‘) PCSI

¢ Alemevs{ow to get un-stuck by
Architecting for Resilience 2

4 weeks ago

PQC Benchmarking test details

Context

From mid 2024 to mid 2025 the PCSI partners
ran a PQC Benchmarking_project. In the final

phase of this cybersecurity innovation project,
results and lessons learned are shared. For this
project a series of 4 blogs are published on the
PCSI website. The PQC Benchmarking test
details you are currently reading are a technical
addendum to the blog titled ‘How to get un-
stuck by architecting for resilience’.

Migrating to quantum safe
cryptography

It's important to realize that it's not simply a
matter of drop-in replacing the current
quantum-vulnerable algorithms by PQC
algorithms. There are several PQC algorithm
options available, each of them with different
characteristics. Additionally, the PQC algorithms
can be used either in a pure form or in
combination with classical ones. We call the
latter a ‘hybrid’ implementation and it comes in
two flavours: ‘hybrid AND’ and ‘*hybrid OR’ (for
reference see the PQC Migration Handbook).
‘Hybrid AND’ means that both algorithms must
be evaluated successfully. In the current phase
of the PQC migration process, this hybrid
implementation is often recommended.

Test setup

[PW1]Link naar de pagina invoegen

https://pcsi.nl/nl/projecten/pqc-benchmarking
https://publications.tno.nl/publication/34643386/fXcPVHsX/TNO-2024-pqc-en.pdf
https://pcsi.nl/nl/news/
https://pcsi.nl/nl/

e T

No HTTPS (for reference)
Current algorithms DH & RSA (for reference)

Current algorithms ECC (=classical)

Key exchange PQC, signatures classical

Key exchange classical, signatures PQC

Key exchange and digital signatures PQC

Key exchange hybrid, signatures classical
Key exchange classical, signatures hybrid

Key exchange and digital signatures hybrid

0
1 ffdhe3072

~

x25519

mikem512
frodo640aes

& w

%25519
%25519
x25519
%25519
- x25519
%25519

® N o »n

w©

10 mlkem512
11 mlkem512
12 mlkem512
13 mlkem512
14 frodokem-640 (frodo640aes)
15 frodokem-640 (frodo640aes)
16 frodokem-640 (frodo640aes)
17 frodokem-640 (frodo640aes)

18 x25519 _mlkem512
19 x25519_frodo640aes
20 x25519

21 x25519_mlkem512
22 x25519_frodo640aes

Key exchange algorithm Digital signature algorithm

rsassa-pss
ed25519

ed25519
ed25519

mldsad4

falcon512

slh-dsa-sha2-128s (sphincssha2128ssimple)
slh-dsa-sha2-128f (sphincssha2128fsimple)
slh-dsa-shake-128s

slh-dsa-shake-128f (sphincsshake128fsimple)

midsad4

falcon512

slh-dsa-sha2-128s (sphincssha2128ssimple)
slh-dsa-sha2-128f (sphincssha2128fsimple)
mldsa44

falcon512

slh-dsa-sha2-128s (sphincssha2128ssimple)
slh-dsa-sha2-128f (sphincssha2128fsimple)

ed25519
ed25519
midsad4_ed25519

mlidsad44_ed25519
mldsad4_ed25519

Table 1: Test setup with 22 test configurations

Note: slh-dsa-shake-128s was not available for config in

OpenSSL

Executed scenario

Some technical details of the executed scenario:

¢ All key exchange and digital signature algorithms we
wanted to test could be tested, with the exception of the
McEliece KEM. The combination of X25519 with slh-dsa-
shake-128s could not be tested either. These choices were

not supported by our versions of OpenQuantumSafe.

e We took X25519 key exchange with Ed25519 signatures
as a baseline, which both use Elliptic Curve Cryptography
(ECC). Another common classical choice is RSA signatures
and finite field Diffie-Hellman (FFDH) key exchange. We
used the combination of finite field Diffie-Hellman using
3072-bit keys (ffdhe3072) for key exchange and RSA
signatures using 4096-bit keys (RSASSA-PSS). We include
both choices for reference.

e We started testing with 22 configurations as listed in table

1.

e We measured the number of messages per second that

we sent/received throughout the TLS connections for the

test runs.

e For each message a separate TLS connection was set up

and after delivery, it was torn down again. HTTP Keepalive
was stopped explicitly.

Test runs were executed with 1 thread and later re-run
using 4 and 8 threads.

1 run = 2.500 messages, scaled linearly to 10.000 and
20.000 for the multi-thread runs.

In all tests AES_256_GCM with SHA384 was used for
symmetric encryption.

CPU usage, memory and network information were
observed, not measured.

e Message size was constant, but the TLS handshakes
messages were differently sized depending on the used
algorithms.

The software versions we used:

Version

Linux RHEL 9
TLS 1.3
OpenSSL 3.2.3
Libogs 0.12.1
OQS Provider 0.8.1
cURL 8.12.1
HAProxy 3.1.0

JMeter 5.6.3

Table 2: Software versions

Raw test results

_ Key exchange algorithm Digital signature algorithm msg/sec 1thread | msg/sec 4 threads | msg/sec 4 threads

No HTTPS (for reference) [} 725 2961 4167
Current algorithms DH&RSA (for reference) 1 ffdhe3072 r5assa-pss 2713 64.9 710
Current algorithms ECC (=classical) 2 x25519 ed25519 56,6 208,7 283,1
B 3 mikem512 ed25519 54,8 2006 2704
e 4 frodo§a0aes. ed25519 288 1711 55,7
5 x25519 midsadd 54,7 2085 79,1

6 x25519 falcons12 53,6 2007 2813

. 7 x25519 slh-dsa-sha2-128s (sphincssha2128ssimple) 60 66 66
Revieciimt i sdnatiatoc 8 x25519 slh-dsa-sha2-128f (sphincssha2128fsimple) 38,1 82,2 935
- x25519 slh-dsa-shake-1285 N/ NjA N/A®

9 x25519 slh-dsa-shake-128f [sphincsshake128fsimple) 29,0 52,6 57,4

10 mikemS512 midsadd 553 2083 M5

11 mikem512 falcons12 53,8 194,0 2787

12 mikems512 slh-dsa-sha2-128s (sphincssha2128ssimple) 60 65 67

A 13 mikems12 slh-dsa-sha2-128f (sphincssha2128fsimple) 373 79.2 934
v o ral slg: 14 frodokem-640 (frodo6a0aes) midsadd 478 169.2 2475
15 frodokem-640 (frodo6d0aes) faleonS12 48,7 164.4 2424

16 dokes 1h- h: 8 i Bssimple) 5.9 6.5 6,7

17 frodokem-640 (frodoB40aes) slh-dsa-sha2-128f (sphincssha2128fsimple) 355 78,0 84,0

. 18 x25519_mikem512 ed25519 49,1 1931 2615

B 19 x25519_frodo640aes ed25519 263 160,6 2344
Key exchange classical, signatures hybrid 20 x25519 midsadd_ed2s519 50,3 1893 2497
il e § 21 x25519_mikem512 midsadd_ed25519 58 1805 2386

B 22 425519 frodo640aes midsadd_ed25519 385 1591 215

Table 3: Raw test results

Detailed analysis

The results show the messages per second that we
sent/received throughout the TLS connections using various
combinations of Key Encapsulation Mechanisms and Digital
Signature Schemes and multiple settings of numbers of
threads used.

Here are some of the insights.

Baseline references

Currently, often finite field Diffie-Hellman (ffdhe3072) is used
for key exchange, combined with RSA signatures using 4096-
bit keys (RSASSA-PSS). However, the ‘classical elliptic curve
(ECC)’ combination of X25519 with Ed25519 is significantly
faster and also very common. We used both as baseline
references. They serve as a good reference point for what
classical cryptography has to offer at the moment.

The messages per second for classical ECC was two times
higher than for classical FFDH/RSA at 1 thread and the
performance increase got increasingly better for 4 threads and
8 threads (3 times higher and 4 times higher respectively).

This means that any results that are similar to the ECC
baseline are also much better than the currently often used
FFDH/RSA configurations.

Multithreading

Using four or eight threads seems to give a linear performance
increase for almost all KEM and DSA configurations, except for
size-optimized SLH-DSA. This means that CPU usage is
generally not the bottleneck. It is likely that the network delays
are large enough for the CPU to yield CPU time to parallelize
processes while waiting for responses.

Key exchange

Pure PQC key exchange

Among the post-quantum KEMs, ML-KEM512 gives very
similar performance results compared to X25519. Surprisingly,
the results for Frodo640aes are also quite close to that of ML-
KEM512.

The performance loss for ML-KEM512 compared to X25519 is
around 3% for all numbers of threads. The performance loss
for Frodo640aes compared to X25519 is 13%, 18% and 10%
for 1, 4 and 8 threads respectively.

FrodoKEM has security benefits, because its security
assumptions are more conservative than those of ML-KEM.
Given the minor performance difference, it could be a relevant
option for organizations that want to stay on the cautious
side.

Hybrid key exchange

The extra performance loss of the hybrid KEMs versus the
single KEMs is a lot less than expected, at most 10%.
Specifically, hybrid ML-KEM + X25519 is 10%, 4%, 5% slower
than ML-KEM alone, and hybrid Frodo640aes + X25519 is 5%,
6% and 8% slower than Frodo640aes alone, for 1,4 and 8
threads.

Digital signatures

Pure PQC signatures

The performance results differ quite a bit when combining
X25519 key exchange with various different post-quantum
signature schemes. ML-DSA44 results and Falcon512 results
are very similar to Ed25519 (Falcon is sometimes even faster),
whilst SLH-DSA results are significantly worse.

ML-DSA44 has a performance loss of at most 4% for all
thread configurations. Falcon512 has a performance loss of at
most 6% for all thread configurations, and even has a
performance increase of 0.5% at 8 threads. SLH-DSA does
not gain any benefits by adding threads, which means that it
is very heavy for the CPU.

Speed-optimized SLH-DSA with SHA2-128 performs best out
of all SLH-DSA configurations. At 1 thread, this gives a
performance loss of about 32%, which gets worse with more
threads, because the baseline (ECC) does gain performance
benefits with more threads.

Compared to classical FFDH/RSA, X25519 key exchange with
speed-optimized SLH-DSA using SHA-128 does perform
better: 40%, 27% and 30% increase for 1 thread, 4 threads
and 8 threads respectively.

For size-optimized SLH-DSA with SHA2-128, the
performance loss is 90% at 1 thread and again gets worse
with more threads. No results could be retrieved for size-
optimized SLH-DSA with SHAKE.

Hybrid signatures

The only available hybrid signature scheme is ML-DSA44
combined with Ed25519. The performance loss is at most
12%.

The hybrid mode that was used is the composite mode, which
means that both signatures need to be verified and both need
to be valid.

If signature verification would take the majority of the
performance overhead, we would expect about a 50% loss
here, since ML-DSA44 and Ed25519 perform similarly. The
results imply that this is not the case and that hybrid
signatures come with a limited performance cost.

Pure PQC key exchange and digital
signatures

From the previous results, we would expect that combining
ML-KEM512 with ML-DSA44 or Falcon512 would not give a
big performance loss, which is verified by the results: ML-
KEM512 + ML-DSA44 has a performance loss of at most 4%,
ML-KEM512 + Falcon512 has a performance loss of at most
5%.

Combining Frodo640aes with ML-DSA44 or Falcon512 gives a
more significant performance loss: Frodo640aes + ML-DSA44
has a performance loss of at most 20%, Frodo640aes +
Falcon512 has a performance loss of at most 21%.

Hybrid key exchange and digital
signatures

Combining the fastest classical algorithms with the fastest
post-quantum algorithms for KEMs and DSAs, we get about a
20% performance decrease. Using X25519 and ML-KEM512
for the key exchange and Ed25519 and ML-DSA44 for the
signature schemes, we get a performance loss of 20%, 14%
and 15% for 1 thread, 4 threads and 8 threads respectively.

TLS message size with PQC

Even though no packet drops were observed in the
experiment, and the performance data did not indicate hinder
from bigger packets on the network, it is interesting to see the
actual size increase. This might become an issue in bigger or
congested networks or with other applications. Since the key
exchange algorithms and DSAs are used in different
messages in TLS 1.3, we can inspect them separately.

With the KEMs there is a big difference between FrodoKEM
and ML-KEM: FrodoKEM produces client hello messages that
are almost 10x as big as the ones with ML-KEM, and also the
server hello increases significantly.

Baseline KEMPQC Kem hybrid
KEM ffdhe3072 x25519 mlkem512 frodoB40aes|x25519_mlkem512 x25519 frodoB40aes
Signature RSASSA-PSS ED25519 ED25519 ED25519 ED25519 ED25519
& |[Client hello 778 512| 1.194
£ |server hetlo 474 858
% |Certificate 1.310 303
9
=

CERT verify 520

Table 4: Message size in bytes for the TLS handshake parts for
ML-KEM, FrodoKEM and baselines.

Signatures influence the certificate and cert verify messages.
Note that in this test the certificate contains the PQC signing
public key (but has no PQC signature itself). The result of size

vs speed optimization in SLH-DSA (Sphincs+) is clearly visible,
with a 9.2kB difference.

Baseline Signature PQC Signature hybrid
KEM fidhe3072 k25519 [x25519 x25519 X25519 X25619 x25519 x25519

sphincssha2 sphincssha2 sphincsshake

Signature RSASSA-PSS ED25519 midsad4 falcon512 12Bssimple 128fsimple 128fsimple midsad4_ed25519
2| Clienthello
£ |Server hello
2| certificate 4.891 4472
Z | CERT verity

Table 5: Message size in bytes for the TLS handshake parts for
Digital Signatures and baselines

Deel deze pagina

v] £]in]©)

Alleen door samenwerking
kunnen we de beste resultaten
behalen in de strijd tegen
cybercriminaliteit

Over ons Nieuws

Doe mee Evenementen

Projecten Cybertalk sessies

Email ons Onze nieuwsbrief Volg ons
Contact Schrijf je in in o

St . .
_.',3;:"-‘ PCSl is een samenwerking van
i
3 ., ' ABN-AMRO ochmea O N Belastingdienst INGm TNO

https://pcsi.nl/nl/contact/
https://pcsi.nl/nl/nieuwsbrief/schrijf-je-in/
https://www.linkedin.com/company/partnership-for-cyber-security-innovation
https://www.youtube.com/channel/UCccAvNQb2Oa_UfliXjnjZ0Q
https://pcsi.nl/nl/over-ons/
https://pcsi.nl/nl/doe-mee/
https://pcsi.nl/nl/projecten/
https://pcsi.nl/nl/nieuws/
https://pcsi.nl/nl/evenementen/
https://pcsi.nl/nl/cybertalk-sessies/
https://abnamro.nl/
https://www.achmea.nl/
https://belastingdienst.nl/
https://ing.nl/
https://tno.nl/

