
Don't Get Entangled in PQC:
Embrace Crypto Agility for
Smooth Code Migration!
one month ago

This blog is written by the participants of the PCSI PQC Benchmarking project, from TNO,

Achmea, Belastingdienst, ABN Amro and ING. The test case described in this blog was

done by ABN AMRO and TNO.

Introduction
In the coming years, many vulnerable

cryptographic algorithms used in software will

need to be replaced by quantum-safe

alternatives to be safe against attacks enabled

by quantum computers. Since all software

migrations crucially depend on developers, they

are the enablers of a future-proof cryptographic

infrastructure that will ensure the confidentiality,

integrity and availability of data. In this blog, we

provide insights from one of the first post-

quantum migrations of a commercial

cryptographic software system that will be

valuable to developers of other cryptographic

applications when facing the upcoming

challenge of post-quantum migration.

The software we looked at builds encrypted channels as an

architecture for secured communication between endpoints,

aiming at identification, confidentiality and untraceability

through cryptographic mechanisms. This software has many

modules with many lines of code – typical for production-

grade applications - and was built in-house. Since the

cryptography was not resistant to quantum attackers, we set

the ambitious goal to migrate the system to a quantum-secure

state and got to work. So, developers, if you want to learn all

about our journey and obtain concrete advise for your own

post-quantum migration, read on!

The Migration Journey
The system we were migrating has two options to establish

secure channels. Either a Diffie-Hellman key exchange is used

to establish a symmetric key, or a Key Encapsulation

Mechanism (KEM)-based approach is taken. Diffie-Hellman

key exchange is generally the most efficient approach, but

there is currently no efficient post-quantum alternative, which

means we could only implement KEM based solutions.

Since post-quantum KEMs have been standardized by NIST,

the most straightforward approach was to replace the

classical KEMs used in the KEM-based approach by post-

quantum KEMs. The system in question is designed to ad-hoc

negotiate an algorithm to be used between endpoints when

establishing secure channels. Since there is no single best

KEM for every use-case, and algorithms can be negotiated at

run-time, we focused on three post-quantum KEMs:

FrodoKEM, McEliece, and ML-KEM.

Our approach was simple – find all current references to RSA

and Elliptic Curve Cryptography (ECC) and add options for our

three alternatives. Sounds easy enough, how hard can it be?

Let’s see how it went.

In this code example, we replace calls to RSA by calls to ML-

KEM.

Step 1: Add Cryptographic Logic
The first step was to navigate to the crypto core where the

cryptographic logic of our system is defined. We needed to

add some logic there for the different types of KEMs so that

our APIs could work with them. Since this code base itself

depends on an external library for the cryptographic

operations, we needed to search for a version of that library

that had implemented the correct types and use that as a

security provider. Luckily this library (called Bouncy Castle)

was already available and a few calls to that library and some

extra tests later, we were done.

Step 2: Static Code Analysis
The next step was to figure out what parts of the code base

depend on the specifics of the RSA logic, so we can make

changes there. Nowadays, most IDEs support static code

analysis, so that is what we employed to find these references,

but third-party tooling can be used as well. It is no

overstatement when we say that our static analysis results

opened the box of pandora. It turned out that cryptographic

dependencies were deeply embedded in the entire code base.

Updating the code base to support one extra algorithm,

required alterations in hundreds of files, many of which

required manual labor.

From:

To:

This is time-consuming work, especially if documentation is

lacking or the original developers could not be involved

anymore. Unfortunately, both were the case for our system.

That brings us to a key insight of this process.

Crypto agility is key in cryptographic

code migration

It was clear that the code structure needed to be changed to

make it more flexible, so it would be easier to add new

algorithms. An interesting observation was that the code

adhered to best practices from a software architecture

perspective. Limited extra algorithms were (and still are)

envisioned when the application was written, so the most

efficient way to build the application at that time was to

hardcode certain elements, like database layouts and test

setups. That brings us to the second insight.

Good quality code is not always crypto

agile

Crypto agility requires us to approach the code architecture

from a different point of view, namely finding the most suitable

code structure such that cryptographic algorithms can be

added and removed in the least labor-intensive way.

Step 3: Rewrite the Code Structure
We hoped to be done by now, but it was clear from the many

hardcoded references that a thorough overhaul was

necessary. Explicit references to crypto algorithms needed to

be abstracted away from the business functionality of the

system and every module of the system would have to adhere

to this abstract encrypting and decrypting flow.

We followed five code concepts that helped boost the crypto

agility of the code base, which we dive into further in the last

section of this blog.

After we implemented these, adding new algorithms was a

piece of cake. This is not only ideal when you want to try out

various different post-quantum algorithms for your

environment but immediately results in a future-proof code

base as well. If one of the newly standardized post-quantum

schemes is found to have a vulnerability, then a new migration

will be required as soon as possible.

A crypto agile code base is therefore more capable of coping

with unexpected future migrations, which brings us to the final

key insight.

Crypto agility can speed up your

migration

Step 4: Celebrate
Our code base is now better equipped to handle future

cryptographic migrations. Most code bases are not inherently

cryptographically agile, so some investment needs to go into

this process. In our migration, we changed 293 Java files and

adjusted 3918 lines of code. This is quite significant compared

to the total 2227 Java files and 164k lines of code in the

project.

Boosting Crypto Agility
We present five coding concepts that were essential in

improving the cryptographic agility of the code base we

migrated. Each concepts shows a snippet of code from our

code base that relates to the concept.

1. Use Universal APIs

Ideally, the cryptographic core makes the connection between

algorithm identifiers and cryptographic logic. APIs that require

parameters related to specific algorithms, such as RSA or

ECC, should be rewritten to be applicable for any

cryptographic algorithm. Config files can be used to set

cryptographic parameters, such that the code base can

remain agnostic.

This code example shows a universal API to retrieve a key generation object in Java. The

body of the function handles all the specific calls for each algorithm.

2. Use Dynamic Memory Structures

Another example of crypto agile code is the following. If

variables need to be tracked with references to specific

algorithms, make sure that these are not stored in (top-level)

variables, since that would require manual addition and

removal of variables with every algorithm change. Instead,

dynamic memory structures, such as dictionaries/maps, can be

used to store variables per algorithm, using an algorithm

identifier as the key. This also allows other modules to

reference these objects in an algorithm-agnostic way.

This code example shows a dynamic memory structure in Java, called a Map. It maps a

key type to an object that records keys of that type.

Code snippet showing the usage of the map in a test to assert equivalence. This test is

now algorithm agnostic and can be parametrized, such that the test is run for each

algorithm without having to duplicate the testing code.

3. Use Parameterized Tests

The best type of unit test tests behavior of the system under

certain conditions. Instead of writing specific tests for each

different algorithm, it is best to write one parametrized test

that tests the behavior of the system. The addition of a new

algorithm would then automatically add an extra test for that

algorithm.

In this code example, the arguments to the testing function testGenerateKeyPair are

automatically extracted from the set of asymmetric key types. This only works if the test

code body can reference dynamic memory structures to retrieve relevant objects for the

respective algorithm, which is explained in the previous section.

4. Use An Appropriate Key Store

Most cryptographic applications store cryptographic keys in

memory. These are usually separate applications, such as

database applications, that expect a certain data layout. If

this data layout is hardcoded to work for RSA or ECC, then it

will most likely break if a key for a different algorithm is

provided. It is therefore essential that the right key storage

configurations are made to support the storage of various

different types of keys. This could mean that database layouts

need to be changed such that an arbitrary number of different

types of keys can be stored. For example, if a database

storage is used in the back-end, code annotations are used to

describe the database structure and hardcoded variables

were used for RSA and ECC keys, then two changes need to

happen. The hardcoded variables need to be replaced by

dynamic memory storage, like a map in Java, and the

annotations need to be updated to properly store the map.

 Alle nieuws

PCSI

https://pcsi.nl/nl/news/
https://pcsi.nl/nl/

In this code example, Jakarta annotations are shown for a Map in Java, which handle the

database layout to store the keys.

As a final note, depending on the cryptographic policy of a

company, the size of symmetric keys might also need to be

updated, which in turn needs to be supported by the key store

if session keys are saved in long-term memory. All the more

reason to have a crypto agile key store!

5. Use A Modular Class Structure

The project structure has a big influence on the crypto agility

of the code base. If many different concepts require separate

classes or files for each algorithm, then these classes need to

be manually added upon each algorithm change. It is

therefore best to write classes that flexibly reference different

algorithms. Usually, the adoption of the first four concepts also

leads to a better project structure.

This overview shows different Java files. Since there are files for each algorithm, the

structure is not crypto agile.

Conclusion
During our journey, we successfully implemented post-

quantum algorithms in our software application. However, the

conclusion is not only that this was feasible, but more

importantly, that we should also refactor the code in such a

way to make future changes easier.

The migration of cryptographic algorithms in code can be

severely sped up by integrating cryptographic agility into your

code base. Unfortunately, most high-quality code is not

necessarily crypto agile. It will take some time investment to

get it done, but our five coding principles should give some

guidance in how to effectively make this adjustment. Once

your code is crypto agile, the effect of missing documentation

or expertise is minimized and should enable a smooth

transition for any algorithm migration to come.

Keep a look out for the other blogs in this series! In this series

of four we share both organizational and technical results,

from four different perspectives: Management, Vendor

Management, Architects and Developers. Read the first blog

here.

Disclaimer: Image created using Copilot

Deel deze pagina

https://pcsi.nl/en/news/building-resilience-how-managers-can-champion-the-pqc-transition/

Alleen door samenwerking
kunnen we de beste

resultaten behalen in de strijd
tegen cybercriminaliteit

Email ons

Contact

Onze nieuwsbrief

Schrijf je in

Volg ons

 

PCSI is een samenwerking van

Over ons

Doe mee

Projecten

Nieuws

Evenementen

Cybertalk sessies

Privacy statement

Cookie statement

Terms of use

Accessibility



https://pcsi.nl/nl/contact/
https://pcsi.nl/nl/nieuwsbrief/schrijf-je-in/
https://www.linkedin.com/company/partnership-for-cyber-security-innovation
https://www.youtube.com/channel/UCccAvNQb2Oa_UfliXjnjZ0Q
https://pcsi.nl/nl/over-ons/
https://pcsi.nl/nl/doe-mee/
https://pcsi.nl/nl/projecten/
https://pcsi.nl/nl/nieuws/
https://pcsi.nl/nl/evenementen/
https://pcsi.nl/nl/cybertalk-sessies/
https://abnamro.nl/
https://www.achmea.nl/
https://belastingdienst.nl/
https://ing.nl/
https://tno.nl/

