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Abstract. With a growing interest in quantum computing, the number
of proposed quantum algorithms grows as well. The practical applica-
bility of these algorithms differs: Some can be applied out-of-the-box,
while others require black box oracles, which can not always be easily
implemented. One of the first works to explicitly discuss these practical
applicability aspects is by Aaronson discussing the fine print of the HHL
quantum algorithm that solves linear systems of equations. We extend
this line of research by providing a similar fine print for the first analog
quantum algorithm that computes the stationary distribution of Markov
chains. We conclude that more focus should be put on this practical
applicability of quantum algorithms, either through a separate line of
research, or through more attention when introducing the algorithm.
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1 Introduction

More than thirty years ago, the first quantum algorithms were proposed, includ-
ing the algorithms by Deutsch-Jozsa [7], Shor [22] and Grover [8]. Since then,
an enormous amount of quantum algorithms have been proposed, with varying
improvements over conventional methods. An interesting algorithm is given by
Harrow, Hassidim and Lloyd (HHL), whom proposed a quantum algorithm for
solving linear systems of equations [9]. Interestingly, they claimed an exponential
speedup over classical methods in their original publication.

However, the HHL algorithm produces the solution of the linear system as a
quantum state. To obtain the answer to use in further conventional processing
requires the algorithm to be run multiple times. Because of this, the exponen-
tial speedup vanishes in the general case. The advantage in practice depends
on the specific use-case and the implementation. This and other nuances when
implementing the HHL algorithm are discussed by Aaronson in the fine print [1].

Later, Ref. [18] gave similar fine print for a clustering algorithm using quan-
tum persistent homology, showing that the claimed advantages vanish in prac-
tice. Other algorithms often suffer from similar nuances, yet they remain largely
undiscussed. We therefore continue this line of research by discussing a the direct
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applicability of a recently proposed quantum algorithm and providing the fine
print for it.

Our focus will be on an analog quantum algorithm that can prepare the
stationary distribution of a Markov chain as a quantum state [6]. Their algorithm
claims to achieve a complexity similar to the one obtained by state-of-the-art
discrete quantum algorithms [19, 16]. The approach assumes the existence of a
Hamiltonian that encodes the Markov chain, which is then used in combination
with Von Neumann measurements. These two primitives are combined to prepare
the stationary distribution of the Markov chain.

The work by Chakraborty, Luh and Roland focuses solely on the theoretical
description of the algorithm, including an elaboration on the speedup that the
algorithm yields. Our work considers the algorithm in more detail and considers
the low-level specifications. It is concluded that the theoretical speedup only
holds under the assumption that certain variables are available in the application
of the algorithm. In general, the complexity to compute these variables is higher
than the complexity of the algorithm. More precisely, this complexity is actually
the same as the classical time to prepare the stationary distribution, implying
that the claimed speedup does not hold.

It is important to note that the aim of this work is not to discredit the work
by Chakraborty et al., but rather to put the algorithm in a realistic perspective.
The analog quantum algorithm is still able to prepare the stationary distribution,
yet without the claimed speedup. In addition, the algorithm contains building
blocks that could potentially be used to devise an algorithm to prepare the
stationary distribution with a speedup over classical methods. This fine print,
however, forms an important guideline regarding the practical applicability of
the algorithm for potential end users.

This work is structured as follows: First, the next section gives background
information on Markov chains and the algorithm by Chakraborty, Luh and
Roland [6]. Then, section 3 discusses the fine print of the algorithm, with an
elaboration as to why the promised speedup does not actually hold in general.
The work finishes with a discussion and outlook in Section 4.

2 Background

2.1 Markov chains

Markov chains, first described by Markov [17] and later extended by Poincaré and
Kolmogorov [13], form a class of basic mathematical models that can describe a
wide variety of different processes, for example in network science [20], combina-
torial optimisation [2], statistical physics [15] and Monte Carlo methods [12]. In
this work only discrete Markov chains are considered, though continuous ones
exist as well. Such a Markov chain is a discrete, indefinite process (Xm)m, such
that each Xm is equal to a certain probability distribution over all possible states
in a certain state space. In a Markov chain, the probability distribution of the
next state depends only on the current state, i.e.,

P(Xm+1 = xm+1|X0 = x0, . . . Xm = xm) = P(Xm+1 = xm+1|Xm = xm) (1)
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for all positive integers m and xi probability distributions over the state space.
In homogeneous Markov chains, the probability is independent of m, i.e.,

P(Xm+1 = xm+1|Xm = xm) = P(X1 = x1|X0 = x0) for all positive integers m.
These Markov chains can be represented as square matrices: if the state space
X = {1, 2, . . . , n} of the Markov chain has size n, the Markov chain can be
represented as an n × n matrix P such that the entry Pij is the probability to
transition from state i to state j. These probabilities are called the transition
probabilities of the Markov chain, and the corresponding matrix is called the
transition matrix. Note that such a matrix is always a stochastic matrix, as the
entries of each row sum to 1. Now, if the probability distribution of the current
state is equal to v, written as a vector, then the probability distribution of the
next state can easily be computed as a vector w, such that

wi =
n∑

j=1

Pjivj (2)

which translates to w = PT v. From this matrix, another representation of a
Markov chain can be obtained, namely in the form of a directed, weighted graph,
with potential self-loops, in which the states are the nodes, and the edges are
given by the transition probabilities.

Ergodic Markov chains take a central role in the field of Markov chain re-
search. Such ergodic Markov chains are both aperiodic –the greatest common
divisor of all cycles in the graph of the Markov chain is 1– and positive re-
current –the probability of returning to the original state at any moment is 1
for any initial state, and the expected time of returning is finite. Interestingly,
the probability distribution of ergodic Markov chains converges over time to a
unique (stationary) probability distribution π, independent of the initial proba-
bility distribution. The stationary distribution remains static under the Markov
chain, such that π = PTπ.

The time-reverse of a Markov chain (Xm)m is the Markov chain obtained by
running the original Markov chain in reverse, i.e., (XT−m)m for some fixed T .
Ergodic Markov chains remain ergodic when reversed, with the same stationary
distribution. The fact that a Markov chain is time-reversible Markov chains P
with stationary distribution π is equivalent to the detailed-balance equations:

πiPij = πjPji (3)

for all states i and j. This work only considers homogeneous, reversible, ergodic
Markov chains.

Many applications in Markov chain theory are interested in either preparing
the stationary distribution of a Markov chain, or sampling from it. Tradition-
ally, the stationary distribution of a Markov chain can be prepared by mixing it:
repeatedly applying the Markov chain to some initial distribution. The number
of required applications to get ε-close to the stationary distribution is called
the mixing time. Recently, with the advent of quantum computing, quantum
methods to prepare the stationary distribution have been studied. Because of
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the probabilistic nature of quantum computers, methods to sample from the sta-
tionary distribution have been of significant interest. If a quantum algorithm can
prepare the stationary distribution, sampling from this distribution can be done
direct by simply measuring the state. The problem of preparing the stationary
distribution of a Markov chain is a quantum state is called QSSamp, as defined
in [6].

2.2 Quantum algorithms for Markov chains

Ergodic Markov chains P have a mixing time of Õ(1/∆), where ∆ = |λ1|−|λ2| is
the spectral gap of P and λ1 and λ2 are the largest and second-largest eigenvalue
of P . For stochastic matrices, the Frobenius-Perron theorem details that the
largest eigenvalue of P equals λ1 = 1. In addition, for random stochastic matrices
of order N , the spectral gap scales as O(

√
N) [5], [10].

Richter conjectured the existence of a quantum algorithm for QSSamp that
could get ϵ-close in time Õ(1/

√
∆), which would mean a quadratic speedup over

the classical case [21]. Further speedups have been theorised for a while, until
the result by Aharonov and Ta-Shma in [3], which indicates that the existence
of a more efficient quantum algorithm for QSSamp is unlikely. Currently, it is
believed that the conjectured Õ(1/

√
∆) is optimal.

Multiple algorithms attempted to attain this bound using various approaches
, none of which proved successful to date. Most of these approaches use the the
quantum spatial search algorithm. The quantum spatial search algorithm finds
an element from a certain marked set, provided it starts from the stationary
distribution. Classically, this requires a number of applications of the Markov
chain known as the hitting time, depending only on the Markov chain P and
the marked set. Different quantum algorithms managed to devise quantum al-
gorithms that obtain a quadratic improvement in the hitting time. Intuitively,
running such a quantum spatial search algorithm in reverse would thus yield
a preparation of the stationary distribution in this time. However, this reversal
only achieves constant overlap with the stationary distribution. Quantum ampli-
tude amplification or quantum phase estimation are required to end up with the
stationary distribution. In 2019, Apers and Sarlette introduced fast-forwarding
of a quantum Markov chain [4]. This algorithm solves QSSamp in a time scaling
with the square root of the hitting time. Although this is a nice result, it does
not attain the bound conjectured by Richter, as the hitting time is at least as
large as the mixing time of an ergodic, reversible Markov chain.

All of the above attempts approach QSSamp with digital, or equivalently,
gate-based quantum computing, which works by applying generic quantum gates
to qubits Recently, Chakraborth et al. proposed the first analog quantum al-
gorithm to solve QSSamp [6]. Analog quantum computing works by evolving
specific initial states of qubits under suitable Hamiltonians for suitable evolu-
tion times. Their algorithm claims to find the stationary distribution in a time
scaling with the sum of the square root of the hitting time and the square root
of the classical mixing time. As the hitting time is at least as large as the mixing
time, this scales with the square root of the hitting time. Although this also does
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not attain the conjectured bound by Richter, it does match the state-of-the-art
obtained by discrete quantum algorithms.

In this section, an overview of the algorithm is given with the relevant details
for the fine print in the next section. The algorithm is presented as described in
the original work, and no additional claims on correctness of the algorithm are
made. In addition, some details are left out for clarity. A full description of the
algorithm can be found in the original work [6].

The main building block of the algorithm is given by a Hamiltonian H that
encodes the Markov chain P . The aspects of the Hamiltonian that are relevant
for this work are that it works on the space of pairs of probability states; that the
state |π, 0⟩ is an eigenvector with eigenvalue 0; and, that its other eigenvalues lie
in the half-open interval (0, 1]. At the start of the algorithm, the Hamiltonian
is coupled to a pointer register, on which a momentum operator p̂ can operate.
The total Hamiltonian of the system is hence given by H̃ = H ⊗ p̂.

It is well-known that, intuitively, the momentum operator can be seen as a
generator of translation. The pointer system allows to pick up a certain eigenvec-
tor when used in combination with post-selection. To be more precise, suppose
that H has eigenvalues λn2 = 0 < λn2−1 < . . . < λ1 ≤ 1 with corresponding
eigenvectors |un2⟩ , |un2−1⟩ , . . . , |u1⟩. Any quantum state |ψ⟩ can then be written

in the eigendecomposition of H: |ψ⟩ =
∑n2

j=1 αj |uj⟩. Then, if the pointer register
is initialised in the |x = 0⟩ state and H̃ is applied for time t, the following state
is obtained:

e−iH̃t |ψ⟩ ⊗ |x = 0⟩ =
n2∑
j=1

αj |uj⟩ |x = λjt⟩ (4)

Post-selecting on the state |x = 0⟩ then indeed yields the state |un2⟩ with eigen-
value 0, which is equal to |π, 0⟩ for the chosen Hamiltonian. Note that a positive
value of αn2 is required for the post-selection to succeed.

Lemma 4 and corollary 5 of Ref. [6] formalise this idea by proving that when
H̃ is applied to the above state with a sufficiently large pointer register for a
suitable time, the measured state is ϵ-close to the eigenstate with eigenvalue 0.
The time depends inverse quadratically on |αn2 |, which equals the inner prod-
uct between the original state and the eigenstate with eigenvalue 0. Hence, to
efficiently prepare this 0-eigenstate, the initial state needs to have a sufficiently
large, ideally constant, overlap with the state |π, 0⟩.

Unfortunately, it is not generally easy to prepare such a quantum state. The
original paper solves this issue by applying corollary 5 twice. First, corollary 5
is applied for a suitable interpolated Markov chain P (s), to efficiently obtain
a state ϵ-close to a state with constant overlap with |π, 0⟩. Given two Markov
chains P and P ′, the interpolated Markov chain between them is given by P (s) =
(1− s)P + sP ′, controlled by the real parameter s ∈ [0, 1]. Afterwards, corollary
5 is applied with the original Markov chain, to efficiently obtain a state ϵ-close
to |π, 0⟩, as required. For this idea to work, the above imposes two constraints
on the 0-eigenstate of the Hamiltonian H̃(s) corresponding to P (s). First, the
0-eigenstate of H̃(s) should have constant overlap with |π, 0⟩ for the second
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application of corollary 5. Second, this 0-eigenstate should have constant overlap
with the to-be-chosen initial state of the protocol for the first application of
corollary 5. Specifically, this 0-eigenstate should have a constant overlap with
an initial state that is easy to prepare. Chakraborth et al. show that choosing
an index j such that the value s∗ = 1 − πj/(1 − πj) lies in the open interval
(0, 1) satisfies both constraints. The corresponding initial state of the protocol
then has to be chosen as |j, 0⟩, which can easily be prepared as it is a basis
state of the quantum system. The corresponding interpolated Markov chain is
obtained by interpolating between the original Markov chain P and the Markov
chain P ′ obtained by replacing all outgoing edges at state j with self-loops, with
interpolation parameter s = s∗.

In this way, the original work claims to solve the QSSamp problem in time
Θ( 1√

∆(s∗)
+ 1√

∆
), where ∆(s∗) is the spectral gap for the interpolated Markov

chain P (s∗). Because of the choice of s∗, this can be shown to be equal to the
sum of the square root of the classical mixing time and the square root of the
classical hitting time.

3 The Fine Print of the Algorithm

In this section, the practical implementation of the algorithm by Chakraborty
et al. is discussed, and it is shown that this speedup does not actually hold.

The original work proposed the algorithm as a theoretical tool to prepare the
stationary state of a Markov chain with a theoretical speedup over its classical
counterparts. To run the algorithm as devised and hence obtain this speedup,
the Markov chains P and P (s∗) need to be available as encoded by specific
Hamiltonians H and H(s∗) as defined in the original work. Although this is not
realistic for current near-term noisy (NISQ) hardware, it is possible that future
fault-tolerant quantum (FTQ) devices will have these capabilities.

Assuming that FTQ devices indeed have these capabilities, we have to obtain
a few parameters. To be precise, the algorithm requires the parameters ε, s∗, ∆
and ∆(s∗), where the parameter ε can be chosen freely by the user. We will
show that the complexity of determining these values exactly is larger than the
complexity of the algorithm itself. In addition, we will show what the impact is
of using approximations of these parameters.

3.1 Parameter s∗

To determine the parameter s∗, we first have to find an index j such that πj
lies within (0, 12 ). Then, the parameter s∗ is given by s∗ = 1 − πj/(1 − πj). To
prepare s∗, we thus have to know πj exactly, which corresponds to the stationary
probability distribution we is precisely the distribution that is being prepared.
Naturally, this results in circular logic, and can only be circumvented by finding
an entry of the stationary distribution in a different way. However, this different
way will have a complexity larger than the algorithm by Chakraborty et al., as
their algorithm tries to obtain a speedup over such alternative algorithms.
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Note that there exist works that explain how to obtain good results even
when only approximations for s∗ can be given [14]. However, in the case of
this algorithm, even the slightest deviation in s∗ can completely diminish the
promised speedup. This can be shown by following the complexity derivation
from Chakraborty et al. and replacing s∗ with an arbitrary value close to s∗.

Suppose that the original algorithm is run from an initial state |j, 0⟩ for which
the corresponding variable s∗ is not exactly known. Instead, the algorithm is run
with a value s′ replacing s∗. The complexity of the full protocol is given by the
sum of the complexities of the two parts of the protocol. The complexity of the
first part can be computed using Corollary 5, yielding a complexity of√

1

∆(s′)|α|2
log(

2

ε|α|2
)

where α = ⟨j, 0|vn(s′), 0⟩ = ⟨j|vn(s′)⟩. Similarly, the complexity of the second
part can be computed using Corollary 5, yielding a complexity of√

1

∆|β|2
log(

2

ε|β|2
)

where β = ⟨vn(s′), 0|π, 0⟩ = ⟨vn(s′)|π⟩. Using the expression for |vn(s′)⟩ from
Equation 13 in the original work, it follows that that

α =

√
πj

1− s′(1− πj)
and β = πj

√
1

1− s′(1− πj)
+

∑
x̸=j

πx

√
1− s′

1− s′(1− πj)
.

Combined, the total complexity of the algorithm then equals

1√
∆(s′)|α|2

log(
2

ε|α|2
) +

1√
∆|β|2

log(
2

ε|β|2
)

Note that, similar to the original algorithm, 1
∆ scales as the mixing time. In

the original algorithm, 1
∆(s∗) scales as the hitting time. However, for approximate

versions s∗, it holds that

1

∆(s′)
≥ Thit

4

1− |α|2
.

This expression results from following the exact same steps in the original work
that show that 1

∆(s∗) scales as the hitting time. All in all, the complexity of the

full algorithm scales as
A
√
Thit +B

√
Tmix

where

A =
1

|α|2
√
1− |α|2

log

(
2

ε|α|2

)
and B =

1

|β|2
log

(
2

ε|β|2

)
.
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Note that we omitted the factor 4 in the A term, as we only care for the asymp-
totic scaling. Recall that, if s′ = s∗, the values A and B can be bounded from
above by constants (in terms of the size of the matrix. In the current situation
however, this is not the case and the values depend on πj . To see how the value
of s′ impacts the values of A and B in general, Figure 1 shows a diagram plotting
the values of A and B for varying values of s′ and πj . The minimal value for A
corresponds to the situation where s′ = s∗. Hence, even small deviations from
the correct s∗ results in significant changes in the values of A and B.

Fig. 1. The values of A and B for two pairs of (ϵ, πj), namely (0.01, 0.1) and (0.05, 0.5).
The horizontal axis shows the value of s′, with the value of s∗ being at where the graph
of A is minimal (which is different for the two different cases).
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3.2 Parameters ∆ and ∆(s∗)

Second, the parameters ∆ and ∆(s∗) are considered, whose impact can also be
significant. These parameters are obtained in similar fashion, assuming knowl-
edge of s∗ and access to the Markov chains P and P (s∗). Recall that these
parameters are defined as the spectral gap of the corresponding Markov chains.
Again, these are quantities are not directly available to the user when applying
the algorithm. From Ref. [11], it follows that the complexity to compute the
spectral gap of a Markov chain is at least O( 1

∆ ). This complexity corresponds
exactly the complexity of the classical mixing time, and that classical mixing
time complexity is exactly the complexity the algorithm by Chakraborty et al.
tries to improve upon. Hence, the claimed speedup does not actually hold when
these spectral gaps are not available beforehand, and in such cases the algo-
rithm even achieves the same complexity as the original classical algorithm (up
to logarithmic factors).

Using approximate values for the spectral gaps instead of the correct ones,
affects the algorithm in various ways, depending on whether a value larger or
smaller than the correct value is used, and also on which incorrect spectral gap
is used.

First, if a smaller value is used, it can be seen by following the same calcula-
tion as the original algorithm, that the correct state is obtained with at least the
same precision. Indeed, a higher value for one of the spectral graphs just means
that more pointer qubits are used, resulting in a higher overlap between the re-
quired states. However, this does result in an increased multiplicative complexity
of the factor O( 1√

∆
).

Second, using a value higher than the correct spectral gap directly affects
the performance of the algorithm. The only impact an incorrect spectral gap
has, is that in Lemma 4 of the original work, the overlap between the target
and resulting state is smaller. The amount of overlap decreases linearly with the
spectral gap. If a value twice as big is chosen as the correct spectral gap, no
guarantee can be given on these two states having any overlap at all, and the
algorithm is completely redundant.

For smaller incorrect larger values, the impact on the algorithm differs de-
pending on which spectral gap uses a higher value. If an incorrect value for ∆ is
used, the result is just that the overlap between the resulting state and target
state of the full algorithm is smaller, if the original parameters are used. In other
words, the performance of the algorithm decreases. This can be fixed however:
suppose the user uses a value of ∆′ > ∆ instead of ∆ such that ∆′/∆ = C < 2.
Then if one runs the second part of the algorithm with ⌈log2/C(4/ε)⌉ copies of
the pointer register instead of ⌈log2(4/ε)⌉ copies, it still obtains the result with
the same precision. However, the complexity of the second part of the algorithm,

i.e., the
√

1
∆ term, increases with a factor of roughly log2/C(2). If the value of

C can be bounded at least a constant away from 2, the same complexity holds,
albeit with a (considerably) worse constant. Thus, if ∆ can be approximated
within a constant factor smaller than 2 from above, the algorithm runs with the
same precision, but a higher complexity.
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If an incorrect value for ∆(s∗) is used, the impact is slightly different. Again,
suppose a value of ∆′ > ∆(s∗) is used, with ∆′/∆(s∗) = C < 2. Just like in
the previous paragraph, the same precision of the algorithm can be assured by
increasing the complexity. This would ensure that the resulting state after step
1 is within the distance to the target state required after step 1. Just like before,

this requires an increase in the
√

1
∆(s∗) term in the complexity with a factor of

roughly log2/C(2). There is also another option here, namely running this first
part of the algorithm with the original parameters. The state obtained after step
1 of the algorithm then has a smaller overlap with the target state after step
1 of the algorithm than intended, namely an overlap of δ = (ε/4)log1/2(C/2). If
step 2 of the algorithm would then be run from this state, this would require
a complexity of 1

∆δ log(
1
δ ), assuming a correct value for ∆ (or for approximate

versions of ∆ with the same complexity increase as before). Again, if the value of
C can be bounded at least a constant away from 2, the same complexity holds,
albeit with a (considerably) worse constant. Depending on the exact value of C
and ε, the first or second alternative gives more beneficial scaling factors.

In conclusion, if the spectral gaps can be approximated within a constant fac-
tor smaller than 2, the algorithm still performs with the same complexity, albeit
with (considerably) worse constants. However, to the best of our knowledge, the
best algorithm to approximate the spectral gap within a factor of 2 is to simply
compute the spectral gap exactly. It was mentioned before that other approx-
imations (to higher factors) for the spectral gaps nullify the speedup claimed
by the original algorithm. In summary, there are no algorithms that can suffi-
ciently approximate the spectral gaps such that the speedup of the algorithm
remains intact, unless the spectral gap is computed manually. As computing the
spectral gap manually requires a complexity similar to the classical mixing time,
this completely negates the speedup presented by the algorithm, and instead the
algorithm will have the same complexity as computing the classical mixing time.

3.3 Instances in which speedup is preserved

Altogether, it can be concluded that in the general case, the algorithm by
Chakraborty et al. receives at best the same complexity as the classical mix-
ing algorithm. Of course, it should be noted that there exist instances in which
the required parameters are naturally available. It is however expected that there
are only a limited amount of such situations, as both s∗ as well as the spectral
gaps of two different Markov chains have to be naturally available to the user. In
particular, to the best of our knowledge, no natural examples exist where these
values are all known to the user.

4 Discussion

In this work, we discussed the fine print of the first analog quantum algorithm to
prepare the stationary distribution of a Markov chain. The original work claims
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a speedup over the classical state-of-the-art, and even claims to match the (digi-
tal) quantums state-of-the-art. This work, in constrast, shows that this speedup
actually depends on the knowledge of a couple of specific variables. Specifically,
it is shown that to prepare these variables, a complexity is required which is sim-
ilar to the complexity of classically preparing the stationary distribution. From
this, the complexity of the practical implementation of the algorithm was com-
puted. From this complexity, it can be concluded the promised speedup offered
by this algorithm does not hold in practice.

It should be noted that the algorithm in Ref. [6] still proves useful in Markov
chain problems, yet, with a worse complexity than originally claimed. In addi-
tion, it might be possible to use their ideas in other algorithms that do obtain
this claimed speedup.

With this fine print, this work adds to the line of research of considering the
practical applicability of quantum algorithms, started by the seminal work of
Aaronson [1], later extend by other works, such as [18]. Just like these previ-
ous works, this work shows the importance of this line of research, as practical
implementation is often very different from theoretical description. For future
work, it would be interesting to consider the fine print of other algorithms and
hence continue this important line of research.

The goal of the quantum computing field should be to bring society fur-
ther. To achieve this, more and more quantum algorithms are being proposed
to obtain speedups over state-the-art classical solvers, or to solve classically in-
tractable problems. Most of these algorithms offer novel insights and indeed
indicate speedups over classical best practices. However, by omitting the so-
called fine print of these algorithms, there cannot be sufficient trust in that
these theoretical speedups actually transfer to practical implementation. Quan-
tum computing can only bring society further by being explicit about the full
applicability and fine print of quantum algorithms.
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