Don't Get Entangled in PQC:
Embrace Crypto Agility for
Smooth Code Migration!

one month ago

This blog is written by the participants of the PCSI PQC Benchmarking project, from TNO,
Achmea, Belastingdienst, ABN Amro and ING. The test case described in this blog was
done by ABN AMRO and TNO.

Introduction

In the coming years, many vulnerable
cryptographic algorithms used in software will
need to be replaced by quantum-safe
alternatives to be safe against attacks enabled
by quantum computers. Since all software
migrations crucially depend on developers, they
are the enablers of a future-proof cryptographic
infrastructure that will ensure the confidentiality,
integrity and availability of data. In this blog, we
provide insights from one of the first post-
quantum migrations of a commercial
cryptographic software system that will be
valuable to developers of other cryptographic
applications when facing the upcoming

challenge of post-quantum migration.

¢
» V

The software we looked at builds encrypted channels as an
architecture for secured communication between endpoints,
aiming at identification, confidentiality and untraceability
through cryptographic mechanisms. This software has many
modules with many lines of code — typical for production-
grade applications - and was built in-house. Since the
cryptography was not resistant to quantum attackers, we set
the ambitious goal to migrate the system to a quantum-secure
state and got to work. So, developers, if you want to learn all
about our journey and obtain concrete advise for your own
post-quantum migration, read on!



The Migration Journey

The system we were migrating has two options to establish
secure channels. Either a Diffie-Hellman key exchange is used
to establish a symmetric key, or a Key Encapsulation
Mechanism (KEM)-based approach is taken. Diffie-Hellman
key exchange is generally the most efficient approach, but
there is currently no efficient post-quantum alternative, which
means we could only implement KEM based solutions.

Since post-quantum KEMs have been standardized by NIST,
the most straightforward approach was to replace the
classical KEMs used in the KEM-based approach by post-
quantum KEMs. The system in question is designed to ad-hoc
negotiate an algorithm to be used between endpoints when
establishing secure channels. Since there is no single best
KEM for every use-case, and algorithms can be negotiated at
run-time, we focused on three post-quantum KEMs:
FrodoKEM, McEliece, and ML-KEM.

Our approach was simple — find all current references to RSA
and Elliptic Curve Cryptography (ECC) and add options for our
three alternatives. Sounds easy enough, how hard can it be?
Let’s see how it went.

private void initKeys() { private void initKeys() {
keyPairl = getRSA(0); keyPairl = getMLKEM(0);
keyPair2 = getRSA(1); |::> keyPair2 = getMLKEM(L);

} }

In this code example, we replace calls to RSA by calls to ML-
KEM.

Step 1: Add Cryptographic Logic

The first step was to navigate to the crypto core where the
cryptographic logic of our system is defined. We needed to
add some logic there for the different types of KEMs so that
our APIs could work with them. Since this code base itself
depends on an external library for the cryptographic
operations, we needed to search for a version of that library
that had implemented the correct types and use that as a
security provider. Luckily this library (called Bouncy Castle)
was already available and a few calls to that library and some
extra tests later, we were done.

Step 2: Static Code Analysis

The next step was to figure out what parts of the code base
depend on the specifics of the RSA logic, so we can make
changes there. Nowadays, most IDEs support static code
analysis, so that is what we employed to find these references,
but third-party tooling can be used as well. It is no
overstatement when we say that our static analysis results
opened the box of pandora. It turned out that cryptographic
dependencies were deeply embedded in the entire code base.
Updating the code base to support one extra algorithm,
required alterations in hundreds of files, many of which
required manual labor.

From:



public final class AsymmetricDecryption extends AbstractDecryption {

private static final String ENCRYPTION_ALGORITHM =
"RSA/NONE/OAEPWithSHA256AndMGF1Padding";

private static final String PROVIDER_NAME = AsymmetricEncryption.PROVIDER_NAME;

private static final AlgorithmParameterSpec PARAMETER SPEC = new
OAEPParameterSpec("SHA-256", "MGF1", MGF1ParameterSpec.SHA256,
PSource.PSpecified. DEFAULT);

To:

public final class AsymmetricDecryption extends AbstractDecryption {

private static final String ENCRYPTION_ALGORITHM =
AsymmetricEncryption.ENCRYPTION_ALGORITHM;

private static final String PROVIDER_NAME = AsymmetricEncryption.PROVIDER_NAME;

private static final AlgorithmParameterSpec PARAMETER _SPEC =
AsymmetricEncryption.PARAMETER_SPEC;

This is time-consuming work, especially if documentation is
lacking or the original developers could not be involved
anymore. Unfortunately, both were the case for our system.
That brings us to a key insight of this process.

Crypto agility is key in cryptographic
code migration

It was clear that the code structure needed to be changed to
make it more flexible, so it would be easier to add new
algorithms. An interesting observation was that the code
adhered to best practices from a software architecture
perspective. Limited extra algorithms were (and still are)
envisioned when the application was written, so the most
efficient way to build the application at that time was to
hardcode certain elements, like database layouts and test
setups. That brings us to the second insight.

Good quality code is not always crypto
agile

from a different point of view, namely finding the most suitable
code structure such that cryptographic algorithms can be
added and removed in the least labor-intensive way.

Step 3: Rewrite the Code Structure

We hoped to be done by now, but it was clear from the many
hardcoded references that a thorough overhaul was
necessary. Explicit references to crypto algorithms needed to
be abstracted away from the business functionality of the
system and every module of the system would have to adhere
to this abstract encrypting and decrypting flow.

We followed five code concepts that helped boost the crypto
agility of the code base, which we dive into further in the last
section of this blog.

After we implemented these, adding new algorithms was a
piece of cake. This is not only ideal when you want to try out
various different post-quantum algorithms for your
environment but immediately results in a future-proof code
base as well. If one of the newly standardized post-quantum



schemes is found to have a vulnerability, then a new migration
will be required as soon as possible.

A crypto agile code base is therefore more capable of coping
with unexpected future migrations, which brings us to the final
key insight.

Crypto agility can speed up your
migration

Step 4: Celebrate

Our code base is now better equipped to handle future
cryptographic migrations. Most code bases are not inherently
cryptographically agile, so some investment needs to go into
this process. In our migration, we changed 293 Java files and
adjusted 3918 lines of code. This is quite significant compared
to the total 2227 Java files and 164k lines of code in the
project.

Boosting Crypto Agility
We present five coding concepts that were essential in
improving the cryptographic agility of the code base we

migrated. Each concepts shows a snippet of code from our
code base that relates to the concept.

1. Use Universal APIs

Ideally, the cryptographic core makes the connection between
algorithm identifiers and cryptographic logic. APIs that require
parameters related to specific algorithms, such as RSA or
ECC, should be rewritten to be applicable for any
cryptographic algorithm. Config files can be used to set
cryptographic parameters, such that the code base can
remain agnostic.

public AsymmetricKeysGenerator get(AsymmetricKeyType keyType) {

return switch (keyType) {
case EC -> new AsymmetricGenericKeysGenerator("EC", "BC");
case RSA -> new AsymmetricGenericKeysGenerator("RSA", "BC");
case MLKEM -> new AsymmetricGenericKeysGenerator("KYBER512", "BCPQC");
case FRODO -> new AsymmetricGenericKeysGenerator("Frodo", "BCPQC");
case MCELIECE -> new AsymmetricGenericKeysGenerator("CMCE", "BCPQC");
b
}

This code example shows a universai API to retrieve a key generation object in Java. The

body of the function handles all the specific calls for each algorithm.

2. Use Dynamic Memory Structures

Another example of crypto agile code is the following. If
variables need to be tracked with references to specific
algorithms, make sure that these are not stored in (top-level)
variables, since that would require manual addition and
removal of variables with every algorithm change. Instead,
dynamic memory structures, such as dictionaries/maps, can be
used to store variables per algorithm, using an algorithm
identifier as the key. This also allows other modules to
reference these objects in an algorithm-agnostic way.



) PCsI

private Map<AsymmetricKeyType, EncryptionKeys> encryptionKeysMap;

This code example shows a dynamic memory structure in Java, called a Map. It maps a

key type to an object that records keys of that type.

assertThat(returnedObject.encryptionKeysMap.get(keyType),
is(equalTo(expectedObject.encryptionKeysMap.get(keyType))));

Code snippet showing the usage of the map in a test to assert equivalence. This test is
now algorithm agnostic and can be parametrized, such that the test is run for each

algorithm without having to duplicate the testing code.

3. Use Parameterized Tests

The best type of unit test tests behavior of the system under
certain conditions. Instead of writing specific tests for each
different algorithm, it is best to write one parametrized test
that tests the behavior of the system. The addition of a new
algorithm would then automatically add an extra test for that
algorithm.

public static Stream<Arguments> testGenerateKeyPair() {
return Arrays.stream(AsymmetricKeyType.values()).map((x) -> arguments(x));

}

@ParameterizedTest

@MethodSource

public void testGenerateKeyPair(AsymmetricKeyType keyType) {
// test code body

}

In this code example, the arguments to the testing function testGenerateKeyPair are
automatically extracted from the set of asymmetric key types. This only works if the test
code body can reference dynamic memory structures to retrieve relevant objects for the

respective algorithm, which is explained in the previous section.

4. Use An Appropriate Key Store

Most cryptographic applications store cryptographic keys in
memory. These are usually separate applications, such as
database applications, that expect a certain data layout. If
this data layout is hardcoded to work for RSA or ECC, then it
will most likely break if a key for a different algorithm is
provided. It is therefore essential that the right key storage
configurations are made to support the storage of various
different types of keys. This could mean that database layouts
need to be changed such that an arbitrary number of different
types of keys can be stored. For example, if a database

were used for RSA and ECC keys, then two changes need to

< Alle nieuws)gppen. The hardcoded variables need to be replaced by

dynamic memory storage, like a map in Java, and the
annotations need to be updated to properly store the map.


https://pcsi.nl/nl/news/
https://pcsi.nl/nl/

@ElementCollection

@CollectionTable(name = “example_table_name", joinColumns = @JoinColumn(name =
“example_id"))

@MapKeyColumn(name = "key_type")

private Map<AsymmetricKeyType, @NotNull @Valid EncryptionKeys> encryptionKeysMap;

In this code example, Jakarta annotations are shown for a Map in Java, which handle the

database layout to store the keys.

As a final note, depending on the cryptographic policy of a
company, the size of symmetric keys might also need to be
updated, which in turn needs to be supported by the key store
if session keys are saved in long-term memory. All the more
reason to have a crypto agile key store!

5. Use A Modular Class Structure

The project structure has a big influence on the crypto agility
of the code base. If many different concepts require separate
classes or files for each algorithm, then these classes need to
be manually added upon each algorithm change. It is
therefore best to write classes that flexibly reference different
algorithms. Usually, the adoption of the first four concepts also
leads to a better project structure.

/X/J//Daw<féa/

L I3 eptorTest €

€ M @ EndT Test & McElieceAesEncapsulationDecapsulationTest
& MIKemAesEncapsulationDecapsulationTest @ EndToEndMCELIECEKeyAcceptorTest € MiKemAesEncapsulationDecapsulationTest
€' RsaDaepSha1AesEncryptionDecryptionTest & EndToEndMLI Test & RsaOaepShal.

& RsaO: & RsaOaepSha2s6AesEncryptionDecryptionTest

This overview shows different Java files. Since there are files for each algorithm, the

structure is not crypto agile.

Conclusion

During our journey, we successfully implemented post-
guantum algorithms in our software application. However, the
conclusion is not only that this was feasible, but more
importantly, that we should also refactor the code in such a
way to make future changes easier.

The migration of cryptographic algorithms in code can be
severely sped up by integrating cryptographic agility into your
code base. Unfortunately, most high-quality code is not
necessarily crypto agile. It will take some time investment to
get it done, but our five coding principles should give some
guidance in how to effectively make this adjustment. Once
your code is crypto agile, the effect of missing documentation
or expertise is minimized and should enable a smooth
transition for any algorithm migration to come.

Keep a look out for the other blogs in this series! In this series
of four we share both organizational and technical results,
from four different perspectives: Management, Vendor
Management, Architects and Developers. Read the first blog
here.

Disclaimer: Image created using Copilot

Deel deze pagina


https://pcsi.nl/en/news/building-resilience-how-managers-can-champion-the-pqc-transition/

Over ons
Doe mee

Projecten

Email ons

Contact

v] £]in]©

Alleen door samenwerking
kunnen we de beste
resultaten behalen in de strijd
tegen cybercriminaliteit

Nieuws
Evenementen

Cybertalk sessies

Onze nieuwsbrief Volg ons

Schrijf je in in

PCSlI is een samenwerking van

Y seasinggiens NG 20 TNO

' ABN'AMRO achmea °



https://pcsi.nl/nl/contact/
https://pcsi.nl/nl/nieuwsbrief/schrijf-je-in/
https://www.linkedin.com/company/partnership-for-cyber-security-innovation
https://www.youtube.com/channel/UCccAvNQb2Oa_UfliXjnjZ0Q
https://pcsi.nl/nl/over-ons/
https://pcsi.nl/nl/doe-mee/
https://pcsi.nl/nl/projecten/
https://pcsi.nl/nl/nieuws/
https://pcsi.nl/nl/evenementen/
https://pcsi.nl/nl/cybertalk-sessies/
https://abnamro.nl/
https://www.achmea.nl/
https://belastingdienst.nl/
https://ing.nl/
https://tno.nl/

