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1. INTRODUCTION

Efforts to establish a sustainable, pollution-free environ-
ment have led to adopting alternative fuels such as ethanol,
dimethyl ether, and biodiesel. Current research focuses on
hydrogen-powered engines due to their zero carbon emis-
sions. Replacing diesel gen-sets with hydrogen alternatives
is key to cutting carbon emissions, especially in high-
demand gen-set applications. The impact is even greater
when using hydrogen from sustainable sources, supporting
net-zero emission goals. Due to its wide flammability limits
(4%–74%) by volume in air), hydrogen is particularly well-
suited for spark ignition engines. This property allows
for lean combustion, making hydrogen an alternative for
existing genset applications.

1.1 Hydrogen Combustion Anomalies

Similar to the combustion anomalies observed in conven-
tional Spark Ignition (SI) and pre-ignition for Port Fuel
Injection (PFI) engines, hydrogen internal combustion en-
gines (H2-ICE) can also experience issues such as misfires,
post-fires, knock, and backfires. Misfires occur when in-
cylinder combustion is absent, caused by ignition failure,
a lean air-fuel mixture, dirty and broken spark plug, or
non-optimized spark timing (Marwaha and Subramanian,
2023). Misfires lead to a drop in output torque (Boudaghi

et al., 2015) and hydrogen slip, where unburned hydro-
gen exits the exhaust, posing an uncontrolled combustion
risk. Repeated misfires can cause hydrogen-air accumula-
tion, with around 13% of hydrogen escaping through the
exhaust (Marwaha and Subramanian, 2023), potentially
resulting in post-fire and backfire events. Post-fire occurs
when ignition happens in the exhaust manifold during
the exhaust stroke, with flames moving back toward the
combustion chamber. This can ignite the accumulated
hydrogen-air mixture, leading to a backfire in the next
cycle. Backfire happens when flames travel toward the
intake manifold during the suction stroke. Therefore, mis-
fires, or a combination of misfires, post-fires, and backfires,
can disrupt engine operation by reducing the indicated
mean effective pressure (IMEP)(Marwaha and Subrama-
nian, 2023).

1.2 Misfire Detection
This study primarily focuses on misfire detection, since
early detection helps to prevent post-fires and backfires,
thereby extending engine life. Various Engine Misfire De-
tection (EMD) methods, characterized by different fea-
tures derived from multiple sensor measurements, have
been investigated over the past few decades. Based on that,
EMD can be grouped into in-cylinder combustion diagno-
sis and post-cylinder combustion (outside the combustion
chamber) diagnosis (Boudaghi et al., 2015).
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Typical in-cylinder combustion events can be measured
directly using in-cylinder pressure, ionization current, and
optical sensors installed in individual cylinders. Integrat-
ing an optical sensor with a spark plug allows misfire diag-
nosis by monitoring the wide-band light radiation inten-
sity, indicating misfires when it drops below a certain level
(Piernikarski and Hunicz, 2000). While post-processing
in-cylinder pressure data from conventional piezoelectric
sensors can provide accurate real-time combustion infor-
mation (such as IMEP, torque, and CA50), this method is
primarily used for offline diagnosis (Lujan et al., 2010). Ion
current sensing can detect missing and partially burned
combustion (Cavina et al., 2016) but is unsuitable for
hydrogen engines due to lacking charge carriers like hydro-
carbons. While accurate, these techniques are impractical
for On-Board Diagnostics (OBD) due to high sensor costs
(Boudaghi et al., 2015).

The second category of EMD methods focuses on parame-
ters like exhaust gas temperature or pressure, engine block
acceleration, and engine speed fluctuations. Temperature-
based detection is effective only under certain load con-
ditions with noticeable temperature differences (Tamura
et al., 2011), while oxygen sensors and vibration signals
face limitations due to high noise and low sensitivity to
single misfires (Amadou et al., 2013). Most effective EMD
strategies rely on crankshaft speed signal analysis, corre-
lating speed fluctuations (lida et al., 1990; Pipitone et al.,
2007; Naik, 2004) with combustion events. The misfire
detection based on the engine roughness index developed
by Klenk et al. (1993), evaluates crankshaft rotation time
through angular sectors related to combustion. However,
in multi-cylinder engines, detecting misfiring cylinder is
difficult due to overlapping expansion strokes and inconsis-
tent combustion energy, which increase background noise
(Cavina et al., 2016). Standard OBD techniques, which
are primarily focused on speed variations, are unsuitable
for generator sets. Gen-set applications rely on engine
speed control, which can counteract the effects of misfire
events. On the other hand, exhaust pressure can reveal
misfire events through pressure drops, provided the sensor
is correctly positioned (Chiavola, 2003).

1.3 Research Objectives

This research develops a misfire detection method for pro-
duction engines that identifies misfiring cylinders while ad-
dressing the technological constraints of the Engine Man-
agement System (EMS), including computational load,
complexity, and reliance on available sensors. Existing
OBD techniques based on crankshaft speed are unsuitable
for speed-controlled gensets, as misfire-induced speed fluc-
tuations are often suppressed. Current exhaust pressure-
based methods, such as Chiavola (2003), usually rely on
frequency-domain features, which impose high computa-
tional demands and slow detection times, hindering real-
time implementation. A novel data-driven method is de-
veloped to overcome these limitations, enabling efficient
extraction of misfire characteristics directly from econom-
ical production sensor data, without reliance on complex
physics-based models. Since exhaust pressure is a viable
alternative to in-cylinder pressure for combustion control
and diagnostics, this study focuses on detecting misfires
within the same cycle using a tracking error feature in
the crank angle (CA) domain. Ultimately, this research

Fig. 1. Experimental setup

aims to establish a validated approach for real-time misfire
detection through testing on a research engine setup.

1.4 Outline

The paper is structured as follows: the experimental setup
and data acquisition section describes the data collection
process. The methodology section outlines the exhaust
pressure-based EMD method and the procedure for iden-
tifying and locating misfires. The results section presents
validation of the EMD method with a separate dataset.
Finally, conclusions and a summary of results are provided.

2. EXPERIMENTAL SETUP AND DATA
ACQUISITION

A modern euro-VI diesel engine is modified to operate on
hydrogen using a Port Fuel Injection (PFI) system with
a centrally located spark plug in each cylinder head. The
compression ratio is modified to suit the requirements of
hydrogen combustion. Key specifications of the research
engine setup are listed in Table 1, and the experimental
setup is shown in Fig.1. The research engine is a six-
cylinder inline configuration with a 12.9 L displacement,
equipped with in-cylinder pressure sensors for each cylin-
der. It also has exhaust pressure and crank angle sensors.
A magnetic pickup sensor on the flywheel measures engine
speed with a 0.5° CA resolution. An exhaust pressure
sensor is located between the exhaust manifold and the
turbocharger, sampling at 90 kHz frequency. However, pro-
duction engines typically use a standard 60-tooth design,
therefore all the acquired samples are down-sampled to 6°
CA aligning with the resolution of the production engine.

Table 1. Engine Specifications
Parameter Value

Compression ratio (-) 11.25
Operational speed (rpm) 1500

Max. Power (kW) 275 @1500 rpm
Firing order 1-5-3-6-2-4
Ignition type Spark Ignited

2.1 Data acquisition and separation

Data acquisition is initiated with a measurement plan to
cover the engine’s full operating load range at a constant
speed of 1500 rpm. Misfires are artificially induced during
data acquisition by injecting fuel without igniting it.
Hence, the misfires are defined as a fouled spark plug
scenario. This method is chosen because it is simpler
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to implement than other methods such as lowering the
intake temperature, which is challenging to control for
individual cylinders, or diluting the incoming charge with
the excess air due to the wide flammability range - a unique
property of hydrogen. A dynamometer applies loads based
on torque control, ensuring a constant load on the engine.
The measurement plan is designed to collect a dataset used
for data labeling for modeling and validation testing, as
listed in Table 2. Measurements are taken across various
misfiring patterns detailed below.

(1) Single cylinder misfire.
(2) Two consecutive cylinders in the firing order (1-5)

misfire.
(3) Two cylinders misfire in firing order with one-cylinder

interval (1-3).
(4) Two cylinders misfire in firing order with two-cylinder

interval (1-6).

Table 2. Measurement Plan
• - 25% Load ∗ - 50% Load ⋄ - 75% Load

Pattern Cyl 1 Cyl 2 Cyl 3 Cyl 4 Cyl 5 Cyl 6

Single cylinder • ∗ ⋄ • • • • •
1-5 • ∗ ⋄
1-3 • ∗ ⋄
1-6 • ∗ ⋄

A total of 17 datasets were acquired, each containing 200
cycles, resulting in a cumulative of 3,400 cycles, including
340 misfiring cycles. Of this, 65% (2,200 cycles, includ-
ing 220 misfiring cycles) is allocated for training. The
training dataset includes single-cylinder misfires across all
loads and multiple-cylinder misfiring patterns at 25% load.
The remaining 35% (1,200 cycles, including 120 misfiring
cycles) is reserved for validation and comprises multiple-
cylinder misfiring patterns at 50% and 75% loads.

2.2 Data labelling

All acquired data is categorized into two groups: misfires
and normal combustion. Each dataset is labeled based on
the Workdone, calculated by integrating the area under
the P-V diagram. The Workdone for each cylinder can
be determined using the corresponding in-cylinder pres-
sure trace from the research engine setup. Workdone is
calculated for the power stroke, which occurs between
Inlet Valve Closing (IVC) and Exhaust Valve Opening
(EVO). Misfiring cycles are identified by negative work
done, as the absence of combustion results in work being
done on the system (negative) rather than by the system
(positive). This categorization helps distinguish between
normal operation and misfiring events, as defined by the
following equation:

W =

∫ Vf

Vi

p dV, (1)

where - Vi and Vf are the initial volume and final cylinder
volume [m3] respectively, p is the in-cylinder pressure at
each volume V [bar].

3. MISFIRE DETECTION METHOD

3.1 Background

During each combustion cycle, the exhaust valve of each
cylinder opens once for gas exchange, generating pressure

Fig. 2. Measured exhaust pressure waveform without mis-
fires and with a misfire in cylinder 1, @25% load

waves in the exhaust manifold due to the sudden release
of combustion gases and piston motion. These exhaust
pulsations are influenced by the pressure of the cylinder
at the time of valve opening, which is determined by the
combustion process. In addition, factors such as standing
pressure waves from reflections and wave propagation,
depending on the characteristics of the exhaust system,
also play a role. The primary oscillation frequency of the
exhaust gas pressure in each exhaust strand corresponds to
the ignition frequency. At a constant engine speed of 1500
rpm in a six-cylinder, four-stroke engine, three cylinders
fire per crankshaft revolution, resulting in an ignition
frequency of 75 Hz. Misfires or combustion anomalies
disrupt this exhaust rhythm as shown in Fig.2. The figure
compares the exhaust pressure during a normal firing cycle
with a misfiring cycle in cylinder 1, showing a significant
decrease in the exhaust pressure for the misfiring cycle
compared to the normal firing cycle.

The placement and selection of the exhaust pressure sensor
are critical for accurate misfire detection. To effectively
capture misfire frequencies, the sensor must have a cut-off
frequency of at least 75 Hz (or twice the ignition frequency
of 150 Hz per the Nyquist criterion) without attenuation.
Furthermore, optimal positioning of the sensor along the
exhaust path must minimize the transport delay (td),
caused by the time delay as the exhaust pressure waves
travel to the sensor. This delay varies for each cylinder
due to differences in the length of the exhaust path,
as detailed in Table 3. For example, assuming that the
exhaust pressure waves travel at the speed of sound (520
m/s at exhaust manifold temperature 400◦C), a sensor
placed 1245 mm from the exhaust manifold of cylinder 1
results in a transport delay of

td =
1.245

520
= 0.00239s = 21.54◦ (2)

Table 3. Transport delay calculation
Cylinder Manifold to sensor Transport

distance (mm) delay (deg)

1 1245 21.54
2 1085 18.77
3 930 16.09
4 742 12.84
5 703 12.16
6 830 14.36

For the detection and localization of misfires by exhaust
pressure gas analysis, various approaches can be used,
including frequency-domain analysis through spectral am-
plitudes and time-domain methods. This paper focuses on
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Fig. 3. Schematic of the Reference-Based Method

a CA domain-based diagnostic system that uses tracking
error features derived from exhaust pressure measurements
at each CA value. This approach is hereafter referred to
as the reference-based method.

3.2 Exhaust pressure reference - based
Fig.3 shows the scheme for the developed reference-based
misfire detection method. Exhaust pressure patterns ex-
hibit consistent rises and drop at each crank angle across
different loads, as seen in Fig.2. During normal opera-
tion, each combustion cycle (two crankshaft revolutions)
generates six peaks in the exhaust pressure signal, cor-
responding to an ignition frequency of 75 Hz, indicat-
ing combustion in all six cylinders. However, during a
misfire, the peak of the misfiring cylinder is absent. As
the exhaust gas travels along a fixed path, the acoustic
characteristics remain unchanged, allowing the calculation
of deviations between a reference pressure signal and the
actual pressure signal at each CA value. This deviation,
termed the tracking error, is the primary feature for misfire
detection. The methodology includes four stages: reference
trajectory generation, normalization, feature extraction,
and detection, which are detailed in the following sections.

3.3 Reference signal generation
Joseph Fourier’s principle states that “Any signal x(t)
of infinite length can be represented as a sum of har-
monics.” This principle is particularly relevant to exhaust
pressure signals, where acoustic wave dynamics—traveling
and reflecting within the exhaust pipe—shape the pressure
buildup into a multi-sine pattern. The Fourier transform
decomposes the pressure signal into its fundamental fre-
quency components, offering essential insights for parame-
terizing the reference trajectory in relation to the engine’s
operating speed. Unlike simple averaging, which can ob-
scure critical frequency-dependent characteristics, this ap-
proach preserves key exhaust pressure dynamics, making
it highly effective for the intended engine applications.

Fig.4 shows the Fast Fourier Transform (FFT) of the
exhaust pressure signal, converting it to the frequency
domain to extract key components for reference signal gen-
eration. The dominant peak at 75 Hz corresponds to the
ignition frequency at 1500 rpm, while an additional peak
at 37.5 Hz arises from the acoustics of cylinders 4, 5, and 6,
occurring three times per cycle (cycle frequency: 12.5 Hz).
The remaining frequencies are integer multiples of these
primary components. Unlike cycle averaging, which may
introduce delays, Fourier analysis allows the reference tra-
jectory to be predefined for corresponding engine speeds
by directly substituting the known fundamental frequency
components. Reference trajectory constructed using the
sum of sines given by

xr =
5∑

n=1

an sin(2πfnt+ cn) = an sin(ωnt+ cn), (3)

Fig. 4. Exhaust pressure signal in frequency domain

Fig. 5. Reference signal

This time-domain signal is then translated to the crank
angle (CA) domain, as the time interval between two
consecutive teeth is same (at constant speed) by

∆θ =
2πNe

60
∆t, (4)

hence,

xr =

5∑
n=1

an sin

((
60fn
Ne

)
θ

)
+ cn, (5)

where - xr is the reference value at a crank angle [-], θ is the
crank angle [deg], an is the amplitude of nth harmonic[-],
fn is the frequency of nth harmonic [Hz], Ne is the engine
speed [rpm], cn is the phase of nth harmonic [rad].

In this study, the reference trajectory is constructed using
the dominant frequency components that exceed an ampli-
tude threshold of 1.5 as shown in Fig.4. Five key frequen-
cies are crucial for constructing the reference trajectory,
closely replicating the exhaust pressure behavior across
various loads with a fitting R-squared value of 81.25% as
shown in Fig.5. Including additional frequencies below the
threshold does not improve the fitting accuracy further.

3.4 Normalization

Normalization addresses variations in exhaust pressure
amplitude across different engine loads, which complicates
error tracking with a single reference. This technique scales
all incoming pressure values between 0 and 1, ensuring
consistent detection across varying loads. Online normal-
ization uses a 20-element buffer array to accommodate
samples for every 120° CA (at 6° CA sampling), mini-
mizing the initial delay. Once filled, the buffer updates
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Fig. 6. Intergral error (cylinder 1 misfiring) @25% load

with each incoming sample, updating the minimum and
maximum values.

pnorm(θ) =
pi(θ)− pmin

pmax − pmin
, (6)

where pnorm is the normalized pressure value at a crank
angle [-], pi is the actual pressure value at a crank angle
[kPa], pmin and pmax are the minimum and maximum
pressure value in a buffer array [kPa] respectively.

3.5 Cylinder localization
Each cylinder is localized by dividing the engine cycle
into six segments, corresponding to 120° CA for a six-
cylinder engine. In this study, the engine cycle begins
when the piston is at the Bottom Dead Centre (BDC)
at the start of the compression stroke for each cylinder.
Each cylinder is assigned a specific range of crank angles,
calculated using the Exhaust Valve Opening (EVO) angle
and the transport delay. For example, the starting angle
for cylinder 1 is calculated by adding the EVO angle of
145° aTDC and the transport delay of 22°, resulting in
167°. The ending angle is then obtained by adding 120°
to the starting angle, giving 287°. Thus, each cylinder is
associated with a specific CA range.

3.6 Feature extraction
After normalizing the pressure values, the tracking er-
ror (e)—calculated as the squared deviation between the
normalized pressure and the reference trajectory—is de-
termined at each crank angle. Squaring the error signal
ensures that all values are positive, effectively addressing
cases where the error signal might be negative, thereby
eliminating irregularities and ensuring a consistent rep-
resentation of deviations. Then, the integral error value
(S) is obtained by summing the tracking errors across the
CA range for each cylinder, yielding a single value per
cycle (for two revolutions of the crankshaft), as shown in
Fig.6. This integration minimizes the impact of short-term
fluctuations and noise, resulting in a stronger signal for
distinguishing misfire events based on certain thresholds.
Integral error (S) is calculated by

Sj,c(θ) =

θend,j∑
θstart,j

(xj(θ)− xr(θ))
2 =

θend,j∑
θstart,j

e(θ), (7)

where xj and xr represent the normalized pressure and
reference pressure values at that crank angle, respectively.
θstart,j and θend,j denote the starting and ending CA seg-

ments for the jth cylinder during the cth cycle respectievely.

Fig. 7. Estimation of CT using the training dataset

3.7 Calibration

Misfires are detected and located when the integral error
Sj,c exceeds the critical threshold (CT) in the specified
CA range designated for that particular cylinder, which is
calibrated using the integral error values from the training
dataset. The CT value is specifically determined based
on integral error values from cylinders 1, 2, and 3, as
sensor sensitivity varies with its position relative to these
cylinders’ exhaust manifolds. Considering these factors,
the CT is set at 2.2—the median value within the feasible
domain that effectively differentiates misfires from normal
combustion, as illustrated in Fig. 7. At this threshold, all
misfire events across different cylinders and load conditions
are accurately detected without false alarms.

4. HARDWARE-IN-LOOP TEST RESULTS

The proposed EMD method is validated on hardware
by embedding the C-code, generated from the Simulink
model, into the Engine Management System (EMS). Ex-
haust pressure measurements, crank angle values, and
single-cycle reference trajectory points are provided as
inputs. The output is a Boolean indicator representing the
combustion state, where 0 denotes normal combustion and
1 indicates a misfire.

Fig. 8. Simulation results (i) Exhaust pressure readings (ii)
Cyl 1 Combustion State (iii) Cyl 3 Combustion State

A Hardware-in-Loop (HiL) test is conducted using a vali-
dation dataset with a fixed step size of 5 ms (the interval
between consecutive samples) to account for the unknown
computation time of the EMS in real-time. Each test in-
corporates pressure measurements for 200 cycles, sampled
at a 6°CA. The validation results for cylinder 1 and 3
misfiring patterns at 50% load are presented in Fig. 8,
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Fig. 9. In-cylinder pressure trace (i) Cylinder-1 (ii)
Cylinder-3

which displays exhaust pressure measurements alongside
the Boolean outputs of cylinders 1 and 3. The figure
illustrates that misfires in these cylinders are accurately
detected, as indicated by the Boolean signal transitioning
from normal combustion to misfire upon identifying a pres-
sure drop. The detected misfire events in each cylinder are
compared with pre-labeled data using in-cylinder pressure
traces. Fig. 9 confirms the detection accuracy, showing
a decrease in in-cylinder pressure in cylinders 1 and 3
due to the absence of combustion in that particular cycle.
Similarly, the proposed method is validated for additional
cases, including cylinder 1-5 and cylinder 1-6 misfiring at
25% and 75% loads. The detection method consistently
achieved 100% accuracy under steady-state conditions.
The proposed EMD method addresses key technologi-
cal challenges by enabling seamless EMS integration and
achieving high detection speed, identifying misfire events
within the same cycle while remaining within the per-
missible detection range of one cycle after the misfiring
event. Finally, the method is validated on a research engine
by inducing misfires at various loads under steady-state
conditions. The results confirm its accuracy and reliabil-
ity, supporting its potential for real-time deployment in
production engines.

5. CONCLUSION AND FUTURE WORKS

This study presents a novel, data-driven, and cost-effective
method for detecting and localizing misfiring cylinders
in hydrogen-fueled generator sets. The method extracts
a tracking error feature from the exhaust pressure signal
of a production sensor to classify combustion anomalies.
It achieved high detection accuracy under steady-state
conditions across varying loads while satisfying all imposed
constraints. Additionally, a single threshold, enabled by a
simple normalization technique, successfully captured all
misfiring events across different load conditions.

To further enhance its robustness, the method can be
improved through an adaptive threshold, making it more
effective under changing speed conditions. Although the
new EMD-based approach showed superior accuracy, cer-
tain limitations remain, particularly in handling backfire
events due to updates in pressure parameters used for
normalization. This issue might be mitigated by smooth-
ing the normalized pressure trace to counteract sudden
pressure drops during backfires.

Overall, this new EMD method demonstrated reliable mis-
fire detection for a six-cylinder engine and presents signif-
icant potential for future research in three key directions:

• Validation under Transient Conditions – Validating
the proposed method during load transitions ensures
greater robustness across a broader range of real-
world gen-set applications.

• Application to Larger Engines – Expanding the
method’s applicability to larger engines with higher
cylinder counts, such as eight, ten, or twelve cylinders.

• Adaptive Reference Trajectory Development – Devel-
oping an adaptive reference trajectory to enhance the
method’s applicability across varying engine speeds
and wider range of operational conditions.
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