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Abstract

This thesis considers extensions of the standard independent hidden Markov model approach previously used by
TNO for modelling printer nozzles. These extensions introduce parametrised transition probabilities and incor-
porate interactions between neighbouring nozzles to better capture the real-world printing process. The aim of
this thesis is to investigate Bayesian methods to infer their model parameters. Although not the goal of this thesis,
accurate parameter estimation paves the way for diagnosing nozzle malfunctions, ultimately improving printer
performance.

The first method is a sampling algorithm with adaptive proposal distributions. We then present two variational
inference (VI) algorithms, which aim to minimise the divergence between an approximate and true posterior of
the unknown parameters. The first VI method makes use of model-specific approximations, while the latter is
more flexible. The adaptive sampler, however, remains the most general of the three algorithms in addition to
being asymptotically unbiased.

On synthetic data, all methods were capable of producing good estimates of the model parameters. When a good
initialisation is available, the sampling method may be faster than the VI approaches; however, if no good start is
known, the other methods may be preferred. The runtimes of the algorithms appeared to grow linearly with the
number of nozzles. In addition, a linear scaling with the number of time steps appeared plausible.

While the methods performed well on the toy models studied here, their efficacy must be confirmed on more
complex systems and demonstrated in real-world applications. If runtimes prove prohibitive, sub-sampling ap-
proaches or stochastic variational inference methods could be investigated.

il
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Introduction

Large-scale industrial machines, such as high-speed printers, operate under demanding conditions where subtle,
unobservable malfunctions may occur. In these printers, the faults are nozzle-specific and become evident as
misprints at their respective locations on test sheets. Revealing these latent issues requires a probabilistic model
that links each nozzle’s unobservable state to its measurable output. Such models are defined by state-transition
probabilities governing the evolution of the hidden states—which emit observed outcomes—and inferring these
probabilities from the observed data is the main focus of this thesis.

At TNO, researchers focus on the diagnostic challenge of high-speed inkjet printers. These printers pull in paper
and draw them through four colour-specific printhead arrays, see figure 1.1. Each printhead contains thousands
of nozzles arranged on a two-dimensional grid: when projected onto the vertical axis (perpendicular to the paper
flow) they are evenly spaced, while a staggered horizontal layout prevents interference. Nozzles can fail for
various reasons, but this thesis focuses on two primary mechanisms. First, dried ink can accumulate in a nozzle,
causing a blockage that may spread laterally to neighbouring nozzles. Second, dust drawn in with the paper can
obstruct nozzles, with those closest to the paper entrance being most at risk. Nozzle functionality is assessed
via regular test prints that are scanned at high resolution to confirm whether each nozzle printed. This thesis
considers the nozzles of a single printhead of one colour only, since faults occur independently across the different

printheads.
2
sl
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Figure 1.1: Overview of a high-speed industrial printer. Sheets of paper are pulled into the machine and led through four colour-specific
arrays of printheads. Every printhead consists of thousands of nozzles arranged on a two-dimensional grid: uniformly spaced vertically and
horizontally staggered to prevent interference between adjacent nozzles. Test prints are made regularly and scanned at high resolution to
assess the functionality of every nozzle. This figure was provided by TNO.

Diagnosing nozzle faults requires both a probabilistic model of the printing process and an inference algorithm to
recover hidden states. Previously, TNO modelled each nozzle as an independent hidden Markov model (HMM),
comprising a sequence of latent states (nozzle conditions) and matching observations (print outcomes). In this
framework, the state at time ¢ evolves solely from the state at ¢ — 1 via the transition probabilities, and each latent
state generates an observation. Because the transition probabilities fully characterise the temporal dynamics,



estimating these probabilities is a prerequisite for any subsequent diagnostic inference. TNO did so using a
variational message passing algorithm [5][p. 491].

The variational message passing scheme used by TNO is an example of a Bayesian method, which bring several
benefits over classical techniques such as expectation maximisation (EM), which maximises the likelihood [5][see
sec. 9.4]. Firstly, Bayesian methods allow the incorporation of prior knowledge: for example, expert beliefs
about the probability of specific nozzle faults can be encoded directly. Secondly, they deliver natural uncertainty
quantification by producing posterior distributions over the parameters instead of single-point estimates. Thirdly,
while the variational message passing algorithm exploits particular conjugate-exponential relationships [5][see
p. 492], Bayesian frameworks, in general, are more flexible than classical methods and readily extend to a wider
variety of models and dependency structures.

Unfortunately, standard independent HMMs omit key aspects of the real printing process. By parametrising the
transition probabilities with a small set of interpretable parameters, we can embed expert knowledge about how
nozzle failures develop while reducing the number of free parameters. We also model spatial interactions, such
as ink spreading, between neighbouring nozzles instead of assuming they operate independently. However, com-
bining low-dimensional parametrisations with neighbour-dependent transitions breaks the conjugate—exponential
structure that variational message passing relies on, making it infeasible for our extended models [5][p. 492].

To address these shortcomings, this thesis develops Bayesian inference methods for two enhanced models. The
first model retains independent HMMs but parametrises the transition probabilities with a small number of pa-
rameters. The second model, in addition to a low-dimensional parametrisation, adds spatial interactions, letting
each nozzle’s transition rates depend on the states of its neighbours. Considering these models separately lets us
assess the impact of the extra complexity. Despite the potentially large number of nozzles, this low-dimensional
parametrisation renders transition probability estimation tractable. We apply two inference frameworks to one or
both of the models:

» Markov chain Monte Carlo (MCMC), generally applicable but sensitive to initialisation;

* Variational inference (VI), less sensitive to initialisation but less flexible.

Additionally, we consider two unparametrised models with the same independent HMM or coupled neighbour
structure as above, serving as fallback alternatives.

All experiments in this thesis use generated data only. We emphasise that both main models in this thesis serve
as simple toy examples; in practice, one may readily extend them to capture richer dynamics and more complex
interactions.

The remainder of the thesis is organised as follows. In chapter 2, we review mathematical preliminaries—HMMs,
Bayesian inference, MCMC and VI. In chapter 3, we formalise the printer-inspired models and associated infer-
ence problems. Chapter 4 details the development of MCMC and VI algorithms for parameter estimation. Finally,
chapter 5 evaluates these methods empirically, comparing accuracy and convergence speed.



Preliminary Mathematics

In this thesis, we investigate Bayesian methods for inferring parameters of particular parametrised models repre-
senting the printing process of industrial printers. In the next chapter, we introduce the two models that will be
studied in this thesis. To support these models, this chapter begins with an introduction to the hidden Markov
model (HMM), a key building block for both models. We then provide an overview of Bayesian inference—a
statistical framework that combines prior information with observed data to estimate unknown model parameters.
Finally, we present the two primary techniques for parameter estimation in Bayesian statistics: Markov chain
Monte Carlo (MCMC) and variational inference (VI) [8, p. 1306].

2.1 Hidden Markov Models

The following section is largely based on chapter 13 from [5].

Suppose we want to model a sequence of discrete observations (z1, ..., 2z7) as random variables, where every
variable z; depends on past observations 1, . . ., x;_1. We assume that forevery ¢t € {1,..., T}, z; takes values
in {0,..., D, — 1}. For example, (z1,...,z7) could represent the print observations from an industrial printer.
One of the simplest probabilistic models to describe such a sequence is a Markov chain of random variables.

In a Markov chain, p(z¢|zi—1,...,21) = p(a¢|zs—1). Thatis, given z;_1, every random variable z; is indepen-
dent of all prior random variables. Now, one can always express the joint probability of (z1,...,z7) as

T
p(fl»---axT):p(fl)Hp(xt|fft—17--~a$1)» (21)
t=2

which follows directly from the product rule of probability [5, p. 14]. If we combine this expression with the fact
that p(z¢|zi—1,...,21) = p(xt|z:—1) for a Markov chain, we obtain

T
p(ar, ... xr) = plar) [ pladwi-a). (22)
t=2

That is, for a given initial value x1, the model is defined by the transition probabilities p(x¢|x¢—1). If we assume
that these transition probabilities are independent of ¢, this model is known as a homogeneous Markov chain. We
then write 7 for the time-independent transition matrix, where entry ij of 7 equals 7;; = p(z; = jlxy—1 = ©). By
learning only the D? entries of T, the model is effectively characterised. A homogeneous Markov chain therefore
provides a simple framework, defined by a small number of parameters, to describe sequential observations.

The structure of a Markov chain can also be captured through a directed graphical model, see figure 2.1. Directed
graphical models can additionally reveal conditional independence between sets of random variables through the
concept of d-separation. See appendix A for an overview of directed graphical models and d-separation.

Although this model is simple, it fails to capture the latent dynamics inherent in many real-world processes. In
numerous physical systems, evolution is driven by unobserved (hidden or latent) states that generate the observ-
able outcomes. For instance, in DNA sequencing, the observable nucleotide bases (A, C, G, T) are produced by

3
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Figure 2.1: A directed graphical model illustrating a Markov chain over time. Each node represents an observation (e.g. ¢+—1, x¢, and
x¢+1), and the directed edges indicate that each observation given all prior observations is conditionally dependent only on its immediate
predecessor. This figure visualises the temporal factorisation of the joint probability, as described in equation (2.2).

underlying hidden states [1, chapter 7]; similarly, in printing technology, the final output of print nozzles reflects
latent operational factors. Because the observations do not correspond one-to-one with the underlying physical
states, it is essential to explicitly model both latent and observed states to accurately capture the system dynamics.
Hidden Markov models (HMM) exactly achieve this objective.

In HMMs, each observed variable x; is paired with a latent variable z;. We assume that forevery ¢t € {1,...,T},
z¢ is discrete and takes values in {0, ..., D, —1}. In the case of an industrial printer, z; represents a nozzle state at
time ¢, while x; represents the corresponding outcome of the test print. We then let the latent variables (z1, . . ., 27)
form a Markov chain and let each observation x; solely depend on its corresponding latent variable z;. That is,
forevery t € {1,...,T}, x; given z; is independent of all other random variables. Hence, p(z¢|z¢—1,...,21) =
p(zt|zi—1) and p(z1, ..., 27|21, ..., 27) = H;l p(x¢)z¢). Tt follows that the joint probability factors into
p(z1,y .-y 2r, 21, xr) = p(21, . ze)p(@y, . 2|21, 27)

T T

(2.3)
= p(z1) [[ p(ztlze) [ [ p(ael20).
t=2 t=1

We see that for a given initial latent z1, the model is entirely characterised by the transition probabilities p(z¢|z¢—1)
and the emission probabilities p(x;|z;). We again assume that p(z;|z;—1) and p(z|2;) are independent of t. As
a result, we have that the model is characterised by only a small number of parameters. This type of model is
known as a hidden Markov model (HMM).

The corresponding graphical model for HMMs is given in figure 2.2. One may observe that applying the rules of
d-separation to the graphical model does not give us that x; given x;_; is independent of prior observations. This
implies that, in contrast to the Markov chain, p(x¢|z;—1, . . ., 21) may depend on all previous observations. There-
fore, the hidden Markov model gives us more sophisticated relations between x4, z¢_1, . . ., £1, while preserving
simplicity in the model characterisation as in the homogeneous Markov chain.

o O O

Figure 2.2: A directed graphical model depicting a Hidden Markov Model (HMM). In this diagram, the latent variables z;_1, ¢, and z¢ 41
form a Markov chain, and each latent variable emits an observation (i.e. z¢—1, ¢, and x+41) that depends solely on its corresponding state.
This representation highlights the temporal and conditional independence structure inherent in HMMs, as formulated in equation (2.3).

2.2 Bayesian Inference

Consider a probabilistic model comprising observed random variables {z;}, latent random variables {z; }, and
model parameters 6. The joint probability of the model is defined as p({x+ }, {2+ }|6). When the model parameters
6 are unknown, the goal is to infer them using the observed data {x;}.
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In Bayesian inference, this problem is approached by treating the model parameters 6 as random variables and
imposing a prior distribution p(#) on them. The prior distribution should reflect the information known a priori
about the parameters, but in practice, it is often selected based on practical considerations. After specification of
the prior, the posterior distribution p(6, {2; }|{z+}) is given by the following relation

p(0, {ze}{xe}) o< p({me}, {2 }0)p(0), 24)
which follows from Bayes’ theorem | )
_ p(A|B)p(B

p(BJA) = b)) (2.5)

[6, section 13.1.1]

Using this relation, the posterior—and consequently an estimate of 6—can, in principle, be obtained by normal-
ising the right-hand side of equation (2.4). In practice, however, the normalising constant is often intractable to
compute. Thus, we require approximate methods that leverage equation (2.4) to estimate 6 from the observed
data {x;}. In the following two sections, we present two classes of algorithms that fulfil this need.

2.3 Markov Chain Monte Carlo

In this section, we discuss three sampling algorithms that will be useful for solving the parameter estimation
problems treated in this thesis. These algorithms belong to a broader family of techniques known as Markov
chain Monte Carlo (MCMC), which are used to generate samples from probability distributions. As the name
implies, MCMC algorithms generate a Markov chain of samples that, after sufficient iterations, converge to the
target distribution.

2.3.1 The Metropolis-Hastings Algorithm

Consider a target distribution p(z). Suppose that one is only able to evaluate the target distribution up to a multi-
plicative constant p(z)/Z,, = p(z). The Metropolis-Hastings algorithm overcomes this limitation to approximate
p(2).

The algorithm draws samples 27 sequentially. In the first step, a sample z' is drawn according to an initial
distribution. In step 7 + 1, if 27 is the current sample, a new sample z* is drawn from a proposal distribution
q(z|2™) chosen by the user. This new sample is then accepted with probability

= min w
4= (1’ ﬁ(zf)q(z*zf)> : (2.6)

If the new sample is accepted, 2”1 = 2*, otherwise 27! = 27. [5]

In [13, section 7.3.2], it is shown that the distribution of the samples generated by the Metropolis-Hastings algo-
rithm converges to the target distribution under certain conditions. This holds regardless of the initial distribution.
We describe this more formally. Let K"(z,-), denote the probability measure of the sample generated by the
Metropolis-Hastings Markov chain after n transitions, when starting from initial state 2! = 2. Let P(-) denote
the probability measure of the target distribution and p(-) the probability measure of the initial distribution. Sup-
pose the Metropolis-Hastings chain satisfies the following two conditions. (i) ¢(z|z") > 0 for all z, 2’ in z-space.
(ii) The probability of {27T1 = 27} is greater than zero. Then the Metropolis-Hastings algorithm converges in
the following sense

lim sup ‘/KR(Z,A)/.L(dZ) — P(A)| =0, 2.7

N0 AeF

where A are elements of the event space. Importantly, the above two conditions are sufficient, but not necessary.
See [13, chapters 6 and 7] and [15] for other and more general conditions.

The above convergence implies that if 7 is large enough, 27 is drawn approximately from the target distribu-
tion. Note, however, that consecutive samples, e.g. {271, 27, 27 T1}, are not independent draws from the target
distribution; many additional steps are required to obtain a sample that is independent of 27



2.3. Markov Chain Monte Carlo 6

2.3.2 Gibbs Sampling
A second MCMC algorithm is the Gibbs sampler. When z is multi-dimensional, the Gibbs sampler provides a
coordinate-wise alternative to the Metropolis-Hastings algorithm by iteratively sampling each component from
its full conditional p(z;]2\;).

Suppose one wants to sample z = (z1, .. ., 2, ) from target distribution p(z). As before, we start from a sample
2% drawn from an initial distribution. If 27 is the sample resulting from step 7, we go through the following sweep
to generate 271,

T+1 T T T
— Sample 2] ~p(z1]23, 25, ..., 2z, )-
+1 1
— Sample 23! ~ p(za|2] T, 23, ..., 20).
2.8)
T+1 T+1 T+1 ( :
— Sample z] T~ p(zi2] T, 2 2 s )
+1 +1 +1
— Sample 2] ~ p(zm|2] . 20 T).
That is, we generate 27 " by conditioning on all updated random variables 2] ™, ..., 27" and all yet to be

updated random variables z7, ;,...z],. One may see this algorithm as a special case of Metropolis-Hastings,
where the proposal distribution ¢ (z|2") for the kth component equals the conditional distribution p(zj \z{ k) [5]

In [13, section 10.2.1], it is shown that the Gibbs sampler converges in the sense of equation (2.7) under certain
conditions. We again consider the probability measure K™(z, -) of the distribution of the sample generated by
the chain after n Gibbs sweep, starting from z. The conjunction of the following two conditions is sufficient
to establish convergence. (i) Probability measure K'(z,-) can be described by a probability density. (ii) The
probability of {2™T1 = 27} is greater than zero. As before, it is important to stress that these conditions are
sufficient, but not necessary; see [13, chapters 6 and 10] and [15] for more details.

As for the Metropolis-Hastings algorithm, the convergence of the Gibbs sampler implies that for 7 large, 27 is
drawn from the target distribution. As before, independent samples from the chain are obtained only when they
are separated by a large number of intermediate steps.

2.3.3 Metropolis-within-Gibbs

When z is multi-dimensional, the Gibbs sampler provides a one-dimensional alternative to the standard Metropolis-
Hastings algorithm by updating every component individually. If it is infeasible to sample from the conditional
distributions, however, one can replace each step in the Gibbs sweep by one or more steps from the standard
Metropolis-Hastings algorithm. We call the resulting algorithm a Metropolis-within-Gibbs algorithm. The algo-
rithm has the following form.

1. Initialise z' = (21,...,2})
2.Fort = 17"'7NMWG :
Fore=1,...,m:
— Sample 27 ~ gi(zi|2]). (2.9)
plar 2Tt 2T e 2T g (2T |2
— Accept with probability A = min | 1, Zj( ZT| 1T+1’ U LT+17 24l ‘*| ZT) .
Pl 2 IR PR 2m)i (25 12])
— Ifaccepted 2] ! = 2}, otherwise 2] 1 = 27
Here g;(z;]2]) is the proposal distribution for component i of z. p(z;|#1, ..., 2i—1, Zit1, - - - , Zm ) IS proportional

to p(zi|zl, ey Zie 1y Bid 1y Zm). [15,p. 2128]

To achieve convergence to the target distribution in the sense of equation (2.7), the chain needs to satisfy several
conditions, see [13, chapter 6] [15]. These conditions are slightly more sophisticated than those of the previous
algorithm.
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2.4 Variational Inference

Consider again a Bayesian model with observed random variables {x; }, latent random variables {z; } and model
parameters 6, equipped with a prior distribution p(#). As mentioned in section 2.2, the posterior distribution
p(0, {z:}|{z+}) is often intractable to compute. As described in [8, section 2.2] and [5], variational inference
(VI) provides a framework for approximating the posterior distribution by introducing a variational distribution
q(0,{z:}) and reformulating the inference task as an optimisation problem. In this framework, the variational
distribution is selected from a predefined family of distributions, and the goal is to identify the member that best
approximates the true posterior. The choice of distribution is made by optimising an objective function.

In variational inference, one aims to minimise the Kullback-Leibler (KL) divergence of ¢(6, {z, }) fromp(8, {z: }[{x+}),

KL(q(0, {z:})[lp(0, {z: }{x:})) = Eqllog(q(0, {z:}))] — Eqllog(p(0, {z:}{x:}))], (2.10)

by choosing the optimal ¢(6, {z: }) from a predefined family of distributions [5]. Although not a formal mathemat-
ical distance, the Kullback-Leibler divergence quantifies the dissimilarity between q(0, {2:}) and p(0, {z: }/{x+}),
as stated in [11]. In particular, KL(g||p) > 0 and KL(¢||p) = 0 <= ¢ = p. That is, the optimal variational
distribution equals the posterior, if the posterior is a member of the predefined family of distributions.

Equivalently, variational inference can be formulated as the maximisation of the evidence lower bound (ELBO).
As the name suggests, the ELBO gives a lower bound on the logarithm of the probability of the observations. L.e.,

ogp({ax) = o [ 900, (). o tzan)
~ log ( / 0, {2}, L 022D da)

q(0,{=})
2.11)
o p(0, {zt}, {x+})
= log (E [ 9 {Zt} }>
> E,[log(p(0, {Zt} {z¢}))] — Eq[log(q(0, {2:}))]
=: L(q),

where we used Jensen’s inequality in step 4. The ELBO is related to the Kullback-Leibler divergence in the
following way:

KL(q(0, {z)llp(0, {z: }[{2:})) = Eqllog(q(0, {2:}))] — Eq[log(p(0, {z:}{z:}))]
= Ey[log(q(0,{z}))] — Eq[log(p(0, {z:}, {w:}))] + log(p({z:})  (2.12)

= —/L(q) + constant.

That is, the ELBO is equal to minus the KL-divergence up to an additive constant independent of q. Hence,
maximising the ELBO with respect to ¢, results in minimising the Kullback-Leibler divergence. [8, section 2.2]

To render a variational inference optimisation problem tractable, we typically restrict the family of distributions
that ¢ may represent. One can, for example, restrict ¢ to be a member of the multivariate normal distribution. In
this case, we maximise the ELBO with respect to the variational parameters p and 3. [5]

Another assumption we may impose on the variational distribution is that it factorises. This assumption is called
the mean-field approximation. One may, for example, assume that ¢(0, {z:}) = ¢(0)q({z+}). We then optimise
the ELBO with respect to each factor in turn. For this purpose, we need to consider the ELBO for every factor
with all other factors treated as constants. E.g., for the factor ¢({z;}), we assume ¢(#) to be fixed and write

L(g({#t})) = Eq({z1)[Eqo)[log(p(0, {2}, {z:})]] — Eq(0)[log(q(0))] — Eq({z,y)[log(g({2:}))]

= Eq(t0) B0 108((0: {21}, {2 )] — Eq(iz.) logla({z}))] + constant, @13)

where the constant does not depend on g({2;}). If we define log(({z:}, {:})) = Eq(o) loa(p(0, {3}, {z:})] +
constant, we obtain

L(q({z})) = Eqegzhllog(p({ze}, {z¢}))] — Eqgz,1)[log(a({2¢}))] 4 constant. 2.14)

One may recognise this expression as minus the KL-divergence of ¢({z:}) from p({z:}, {z:+}) up to an additive
constant independent of ¢({z;}). Therefore, the ELBO is maximised when both distributions are equal, that is,
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when

q({z1}) = p({z:}, {2 }) o< exp(Bqo) [log(p(0; {2}, {2}))])
o< exp(Eq(p)[log(p({z:}, {x:}10))]),

if there are no further restrictions on ¢({z:}). [5]

(2.15)

When the likelihood p({z:}, {x+}|0) has a convenient form, equation (2.15) allows us to compute ¢({z:}) [5].
For example, if the likelihood factorises into local terms—each depending on only a small subset of the latent
variables {z;}-then the right-hand side of equation (2.15) inherits this factorisation. In such cases, message
passing algorithms can be used to compute the (joint) marginals of ¢({z:}) [7, Section 2.2].

Although one can derive an analogous optimality condition for ¢(6), the resulting update may be intractable.
In that case, we may restrict ¢(6) to a specific parametric family. We write ¢(0|\), where A parametrises the
variational distribution. We then must optimise

L(A) = Eqon)q({zry) log(p(0, {2}, {z}))] — Eqa1x)[log(q(0|N))]
= Eqonq({zrp log(p({2}, {2}10)) + log(p(0))] — Eq(o)x) [log(a(0])))] (2.16)
= Eqonq((zpp llog(p({ze}, {2 }10))] + Eq(opn) [log(p(0))] — Eqeo1r) [log(q(0]A))],

with respect to the variational parameters A. Gradient based optimisation routines can be used to find the optimal
A [10, section 2.6].



Model Specification and Problem
Formulation

In this chapter, we present two toy models of the printing process described in the introduction, along with their
corresponding problem formulations. Both models build on the standard independent HMM approach for print
nozzles, but introduce one change at a time. In the first, we introduce a low-dimensional parametrisation of the
transition probabilities—drawing on our real-world insights—while keeping each nozzle’s HMM independent. In
the second, we add spatial coupling by linking the parametrised HMMs of neighbouring nozzles. By structuring
the work this way, we gain two advantages: the simpler, first model is easier to implement and analyse, and adding
coupling in the second lets us isolate and inspect its specific impact. After presenting the two main models, we
also briefly discuss a more conventional approach without parametrisations for the transition probabilities.

For both main models, we first provide an in-depth derivation, followed by a compact formal mathematical
formulation. In chapter 4, we present methodologies designed to solve the inference problems.

3.1 HMM Model Derivation

In this section, we derive a parametrised model of the printing process without inter-nozzle interactions and
present its inference problem formulation. For brevity, we omit the explicit dependence on model parameters 6
in the transition probability notation. That is, we write p(z}'|z}" ;) instead of p(z}"|z]"_{, 0).

3.1.1 Latent and Observation States

We consider the printing process described in the introduction. In this process, printer nozzles can be in different
conditions at any given time, which influences their ability to print. Test prints are then used to determine whether
a nozzle is functioning properly.

The printer nozzles and their corresponding test-print outcomes can be modelled by hidden Markov models
(HMM), see figure 3.1. For every nozzle, we observe at each time step from the test print whether it prints
or not. In figure 3.1, this is denoted by =} for nozzlen € {1,..., N} attimestep ¢t € {1,...,T}, where N is
the number of nozzles and 7' the number of time steps. If 7 equals 0, we say that the observation state is OK,
which means that the nozzle printed. If x}* equals 1, the observation state is not OK, which means that the nozzle
did not print.

Whether a nozzle prints or does not print at a given time step is determined by the latent (or hidden) state of that
nozzle. In our toy model, a nozzle can either function normally, be stuck due to dust, or be stuck due to dried
ink. We say that the corresponding nozzle states are normal, dusty, dry-in. When a nozzle state is normal, we
observe that the nozzle prints; in the other two cases, we observe that it does not print. Note that this implies that
not every latent state is hidden: if the nozzle prints, we know its latent state is normal.

The latent state of nozzle n at time ¢ is given by the random variable z;*. Similar to =7, 2} takes the values 0, 1, 2
for the three states normal, dusty, dry-in. We assume z{ = 0 foralln € {1,..., N}, i.e., the initial nozzle states
are all normal. An overview of the terminology for the states and the random variables z}' and z}* is provided in
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Figure 3.1: Graphical representation of the hidden Markov model for printer nozzles. For each nozzle, the latent states z;* (shown at time
steps t — 1, ¢, and t 4+ 1) evolve over time, and each latent state emits an observation =}*. This schematic illustrates the temporal
factorisation of the model, where the evolution of the latent state is governed by a Markov process and each state determines a
corresponding observation.

table 3.1.

Y

Random Variables | State Numbers | States Explanation
on 0 OK The nozzle prints
¢ 1 not OK The nozzle does not print
n 0 normal | The nozzle is functioning normally
¢ 1 dusty The nozzle is stuck due to dust
2 dry-in | The nozzle is stuck due to dried ink

Table 3.1: Overview of the random variables and their corresponding states. The table lists the observation variable x}*, with states “OK”
(indicating a successful print) and “not OK” (indicating a printing failure), and the latent variable z;*, with the states “normal”, “dusty”, and
“dry-in”. Each entry includes a brief explanation of the meaning behind the values.

3.1.2 Transition and Emission Probabilities

Since the initial nozzle states are known, we only need the transition probabilities p(z}*|2z}" ;) and the emission
probabilities p(z}'|2]") to describe the model completely. We assume independence of ¢, but not of n. The
emission probabilities were already described above and can be given by the emission matrix

1 0
E=\(0 1|, Ej;=paf=jlz=1), 3.1
0 1

foralln e {1,...,N}andt € {1,...,T}.

The transition probabilities, on the other hand, are unknown and have to be estimated. Based on the real-world
problem, we can write down a parametrised model for the transition matrices, which additionally depend on the
nozzle number n. That is, a small number of parameters contained in 6 determine the entries of the transition
matrices 7 (6, n), together with n. As mentioned before, it is the goal of our research to find methodologies to
estimate these parameters.

We assume that the probability of a transition from nozzle state normal to dusty, p(z]* = 1|z}* ; = 0), will depend
onn. We write

p(zf = 1|z = 0) = pra(n) = Aexp(—7 - n), A €10,1],7y € [0,00), (3.2)

where p, 4 stands for the probability of transitioning from the normal to the dusty state. A and  are two model
parameters that have to be estimated.

The form of this probability is motivated by the real-world printing process. When the printer pulls in blank
sheets, it also sucks in air. Along with the air, dust is carried in. Over time, some functioning nozzles become
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stuck due to the dust, which corresponds to our state transition (z}* = 1, 2" ; = 0). As there is more dust closer
to the entrance of the printer, the probability of transitioning from normal to dusty should be larger for nozzles
closer to the entrance than for nozzles further away. Here we assume that a larger nozzle index n implies greater
distance to the entrance, hence p,4(n) should decrease as n increases. This is a simplification; in practice, p,q
would depend on each nozzle’s actual spatial coordinates rather than its index. In our toy model, we have chosen
an exponential decrease for convenience, however, other relations could be considered, if they make the model
more realistic.

We assume that the probability of a transition from the normal state to the dry-in state is independent of n. That
is
p(z' =2z = 0) = pas, (3.3)

where di in the model parameter pgy; stands for dry-in. This gives us, together with equation (3.2), the following
expression for the probability of remaining in the normal state:

p(z; = 0[zi1 =0) =1 —pgi — Aexp(—7y - n). (3.4)

We now consider the transition probabilities from the dusty state p(z]*|zj* ; = 1). We assume that the probability
of transitioning to the dry-in state is again equal to py;, as the condition of the nozzle, whether dusty or normal, is
expected to have minimal impact on the ink drying process. For the transition from the dusty state to the normal
state (2 = 0,2]*; = 1), we also assume the probability to be constant. We let it be determined by the model
parameter pgy, i.e.,

p(z; =0|zf-1 = 1) = pan. (3.5)
It follows that the probability of staying in the dusty state is given by

p(z' =121 =1) =1 — pan — pai- (3.6)

If a nozzle is stuck due to dried ink, the transition probabilities are known, since a nozzle in this condition will
remain stuck. Therefore
0 ifz =0o0rz =1,

3.7
1 ifzr =2 3.7)

P22t =2) = {
In practice, routine cleaning unblocks nozzles clogged by dried ink; this recovery process is not included in our
model.
We can now give the full transition matrix:
1 = pna(n) — pai Pnd(n) Ddi

T(0,n) = Ddn 1 —pan —pai pai |, with ppg(n) = Aexp(—vy - n). (3.8)
0 0 1

The model parameters € are summarised in table 3.2, together with their parameter space. Note that since state
changes are rare, we can constrain the relevant parameters in 6 to lie within a small range.

Parameters 6 | Parameter Space | Prior Distribution

A [0,1/4] 4A ~ Beta(aya, fa4)

v 0,00) v ~T(ay,0,)

Ddi 0,1/4] 4pa; ~ Beta(aupdi, Bapdi)
Pdn [0,1/4] 4pan ~ Beta(aapdn, Bapdn)

Table 3.2: Summary of the model parameters for the HMM-based printing process model. The table details the parameters
0 = (A,~,Ddi, Pan), the associated parameter spaces, and the prior distributions assigned to each parameter.

3.1.3 Prior Distributions

To estimate the model parameters, we put a prior distribution p(#) on 6. We would like this prior to factorise,
that is, we want p(6) = p(A)p(7)p(pa:)p(pan). However, since the rows of each transition matrix must sum
to one, the values for A, pg;, pan cannot be large simultaneously. This implies a dependency between the model
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parameters. Fortunately, from the real-world process, it is clear that the values of these parameters will never be
larger than 0.25. Therefore, we can assume that A, pg;, p4, are independent a-priori and are distributed as follows

4A ~ Beta(aua, faa), 4pai ~ Beta(oupdi, Bapdi),  4Dan ~ Beta(aupdn, Bapdn ), (3.9)

since a Beta distribution takes values in (0, 1). We also assume that ~ is independent of the other parameters and
has the following distribution

v ~T'(ay,0,). (3.10)
An overview of the prior distributions put on the parameters is given in table 3.2. It is then the aim of this research
to describe methodologies to infer these parameters.

3.2 HMM Model Problem Formulation

Inference Problem Formulation

Consider the random variables representing observations
{zy €{0,1} : fort=1,..., T, n=1,...,N}

and latent states
{27 €{0,1,2} : fort=1,..., T, n=1,...,N}.

We assume that 2 =0 foralln =1,..., N.

The emission probabilities p(a} = j|z]* = 1) are given by the emission matrix
1 0
E=|0 1], whereFE;; =p(z} =jlz; =1).
0 1

Consider the model parameters
0= (Aa 77pdiapdn)-

The transition probabilities p(z)* = j|z}*; = i,0) are described by the transition matrices 7 (0, n),
which depend on n and 6 in the following way:

1 — pna(n) — pai Pnd(n) Ddi

T(6,n) = B 1 —pin —Pai Pai | » Withppa(n) = Aexp(—y-n).
0 0 1

The joint probability of the model factorises as follows

T T
H p(2¢']21,0 H Zt>

552

N
p({=p}, {=1110) = [ [ (p(Z?)
(3.11)

I
=
N
=
Y
=
i .’:]ﬂ i

We give 6 a factorised prior
p(0) = p(A)p(7)p(Pai)p(Pan),

where the factors are defined by the following

4A ~ Beta(aya, fa4), v~ TI'(ay,6y),

4pa; ~ Beta(aupdi, Bapdi)s  4Pdn ~ Beta(aupdn, Bapdn)-

Goal: estimate the model parameters 6 given the observations {z}'}.




3.3. Nearest Neighbour Model Derivation 13

3.3 Nearest Neighbour Model Derivation

Mirroring the previous model’s development, this section derives the nearest neighbour model and its problem
formulation. The next section then gives a concise mathematical formulation.

Before elaborating on the model details, we first present a slice of the graphical model in figure 3.2. The hidden
Markov model structure for the nozzle states, as was present in the previous model, is clearly identifiable. How-
ever, it is now observed that the transition of a nozzle state to the next time step also depends on the neighbouring
nozzle states.

As before, we model the latent nozzle states using the random variables z]*, which take values in {0, 1,2} fort =
1,...,7, n =1,..., N. Similarly, the print observations are modelled by the random variables =}, assuming
values in {0, 1}. See table 3.1 for an overview of the random variables, their values, the corresponding states and
their interpretation.

O )

Nozzlen — 1

Nozzle n

Nozzle n + 1

Figure 3.2: Graphical model for the nearest neighbour model. This diagram extends the standard HMM structure by illustrating that the
latent state of nozzle n at time ¢ depends not only on its previous state z;* ;, but also on the previous states of its neighbouring nozzles

n—1 n+1
z;q and 2,77

3.3.1 Transition and Emission Probabilities
As in the previous model, we assume that if a nozzle is in state normal at a given time step, it produces the
observation state OK. If the nozzle is in the other two states, it produces the observation state not OK. Hence we
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have the emission matrix

10
E=1|0 1|, E;=play=7jlz=1). (3.12)
0 1

In the previous model, we assumed that every nozzle was independent of all other nozzles. In the real-world
printing process, however, it is possible for dried ink to spread to neighbouring nozzles. Therefore, we assume
that the transition from z}* ; to z}* additionally depends on the previous neighbouring states zf:ll and szll. This
is again a simplification; although nozzles are evenly spaced when projected onto the axis perpendicular to the
paper’s motion, their position might differ along the flow direction, resulting in varying distances between adja-
cent nozzle pairs. The proposed method might still apply in practice, if we consider an extended neighbourhood.
As before, we assume the transition probabilities to be independent of time, but dependent on the nozzle number
n.

Mathematically, we will formulate this as follows. Let 6 denote the model parameters

0 = (A, 7, pdio; Pdi1; Pdi2s Pdn)- (3.13)
We consider the four-dimensional tensor 7 (6, n) of transition probabilities, where
Tigni(0:m) = ()" = U2/ =i, 20y =, 25 = k. 0), (3.14)
forn=2,...,N — 1. Forn =1and n = N, we let the transition probabilities equal

p(zt =z =j.27 1 =k, 0) = Toji(0,1),

L . (3.15)
p(ziN = l|2£11 = Z7th\£1 = ]79) = 7;]0l(€7N)

That is, we treat the transition probabilities as if there were an extra nozzle in the normal state. This is not an
unusual assumption, since a well-functioning nozzle is expected to have little impact on its neighbours and, accord-

ingly, could just as well be absent. Now, let M%) (9, n) for i,k = 0,1,2 be matrices such that M;fl’k) (0,n) =
Tijki(6,m). Then we can define the tensors 7 (6, n) as follows

1 — pna(0,n) — paio Pna(f,n) Ddio
Ddn 1 —pan —paio Paio | ik #2,
0 0 1

‘ 1 —pna(0,n) — pai1 Pnd(0,m) Ddi1
MR (9,n) = Pan 1= Pan — pain pain | ifi=2,k#20ri#2,k=2,
0 0 1

1 — pna(0,n) — pai2 Pna(f,n) Ddi2
Ddn 1 —pan — paiz Paiz | T4, k=2,
0 0 1

with ppq(0,n) = Aexp(—v - n).
(3.16)
An overview of the model parameters and their parameter spaces is given in table 3.3.

We motivate this parametrisation of the transition probabilities in the following manner. As before, once a nozzle
becomes clogged by dried ink, it remains clogged indefinitely. Furthermore, in the real-world printing process,
the probability of a nozzle transitioning from the normal state to the dusty state appears to be independent of the
states of its neighbours. Consequently, this transition probability is always equal to p,4(6,n), maintaining the
same form as in the previous model. Similarly, the probability of transitioning from the dusty state to the normal
state seems independent of the neighbouring nozzles’ states. Therefore, this probability will always equal pgy,.
However, the probability of a nozzle transitioning from the normal state to the dry-in state depends on the number
of neighbouring nozzles that are already in the dry-in state. In this process, it is irrelevant whether a neighbouring
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nozzle is in the normal or dusty state. Therefore, the probability that a nozzle in state normal transitions to the
state dry-in depends solely on the count of its neighbours in state dry-in. Consequently, we define the transition
probability from the normal to the dry-in state as pg;o, Pai1 Or paiz When 0, 1, or 2 neighbouring nozzles are in
the dry-in state, respectively. We assume that the same probabilities and relations hold for the transition from the
dusty state to the dry-in state, as indicated by inspection of the real-world printing process.

Given the transition and emission probabilities described above, the joint probability of the model factorises as
follows

N-1 T
p({ai} {=310) = [ <p(z?)Hp(Z?|Z? TR

n=2 t=2

T
Hp ¢zt ) )
t=1
T

T
p(z%)H (2 2¢-1, 2i-1, 0 Hp ¢l2):
t=1

t=2

T T
p(z{v)Hp ‘zt 1 7Zt 1,0 Hp |Zt
= t=1

Nod - (3.17)
= H < Zl HTn llzt lz"+11?9n Z$t>
n=2 t=2 t=1
T
Zl H%Zt 125171 9 1 H
t=2 t=1
T T

p() TT Tomam oo (0 N) T] B

t=2

t=1

This corresponds to the graphical model in figure 3.2.

3.3.2 Prior Distributions
As before, we put a prior on the model parameters 6. Again, we assume that the prior factorises into p(6) =
p(A)p(Y)p(paio)p(pai1 )p(paiz)p(pan) and give the factors the following distributions

4A ~ Beta(aya, Ba4a),
4paio ~ Beta(aupdio, Bapdio),
4paiz ~ Beta(aupdiz, Bapdiz),

i F(aw ev)a
4pai1 ~ Beta(aupdit, Bapdil ),
4pdn ~ Beta(a4pdn; 64pdn)7

(3.18)

following the same reasoning as for the previous model. The methodologies presented in chapter 4 should enable
one to infer the model parameters given the observations {z} }.

Parameters § | Parameter Space | Prior Distribution

A [0,1/4] 4A ~ Beta(aya, Baa)

Y [0, 00) v ~ I(ay, 0,)

Ddio [0,1/4] 4paio ~ Beta(aapdio, Bapdio)
Pdil [0,1/4] 4pai1 ~ Beta(aapait, Bapdi1)
Ddi2 [0,1/4] 4paio ~ Beta(aupdiz, Bapdi2)
DPdn [05 1/4] Apan ~ Beta(a4pdna 64pdn)

Table 3.3: Summary of the model parameters for the nearest neighbour model. The table lists the parameters
0 = (A, v,Ddi0, Pdi1, Pdi2, Pdn ), their respective domains, and the corresponding prior distributions used to capture the extended
dependencies in the transition dynamics.
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3.4 Nearest Neighbour Model Problem Formulation

Inference Problem Formulation

Consider the random variables representing observations
{zy €{0,1} : fort=1,..., T, n=1,...,N}
and latent states

{77t €{0,1,2}: fort=1,..., T, n=1,...,N}.

We assume that 27 =0 foralln =1,...,N.

The emission probabilities p(a} = j|z]* = 4) are given by the emission matrix
1 0
E=1[0 1|, whereE;; =p(z} =jlz{ =1).
0 1

Consider the model parameters

0 = (A,v,Pdio, Pdi1, Pdi2, Pdn)-
The transition probabilities p(2} = |2 = 4,2, = j, 2/""}' = k, ) are assumed to be independent
of ¢, but dependent on n. We describe the transition probabilities by the four-dimensional transition
tensors 7 (¢,n). We write

ﬂjkl(aan) :p(ZZL = Z|ZZL:11 = ivztn—l :ja Z:j_ll = k79)

Let M%) (9, n) for i,k = 0, 1,2 be matrices such that M;Z’k)(O, n) = Ti;jri(6,n). Then we define 7
through matrices { M (“*) (0, n)}:

1 — pna(n) — paio Prna(n) Ddio
Pdn 1~ pan — paio  paio | ifik#2,
0 0 1
1 = pna(n) — pain Pna(n) Pai1
MU0, n) = Ddn 1 —pan —pain pair | Hi=2,k#20ri#2,k=2,
0 0 1
1 — pna(n) — pai Pna(n) Ddi2
Ddn 1= pin —pdaiz Paiz | ifi, k=2,
0 0 1

with ppq(n) = Aexp(—7y - n).

For n = 1, we let the transition probability be
11 2 _
p(z =lze_y = J,2i_1 = k,0) = Toju(6, 1).

For n = N, we define the transition probability

p(zl =1z 7 =i,z = j,0) = Tju(6, N).

- J
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The joint probability of the model factorises as follows

p({zp}, (=0 116) = 11 <p(2?)Hp(z?|Z?__f,Z§’17Z?f11,9)Hp(x?Z?)>~

n=2 =2 t=1

t=1
T
p(z1) HP Hzt 2, 0) [ [ el 1Y)
t=1
N-1 T
- H (p(ZIL)HTan 11Z1 1zfﬂ—+11 tn(e n)HEZ?I?>
n=2 t=2 t=1
T
p(= HTOzt 2, 0.0 [ Bpay:
t=1
T
Zl H’];t 2 ZtN1 ol (07N)HEZ,N:E£V
t=1

We give 6 a factorised prior

p(0) = p(A)p(7)p(Paio)p(Pai1)P(Pai2)P(Pan),

where the factors are defined by the following

4A ~ Beta(a4A, /8414)’ g F(a’Y7 e’y)a
4paio ~ Beta(aupdio, Bapdio), 4pain ~ Beta(aupdin, Bapdi1),
4paiz ~ Beta(aupdiz, Bapdiz), 4pan ~ Beta(aupdn, Bapdn)-

Goal: estimate the model parameters 6 given the observations {z}'}.

N %

3.5 More Conventional Modelling Approaches

When available knowledge is too sparse to parametrise the transition probabilities, or when simplicity is preferred,
one can fall back on more conventional printing-process models. Again we may consider independent HMMs
as in figure 3.1 or connect the HMMs to their nearest neighbours as in figure 3.2. Unlike before, the transition
probabilities do not depend on the nozzle number n and are not governed by a specific parametrisation.

For the HMM model, one may follow the approach of [6][p. 476] and put an independent Dirichlet prior Dir(8t, .. ., §%)
onevery row (71, . - ., Tis) of the transition matrix. By conjugacy, each row remains independent in the posterior,
with (Ti, ..., Tas) {20}, {28} ~ Dir(6% + ns1, ..., 0% + nys), where n;; represents the number of transitions
from state 4 to state j. One can then use a standard Markov chain Monte Carlo approach as described in chapter 4

to estimate the transition probabilities given the observations {z}' }.

We can propose a similar model if nearest neighbour interactions are present. As before, let T = p(z? =
lzp ' = i,20y = j,z/}" = k). For each (i, k), define the matrix M) via M;Z’k) = Tijri- If we put

independent Dirichlet priors Dir((Syj Bk k))

independent and M;i”k) [{z}, {x}} is distributed according to Dir((ﬁijk) FNik1, s 5£ijk) +n4jks). Here ngjis
is the number of transitions from states ¢, j and k to s. These posterior distributions can then be used to estimate
the transition probabilities through an MCMC algorithm as described in chapter 4.

ik . .
on the rows M JQ ), as before, a-posteriori these rows remain



Parameter Inference Methodologies

In this chapter, we consider the two models outlined in chapter 3 and present Bayesian methodologies for inferring
their parameters. The first approach relies on sampling methods, while the others employ variational inference.
Although the sampling algorithm is more general and asymptotically unbiased, the variational approaches are
less sensitive to initialisation. We will also briefly touch upon sampling for the more conventional models from
section 3.5 and on stochastic variational inference (SVI) as a means to reduce the computational complexity of
the variational methods. In chapter 5, the methods described in this chapter will be applied with the exception of
SVL

4.1 MCMC Method

In this section, we explore a Markov chain Monte Carlo approach for estimating model parameters. First, we
outline the general algorithm. Next, we detail the implementation of the Gibbs sweeps. Finally, we present an
adaptive strategy that fine-tunes the acceptance probabilities in the Metropolis-within-Gibbs steps to enhance the
chain’s mixing performance. In appendix B, we establish the convergence of the algorithm. Its convergence
speed, however, is highly sensitive to the initialisation of {z]'}. While a good initialisation is often dictated
by the specifics of the real-world problem, the variational methods outlined in section 4.2 offer a less sensitive
alternative if required.

At the end of this section, we will also touch upon sampling for the more conventional models from section 3.5.

4.1.1 Algorithm Overview

Consider the finite-valued latent random variables {z]'}, observed random variables {z} } and model parameters
0 as defined in chapter 3, where the index n runs over {1,..., N} and ¢t over {1,...,T}. p({z}'}, {«}}|0) is
defined through the transition and emission probabilities and the prior p() is chosen appropriately. To sample
and {z'} from posterior p(0, {2z }|{z}'}), one may use two-step Gibbs sampling [6, section 13.1.4].

1. Initialise {z;'} and 6.

2. Fori=1,...,M:
- Sample {2} ~ p({z{'}{={'},0).
- Sample 6 ~ p(0|{z}, {x'}).

Sampling from these distributions is challenging because p(6|{z]' }, {x}}) lacks a closed-form analytical solution,
while p({z]"}[{=}'}, 0) is too high-dimensional for direct numerical computation. Therefore, we will replace the
first sampling step by Nainbs Gibbs sweeps and the second by Ny Metropolis-within-Gibbs sweeps [6, section
13.1.4]. The algorithm is then described as follows.

4.1

1. Initialise {#;'} and 6.
2. Fori=1,...,M:
FOI'j = 17~~-7NGibbs :

18
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- Sample z; ~ p(z1|{z1}°, {27'},0).

- Sample zp. ~ p(zp|{z1}¢, {21}, 0).
- Sample 2§ ~ p(zf|{=7}", {27}, 0).

- Sample 27 ~ p(z7|{27}%, {27}, 0).
- Sample 21" ~ p(]" [{]' }°, {27}, 0).

- Sample 2 ~ p(=3 ({3}, {a7'},6).
Fork=1,..., NMwe -
Forli=1,...,|0]:
- Sample 0; ~ q;(0;]0,).
p(6;) (6 |91*))
p(0) au(0710:) /-
- If accepted 0; = 07, otherwise 6, = 0. 4.2)

- Accept with probability A = min(l,

Here ¢;(6]6;) is a normal distribution with mean 6 and variance exp(2ls;). That s, ls; is the logarithm of the stan-
dard deviation of ¢;, which will be tuned to optimise the proposal distributions as described in section 4.1.3. Note

that since ¢;(0;|6;) = ¢:(6}|6;) for anormal distribution, the acceptance probability becomes A = min (1, ’;((Zl: )) ) .
We set p(0;) = p({z{'}, {z} }|0)p(0), which is proportional to p(6;|6\;, {2}, {x} }) as explained by Bayes’ the-

orem.

4.1.2 Gibbs Steps Procedure

It is clear that the Metropolis-within-Gibbs steps where the variables in 6 are sampled can be executed; however,
to perform the Gibbs steps, the conditional distributions p(zZ|{z%}¢, {z}'}, #) have to be computed. To compute
these distributions, we consider the graphical models corresponding to the probabilistic models. In a graphical
model, each node represents a random variable. A key property states that a random variable is conditionally
independent of all other variables given its Markov blanket; that is, its parents, its children, and the parents of its
children [18, p. 65]. This fact follows from applying the concept of d-separation to directed graphical models'.
We find that p(22[{z2}¢, {2}, 0) = p(z%|pa(zZ), ch(z%), pa(ch(zY)), §), where 6 is treated as a constant.

In the case of the HMM model, it follows that

P {22), {1, 0) = p(2X 122y, @, 220, 0) o p(2X 122y, O)p(a |24 p(22y |22, 6),  forr # 1T,
P Y, (a7}, 0) = p(24 %, 25, 0) o< p(a |2} )p(25]2Y ),
DAY )}, 0) = Dy, at, 0) o p(] 25y, O)pla|24).

That is, p(2¥|{z¥}¢, {z}*}, 0) is proportional to the product of all transition and emission probabilities containing
both z¥ and elements of its Markov blanket. It is clear that these products can be normalised, since the latent
variables have finite range. Hence, the Gibbs steps are viable. For the nearest neighbour model and more general
models represented by directed graphical models with finite-valued latents, the same derivation can be applied.

4.1.3 Adaptive Proposal Distributions

For the proposals ¢;(07]0;) ~ N(0;, exp(2ls;)), it is unclear what the values of Is; should be. When [s; is small,
the proposed samples remain very close to the current sample, resulting in a high acceptance rate. However,
because only minor changes in 6; occur, the chain may mix slowly. Conversely, when [s; is large, the proposals
tend to be much further from the current sample, which can improve exploration but often leads to an extremely

I'See appendix A for an overview of directed graphical models and d-separation.
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low acceptance rate—again causing slow mixing. It has been shown that values of [ s; that result in an acceptance
rate away from both 0 and 1 lead to fast mixing. Specifically, an acceptance rate close to 0.44 appears to optimal
for the Metropolis-within-Gibbs algorithm. [16]

In practice, effective values for ls;, | = 1,..., |6, are often determined through trial and error; however, when
the dimension of @ is large, manual tuning becomes impractical, and automated methods are required. In [16,
section 3.3], an adaptive algorithm is presented, which proceeds as follows. The above algorithm is divided into
batches of sweeps of size bs. E.g., bs can be chosen to equal 50. After the n-th batch, the algorithm adjusts every
ls; by a quantity d(n) to drive the acceptance rate towards 0.44. Specifically, after the n-th batch, the average
acceptance rate over the last bs sweeps is calculated for each component [. If the average rate is below 0.44,
d(n) is subtracted from ls;, reducing the step size to increase acceptance; if the rate exceeds 0.44, (n) is added,
increasing the step size to encourage more exploratory moves.

To maintain convergence of the Markov chain, it is sufficient to restrict Is; to a finite interval [—L, L] and let
§(n) — 0. We can set §(n) = min(c,n~1/2), where c is a constant. In appendix B, it is shown that these
conditions make the adaptive algorithm satisfy the convergence criteria given in [16].

4.1.4 MCMC for Conventional Models

In section 3.5, we presented more conventional models for the printing process that do not posses parametrisations
of the transition probabilities. To estimate the transition probabilities, we present a sampling scheme analogous
to that shown for the parametrised models.

1. Initialise {z;'} and 7.

2. Fori=1,...,M:
- Sample {z"} ~ p({z;'}{z}'}, T).
- Sample T ~ p(T {2}, {=}'}).

(4.3)

The samples of {z}"} can be drawn through Gibbs sweeps as described previously. As mentioned in section 3.5,
the posterior p(T {2}, {«}}) factorises into independent Dirichlet distributions, from which we can readily
draw samples. Updating the transition probabilities in this way is far simpler than the Metropolis-within-Gibbs
procedure described previously. Thus, not only is the model simpler, but its sampling algorithm is too.

4.2 Variational Inference Method

While the MCMC method is very general and can be adapted to a wide range of models with only minor mod-
ifications, its convergence speed is highly sensitive to the initialisation of {z]'}. Consequently, we introduce
variational inference methods that are less sensitive to initialisation, albeit at the expense of some generality.
Notably, VI algorithms lack the asymptotically unbiased property typical of MCMC methods—a shortcoming
that may limit their accuracy in certain scenarios. First, we present a method tailored specifically to the mod-
els described in chapter 3. Next, we generalise this approach. Furthermore, we explore strategies in the form
of stochastic variational inference (SVI), which might enhance the scalability of these methods for some mod-
els. However, it should be noted that for this work only non-stochastic algorithms have been implemented, and
exclusively for the parametrised HMM model, as will be demonstrated in the next chapter.

4.2.1 Model Specific VI Approach

We again consider the finite-valued latent random variables {z}"}, observed random variables {z} } and model pa-
rameters 6 as defined in chapter 3, where the index nrunsover {1, ..., N}andtover {1,...,T}. p({z]'}, {z}}|0)
is defined through the transition and emission probabilities and the prior p(6) is chosen appropriately. It is our
aim to find a variational distribution ¢(0, {z}"}) approximating the posterior p(¢, {2} }|{z}'}) such that 6 can be
estimated.

We consider a mean field approximation for ¢(6, {z}*}). That is,

q(0,{='}) = qa(0)a({="}), (4.4)

where ¢(6) factorises further. E.g., for the HMM model we obtain

q(0,{21'}) = ¢(A)q(7V)q(pai)q(Pan)a({21'})- (4.5)
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q(A), q(7), 4(pai), 4(par) are further restricted to be distributed in the same way as their prior. Le., for ¢(6) =
( )‘J('V)Q(sz) (pdn)a

4A ~ Beta(aua, Baa), v~ I(ay,0y),
dpg; ~ Beta(aupdi, Bapai),  4pan ~ Beta(upan, Bapdn)- (4.6)

We write ¢(6|)) to indicate the dependence on the variational parameters. That is, A is a vector of the variational
parameters defined in equation (4.6). For the nearest neighbour model, similar assumptions can be imposed on

q(0).

Based on the assumptions above, an iterative algorithm where ¢(0|\) and g({z}'}) are updated in turn, similar to
the algorithm described in [7, section 2.2], will be presented below.

Suppose we have an initialisation for A\. Remember that since no further assumptions are imposed on ¢({z7'}),
the distribution that minimises the ELBO with respect to ¢({z}'}) is that from equation (2.15).

q({21'}) o< exp(Eq(op) [log(p ({Z b A= HOND)
> “.7)

N
= exp (Eqwm Z Zlog z' {24, 0,n)) +log(E.pay)
N T
= exp (Z > Eqopn Dog(T (7 {1}, 0.m)] + log(Ex; w) ,
=1¢=2
where T (z]|{z}"}¢, 0, n) is the probability of transitioning to z;* given 6, n and the relevant previous states. For
the HMM model this equals 7. .n (6, 1) with 7 (¢, n) defined in equation (3.8). Observe here the similarity with
the form of the joint probability distribution of the model in equation (3.11). It is apparent that the distribution
factorises into a product of functions, each depending on only a few of the finite-valued random variables z}'.
Hence, if expectations E g ) [log(T (2} [{ 2} }¢, 6, n)] for the different configurations of the relevant subsets of
{z}"} can be computed, (joint) marginals of ¢({z}"}) can be obtained through a message passing algorithm. These
(joint) marginals can then be used to optimise A as described below. In practice, we compute each singleton
marginal ¢(z}') and, for every transition term 7 (27 |{2" }¢, 6, n), its corresponding joint marginal. In the nearest-

neighbour case this means evaluating ¢(27, 27, 27 ;. 2",
to ~t—19 ~t—1s “t—1

Given ¢({z}"}), we optimise the portion of the ELBO that depends solely on A to determine its optimal value.
That is, we aim to maximise

L(A) = Eqon)q(zrp log(p({z('}, {z }0))] + Eq(opn) [log(p(0))] — Eq(a1x)[log(q(0]N))], (4.8)

with respect to . It is clear that ¢({z]'}) is required for the first term in equation (4.8), which equals

Eqonq(tzpplog(p({z1'}, {z1' }0))] = Eqopnya(f=ry) Zzlog 2 {2}, 0,n)) + log(E.per)

n=1t=2

N T (4.9)
- Z Z a(0IN)a({=7} b [og(T (2 [{z1'}°,0,n)) + log(E.pap)]
n=1t=2

where, as before, 7 (2] [{2]'}¢, 0, n) is the probability of transitioning to z;* given @, n and the relevant previous
states. For the two parametrised models from chapter 3, 7 (2;*[{2}' }°, 0, n) equals T;n_ . (6, n) or 7-71 ln Lntlin (0,n).

—1%t—1 %t
It is clear that only the singleton marginals ¢(z}") and joint marginals for 7 (z*|{z}'}¢, 0, n) are requlred to evalu-

ate this term. If we can then compute the derivatives of equation (4.8) with respect to the variational parameters,
gradient based optimisation routines can be implemented to optimise A.

We can summarise this algorithm as follows.

1. [Initialise \.
2. Fori=1,...,M:
- Compute marginals of g({2}'}) o< exp(Eqg|) [log(p({z'}, {zf }16))]).
- Maximise £()\) through gradient based optimisation. (4.10)
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Note that this algorithm is initialised solely through its variational parameters—unlike the MCMC method, no
latent variable initialisation is required. Additionally, the variational distribution can undergo substantial variation
in a single iteration of the algorithm, whereas the updates in the MCMC method are much more incremental. This
makes the VI method less sensitive to its initialisation than the MCMC method.

Model Specific Approximation

Unfortunately, the models in chapter 3 admit no analytical expressions for Eg)x) [log Ti;(0, n)] or

Eqo0) [log Tij (6, n)] , 1.e. for the HMM and nearest neighbour model respectively. For example, the expecta-
tion E,(g|)[log(1 — Aexp(—~-n) — pa;)| is analytically intractable. In equation (4.7), this issue can be resolved
using Monte Carlo estimates. However, to compute derivatives of equation (4.8), these Monte Carlo estimates
cannot be used.

A potential solution is to approximate the analytically intractable terms by differentiable expressions. For our
specific models, we can use the approximation log(1l — z) ~ —x — 12—2 for small = and apply it to expectations
similar to £, (g x) [log(1— A exp(—~-n) —pa;)]. Itis then possible to apply gradient based optimisation techniques
to the approximation of the ELBO. Note, however, that this approach is highly specific to our models. For
example, a different parametrisation of the transition probabilities might render the approximation analytically
intractable as well. In the following section we will present a more general method.

4.2.2 Automatic Differentiation Variational Inference Approach

In the previous section, we examined the algorithm outlined in equation (4.10), where £(\) was approximated
using a model-specific differentiable expression. In this section, the same outline will be followed, however,
instead of approximating £(\), a more general approach will be taken. Specifically, automatic differentiation
variational inference (ADVI) will be employed to optimise ¢(6) in every iteration, following the description
provided in [10].

Consider the same models as in the last section. The model parameters in  are transformed to the real line R.
E.g., parameters restricted to the positive real line R+ can be transformed by log(exp(x) — 1) and parameters
restricted to [0, u] can be transformed by log( % ). We write ¢ = T'(0) for the transformed parameters, where

T'(-) is invertible and differentiable. The joint probability becomes

p({z A2t} ¢) = p({z ) {2 1, T7HQ)) Idet Jr-a (Q)] - (4.11)

We assume that the variational distribution factorises, i.e., ¢(¢, {z}'}) = ¢({)q({2}'}). Then we posit a Gaussian
mean-field approximation on ¢(¢),

K
q(¢1N) = TT N (Gelpan, exp(2wr)), (4.12)
k=1
where K is the number of model parameters and A = (u1,. .., K, w1, .., wk ). Here exp(wy) is the standard

deviation of the Gaussian corresponding to (.

As before, we first initialise A. Then, ¢({2]'}) and ¢(¢|\) are optimised in turn as in equation (4.10). The
computation of ¢({z]'}) remains unchanged. However, the maximisation of £(\) follows a different approach.

Based on equation (4.11), we can write that

LX) =Eqcinqzry Logp({z1} Az} T7H(C)) + log | det Jr—1(Q)]] — Eqcialog g(¢N)]
=Eqcin) [Eqzrp logp({21'} =1}, T7H(C))] + log | det Jp—1 (¢)]] — Eqeepnyllog a(C|A)]  (4.13)
= Eq(cin) [log p({z}}, T71(C)) + log | det Jr-1(Q)[] — Eqepn [log a(¢|N)],

for log p({z}'},0) = Eqrznyllogp({27}, {x}'}, T71(C))]. Given g({z}'}), our goal is to compute the deriva-
tives of £(\) with respect to the variational parameters, enabling gradient-based optimization. By employing the
reparametrisation trick—which transforms the variational distribution into a standard normal-—we can express
these derivatives as expectations of derivatives. The derivatives within the expectations can then be calculated
using automatic differentiation, while the expectations themselves are estimated via Monte Carlo sampling.
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Consider a transformation S} (-), which standardises the variational distribution on  to a standard normal. That
. o . . 71 . . . . .
is, n = Sx(¢) = diag(exp(w))~*(¢ — w) has variational distribution

K

g(n) = [T N Omlo, 1). (4.14)

k=1

One may then write

L) = Exjo.n [logp({z}'}, T~ (S (n))) +log| det Jp—1 (S5 ()] — g llog gV (4.15)

If we wish to compute the derivatives of equation (4.15) with respect to  and w, note that the expectation with
respect to A/ (1|0, I) is independent of these parameters. Consequently, we can interchange differentiation and
expectation, moving the derivatives with respect to ;1 and w inside. The following expressions are then obtained,

VLX) = Eny [Jr-1()Velog p({zf'},0) + V¢ log | det Jp—1 (¢)]] (4.16)
VuLlA) =Exy [(Jr-2 (Ve logp({zf'}, 0) + Vi log| det Jp-1(()]) diag(exp(w))n] + 1. (4.17)

The derivatives inside these expectations can be computed using automatic differentiation, a technique that applies
the chain rule to evaluate the derivatives of programmed functions at specified input values [3]. By combining
automatic differentiation with sampling, the expressions in equation (4.16) and equation (4.17) can be estimated.
These unbiased estimates can then be used in a gradient based optimisation algorithm to find optimal values of \.

In conclusion, in this section, we described a VI algorithm with the same outline as before, see equation (4.10).
However, in this approach, the parameters 6 are transformed to R* and equipped with independent normals, such
that £(\) can be maximised through automatic differentiation and Monte Carlo approximation.

4.2.3 Stochastic Variational Inference

As is clear from the previous sections, variational inference casts statistical inference problems as optimisation
problems. These problems can often be high-dimensional. E.g., in our models there are a large number of latents
z; and observables x}*. To address the challenges posed by high-dimensional variational inference problems,
stochastic optimisation can be employed. This approach leads to a method known as stochastic variational infer-
ence (SVI) [8].

The basic SVI algorithm assumes that the data is independent. That is, we have N independent pairs (2™, 2™). If
we make the same assumptions as before on the variational distributions, i.e, (6, {z"}) = ¢(0|\)q({z"}), we
can write the ELBO for the variational parameters, £(\), as follows.

N
L(N) = Eqgoix Log(p(0))] — Eqeopn 10g(q(0)] + Y _ Eq(on) [Eq(er log(p(2", 2"0))]]- (4.18)

n=1

To estimate the ELBO and its gradient, we consider the random variable I ~ Unif(1,..., N). We then define

L1(N) = Eqon) 1og(p(0))] — Eqon)log(q(0))] + N Eqoin) [Eqary)log(p(z", z"16))]]. (4.19)

The expectation of £;(\) with respect to I equals £(\). Consequently, when sampling ¢ from I, the gradient
of £;(\) serves as an unbiased estimate of V.L()). These gradient estimates can be applied in Robbins-Monro
optimisation algorithms, which guarantee convergence to an optimum provided the estimates remain unbiased.

(8]

As noted in [9], SVI is applicable to models composed of independent HMMs, including our model from sec-
tion 3.1. In this case, the independent pairs are (2™, 2") = ({z* : t = 1,...,TH{z} : t = 1,...,T}).
However, when independence is absent, applying SVI becomes challenging, requiring modifications to the ap-
proach. For instance, [7] proposes an SVI algorithm for a stationary HMM with a large number of time steps. This
method samples sub-chains from the long HMM to compute unbiased ELBO gradients, while buffer mechanisms
help mitigate the effects of non-independent data. Although our models do not follow a stationary distribution,
this technique may still be applicable to slightly different models.



Results

In this chapter, we report numerical experiments that apply the algorithms introduced in chapter 4 to the mod-
els of chapter 3. Note that all experiments were performed on synthetic data. In section 5.1, we analyse the
MCMC sampler on both the HMM and nearest-neighbour models. In section 5.2, we assess the model-specific
variational inference approach alongside the ADVI algorithm, applied exclusively to the HMM model. For each
configuration, we illustrate the algorithm’s estimation accuracy and convergence speed. We also briefly look at
the non-parametrised models from section 3.5 in section 5.1.

5.1 MCMC Results

In section 5.1, we apply the MCMC sampler to both the HMM and nearest-neighbour models using the same
approach. First, we examine a representative run—reporting iterations to convergence and estimate accuracy.
Then, we inspect the acceptance probabilities of the Metropolis-within-Gibbs steps to asses the quality of the
adaptive algorithm from section 4.1.3. Next, we analyse correlations among the sampled parameters. Finally, we
compare convergence speed across different algorithm settings.

Concluding this section, we will also briefly present the sampling results for the more conventional models from
section 3.5.

5.1.1 HMM Model

Run Analysis: Convergence and Outcomes

We employ the MCMC algorithm with adaptive proposal distributions from section 4.1, for the HMM model
outlined in section 3.1. In this model, we set N = 5000 and 7" = 30, with N and T as defined in chapter 3.
For the algorithm, 1200 sweeps are performed with Ngipps = 10 and Nywg = 50. After every sweep, the
proposal distributions are modified according to the algorithm in section 4.1.3 with (n) = min(0.1,n~'/2).
Note that the Gibbs sweeps are considerably more computationally intensive than the Metropolis-within-Gibbs
sweeps because the former sample from the high-dimensional discrete latents {2} } while the latter sample from
the low-dimensional parameters 6. Therefore, striking the right balance between Ngipbs and Nyw is crucial for
maintaining computational efficiency.

In figure 5.1, the logarithm of the joint probability p(, {27}, {z}'}) up to an additive constant is plotted against
the algorithm’s iterations as a measure of convergence. We see that after approximately 250 sweeps, the change
in value slows down indicating that the algorithm is heading towards a steady state. Note, however, that a bad
initialisation of {2}’ } might require the algorithm to perform many more sweeps before approaching convergence.

In figure 5.2, the sampled values of the parameter pg4,, are shown alongside its true value. Following a burn-in
period of 250 sweeps, the samples settle into a stable region near the true value, as expected. Figure 5.3 illustrates
the running averages for pg,, computed both with and without burn-in. Although both running averages converge
closely to the true value, the influence of the burn-in period remains evident for an extended duration. A similar
pattern can be shown for the other parameters. In table 5.1, the parameter estimates—calculated as the averages
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Figure 5.1: Plot of the logarithm of the joint probability p(6, {2]*}, {«}'}) up to an additive constant versus the number of MCMC
iterations for the HMM model. Convergence is indicated by a plateau after approximately 250 sweeps, suggesting that the chain is

approaching a steady state.

of'the final 600 samples along with their sample standard deviations—are provided. Overall, the estimates closely
approximate the true values, with the low standard deviations underscoring their precision.
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Figure 5.2: Sampled values of the parameter p,,, along with its true value. We observe convergence of the samples toward the true value
after approximately 250 iterations, consistent with the evolution of log(p(0, {z}*}, {z}'})).

In section 4.1.3, an adaptive algorithm was introduced that adjusts the proposal distributions to achieve optimal
acceptance probabilities. Figure 5.4 shows the average acceptance probability for pg, computed every 50 steps.
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Figure 5.3: Comparison of running averages for p4,, computed with and without burn-in. Both averages converge to values close to the
true parameter, though the influence of burn-in is evident for an extended duration.

Parameters # | True Value | Sample Mean | Sample Standard Deviation
A 0.03 0.0301 0.00263

5y 0.001 9.65-10~1 5.69-10~°

Pdi 0.03 0.0297 6.11-10~1

Ddn 0.05 0.0440 0.00395

Table 5.1: Summary of MCMC estimates for the HMM model parameters. The table lists the true value, sample mean, and sample standard
deviation (computed from the final 600 samples) for each parameter, highlighting the precision of the estimates.

The figure demonstrates that after just a few sweeps, these probabilities converge near the target value. For the
other parameters, similar trends hold.

Run Analysis: Correlations

To study correlations between the sampled model parameters, we consider the plots in figure 5.5, which are based
on the last 600 samples of the algorithm. For every individual parameter, a histogram is shown at the upper or
right edge of the figure. For each pair of parameters, we display a scatter plot with an overlaid trend line and
use colour coding to indicate the correlation: blue for positive, red for negative, and yellow for neutral. Most
parameter pairs exhibit only weak correlations, with the notable exception of A and ~y, which show a strong
positive correlation. This is consistent with the model where, for nozzle n, the probability of transitioning from
anormal to a dusty state is given by A exp(— - n). To keep this probability approximately constant, an increase
in A must be accompanied by an increase in ~.

Additionally, one can observe a slight negative correlation between A and pg,, as well as a slight positive cor-
relation between py; and pg,. In practice, when A is slightly overestimated, both pg,, and, consequently (via
their positive correlation), pg; tend to be underestimated. According to the model described in section 3.1, if the
algorithm estimates that a greater number of nozzles are in the dusty state (i.e., high A accompanied by small
Ddn), it predicts fewer nozzles in the dry-in state (resulting in a smaller pg;). This is logical since both states yield
the same observational outcome.

Heuristic Analysis: Iterations & Runtime

We now examine the convergence and runtime characteristics of the MCMC algorithm applied to the HMM
model over various problem sizes using a heuristic analysis. In figure 5.6, we show the running averages of
log(p(6, {21}, {z}'})) computed for different values of N and T\, with each series offset to begin at 0. Notably,
despite variations in [NV and 7', the algorithm converges in approximately the same number of iterations.
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Figure 5.4: Evolution of the average acceptance probability for pg,,, computed every 50 steps. The plot shows that the acceptance
probabilities quickly converge to the target value, ensuring efficient adaptive sampling.
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Figure 5.5: Corner plot illustrating pairwise correlations between the sampled model parameters from the HMM model. Panels on the top
and right edge display histograms of individual parameters, while the other panels show scatter plots with overlaid trend lines. Blue
indicates positive correlation, red indicates negative correlation, and yellow denotes neutrality. Notably, the strong positive correlation
between A and -y is clearly visible. In addition, a slight negative correlation between A and pg,, is visible, as well as a slight positive
correlation between pg; and pgy, .

In figure 5.7, we plot the algorithm’s runtime for various values of IV and T'; the exact runtime values are listed
in table 5.2. For both settings of 7', the runtime scales approximately linearly with N. Although the data do not
clearly reveal a difference in the slopes for 7" = 15 versus 7' = 30, it is evident that the runtime is higher when
T = 30. However, the increase is limited, which can be attributed to the specifics of the HMM model described
in chapter 3. In particular, if during the Gibbs sweeps a sample z;* = 2 is drawn, then 2] remains equal to 2 for
all ¢/ > ¢ since 2 represents an absorbing state. Consequently, there is no need to sample the later latent variables
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Figure 5.6: Running averages of log (p(0, {21}, {z}*})) over MCMC iterations for varying values of N and T’, with each series offset to
begin at 0. The convergence trends are similar across the different model sizes.

z;7, which reduces the runtime. For models without absorbing states, the increase in runtime will be greater, with
the Gibbs sweeps requiring twice as many steps.

N T | Runtime (s)
3000 | 15 | 94.251
4000 | 15 | 111.845
5000 | 15 | 130.449
3000 | 30 | 102.578
4000 | 30 | 124.372
5000 | 30 | 149.877

Table 5.2: Measured runtimes (in seconds) for the MCMC algorithm applied to the HMM model, for various combinations of N and 7.
The table illustrates the approximately linear scaling with /N and the increased computational cost for higher 7.

5.1.2 Nearest Neighbour Model

Run Analysis: Convergence and Outcomes

We now consider the MCMC algorithm with adaptive proposal distributions defined in section 4.1, for the nearest
neighbour model from section 3.3. As before, we set N = 5000 and 7" = 30. We set the number of sweeps to
1500 with Ngipbs = 10 and Nywg = 50. Similar to the previous section, we take d(n) = min(0.1,n~1/2) to
modify the proposal distributions after every sweep as described in section 4.1.3.

In figure 5.8, we plot the logarithm of the joint probability at each sweep. Convergence is indicated by the
stabilisation of this quantity after approximately 700 sweeps. This convergence period is notably longer than that
observed for the previous model, reflecting the increased complexity of the nearest neighbour model. Note that
a suboptimal initialisation of the latent variables {z}"} may require even more sweeps to achieve convergence.

In figure 5.9 the samples of pg,, produced by the algorithm are displayed alongside its true value. In line with our
earlier observations, the samples remain close to the true value after approximately 700 sweeps. In figure 5.10
the running averages of the pg, samples are presented both with and without a 700-sweep burn-in period. Both
plots clearly demonstrate convergence towards the true value, though the effect of the burn-in period is noticeable.
Similar analyses can be carried out for the other parameters. Finally, table 5.3 summarises the model parameter
estimates, computed as the sample means and standard deviations of the final 800 samples from the algorithm. It
is evident that these estimates are very close to the true values and are obtained with good precision.
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Figure 5.7: Runtime of the MCMC algorithm for the HMM model plotted against different values of /N and 7. For a fixed 7', the runtime
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scales approximately linearly with IV, and larger T" values yield higher runtimes.
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Figure 5.8: Logarithm of the joint probability versus sweep number for the nearest neighbour model. The plot shows stabilisation after

approximately 700 sweeps, indicating convergence of the MCMC algorithm.

In section 4.1.3, an adaptive algorithm was introduced which adjusts the proposal distributions to achieve opti-
mised acceptance probabilities. As with the previous model, we examine the average acceptance probability for
Ddn, computed at intervals of 50 sweeps, as depicted in figure 5.11. The figure demonstrates that the acceptance
probabilities rapidly converge to the optimal value.

Run Analysis: Correlations

To examine correlations among the sampled model parameters, we consider the plots in figure 5.12, which are
based on the final 800 samples from the algorithm. All parameters have been rescaled so that they are centred
around 10. For each individual parameter, a histogram is displayed along the top or right-hand edge of the figure,



5.1. MCMC Results 30

Samples of P,

______ Sampled P,
0.12 | — Truep,
0.10 -
&
& 0.08 ff
0.06
ATVl o Y
T m’llml'r U ],\ r ! |
0.04 |
200 400 600 800 1000 1200 1400
Iteration i

Figure 5.9: Samples of p,, in the nearest neighbour model. The MCMC samples remain close to the true value after about 700 sweeps.
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Figure 5.10: Running averages of pg,, in the nearest neighbour model. The graph compares the running averages computed with and
without a burn-in period of 700 sweeps, highlighting the improved convergence when initial samples are discarded.

while for every pair of parameters a scatter plot with an overlaid trend line is provided. Colour coding indicates
the nature of the correlation — blue for a positive correlation, red for a negative correlation, and yellow for a
neutral correlation. As before, most parameter pairs exhibit only weak correlations, with the notable exception
of A and ~, which display a strong positive correlation. This is consistent with the model, where, for nozzle n,
the probability of transitioning from a normal to a dusty state is given by A exp(—~ -n). To keep this probability
approximately constant, an increase in A must be accompanied by a corresponding increase in +y.

Furthermore, a slight negative correlation is observed between A and pg,,, along with modest positive correlations
between pyio, Pdi1, Pai2 and pgy,. In other words, when A is marginally overestimated, pg,, tends to be underes-
timated, and consequently, so too are pg;0, pgi1 and pg;2 (owing to their positive associations). According to the
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Parameters # | True Value | Sample Mean | Sample Standard Deviation
A 0.03 0.0301 0.00236

v 0.001 9.71-107% 6.01-107°

Pdio 0.02 0.0195 5.79-107%

Pdi1 0.035 0.0340 0.00116

Ddi2 0.05 0.0516 0.00339

Pdn 0.05 0.0511 0.00465

Table 5.3: Summary of MCMC estimates for the nearest neighbour model parameters. The table lists the true value, sample mean, and
sample standard deviation (computed from the final 800 samples) for each parameter, highlighting the precision of the estimates.
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Figure 5.11: Average acceptance probability for pg,, in the nearest neighbour model. The plot displays the average acceptance probability
computed every 50 sweeps, demonstrating that the adaptive algorithm rapidly achieves the optimised acceptance rate.

nearest neighbour model described in section 3.3, if the algorithm infers that a greater number of nozzles are in
the dusty state (i.e. a high A paired with a low pg,,), it in turn predicts fewer nozzles in the dry-in state, leading
to lower estimates for pg;0, pgi1 and pg;o. This outcome is entirely sensible since both states produce the same
observational result.

Heuristic Analysis: Iterations & Runtime
We now examine the convergence and runtime characteristics of the MCMC algorithm when applied to the nearest
neighbour model across a range of model sizes using a heuristic analysis. In figure 5.13 the running averages of

the logarithm of the joint probability, log (p(@, {zI'}, {m?})), offset to start at 0, are plotted for various model

configurations as an indicator of convergence. Overall, the number of iterations required to reach convergence
appears to be similar across the different problem sizes.

In figure 5.14 we present the algorithm’s runtime for various values of N and T'; the corresponding runtime
values are detailed in table 5.4. As before, the runtime scales linearly with the number of nozzles. In addition,
a slight increase in runtime is observed for 7" = 30 compared to 7" = 15. This increase is only modest because
the model incorporates an absorbing state (dry-in). As explained in section 4.1, once a nozzle is sampled to enter
the dry-in state during the Gibbs steps at a given time step, states at subsequent time steps are fixed and do not
require further sampling, thereby mitigating the overall computational cost.

Compared to the HMM model, we observe a substantially higher runtime. It should be noted that in this instance
the algorithm was run for 1500 sweeps rather than 1200, which partially accounts for the difference. Nevertheless,
the primary reason for the increase is that the transition probabilities now depend on two additional variables,
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Figure 5.12: Corner plot for the model parameters of the nearest neighbour model, based on the final 800 MCMC samples. The marginal
distributions (displayed as histograms along the top and right edges) correspond to parameters rescaled to be centred around 10, while each
off-diagonal panel presents a scatter plot with a fitted trend line. Colour coding represents the correlation type—blue for positive, red for
negative, and yellow for neutral. Notably, the strong positive correlation between A and ~ aligns with the model prediction that an increase
in A must be offset by a corresponding rise in -y to maintain an approximately constant transition probability.

which slows down the Gibbs steps.

5.1.3 More Conventional Models

In section 3.5, we considered more conventional models with non-parametrised transition probabilities. As before,
we assumed either independent HMMs or included nearest neighbour interactions. We performed a trial run for
both configurations.

In the case of independent HMMs, the true transition matrix for the trial run is defined as follows,

085 0.1 0.05
T7=(02 07 01]. 5.1
0 0 1
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Figure 5.13: Running averages of the logarithm of the joint probability for various model configurations of the nearest neighbour model.
The figure demonstrates that the number of iterations required for convergence is broadly comparable across different model sizes.

N T | Runtime (s)
3000 | 15 | 292.027
4000 | 15 | 357.619
5000 | 15 | 428.770
3000 | 30 | 300.209
4000 | 30 | 365.901
5000 | 30 | 439.529

Table 5.4: Measured runtimes (in seconds) for the MCMC algorithm applied to the nearest neighbour model, for various combinations of NV
and 7T". The number of sweeps equals 1500; for the HMM model it was 1200. The table illustrates the approximately linear scaling with N
and the slightly increased computational cost for higher 7"

From our run of the sampling algorithm, outlined in section 4.1.4, the following estimates + standard deviations
were obtained,

0.849 £9.53-10~*  0.0981 £0.0137  0.0528 £ 0.0136
T = 0.211 £ 0.0285 0.699 £2.61-1073 0.0902 £ 0.0285 | . (5.2)
0 0 1

Under nearest neighbour coupling, we define the following set of transition probabilities, to which all other
transition probabilities are equal.

MP” = (0.85 0.1 0.05), M = (025 07 0.05),
Mg™ = (08 01 01), M = (025 065 0.1), )
MPP = (075 01 0.15), M = (025 06 0.15).
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Figure 5.14: Runtimes of the MCMC algorithm for different configurations of the nearest neighbour model. The plot shows runtime versus

the number of nozzles N and time steps 7". The runtimes appear to be linear in V. The increase for 7" = 30 compared to T" = 15 is slight,

owing to the absorbing state. Overall, the runtimes are higher than for the HMM model. This is mainly due to the more complex transition
probabilities that slow the Gibbs steps. Note, however, that 1500 sweeps were used instead of the 1200 sweeps for the HMM model.

From the samples generated by our MCMC run, we derive the following estimates.

0.849 +1.67-1072 0.101 +4.94-1073 0.0505 4 4.74 - 10_3) ,
0.253 +£0.0124 0.697 +5.37-1073  0.0502 + 0.0117) ,
0.801 +£2.85-1072 0.0986 +6.62- 1072 0.101 &+ 5.52 - 10*3) ,

= (
00 — (
= (
= (0.257 £0.0168 0.645+6.39- 103 0.0978 + 0.0165)
= (
=

00)

)
02)
0) (5.4)
22)

0.752 +4.14-107% 0.0948 £9.55-107% 0.153+£9.10-107?),

My
M;
My
My
My
M| 0.270 £ 0.0245 0.598 £9.40- 107 0.132 £ 0.0241) .

As the results illustrate, both configurations yield accurate estimates with satisfactory precision.

5.2 VI Results

In this section, we apply both the model-specific VI algorithm as well as the ADVI approach exclusively to the
HMM model. For both algorithms, we adopt the same structure used in the previous section. First, we analyse a
single representative run, recording iterations to convergence and parameter estimates along with their accuracy.
We then assess convergence speed across various algorithm settings.

5.2.1 Model-Specific VI

Run Analysis: Convergence and Outcomes

For the HMM model described in section 3.1, we applied the model specific VI algorithm from section 4.2.1.
In figure 5.15, we see the evolution of the ELBO for 25 iterations of the algorithm. Initially, the ELBO rises
sharply before gradually approaching convergence. It is important to note that the number of iterations required
for convergence is only weakly dependent on the initialisation.

In figure 5.16, we present the estimated model parameter pg,, at each iteration alongside its true value. The
estimate corresponds to the mean of the variational distribution ¢(pg, ), while the ribbon represents its standard
deviation. Over time, the estimate converges to a value close to the true parameter, accompanied by a decreasing
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Figure 5.15: Evolution of the evidence lower bound (ELBO) over 25 iterations of the model-specific variational inference algorithm for the
HMM model. The initial rapid increase followed by gradual convergence indicates that the optimiser quickly improves the variational
approximation before stabilising.

standard deviation. Similar trends hold for the other parameters. The final estimates for all parameters, shown in
table 5.5, demonstrate a strong agreement with their true values.

Estimate P, after iteration i

L Estimate p, + SD
0.10 True p, dn
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Figure 5.16: Estimates of the parameter pg,, at each iteration of the model-specific VI algorithm. The solid line represents the mean of the
variational distribution ¢(pgy, ), and the shaded ribbon denotes its standard deviation. The plot demonstrates convergence toward the true
value with decreasing uncertainty.

Heuristic Analysis: Iterations & Runtime
We now examine the convergence and runtime characteristics of the model-specific variational inference algo-
rithm for the HMM model. In figure 5.17, we present the evolution of the ELBO for varying values of NV and 7,
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Parameters # | True Value | Mean ¢ Standard Deviation ¢
A 0.03 0.0288 0.00378

y 0.001 9.30-10~% | 4.62-107°

Ddi 0.03 0.0314 0.00305

Pdn 0.05 0.0527 0.00654

Table 5.5: Final estimates and uncertainties of the HMM model parameters obtained via the model-specific variational inference algorithm.
This table compares the true values with the mean and standard deviation of the variational posterior distributions, demonstrating good
agreement and reasonable accuracy of this VI method.

with each series offset to start at 0. Notably, the algorithm converges in roughly the same number of iterations
regardless of the model size.

In figure 5.18, we illustrate the algorithm’s runtime for the different combinations of N and T'; the exact runtime
values are summarised in table 5.6. The data again suggest that—for a fixed 7—the runtime scales linearly with
N. In particular, the runtime for 7' = 30 is approximately twice that for 7" = 15. Although the runtimes given in
table 5.6 are longer than those of the MCMC algorithm, the MCMC results here involve strong initialisations. In
scenarios where only poor MCMC initialisations can be provided — leading to significantly longer convergence
times — the rapid improvement of the ELBO in figure 5.17 indicates that this VI algorithm could make the faster
option.
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Figure 5.17: Evolution of the ELBO for the HMM model under the model-specific variational inference algorithm for different values of NV
and 7. Despite the different model sizes, the convergence behaviour in terms of ELBO stabilisation is similar across the tested

configurations.
N T | Runtime (s)
3000 | 15 | 295.806
4000 | 15 | 405.267
5000 | 15 | 526.656
3000 | 30 | 626.801
4000 | 30 | 870.494
5000 | 30 | 1115.82

Table 5.6: Tabulated runtime (in seconds) for the model-specific variational inference algorithm for the HMM model under various values
of Nand T.
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Figure 5.18: Runtime analysis of the model-specific variational inference algorithm for the HMM model. The plot suggests that for a fixed
T, the runtime increases approximately linearly with N, and that doubling 7" roughly doubles the runtime.

5.2.2 ADVI Approach

Run Analysis: Convergence and Outcomes

For the HMM model described in section 3.1, we adopt the automatic differentiation variational inference method
detailed in section 4.2.2. As before, we set N = 5000 and 7" = 30. figure 5.19 shows the evolution of the evidence
lower bound over 25 iterations. Initially, the ELBO increases steeply before gradually approaching convergence.
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Figure 5.19: Evolution of the ELBO during ADVI for the HMM model. The figure shows a steep initial increase followed by gradual
levelling off over 25 iterations, indicating the stabilisation of the variational approximation.

In figure 5.20 we present the estimated mean and standard deviation of the variational distribution ¢(p4y,) at each
iteration. These estimates are obtained by sampling from the distribution ¢ = T'(6), see section 4.2.2. The mean
converges steadily and the standard deviation decreases as the number of iterations increases. Similar trends hold
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for the other parameters. Table 5.7 lists the estimates of the model parameters along with their standard deviations;
overall, the estimates are in close agreement with the true values. Notably, the standard deviations produced by
the ADVI algorithm are smaller than those obtained using the model-specific VI approach.
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Figure 5.20: Estimated evolution of the mean and standard deviation of ¢(pg4y, ) over ADVT iterations. The estimated mean converges
towards the true value, while the standard deviation decreases, indicating reduced uncertainty. These estimates are obtained by sampling
from the transformed space ¢ = T'(6), see section 4.2.2.

Parameters 6 | True Value | Sampled Mean g | Sampled Standard Deviation ¢
A 0.03 0.0347 6.37-107%

~ 0.001 0.00111 2.15-107°

Ddi 0.03 0.0303 3.14-107%

Pdn 0.05 0.0527 0.00211

Table 5.7: Final estimates and uncertainties of the HMM model parameters obtained via the automatic differentiation variational inference
algorithm. This table compares the true values with the mean and standard deviation of the variational posterior distributions, demonstrating
good agreement and accuracy of this VI method.

Heuristic Analysis: Iterations & Runtime

We now examine the convergence and runtime characteristics of the automatic differentiation VI algorithm for
the HMM model. In figure 5.21, we present the evolution of the ELBO for varying values of N and 7', with each
series offset to start at 0. Notably, the algorithm converges in roughly the same number of iterations regardless
of the model size.

In figure 5.22 we illustrate the algorithm’s runtime for different combinations of NV and T’; these exact values are
summarised in table 5.8. The data indicate that, for a fixed 7', the runtime scales linearly with V; notably, the
runtime for 7' = 30 is slightly more than double that for 7" = 15. The ADVI approach exhibits somewhat higher
runtimes than the model-specific VI algorithm. As before, although the runtimes in table 5.8 exceed those of the
MCMC algorithm, it should be noted that the MCMC results were obtained using good initialisations for {z}"}.
In practice, when only poor initialisations are available—leading to much longer convergence times—the rapid
improvement of the ELBO, see figure 5.21, suggests this VI algorithm may be the faster option.
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Figure 5.21: Evolution of the ELBO for the HMM model under the automatic differentiation variational inference algorithm for different
values of NV and 7. Despite the different model sizes, the convergence behaviour in terms of ELBO stabilisation is similar across the tested

configurations.
N T | Runtime (s)
3000 | 15 | 333.996
4000 | 15 | 445.765
5000 | 15 | 567.032
3000 | 30 | 704.972
4000 | 30 | 950.163
5000 | 30 | 1189.68

Table 5.8: Tabulated runtime (in seconds) for the ADVI algorithm for the HMM model under various values of N and T'.
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Figure 5.22: Runtime of the ADVI algorithm for the HMM model as a function of the number of nozzles /N and time steps 7. For a fixed
T, the runtime increases linearly with N — the runtime for 7" = 30 is slightly more than double that for 7" = 15. The ADVI approach

incurs marginally longer runtimes than the model-specific VI algorithm.



Conclusions and Discussion

In this thesis, we set out to develop Bayesian methodologies for inferring parameters of models representing the
printing process of industrial printers. We explored two extensions of the standard independent HMM approach
for print nozzles. The first, which we call the HMM model, preserves independent chains but replaces fixed
transitions with a low-dimensional, interpretable parametrisation. The second, denoted as the nearest neighbour
model, builds on this by coupling adjacent HMMs, introducing spatial interactions between neighbouring nozzles.
To infer the model parameters, we formulated an MCMC approach that combines Gibbs sweeps for the latent
variables, Metropolis-within-Gibbs sweeps for the parameters, and an adaptive algorithm to tune the proposal
distributions. In addition, we presented two variational inference algorithms: one employing model-specific
approximations to the ELBO for the parameters, and another using automatic differentiation variational inference
to generalise the former approach. Notably, the VI methods are asymptotically biased in contrast to the sampling
algorithm. The MCMC method was applied to both models, while the VI algorithms were only employed on
the HMM model. We also briefly mentioned stochastic variational inference as a potential means to enhance
scalability in some models, though it remains unimplemented in this work.

Both the MCMC algorithm and the two VI methods were implemented for the HMM model. All three approaches
produced reliable estimates of the true model parameters. Remarkably, the ADVI method yielded the smallest
standard deviations, especially compared to the model-specific approach, and thus demonstrates that, despite its
generality, ADVI can match specialised techniques in precision. For the MCMC method, the Metropolis-within-
Gibbs acceptance rates stabilised rapidly at their optimal levels, confirming the effectiveness of the adaptive
proposal-tuning strategy.

In terms of computational time, the MCMC algorithm markedly outperformed both VI methods on the HMM
model. However, its efficiency hinges on a well-chosen initialisation; with only a poor starting point available,
the VI routines may reach convergence more swiftly. Between the two VI schemes, the model-specific method
ran somewhat faster than the ADVI method. Thus, in our configuration there seems to be a trade-off between
runtime and the precision of the resulting estimates.

In our experiments for the HMM model, we varied N (the number of nozzles) and 7" (the number of time steps) to
assess runtime and convergence. Across all three methods, the iteration count required for convergence remained
approximately constant, and runtimes scaled linearly with N. When T was doubled, both VI methods saw their
runtimes roughly double, whereas the MCMC runtime increased only modestly—most likely reflecting a model-
specific characteristic.

When applied to the nearest-neighbour model, MCMC again delivered accurate estimates with satisfactory pre-
cision. Adaptive proposal tuning remained effective, and the number of iterations to convergence was approxi-
mately invariant under changes in /N and 7". Runtimes scaled linearly with [V and rose only moderately when T’
was doubled. Thus, the extra model sophistication imposes no convergence penalty, but the absolute runtime is
substantially higher than for the independent HMM—so when computational efficiency is paramount, the simpler
model may be preferable.

It must be noted that the above analysis was performed on synthetic data; real-world validation is needed to
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confirm the effectiveness of the inference methods.

Furthermore, our current evaluation of method performance is rather informal. To obtain a more rigorous measure
of divergence between the estimated and true posteriors, one can employ the Wasserstein distance [12]. This
metric can be computed numerically from empirical histograms, which follow naturally from the output our
algorithms produce. For the variational inference methods, only the transformed-parameter posterior is available
in closed form, but we can generate samples of the original parameters and build corresponding histograms.
Although the exact posterior is intractable, it can be approximated by running the MCMC sampler for a sufficiently
long time and assuming convergence to its stationary distribution, thanks to MCMC’s asymptotic guarantees. We
can then compute the Wasserstein distance between standard runs of the MCMC and VI algorithms against this
“long-chain” reference to quantify their similarity. Efficient libraries for computing the Wasserstein distance exist,
for example, the Julia Optimal Transport.jl package [20].

The methodologies considered in this thesis are not confined to printing process models; in principle, they apply
to any parametrised, factorisable model with discrete latent variables. Such models are commonplace in machine
diagnostics, where they underpin fault detection and diagnosis in high-tech machinery.

When no parametrisation can be formulated or a simpler approach is desired, one may turn to the non-parametrised
models discussed in section 3.5. In these models, we place a collection of independent Dirichlet priors on each
conditional-probability vector of 7. By conjugacy, every such vector admits a Dirichlet posterior. This enables
direct sampling, making the MCMC sampler, see section 4.1.4, simpler than in the parametrised case, yet still
accurate in recovering the transition probabilities.

While our methods perform well on the models of chapter 3, their scalability to larger, more intricate systems
remains to be fully assessed. Should computational costs prove prohibitive, algorithmic adaptations will be re-
quired. Future work could investigate sub-sampling MCMC strategies [2] or stochastic variational inference as
detailed in section 4.2.3. For example, stochastic gradient Langevin dynamics blends stochastic optimisation
with Langevin Monte Carlo [19], but—like most sub-sampling schemes—targets an approximate posterior. In
contrast, the sub-sampled Zig-Zag process [4] can sample the true posterior exactly, albeit under stricter conver-
gence criteria. It is important to note, however, that these methods typically assume data independence, which
may limit their applicability in the presence of strongly correlated data.

Furthermore, this thesis analysed both a model-specific VI algorithm and a general ADVI algorithm applied to the
HMM framework. In cases where specific approximations, see section 4.2.1, are impractical, yet the generality of
ADVI is insufficiently targeted, one may turn to the generalised reparametrisation gradient. As the name implies,
this method generalises the reparametrisation trick. Under that trick, an auxiliary noise variable € is introduced—
drawn from a distribution independent of the variational parameters A—and the model variables § = T'(e, \) are
written as an invertible transformation of both A, and the A-independent distribution. Consequently, the ELBO
can be written as an expectation over €, decoupling the randomness from the variational parameters. Hence,
we can interchange differentiation and expectation when computing the gradient of the ELBO with respect to
A. In gradient-based optimisation, we may then approximate the gradient via Monte Carlo sampling, provided
the inner derivatives can be evaluated pointwise. Unfortunately, only a handful of distribution families admit a
reparametrisation that decouples the variational parameters A from a A-independent distribution. The generalised
reparametrisation gradient approach instead considers transformations 8 = T'(¢(\), A), where € only weakly de-
pends on the variational parameters. As before, this lets us write the derivatives of the ELBO as expectations over
derivatives. In doing so, the generalised reparametrisation gradient expands the class of variational distributions
for f, while maintaining a feasible optimisation procedure. In terms of accuracy, the generalised reparametrisation
gradient often outperforms ADVI. [17]

In summary, in this thesis we investigated Bayesian parameter inference methods for industrial-printer models
that extend the standard independent-HMM framework previously used by TNO. The greater complexity of these
extensions makes the previous inference technique used by TNO infeasible, motivating the algorithms presented
here. Tested on the relatively simple models of chapter 3, the presented methods recover parameters accurately
and run in practical time. A more formal analysis—e.g. via Wasserstein-distance comparisons—would offer an
improved assessment of the algorithms. Crucially, validation on larger models with more latent states and on
real-world data remains to be done. Should runtime become prohibitive, sub-sampling strategies for MCMC or
stochastic variational inference offer potential workarounds. And when models outgrow both the model-specific
variational method as well as the ADVI approach, one may invoke the generalised reparametrisation gradient to
expand the family of tractable variational distributions. If instead a simpler model is desired or no parametrisa-
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tion is available, non-parametrised methods exploiting conjugacy of the Dirichlet distribution on the transition
probabilities provide a reliable fallback. In closing, we hope that the concepts presented in this thesis will inspire
continued advances in Bayesian parameter inference for fault detection—ultimately raising the reliability and
diagnostic power for high-tech machinery.
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Directed Graphical Models and D-separation

Probabilistic models, such as the hidden Markov model discussed in section 2.1, can, in principle, be fully repre-
sented using algebraic expressions. However, to gain insight into the structure of the model, it may be beneficial
to diagrammatically represent the model as a graphical model; we will specifically consider directed graphical
models in this thesis. It turns out that these directed graphical models are not merely useful visualisations of the
model structure, but can also reveal conditional independencies between sets of random variables through the
concept of d-separation. [5, see p. 359]

The following two sections are based on [18, see chapter on graphical models].

A.1 Directed Graphical Models

A directed graph consists of nodes joined by directed edges, see e.g. figure A.1. This can be formalised by the
pair (V, £), where V' denotes the set of nodes {z1, ..., 7y}, and £ the set of ordered pairs denoting the directed
edges. That is, £ contains the element (x;, x;) if the graph has a directed edge pointing from ; to ;. In such a
case, we say that x; is a parent to x; and that x; is child of ;. We denote the set of all parents of a node z; by
pa(z;). The set of all children of a node z; is denoted by ch(z;)

When working with directed graphical models, we have to restrict our focus to directed acyclic graphs (DAGs).
These are directed graphs without cycles, where a cycle is a sequence of nodes (z,zo, ..., zk, x), such that
x,Ta,...,T are distinct and (z, z2), (x2,23),. .., (xk, ) € £. An overview of concepts related to directed
graphs is given in box A.1.

Box A.1: Definitions for Directed Graphs

The following concepts are taken from [18, see chapter on graphical models]. We consider a directed

graph (V, ).

* A cycle is a sequence of nodes (z,zs,...,xg,x), where x,2o,...,x) are distinct and
(z,22), (T2, 23), ..., (T1,7) € E. .

¢ A parent of z is a node y such that (y, x) € £. pa(x) is the set of all parents of z.

* A child of y is a node x such that (y, z) € &. ch(y) 1s the set of all children of y.

* A path from z to y is a sequence of distinct nodes (z, zo, . . ., zk, y) joined consecutively by directed
edges pointing in the direction from z to y.

* A descendant of x is a node y such that there exists a path from x to y.

* A trail from z to y is a sequence of distinct nodes (x, zs, . . ., zk, y) joined consecutively by directed
edges, which need not point in the same direction.

* A collider is an internal node of a trail, such that the directed edges meet head-on. lL.e., if x; is an
internal node of the trail (z1,...,xx), z; is a collider iff (z;_1, x;), (x;11, ;) € &.

* A non-collider is an internal node of a trail that is not a collider.

A directed graphical model describes the structural properties of a random vector X, containing the random
variables of the model, through a directed graph. The nodes of the directed graph correspond to the random
variables in X, while the directed edges correspond to conditional distributions. More specifically, for every node

46



A.2. D-separation 47

x, the incoming edges induce the conditional distribution p(x|pa(z)). The joint probability of the model should
then equal the factorisation of these conditional distributions; we call this property the factorisation property.

We illustrate the above statements using an example inspired by an example from [5, see p. 360-361]. Suppose
we have three random variables x1, x2, 3, which correspond to the nodes in figure A.1. The distribution of these
variables can be factorised as follows

p($1,$2,$3) :P($3|$27$1)P($2\$1)p($1)~ (A1)

If for every node z; in figure A.1, we consider the distribution p(x; |pa(z;)), we see that we obtain the distributions
p(xs|xe, 1), p(x2|x1), p(x1) for the nodes x5, x2, 1, respectively. We observe that these distributions exactly
factorise into the likelihood, as required. Now, if we know that 23 L x1|z2, the factorisation of the likelihood
simplifies and becomes

p(x1, 2, x3) = p(as|re)p(ra|e)p(x1). (A2)

We can then construct an equally valid directed graphical model given in figure A.2. From this graph, we indeed
derive the distributions p(zs|z2), p(z2|x1), p(x1) for the nodes x3, x2, x1, respectively, and find the simplified
factorisation given in equation (A.2).

In the above example, we derived a graphical model from known independence properties. However, it turns out
that often the reverse holds. One can derive independence relationships between sets of random variables if a
corresponding graphical model is known through the concept of d-separation.

(—0

Figure A.1: Example of a directed acyclic graph (DAG) illustrating a graphical model with three random variables 1, x2, and z3. The
directed edges from x; to x2, from z3 to x3, and from z; to z3 correspond to the factorisation
p(z1,z2,73) = p(xs|za, z1)p(z2|x1)p(x1), as described in equation (A.1).

Figure A.2: Simplified DAG derived under the conditional independence assumption x3 L x1 | 2. The graph omits the direct edge from
x1 to 3, yielding the factorisation p(x1, 2, x3) = p(z3|z2)p(z2|z1)p(r1), as shown in equation (A.2).

A.2 D-separation

As mentioned before, the concept of d-separation applied to directed graphical models allows us to deduce condi-
tional independence relationships between sets of random variables. Before we can discuss d-separation, however,
we need to introduce a few concepts related to directed graphs. See box A.1 for an overview of these concepts.
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Consider a directed acyclic graph (V, ). A path from node z to y is a sequence (x, s, . .., Zk,y) of distinct
nodes, such that (z, z2), (z2, z3), ..., (zk,y) € £. A descendant of a node x is a node y such that there is a path
from x to y. A trail is a sequence of distinct nodes (1, 22, . . ., 2k ) joined by directed edges that need not point
in the same direction. Le., forevery i = 2,. .. k, either (x;_1, ;) € £ or (x;,z;—1) € €. Aninternal node x; of
atrail (21,...,2y) is a collider if both (x;_1, x;) and (2,41, x;) are in £. That is, the two directed edges joining
x;—1 to z; and x; to x;41 both point towards z; as in figure A.3. An internal node of a trail that is not a collider
is called a non-collider. The three possible configurations of a non-collider are given in figure A.4.

O

Figure A.3: Illustration of a collider configuration in a DAG. Here, the internal node z; is a collider because both incoming edges from
x;—1 and z; 1 meet at z;. This configuration is essential for analysing conditional independence via d-separation.

.
e

Y

O O O
O O O
O O O

Y

Figure A.4: Examples of non-collider configurations in a DAG. Three distinct arrangements for the internal node z; are shown,
highlighting variations in non-collider relationships used to determine whether a trail is S-open or S-closed in d-separation analysis.

To define the concept of d-separation, we need one more definition related to trails in DAGs.
Definition A.1. (closed). A trail in a directed acyclic graph is closed by a set of nodes S, if for some internal
node x in the trail one of the following two statements holds

e ifx €S, xis a non-collider,

s ifx & S, xis a collider without descendants in S.
If the above holds, we say that the trail is S-closed. Otherwise, we say that the trail is S-open.

We can finally introduce the concept of d-separation.
Definition A.2. (d-separation) Let A, B, S be disjoint sets of nodes in a directed acyclic graph. We say that A
and B are d-separated given S, if every trail from a node in A to a node in B is S-closed.

By making use of d-separation we can determine whether sets of random variables corresponding to a directed
graphical model are conditionally independent.

Theorem A.1. (Global Markov property DAG). Let (V, E) be a directed acyclic graph corresponding to a graph-
ical model with random vector X. Let A, B, S be disjoint sets of nodes and X o, Xp, Xg the corresponding
random vectors. If A and B are d-separated given S, it follows that X 4 L Xp|Xs.



MCMC Method Convergence Properties

Consider the finite-valued latent random variables {z]'}, observed random variables {2} } and model parameters
6 as described in chapter 3, where n runs over {1,..., N} and ¢ over {1,...,T}. p({z}'}, {z}}|0) is defined
through the time-homogeneous transition probabilities and emission probabilities. The prior p(6) is chosen ap-

propriately. We consider the algorithm given in section 4.1. That is,
1. [Initialise {z;'} and 6.
2. Fori=1,...,M:
Forj=1,..., Ngibbs :
- Sample 21 ~ p(zi]{z1}%, {27}, 0).

- Sample 27 ~ p(zr|{zr}°, {z}'},0).
- Sample zf ~ p(zf|{zf}(, {z}},0).

- Sample z% ~ p(z%|{zr_2p}(, {z}},0).
- Sample z{v ~ p(z{v\{zfv}c, {z}},0).

- Sample 27 ~ p(z7 [{27'}°, {z}'},6).
Fork=1,...,Nyg:
Forl=1,...,]9|:
- Sample 0 ~ qi(01 prop|01)-

- A t with probability A = min( 1 .
ccept with probability mln( , N(ez))
- If accepted 6; = 0}, otherwise 6; = 0. (B.1)

Here q; (0}, prop|01) is anormal distribution centred at 6 with variance exp(2ls;). Wesetp(0)) = p({z;'}, {z}}10)p(6),
which is proportional to p(6;16 \ 0;, {z}"}, {«}'}).
For a Markov chain, let K™(z,-) denote its probability measure after n sweeps starting from z. We attempt to

establish convergence of the above algorithm by applying the following theorem from [13, theorem 6.51].
Theorem B.1. If'a Markov chain has stationary distribution 7(-) and is positive, aperiodic and Harris recurrent,

/K”(z, A)u(dz) — P(A)| =0, (B.2)

lim sup
n—oo AcF
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for every initial distribution .

This theorem implies that under certain conditions, the distribution of a Markov chain converges to the target
distribution if the target distribution is stationary with respect to the chain, regardless of the initial distribution.
We will not delve into the details of the concepts applied in theorem B.1, as doing so falls outside the scope of
this thesis. Instead, we will demonstrate that our algorithm satisfies all the required conditions.

A distribution is stationary with respect to a Markov chain, if a step from the chain leaves the distribution un-
changed [5, p. 540]. In [5, p. 544], it is shown that the Gibbs sweeps in the above algorithm leave p({z} }|0, {z'})
invariant. We also find that, for every [ = 1,..., 6|, the Metropolis-Hastings steps of component ; leave
p(61]0\ 0;, {27}, {x}'}) invariant [5, p. 541]. By induction, it follows that the Metropolis-within-Gibbs sweeps
leave p(0]{z"}, {z}}) invariant. Therefore, the above chain has stationary distribution p(6, {z}"}|{z}}) as re-
quired.

To establish positivity and aperiodicity of our algorithm, we need the chain to be ¢-irreducible. Write p({22}, 0|{z1"'}, )
for the density of K1(({z" },0"), ). Thatis, K' ({2 },0"), A) = [, p({z}'},0|{=""},0")d2'd6’ for an event A.

A sufficient condition for ¢-irreducibility is that the density corresponding to one sweep is greater than O for all
transitions [13, p. 213]. Le., p({z1'}, 0|{z'},6") > 0 for all allowed {27}, 0, {z""}, . This clearly holds for the
models described in chapter 3. Indeed, since the probability of reaching feasible latent variables {z]'} is always
greater than 0 and ¢;(6; prop|0]) 1s normal, the density is always larger than 0. Since our chain is ¢-irreducible

and has a stationary distribution, it is positive [13, definition 6.35].

From the definition of aperiodicity [ 14, section 3.2], it follows that our Markov chain is aperiodic if the probability
of remaining in the same state is larger than 0. This property is satisfied in our models. Specifically, after the Gibbs
sweeps there is a strictly positive probability of remaining in the same state, and during the Metropolis-within-
Gibbs steps, proposed samples may fall outside the parameter space and be rejected with positive probability.

To prove that the overall algorithm is Harris recurrent (and conclude that all conditions of theorem B.1 are satis-
fied), it suffices to show that sub-chains of the algorithm are Harris recurrent [15, proposition 15]. In particular,
we consider one sub-chain consisting solely of the Gibbs sweeps and, for each parameter component, a sub-chain
made up exclusively of the corresponding Metropolis—Hastings step from the Metropolis-within-Gibbs algorithm.
From [13, lemma 10.9], it follows that the Gibbs sub-chain is Harris recurrent, since the transition kernel for the
sub-chain K*({z1"}|) can be described by a probability density. From [15, theorem 8], it follows that the sub-
chains for the parameter components are Harris recurrent, since q;(6; prop|6i) > 0 for all feasible 6; prop, 0.
Hence, the complete algorithm is Harris recurrent. Hence, the algorithm converges for our models.

B.1 Adaptive Method Convergence Properties

When the adaptive method from section 4.1.3 is applied to the algorithm in equation (B.1), two additional condi-
tions have to be satisfied to guarantee convergence [16]. To describe these conditions, we need to introduce and
recall a few concepts. Write K}(2, -) for the probability measure of a Markov chain, after n iterations starting
from z, with parameters given by . Assume the Markov chains indexed by -y satisfy the conditions of theo-
rem B.1 with stationary distribution 7(-). Let {T',, } be a sequence of random variables resulting from an adaptive
algorithm, which return parameters for the transition kernel. To prove that the adaptive Markov chain (Z,,) cor-
responding to probability measure KT (z,-) converges, the following two conditions are sufficient. The first
condition is the diminishing adaption condition,

lim sup sup |K¢ L (2,4) - K} (2,A)] =0 in probability. (B.3)
N0 ez ACF " "

The second condition is the containment condition,
{M.Z,,T,)} is bounded in probability for all ¢ > 0, (B.4)

where M (z,7v) = inf{n > 1 :sup 4 |K}(z,A) — m(A)| < €} is the convergence time of the kernel K7 (z, -)
with fixed parameters +y starting from z.

In our case, the adaptive parameters ls;, [ = 1,..., |6, restricted to [—L, L] index the transition kernels. The
random variables {I",,} are described by the following procedure. After every bth batch of iterations of the
overall algorithm, each [s; is modified by a quantity 0(b) to achieve a better acceptance ratio, unless this violates
the bounds on Is;. It holds that 6(b) — 0 as b — oo.
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We consider the first condition for our algorithm. If Ny;g = 1, it can be derived that
sup | Kb, (({4'1,0), 4) = Kb (({21'),6), 4)| <
AeF
C/m ’(11(9/1|917Fn+1)'"Q\a|(9\'e||9|9\,rn+1) —q1(01101, ) -~ - a1/ (0]g0)0], T'n) | 4, (B.5)
R

since the Gibbs sweeps for {z}"} are unchanged for different Is;. Since the proposal distributions are normals, it
is clear that this bound is independent of the initial states ({z]'}, §). We get

sup sup | K (2'),0), 4) = K2 (({=},0), 4)| <
{zp},0)ex AeF

C/Rw‘ ‘%(9“07 Lpya) - Q|0\(9|/9\|07 Cyp1) = qu(67]0,T,) - - Q|0|(9\/9||0>Fn) de’, (B.6)

with X the space of all latents and parameters 6. Now, since §(b) — 0 as n — 0, the integrand goes to 0 for every
value of #’. It can also be bounded by an integrable function, because ls; € [—L, L] and the proposals are normal.
By the dominated convergence theorem, this bound goes to O surely. Therefore, it goes to 0 in probability and
equation (B.3) holds. The diminishing condition is satisfied. We can follow the same reasoning if Ny > 1.

We now consider the containment condition. We write (Z,,) for the Markov chain resulting from our adaptive
algorithm with probability measure K1 (({2{'},0), -) after n sweeps. The density of K7 (({2'},), -) is contin-
uous with respect to the initial § and ls;, [ = 1,...,|6| for every allowed initial {z]'}. Since [s; is restricted
to [—L, L] and 6 lives on a compact space, this density is uniformly continuous. Hence, for every € > 0,
we can consider finitely many instances of the parameters Is; and ({z}'}, 6) and find an integer N, such that
inf{n > 1:sup,cr |[K2(({21'},0), A)} — 7(A)| < €} < Ne. We can then write for n > N,

sup |Kp (Zn, A) = w(A)| < sup [K} (Zn, 4) = K3 ({2}, 0), A)| + [K7(({27'},0), A) — w(4)]
AeF AeF

< 2¢ almost surely. (B.7)

It follows that the containment condition holds.
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