Downloaded via 139.63.198.65 on September 1, 2025 at 08:46:06 (UTC).

See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

QRO
IeNce & lecnnoiogy i rcie s cnsedunder e 20 @

pubs.acs.org/est

Learning Curves in Prospective Life Cycle Assessment
Mitchell K. van der Hulst, Mara Hauck, Selwyn Hoeks, Rosalie van Zelm, and Mark A. ]. Huijbregts™

Cite This: Environ. Sci. Technol. 2025, 59, 1650116512 I: I Read Online

ACCESS | [l Metrics & More | Article Recommendations | @ Supporting Information
ABSTRACT: Environmental learning curves have great potential Foreground Background Environmental
Process-specific X Integrated =

to predict future changes in environmental footprints of
technologies as part of prospective life cycle assessments. However,
concrete guidance is currently missing on how to integrate
environmental learning curves into prospective life cycle assess-
ments. Here, we propose a method to combine (i) process-specific
environmental learning curves for key technology parameters and
(ii) projections from integrated assessment models to include
relevant changes in background processes, such as expected
decarbonization of the electricity grid. Our method enables process
contribution analyses, uncertainty and sensitivity analyses, and
flexibility in the assessment of various impact categories.
Application of our proposed method is demonstrated in a case
study assessing various environmental footprints of producing monocrystalline silicon photovoltaic panels. We showed that
environmental footprints reduce 21—80% between 2020 and 2050 through a synergy of (i) and (ii). Footprint reductions were
mostly driven by background changes when decarbonization is extensive, whereas process-specific environmental learning curves
become the major driver for footprint reductions when developments in background processes follow a similar trajectory as charted
by the past. Our method may also be used in the assessment of emerging technologies by applying process-specific environmental
learning curves to mature parts of their supply chain.
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1. INTRODUCTION learning. Improvements are initially rapid but gradually slow
down as knowledge and efficiency reach a maximum. Thus,
improvements as a function of learning follow a curved path,
i.e., the learning curve. In economics, learning curves have long
been used to project decreases in production cost due to
learning induced increases in efliciency. However, environ-
mental impacts were also observed to reduce due to increased
efficiency.” Learning curves related to environmental param-
eters have therefore raised the interest of the prospective LCA
community, as they can easily be extrapolated to forecast the
future environmental performance of a human activity.
Louwen et al.° for example, used LCA studies from 1989 to
2013 to derive product-specific environmental learning curves
for the greenhouse gas (GHG) footprint of solar panel
production as a function of cumulative installed photovoltaic
(PV) capacity and extrapolated GHG footprints for 2040.
Similarly, van Nielen et al.” used historical data for the GHG

Human activities are increasingly under scrutiny for their
detrimental effects on the natural environment. Life cycle
assessment (LCA) is a method that aims to quantify the
impacts of human activity, such as extraction of resources from
nature and emissions of pollutants and wastes to nature." LCA
is traditionally applied to assess the current environmental
performance of human activities. However, recent years have
seen a growth in the number of prospective LCA studies
assessing the future environmental performance of human
activities.” These prospective studies distinguish themselves
from ordinary LCA in that they explicitly try to quantify
environmental performance at a future point in time, typically
with the aim to inform and guide technology developers and
policy makers toward high environmental performance.

Such future-oriented assessments require extrapolation from
the current state to what is a likely future state. Literature
studies such as Buyle et al.” have identified diverse procedures
that LCA practitioners can use to perform these extrapolations
in a systematic and scientific way. One of these is learning
curves, which are statistical representations of learning
processes observed in human activities that follow a power
law known as Wright's law.” In simple terms, the more a task is
repeated, the better the outcome of the task as a result of
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footprint of copper production. While both studies demon-
strate that the environmental performance of products follows
trends that can be extrapolated, the applicability of their
approach in prospective LCA is limited. For one, it is limited to
impact categories for which results are reported or for which
learning rates can be estimated by referring to another impact
category, cost, or performance indicator. Caduff et al®
presented a solution by combining life cycle inventory (LCI)
data from various LCA studies to construct environmental
learning curves, thereby enabling the assessment of a wide
array of impact categories. However, this is only possible for
products that have been extensively studied over a wide
timespan, while being intrinsically impossible for new products
that are often studied in prospective LCA.” Bergesen and
Suh'® presented a solution with their framework for
technological learning in the supply chain. Instead of using
multiple LCA studies, they collected time-series data for
consumption of key material and energy sources used in the
supply chain. Process-specific learning curves for individual
processes are then created, which are applied to the LCI. This
approach is especially useful in prospective LCA because one
could use time-series data for any relevant process parameter
that exhibits learning behavior. For example, increased
efficiency of electric motors can be converted to process-
specific learning curves for the kilowatt-hours of electricity
consumed in processes using electric motors. Time-series data
for process parameters are found in a wider variety of data
sources than solely LCA studies. A further benefit is that
process-specific learning curves enable process contribution
analyses and uncertainty and sensitivity analyses. Application
of the framework is demonstrated by Bergesen and Suh'® and
Koj et al.'' Both applied learning curves to account for
endogenous changes in the foreground system. However,
exogenous changes in the background system were excluded by
Koj et al,,'" while Bergesen and Suh'® included learning in only
a hand full of background process, applying a single estimated
learing rate (LR) to all parameters. A more comprehensive
inclusion of exogenous changes is demonstrated by Fozer et
al,'” but they base endogenous changes on explorative
normative scenarios instead of learning curves.

In our previous work,"> we proposed to couple endogenous
changes in the foreground system using learning curves with
exogenous changes in the background system using projections
from integrated assessment models (IAMs) when conducting a
prospective LCA of a mature, industrially produced technol-
ogy. An IAM is a model applied to analyze the interactions
between socio-economic developments and the environment
in order to provide insights about the impacts of different
decisions and policies. The use of IAMs to comprehensively
model changes in the background system of LCAs was
comprehensibly demonstrated by Mendoza Beltran et al.'* and
has since been made more widely available by Sacchi et al."®
through their premise framework. While inclusion of back-
ground changes using IAMs is starting to become common-
place in prospective LCA, its coupling with foreground
changes through the application of learning curves and the
added value of such coupling are yet to be demonstrated.

Here, our goal is to develop and apply a method for the
combined use of (i) process-specific environmental learning
curves for key parameters of the technology that is to be
evaluated and (ii) projections from IAMs to model changes in
background processes, such as expected decarbonization of the
electricity grid. The application of our method is demonstrated

with a case study for the production of monocrystalline silicon
solar panels. We selected this mature technology, instead of an
emerging technology, to showcase the use of diverse data
sources and strategies, as well as to enable comparison with an
existing environmental learning curve based on empirical data
as reported by Louwen et al.” Considering the uncertain nature
of prospective LCA, we quantified uncertainty introduced by
the application of learning curves. Based on lessons learned
from the case study, a discussion of challenges and limitations
and an outlook are provided for using our method in
prospective LCA.

2. METHODS

2.1. Integration of Learning in Foreground and
Background Processes within Prospective LCA. Our
proposed method consists of four consecutive phases depicted
as a flowchart in Figure 1 and explained in detail in Table 1.

In phase I, the goal and scope of the study are determined,
and a screening LCA is conducted to identify, which parts of
the product life cycle are major contributors to the studied
environmental impacts of the product system. This helps
prioritize time and resource deployment to learning curves for
parts with a large contribution to assessed environmental
impacts to capture the most significant learning-induced
changes in these environmental impacts.

In phase II, learning curves for the identified major
contributing parts are created. Data need to be collected for
both cumulative production and changes affecting these
elements over time. We followed the mathematical framework
presented by Bergesen and Suh'’ to introduce process-specific
learning curves for foreground processes. Bergesen and Suh'’
argued that the quantity a of product j (e.g., glass) going into
activity i (e.g., cadmium telluride panel production) can reduce
over time t as a function of cumulative production cp and an
empirically determined process-specific learning parameters
following Wright’s law (eq 1), where a;;, are elements of a
time-resolved technosphere matrix A,.

log a;;, =log a;; 1 + ﬂ]: X log(cpi,tZ/ CPi,u) (1)

Learning parameter /3 is typically transformed and reported
as the learning rate (LR = 1—2/), which is the percentage
change in the environmental indicator for each doubling of
cumulative production. The technosphere matrix can be

A A
subdivided such that A, = [ A‘iff Af'f; } with A,y and Ay,
t, t,

containing all elements where the produced product and
consuming activity are both part of the foreground or
background system, respectively, and with A, ;s containing all
elements where products from the background system are used
in activities in the foreground system and A, containing all
elements where products from the foreground system are used
in activities in the background system.

In phase III, the process-specific learning curves are applied
to the foreground system, and the IAM projections are applied
to the LCI database representing the background system to
derive future values for the elements of the time-resolved
technosphere matrix A, Our method applies eq 1 to the
elements a;;, of A, and A, and uses premise”” to apply
projections from an IAM to the elements a;;, of A, that are
covered by this IAM. Integration of the product into the
background system is not considered, as this would require
knowledge of market dynamics, which is currently considered
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Figure 1. Flowchart of the proposed method for application of learning in foreground and background processes in prospective LCA.

outside the scope. Therefore, no elements a;;, of A,q are
defined. To account for the uncertainty in the learning curves,
Monte Carlo simulations are used to draw multiple samples
from the confidence interval of the learning curves at a future
point in time.

In phase IV, these sampled values for processes in the
foreground system are combined with a future version of the

16503

background system in a time-specific LCA. Obtained results
are interpreted through scenario and sensitivity analyses. When
LCA results for multiple future years are created, they can be
combined to create product-specific learning curves for the
studied technology.

2.2, Case Study Application. 2.2.1. Phase I: Screening
LCA. 2.2.1.1. Step 1—Goal and Scope. The goal of the case

https://doi.org/10.1021/acs.est.5c03870
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Table 1. Description and Modeling Methods and Tools for Each Steps of the Proposed Method for Application of Learning in
Foreground and Background Processes in Prospective LCA

step 1. define goal and
scope

step 2. collect LCI data
for the studied tech-
nology

step 3. scale-up the
technology to a mature
state (optional)

step 4. transfer the LCI
model to LCA soft-
ware

step S. conduct a supply
chain contribution
analysis

step 6. collect time-series
data for the major
contributing elements
in the supply chain

step 7. collect time-series
data for the cumulative
production

step 8. create learning
curves for the major
contributing elements

step 9. create future
databases for the
background system

step 10. collect projec-
tion data for the cu-
mulative production

Step 11. extrapolate the
learning curves

step 12. create scenarios
for the foreground
system

step 13. run a scenario
LCA

step 14. create
product-specific learn-
ing curve(s) (optional)

step 1S. interpret the
results

description

Phase L. Screening LCA

define the goal, functional unit, system boundary, and temporal and geographic scope of the LCA and
select the life cycle impact assessment method(s) and LCA software tools for conducting the LCA.

use most recent LCI data for production of the studied technology.

when the goal is to assess an emerging technology, the present LCI should first be upscaled using
prospective LCA methods to model this technology at a future state that enables industrial production.

using the collected LCI data, create a database of the foreground system for use in LCA software that is
compatible with the modeling methods in steps 5, 12, and 13.

identify contributing elements with a substantial contribution to the environmental impact of interest to
direct available time and resources to data collection and learning curve creation for these elements.

Phase II. Create Learning Curves
quantify trends in products used per activity (e.g., mass of glass/solar panel) for each major contributing
element. When unavailable, use proxy data (e.g,, glass thickness X area X density/solar panel). Collect as
many data points for as wide a time range as possible to improve accuracy of the learning curve.

use cumulative production as a measure of learning. Alternatively, metrics such as cumulative units sold,
cumulative units shipped, or cumulative installed capacity could be used.

plot time-series data collected in step 6 against corresponding cumulative production data collected in
step 7, both on log), transformed axes. Fit a straight line through ordinary least-squares regression.
Determine the slope f;, intercept a;;,, and confidence interval of each learning curve.
Phase III. Extrapolate to the Future

apply projections from integrated assessment models (IAMs) to the LCI database used in modeling the
background system. Include diverse development narratives from the IAMs for scenario analyses.

where possible, collect projections for multiple years and diverse scenarios.

sample the confidence interval of the learning curves from step 8 through Monte Carlo simulations to
estimate future values for the major contributing elements (e.g., mass glass/solar panel in 2050).
identify for each major contributor the activity name, reference product, location, category, database, and
key of the activity sending a reference product j (e.g, glass) and the activity i receiving that reference
product (e.g,, production of the solar panel).
Phase IV. Prospective LCA

combine the scenario for the foreground system with its corresponding background system.

LCA results for multiple years could be combined to create a learning curve for the technology.

analyze how the results are impacted by developments in the foreground and background. Ideally study
these developments both combined and separately (e.g., only background, only foreground, only one of
the learning curves, etc.). Assess how uncertainty in the learning curves of each flow is transferred to the
uncertainty in the environmental footprint of the product.

modeling methods and tools

see guidelines for general LCA, e.g,
I1SO 14040'° and ISO 14044'7

LCI databases, (gray) literature, in-
terviews with technology experts,
etc.

see existing frameworks presented in
literature, e.g., ref3, 13, 18—23

Brightway”* and Activity Browser™
are most suitable at present

e.g, print_recursive_calculation func-
tion of bw2analyzer in brightwayZ24

LCI databases, (gray) literature, sta-
tistics bureaus, trade organizations,
researcher institutes, companies,
trend reports, roadmaps, etc.

Wright's law (eq 1)

PSR .
premise ” is most suitable at present

IAMs, roadmaps, trend reports, white
papers, etc.

Wright's law (eq 1) Monte Carlo
simulations

Brigh'cwa\y24 or Activity Browser™ and
a spreadsheet program (e.g., Excel)

Brightwa\y24 or Activity Browser™

Wright's law (eq 1)

sensitivity and variance contribution
analyses

study was to demonstrate the application of our method, which
assessed various environmental impacts. Additionally, we
wanted to compare our results with those obtained using
alternative methods based on learning curves. We therefore
studied monocrystalline silicon PV panel production to enable
comparison with Louwen et al.® We focused on passivated
emitter and rear cell (PERC), which at present has the largest
market share in the monocrystalline PV market.”® The
geographic scope was China, where the majority of PV panels
are currently produced.”® The temporal scope comprised 2020
and 2050, with 2050 being the furthest point in time in the
most recent World Energy Outlook (WEO) of the Interna-
tional Energy Agency.”” The functional unit was defined as
“the production of 1 Watt-peak (W,) of PERC solar panel
capacity”, with transportation, installation, use, maintenance,
and end-of-life waste treatment placed outside the system
boundary.

Impacts were assessed in LCA software, Brightway2,”* with
the life cycle impact assessment method, ReCiPe 2016.” This

method contains 18 midpoint and three endpoint impact
categories. The endpoints provide insight into damage to the
three areas of protection, human health, ecosystem quality, and
resource scarcity, by aggregating effects from the midpoints
into single units. To ensure compatibility with background
databases created by premise in step 9, several characterization
factors were added or edited in the Climate Change impact
category in line with van der Hulst et al. 2024.”” Results in the
main text represent outcomes obtained with the hierarchist
(H) perspective of ReCiPe, which considers time frames and
available data for which there is scientific consensus. Results
for the other two perspectives, egalitarian and individualist, are
provided in the Supporting Information, Sections 2.2 and 2.3.

2.2.1.2. Steps 2 and 3—Data Collection and Scale-Up.
The foreground system was modeled using a recent and
comprehensive LCI for the production of PERC panels
provided in Miller et al.** Since PERC is a mature technology,
we did not apply upscaling to the LCI data as prescribed in
optional step 3 of our method and therefore did not model any

https://doi.org/10.1021/acs.est.5c03870
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process changes, changes in the scale of product and
equipment, or changes in known process synergies such as
waste recycling. However, some adjustments were made to
enable connection with the background database and to enable
assessment of panels produced in China on the basis of a
power-based functional unit in W_,. A flowchart and
comprehensive description of the studied product system are
provided in the Supporting Information, Section 1.1.

2.2.1.3. Steps 4—Transfer to LCA Software. A database file
for the foreground system (provided in the data repository)
was imported into Brightway2 using Activity Browser, version
2.9.7.2>°" The LCI database ecoinvent, version 3.9.1 system
model “Allocation, cut-oft by classification”**** was used to
model the background system. Through a midpoint-to-
endpoint contribution analysis, we identified which midpoint
categories contributed at least 15% to damage in either of the
three endpoint categories.

2.2.1.4. Step 5—Supply Chain Contribution Analysis. A
supply chain contribution analysis was conducted for the major
contributing impact categories using the print_recursive_calcu-
lation function of Brightway2.”* This function traverses the
supply chain of the activity, producing the functional unit to
identify processes with a substantial contribution to the
environmental impact. Codes for application of the Brightway2
function are provided in the Supporting Information, Section
1.1.

2.2.2. Phase lI: Create Learning Curves. Time-series data
for cumulative installed capacity and major contributors in the
supply chain were collected from diverse publicly available data
sources (Supporting Information, Section 1.2). In some cases,
we found multiple data sources reporting different values for
the same parameter and year. Data from official statistic
bureaus were given preference and were only supplemented
with data from other sources when using comparable modeling
approaches and assumptions. Cumulative installed PV capacity
was used as a measure of learning for all learning curves
throughout the supply chain. Values for major environmental
impact contributors were plotted against the cumulative
installed capacity for the corresponding year on a log;y—log;,
plot. The slope f;; and intercept 4;;o of the learning curves
were calculated with eq 1 through ordinary least-squares fitting
of the log,, transformed data using linear models.

2.2.3. Phase lll: Extrapolate to the Future. 2.2.3.1. Step
9—Create Future Background Databases. Changes to the
ecoinvent background database were based on projections
from IMAGE,* which is one of several IAMs available in
premise. The IAM is given the parameters for a future scenario,
and it will calculate for a number of sectors, which conditions
need to be met to satisfy this future scenario. The future
scenarios are informed by a combination of the shared socio-
economic pathway (SSP) framework®® and the representative
concentration pathway (RCP) framework.”® The former
provides credible scenarios for the development of population,
economic output, and rate of technological development, while
the latter provides possible development scenarios for the level
of GHGs. Projections for SSP2 were used, which is the “middle
of the road” pathway for which social, economic, and
technological developments are assumed to follow a trajectory
similar to that charted by the past. Its baseline scenario results
in a global mean surface temperature increase of 3—4 °C by
2100. Additionally, the RCP1.9 scenario was considered, which
projects 1.9 W/m? of radiative forcing from GHGs in 2100,
coinciding with a global mean surface temperature increase of

12—-14 °C, which is compatible with the Paris climate
accord.>® We used premise, version 2.02"%7 to make
adjustments to the sectors of electricity generation, trans-
portation by truck, and production of fuels, steel, and cement
to meet these scenarios. A copy of ecoinvent was created by
premise for both scenarios for the year 2050. In addition, the
year 2020 was included to enable comparison between
projected and observed values. A more detailed account of
the application of premise is provided in the Supporting
Information, Section 1.3.

2.2.3.2. Step 10—Projection of Cumulative Production.
Since the IMAGE model projects changes to the energy
market, it includes projections on the deployment of PV. We
acquired the modeled projections for the cumulative installed
capacity in each considered scenario from the IMAGE model
developers. These projections were 728 GW in 2020 and 4644
and 8222 GW in 2050 for the SSP2-base and SSP2-RCP1.9
scenarios, respectively. For sensitivity analyses, we also
included cumulative installed capacities for 2050 projected in
the 2023 WEO,”” which were considerably higher than what
was modeled by IMAGE.

2.2.3.3. Steps 11 and 12—Extrapolate Learning Curves
and Create Scenario Files. For each of the 11 learning curves
and each scenario, the deterministic values for 2020 and 2050
were obtained by extrapolating the learning curves to the
projected cumulative installed capacities from step 10 using eq
1 and the slope f3;; and intercept a;;, from step 8. To quantify
how uncertainty in the learning curves parameters propagated
into the LCA predicted impact, we simulated 1000 potential
combinations of learning curve outcomes per scenario
following a Monte Carlo approach. We limited the simulation
to 1000 samples as this already required considerable
computational power, taking on average about half an hour
to assess impacts in 14 impact categories of only one future
scenario. This procedure took the uncertainty in the estimated
learning curve parameters slope f;; and intercept a;;o, to
account for the covariances between the uncertainty in the
estimated parameters by using Cholesky decomposition of the
variance—covariance matrix. Deterministic and probabilistic
values were stored in scenario files (see data repository) for use
in the Activity Browser.

2.2.4. Phase IV: Prospective LCA. 2.2.4.1. Step 13 and
14—Run Scenario LCA and Create Product-Specific
Learning Curve(s). The Scenario LCA feature of Activity
Browser was used to calculate environmental impacts for major
contributing midpoint impact categories and for all scenarios
considered. Supporting Information, Section 1.4 provides a
more detailed account of the application of this feature by
using the provided files. Optional step 14 of creating product-
specific environmental learning curves was not included, since
impacts were calculated only for 2020 and 2050, and learning
curves created from two data points are unlikely to be reliable.

2.2.4.2. Step 15—Interpret Results. To assess which future
developments (ie., foreground learning curve projections or
background conditions) lead to the largest reduction in
environmental impacts, we conducted a one-at-a-time (OAT)
sensitivity analysis. We conducted an LCA including only
developments in the foreground (ie., including all learning
curves), only developments in the background, and both. All
future permutated LCA results (2050) were compared to one
current LCA result (2020) to quantify the sensitivity of the
relative reduction in the estimated impact. We also performed
OAT sensitivity analyses for the individual learning curves by
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Figure 2. Sankey diagram of the supply chain for the production of 1 W, of PERC solar panel capacity. Values behind each colon represent the
GHG footprint of that product in kg CO,-eq per W,. MG-Si: metallurgical grade silicon; poly-Si: poly silicon; Cz-sc-Si: Czochralski single-

crystalline silicon.

one-at-a-time “switching off” the learning curve variables,
replacing the value predicted in 2050 with the value derived for
2020. In addition, following the uncertainty propagation, the
spearman rank correlation coefficients were used to quantify
the influence of each of the learning curve estimates on the
uncertainty in the estimated LCA impact.

3. RESULTS

3.1. Phase I: Screening LCA. The contribution analysis
revealed the most relevant elements of the system under study
to orient data collection in subsequent steps. Five midpoint
impact categories attributed 15% or more of the impacts in the
three endpoint categories: Climate Change, Acidification, Non-
Carcinogenic Human Towicity, Particulate Matter Formation, and
Fossil Resource Scarcity (see Supporting Information, Section
2.1). The process contribution analysis of the GHG footprint
for the Climate Change impact category is visualized as a
Sankey diagram in Figure 2 (for other categories, see
Supporting Information, Section 2.1).

Here, we see processes contributing 2.5% or more to the
total GHG footprint of the reference product (shown on the
right). Each step toward the left represents a step up the supply
chain. The leftmost processes represent processes in the
background system. The category “Other” includes all
background processes contributing less than 2.5% to the
total GHG footprint. The reference product “Module” in W,
has 100% of its GHG footprint coming from the process
“Module” in cm® This is to be expected, since they are the
same process but with a different unit. The required module
area per W, is determined by the module efficiency, which is
therefore a major parameter to include in the model. One step
further in the supply chain, we see that the cell, aluminum,
glass, and electricity are the major contributors to the GHG
footprint per area of “Module” produced. Therefore, input
quantities for these materials and energy are major parameters
to include in the model. Repeating this for all levels of the
modeled supply chain and for all five relevant midpoint impact
categories, we identified the following major contributors on
which to focus data collection efforts:

e Module production (WP): module production (m?);
e Module production (m?): silicon cell, aluminum, copper,
glass, ethylene-vinyl acetate, and electricity;

e Silicon cell production: silicon wafer, silver in metal-
lization paste, and electricity;

e Silicon wafer production: Czochralski silicon;
e Czochralski single-crystal silicon production: polysilicon
and electricity;

e Poly silicon production: metallurgical grade silicon and
electricity;

e Metallurgical grade silicon production: electricity.

3.2. Phase II: Create Learning Curves. Time-series data
were found for 11 of the 17 processes identified in Phase I (see
Supporting Information, Section 1.2). The resulting process-
specific learning curves are presented as dark gray lines in
Figure 3. Module efficiency (Figure 3a) has a learning curve
with a positive slope and, therefore, a negative LR, meaning
that the efficiency increases with increasing cumulative
installed capacity. The remaining ten processes have learning
curves with negative slopes and positive learning rates and are
thus decreasing with increasing cumulative installed capacity,
e.g.,, the more panels produced, the more the thickness of the
wafer, kerf, and glass decreases. The steeper the slope, the
larger the LR, and thus the stronger the parameter increases or
decreases as a result of learning.

3.3. Phase lll: Extrapolate to the Future. The 1000
sampled values from the Monte Carlo simulation for each
future scenario are represented with colored dots in Figure 3.
Blue dots represent sampled values for 2020, using the
cumulative installed capacity reported for that year. Red and
green dots represent sampled values for 2050 based on,
respectively, SSP2-base and SSP2-RCP1.9 projections of
cumulative installed capacity for 2050. Narrower confidence
intervals result in more tightly grouped sampled values.

3.4. Phase IV: Prospective LCA. Figure 4 displays a
reproduction of the product-specific learning curve for the
GHG footprint of mono-Si solar panels from Louwen et al.’
Projected GHG footprints, obtained using process-specific
learning curves for PERC panels, are superimposed as three
colored violin plots representing the distribution of the 1000
GHG footprints predicted using a Monte Carlo approach for
each of the three assessed scenarios. The 2020 and 2050 SSP2-
base scenarios, with average projected footprints of 0.474 and
0.314 kg CO,-equiv/W,, respectively, are in close agreement
with the 0.499 and 0274 kg CO,-equiv/W, projected by
Louwen et al. Thus, our approach using process-specific
learning curves projects GHG footprint, which are in
reasonable agreement with projections from product-specific
learning curves. The more progressive SSP2-RCP1.9 scenario
resulted in an average projected footprint in 2050 of 0.093 kg
of CO,-equiv/W,, which is substantially lower than the 0.228
kg of CO,-equiv/W, projected by Louwen et al, as would be
expected. The SSP2-RCP1.9 scenario assumes extensive
application of renewable energy, which would be a major
shift away from past trends, whereas the SSP2-base scenario is
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Figure 3. 11 process-specific learning curves for which data were obtained. Individual empirical observations are represented with black dots.
Cumulative installed capacities, as well as these reported observations were log,, transformed to enable ordinary least-squares fitting. The dark line
represents the fitted learning curve and the shaded area represents the 95% confidence intervals, quantifying the uncertainty in the learning curve
fit. Colored dots represented sampled values obtained through Monte Carlo simulation. ay: intercept, f: slope; LR: learning rate; cons.:
consumption; prod.: production; MG-Si: metallurgical grade silicon; poly-Si: poly silicon; Cz-sc-Si: Czochralski single-crystalline silicon; SSP:
shared socio-economic pathway; and RCP: representative concentration pathway.

closer to an extrapolation of the historic rate of progress in
energy systems. It should be noted that the basis of comparison
is slightly different, since Louwen et al. consider a system
boundary that includes balance-of-system, whereas our
projections do not account for this. Based on contribution
analyses using ecoinvent data sets, the balance-of-system would
account for approximately 25% of the GHG footprint.
Extending our system boundary might help identify further
similarities and differences in results obtained with both
methods, but this was considered outside the scope of this
study.

16507

Figure 5 shows the results of the OAT sensitivity analysis of
the GHG footprint. Results for the other midpoint impact
categories are provided in the Supporting Information, Section
2.1. We found that, in the SSP2-base scenario, learning in the
foreground (F) reduces the GHG footprint by 28%, while
changes in the background (B) reduce the GHG footprint by
12%. The combination (F + B) results in a 36% reduction in
GHG footprint. Note how the reductions are not additive, due
to interactions between the foreground and background
systems. In the SSP2-RCP1.9 scenario, learning in the
foreground (F) reduces the GHG footprint by 35%, while
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Figure S. One-at-a-time sensitivity analyses showing how sensitive the
impact reductions between 2020 and 2050 are to modeled
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background system (B), or both (F + B). kg CO,-equiv: kilogram
carbon dioxide equivalent; W,: Watt-peak; F: foreground; B:
background; SSP: shared socio-economic pathway; and RPC:
representative concentration pathway.

changes in the background (B) reduce the GHG footprint by
75%. The combination (F + B) results in a 80% reduction in
GHG footprint. Thus, learning in the foreground is more
important in the SSP2-base scenario, whereas changes in the
background are more important in the SSP2-RCP1.9 scenario.
Decarbonization of electricity is the development in the
background with the largest contribution to GHG footprint
reductions,’ while for the foreground system this is learning in
module efficiency (see Supporting Information, Section 2.1.2).
Note that the difference in results for only learning in the
foreground (F) is due to different projections for the
cumulative installed capacity in 2050. The SSP2-RCP1.9
scenario projects higher cumulative installed capacities, leading
to more learning and therefore a larger reduction in the GHG

footprint. Results for the OAT sensitivity analyses of the
individual process parameters in the foreground system are
provided in the Supporting Information, Section 2.1.2.

Figure 6 displays the Spearman’s rank correlation
coeflicients between the GHG footprint and each of the 11
parameters for which process-specific learning curves were
created. Results for the other midpoint impact categories are
provided in the Supporting Information, Section 2.1. The
higher the Spearman’s rank correlation coefficient of a process
parameter, the more it contributes to the uncertainty in the
GHG footprint of PERC panel production. Module efficiency
has a negative correlation coefficient, meaning that increasing
module efficiency correlates with decreasing GHG footprints.
The other process parameters all have positive correlation
coefficients, meaning that a decrease in these parameter values
correlates with a decrease in GHG footprints. We found that
the process-specific learning curves with the largest uncertainty
in model fit, power consumption in Czochralski silicon, and
module production, contribute the most to uncertainty in the
GHG footprint. When electricity is decarbonized (i.e., SSP-
RCP1.9), the GHG footprints of power consumption-related
processes diminish. Thus, while the uncertainty in the model
fit remains large for power consumption in Czochralski silicon
and module production, their impact on the GHG footprint is
reduced. Consequently, the process-specific learning curve for
the frame becomes the major contributor to the uncertainty.
Uncertainty in process-specific learning curves can be further
reduced by, e.g, collecting more data points or further
disaggregating these learning curves into multiple underlying
process-specific learning curves.

The other four assessed midpoint impact categories follow
similar trends as displayed for Climate Change in Figure S and
Figure 6, with the exception of Non-Carcinogenic Human
Toxicity (see Supporting Information, Section 2.1.4). Emis-
sions of heavy metals from mining of aluminum, copper, and
silver are the main contributors, which are not affected by
electricity decarbonization. Thus, in a decarbonized economy
(i.e., SSP-RCP1.9), uncertainty in the mass of the frame and
silver are major contributors to the uncertainty in this impact
category. Copper was by far the major contributor, but changes
in impacts from copper consumption were neither included in
the foreground system for lack of data nor in the background
system for lack of coverage of this sector by IMAGE. Thus,
projected results for this category, as well as its contribution to
the human health endpoint, are likely to be overestimated.
This should be addressed in future research, for example, by
expanding the scope of data collection to try and derive
process-specific learning curves for the copper supply chain.

4. DISCUSSION

4.1. Uncertainties. Our study shows for the first time how
expected changes in foreground and background processes can
be combined in prospective LCA. Our method is, however, not
without uncertainties, which are further reflected upon below.

First, the single-factor learning curve used in the method
attributes all observed changes in environmental performance
over time to learning-by-doing. In economics, two- and
multifactor learning curves are also used to try to more
accurately correlate trends to multiple factors, such as learning-
by-searching and economies of scale. Such comprehensive
learning curves are yet to be applied to environmental
impacts.” Further research is required to assess which (set
of) parameter(s) would be the best predictor(s) of changes in
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Figure 6. Uncertainty analyses showing the Spearman’s rank correlation coeflicients relating the 1000 GHG footprints obtained for each scenario
against the 11 process parameters adapted in the foreground system using learning curves. SSP: shared socio-economic pathway; RPC:
representative concentration pathway; MG-Si: metallurgical grade silicon; poly-Si: poly silicon; and Cz-sc-Si: Czochralski single-crystalline silicon.

environmental impacts. More advanced two- and multifactor
learning curves do require more time and effort, which might
make their application less feasible to some practitioners.”
Second, learning curves require data for a measure of
learning, such as cumulative production, which can introduce
errors. To accurately derive this parameter at any point in time,
one needs production data for all years of production. This can
be difficult for early production years. Exclusion of these years
could result in substantial underestimation of the cumulative
production, as demonstrated by, among others, Weiss et al.**
When cumulative production data are absent altogether, one
might have to rely on proxy data that can introduce further
errors. In our case study, we used cumulative installed capacity
of solar panels, which, among others, disregards panels that
have been removed from the field at end-of-life. As more and
more panels come offline, this proxy will become less and less
reliable. However, solar panel production is exponentially
increasing, and panels have a lifetime of around 30 years; thus,
newly installed capacity far exceeds the capacity coming offline.
This problem only becomes apparent once panel production
starts deviating from its exponential growth path, in which case
it would be advised to use best available estimates for
cumulative production as a more reliable measure of learning.
Third, the use of a single measure of learning for the entire
value chain of the foreground system might introduce errors.
Data collection for the measure of learning was challenging in
our case study. Therefore, we used cumulative installed
capacity of solar panels as a measure of learning in all learning
curves throughout the supply chain. While representative as
measure of learning for processes close the functional unit
(e.g, module and cell production), it is likely less
representative for processes further up- or downstream. For
example, metallurgical grade silicon is used in other products

than solar panels, and its learning is thus affected by demand of
multiple products. When reporting learning curves, it should
therefore be clear what measure of learning was used, and data
sets for both axes should be provided (as is done here), so that
the learning curves can be tailored to the goal and scope of
individual studies.

Fourth, extrapolation of learning curves requires projections
for the measure of learning, which might vary between models
and data sources. Assessment of the data quality of these
models or data sources might require expert consultation.
When no expert can be consulted and when one remains
uncertain about the data quality of projections, it is preferred
to use projections from various sources where available to get a
sense of how much the differences in models or data sources
may influence the results obtained from extrapolation. For
example, using the 2023 WEO projections for cumulative
installed capacity in 2050 returned lower average GHG
footprints for 2050 of 0.087 kg CO,-equiv/W, (see Supporting
Information, Section 2.1.2), compared to using projections
from IMAGE. Furthermore, we found that each subsequent
WEO projects higher cumulative installed capacities, thus
implying that these projections have thus far been chronically
underestimated (see Supporting Information, Section 2.1.2).

Fifth, learning curves might not continue forever either
because a new technology displaces an incumbent or because
physical or practical limits are reached. As an example of
displacement, PERC is projected to be fully displaced by other
silicon PV technologies by 2034.>” Here, we assumed that
these newer technologies are comparable, such that the
process-specific learning curve for PERC can be considered
representative for any silicon PV technology. As an example of
reaching limits, the PV efficiency of a single-junction solar
panel cannot exceed the Shockley—Queisser limit of 33.7% due
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to laws of physics.*” In such cases, Bergesen and Suh'’ propose
to restrict a;;, to its limit value. This would result in learnin{%
curve plots, which suddenly flatten at the limit value.*

Alternatively, the limit value could be set as a limit value in
curve fitting, with the learning curve fitted to approach, but
never reach this limit value, as demonstrated by Ramirez and
Worrell.**

Finally, separately integrating learning in the foreground and
background might introduce discrepancies. For example, in our
case study, developments in solar panels used in the
foreground were managed by process-specific learning curves,
while developments in solar panels used in the background
system were managed by narratives for learning modeled in the
applied IAM. The latter entailed a lower level of detail, and
therefore we created two unique narratives for the same
technology. This temporal inconsistency can be counteracted
by integration of the foreground system into the background
system. This requires identification and quantification of
relevant elements a;;, in the A, domain of time-resolved
technosphere matrix A, Such an extension was, however,
considered outside the scope of this study.

4.2. Challenges and Limitations. The presented method
is particularly useful in prospective LCA of mature
technologies but poses some challenges and limitations when
applied to emerging technologies. Consider, for instance,
silicon/perovskite tandem solar panels, which are an emerging
technology that is likely to replace the mature technology
assessed in the case study. Presently available lab and pilot
scale data would first need to be upscaled (i.e., step 3 of the
method) to be representative of a mature, emerged technology
produced at an industrial scale (i.e, TRL 9). Subsequently
applying learning curves to this upscaled emerged technology
requires data of processes for which no historic data exist. For
example, no historic data are available for production of the
tandem panel. However, learning curves could be applied to
the supply chain. For example, the same data from the case
study might be used to model the silicon portion of the tandem
panel’s supply chain. The perovskite component is again a part
for which no historic data will be available. Therefore, learning
curves would need to be applied to processes further up or
down the supply chain. For example, while it might not be
possible to apply learning curves to production of the
perovskite layer or the complex chemicals used in the process,
it might be possible to apply learning curves to production of
the base chemicals used to create these complex chemicals.
Thus, depending on the type of technology and its maturity,
learning curves can be applied to processes close to the
reference product, or they might need to be applied further up
or down its supply chain. While in the latter case, the effects
from learning are likely to be underestimated, it would present
an improvement over the status quo, which often completely
leaves out such supply chain learning effects. In the case of
emerging technologies that require many new processes and
materials, the presented method may not be appropriate, and
other approaches may need to be considered.

4.3. Outlook. Our developed method to integrate learning
in foreground and background processes within prospective
LCA provides much needed practical guidance on how to
create and apply environmental learning curves for a
foreground system and on how to combine their use with
prospective LCA databases for the background system created
with, e.g., premise. While the results of our case study are in
agreement with empirical observations, more case studies are
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required to further verify to what extent our method provides
representative projections for future environmental impacts. In
particular, the method should be tested on disparate
technologies from a diverse set of sectors and using a broad
selection of impact categories. Preferably, technologies beyond
energy systems should be studied, in particular, technologies
related to the production of base materials such as metals,
fuels, concrete, plastics, and base chemicals. Much like with the
creation of LCI databases such as ecoinvent, focusing on these
base materials would provide the building blocks that enable
the assessment of more complicated systems.

The creation and application of environmental learning
curves are resource- and time-intensive. However, given their
reproducible nature, learning curves can be updated or adapted
for use in other case studies. Much like the development of
LCI databases for use in conventional LCA, learning curve
databases for use in prospective LCA could, over time, reduce
the effort in applying learning curves. Thus, learning curves
present an objective and scalable method for generating data
points for the future. To aid in application and prevent
redundant work, a central repository should be created to store
collected data in a shared knowledge base. Not only should
this repository contain learning rates but also the underlying
data for both the x-axis (e.g., cumulative production) and y-axis
(e.g., resource consumed or waste emitted per functional unit).
This makes it possible to reproduce and verify the learning
curves as well as extend them by adding new data points once
they become available.

An important further development is the integration of
learning curves for foreground systems into background
databases, e.g,, through tools such as premise’> or lca_alge-
braic.*’ This can be useful not only in prospective LCA but
also in conventional LCA. Conventional LCI databases are
typically created using peer-reviewed empirical data, which can
quickly become outdated. Learning curves based on historical
data could be applied as an aid in the annual update of these
LCI databases. When used in prospective LCI databases,
projections should ideally adhere to the narratives of the SSP
and RCP frameworks, which endure broad consensus in the
scientific community for use in scenario building. Such cross-
compatibility of modeling approaches would also enable the
IAM community to adjust their models based on insights from
prospective LCA.
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