‘) PCSI

< Alle nieuws

—~ow to get un-stuck by
Architecting for Resilience

4 weeks ago

This blog is written by the participants of the PQC Benchmarking project, from TNO,
Achmea, Belastingdienst, ABN Amro and ING. The test case described in this blog was

carried out by Belastingdienst.

Introduction

As developments in quantum technology push
forward, the resulting reality of weakened
cryptographic strength puts us to the test. For
decades we could rely on stable defaults like
Diffie Hellman, RSA and elliptic curve
cryptography (ECC). Now, we must revise how
we achieve digital trust goals like confidentiality,
integrity and availability, by adopting what is
called post quantum cryptography (PQC).

The international community has been
developing and standardizing the new post
quantum algorithms. IT departments and
businesses must prepare and start using them in
their infrastructures and landscapes.
Importantly, vendor readiness is not the only
missing part of the puzzle. It is also a matter of
knowledge and insights: these new algorithms
are less familiar to IT practictioners and little is
known about their performance in production
systems.

PQC migration features a leading role for IT and
security architects. They will need to consider
available alternatives and their feasibility for
each use case. This difficult task requires
expertise that could greatly benefit from real
world experiences, like benchmarks conducted in
real-world implementation scenarios.

https://pcsi.nl/nl/news/
https://pcsi.nl/nl/

In our project, we started a benchmarking test to
do just that. We share our most valuable lessons
learned in this blog. You will learn about how we
encountered various pitfalls that are typical for
migration. The good news is: we found ways to

pivot out of them!

The Quest for insights

To start off the benchmarking journey, we had to pick a use
case that would produce practical knowledge and insights on
the usage of PQC algorithms and that would be executable
within the project’s time constraints. We settled on migrating
the connection setup for a message queuing (MQ) application
in which clients use PQC certificates instead of classical
certificates. What would the performance impact be?

One of the main considerations was that message queuing
applications are a common component in IT architectures that
require high performance. There was also a practical side: we
found that message queuing is closely tied to the daily work of
many teams, which meant that essential resources for a
successful benchmarking project, such as domain knowledge,
tooling, and a test environment were likely already available.

After settling on a use case, we had to decide which PQC
algorithms and which performance characteristics we were
going to test for.

It would be interesting to see the throughput effect of using
PQC-enabled certificates for secure connections, since that is
usually the bottleneck. We decided to create certificates with
various PQC algorithms for key exchange and digital
signatures, including hybrid combinations of classical and
post-quantum algorithms, and to compare the results to the
currently deployed quantum-vulnerable version of the
message queuing application. Other characteristics we
decided to include were CPU usage, network bandwidth and
memory usage, since they can provide insights for other
organisations and applications.

Test scenarios

Since there are a large number of candidate algorithms within
the field of post-quantum cryptography, we had to select
which post-quantum algorithms we would incorporate in the
migration and benchmark.

We chose the four NIST standards (ML-KEM, ML-DSA, SLH-
DSA and Falcon) and FrodoKEM and McEliece to test. Even
though FrodoKEM and McEliece have not been standardized,
they are often recommended by EU member states. This
selection should provide a good overview of the most popular
algorithms, with varying performance and conservativeness in
the security assumptions.

Various organizations recommend the use of hybrid schemes,
where classical and post-quantum algorithms are combined. If
one of the algorithms fails, then security still holds, which can
provide a fail-safe in case one of the newer algorithms is not
as secure as we thought. We incorporated several hybrid
schemes in our benchmarks as well.

To understand the impact of migrating KEMs and digital
signatures schemes, we decided to benchmark the current
classical solutions to have a baseline, to benchmark post-
quantum KEMs in isolation (keeping the digital signature
classical), post-quantum digital signatures in isolation (with
classical KEMs), and finally to benchmark the combination of
post-quantum KEMs and post-quantum signature schemes.
An additional benefit of this separation is that companies who
want to migrate KEMs first to mitigate the harvest-now-
decrypt-later risk will get an impression of the initial
performance degradation. Apart from insight into
performance impact, we were also interested to learn about
the difficulty of incorporating all these algorithms (and their
hybrid combinations) in actual products.

The following table shows the test scenarios we defined for
the benchmark:

PQC Algorithms: Test cases:

KEX DSA Algorithms to test
Key exchange (KEM): | 0. | Current Current (RSA) | First baseline
A. ML-KEM, (FFDH)
B. FrodoKEM, 1. | ECC ECC Second baseline
C. McEliece 2. | PQC ECC A,B,C
3. | ECC PQC D,E,F
Digital signature 4. | PQC PQC All combinations of A-C
(DSA): with D-F
D. ML-DSA 5. | (ECC+PQC) | ECC A,B,C
E. Falcon 6. | ECC (ECC+PQC) D,E,F
F. SLH-DSA 7. | (ECC+PQC) [(ECC+PQC) | Allcombinations of A-C
with D-F

In this test only 22 of the 32 combinations were supported. For
the technical specifics there is an in-depth addendum to this
blog. You can read it here: How to get un-stuck by Architecting

for Resilience 2 | News

Architecting for resilience

After the test scenarios had been determined, we could get to
work to migrate the message queuing setup. As part of their
daily work, our messaging tech team uses Apache |Meter for
performance testing. They use certificates for the message
queuing product and also for TLS connections between the
clients and the servers. Not only does this mean that some
tooling was already in place, it also meant that they had
hands-on certificate expertise. That was a great way to start
off.

The figure below shows our initial scenario. The orange part is
where we intended to configure PQC:

MQ TLS

—] puT
Apache

JMeter
DA GET
MQTLS

However, we ran into availability impediments and as a result
no vendor certificates could be used. Another major issue was
the fact that the MQ product did not support PQC yet, so we
could not launch our test scenarios using that product.

With some quick thinking, we adjusted our plan and decided
to try using an OpenSSL generated certificate and a REST API
for the message queuing connection:

https://pcsi.nl/en/news/how-to-get-un-stuck-by-architecting-for-resilience-2/
https://pcsi.nl/en/news/how-to-get-un-stuck-by-architecting-for-resilience-2/
https://jmeter.apache.org/
https://www.openssl.org/

Request

HTTPS MQTLS
{)) >4 put
Apache — MQ messaging
JMeter REST API
Response MQ TLS @ ==
(HTTPS)

But that didn’t work either. Although PQC support was
available in OpenSSL, the REST APl wasn't ready. Another
day, another setback. Even though this was bad news for us, it
did confirm our suspicions that migrating our application was
no trivial task and that experience at this stage gives insight
into practical challenges.

Time to take a step back and switch perspective.

Cryptography is used as a measure to limit some risk. If the
algorithm is vulnerable, that measure is now ineffective, and
the risk resurfaces. You then have to look at how you limit that
risk again, which can be done multiple ways. For instance by
taking another cryptographic measure, by reducing sensitivity
of the data, by limiting access to an application, with a
physical security measure or by using a different security
design.

We had to think out of the box. As Anita Wehmann from the
Dutch quantum safe cryptography support program (QvC)
puts it:

“You are not stuck if you cannot migrate!”

That made us pivot the architectural design to the following

final setup:
Request Request MATLS
(HTTPS) HAProxy (HTTP)
PUT

Apache reverse proxy NP iQ messaging >4
JMeter ' RESTAPI '

Response ﬁ ?ponse MQTLS E &t

(HTTPS) (HTTP)

We decoupled the architecture to add the flexibility we
needed. We inserted a reverse proxy to bridge between the
components that were PQC-ready and those that were not.
Specifically, we deployed an HAProxy server with extensions
from the OpenQuantumSafe framework and OpenSSL. For the
time being we accept SSL offloading until the vendor supports
PQC. This makes the number of quantum safe connections in
the scenario smaller than we preferred (only the orange part).

https://www.digitaleoverheid.nl/overzicht-van-alle-onderwerpen/quantumveilige-cryptografie
https://openquantumsafe.org/applications/tls.html#haproxy
https://openquantumsafe.org/

However, there are advantages to this approach. We are still
able to do a baseline benchmark, using most of the
algorithmic combinations, we can put the test tooling in place
and gain experience. At a later stage, when other components
will support PQC, we can revert back to the previous
architecture and rerun the tests.

Insights

In the end, we were able to execute all test scenarios we had
defined. The tooling delivered the information on our main
metric: message throughput per second. We can use this data
to analyze the respective configurations. Additionally, we had
a glance at CPU time, networking bandwidth and checked for
signs of memory problems and data packet loss. In this
section we will walk you through our high level conclusions. A
more detailed analysis can be found in the in-depth
addendum to this blog.

Baseline references

Regarding the baseline references, the data shows that
classical ECC is significantly faster than classical RSA and
Diffie Hellman. This means that ECC serves as a good
reference point for what classical cryptography has to offer at
the moment.

Multithreading

Our test scenario was executed multiple times, each with a
different number of threads. Scaling threads seems to give
linear performance increase for almost all KEM and DSA
configurations. This means that CPU usage is generally not
the bottleneck. During the tests, we observed no packet loss,
which supports this conclusion. A likely explanation could be
that network delays are large enough so that other threads
can be run before the necessary input is received.

A significant finding is that the size-optimized digital
signature algorithm SLH-DSA really puts resources to the test.
Increasing thread count for the SLH-DSA test cases resulted
in maximum CPU usage and absence of linear performance
increase. These seem to be CPU intensive operations (test
cases 7,12 and 16 in the graph).

https://pcsi.nl/en/news/how-to-get-un-stuck-by-architecting-for-resilience-2/

The effect of adding more threads
450
400
350
300

NN
(=TT
(==

Msg/sec

150
100
50

- e - -
82 848435 855 35 8% 3588 49484888
£ 5 0 @ @ B g N NN ©BD g NN T g NN OO U U W
= + o F F =m = A H E = = g e = = o 4+ d & &
£ ® £ 0 ES& L 4 4 EEan EEZ o g o 888
o T L 5 v + 5+ 3 G L + £+ @8 8 &+ § @ ® 5 O g g o
€ = w & g 0o ¢ = w E £ £ oo £ & o222
. 8 0w X & o o £ £ B EG v 8 - v v X £ E E E
c &2 2 g% 9 o 9 vYHFE LU L 0006 6 e EYNOFFE
] G ; @ m =2 X R o & £ & @ T 8 G E o
T o~ M © 28R EETETEN T2 S 39§ °
- ™ = £ £ o £ £ U U 3

[¥] £ £ T - . = = n = = w - L e
N = T E QO H M VM A = w0 . g = &
- Y ¥ %5 = = E é L E ©w = q E g
[§] 1= + -~ o

o O O o - T O
¢ @ g £ x S g g 2
~ o £ E el - e

(=] X . o ™~ o~

] -
-
Algorithm combination (kem+signature)
——msg/sec 1thread ——msg/sec 4 threads ——msg/sec 8 threads

Key exchange

Comparing pure PQC ML-KEM to classical ECC, the
performance results are quite similar. Surprisingly, the results
for pure PQC FrodoKEM are not that far off. FrodoKEM has
security benefits, because its security assumptions are more
conservative than those of ML-KEM. Given the minor
performance difference, it could be a relevant option for
organizations that want to stay on the cautious side.

The performance loss for using hybrid ML-KEM instead of pure
ML-KEM seems to be a lot less than expected, around 10
percent.

Key exchange: classical vs pure PQC vs hybrid

60
50
40
(=]
]
= 30
w
=
20
10
0
2 3 < 9 < <
& & & & <& &
& & & P & P
c"}i.:b \"b" é\\\k_ "\‘“o N (}\‘\o
S . 5
(}'af’ Vv - g & oy
O
% ..35 N

Algorithm combination (kem+signature)

m msg/sec 1 thread ——— Classical
= Pure PQC
. Hy DOFi Al

Digital signatures

Looking at the combination of classical KEMs with various
pure PQC digital signatures, we can see quite a few
performance differences.

When we compare ML-DSA and Falcon signatures in a pure
PQC configuration to classical ECC signatures, their
performance is quite similar. However, for SLH-DSA
signatures, it's a whole different story. They perform
significantly worse, especially size-optimized SLH-DSA
(slhdsa-sha2-128s).

For hybrid configurations we expected some loss of
performance, due to the verification overhead, but our data
didn’t support that. The results imply that hybrid signatures
come with a limited performance cost. That's good news, as
hybrid configurations are often recommended in the current
phase of the PQC migration process.

Signatures: classical vs pure PQC vs hybrid

60
50
40
(8]
Q
vy
% 30
%]
=
20
10
0 N
g $ &2 & Q5° o o &
& @ O o v N &
S <2 & ? Y ; i
s} Y x x vV v 2 s
N > C < 2 G4 N AN
P & < ¢ N 3 <&@ &
L,\(,« (}’b e e 5) o »
& .) © F &P % Y
e % & & b @
< N X 5 Q-
N 2 X (’} VY
& & <
< < &
Al D e}

Algorithm combination (kem+signature)

Classical
Pure PQC
Hybrid

m msg/sec 1 thread

Pure PQC key exchange and digital
signatures

From the previous results, we would expect that the
combination of pure PQC for both KEMs and DSAs would not
give a big performance loss. That is, when we leave out SLH-
DSA. We can see that confirmed in our results for the ML-KEM
and ML-DSA combination. A little more performance loss is
shown for the combinations using FrodoKEM. Note that
FrodoKEM can be more problematic if message size matters,
which was apparently not the case in our test setup. See the
addendum for the details on size.

KEM

DSA

Msg/sec (1 thread)

First Baseline (DH)

First Baseline (RSA)

273

Second Baseline (ECC) Second Baseline (ECC) 56,6
ML-KEM ML-DSA 5953
ML-KEM Falcon 538
ML-KEM SLH-DSA-SHA2-128s 6
ML-KEM SLH-DSA-SHA2-128f 373
FrodoKEM ML-DSA 478
FrodoKEM Falcon 48,7
FrodoKEM SLH-DSA-SHA2-128s 59
FrodoKEM SLH-DSA-SHA2-128f 39,5

Hybrid key exchange and digital
signatures

In the previous paragraph we looked at pure PQC test results.
Which conclusions can we draw from combining the fastest
classical algorithms with the fastest post-quantum
algorithms? Using them in hybrid configuration for both key
exchange and digital signatures, we measured about a 20%
performance decrease in message throughput. Adding more
threads helped bring that down to about 15%.

Hybrid: key exchange and digital signatures

&
('_’\'b x((\ xé\

{‘J
NP Vv
< =
5 & &
é..
@ a
,,:y Vv

Algorithm combination (kem+signature)

Classical
Hybrid

B msg/sec 1 thread

Conclusion

The quest for insights on what it means to use PQC in real life
situations was an interesting journey. Migrating away from
quantum-vulnerable cryptography and transitioning to
quantum-safe alternatives can bring many challenges. One of
them is interoperability between systems that are migration-
ready and components that aren’t.

Do not get stuck waiting

It's easy to get stuck in a situation where you have to wait
until every part is ready to migrate, contributing to what is
sometimes called ‘crypto procrastination’. However, there is
urgency to move forward with the PQC migration, as quantum
computers that can break current cryptography are rapidly
getting closer. We found that alternative architectural options
can be decisive in regaining momentum within the transition.

Decoupling is an alternative to protect systems that do not
yet support PQC

In this PQC Benchmarking project we inserted a decoupling
component in the architecture. Even though our application
was not ready, by using a PQC reverse proxy on the same
server we could protect the sensitive data on the network, and
limit the risk. As a result, we were also able to develop, test
and run a benchmarking script for almost all cryptographic
test cases we defined. Next to solving the problem of waiting
for a vendor, it also makes it possible to quickly update the
cryptographic algorithms used. This type of flexibility, often
referred to as crypto-agility, is very desirable for cryptographic
systems.

The performance penalty varied, but generally the impact
was less than expected

We focused on message throughput as a performance metric
in a message queuing scenario. How do the PQC options we
have for key exchange and digital signatures compare to the
current DH/RSA and elliptic curve algorithms? From our
scoped benchmark, we can conclude that the ML-KEM and
FrodoKEM algorithms seem to perform quite similarly to
classical ECC. Even the hybrid combination of these KEMs and
ECC does not seem to come at a very high performance loss.

Experiments help to get experience and will give clarity on
your options

SLH-DSA has the advantage that it has very conservative
security assumptions. Cryptographers understand its security
so well that they trust it as much as the security of ECC and
DH/RSA. As a result, it would not need to be combined with
classical solutions in a hybrid combination, which could be
beneficial for performance. However, our results show that
SLH-DSA performs quite poorly, even compared to the hybrid
configurations of classical and post-quantum DSAs, which
makes it less practical.

All'in all, the journey felt like a rollercoaster at times, but we
are glad to have learned more about performance trade-offs
between the post-quantum algorithms and architectural
solutions to vendor dependencies. We hope that we have
inspired you to run your own benchmarks within real world IT
infrastructures, so we can smoothly transition to
cryptographic resilience together.

Contact

TEleet

Do you want to know the technical details? See the addendum
to this blog here.

Keep a look out for the other blogs in this series! In this series
of four we share both organizational and technical results,
from four different perspectives: Management, Viendor
Management, Architects and Developers. Read the first blogs
about manager here and the second one for developers here.

Disclaimer: first image was created with CoPilot.

Deel deze pagina

v] {Jin]l©

Schrijf je in in o

PCSl is een samenwerking van

) ABN-AMRO achmea [P seasinggienss [NG 29 "TINO

https://pcsi.nl/en/news/how-to-get-un-stuck-by-architecting-for-resilience-2/
https://pcsi.nl/en/news/building-resilience-how-managers-can-champion-the-pqc-transition/
https://pcsi.nl/en/news/dont-get-entangled-in-pqc-embrace-crypto-agility-for-smooth-code-migration/
https://pcsi.nl/nl/contact/
https://pcsi.nl/nl/nieuwsbrief/schrijf-je-in/
https://www.linkedin.com/company/partnership-for-cyber-security-innovation
https://www.youtube.com/channel/UCccAvNQb2Oa_UfliXjnjZ0Q
https://pcsi.nl/nl/over-ons/
https://pcsi.nl/nl/doe-mee/
https://pcsi.nl/nl/projecten/
https://pcsi.nl/nl/nieuws/
https://pcsi.nl/nl/evenementen/
https://pcsi.nl/nl/cybertalk-sessies/
https://abnamro.nl/
https://www.achmea.nl/
https://belastingdienst.nl/
https://ing.nl/
https://tno.nl/

