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Abstract: This study introduces a geospatial comprehensive methodological system aimed
at evaluating the suitability and need for agricultural digital solutions (ADSs) across Europe.
This system integrates a diverse range of factors, including geophysical characteristics,
climate patterns, and socioeconomic conditions, evaluated at regional- and farm-specific
levels. By leveraging open-source Earth observations and socioeconomic data, we develop
multiple performance, environmental, and socioeconomic similarity indexes that compare
regions based on shared characteristics, such as soil quality, climate, and socioeconomic fac-
tors. Using advanced statistical and multi-criteria analysis tools, these indexes are tailored
to different stages of agricultural production, enabling region-specific assessments that
identify and prioritize the needs for digital solutions across Europe. The results indicate
that the developed indexes effectively categorize regions based on comparable charac-
teristics, facilitating the targeted recommendation of ADSs. Additionally, a connectivity
performance index is created to assess the local deployment model of agricultural digital
solutions (cloud, edge, or mixed), ensuring that the recommendations for technological
implementation are feasible and effective given the local connectivity conditions.

Keywords: agricultural digital solutions (ADSs); geospatial analysis; earth observation;
multi-criteria decision-making; sustainable agriculture

1. Introduction
Agricultural digital solutions (ADSs) are seen by many authors as having become

essential for modern farming as such solutions can enhance productivity, sustainability,
and profitability. ADSs include a diverse range of tools and approaches, including precision
agriculture, remote sensing, and data analytics, as well as advanced technologies, such
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as farm management software, UAV-embedded remote sensors, and automated machin-
ery [1]. These integrated solutions facilitate optimizing resource use by enabling the precise
management of inputs like water, fertilizers, and pesticides, thereby increasing yields
while reducing environmental impacts [2]. Precision agriculture, for instance, uses Global
Navigation Satellite Systems (GNSSs), IoT sensors, and Earth observation data to collect
real-time data on soil conditions, crop health, and weather patterns, enabling farmers to
make informed decisions on planting schedules, resource allocation, pest control, and
overall crop management strategies [3]. These solutions can also be highly region-specific,
designed to address the unique environmental and agricultural challenges of particular
areas. For instance, AI models developed using local datasets are often employed to detect
crop diseases or assess soil organic carbon (SOC) levels [4]. Additionally, other region-
specific digital solutions may focus on optimizing irrigation or pest management in areas
with particular climate conditions [5]. The integration of such technologies is crucial as
it enables optimized management and targeted farming inputs, increasing efficiency and
productivity. Farms which utilize these digital tools can achieve significant improvements
in crop yields and efficiency, highlighting the potential of digital agriculture [6].

Despite the transformative potential of digital agriculture, its benefits are not uniformly
realized due to unequal access, particularly in rural and underdeveloped areas. Variables
and factors like high costs and a lack of infrastructure pose significant barriers to access,
while limited digital literacy among farmers affects the effective use of these solutions [7].
Furthermore, the lack of reliable internet connectivity in rural areas makes the matter
worse, as many digital solutions require internet access for real-time data collection and
analysis [8]. Even when farmers have access to digital solutions, they often face challenges
in how to effectively use them. These challenges often stem from the complexity of the
technologies involved and the difficulty in interpreting the data generated [9].

Comprehensive Decision Support Systems (DSSs) specifically designed to facilitate the
adoption of ADSs hold promise in addressing many of the barriers associated with digital
transformation in agriculture. These systems are envisioned as centralized platforms that
could help farmers and advisors navigate the complexity of selecting ADSs. Unlike tradi-
tional DSSs that primarily assist with operational farming decisions like crop management
or irrigation scheduling, these systems focus on guiding users toward the most relevant
and cost-effective digital solutions tailored to their specific needs. Despite their potential,
such systems remain relatively uncommon, as the majority of existing DSSs are designed
to optimize farm operations rather than to facilitate digital technology adoption. When
developed, these ADS-focused DSSs can address challenges such as the availability and
reliability of internet connectivity, recommending cloud-based, edge computing, or hybrid
solutions based on local infrastructure. Examples include FairShare [10], which supports
participatory approaches to digital tool adoption by providing insights into available ADSs,
and Quantifarm [11], which evaluates the impact of specific ADS implementations to facili-
tate informed decision-making. These systems are typically equipped with user-friendly
interfaces to accommodate varying levels of digital literacy among farmers [12]. This
focused approach addresses the challenge of ADS selection and adoption by simplifying
the decision-making process, empowering farmers to make choices that align with their
unique circumstances.

Despite their potential, these ADS adoption-focused DSSs face challenges, such as
system complexity, the need for localized data, and limited integration of geospatial infor-
mation [13,14]. Geospatial frameworks play a crucial role in overcoming these challenges
by enabling DSSs to generate region-specific recommendations tailored to local conditions,
such as soil quality, climatic factors, and socioeconomic contexts. For example, geospatial
supervisory tools like the Agricultural Drought Vulnerability Index evaluate exposure,
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sensitivity, and adaptive capacity to drought using geospatial indicators [15,16]. Similarly,
the Geospatial Environmental Impact Monitoring Index assesses agricultural practices’
effects on the environment, supporting sustainability efforts [17]. By leveraging geospa-
tial data, DSSs can provide actionable insights that are highly localized, practical, and
accessible, making it easier for farmers and advisors to navigate the complexities of both
daily agricultural management and digital solution deployment. By using data on local
soil, climate, and socioeconomic conditions, geospatially enhanced DSSs generate targeted
recommendations that match real-world farming needs. This localized approach aligns
advanced digital technologies with on-farm realities, supporting greater adoption of ADSs
while improving sustainability and productivity.

This research aims to overcome existing barriers to the integration and adoption of
agricultural digital solutions (ADSs) by developing a geospatial methodological framework
known as the “ADS geospatial framework”. The overarching objectives of this study are to
integrate environmental, socioeconomic, and connectivity data to evaluate the practicability
and replicability of agricultural digital solutions tailored to the unique needs of each region.
By collecting and analyzing region-specific data such as soil health, climate conditions,
and socioeconomic contexts, the framework can potentially provide farmers, advisors, and
policymakers with actionable and localized recommendations, enabling informed decision-
making to enhance agricultural productivity, sustainability, and economic viability.

Various agricultural sustainability frameworks have been developed over the years.
For instance, MESMIS [18] offers a site-specific, participatory approach centered on farm-
level indicators, and while it does incorporate some geospatial aspects, its focus is pre-
dominantly on local evaluations. SAFE [19] presents a hierarchical system of principles,
criteria, and indicators that can be applied from the parcel to the regional scale, and
certain applications of SAFE include geospatial data integration; however, its primary
concern remains traditional environmental, economic, and social dimensions. Similarly,
TAPE [20] is designed to evaluate agroecological performance through multi-dimensional,
stakeholder-engaged methods, integrating spatial information to assess sustainability tran-
sitions. Although these frameworks have significantly advanced our understanding of
agricultural sustainability, they do not explicitly evaluate connectivity, nor do they assess
the replicability and necessity of agricultural digital solutions—critical aspects for modern
farming systems. In fact, a recent systematic review of over a hundred sustainability indica-
tors [21] confirms that critical factors, including rural connectivity and the deep integration
of large-scale Earth observation (EO) data, are rarely featured. To bridge these gaps, our
ADS geospatial framework is organized into three distinct sets of indexes.

- The Agricultural Digital Solutions Needs Indexes, namely, the Fertilization Need Index
(FNI), the Irrigation Need Index (INI), and the Pest Management Need Index (PMNI),
assess the necessity for digital solutions across Europe at specific production steps such
as fertilization, irrigation, and pest management. These indexes were chosen because
fertilization, irrigation, and pest management are critical components of agricultural
production that fundamentally drive yield and profitability. Improvements in nutrient
management, water use, and pest control have historically played a significant role
in increasing productivity [22], which justifies their selection as essential metrics for
developing advanced decision-making tools for advisors and policymakers.

- The Geographical Similarity Indexes, the natural characteristics similarity index (NCSI)
and socioeconomic characteristics similarity index (SCSI), evaluate the geographical
replicability of agricultural digital solutions. In this context, “replicability” refers to
the likelihood that a solution proven effective in one region will deliver comparable
results elsewhere under analogous conditions. These indexes were included because
a solution that thrives in one region may fail in another due to differences in soil,
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climate, infrastructure, or farm size. They can help farmers identify and implement
the most effective technologies used in similar regions and are essential tools for
evaluating the replicability of open-source, free-to-use, and commercial ADSs, as well
as open frameworks that provide detailed methodologies for region-specific solutions
developed in research programs (e.g., Use Cases or Pilots in Horizon Europe projects).
These indexes enable systematic adaptation of ADSs in other regions with similar
environmental and socioeconomic conditions. Solutions like IRRINET [23] developed
in Emilia-Romagna, Italy, to optimize irrigation, and Sativum [24], created in Spain
for fertilization and crop management, demonstrate how region-specific technologies
can potentially be transferred to other areas once local conditions are deemed suf-
ficiently similar through the Geographical Similarity Indexes. IRRINET’s focus on
managing water in drought-prone areas, and Sativum’s integration of fertilization
and crop management, offers potential solutions for regions with similar soil, climate,
and socioeconomic conditions. These indexes help in identifying areas where such
solutions can be effectively adapted and implemented.

- The Rural Connectivity Performance Index (RCPI) assesses the connectivity infrastruc-
ture of rural regions to advise on the most suitable deployment models for agricultural
digital solutions—whether cloud-based, edge computing, or a hybrid approach. Con-
nectivity is a prerequisite for real-time data collection, analytics, and decision support
and remains a common barrier to adoption in rural areas [25]. For example, cloud-
based farm management platforms such as LiteFarm [26], which provide real-time
crop monitoring, data analytics, and decision support, rely heavily on high-speed
broadband connectivity. Without robust broadband infrastructure, the efficiency and
functionality of such platforms are significantly reduced.

By integrating these indexes, the framework ensures a holistic approach that addresses
both the technological and practical barriers to adopt digital agriculture solutions. This
approach aims to foster broader adoption and sustained use of digital agriculture solu-
tions by providing tailored recommendations that are accessible and effective for farmers,
regardless of their region’s specific challenges.

2. Materials and Methods
The development of the present ADS geospatial framework commenced with the

identification and analysis of key parameters and important data. These parameters include
climatic conditions, soil characteristics, connectivity variables, and socioeconomic factors.
We source the latest available comprehensive relevant datasets from Eurostat [27], the
European Union’s rural observatory [28], the Joint Research Center (JRC) [29], the European
Soil Data Centre (ESDAC) [30], and multiple Earth observation (EO) data products. By
focusing on rural areas, the data collection specifically targets farm and farm community
levels. We harmonized the spatial data by aligning different datasets to a common spatial
framework, enabling integrated analysis and comparison. This analysis uses the NUTS [31]
(nomenclature of territorial units for statistics) levels two for basic regions and three
for small regions. Various geospatial techniques were employed for the analysis and
aggregation of the datasets to achieve this comprehensive assessment. Details of the
datasets and the procedures are provided in Section 2.1 (“Rural Natural, Socioeconomic,
and Connectivity Environment”). The collated NUTS 2 and NUTS 3 datasets were used
to estimate the indices mentioned in the study scope. Section 2.2 presents further details
about each of the indices, detailing the methodology underlying their development. A
detailed workflow of the methodology is given in Figure 1.
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2.1. Rural Natural, Socioeconomic, and Connectivity Environment

The methodology for analyzing natural, socioeconomic, and connectivity characteris-
tics at the farm and farm community levels involves a comprehensive, multi-step process
to ensure data relevance, integration, and adaptability. Natural environment characteristics
are sourced from EO datasets and JRC repositories on a NUTS 3 scale. These include
precipitation, temperature, soil organic carbon (SOC), nutrients (nitrogen and phosphorus),
sand percentage, soil moisture, and species distribution data reported under Article 17 of
the EU Habitats Directive (92/43/EEC) [32]. Socioeconomic characteristics are sourced
from Eurostat at the NUTS 2 scale and include predominant farm size, economic size,
and farm legal status. Connectivity parameters, including fixed broadband coverage, 5G
mobile network coverage, population density, and topographic data (e.g., elevation), are
gathered from Eurostat, the Rural Observatory, the JRC, and EO datasets at the NUTS
3 scale. Table 1 identifies the specific variables used for each index, showing how soil,
climate and biodiversity, socioeconomic, and connectivity variables are applied across the
different indices.

Table 1. List of variables used for each individual index.

Index Soil Variables Climate and Biodiversity
Variables Socioeconomic Variables Connectivity Variables

Natural Characteristics
Similarity Index (NCSI)

Soil organic carbon, soil
nutrients (N and P), soil

sand percentage, soil
moisture combined with

FAPAR

Precipitation,
temperature - -

Socioeconomic
Characteristics Similarity

Index (SCSI)
- -

Predominant farm size,
predominant farm

economic size,
predominant farm legal

status

-

Rural Connectivity
Performance Index

(RCPI)
- - -

Rural 5G mobile network
coverage, rural

broadband coverage,
physiography, population

density

Fertilization Need Index
(FNI)

Soil organic carbon, soil
nutrients (N and P) - - -

Irrigation Need Index
(INI)

Soil sand percentage, soil
moisture combined with

FAPAR
Annual precipitation - -

Pest Management Need
Index (PMNI) - Temperature, species

richness - -
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All the spatial datasets were reprojected to a common coordinate reference system to
ensure spatial consistency. The point-based LUCAS topsoil measurements (SOC, nitrogen,
and phosphorus) were masked to agricultural land using the Corine Land Cover 2018
product and then averaged within each NUTS 3 region to represent the overall soil fertility
conditions. Raster variables, including soil sand percentage, digital elevation data, and
population, were processed via zonal statistics at the NUTS 3 scale, yielding mean values
for sand percentage, median values for elevation, and total sums for population. For
climate-related Earth observation data (precipitation, temperature, and soil moisture), a
five-year (2018–2023) temporal mean was computed to address interannual variability,
and those averaged values were similarly aggregated using zonal statistics. Additionally,
for the Article 17 species distribution dataset, a geospatial query was performed to count
the number of distinct species polygons intersecting each NUTS 3 region, providing a
measure of species richness. Socioeconomic data from Eurostat, such as farm size and
legal status, were drawn from the latest available reporting year at NUTS 2 and transferred
to corresponding NUTS 3 polygons. Connectivity metrics (broadband and 5G) were
obtained for the most recent reporting period and proportionally allocated from the national
(NUTS 0) level to NUTS 3. Any missing or inconsistent records were addressed through
standard cleaning measures, including outlier checks and interpolation. This harmonized
workflow ensured that differences in spatial resolution, data format, and temporal coverage
did not impede the seamless integration of multiple datasets into a unified geospatial
framework, enabling robust cross-comparisons of environmental, socioeconomic, and
connectivity factors.

The following subsections further elaborate how the data from the datasets was
processed, for each of the characteristics, toward ensuring their usability as input for the
indices of the geospatial framework.

2.1.1. Rural Natural Environment
Dataset Description

The European climatic and rural soil data used in this analysis ensure comprehensive
coverage and are used for the creation of the natural characteristics similarity index and
the Agricultural Digital Solutions Needs Indexes. Key datasets include the LUCAS 2018
Soil Module [33–35], which provides detailed information on soil conditions across Europe,
and the topsoil physical properties for Europe [36] based on LUCAS topsoil data [37].
Additionally, climatic and soil moisture data are derived from the Copernicus Climate
Change Service’s [38] ERA5 dataset [39] and the NASA-USDA-Enhanced SMAP Global
soil moisture data [40], respectively, known for their accuracy and temporal coverage. The
potential monthly Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) [41]
is also used as a key variable in the assessment of crop growth status and cropland pro-
ductivity. Furthermore, reported species distribution data across Europe were obtained
from the European Environment Agency’s Article 17 2020 Spatial Data [42], sourced under
the Habitats Directive 92/43/EEC. These datasets provide critical information on species
presence and range, enhancing the understanding of habitat distribution and biodiversity.

Data Analysis

The variables utilized from these datasets for the current study were the soil organic
carbon, soil nutrient content, soil sand percentage from the soil repository precipitation, soil
moisture, temperature, FAPAR, and species richness data from the climatic, environmental,
and biodiversity datasets. We employed geospatial analysis tools to process these datasets.
First, we applied a mask of areas with agricultural land use from the Copernicus Land
Monitoring Service’s [43] Corine Land Cover 2018 dataset [44]. Then, we isolated the
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European soil data for the agricultural areas within the NUTS 3 polygons and aggregated
these values to the respective NUTS 3 polygon as a mean value. Variables such as soil
organic carbon (SOC), phosphorus, and nitrogen were averaged within NUTS 3 polygons,
providing a regional overview of soil health and fertility. The annual temporal averages
of precipitation per square kilometer for the years 2018–2023 were aggregated for the
NUTS 3 polygons. For each grid cell, the month with the highest Fraction of Absorbed
Photosynthetically Active Radiation (FAPAR) was identified using the FAPAR dataset.
Once this peak month was determined for each grid cell, the mean soil moisture values for
that specific month were calculated for the period from 2018 to 2023. The average value
was aggregated in the NUTS 3 polygons. The annual average number of days exceeding
10 degrees Celsius was extracted and aggregated for the NUTS 3 polygons over the same
period. Furthermore, the number of distinct species was aggregated into the NUTS 3
polygons for the creation of a species richness variable.

Importance of Variables

The selection of these variables is justified by their critical roles in determining soil
health, the conditions for agricultural productivity, their importance and connection to
specific agricultural production steps, and their connection to the replicability analysis of
ADSs. SOC is a crucial component of soil organic matter, influencing soil structure, fertility,
and biological activity [45]. High levels of SOC indicate good soil health, essential for
sustainable agricultural practices. Additionally, phosphorus and nitrogen are vital nutrients
for plant growth and development; their availability in the soil significantly impacts
crop yield and quality [46]. The SOC, phosphorus, and nitrogen data will be integral to
developing the natural characteristics similarity index, which helps in identifying regions
with similar soil and climate characteristics for the geographical replicability assessment of
different ADSs. Additionally, these variables will inform the FNI, pinpointing areas with
specific fertilization requirements. For example, regions with low SOC and nutrient levels
are identified in this framework as needing advanced fertilization ADSs to improve soil
fertility and crop yields. While this serves as a useful simplification for the purposes of this
study, it is important to note that fertilization strategies and their relationship with SOC and
nutrient levels are more complex. Sand percentage in soil significantly impacts irrigation
and agricultural productivity. Soils with higher sand content have a lower water-holding
capacity, leading to quicker drainage and an increased need for frequent irrigation. This is
due to the larger particle size and smaller surface area of sand particles, which allows water
to infiltrate and percolate more rapidly through the soil profile [47,48]. Soil moisture directly
influences plant morphology and functions, including transpiration and photosynthetic
rates [49]. Soil moisture for the month with the highest FAPAR was calculated for each
grid cell, as FAPAR effectively captures the spatial and temporal variations in vegetation
growth and health [50]. By selecting the month with the highest FAPAR, which indicates
peak photosynthetic activity, we focus on the period when vegetation is most active. This
approach ensures that soil moisture is assessed during the critical growth phase, providing
meaningful insights into the relationship between soil moisture and vegetation dynamics.
The data on soil moisture and texture will be used together with all the natural characteristic
variables to develop the NCSI. These variables will also feed into the INI. The integration
of soil moisture and sand content data helps provide a comprehensive understanding of
the water retention capacity and overall soil health of different regions.

Precipitation and temperature are critical climate variables that significantly impact
agricultural productivity and the suitability of different ADSs. Average annual precipita-
tion and temperature data are also used to create the NCSI, aiding the climatic replicability
assessment of ADSs. Precipitation will also feed into the INI. Pest management is highly
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influenced by climate variables, particularly temperature, which affects the lifecycle and
prevalence of pests. Warmer temperatures can lead to increased pest activity and repro-
duction rates, thereby escalating the need for effective pest management solutions [51].
The PMNI will utilize temperature data to pinpoint regions where high temperatures
necessitate advanced pest management ADSs. For example, in areas with a high number of
days exceeding 10 degrees Celsius, which is the incubation threshold for many agricultural
pests, e.g., Colorado Potato beetle [52], digital solutions such as automated pest monitoring
systems, predictive modeling tools, and integrated pest management platforms can be
particularly beneficial. Moreover, species richness has an important role in the analysis,
particularly due to the established link between biodiversity and pest management. High
biodiversity can reduce pest populations by promoting a stable and balanced ecosystem,
where natural predators of pests thrive [53]. The inclusion of species richness as a variable
in the PMNI will help identify areas with high biodiversity that may require fewer pest
control interventions, thus supporting more sustainable agricultural practices.

2.1.2. Rural Socioeconomic Environment
Dataset Description

The primary variables for the rural socioeconomic environment include European
farm size, European farm economic size, and European farm legal status. These variables
are essential for understanding the socioeconomic landscape of farms across Europe, are
used for the creation of the socioeconomic characteristics similarity index, and are sourced
from the latest available Eurostat farm indicator data [54] for 2020 at the NUTS 2 scale.
Utilizing standardized data from Eurostat ensures consistency and reliability across regions,
facilitating accurate comparisons. The focus on NUTS 2 regions allows for detailed analysis
at a regional level, capturing local variations in agricultural practices.

Data Analysis

The geospatial analysis for these variables includes calculating the predominant farm
size, economic size, and legal status within each NUTS 2 region and aggregating this
information based on the predominant value to the respective polygon. This method
highlights the most common agricultural characteristics in each region, providing a clear
picture of regional agricultural profiles. By aggregating the data to polygons, we can
visualize and analyze spatial patterns, aiding in the identification of regions with similar
socioeconomic conditions.

Importance of Variables

Farm size, measured in hectares, is a crucial variable that reflects the physical dimen-
sions of agricultural operations. These data highlight the distribution of small, medium,
and large farms within various NUTS 2 regions. Understanding farm size distribution
is vital for tailoring digital solutions to the specific needs of different farm sizes. Smaller
farms may require different technological solutions compared to larger farms, such as more
cost-effective tools or those that enhance labor efficiency. The economic size of farms, indi-
cated by their yearly income, is an essential indicator of financial health and productivity.
This variable helps assess the economic viability of farms and their capacity to invest in
new technologies. Farms with higher economic output are typically more capital-intensive
and able to adopt advanced digital solutions. Conversely, smaller economic size farms
might need affordable and scalable technologies to improve productivity. Finally, farm legal
status categorizes farms as either a natural person (individual or family-owned) or a legal
person (such as a corporation or cooperative). This classification influences governance,
decision-making processes, and the ability to adopt new technologies. Natural person
farms might prioritize user-friendly and cost-effective technologies, while legal person
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farms might have more resources and structured management to support the adoption of
more sophisticated digital solutions [55].

By examining these variables, we provide a detailed understanding of the socioeco-
nomic conditions of farms across Europe. This information is essential for conducting
the analysis to create a SESI. This index will identify regions with similar socioeconomic
conditions, which is crucial for tailoring digital solutions to specific regional needs. The
resulting tool will deliver targeted recommendations, ensuring that the selected ADSs are
well-suited to the unique characteristics and requirements of different farming regions.
This approach enhances the overall effectiveness and sustainability of agricultural practices
across Europe, supporting policymakers, farm advisors, farmers, and public administration
in making informed, data-driven decisions.

2.1.3. Rural Connectivity Variables
Dataset Description

European rural connectivity variables, used for the development of the RCPI, provide
a detailed understanding of fixed broadband and 5G infrastructure, population distribution,
and terrain characteristics and are sourced from EO data, JRC repositories, and Eurostat
datasets. These data enable the analysis of connectivity disparities and challenges faced by
rural communities and allow for the creation of the RCPI. The topography data utilized
in this analysis are sourced from the Copernicus Land Monitoring Services, specifically
using the Copernicus Digital Elevation Model [56] (COP-DEM) at a 30 m resolution. COP-
DEM provides high-resolution elevation data, essential for detailed analysis of the terrain
across different NUTS 3 regions in Europe. This dataset captures elevation and terrain
features with high accuracy, making it a valuable resource for assessing the impact of the
physical landscape on connectivity infrastructure. The population density data leveraged
in this analysis originate from the Joint Research Centre (JRC), which provides GHS-POP
R2023A, a high-spatial-resolution (100 m) population raster for 2020 [57]. This dataset
is fundamental for understanding how population is distributed across various NUTS 3
regions in Europe, influencing the demand and practicality of broadband infrastructure.
Rural fixed broadband and 5G cellular network coverage data [58] from Eurostat provides
the latest available information from 2022 and is expressed as a percentage. These data
indicate the extent of the broadband and cellular infrastructure available in rural areas,
showing how well connected different regions are in terms of service availability.

Data Analysis

Data processing begins with extracting elevation values from COP-DEM for each
NUTS 3 polygon using geospatial analysis tools. For each NUTS 3 region, the median
elevation value is identified from the COP-DEM data. The median is chosen over the
mean to provide a more robust measure that is less influenced by extreme elevation
values, offering a more accurate representation of typical terrain conditions within the
region. The population values from the dataset are aggregated into NUTS 3 polygons,
yielding a total population count for each region. This aggregation offers insights into the
population concentration within each area, which is vital for assessing the viability and
cost-effectiveness of deploying broadband infrastructure. The population density is then
calculated by dividing the total population by the area of each NUTS 3 region. Geospatial
analysis tools were employed to transform the national-level (NUTS 0) fixed broadband
and 5G cellular infrastructure data into NUTS 3 polygons. This transformation involved
dividing the national-level data into NUTS 3 regional levels to enable detailed analysis and
integration with other variables. This process was essential to normalize the data, ensuring
consistency and comparability with other variables.
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Importance of Variables

Physiography, represented by the median elevation from the COP-DEM, is a critical
factor in the analysis of rural connectivity for several reasons. Terrain complexity, such as
mountains and valleys, poses significant challenges for broadband infrastructure deploy-
ment, with higher or more varied elevations increasing the cost and technical difficulty of
installing and maintaining network infrastructure. Elevation and terrain features also affect
the propagation of wireless signals, with regions having more uniform and lower elevations
typically experiencing fewer signal obstructions, leading to better coverage and higher
speeds [59]. Additionally, easier access to flat or gently sloping areas facilitates infrastruc-
ture development and ongoing maintenance, improving the reliability and sustainability
of connectivity services. High population density areas typically exhibit higher demand
for broadband services, making infrastructure investments more economically feasible. In
contrast, sparsely populated regions often face greater challenges due to higher per-user
infrastructure costs. Population density also affects service quality and accessibility; remote
areas might have inadequate service coverage [60]. Rural fixed broadband and cellular
5G coverage are more straightforward variables for assessing connectivity as they directly
measure the availability and quality of internet services in rural areas. These metrics
provide clear insights into the level of infrastructure and the performance of broadband
services, which are essential for evaluating connectivity.

2.2. Key Indices

The Geographical Similarity Indexes (NCSI and SCSI), the Agricultural Digital Solu-
tions Needs Indexes (FNI, INI, and PMNI), and the RCPI are essential tools for assessing
the geographic replicability and need distribution of ADSs at various agricultural produc-
tion steps, as well as the connectivity performance across different regions at the NUTS
3 scale. These indices serve several critical functions. Firstly, the Geographical Similarity
Indexes (NCSI and SCSI) help identify regions with similar conditions. This is crucial for
determining the potential for replicating ADS implementations in different geographic
areas, ensuring that the solutions are suitable and effective in similar environments. The
Agricultural Digital Solutions Needs Indexes (FNI, INI, and PMNI) for various agricul-
tural production steps, such as fertilization, irrigation, and pest management, highlight
the specific needs of different regions. By identifying areas with particular requirements,
these indices facilitate the targeted recommendation of ADSs, ensuring that digital solu-
tions address the most pressing issues in each region. Finally, the RCPI assesses the local
connectivity infrastructure, determining the feasibility of deploying cloud-based, edge,
or mixed digital solutions. This index ensures that technological recommendations are
practical given the connectivity conditions, thereby enhancing the likelihood of successful
implementation and sustained use. By incorporating these indices into the ADS geospatial
framework, we enhance its capacity to deliver precise, actionable recommendations tailored
to the unique natural, socioeconomic, and connectivity conditions of each region. This
comprehensive approach supports the effective deployment of digital solutions, promoting
agricultural productivity, sustainability, and economic viability across Europe.

2.2.1. Geographical Similarity Indices

By creating two similarity indexes—natural and socioeconomic—we can effectively
group regions with similar conditions, facilitating the deployment of appropriate ADSs.
The natural variables similarity index utilizes natural environment variables, including
soil organic carbon, phosphorus, nitrogen, soil moisture, mean annual precipitation, and
mean annual temperature. The socioeconomic similarity index incorporates factors such as
farm size, economic size, and legal status. These similarity indexes function as powerful
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tools to categorize regions based on their shared characteristics. For instance, regions
with similar soil conditions and climate data can be grouped together under the natural
similarity index, while regions with comparable farm size and economic and legal status
can be clustered using the socioeconomic similarity index. This approach streamlines the
process of selecting and deploying ADSs, ensuring that solutions are tailored to the specific
needs and conditions of each region. The similarity indexes support the ADS geospatial
framework by providing tailored recommendations that match the most suitable ADSs to
regions with comparable conditions. For example, if a particular ADS has proven effective
in a region with specific soil and climate conditions, it is likely to be effective in another
region with similar conditions [61]. This targeted approach enhances the efficiency and
productivity of agricultural practices by ensuring that the recommended ADSs are not only
technically appropriate but also contextually relevant. Aligning an ADS with the unique
characteristics of each region optimizes their effectiveness, ensuring maximum benefits
in improving crop yields, enhancing resource use efficiency, and promoting sustainable
agricultural practices. Moreover, this methodology enhances the scalability and replicability
of ADSs. By understanding the conditions under which an ADS is most effective, we can
replicate its success in similar regions, thereby accelerating the adoption of innovative
agricultural technologies across Europe.

We began by preprocessing and standardizing the datasets of natural and socioe-
conomic variables to prepare them for clustering analysis. Normalizing the data—
transforming values to have a mean of zero and a standard deviation of one—ensures
that each feature contributes equally to the clustering process. To determine the optimal
number of clusters for both indexes, we visualized the data using UMAP (Uniform Mani-
fold Approximation and Projection), a dimensionality reduction technique. This approach
allowed us to uncover natural separations in the data, guiding the selection of the number
of clusters for both indexes. UMAP helped ensure the clusters were both meaningful and
interpretable, capturing the most relevant variations in socioeconomic and natural condi-
tions across Europe [62]. Additionally, we applied the elbow technique to quantitatively
assess the within-cluster variance across a range of cluster numbers. By plotting the inertia
values, we identified the point where adding additional clusters yielded only marginal
improvements, leading to an optimal partition of four clusters for the socioeconomic index
and four clusters for the natural characteristics index [63]. The combination of the UMAP
visualization with the elbow technique allowed us to confidently choose four clusters for
both indexes.

We then applied k-means clustering [64] to group regions based on their similarities,
which is essential for developing similarity indexes that guide the deployment of ADSs.
After clustering, we ordered the clusters based on their similarity to each other. This means
arranging clusters to reflect their relative similarities—for example, Cluster 1 is more similar
to Cluster 2 than to Cluster 3. This ordering helps us understand the relationships between
clusters, enhancing the precision of our recommendations. Finally, to further validate
our cluster selection, we used pairwise Welch’s t-tests [65] to compare the means of the
variables across clusters. This test evaluates whether the differences in cluster means are
statistically significant without assuming equal variances. The tests confirmed that the
differences in cluster means were statistically significant, thereby supporting our choice of
cluster numbers.

By recognizing the gradations between clusters, we can provide more nuanced and
context-sensitive guidance for deploying ADSs. This methodology allows us to visualize
and compare agricultural conditions across Europe, supporting informed decision-making
and ensuring that the deployment of ADSs is both targeted and effective.
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2.2.2. Agricultural Digital Solutions Needs Indices

The Agricultural Digital Solutions Needs Indexes for fertilization (FNI), irrigation (INI),
and pest management (PMNI) identify NUTS 3 regions across Europe where advanced
agricultural solutions are most needed.

To determine these indexes, we employed the Technique for Order of Preference by
Similarity to Ideal Solution (TOPSIS) [66], an analytical multi-criteria decision-making
approach that evaluates each alternative (region) based on its distance to the ideal (best)
and negative-ideal (worst) solutions. In our application, we first constructed a decision
matrix encompassing the relevant natural environment variables for each index. Each
region’s value for each variable was normalized by dividing it by the square root of the
sum of squared values for that variable.

aij =
xij√

∑n
k=1 xij

2

where xij is the raw value for region i and variable j.
Next, we identified the positive-ideal (highest-performing) and negative-ideal (lowest-

performing) values across all regions. For beneficial variables these are defined as follows:

A+
j = max

{
aij

}
and A−

j = min
{

aij
}

For non-beneficial variables, the roles are reversed.
Following this, each region’s Euclidean distances to these reference points were com-

puted. The distances are calculated using the following:

d+i =

√
∑m

j=1

(
aij − A+

j
)2 and d−i =

√
∑m

j=1

(
aij − A−

j
)2

Finally, these distance measures for each region were combined into a final ranking
using the TOPSIS closeness coefficient. The closeness coefficient is computed as follows:

CCi =
d−i

d+i + d−i

The coefficient was then reversed with a score closer to 1 indicating a higher need for
the corresponding advanced digital solution.

The core idea of this approach is that the optimal choice is the one closest to the
positive-ideal solution and farthest from the negative-ideal solution. The FNI incorporates
soil fertility indicators—soil organic carbon (SOC), phosphorus, and nitrogen levels—to
pinpoint regions where enhanced fertilization strategies could improve soil health and
productivity. The INI uses variables such as soil moisture, precipitation, and soil texture
(sand percentage) to highlight areas requiring improved irrigation due to water retention
challenges. The PMNI uses temperature data and biodiversity indicators—such as the
average yearly number of days over 10 ◦C and species richness—as a starting point to
identify areas that could benefit from advanced pest management strategies. However,
these measures inevitably simplify complex ecological processes. Future studies should
explore a broader range of environmental and biological variables to provide more nuanced
insights into pest dynamics and refine management approaches.

Each index ranges from zero to one, with zero indicating a low need for the specific
ADS and one indicating a high need. A score of zero represents ideal conditions—for the
Fertilization Index, high values for SOC, phosphorus, and nitrogen; for the Irrigation Index,
high soil moisture and precipitation with low sand percentage; and for the Pest Manage-
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ment Index, high species richness and fewer days over 10 degrees Celsius. Conversely, a
score of one reflects conditions where advanced solutions are most needed. By creating
these indices at the NUTS 3 regional level, this study provides a robust framework for
assessing and recommending suitable ADSs tailored to the specific conditions of different
regions. The indices support data-driven decision-making in agriculture, leading to more
resilient and adaptable farming systems [67]. Decision-makers can leverage these indices to
allocate resources effectively, prioritize interventions, and monitor the impact of deployed
technologies, ensuring that agricultural advancements are both equitable and impactful
across diverse regions. We used an unweighted TOPSIS approach to ensure that each vari-
able contributed equally to the final score, establishing an unbiased baseline. Nonetheless,
our methodology remains flexible, allowing for future work to incorporate weights that
reflect specific priorities or stakeholder input. Since our analysis was unweighted, a sensi-
tivity analysis was not conducted in this study; however, such an analysis could be easily
integrated in future research by systematically varying weight assignments or modifying
the input variables to assess the stability and robustness of the resulting rankings.

2.2.3. Connectivity Performance Index

The connectivity performance index identifies NUTS 3 regions where improvements in
connectivity infrastructure are necessary to support the deployment of digital agricultural
technologies. Similarly, using the unweighted TOPSIS methodology described earlier,
we incorporated variables related to physiography, population, and connectivity without
repeating methodological details. The analysis included rural fixed broadband and 5G
cellular network coverage, population density, and physiographic data (median elevation)
for each NUTS 3 region. The variables were normalized, and the regions were evaluated
based on their proximity to ideal conditions—high fixed broadband 5G cellular coverage,
high population density, and low median elevation. The index ranges from zero to one,
with zero indicating low connectivity (combining negative-ideal values: low broadband
and 5G cellular coverage, low population density, and high median elevation) and one
representing high connectivity performance (ideal values for all variables). This index
helps guide investments and policy decisions by highlighting regions where enhanced
connectivity infrastructure is crucial for the effective deployment of digital agricultural
technologies. It is important to note that the original connectivity data from Eurostat were
provided only at the national (NUTS 0) level. To address this limitation and obtain a more
regionally nuanced measure at the NUTS 3 level, we integrated additional variables—
specifically, population density and median elevation. By incorporating these demographic
and physiographic factors, we were able to interpolate and reallocate the national-level
connectivity data, thereby producing a refined Rural Connectivity Performance Index
(RCPI) that better captures regional variations.

3. Results
3.1. Rural Natural, Socioeconomic, and Connectivity Environment: Spatial Distribution

The natural, socioeconomic, and connectivity characteristics show a considerable
variation across Europe’s NUTS 2 and NUTS 3 regions. The soil organic carbon (SOC) levels
are notably lower in Southern and Eastern Europe, particularly in parts of Italy, Greece, and
parts of Eastern Europe. Central Europe, particularly Austria, southern France, parts of
Belgium, and the Netherlands, as well as Northern Europe, including Scandinavia, exhibit
much higher levels, reflecting more fertile soils (Figure 2A). The nitrogen levels display
a comparable trend, with decreased concentrations in Southern and Eastern Europe and
elevated concentrations in Central and Northern Europe as in Figure 2B. Central Europe,
specifically Belgium, Germany, and Poland, has elevated phosphorus levels compared
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to Northern Europe, Scandinavia, Southern Europe, and Southeastern Europe, including
regions in Spain, Italy, and Greece (Figure 2C). The soil texture, specifically the sand
percentage, is highest in Northern Europe, particularly in Scandinavia, indicating poor
water retention. In contrast, Central and Southern Europe have lower sand percentages,
suggesting better natural water retention capacity (Figure 2D).
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Figure 2. Soil characteristics of the EU member states aggregated in NUTS 3 from JRC Lucas
topsoil 2018 datasets. (A) Soil organic carbon (gr/kg). (B) Nitrogen (gr/kg). (C) Phosphorous
(gr/kg). (D) Sand Percentage (%). Basemap in Web Mercator projection (EPSG: 3857); database
originally in ETRS89/LAEA Europe (EPSG: 3035). Basemap: Esri, HERE, Garmin, FAO, NOAA, USGS,
© OpenStreetMap contributors.

The highest annual precipitation occurs in Central and Northern Europe, especially
in southern France, Austria, the Netherlands, and Scandinavia. In contrast, lower levels
are seen in the Mediterranean and Eastern Europe, including Spain, Italy, Greece, and
Poland (Figure 3A). Surface soil moisture follows a similar pattern, with higher average
soil moisture levels concentrated in Central and Northern Europe, particularly in regions
like France, Germany, Austria, and Scandinavia, while lower moisture levels are observed
in the Mediterranean and Eastern Europe, especially Spain, Italy, Greece, Romania, and
Hungary indicating more arid conditions (Figure 3B). The average number of days per
year with temperatures above 10 degrees Celsius indicates a clear pattern with the highest
values in Eastern Europe and Mediterranean countries, particularly southern Spain, Italy
and Greece, and parts of the Balkans. Conversely, parts of Central Europe and Northern
Europe, especially Scandinavia, have far fewer days above this temperature threshold
(Figure 3C). Species richness from Article 17 of the Habitats Directive also shows a distinct
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pattern with higher biodiversity in Southern and Eastern Europe, indicating more varied
ecosystems, and lower species richness in Northern and Central Europe (Figure 3D).
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Figure 3. Climate, soil moisture, and biodiversity characteristics in NUTS 3. (A) Annual mean
precipitation in mm/km2. (B) Average surface soil moisture in volume fraction. (C) Average annual
number of days with a temperature over 10 degrees Celsius. (D) Number of different Article 17 species.
Basemap in Web Mercator projection (EPSG: 3857); database originally in ETRS89/LAEA Europe
(EPSG: 3035). Basemap: Esri, HERE, Garmin, FAO, NOAA, USGS, © OpenStreetMap contributors.

The farm socioeconomic characteristics across Europe also show significant regional
differences. The predominant farm size is generally larger in Central and Western Europe,
specifically in France, Germany, and parts of Spain, with most farms exceeding 50 hectares
and, in some cases, even 100. On the other hand, Mediterranean countries, including parts
of Spain, Italy, Greece, and parts of Eastern Europe, are characterized by much smaller
farms, with many regions dominated by farms of less than 10 hectares (Figure 4A). The
economic size of farms, measured by annual income, highlights similar regional disparities.
Northern and Central Europe, especially Belgium, the Netherlands, France, and parts of
Germany, show larger economic sizes, with farms earning between EUR250,000 and over
EUR500,000 annually. In contrast, Southern and Eastern Europe, including regions in Spain,
Italy, Greece, Poland, and the Balkans, exhibit lower farm incomes, often below EUR10,000
per year, reflecting smaller-scale agricultural operations (Figure 4B). Across most of Europe,
farms are primarily classified as “natural persons”, indicating they are individually or
family-owned. However, notable exceptions include northern France, eastern Germany,
Estonia, southern Portugal, and parts of Bulgaria, Hungary, and Romania, where farms
are predominantly registered as “legal persons” (see Figure 4). Figure 4D illustrates the
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proportion of individual and family-owned farms relative to the total number of farms. The
highest percentage of farms classified as “natural persons” is found in Greece, southern
Italy, western Germany, central Poland, Austria, Slovenia, and parts of the Netherlands,
with ratios exceeding 0.9.
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Figure 4. Farm socioeconomic characteristics in NUTS 2. (A) Predominant NUTS 2 farm size in ha.
(B) Predominant NUTS 2 farm economic size in EUR. (C) Predominant NUTS 2 farm legal form.
(D) Natural person legal form-to-total ratio (0–1). Basemap in Web Mercator projection (EPSG: 3857);
database originally in ETRS89/LAEA Europe (EPSG: 3035). Basemap: Esri, HERE, Garmin, FAO,
NOAA, USGS, © OpenStreetMap contributors.

The geospatial distribution of rural fixed broadband coverage indicates high percent-
ages in Central Europe, particularly in France, where coverage exceeds 99%. In contrast,
parts of Northern, Eastern, and other parts of Central Europe, especially in regions of
Poland and Scandinavian countries, show considerably lower coverage, with percentages
falling below 80% in several areas (Figure 5A). The distribution of rural 5G network cov-
erage shows that Italy and Central Europe have the highest levels of rural 5G availability,
while Eastern Europe and Sweden have the lowest coverage (Figure 5B). Population density
is also concentrated in Central and Western Europe, with regions like Belgium, the Nether-
lands, and Germany exceeding 500 people per square kilometer. Meanwhile, Northern
Europe and Scandinavia, with their rural landscapes, have significantly lower popula-
tion densities, often below 25 people per square kilometer, reflecting the more dispersed
populations in these areas (Figure 5C). Finally, median elevation illustrates the diverse
terrain across Europe. Mountainous regions, such as the Alps in Central Europe and the
Scandinavian mountain ranges, show the highest median elevations. In contrast, large
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parts of Central Europe, as well as regions in Northern Europe, have much lower median
elevations (Figure 5D).
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Figure 5. Connectivity variables in NUTS 3. (A) Rural fixed broadband coverage in %. (B) Rural
5G cellular network coverage in %. (C) Population density of NUTS 3 in number of population per
square kilometer. (D) Median elevation of NUTS 3 in meters. Basemap in Web Mercator projection
(EPSG: 3857); database originally in ETRS89/LAEA Europe (EPSG: 3035). Basemap: Esri, HERE,
Garmin, FAO, NOAA, USGS, © OpenStreetMap contributors.

3.2. Similarity Indexes: Spatial Distribution

The NCSI map (Figure 6) shows distinct regional patterns across Europe. In Southern
Europe, Cluster 1 dominates most of Spain, Cyprus, Crete in Greece, and parts of Romania.
Cluster 2 is common in Italy, Greece, the Balkans, and parts of France. Cluster 3 is concen-
trated in Central Europe, covering countries like Germany, parts of France and Belgium,
Austria, and Czechia. Cluster 4 is prevalent in Northern Europe, especially across Scandi-
navia, the Netherlands, the Baltics, Poland, and stretching into parts of France and northern
Germany. The four clusters show statistically significant differences across most environ-
mental and soil variables, based on Welch’s t-tests. For moisture and annual precipitation,
all the clusters differ significantly. Cluster 3 has the highest values for both, indicating the
wettest conditions, while Cluster 1 has the lowest, suggesting the driest. In terms of soil
texture, all the clusters differ except Clusters 2 and 3, which are statistically similar. For
soil organic carbon (SOC), the differences are generally significant, with Clusters 1 and 2
being similar and Clusters 3 and 4 also closely matched. Cluster 3 shows the highest SOC
overall, while Clusters 1 and 2 are on the lower end. When considering phosphorus in the
soil, Clusters 1 and 2 are not significantly different. Cluster 4 has the highest phosphorus



ISPRS Int. J. Geo-Inf. 2025, 14, 185 18 of 29

concentration, whereas Cluster 2 has the lowest. For nitrogen in the soil, Clusters 3 and 4
are similar, while all the others differ. Cluster 3 has the highest nitrogen levels and Cluster
2 the lowest. Lastly, for temperature-related growing conditions (degree-days > 10 ◦C), all
the clusters differ significantly. Cluster 1 has the warmest conditions, followed by Clusters
2 and 3, with Cluster 4 being the coolest. These findings confirm that the clusters are mean-
ingfully distinct in climate, soil texture, and nutrient availability, reflecting ecologically
significant patterns.
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The SCSI map (Figure 7) also reveals clear regional divisions. Clusters 1 and 2 dominate
the Mediterranean, Sweden, Finland, the Baltics, and Eastern Europe, including countries
such as Spain, Italy, Greece, Poland, and the Balkans, typically characterized by smaller
farms and lower economic output. Cluster 3 covers large parts of France, Germany, and the
Czech Republic. Cluster 4 completely covers Belgium, the Netherlands, and Luxembourg
and some parts of Germany, France, Austria, and Spain. The four clusters show clear and
statistically significant differences in both farm size and farm economic size, based on
Welch’s t-tests. For farm size, most pairwise comparisons are significant, except between
Clusters 1 and 2, which are statistically similar. This suggests that farms in Clusters 1 and
2 are of similar physical size. Cluster 3 contains the largest farms, while Cluster 4 also
includes larger farms than Clusters 1 and 2, though smaller than those in Cluster 3. For farm
economic size, a similar pattern is observed. Clusters 1 and 2 do not differ significantly and
represent farms with lower economic output. Cluster 3 has a significantly higher economic
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size than Clusters 1 and 2, and Cluster 4 contains the most economically advanced farms.
However, the difference between Clusters 3 and 4 is not statistically significant, suggesting
comparable economic strength between them. In addition to these quantitative indicators,
the clusters also differ in terms of legal status, a binary categorical variable that was not
included in the t-tests. Although not analyzed statistically here, legal status may still play a
role in the structural composition of each cluster.
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3.3. Digital Farming Need Indices: Spatial Distribution

The FNI, INI, and PMNI provide a clear indication of regional ADS needs across
Europe, with values ranging from 0 (indicating low need) to 1 (indicating high need). These
indexes reflect how different regions require varying levels of intervention to support
agricultural productivity and sustainability.

Significant regional differences in the need for fertilization ADSs are illustrated in
the Fertilization Need Index (Figure 8). Values are especially high in the Mediterranean
area, such as Greece, Italy, Spain, and Cyprus, with index values ranging between 0.57
and 0.85. These regions usually have reduced soil fertility, which necessitates improved
fertilization methods to sustain crop yield. In Western Europe, covering France, Belgium,
the Netherlands, and Luxembourg, there is a wide range of need for fertilization ADSs.
While parts of Belgium and the Netherlands show lower values, some areas of France
exhibit higher fertilization requirements. In general, the FNI in this area usually falls within
a moderate range, typically ranging from 0.41 to 0.52 in index values. In Central Europe, the
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index values vary from moderate to high, ranging from 0.46 to 0.57. Certain areas in Ger-
many have particularly high values, exceeding 0.6. In Eastern Europe, including Romania,
Bulgaria, Hungary, parts of Poland, and the Balkans, the need is generally moderate to high,
with index values ranging from 0.48 to 0.57. These areas require consistent improvements
in fertilization to sustain agricultural productivity. The Scandinavian countries have the
lowest index values across Europe, typically between 0 and 0.35, although some central
areas of Sweden show slightly higher need.
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The INI (Figure 9) similarly reveals distinct regional patterns. The need for Irrigation
ADSs is highest in the Mediterranean area, such as Spain, Italy, and Greece, with index
values ranging from 0.53 to 0.78. The areas with the least amount of irrigation needed in
Western Europe are found in southern Belgium, Luxembourg, and eastern and northern
France, where the index value ranges from 0 to 0.33. However, irrigation needs are more
varied in other parts of France, northern Belgium, and the Netherlands. In Central Europe,
areas like southern Germany and Austria typically have low-to-moderate irrigation needs,
with index values ranging from 0.28 to 0.45, whereas northeastern Germany and certain
parts of Poland have higher index values. Irrigation ADS requirements in Eastern Europe,
such as Romania, Bulgaria, Hungary, and the Balkans, vary from moderate to high, with
index values ranging from 0.39 to 0.53. Much of Poland, in particular, exhibits very high
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ADS irrigation needs. In the Scandinavian countries, index values are relatively low.
Finland has index values between 0 and 0.33, while Sweden and Denmark show more
varied needs, ranging from low to moderate.
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The PMNI (Figure 10) highlights notable regional differences in pest management ADS
needs. In the Mediterranean area, such as Spain, Italy, and Greece, ADS pest management
needs are at their peak, with index values varying from 0.57 to 0.9. In Western Europe,
pest management needs vary from moderate to high, with index readings from 0.49 to
0.57 in places like Belgium and the Netherlands, while France typically has lower index
values, ranging from 0.39 to 0.49. ADS pest management needs in Central Europe differ,
with Germany having moderate values ranging from 0.46 to 0.53, while Austria and the
Czech Republic have lower values. Eastern European countries such as Poland, Romania,
Hungary, and Bulgaria are typically at a low-to-moderate level, with index values falling
between 0 and 0.47. In Sweden and Finland, the PMNI has some of the lowest values in
Europe, ranging from 0 to 0.43.
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3.4. Rural Connectivity Performance Index: Spatial Distribution

The RCPI map reveals significant variations in rural connectivity across Europe,
evaluated at the NUTS 3 level (Figure 11). The index ranges from 0 (indicating low rural
connectivity) to 1 (indicating high rural connectivity). This index illustrates the conditions
across different regions that determine their capacity to support the deployment of digital
agricultural solutions, which rely heavily on adequate internet connectivity. In Western
Europe, including countries such as France, Belgium, and the Netherlands, connectivity
performance is particularly strong, with the highest index values ranging from 0.65 to
0.85, indicating conditions favorable for well-developed digital connectivity in rural areas.
In contrast, Eastern Europe, especially in countries like Poland and parts of the Balkans,
shows significantly lower connectivity, with index values predominantly between 0 and
0.42. In the Mediterranean region, Greece and Spain also display some of the lowest
rural connectivity scores, with values between 0.43 and 0.5, highlighting challenges in
digital infrastructure that could hinder the implementation of ADSs, while Italy indicated
slightly higher connectivity values. In Scandinavian countries, Sweden exhibits very low
connectivity in rural areas, with much of the country showing index values below 0.42,
while Finland shows medium-to-low values between 0.43 and 0.56. This map provides a
clear picture of the regions where conditions are favorable for supporting the deployment
of digital agricultural technologies, based on rural connectivity performance. It highlights
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areas where the connectivity is strong enough to facilitate digital solutions and where
improvements in connectivity are still needed to fully enable such technologies.
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3.5. Indexes Interplay for ADS Adoption

To better understand how regional characteristics interact and affect the adoption of
ADSs, it is crucial to connect the insights from the RCPI with the NCSI and SCSI, alongside
the Digital Farming Need Indexes. Regions with low connectivity, such as parts of Southern
and Eastern Europe, not only struggle with limited internet infrastructure but also rank
high in ADS needs across multiple areas. These regions, identified through the NCSI as
having low soil fertility and poor water retention, show high demand for fertilization and
irrigation solutions. However, their low connectivity performance hinders their ability
to adopt cloud-based or data-heavy ADSs that could help address these issues. In these
cases, edge computing or hybrid models might be more viable, as they are less reliant on
continuous internet access. On the other hand, regions in Western Europe, such as France,
Belgium, and the Netherlands, exhibit high connectivity performance and, according to
the SCSI, have larger, more economically resilient farms. These regions generally show
moderate needs for fertilization and pest management but have the infrastructure in
place to adopt cloud-based ADSs that could enhance precision-farming techniques. The
combination of favorable socioeconomic conditions and strong connectivity infrastructure
places these regions in a better position to scale up digital agriculture. In Central Europe,
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regions like Germany and Austria show moderate-to-high needs for fertilization and pest
management according to the Need Indexes, while also benefiting from moderate-to-high
connectivity performance. This allows for a more flexible approach to ADS adoption,
where both cloud and edge computing solutions could be implemented depending on
specific regional challenges. By integrating these indexes, we can see how regions with
both high agricultural needs and low connectivity face compounded challenges, while
those with high connectivity are better positioned to leverage advanced ADS technologies
effectively. This interconnected analysis reinforces the need for tailored approaches that
consider not just agricultural needs but also the technological infrastructure required to
support sustainable and effective digital solutions.

4. Discussion and Conclusions
This study presents a comprehensive geospatial framework for assessing the suitabil-

ity and demand for ADSs across Europe. By creating and integrating indexes of natural,
socioeconomic, and connectivity characteristics, the framework enables a highly localized
approach to decision-making in agricultural technology adoption. This localized approach
lays the foundation for a robust decision support tool (DST) that empowers various stake-
holders, including policymakers, technology providers, regional planners, and individual
farmers, to precisely assess, select, and implement the most suitable ADSs based on specific
local conditions. By leveraging these integrated indexes, the DST could offer actionable
insights uniquely tailored to regional characteristics, thus significantly enhancing the
framework’s practical applicability and facilitating targeted policy development, strategic
planning, and effective deployment of digital agricultural technologies.

The framework’s primary value lies in its capacity to meaningfully support decision-
makers, policymakers, farmers, and technology providers by delivering tailored recom-
mendations aligned with each region’s specific agricultural and socioeconomic profiles.
Policymakers can utilize this framework to prioritize regions requiring immediate inter-
vention, effectively allocate resources, and implement regional policies aligned with local
agricultural realities. Technology providers can benefit from clearly defined market oppor-
tunities, enabling the creation and delivery of region-specific ADSs that address targeted
agricultural challenges such as connectivity gaps or socioeconomic limitations. Farmers and
agricultural cooperatives gain precise, actionable recommendations, enhancing productiv-
ity, sustainability, and profitability. Additionally, the framework’s inherent scalability and
flexibility promote the replication of successful ADS implementations in regions with com-
parable conditions, thereby accelerating the broader adoption and sustainable integration
of digital agriculture solutions across Europe.

The indexes of natural and socioeconomic similarity show that Europe has a wide
variety of agricultural landscapes, each with unique regional characteristics that mirror
different environmental and socioeconomic circumstances. These indexes help categorize
regions with similar characteristics, thereby facilitating the identification and deployment
of ADSs that are tailored to the specific needs of each area. For instance, the NCSI identi-
fied most of the Mediterranean region as a distinct cluster, which shares specific natural
conditions such as soil and climate characteristics that influence the choice of suitable
digital agricultural solutions. The decision to use these two separate indexes, rather than
a single index containing all variables, was made to provide greater flexibility for end-
users, allowing them to focus on specific regional factors that are most relevant to their
needs. Furthermore, certain ADSs, particularly those leveraging AI models trained on
local datasets, may require even more specialized indexes to ensure accuracy and effec-
tiveness. For instance, an AI-based solution for assessing soil organic carbon (SOC) that
relies on local spectrometer data would benefit from a soil condition similarity index to
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better match regional soil characteristics. Similarly, an ADS designed to detect specific pests
might require a climatic similarity index to account for weather patterns that influence pest
prevalence, allowing for more targeted and reliable applications in varying environments.

The FNI, INI, and PMNI further illustrate the regional variations in demand for digital
tools for key agricultural processes, such as fertilization, irrigation, and pest management.
In regions like the Mediterranean and some parts of Eastern Europe, where soil fertility
and water retention are limited, there is a definite requirement for sophisticated digital
solutions to tackle these issues. Conversely, areas in Western and Central Europe with
better natural conditions have lower needs, highlighting the significance of tailored digital
strategies. The high pest management needs in southern regions highlight the influence
of warmer climates on pest activity, reinforcing the necessity for targeted pest control
technologies. Future research could enhance these indexes by incorporating additional
variables that capture dynamic agricultural changes over time, such as evolving climate
conditions, crop rotation patterns, or new soil health indicators. Integrating real-time
data could further improve the accuracy of the Need Indexes, allowing them to adapt to
fluctuations in environmental and agricultural conditions.

The RCPI sheds light on the significant disparities in rural connectivity across Eu-
rope. High-performing regions in Western Europe, such as France, Belgium, and the
Netherlands, are well positioned to adopt cloud-based ADSs, given their strong digital
infrastructure. Conversely, countries like Poland, Greece, and parts of Scandinavia face
challenges with low rural connectivity, which could limit the effective implementation
of ADSs. In these regions, edge computing or hybrid models may be more appropriate,
where reliance on continuous internet access is minimized. To further improve this index,
future research could focus on creating two distinct indexes: one assessing the suitability
for cloud-based ADSs and another tailored to edge-based solutions. The latter would
benefit from integrating datasets from low-power wide-area network (LPWAN) providers,
such as LoRaWAN and Sigfox, which specifically track connectivity options ideal for edge
computing. This dual-index approach would enable a precise understanding of regional
connectivity capacities, providing clearer guidance on the most feasible ADS infrastructure
for each area. Such refinement would ensure that ADS recommendations align more closely
with each region’s connectivity realities, enhancing the effectiveness and reach of digital
agricultural solutions.

While this framework provides a robust method for assessing the suitability of ADSs
across Europe, certain limitations should be considered. Firstly, the framework relies on
available open-source datasets, which are often static and may not fully capture real-time
changes in environmental conditions, socioeconomic factors, or connectivity. In addition,
certain relevant variables that could enhance future studies—such as pesticide use—rely
on data from regional authorities, which is not always accessible or standardized. This
reliance on static data may affect the responsiveness of the indexes to evolving agricultural
needs and infrastructure developments. Secondly, the current framework assumes that
regional conditions remain relatively stable over time. However, factors such as climate
change, shifts in agricultural practices, and technological advancements in connectivity
infrastructure could lead to significant changes in regional suitability for specific ADSs.
As a result, the recommendations provided by the framework may become less accurate
over time unless updated regularly with new data. Another important limitation is the
spatial granularity of the datasets used, which may not capture fine-scale variations within
regions. Many of the datasets are aggregated at larger regional levels (e.g., NUTS 2 or
NUTS 3), which could overlook local differences that are crucial for precision agriculture.
This level of aggregation might limit the framework’s effectiveness for smaller regions
or highly heterogeneous areas where sub-regional variations in soil quality, climate, or
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connectivity could significantly impact ADS suitability. However, it is important to note
that policymakers often use these regional levels to adopt and implement legislation, mak-
ing them a practical and relevant scale for broader decision-making. For finer spatial
scales, local (municipality) level data collection could potentially address sub-regional
variability, but such data would likely be less standardized and potentially less reliable,
posing additional challenges for consistency and comparability. In addition, while our
current analysis emphasizes spatial trends and relative rankings derived from multi-criteria
decision-making methods, we acknowledge that further validation of the relationships
among soil, climate, and connectivity factors with ADS needs could be beneficial. Future
studies should consider incorporating statistical significance tests and correlation analy-
ses using more granular or independently sourced datasets to rigorously validate these
relationships and further refine our framework.

A promising direction for future research is the development of an environmental
impact index, offering a nuanced view of regions under ecological stress. This index could
identify areas where sustainable practices are most needed or where they could have the
greatest impact on European ecology, focusing on regions for ecological improvements
and ensuring that ADS recommendations align with governmental initiatives promoting
conservation and environmental stewardship. Another key avenue involves refining the
methodology to account for predominant crop types, specific crop needs, and economic
value. A crop-aware approach would tailor ADS recommendations to each region’s agri-
cultural profile. For example, irrigation needs could be assessed with greater accuracy
by factoring in crop type and economic value, resulting in more effective and profitable
ADS applications. By aligning digital solutions with region-specific agricultural and eco-
nomic priorities, the framework can deliver targeted recommendations that enhance both
productivity and sustainability across diverse landscapes.
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The following abbreviations are used in this manuscript:

ADS Agricultural Digital Solution
FNI Fertilization Need Index
INI Irrigation Need Index
PMNI Pest Management Need Index
NCSI Natural Characteristics Similarity Index
SCSI Socioeconomic Characteristics Similarity Index
RCPI Rural Connectivity Performance Index
NUTS Nomenclature of Territorial Units for Statistics
EO Earth Observation
EU European Union
JRC Join Research Center
FAPAR Fraction of Absorbed Photosynthetically Active Radiation
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