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Summary 

Variability and evolution are key drivers of complexity in high-tech equipment. Every product 
has many variation points, resulting in a large number of unique system configurations. 
These systems must be maintained throughout their life-time, which may last several 
decades. During this time, digital technologies, e.g. containerization and orchestration 
technologies, may become deprecated or evolve many times. Updating configurations and 
implementations for each system variant to account for such changes is both costly and 
time-consuming. To make matters worse, changing software technologies affects technical 
system performance, requiring technical performance to be re-optimized and re-verified. 

The TechFlex project is a collaboration between TNO-ESI and Thales that addresses the 
challenge of variability and evolution in software-intensive high-tech equipment. This is 
done by investigating to what extent it is possible to specify the software configuration in a 
technology-agnostic way yet automatically generate efficient software deployments that 
satisfy performance requirements. The result of this research is a model-based methodology 
to specification and automation with two steps. 

1. Technology-agnostic specification of software configurations based on a family of 
domain-specific languages (DSLs) with technology-specific generators that produce 
artifacts to create a custom software deployment with minimum manual 
intervention. 

2. Deployment optimization based on model-based reinforcement learning using 
Monte Carlo Tree Search (MCTS) that improves the mapping to software processes to 
compute nodes to ensure technical performance requirements are satisfied. 

This report describes the methodology in context of a fictive Meal Delivery System (MOS), a 
simple case study inspired by an application in the defense domain. An evaluation of the 
approach shows that the technology-agnostic DSLs are expressive enough to describe the 
configuration of the MOS, as well as a confidential industrial case study. 
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1 Introduction 

The Netherlands has a vibrant high-tech equipment industry, active in many application 
domains. For example, consider ASML in Veldhoven, that produces lithography machines for 
manufacturing of computer chips, Philips Healthcare in Best, that produces medical 
equipment, such as X-ray and MRI machines, Canon that makes production printers in Venlo, 
and Thales making radars and fire control systems in Hengelo. 

This industry is challenged by a number of trends that result in increasing system complexity 
of high-tech equipment across application domains. There is a trend towards growing 
system diversity in response to increasing market demands for customization, as every 
customer wants a system tailored to its specific needs [1]. Traditionally, systems have been 
made-to-measure for each customer, which makes it time consuming and costly to 
effectively develop and maintain systems throughout their life cycle. Industry has been 
addressing this challenge by moving towards a platform-based approach, where new 
customized products can be derived by configuring a general set of building blocks, much 
like Lego pieces are combined into unique creations. This change from engineering-to-order 
to configure-to-order is not just technical, but often comes paired with an organizational 
transition from a project organization to a product organization. 

To meet the increasing demand for customization, systems are offered with many 
commercial options, resulting in a plethora of unique system configurations, also called 
product variants. Having a large number of variants is challenging for the industry due to the 
long life-times of high-tech equipment that often remains operational in the field for several 
decades [1]. During its operational life-time, the system is likely to outlive many of its 
constituent technologies, in particular digital technologies that evolve very quickly. For 
example, microservice architectures were not an established architectural approach fifteen 
years ago and commonly used containerization and orchestration technologies like Docker 
and Kubernetes were not around [2]. Note that systems that were built at that time are only 
about half-way through their expected operational life-time and who knows what 
technologies will be around in 15 years, when those systems are reaching their end of life? 

The market expects modern systems to continuously evolve during their life-time to make 
sure they are kept secure, up-to-date, while continuously improving their functionality. 
Manually evolving a large number of product variants, e.g. to incorporate new and improved 
software technologies, requires substantial re-development effort and is very costly. After 
such updates, all variants must also be re-verified to ensure they still work correctly. Not 
only functional re-verification is required, but also in terms of non-functional requirements, 
such as system performance. This is challenging as performance aspects, such as timing, are 
emerging properties from interacting hardware and software components. 

The Tech Flex project addresses the challenge of reducing the time and cost associated with 
system diversity and evolution at the level of the software platform (product), with a focus 
on changes to programming languages, such as C ++ or Java, or software deployment 
technologies, like Kubernetes and Docker. The project envisions a product-based approach 
with building blocks to quickly configure bespoke software solutions for each customer that 
always satisfy their (performance) requirements throughout their entire lifecycle. To achieve 
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this, the long-term goal envisioned by the project is a model-based methodology and 
supporting tooling that enables custom software configurations to be specified in a 
technology-agnostic manner, and from which a software deployment that satisfies 
(performance) requirements is automatically generated and regenerated, as software 
technologies evolve. 

Towards this long-term goal, the TechFlex project investigates two research questions: 

RQ1)To what extent can we generate efficient software deployments for different 
technologies from a generic software configuration model? 

To what extent can the generic software configuration model be decoupled from the 
deployment technology? 

1. 

Can it be completely decoupled while still generating efficient deployments, or only 
encapsulated in a separate technology-specific model? 

RQ2)How can we efficiently optimize software deployment(s) to satisfy performance 
requirements for a particular product configuration, load, and deployment technology? 

What are the benefits and drawbacks of performance prediction vs. performance 
evaluation? 

The research has resulted in a model-based methodology to specification and automation 
with two steps, illustrated in Figure 1: 

1. Technology-agnostic specification of software configurations based on a family of 
domain-specific languages with technology-specific generators that produce 
artifacts to create a custom software deployment with minimum manual 
intervention. 

2. Deployment optimization based on model-based reinforcement learning using 
Monte Carlo Tree Search that improves the mapping to software processes to 
compute nodes to ensure technical performance requirements are satisfied. 

DSLs for (software) 
product configuration 

Automatic generation 
of technology-specific 

artifacts 

Legend -

Deployment optimization using reinforcement learning 
with system in the loop 

Figure 1: Overview of the TechFlex methodology. 
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This report primarily addresses the first research question. The second research question 
considered in a TNO-ESI internal report [3], which presents an initial feasibility study of using 
reinforcement learning using Monte Carlo Tree Search for the deployment optimization 
problem. The high-level conclusions from this study are presented in Chapter 4 of this report. 

The remainder of this report is structured as follows. Chapter 2 introduces a case study that 
we will use as an example throughout this report. Chapter 3 then explains our approach to 
technology-agnostic specification, which allows technology-specific software deployments 
to be automatically generated. Lastly, Chapter 4 rounds off the report with conclusions and 
future work. 

) TNO Public 7/29 



 

) TNO Public ) TNO 2025 R10901 

2 CaseStudy 

The case study in this work is a fictive Meal Delivery System (MDS) that is inspired by a 
product developed by our industrial partner. An illustration of this system is shown in Figure 
2. A customer sends a meal order request to the system. The customer is very hungry and 
immediately starts walking towards the kitchen after placing the order to get the food as 
fast as possible. Meal order requests arrive at a Planner service in the system, where a 
schedule is made and continuously updated to make all customers get their food as fast as 
possible, subject to availability of limited resources, such as kitchens and delivery bikes. The 
most recent schedule is continuously sent to a Meal Request Dispatcher that waits for the 
right time to dispatch a request to start preparing a meal in an available kitchen. Once the 
meal has been prepared, it is loaded on an allocated delivery bike that tries to reach the 
customer and deliver the food as fast as possible. Since the time it takes for the bike to 
deliver the meal to the customer depends on environmental conditions, traffic, and how 
quickly the customer is travelling, it continuously sends updates about its progress to the 
Planner, such that it can better estimate when it will be available to deliver the next meal. 

Figure 2: A functional overview of the Meal Delivery System 

The Meal Delivery System is an instance of a more general Meal Delivery Product, shown in a 
simplified feature diagram in Figure 3. The figure shows that the product has two main 
modules, Data Processing and Meal Delivering. A module is a building block that may in turn 
comprise other modules, but also components that implement the actual functionality of 
the system. Using a dashed line, the figure illustrates that the Data Processing module is 
optional and is not necessarily included in the system. This means that the product can be 
configured in two distinct variants, the entry level MDS-200 system, which does not have the 
optional module and its associated functionality, and the premium MDS-600 system that 
does. This means that we need to be able to configure the product to instantiate both the 
MDS-200 and the MDS-600 from the set of reusable components. A product with only two 
variants is trivial by industry standards, but it is sufficient to explain the point of what we are 
trying to achieve with this research. 
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Figure 3: Modules and components in the Meal Delivery Product. 

There are other good reasons to integrate a set of components beyond instantiating 
members of the product family. For example, to create test integrations of a subset of 
components during development, as shown in Figure 4. The figure shows a possible test 
configuration of the Meal Scheduling module where two implemented components, Meal 
Preparing and Meal Dispatching, are tested against a simulator of the Meal Delivery 
component, which requires access to physical delivery vehicles that are not yet available. 

Figure 4: An example test configuration for the Meal Scheduling module. 

The challenge in this work is to be able to specify such software integrations in a technology­
agnostic manner, such that the specification of a product instance does not change as 
software technologies evolve. Currently, such integrations are often captured in scripts and 
Makefiles that are intimately connected to the underlying software technologies and are 
time consuming and error prone to work with. The challenge of satisfying end-to-end 
performance requirements after a technology update is addressed in [3]. 
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3 From Specification to 
Deployment 

3.1 

This chapter describes how challenges related to software variability and evolution are 
addressed in the project through a model-based approach. First, Section 3.1 presents 
relevant state-of-the-art, followed by a description of the Tech Flex approach in Section 3.2. 
Next, Section 3.3 presents a software life-cycle model that specifies the dependencies 
between software artifacts in different life cycle phases. Section 3.4 presents a family of 
DSLs that specify software configurations in a technology-agnostic manner, along with a set 
of generators that automatically create software deployments from those configurations for 
specific software technologies. Lastly, Section 3.5 briefly discusses an evaluation of the 
approach using the Meal Delivery System from Chapter 2 and an industry case study. 

S tote-of-the-a rt 
System diversity, or variability, is a recognized challenge across industries. A survey covering 
18 companies in different industries offering B2B products shows that how variability is 
managed depends on the complexity of the configuration challenge [4]. Companies with 
limited variability often use spreadsheets to model variants. This approach is easy to use, 
but overview is quickly lost when the number of variants increases, resulting in large and 
complex spreadsheets. With this approach, it is furthermore difficult to express constraints 
between features and validate that a particular configuration is a valid member of the 
product family. Companies with more complex configurations often rely on formal models, 
which have been shown to capture knowledge better and facilitate conversations with 
domain experts. Two types of formal models are used to capture variability. Different types 
of feature models, e.g. Product Variant Master (PVM), sometimes complemented by Class 
Responsibility Collaboration (CRC) cards that detail the individual object classes and Unified 
Modelling Language (UML) class diagrams, enriched with Object Constraint Language (OCL) 
constraints. PMV is considered easier for non-experts to use, but UML is richer and part of a 
standard [5]. According to a somewhat dated survey [6], there are several tools available for 
feature modelling. Some of them are academic, some commercial, and others available in 
both forms. 

While feature models are specifically designed to express variability in systems, they are not 
the only option. The benefits of using domain-specific languages (DSLs) to address variability 
in the context of product line engineering is discussed in [7]. The authors state that basic 
feature models are context-free grammars without recursion, which makes them limited in 
terms of expressivity. Often, there is a need for recursion to allow multiple instantiations of 
an element, references to establish links between them, and attributes to increase the 
configuration space. Some of these features are available in more expressive types of 
feature models. The authors argue that DSLs fill a gap between feature models and general­
purpose programming languages, keeping the separation between the problem domain, 
"the what", and the solution domain, "the how". DSLs are furthermore able to specify 
algorithmic behavior and unbounded configuration spaces. Because the syntax of a DSL can 
be tailored to the particular domain, it also makes it more understandable to non-
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programmers, which may improve communication across disciplines and enable systems 
engineers to work more independently from software engineers. 

It is also possible to combine feature models and DSLs. Three categories of combinations are 
discussed in [7]: 

1. A feature model is used to specify variations in a model. 
2. A feature model is used to specify variations in model transformations. 
3. Components are specified/implemented using DSLs and feature models are used to 

combine them into products. 

There are multiple ways in which formal models that express variability can be connected to 
the system development process. The high-tech industry is showing increasing interest in 
Model-based Systems Engineering (MBSE) [1], [8]. In terms of formalism, MBSE is 
predominantly relying on SysML, a general modelling language which originated as an 
extension of UML to cover the domain of systems engineering. SysML v1 does currently not 
define any specific constructs or concepts for variation modelling [9]. For this reason, UML 
profiles, such as VAriation MOdeling with SysML (VAMOS), have been developed to extend 
the language to allow product variations to be defined. In contrast, SysML v2 is developed 
independently from UML and directly supports concepts for variation management [10]. 
Currently, this functionality is available for beta testing within commercial tools. There are 
also third-party tools for variation management. For example, pure::variants [11] is a 
prominently used tool in the Dutch high-tech equipment industry. It integrates with many 
known tools for MBSE, MBD, Requirements management, and Test Management tools. 

Another direction is to use formal models for variability management in the implementation 
of product configurators. These are software-based expert systems, tools that support the 
user in the creation of product specifications by restricting how predefined entities and their 
properties may be combined [12]. An empirical study on the business impact of product 
configurators with focus on how business activities are affected, challenges in design, 
development, and maintenance, and barriers for adoption, is provided in [13]. In this an 
analysis is provided based on a survey with 64 respondents across domains including 
telecom, computer, and industrial machinery. The results show that product configurators 
are often used by sales people, customers, designers, and planners to specify or configure 
products. They are typically integrated with other systems to generate e.g. documentation, 
invoices, bill of materials, and drawings. In that sense, product configurators can be seen as 
an example of model-based engineering, where models are used as a key source of 
information and as a source for generating relevant artifacts, and share many 
characteristics with this engineering approach [14], [15], [16], [17]. 

Although there are substantial benefits of product configurators, empirical results [13] 
suggest their introduction increase rather than reduce the number of employees in the 
organization. Normal change management practices apply when introducing a product 
configurator. You need long-term commitment at all levels, and you need to watch out for 
people whose value in the organization becomes reduced, or whose job becomes 
redundant. This is also consistent with existing literature on the introduction of model-based 
engineering methodologies [15], [16]. A key challenge with their introduction is the 
availability of IT people to design, develop, and maintain the configurator, especially as the 
system evolves. If these people are brought in externally, they do not have sufficient domain 
knowledge [13]. 

Different strategies for developing product configurators based on published case studies 
from engineering-to-order companies are identified and discussed in [5]. These strategies 
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3.2 

3.3 

illustrate different workflows for sharing, formalizing, and implementing product information 
involving roles such as product experts, knowledge representation experts, and configurator 
software experts. The main differences between the different strategies are the extent to 
which the different tasks and roles are distinguished and merged. The strengths and 
weaknesses of each strategy are discussed along seven dimensions and guidelines are given 
for when each strategy may be useful. For complex configuration projects, it is 
recommended to have a knowledge representation that is separate from the software 
implementation to better communicate with product experts. This allows product rules to be 
validated using the knowledge representation instead of using the implementation. For 
simpler cases, costs can be reduced if product information is encoded directly in the 
configuration system. Another factor that impacts the choice of strategy is the availability of 
skilled people and whether it is an option to have the same people doing knowledge 
representation and implementation. Application of product configurators in engineering­
oriented companies has resulted in many benefits, e.g. shorter lead times, improved 
certainty of delivery, fewer resources for specification, improved quality of specifications, 
optimized products, preservation of knowledge, and less time for training new employees 
[5]. 

The TechFlex Approach 
We continue by positioning the approach to technology-agnostic specification of software 
variability in this project, with respect to the existing body of work, presented in Section 3.1. 
The Tech Flex approach uses a family of DSLs as the formalism to express variability in 
software configurations in a technology-agnostic manner. The choice of a DSL is motivated 
partly by the need to express how systems are recursively built up from modules and 
components, which excludes some basic approaches to feature modelling as previously 
mentioned in Chapter 2. The decision was also based on which technologies were available 
and familiar and in use within the organization of our industry partner, which increases 
technology acceptance and makes it easier to successfully embed the developed 
methodology in the organization and create industry impact. It also addresses challenges 
related to introduction of product configurators, previously addressed in Section 3.1, such as 
availability of IT people for development and maintenance. The family of DSLs is essentially 
a software product configurator that is connected to a set of technology-specific generators 
that automatically generate software deployments from a single source of truth, a best 
practice in model-based engineering [17]. The separation of languages for specification and 
generators for implementation, means that our approach has a separate knowledge 
representation, making it suitable for complex configuration projects [5]. While the proposed 
methodology is quite general, tailoring it to different organizations may involve revisiting 
technology choices, whether that is using different tools, like pure::variants, as a basis for the 
approach, or a different language workbench for making DSLs. 

Software Life-cycle Meta-model 
Before creating a software product configurator that addresses challenges related to 
variability and evolution, it is important to understand the artifacts involved in the software 
life-cycle, as well as their dependencies. Software is specified in either text or a more or less 
formal model, and designed using either simple descriptive drawings or in more formal 
structural and behavioral models, e.g. using state diagrams or message sequence charts. It 
is implemented in a certain programming language using source files and header files. Then, 
it is generated into binary forms for a certain hardware/software platform and packed in 

) TNO Public 12/29 



 

 

 

 

) TNO Public ) TNO 2025 R10901 

deployable entities like executables or container files. Finally, it is deployed to a certain 
platform, ranging from a simple real-time kernel on a single embedded processor to a 
complex deployment and monitoring system like Kubernetes running on a large Linux 
cluster. The life-cycle captures all types of elements, such as component specifications, 
interfaces, source code, runnable units, containers, and deployment files, in the different 
life-cycle stages of the software and the relations between them. 

Historically, the different phases as described above are not always well separated and 
technology choices like language constructs or platform specifics are mixed already in the 
specification and design phases. A software life-cycle meta-model is hence helpful in 
analyzing what technology changes impact what phase in the software development and 
generation. This allows a cleaner separation between the phases in which technology 
choices can be pushed to the later phases of development, supporting less disruptive 
technology evolution without the need of specification or design updates. Such a model 
allows changes to only propagate downwards, i.e. a change in implementation or 
deployment does not affect the specification. 

A software life-cycle meta-model, inspired by [18], was created for the Thales environment, 
following an approach that has previously been successfully applied in the high-tech 
equipment industry in a research project with ASML [19], [20]. The meta-model was created 
using the Eclipse Modelling Framework (EMF) and considered four software life-cycle stages 
relevant to this work. While the model itself is too large and complex to show in the report, 
we provide a list of the stages, along with examples of key artifacts that were identified in 
each stage and an analyses of their technology dependence. This is visualized in Figure 5. 

1. Specified: Artifacts that contribute to the specification, such as specifications of 
components and modules, along with their required and provided interfaces and 
capabilities. The artifacts in this stage can be technology-agnostic. 

2. Implemented: Artifacts that are part of the implementation, such as source code and 
header files. The artifacts in this stage depend on the implementation technology, e.g. 
the programming language. 

3. Generated: Artifacts that are generated from the implementation artifacts, such as 
bundles, applications, and runnable units. These artifacts depend on the platform and 
containerization technology. 

4. Instantiated: Artifacts relevant to deployment of the software, e.g. deployment files. 
These artifacts depend on the particular deployment technology, e.g. Kubernetes. 

Specified 

Artifacts: 
Specifications of 

Interfaces 

Components 

Modules 

Product instance 

Implemented Generated 

Artifacts: Art ifacts: 
• Source files 

• Bundles 
• Header files 

• Applicat ions 

• Runnable Units 
Technology dependency: 

Technology dependency: 

language, e.g. Java or _ _ . _ • Platfo~m _ . 
.. 

• Implementat ion --

C ++ • Conta1nenzat1on 
technology, e.g. 
Docker or Podman 

Instantiated 

Artifacts: 

• Deployment files 

Technology dependency: 

• Orchestration 
technology, e.g. 
Kubernetes 

Figure 5: The four stages of the software life-cycle model, along with key artifacts and technology 
dependencies. 
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3.4 

This clear separation of phases isolates technology dependencies (implementation, platform 
and deployment technologies) in specific stages. The specification of the product 
components, their variability and instantiation into a specific product is now independent of 
technological evolution, the impact of which is moved to subsequent phases in which most 
artefacts can be generated (compiled/build) automatically. 

In the remainder of this document, we present a set of DSL's describing the specification 
and variation of components in the specification phase. In addition they describe the 
automation (generation) of the transitions between the phases. using technology-specific 
generators. 

Domain-specific Languages 

Building on the software life-cycle meta-model that describes the elements in the different 
phases, we define a set of DSLs that allow us to specify, structure and create concrete 
instances of specification models. The main idea is that these DSLs are technology-agnostic 
and that DSL instances, describing different elements of a software product instance, do not 
require updates if, e.g., the implementation technology or deployment technology is 
updated. 

These DSLs are accompanied by a set of generators that perform phase-to-phase 
transformations. Like the specification models, the generators are abstracted by a set of 
DSL's, but their implementation is technology-specific. These generators are used to 
automatically create relevant development artifacts, reducing effort, in particular in light of 
increasingly frequent updates. The benefit of encapsulating technology-specific aspects in 
generators in this way is that it addresses technology changes at the level of the product 
family instead of the individual variant, improving scalability as the number of variants 
increases. 

Note that while the approach makes software configurations independent from changes in 
software technologies, they are sensitive to changes in the DSLs themselves. If the DSLs 
evolve to include new concepts, it may become necessary to co-evolve the configuration 
models to ensure compatibility. This challenge and methods to address it is discussed in 
[21]. 

Figure 6 shows the family of DSLs and generators related to a more detailed view of the 
software lifecycle model 
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Instantiate 
(manual) 

Specified 

Product tree 

Specification 

(component/ 

'-
module) DSL 

·! 
Integration 

DSL 

Generate all in product 
instantiation 

Implement 
(manual) 

lmple ented 

Source files 

Interfaces, 
headers, etc. 

Build Configuration DSL 

Generated 

Bundles 

Application 

Runnable 
Units 

Application 
DSL 

Figure 6: Detailed view software lifecycle phases, DSL's and generation. 

Instantiated 

Deployment 
files 

Refers to 
________ J 

Runnable 
Unit DSL 

Deployment 
DSL 

We continue by providing a simplified high-level overview of these DSLs to communicate the 
key concepts. The gray boxes (left) correspond to the specified stage of the software life­
cycle meta-model previously presented in Section 3.3. Metaphorically, this perspective 
specifies the Lego pieces that are available to build with, as well as the instructions for how 
to put them together to create a new instance. Component DSL specifies the components 
and through Interface DSL (not shown in the above picture) the interfaces that components 
and modules use to communicate with each other. Note that Interface DSL and Component 
DSL were not developed as a part of this project, but have been previously developed and 
used by our industry partner. In that sense, our work is extending an existing DSL ecosystem 
and does not introduce new technology, making it easier to transfer the results. Module DSL 
is an extension that expresses how modules are recursively built up from other modules and 
components, allowing a structured view on the sea of components and expressing variation 
points. Integration DSL specifies which components and modules come together in a 
particular software configuration, corresponding e.g. to a new product instance or a test 
integration, as previously explained in Chapter 2. 

To further torture the metaphor, the phases after specification are all about making sure the 
Lego pieces are correctly manufactured and ready for assembly. This corresponds to the 
orange boxes in the bottom of Figure 6, which make sure that all components of the 
software specified by the Integration DSL are actually built and ready for deployment. First, 
the Build Configuration DSL has a link to an instance of the Component DSL, since it will 
generate the implementation for a specified component. It specifies how to create a build 
project related to a particular component and specifies where the corresponding 
implementation (source code) can be found. The associated technology-specific generators 
generate and expose Java bundles and Fat jars for Java development, respectively. Next, the 
Application DSL specifies an application as a set of related components available in the 
exposed bundles. Again, this is done in a technology-agnostic way by abstractly referring to 
the artifact where the bundles can be found. The associated technology-specific generators 
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generate the build source for an application that when executed builds the application 
according to the particular implementation technology, i.e. as an Apache Celix [22] 
application for C ++ development or a fat jar for Java development. The last part of the 
implemented stage is the Runnable Unit DSL, which specifies which applications should be 
combined into a runnable unit and always be deployed together. Based on this specification, 
the technology-specific generators create the build directives of a container image for 
particular containerization technologies, such as Docker or Podman. 

The final DSL, Deployment DSL, corresponds to the deployed stage of the software life-cycle 
model. This DSL defines which runnable units (in the specified software configuration) should 
be deployed on which compute node. The technology-specific generators generate 
deployment files for the particular deployment technology, such as Kubernetes. 

An overview of the workflow using this family of DSLs is shown in Figure 7. 

Specifi es 
interfaces 

Interface 
DSL 

Specifies 
components 

Component 
DSL 

//;.;;~~/ 
Build bundles 

Configuration 
DSL 

Specifies bui ld 
project for impl. of 

components 

Application 
DSL 

Specifies w hat 
components are 
combined into 
appl ications 

Module 
DSL 

Specifies 
modules 

Generates 
Celix apps. / 

fat jars 

Integrat ion 
DSL 

Speci fies what 
modules and 
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Figure 7: The family of technology-agnostic DSLs and their dependencies. 
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The proposed DSL-based approach addresses the challenges related to both system 
variability and system evolution, previously described in Chapter 1, in a model-based 
manner. The system variability problem is addressed since new software configurations can 
easily be specified as instances of technology-agnostic DSLs that do not require updates as 
software technologies change, minimizing manual intervention and effort when new 
variants are specified and maintained. The software evolvability problem related to 
deprecation of software technologies during the life-time of the system is addressed 
through the technology-specific generators that allows a change in implementation 
technology from Java to C ++ or from Docker and Kubernetes to alternative containerization 
and orchestration technologies to be handled by phasing in and phasing out technology­
specific generators. This way of improving portability in terms of technology through model­
based engineering in general and domain-specific languages in particular is recognized in 
surveys [23], [24] and case studies [25]. 

Next, we provide more information about the family of DSLs created as a part of this work. 
In the following sections, we demonstrate the DSLs based on a running example with our 
Meal Delivery System, previously introduced in Chapter 2. 
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3.4.1 Interface DSL 
The Interface DSL builds on the Apache Avro [26] Interface Definition Language (IDL) and 
defines data structures and function signatures. Models in this DSL are used by the 
Component DSL and Module DSL by referring via Component/Module DSL's declarations 
require service <avdl reference> and provide service <avdl reference>. 

In the example in Figure 8, we see OrderApi protocol declaration containing OrderRequest 
data structure declaration and SubmitOrderRequest signature declaration. Every component 
referring to OrderApi would use require service OrderApi and/or provide service OrderApi. 
You can also see annotations (@version, @behavior, and @cxx-namespace), which are hints 
for the generators. Some of these hints, such as @cxx-namespace is clearly technology 
dependent. This is because Interface DSL was developed by our industry partner prior to this 
project. A solution to this could be to e.g. introduce a technology-agnostic annotation for 
declaring namespaces that are independent of a particular programming language. 

: ru ntime-techflex-dsl - Techflex DSL Samples/demo-20250130/modul... 

File Edit Navigate Search Project Run Window Help 

; r::'l ,,. ~ ~ ~ ·ey. q. ... ,9 .. !t i ,,. ◊ I ,,. I> c:,- ¢, ,,. c:, ,,. I c1 . ~ 
-~· ~ nl.esi.techflex.demo.OrderApi- 1.0.0.avdl X 

In 1 @namespace ( "nl.esi.techflex . demo" ) 
2 @cxx - na mespace ( "nl.techflex. demo" ) 
3 @version( "l.0 . 0" ) 
4 @behavior( true ) 
5 @con ve rs at ion ( true ) 
6 protocol Orde rA pi { 
7e record Order Request { 
8 int id; 
9 string da t a ; 

10 } 
11 
12 @s ignal ( true ) 

□ X 

a, r!§' I lo 
= El 

" • .m 
/JI 
'll 
IE 

13 void Submi t Order Reque s t (Order Req ue s t reques t ) ; 
14 } 
15 

: Build ing: (76%} 

I Writable -~ 

I Insert 

Figure 8: An example service defined in Interface DSL. 

3.4.2 Component DSL 

• 
• 

1 1, ' 1 ' 276 I 159Mot2llsM IUD 

The Component DSL describes the smallest decomposition entity within a system. It 
describes which messages can be sent and received by a component, and what the 
structure of these messages looks like. 

In the example in Figure 9, we see the specification of the Planner component. With the 
provide service OrderApi declaration, we define which messages the component can receive. 
Similarly, with the declarations require service DispatchApi and NotificationApi, we define 
which messages it can send. 
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,Gi ru ntime-techflex-d sl - Techfle:x DSL Samples/ demo-20250 130/ module/ components/ nl.esi.techfle:x.demo.Planner-1 .0.1.cmp - Ecl ipse Plaitform 

File Edit Navigate Search Proj ect Run Window Help 

-~· ~ nl.esi.techflex.demo.Planner-1.0. 1.cmp X 

la @na me s pace ( "nl. esi. techflex. demo" ) 
@CpfCopy Lang ( "cxx" ) 
I 
component Planner { 

version = 1. 0 . 0 

provide service nl . esi . techflex.demo.OrderApi [1 ,1 . 1 ) 
require service nl . esi.techflex .demo . Dispat c hApi [ 1, 1. 1 ) 

require service nl.esi.techfle x . demo.Notific ationApi [1, 1 . 1) 
} 

I Writable I 1ns.ert I , : 1 : S7 

Figure 9: An example component defined in Component DSL. 

3.4.3 Module DSL 

□ X 

With Module DSL, one can define a full product tree from system level, down to individual 
components through hierarchical (recursive) composition. The need for this was previously 
stated in the context of our case study in Section 2 and was one of the reasons for choosing 
DSLs as the approach to specify software configurations in Section 3.2. The central element 
of this recursive model is the assembly, which can be either a module (an assembly that is 
further decomposed) or a (leaf element) component. The assemblies are specified by 
referring to individual provided and/or required services. Assemblies need be matched to 
modules or components with the matching interfaces. In our current proof-of-concept 
implementation, this matching is hard-coded, but will be replaced with a dynamic resolver in 
the future. 

In the example in Figure 10, we see the MealProcessing module, which refers to a 
component/module providing MealProcessingCapability. It also refers to three assemblies: 1) 
a dispatching assembly that provides DispatchApi and requires PrepareApi, 2) one 
responsible for preparation that provides PrepareApi and requires DeliverApi, and 3) an 
delivery assembly providing DeliverApi and requiring DeliveryNotificationApi. 
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: runtime-techflex-dsl - Tech/lex DSL Samples/demo-20250130/ modu le/MealProcessing.moduledsl - Eclipse L .. 

File Edit Navigate Search Project Run Window Help 

~- ~ MealProcessing.mcduledsl X 

a 1e~odule MealProcess ing { 
2 version = 1 . 0 .0 
3 
4 
5 
Ge 
7 
8 
9 

10 
11 
12 
13 
14 
15 
160 
17 
18 
19 
20 
21 } 

◄ 

provide service nl.es i . t echflex. demo. Mea l ProcessingCapabi li t y [1,1.1) 

assembly dis pat ching { 

} 

provide service nl . esi . t echflex . demo . Dis pat chApi [1 , 1 . 1) 
require service nl . esi . techflex. demo. PrepareApi [1 , 1. 1 ) 

assembly prepari ng { 

} 

provide service nl .esi. t ec hflex. demo . PrepareApi [1 , 1 . 1 ) 
require service nl .esi. techfl e x. demo . Del ive r Api [1,1. 1 ) 

assembly delivering { 
provide service nl .esi . techflex .demo. Del i verApi [1,1. 1) 
require service nl .esi. t echflex .demo . Del i ve rNot ifica t ionApi [1, 1 . 1 ) 

} 

I Writable j tm ert 1 1 ' 1 ,o 195M of 228M ijj 

Figure 10: An example instance of Module DSL. 

3.4.4 Integration DSL 

□ 

► 

X 

~ El a . ~ 
/J 
'l 
l:l 

• 

The Integration DSL defines which components are part of a particular software 
configuration, e.g. corresponding to a particular product instance or a test integration. In the 
example in Figure 11, we see an integration named MDS200Int, comprising five 
components, DeliveryControl, Planner, MealDispatching, MealPreparing and MealDelivering, 
respectively. In our current proof-of-concept implementation, it is not possible to include 
Modules in Integration DSL. This will be added as a part of future work. 

; ru nt ime-techflex-dsl - Techflex DSL Samples/demo-20250130/integrationdsl/MDS200Intintegratio ... 

File Edit Navigate Search Project Run Window Help 

. r3 ,. ~ ~ ¢J "' ~ '%- q. .. ,;, .. iJ I ,. {t i ,. ,:;, c:, ¢, ,. ¢ ,. I C1 

e ~ ~MDS20Cllnt.integrationdsl X 

le, 1 integration configuration 
2e name : nl.esi. t echflex. demo.MDS200Int 
3 version : "1.0.0" 
4e with components 
5 nl . e si. t echflex.demo . De live ryCo nt ro l [ 1 , 1 . 1 ) 
6 nl . e si. t echflex.demo.Planner [ 1 , 1 . 1 ) 
7 nl .esi. t echflex.demo .Me alDispat ching [ 1 , 1 . 1 ) 
8 nl . e si. techflex . demo.Mea l Prepari ng [ 1 , 1 . 1 ) 
9 nl . e s i . t echflex.demo.Me alDe live ring [ 1 , 1 . 1 ) 

10 

I Writable I lns.ert 1 9 , 44 , 328 1041M of 1176M Un' 

Figure 11: An example instance of Integration DSL. 
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3.4.5 Build Configuration DSL 
The Build Configuration DSL defines a build project containing a set of components and 
dependencies, e.g. on specific libraries, which we are going to implement in a particular 
programming language. The declarations of dependencies are technology-agnostic, but 
refer to a technology-specific artifact, such as jar files, OS native shared libraries, or Python 
modules, identified by a combination of groupid, artifactid and version. This type of 
technology-agnostic references are also used in other DSLs in this ecosystem. 

With a concrete implementation generator for a certain programming language and/or 
framework (e.g. Spring Boot [27] or Django [28]), one creates all related resources (e.g. 
source files and configuration files) needed for building (compiling, linking, and packing) a 
language-specific artifact, such as shared lib, jar file, or Python modules. 

In the proof-of-concept implementation, we created a generator to create a build project 
with a predefined directory structure. It generates configuration files like pom.xml, 
CMakelists and defined dependencies and final generator C ++ *.h, *cpp files related to the 
Component/Interface DSL declarations. This will be used as a starting point for developers to 
implement their business logic for the components and run the generated technology­
specific build scripts, in our case mvn package which builds a C ++ Celix bundle. 

The example in Figure 12 specifies a build configuration of the artifact planning containing 
the components Pfannerand PfannerSimufatorwhich provides the protocols OrderApiand 
DispatchApi. When the generated build project runs its build scripts (e.g. mvn package), it 
produces an artifact (e.g. Celix Bundle) referenced by groupid: "nl.esi.techflex.demo", 
artifactid: "planning" and version "1.0.0-SNAPSHOT". 
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$ runtime-techflex-dsl - Techflex DSL Samples/demo-20250130/builddsl/planning.buildds ... 

File Edit Navigate Search Project Run Window Help 

i!J Ii planning.builddsl X 

- build configuration 
- groupld : "nl. esi. techflex. demo" 

artifactld : "planning" 
version : "1.0. 0-SNAPSHOT" 

- with containing 
components 

◄ 

nl.esi.techflex.demo.Planner (1 , 1 .1) 
nl.esi.techflex.demo.PlannerSimulator (1 , 1 .1) 

services 
nl.esi.techflex.demo.OrderApi (1 , 1 .1) 
nl.esi.techflex.demo.DispatchApi (1, 1 .1) 

dependencies on : 
{ 

} 
{ 

} 
{ 

} 
{ 

groupld : "com.thalesgroup.nl.appl_eng.o2n.deliverable" 
artifactld : "o2n-cxx-minimal" 
type : "pom" 
scope : "provided" 

groupld : "com. thalesgroup. nl. appl_eng . o2n" 
artifactld : "o2n-cpf " 
type : "tar . gz" 
scope : "provided" 

groupld : "com. thalesgroup. nl. appl_eng. o2n" 
artifactld : "inaetics-dsl" 
type : "tar . gz" 
scope : "provided" 

groupld : "com. thalesgroup. nl. appl_eng. o2n" 
artifactld : "o2n-build-tools" 
type : "tar . gz" 
scope : "provided"! 

Writable Insert 

Figure 12: An example instance of Build Configuration DSL. 

3.4.6 Application DSL 

□ X 

Q, ~I e:i 

= □ i!J 

'l . 
13. 

e 

► 

The Application DSL is used to compose a concrete application based on the defined 
components and dependencies. It contains the components we want in the application and 
the dependencies, where we can find the technological-specific implementation of those 
components. The generated application artifact can be referenced by its groupid, artifactid 
and version. 

With a concrete implementation of a generator, we can create a native executable that can 
be executed. The generator knows how to link all referenced artifacts in the dependencies to 
a native application. In our proof-of-concept, we implemented a generator for making C ++ 
Celix applications. 

In the example in Figure 13, we generate an application called order-processing-opp, which 
contains two components, the Planner and the DefiveryControf. 
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3.4.7 

CS, runtime-techflex-dsl -Techflex DSL Samples/demo-20250130/ applicationdsl/order-processi ... 

File Ed it Navigate Search Project Run Window Help 

rs . ~ . ,. • ~. • 01 • <> • • I 
er i order-processing-app.applicationdsl x 
(a ~ application configuration 

e groupld : "nl.esi. techflex. demo" 
artifactid : "order -processing-app" 
version : "1.0.0" 

with : 
components : 

nl . esi. techflex . demo. Planner [1 , 1 . 1 ) 
nl. esi. techflex . demo. DeliveryControl [ 1 , 1. 1 ) 

dependencies on : 
{ 

} 
{ 

groupld : "com. thalesgroup . nl. appl_eng .o2n. deliverable" 
artifactld : "o2n-cxx- minimal" 
type : "porn" 
scope : "provided" 

e groupld : "com . thalesgroup . nl. appl_eng .o2n " 
artifactld : "o2n-cpf" 

} . { 

type : "tar. gz" 
scope : "provided " 

group Id : "com . thalesgroup. nl. appl_eng. o2n " 
artifactld : "inaet ics-dsl" 
type : "tar . gz" 
scope : "provided " 

groupld : "com . thalesgroup. nl. appl_eng .o2n " 
artifactld : "o2n-build- t ools" 
type : ··tar.gz" 
scope : "provided " 

e groupld : "nl.esi. t echflex.demo" 
artifactld : "pl anner" 
version : "1.0 . 0-SNAPSHOT" 
type : "tar . gz" 

} 
e { 

~ groupld : "nl .esi. t echflex.demo" 
artifactld : "de livery-control" 
version : "1.0 . 0-SNAPSHOT " 
type : "tar.gz" 

Writable I insert 

Figure 13: An example of Application DSL. 

Runnable Unit DSL 

D X 

0. eg I io 
= □ 

" .. -9 
Q, 

I~ 

el 

The Runnable Unit DSL defines which application artifacts defined by Application DSL should 
be bundled, executed and/or deployed together. 

In our proof of concept, we implemented a generator that created container images. 
The example in Figure 14 specifies a runnable unit called order-processing-unit that 
comprises two applications, order-processing-opp and meal-processing-opp, respectively. 
The generated image artifact can be referred via its groupld, artifactld and version. 
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: runtime-techflex-ds l - Techflex DS L Samples/demo-20250130/runnab ledsl/order-processin ... 

File Edit Navigate Search Proj ect Run Window Help 

; rj ,. c.J 11w <) ~ ~ ·%> Q. -. 4' -. ~ I ,. {J- 1 ,. ~ c:, ¢i ,. ~ ,. I r1' ~ 
-~· 1£1 MDS200Deploymentdeploymentdsl ~ order-processing-unit.runnabledsl X 

lo 1 · runnable unit configuration 
28 groupid : "nl.esi.techflex.demo" 
3 artifactid : "order-processing-unit" 
4 version : "1.0.0-SNAPSHOT" 

5 
6 with applications : 
7e { 
se groupid : "nl. esi. tee hf lex. demo" 
9 artifactid : "order-processing-app" 

10 version : "1.0.0" 
11 } 
128 { 
130 groupid : "nl. esi. tee hf lex. demo" 
14 artifactid : "meal-processing-app" 
15 version : "1.0.0" 
16 } 
17 

4 

I Writable I Insert 1 1, : 7 : 376 

Figure 14: An example of Runnable Unit DSL. 

3.4.8 Deployment DSL 

D 

► 

The Deployment DSL defines on which hosts a set of runnable units should be deployed. 
The hosts are defined using a filter mechanism that selects out of a total set of available 
hosts. 

X 

With a concrete implementation of generator, you can create all needed scripts, configs and 
resources needed for your deployment. In our proof of concept, we implemented a 
generator that creates deployment scripts for Kubernetes. The example in Figure 15 defines 
a deployment configuration called MDS600Deployment that deploys two runnable units, 
order-processing-unit and meal-processing-unit, on a host with name archive01.tsn.tno.nl. 
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3.5 

: runt ime-techflex-dsl - Techflex DSL Samples/demo-20250130/dep loymentdsl/MDS2 ... 

File Edit Navigate Search Project Run Window Help 

: rs ... l'..J r....i <:::! "', ~ -~ , q, ~-~ ~ !? 1 ... t i ... ~ c::, <? ... cc:> ... I r1 ~ 
o' [l:l MDS200Deploymentdeploymentdsl X 

lo 1e deployment configuration 
2e artifactld : "MDS600Deployment" 
3 groupid : "nl. esi. techflex. demo" 
4 version : "1.0.0" 
5 
6 with runnable units : 
7e { 
se artifactid : "order-processing-unit" 
9 groupid : "nl. esi. techflex. demo" 

10 version : "1.0.0" 
11 } 
12e { 
13e artifactid : "meal-processing-unit" 
14 groupid : "nl. esi. techflex. demo" 
15 version : "1.0.0" 
16 } 
17 on host filtered by 
18 name "archive01.tsn.tno.nl" 
19 

I Writable I Insert 1 1, : 7: 364 : 292M f mM @· 

Figure 15: An example of Deployment DSL. 

Evaluation 

D X 

The model-based approach to technology-agnostic specification of software configurations 
was evaluated by applying it to the Meal Delivery System, previously introduced in Chapter 2. 
This evaluation revealed that the family of DSLs was sufficiently expressive to specify the 
relevant artifacts in each life-cycle phase. From these specifications, it was also possible to 
automatically generate working software deployments using the technology-specific 
generators. In addition, our industry partner applied the approach on a confidential industry 
case study from the defense domain. Similarly to our findings, the DSL was found to be 
sufficiently expressive to cover the needs of this case study. 
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4 Conclusions 

4.1 

This chapter concludes the report by first answering the research question in Section 4.1, 
followed by a discussion about future work in Section 4.2. 

Answers to Research Questions 

RQ1)To what extent can we generate efficient software deployments for different 
technologies from a generic software configuration model? 

To what extent can the generic software configuration model be decoupled from the 
deployment technology? 
Can it be completely decoupled while still generating efficient deployments, or only 
encapsulated in a separate technology-specific model? 

This work has demonstrated that it is possible to fully specify software configurations and 
deployments in a technology-agnostic way using a family of DSLs (see Section 3.4). Software 
configurations are defined using an Integration DSL that refers to modules (Module DSL) and 
components (Component DSL), which in turn request and provide services through their 
interfaces (Interface DSL). 

There are also a set of technology-agnostic DSLs that define how components are 
implemented (Build Configuration DSL) and combined into applications (Application DSL) 
and runnable units (Runnable Unit DSL) that are deployed on the compute nodes 
(Deployment DSL). These DSLs are paired with technology-specific generators that 
encapsulate all technology-specific aspects, such as whether a component implementation 
is provided in Java or C ++, and the containerization and orchestration technology. This 
means that only generators need to be added and removed as software technologies 
evolve, while the DSL specifications are unaffected. Given the same DSL specifications, new 
implementations or deployments can then be automatically generated for new 
technologies. 

We validated our work on a simple case study, the Meal Delivery System introduced in 
Chapter 2. In addition, our industrial partner has validated the expressivity of the DSLs on a 
confidential case study in their domain. We have concluded that the DSLs are sufficiently 
expressive to cover these case studies and that the proposed approach addresses the 
problem of technology-agnostic specification in a good way. The efficiency of the generated 
deployments was not evaluated during the project. Instead, generated deployments were 
optimized in a separate stage, as described next. 

RQ2)How can we efficiently optimize software deployment(s) to satisfy performance 
requirements for a particular product configuration, load, and deployment technology? 

What are the benefits and drawbacks of performance prediction vs. performance 
evaluation? 

This question is investigated in a TNO-ESI Internal report [3] and only the main conclusions 
are presented here. There are many ways to optimize software deployments to satisfy 
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4.2 

performance requirements. We considered different ways of navigating design spaces, 
including exact approaches, (meta-)heuristic approaches, and learning-based approaches, 
as well as methods for evaluating selected points in that design space, such as evaluation 
on the real system, analytical models, and AI-based methods. 

The selected approach navigates the design-space a learning-based approach, more 
specifically Reinforcement Learning using Monte Carlo Tree Search and performs evaluations 
of selected mappings on the real system. Reinforcement Learning was chosen as it is an 
established approach to solve deployment optimization problems in literature. Selected 
design points are evaluated on the real system, which is significantly more time-consuming 
than using performance prediction using analytical models, but provides the strongest 
guarantees that the performance requirements will be satisfied. 

A simple proof-of-concept implementation was developed clearly separates the 
optimization and evaluation approaches and can hence be used either with the real system, 
or a model thereof. Due to limited time, an elaborate evaluation of the optimization 
approach was not possible during the project, but initial feasibility was demonstrated using 
our proof-of-concept implementation in the context of the Meal Delivery System presented 
in Chapter 2. Further research is required to assess the effectiveness and scalability of the 
approach. While it is certainly possible to use reinforcement learning to optimize 
deployments at design time, much like a meta-heuristic, it is our impression that the 
approach is a better conceptual fit for run-time problems. One reason is that reinforcement 
learning is not looking for solutions to a problem, but for a policy to guide sequential decision 
making. The solution itself is a secondary result of applying the optimized policy to a set of 
sequential decisions. Another reason is that the run-time case allows continuous learning in 
the operational system, allowing the policy to adapt to changing system dynamics. 

Future Work 
Future work involves creating additional abstraction levels to add automation and further 
reduce the impact of technology changes. This work proposed a model-based methodology 
for making technology-agnostic specification of components and their integrations, and 
technology-specific generation of artifacts. While this approach makes specifications 
resilient to changes in technology, new generators may have to be introduced, or existing 
generators significantly modified, as a result of a technology change. Future work could 
address this by defining technology-agnostic APis to further structure the generators and 
the underlying build environment. 

Another direction involves adding additional levels of abstraction and automation on top of 
the existing approach to further reduce manual effort in creating software configurations 
that satisfy functional and non-functional requirements. In particular, it could be possible to 
specify the required capabilities of a software configuration and automatically synthesize 
the set of components and modules to integrate based on the capabilities they require and 
provide. In terms of the work in this project, this could involve automatically generating 
instances of Integration DSL based on a set of required capabilities. Satisfying performance 
requirements in this context becomes even more challenging, as many different software 
configurations may be considered by the synthesis, significantly increasing the design space. 
The current approach of optimizing deployments on actual hardware is not expected to be 
able to address this case. However, if synthesis is linked to a model-based approach to 
predict performance of key systems flows of a software configuration for a particular 
mapping, e.g. based on [29], it could be possible to also automatically generate an instance 
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of Deployment DSL, resulting in a deployment that directly satisfies performance 
requirements. In this case, the current RL-based approach to deployment optimization on 
the real system can be used after synthesis for final parameter optimization and verification. 
This direction will be investigated in a follow-up project. 
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