}{blanc:<20}{blanc:<20}{blanc:<20}{self.shell_numerical_damping:20.14f}"
694)
695

696 print(
697 "# number of integra −| shell thickness | Shear factor | Shell resultant | Shell

plane stress|"
698)
699 print(
700 "#tion points through| | | stress calculation|

plasticity flag |"
701)
702 print(
703 "#the thickness <10 | | | |

|"
704)
705

706 print(
707 f"{self.vertical_integration_points:10d}{blanc:<10}{self.shell_thickness.value:20.14f}

1 1"
708)
709

710 def write_function(self, function_ID , x, y):
711 """! Write a function that can be called inside the radioss file to the screen
712

713 @param function_ID function ID (is used to call this function in other code blocks)
714 @param x array of x values
715 @param y array of y values
716

717 @return write the function to the screen
718 """
719 self.print_section_rad_file(f"Function {function_ID:d}")
720 print(f"/FUNCT/{function_ID:d}")
721 print("Load")
722 print("#" + " " * 18 + "X" + " " * 19 + "Y")
723 for xi, yi in zip(x, y):
724 print(f"{xi:20.13e}{yi:20.13e}")
725

726 def write_force_beam(
727 self,
728 direction="Z",
729 group_ID_edge=1,
730 cload_ID_edge=3,
731):
732 """! Write the force with its group nodes
733

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final C.8/C.10

734 @param direction (optional) direction of the force
735 @param group_ID_edge (optional) ID of the group of particles in the corner/edge
736 @param cloud_ID_edge (optional) ID of cload on the edge/corner particles
737

738 @return write the imposed force to the screen with the different nodel group that are required
for this force

739 """
740 if self.type_of_force == "line force":
741 # We only need the node at the very edge
742 nodes_boundary = [self.ID_nodes[−1]]
743

744 # Calculate the total force
745 force = self.total_force
746 # print information about the line testing
747 self.print_section_rad_file(
748 "Line loading for test"
749)
750 print(f"/CLOAD/{cload_ID_edge}")
751 print("# title of the imposed load")
752 print("imposed_load")
753 print(
754 "#fct_IDT | Dir |skew_ID | sens_ID | grnd_ID | | Ascale_x |

Fscale_y |"
755)
756 blanc = " "
757

758 fscale = force
759 print(
760 f"{1:10d}{direction:>10}{blanc:>10}{blanc:>10}{group_ID_edge:10d}{blanc:>10}{1.0:20.16f}{

fscale:20.16f}"
761) # {" ":<10}{" ":<10}{" ":<10}{1.0:10.6f}{1.0:10.6f}")
762

763 # print the group of nodes of interest
764 self.group_of_nodes(
765 "Particles for load in the cente at the boundary",
766 group_ID_edge ,
767 nodes_boundary ,
768)
769

770 elif self.type_of_force == "area force":
771 error(0)
772

773 def write_force_shell(
774 self,
775 direction="Z",
776 group_ID_centre=1,
777 group_ID_edge=4,
778 cload_ID_centre=3,
779 cload_ID_edge=4,
780):
781 """! Write the force with its group nodes
782

783 @param direction (optional) direction of the force
784 @param group_ID_edge (optional) ID of the group of particles in the corner/edge
785 @param cloud_ID_edge (optional) ID of cload on the edge/corner particles
786

787 Illustration of the difference between corner/edge and centre particles
788 −−−−−−−−−#−−# <−−− corner particle −−> −−#−−
789 | /edge |
790 −−−−−−−−−#−−# <−−− centre particle −−> −−#−−
791 | |
792 −−−−−−−−−#−−# <−−− centre particle −−> −−#−−
793 | |
794 −−−−−−−−−#−−# <−−− corner particle −−> −−#−−
795 /edge
796

797 @return write the imposed force to the screen with the different nodel groups that are required
for this force

798 """
799 if self.type_of_force == "line force" and self.force_direction=="Z":
800 # Determine the nodes that are at the boundary
801 nodes_second_rigid = self.ID_nodes[:, −1:].flatten()
802

803 # Determine the nodes that are at the corner and not at the corner
804 nodes_not_edge = nodes_second_rigid[1:−1]
805 nodes_edge = [nodes_second_rigid[0], nodes_second_rigid[−1]]
806

807 # unit of force
808 # corners have half the force of the edge because they are just attached to
809 # a single shell element instead of two
810 force_corner_node = self.total_force / (
811 len(nodes_edge) + 2 * len(nodes_not_edge)
812)
813 force_boundary_node = 2 * force_corner_node
814

815 if len(nodes_not_edge) < 1:
816 elements_in_centre = False
817 else:
818 elements_in_centre = True
819

820 if elements_in_centre:
821 # print information about the line testing
822 self.print_section_rad_file(
823 "Line loading for test (elements in centre of load)"
824)
825 print(f"/CLOAD/{cload_ID_centre}")
826 print("# title of the imposed load")
827 print("imposed_load")
828 print(
829 "#fct_IDT | Dir |skew_ID | sens_ID | grnd_ID | | Ascale_x |

Fscale_y |"
830)
831 blanc = " "
832

833 fscale = force_boundary_node
834 print(
835 f"{1:10d}{direction:>10}{blanc:>10}{blanc:>10}{group_ID_centre:10d}{blanc

:>10}{1.0:20.16f}{fscale:20.16f}"
836) # {" ":<10}{" ":<10}{" ":<10}{1.0:10.6f}{1.0:10.6f}")
837

838 # print the group of nodes of interest

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final C.9/C.10

839 self.group_of_nodes(
840 "Particles for load in the cente at the boundary",
841 group_ID_centre ,
842 nodes_not_edge ,
843)
844

845 self.print_section_rad_file("Line loading for test (corner)")
846 print(f"/CLOAD/{cload_ID_edge}")
847 print("# title of the imposed load")
848 print("imposed_load")
849 print(
850 "#fct_IDT | Dir |skew_ID | sens_ID | grnd_ID | | Ascale_x |

Fscale_y |"
851)
852 blanc = " "
853 direction = "Z"
854

855 fscale = force_corner_node
856 print(
857 f"{1:10d}{direction:>10}{blanc:>10}{blanc:>10}{group_ID_edge:10d}{blanc:>10}{1.0:20.16f

}{fscale:20.16f}"
858) # {" ":<10}{" ":<10}{" ":<10}{1.0:10.6f}{1.0:10.6f}")
859

860 self.group_of_nodes(
861 "Particles for load at the edge", group_ID_edge , nodes_edge
862)
863 elif self.type_of_force == "line force" and self.force_direction=="Y":
864 # Determine the nodes that are at the boundary
865 nodes_second_rigid = self.ID_nodes[:, −1:].flatten()
866

867 ID_of_node = nodes_second_rigid[0]
868

869 # get the applied force
870 force = −self.total_force
871

872 self.print_section_rad_file("point loading for test")
873 print(f"/CLOAD/{cload_ID_edge}")
874 print("# title of the imposed load")
875 print("imposed_load")
876 print(
877 "#fct_IDT | Dir |skew_ID | sens_ID | grnd_ID | | Ascale_x |

Fscale_y |"
878)
879 blanc = " "
880 direction = "Y"
881 fscale = force
882 print(
883 f"{1:10d}{direction:>10}{blanc:>10}{blanc:>10}{group_ID_edge:10d}{blanc:>10}{1.0:20.16f

}{fscale:20.16f}"
884) # {" ":<10}{" ":<10}{" ":<10}{1.0:10.6f}{1.0:10.6f}")
885

886 self.group_of_nodes(
887 "Particles for load at the edge", group_ID_edge , [ID_of_node]
888)
889

890 elif self.type_of_force == "area force" and self.force_direction=="Z":
891

892 # Determine the nodes that have 4 shells
893 nodes_four_shells = ID_nodes[1:−1, 1:−1].flatten()
894

895 # Determine the nodes that have two shells, these are 3 boundaries , because
896 # for one boundary we impose a boundary condition.
897 nodes_two_shells = ID_nodes[:, −1].flatten()[1:−1]
898 nodes_two_shells = np.append(nodes_two_shells , ID_nodes[0, 1:].flatten())
899 nodes_two_shells = np.append(nodes_two_shells , ID_nodes[−1, 1:].flatten())
900

901 # determine the two nodes that have only 1 shell element
902 nodes_one_shell = np.array([ID_nodes[:, −1][0], ID_nodes[:, −1][1]])
903

904 force_one_shell = force_total / (
905 len(nodes_one_shell)
906 + 2 * len(nodes_two_shells)
907 + 4 * len(nodes_four_shells)
908)
909 force_two_shell = 2.0 * force_one_shell
910 force_four_shell = 4.0 * force_one_shell
911

912 # print information about the line testing
913 print_section_rad_file("Surface force for the central nodes")
914 print(f"/CLOAD/{cload_ID_centre}")
915 print("# title of the imposed load")
916 print("imposed_load")
917 print(
918 "#fct_IDT | Dir |skew_ID | sens_ID | grnd_ID | | Ascale_x |

Fscale_y |"
919)
920 blanc = " "
921

922 fscale = force_four_shell
923 print(
924 f"{1:10d}{direction:>10}{blanc:>10}{blanc:>10}{group_ID_centre:10d}{blanc

:>10}{1.0:20.16f}{fscale:20.16f}"
925) # {" ":<10}{" ":<10}{" ":<10}{1.0:10.6f}{1.0:10.6f}")
926

927 # print the group of nodes of interest
928 group_of_nodes(
929 "Particles for load in the cente at the boundary",
930 group_ID_centre ,
931 nodes_four_shells ,
932)
933

934 # Force on edge
935 print_section_rad_file("Line loading for test (edge)")
936 print(f"/CLOAD/{cload_ID_edge}")
937 print("# title of the imposed load")
938 print("imposed_load")
939 print(
940 "#fct_IDT | Dir |skew_ID | sens_ID | grnd_ID | | Ascale_x |

Fscale_y |"
941)
942 blanc = " "

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC | TNO report | TNO 2024 R11057A | Final C.10/C.10

943 direction = "Z"
944

945 fscale = force_two_shell
946 print(
947 f"{1:10d}{direction:>10}{blanc:>10}{blanc:>10}{group_ID_edge:10d}{blanc:>10}{1.0:20.16f

}{fscale:20.16f}"
948) # {" ":<10}{" ":<10}{" ":<10}{1.0:10.6f}{1.0:10.6f}")
949

950 group_of_nodes(
951 "Particles for load at the edge", group_ID_edge , nodes_two_shells
952)
953

954 group_ID_corner = group_ID_edge + 10
955 # Force on corner
956 print_section_rad_file("Line loading for test (edge)")
957 print(f"/CLOAD/{cload_ID_edge}")
958 print("# title of the imposed load")
959 print("imposed_load")
960 print(
961 "#fct_IDT | Dir |skew_ID | sens_ID | grnd_ID | | Ascale_x |

Fscale_y |"
962)
963 blanc = " "
964 direction = "Z"
965

966 fscale = force_one_shell
967 print(
968 f"{1:10d}{direction:>10}{blanc:>10}{blanc:>10}{group_ID_corner:10d}{blanc

:>10}{1.0:20.16f}{fscale:20.16f}"
969) # {" ":<10}{" ":<10}{" ":<10}{1.0:10.6f}{1.0:10.6f}")
970

971 group_of_nodes(
972 "Particles for load at the edge", group_ID_corner , nodes_one_shell
973)
974

975 def damping(self, group_ID):
976 self.group_of_nodes(
977 "All particles should be damped", group_ID, self.ID_nodes.flatten()
978)
979

980 self.damping_parameters(group_ID)
981

982 def damping_parameters(self, group_ID , skew_ID=None, damp_ID=1, title="damp_title"):
983 """! Create a damping section
984

985 @param alpha Mass damping coefficient used for all DOF
986 @param beta Stiffness damping coefficient used for all DOF
987 @param group_ID The group ID on which the damping is applied
988 @param start_time Start time of the damping
989 @param end_time Stop time of the damping
990 @param skew_ID (optional) skew identifier
991 @param damp_ID (optional) damping identifier
992 @param title (optional) title name of the damping
993

994 @return Print the damping section to the screen
995 """
996

997 self.print_section_rad_file("Damping section")
998 print(f"/DAMP/{damp_ID:d}")
999 print("# Title of damping section")
1000 print(f"{title}")
1001 print(
1002 "# Mass damp coeff. |stiffness dampcoeff| grnd_ID | skew_ID | start time | end time

|"
1003)
1004 skew_string = ""
1005 if skew_ID is not None:
1006 skew_string = f"{skew_ID:10d}"
1007 print(
1008 f"{self.rayleigh_mass_damping:20.14f}{self.rayleigh_stiffness_damping:20.14f}{group_ID:10d

}{skew_string:<10}{self.start_time:20.13e}{self.end_time:20.13e}"
1009)
1010

1011

1012 ##
1013 # Read the YAML file
1014

1015 # the YAML file is the second argument after the script name
1016 yaml_file_name = str(sys.argv[1])
1017

1018 radioss_file = createRadiossFile(yaml_file_name)
1019

1020 radioss_file.print_rad_file()

ONGERUBRICEERD, RELEASABLE TO THE PUBLIC

	Introduction
	Historical perspective of LS-DYNA and OpenRadioss
	Comparison of OpenRadioss and LS-DYNA
	Recent developments and uses of OpenRadioss
	This report

	Cantilever beam
	Analytical solution
	Natural frequencies
	Displacement

	Beam element formulations in Radioss
	Shell formulations
	Kirchhoff-Love plate theory
	Reissner-Uflyand-Mindlin plate theory
	Shell formulations in OpenRadioss
	Thickness integration

	Constructing the cantilever beam simulations
	Cantilever beam simulation
	Vertical displacement
	Accuracy of the solution for different time step sizes
	Comparison of different hourglass and shell elements formulations
	Thickness integration
	Force on the side of the cantilever beam

	Damped cantilever beam
	Cantilever beam with different damping
	Conclusions

	Springs
	Ideal spring
	Time evolution
	Displacement force relation

	Damped ideal spring
	Non-ideal spring
	Time evolution
	Constant extension

	Spring used in UNDEX analysis
	Conclusions

	Compiling the code
	Getting the code, required software and settings
	Single node and with OpenMP
	Run the code over MPI
	Converting the output
	Wrapper functions and aliases
	Wrappers for converters
	SMP version
	MPI version
	.bashrc file

	Computational performance
	Performance of weak scaling test
	Performance of strong scaling test (SMP)
	Performance of strong scaling test (MPP)
	High-performance computing options
	Control File
	Multiple engine files
	Checkpoint file

	Advantages and Disadvantages of OpenRadioss
	Advantages
	Disadvantages
	Disadvantages OpenRadioss specific

	Conclusions and Recommendations
	Conclusions
	Recommendations for TNO
	Recommendations for Altair

	References
	Approval
	Getting started manual
	OpenRadioss time file reader
	Radioss file creator

		2025-05-15T10:41:08+0000
	Client IP: 139.63.8.71, Transaction ID: YlLIiM-Cw4gkYRFMH5Wz3c1M8VA=
	ValidSign
	E-SIGNED by Folkert Nobels (folkert.nobels@tno.nl), ID: 8894d245-ea62-4722-b839-07195db17fcb

		2025-05-15T12:39:04+0000
	Client IP: 139.63.8.136, Transaction ID: YlLIiM-Cw4gkYRFMH5Wz3c1M8VA=
	ValidSign
	E-SIGNED by Johan Tuitman (johan.tuitman@tno.nl), ID: 48f057a0-afba-49c6-9cf5-785b460866f9

		2025-05-15T18:26:45+0000
	Client IP: 139.63.56.226, Transaction ID: YlLIiM-Cw4gkYRFMH5Wz3c1M8VA=
	ValidSign
	E-SIGNED by Wim Trouwborst (wim.trouwborst@tno.nl), ID: f0d62cbb-d910-4f44-9f57-f8e5752a082d

		2025-05-15T12:15:33+0000
	Client IP: 139.63.9.33, Transaction ID: YlLIiM-Cw4gkYRFMH5Wz3c1M8VA=
	ValidSign
	E-SIGNED by Sander Dragt (sander.dragt@tno.nl), ID: 301e7560-3d37-4efb-8463-1d63e02c7ab4

