
How to get un-stuck by
Architecting for Resilience
4 weeks ago

This blog is written by the participants of the PQC Benchmarking project, from TNO,

Achmea, Belastingdienst, ABN Amro and ING. The test case described in this blog was

carried out by Belastingdienst.

Introduction
As developments in quantum technology push

forward, the resulting reality of weakened

cryptographic strength puts us to the test. For

decades we could rely on stable defaults like

Diffie Hellman, RSA and elliptic curve

cryptography (ECC). Now, we must revise how

we achieve digital trust goals like confidentiality,

integrity and availability, by adopting what is

called post quantum cryptography (PQC).

The international community has been

developing and standardizing the new post

quantum algorithms. IT departments and

businesses must prepare and start using them in

their infrastructures and landscapes.

Importantly, vendor readiness is not the only

missing part of the puzzle. It is also a matter of

knowledge and insights: these new algorithms

are less familiar to IT practictioners and little is

known about their performance in production

systems.

PQC migration features a leading role for IT and

security architects. They will need to consider

available alternatives and their feasibility for

each use case. This difficult task requires

expertise that could greatly benefit from real

world experiences, like benchmarks conducted in

real-world implementation scenarios.

 Alle nieuws

PCSI

https://pcsi.nl/nl/news/
https://pcsi.nl/nl/

In our project, we started a benchmarking test to

do just that. We share our most valuable lessons

learned in this blog. You will learn about how we

encountered various pitfalls that are typical for

migration. The good news is: we found ways to

pivot out of them!

The Quest for insights
To start off the benchmarking journey, we had to pick a use

case that would produce practical knowledge and insights on

the usage of PQC algorithms and that would be executable

within the project’s time constraints. We settled on migrating

the connection setup for a message queuing (MQ) application

in which clients use PQC certificates instead of classical

certificates. What would the performance impact be?

One of the main considerations was that message queuing

applications are a common component in IT architectures that

require high performance. There was also a practical side: we

found that message queuing is closely tied to the daily work of

many teams, which meant that essential resources for a

successful benchmarking project, such as domain knowledge,

tooling, and a test environment were likely already available.

After settling on a use case, we had to decide which PQC

algorithms and which performance characteristics we were

going to test for.

It would be interesting to see the throughput effect of using

PQC-enabled certificates for secure connections, since that is

usually the bottleneck. We decided to create certificates with

various PQC algorithms for key exchange and digital

signatures, including hybrid combinations of classical and

post-quantum algorithms, and to compare the results to the

currently deployed quantum-vulnerable version of the

message queuing application. Other characteristics we

decided to include were CPU usage, network bandwidth and

memory usage, since they can provide insights for other

organisations and applications.

Test scenarios

Since there are a large number of candidate algorithms within

the field of post-quantum cryptography, we had to select

which post-quantum algorithms we would incorporate in the

migration and benchmark.

We chose the four NIST standards (ML-KEM, ML-DSA, SLH-

DSA and Falcon) and FrodoKEM and McEliece to test. Even

though FrodoKEM and McEliece have not been standardized,

they are often recommended by EU member states. This

selection should provide a good overview of the most popular

algorithms, with varying performance and conservativeness in

the security assumptions.

Various organizations recommend the use of hybrid schemes,

where classical and post-quantum algorithms are combined. If

one of the algorithms fails, then security still holds, which can

provide a fail-safe in case one of the newer algorithms is not

as secure as we thought. We incorporated several hybrid

schemes in our benchmarks as well.

To understand the impact of migrating KEMs and digital

signatures schemes, we decided to benchmark the current

classical solutions to have a baseline, to benchmark post-

quantum KEMs in isolation (keeping the digital signature

classical), post-quantum digital signatures in isolation (with

classical KEMs), and finally to benchmark the combination of

post-quantum KEMs and post-quantum signature schemes.

An additional benefit of this separation is that companies who

want to migrate KEMs first to mitigate the harvest-now-

decrypt-later risk will get an impression of the initial

performance degradation. Apart from insight into

performance impact, we were also interested to learn about

the difficulty of incorporating all these algorithms (and their

hybrid combinations) in actual products.

The following table shows the test scenarios we defined for

the benchmark:

In this test only 22 of the 32 combinations were supported. For

the technical specifics there is an in-depth addendum to this

blog. You can read it here: How to get un-stuck by Architecting

for Resilience 2 | News

Architecting for resilience
After the test scenarios had been determined, we could get to

work to migrate the message queuing setup. As part of their

daily work, our messaging tech team uses Apache JMeter for

performance testing. They use certificates for the message

queuing product and also for TLS connections between the

clients and the servers. Not only does this mean that some

tooling was already in place, it also meant that they had

hands-on certificate expertise. That was a great way to start

off.

The figure below shows our initial scenario. The orange part is

where we intended to configure PQC:

However, we ran into availability impediments and as a result

no vendor certificates could be used. Another major issue was

the fact that the MQ product did not support PQC yet, so we

could not launch our test scenarios using that product.

With some quick thinking, we adjusted our plan and decided

to try using an OpenSSL generated certificate and a REST API

for the message queuing connection:

https://pcsi.nl/en/news/how-to-get-un-stuck-by-architecting-for-resilience-2/
https://pcsi.nl/en/news/how-to-get-un-stuck-by-architecting-for-resilience-2/
https://jmeter.apache.org/
https://www.openssl.org/

But that didn’t work either. Although PQC support was

available in OpenSSL, the REST API wasn’t ready. Another

day, another setback. Even though this was bad news for us, it

did confirm our suspicions that migrating our application was

no trivial task and that experience at this stage gives insight

into practical challenges.

Time to take a step back and switch perspective.

Cryptography is used as a measure to limit some risk. If the

algorithm is vulnerable, that measure is now ineffective, and

the risk resurfaces. You then have to look at how you limit that

risk again, which can be done multiple ways. For instance by

taking another cryptographic measure, by reducing sensitivity

of the data, by limiting access to an application, with a

physical security measure or by using a different security

design.

We had to think out of the box. As Anita Wehmann from the

Dutch quantum safe cryptography support program (QvC)

puts it:

“You are not stuck if you cannot migrate!”

That made us pivot the architectural design to the following

final setup:

We decoupled the architecture to add the flexibility we

needed. We inserted a reverse proxy to bridge between the

components that were PQC-ready and those that were not.

Specifically, we deployed an HAProxy server with extensions

from the OpenQuantumSafe framework and OpenSSL. For the

time being we accept SSL offloading until the vendor supports

PQC. This makes the number of quantum safe connections in

the scenario smaller than we preferred (only the orange part).

https://www.digitaleoverheid.nl/overzicht-van-alle-onderwerpen/quantumveilige-cryptografie
https://openquantumsafe.org/applications/tls.html#haproxy
https://openquantumsafe.org/

However, there are advantages to this approach. We are still

able to do a baseline benchmark, using most of the

algorithmic combinations, we can put the test tooling in place

and gain experience. At a later stage, when other components

will support PQC, we can revert back to the previous

architecture and rerun the tests.

Insights
In the end, we were able to execute all test scenarios we had

defined. The tooling delivered the information on our main

metric: message throughput per second. We can use this data

to analyze the respective configurations. Additionally, we had

a glance at CPU time, networking bandwidth and checked for

signs of memory problems and data packet loss. In this

section we will walk you through our high level conclusions. A

more detailed analysis can be found in the in-depth

addendum to this blog.

Baseline references
Regarding the baseline references, the data shows that

classical ECC is significantly faster than classical RSA and

Diffie Hellman. This means that ECC serves as a good

reference point for what classical cryptography has to offer at

the moment.

Multithreading

Our test scenario was executed multiple times, each with a

different number of threads. Scaling threads seems to give

linear performance increase for almost all KEM and DSA

configurations. This means that CPU usage is generally not

the bottleneck. During the tests, we observed no packet loss,

which supports this conclusion. A likely explanation could be

that network delays are large enough so that other threads

can be run before the necessary input is received.

A significant finding is that the size-optimized digital

signature algorithm SLH-DSA really puts resources to the test.

Increasing thread count for the SLH-DSA test cases resulted

in maximum CPU usage and absence of linear performance

increase. These seem to be CPU intensive operations (test

cases 7, 12 and 16 in the graph).

https://pcsi.nl/en/news/how-to-get-un-stuck-by-architecting-for-resilience-2/

Key exchange
Comparing pure PQC ML-KEM to classical ECC, the

performance results are quite similar. Surprisingly, the results

for pure PQC FrodoKEM are not that far off. FrodoKEM has

security benefits, because its security assumptions are more

conservative than those of ML-KEM. Given the minor

performance difference, it could be a relevant option for

organizations that want to stay on the cautious side.

The performance loss for using hybrid ML-KEM instead of pure

ML-KEM seems to be a lot less than expected, around 10

percent.

Digital signatures

Looking at the combination of classical KEMs with various

pure PQC digital signatures, we can see quite a few

performance differences.

When we compare ML-DSA and Falcon signatures in a pure

PQC configuration to classical ECC signatures, their

performance is quite similar. However, for SLH-DSA

signatures, it’s a whole different story. They perform

significantly worse, especially size-optimized SLH-DSA

(slhdsa-sha2-128s).

For hybrid configurations we expected some loss of

performance, due to the verification overhead, but our data

didn’t support that. The results imply that hybrid signatures

come with a limited performance cost. That’s good news, as

hybrid configurations are often recommended in the current

phase of the PQC migration process.

Pure PQC key exchange and digital

signatures
From the previous results, we would expect that the

combination of pure PQC for both KEMs and DSAs would not

give a big performance loss. That is, when we leave out SLH-

DSA. We can see that confirmed in our results for the ML-KEM

and ML-DSA combination. A little more performance loss is

shown for the combinations using FrodoKEM. Note that

FrodoKEM can be more problematic if message size matters,

which was apparently not the case in our test setup. See the

addendum for the details on size.

Hybrid key exchange and digital
signatures

In the previous paragraph we looked at pure PQC test results.

Which conclusions can we draw from combining the fastest

classical algorithms with the fastest post-quantum

algorithms? Using them in hybrid configuration for both key

exchange and digital signatures, we measured about a 20%

performance decrease in message throughput. Adding more

threads helped bring that down to about 15%.

Conclusion
The quest for insights on what it means to use PQC in real life

situations was an interesting journey. Migrating away from

quantum-vulnerable cryptography and transitioning to

quantum-safe alternatives can bring many challenges. One of

them is interoperability between systems that are migration-

ready and components that aren’t.

Do not get stuck waiting

It’s easy to get stuck in a situation where you have to wait

until every part is ready to migrate, contributing to what is

sometimes called ‘crypto procrastination’. However, there is

urgency to move forward with the PQC migration, as quantum

computers that can break current cryptography are rapidly

getting closer. We found that alternative architectural options

can be decisive in regaining momentum within the transition.

Decoupling is an alternative to protect systems that do not

yet support PQC

In this PQC Benchmarking project we inserted a decoupling

component in the architecture. Even though our application

was not ready, by using a PQC reverse proxy on the same

server we could protect the sensitive data on the network, and

limit the risk. As a result, we were also able to develop, test

and run a benchmarking script for almost all cryptographic

test cases we defined. Next to solving the problem of waiting

for a vendor, it also makes it possible to quickly update the

cryptographic algorithms used. This type of flexibility, often

referred to as crypto-agility, is very desirable for cryptographic

systems.

The performance penalty varied, but generally the impact

was less than expected

We focused on message throughput as a performance metric

in a message queuing scenario. How do the PQC options we

have for key exchange and digital signatures compare to the

current DH/RSA and elliptic curve algorithms? From our

scoped benchmark, we can conclude that the ML-KEM and

FrodoKEM algorithms seem to perform quite similarly to

classical ECC. Even the hybrid combination of these KEMs and

ECC does not seem to come at a very high performance loss.

Experiments help to get experience and will give clarity on

your options

SLH-DSA has the advantage that it has very conservative

security assumptions. Cryptographers understand its security

so well that they trust it as much as the security of ECC and

DH/RSA. As a result, it would not need to be combined with

classical solutions in a hybrid combination, which could be

beneficial for performance. However, our results show that

SLH-DSA performs quite poorly, even compared to the hybrid

configurations of classical and post-quantum DSAs, which

makes it less practical.

All in all, the journey felt like a rollercoaster at times, but we

are glad to have learned more about performance trade-offs

between the post-quantum algorithms and architectural

solutions to vendor dependencies. We hope that we have

inspired you to run your own benchmarks within real world IT

infrastructures, so we can smoothly transition to

cryptographic resilience together.

Do you want to know the technical details? See the addendum

to this blog here.

Keep a look out for the other blogs in this series! In this series

of four we share both organizational and technical results,

from four different perspectives: Management, Vendor

Management, Architects and Developers. Read the first blogs

about manager here and the second one for developers here.

Disclaimer: first image was created with CoPilot.

Deel deze pagina

Alleen door samenwerking
kunnen we de beste resultaten

behalen in de strijd tegen
cybercriminaliteit

Email ons

Contact

Onze nieuwsbrief

Schrijf je in

Volg ons

 

PCSI is een samenwerking van

Over ons

Doe mee

Projecten

Nieuws

Evenementen

Cybertalk sessies

Privacy statement

Cookie statement

Terms of use

Accessibility



https://pcsi.nl/en/news/how-to-get-un-stuck-by-architecting-for-resilience-2/
https://pcsi.nl/en/news/building-resilience-how-managers-can-champion-the-pqc-transition/
https://pcsi.nl/en/news/dont-get-entangled-in-pqc-embrace-crypto-agility-for-smooth-code-migration/
https://pcsi.nl/nl/contact/
https://pcsi.nl/nl/nieuwsbrief/schrijf-je-in/
https://www.linkedin.com/company/partnership-for-cyber-security-innovation
https://www.youtube.com/channel/UCccAvNQb2Oa_UfliXjnjZ0Q
https://pcsi.nl/nl/over-ons/
https://pcsi.nl/nl/doe-mee/
https://pcsi.nl/nl/projecten/
https://pcsi.nl/nl/nieuws/
https://pcsi.nl/nl/evenementen/
https://pcsi.nl/nl/cybertalk-sessies/
https://abnamro.nl/
https://www.achmea.nl/
https://belastingdienst.nl/
https://ing.nl/
https://tno.nl/

