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Distributed quantum computing (DQC) is crucial for high-volume quantum processing in the
NISQ era. Many different technologies are utilized to implement a quantum computer, each with a
different advantages and disadvantages. Various research is performed on how to implement DQC
within a certain technology, but research on DQC between different technologies is rather limited.
In this work, we contribute to this latter research line, by implementing the Quantum Phase
Estimation algorithm on a superconducting-resonator-atom hybrid system. This system combines
a Rydberg atom qubit, as well as a superconducting flux qubit system to perform the algorithm. In
addition, Hamiltonian dynamics are studied to analyze noise sources, after which quantum optimal
control (GRAPE) is used to optimize gate construction. The results show tradeoffs between
GRAPE step size, iterations and noise level.
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I. INTRODUCTION

Quantum computing has garnered immense interest
due to its potential to revolutionize information process-
ing by harnessing quantum phenomena such as superpo-
sition and entanglement. As the field advances, the major
challenge to scale quantum computers to perform increas-
ingly complex tasks remains. Currently, quantum com-
puting finds itself in the noisy intermediate-scale (NISQ)
era characterized by quantum processors containing up to
1000 noisy qubits [1, 2]. One promising solution is dis-
tributed quantum computing, where multiple quantum
processors are interconnected to function as a larger, uni-
fied system [3]. However, quantum computers are hetero-
geneous: Various quantum computing architectures have
been theorized or developed, each offering unique advan-
tages [4–7]. For example, superconducting flux qubits
enable fast operation and integration with conventional
electronics [8], while Rydberg atom systems provide ex-
cellent coherence properties and precise atomic-level con-
trol [9]. By combining these disparate technologies in
a distributed system, one can exploit their individual
strengths and mitigate inherent limitations.

In this research, we consider the phase estimation al-
gorithm, a sub-process in for instance Shor’s algorithm
[10] and the Harrow-Hassidim-Lloyd (HHL) quantum al-
gorithm [11], and numerically simulate a distributed ver-
sion of it on a system consisting of a flux qubit-based
quantum computer and a Rydberg atom quantum com-
puter. The quantum phase estimation algorithm deter-
mines the phase φ of an unknown eigenvalue e2πiφ for a
unitary operator U with eigenvector |u⟩ [12].

This hybrid approach explores the integration of dif-
ferent quantum architectures, with the goal of enabling
scalable and fault-tolerant quantum computing networks.
Thus, non-local quantum computing, as discussed in this
paper, refers to quantum computers that are spatially

separated yet collaboratively executing an operation or
algorithm. The numerical simulation builds upon the
coupled system described in [13] to establish a connec-
tion between the two quantum computers, extending the
system by incorporating more qubits and robust quan-
tum models. First, the quantum systems and their corre-
sponding noise models are derived. To optimize the sys-
tem’s evolution while accounting for noise, the Gradient
Ascent Pulse Engineering (GRAPE) method [14] is ap-
plied within the distributed phase estimation algorithm.
The application and demonstration of the GRAPE al-
gorithm address potential software engineering solutions
and future challenges in error correction and optimal con-
trol. This paper is based on the research presented in
[15].

This work brings together three different research lines,
namely distributed quantum computing, heterogeneous
hybrid quantum computing, and quantum optimal con-
trol theory. For the first, earlier work has focused on the-
oretical descriptions of distributed quantum algorithms,
examples being [16–19], and physical experiments of ho-
mogeneous distributed quantum systems [20, 21]. For
the second, earlier work has focused on theoretical de-
scriptions and experimental implementations, with most
notable works from [22–24] to optimize gates. This work
is the first to showcase the potential of combining not just
any two of these research lines, but even all three of them.

This paper is structured as follows. First, an introduc-
tion of distributed quantum computing is given through
a distributed version of the Quantum Phase Estimation
algorithm in Section 2. Then, the hybrid atom-flux sys-
tem is modeled as an open quantum system in Section
3. This model is used in Section 4 to optimize the noise
level of the quantum algorithm. Lastly, conclusions and
directions for future research are written in Section 5.
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II. THE NON-LOCAL PHASE ESTIMATION
ALGORITHM

This section details a distributed version of the quan-
tum phase estimation algorithm, and hence also gives an
introduction into distributed quantum computing algo-
rithms.

A. The Phase Estimation Algorithm

The phase estimation algorithm uses two registers of n
and m qubits, respectively, called the counting and state
qubits, respectively. Let U be a unitary operator acting
on the m-qubit register. The eigenvalues of a unitary op-
erator have unit modulus and are characterized by their
phase. If |ψ⟩ is an eigenvector of U , then,

U |ψ⟩ = e2πiθ |ψ⟩ (2.1)

for some θ ∈ R. Due to the periodicity of the complex
exponential, we assume 0 ≤ θ < 1. The goal is to ef-
ficiently approximate θ. The quantum phase estimation
algorithm accomplishes this by assuming oracular access
to U and availability of |ψ⟩ as a quantum state. The
algorithm returns an approximation of θ with additive
error ε using O(1/ε) controlled-U operations, where ε is
determined via n = O(log(1/ε)) [12].

First, the algorithm creates a uniform superposition in
the first register and then applies a sequence of controlled
phase rotations given by Uk for k = 0, ..., 2n − 1. This
gives the state

1

2n/2
(|0⟩+ ei2π2

n−1φ |1⟩)(|0⟩+ e2π2
n−2φ |1⟩) · · ·

(|0⟩+ e2πi2
0φ |1⟩) |ψ⟩ = 1

2n/2

2n−1∑
k=0

e2πiφk |k⟩ |ψ⟩ .
(2.2)

An inverse Fourier transform on the first register then
extracts this phase ϕ and produces the state |φ1...φn⟩.
Measuring in the computational basis returns φ up to
additive error ε [12].

B. Distributed Quantum Algorithms

In distributed quantum systems, the qubits are dis-
tributed over different quantum processors. Because of
this, interactions between certain pairs of qubits cannot
be directly applied. Interactions between these qubits are
called non-local (as opposed to local qubit operations),
and are the basis building block of distributed quantum
algorithms. To implement these non-local operations, so-
called channel qubits need to be sent back and forth over
a quantum network [18].

Given a normal quantum algorithm, it can be made
distributed by replacing the local operations between

qubits on different quantum processors, by non-local al-
ternatives [25]. Implementing a distributed 2-qubit gate
requires a shared entangled qubit pair. This is done by
having the one processor send a channel qubit to the
other machine. The second machine then entangles this
qubit a local qubit. Finally, one qubit of the pair is sent
back to the remote machine resulting in the shared en-
tanglement GHZ state 1

2 (|00⟩ + |11⟩) [18]. This process
of establishing entanglement between two different regis-
ters is called the entanglement gate, or equivalently, E2

gate. [16, 18, 25, 26].

Now, suppose Alice and Bob, both holding their own
quantum processor, want to implement a distributed U -
gate between the state |ϕ⟩ at Alice’s processor and |ψ⟩ at
Bob’s processor. First, they apply an E2 gate, resulting
in two entangled qubits (ebits) at both devices. Alice
then applies a CNOT gate between |ϕ⟩ and their ebit.
Afterwards, she measures her ebit, and if the result is |1⟩,
she applies a NOT orX-gate to her ebit, and informs Bob
about the measurement result. Bob then applies a NOT
gate to his ebit if Alice’s result was |1⟩. Bob can now
use his ebit for local computations, applying a controlled
U -gate between it and his qubit |ψ⟩. To finalize the non-
local CNOT-gate, Bob applies a Hadamard gate to his
ebit, measures it, and, if the outcome is |1⟩, applies a
NOT gate and communicates the result to Alice. If Alice
receives a |1⟩, she applies a Z-gate to her qubit. These
steps correspond to the non-local U -gate as shown in Fig.
1 [16, 18, 26].

FIG. 1. Implementation of a non-local controlled U -gate be-
tween |ϕ⟩ and |ψ⟩ where the dotted box shows the different
quantum computers and the dotted lines denote classical com-
munication. The two dots with the wave in between denotes
the E2-gate [16–18].

This study follows this protocol to implement the dis-
tributed phase estimation algorithm. One quantum com-
puter holds the state qubits along with a single counting
qubit, while the other device manages the other counting
qubits to improve estimation accuracy. From the above,
it can be concluded that the distributed phase algorithm
rests on two key distributed processes: the distributed
Quantum Fourier Transform [17] and the distributed con-
trolled U -gate.
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III. MODELING HYBRID SYSTEM AS OPEN
QUANTUM SYSTEM

This section provides a high-level overview of the dif-
ferent parts in the hybrid system. More details and mo-
tivation for certain choices are found in literature, such
as [15].

A. Rydberg Atom System

Rydberg quantum computers use Rydberg ensembles
with three levels to perform computations: the ground
state |g⟩ (mapped to |0⟩), the hyperfine state |h⟩ (mapped
to |1⟩), and the auxiliary excited state |r⟩. For Ry-
dberg atom systems based on Rubidium-87, the hy-
perfine levels are chosen as |5S1/2, F = 1⟩ = |g⟩ and
|5S1/2, F = 2⟩ = |h⟩ [27, 28]. The auxiliary state |r⟩ cor-
responds to |70S1/2⟩ and is used to initiate the Rydberg
blockade. Direct transitions from |0⟩ to |r⟩ require sub-
300nm wavelengths, which are challenging to achieve. In-
stead, an intermediate auxiliary state |6P3/2⟩ is used to
facilitate the transfer. The hyperfine transition occurs at
6.8 GHz, while the |0⟩ → |6P3/2⟩ transition is driven by
a 420nm laser. The final transfer to |r⟩ is achieved using
a 1013nm laser. A schematic of these energy levels in the
computational basis is shown in Fig. 2a.

The apparatus that connects the Rydberg atom system
to the flux system follows the work of [13]. The study de-
notes a system in which a Rubidium-87 atom is placed
between two spherical capacitors connected to an LC res-
onator in which an electric field runs in the z-direction.
Two states are used in the study, a state 22D5/2 pop-
ulated when the Rydberg qubit is in the computational
|1⟩ state and an arbitrary |n = 20, l ≥ 3, j,m = 5/2⟩ su-
perposition state is populated when the Rydberg qubit is
in the |0⟩ computational basis. The transition frequency
between the two states is approximately 3.2GHz. This re-
search extends [13] by connecting the Rubidium-87 atom
in the system to an additional array of Rubidium-87
atoms.

Bridging the atom array and the capacitor-confined
atom requires specific state transitions. The |22D5/2⟩
state must transition to the computational |1⟩ state
in the hyperfine level |5S1/2, F = 2⟩. Similarly, the
|n = 20, l ≥ 3, j,m = 5/2⟩ state (denoted as Φn=20) must
transition to the computational ground state |0⟩ =
|5S1/2, F = 1⟩. These transitions require optical wave-
lengths around 300nm, corresponding to THz frequen-
cies. While theoretically feasible, further experimen-
tal studies should investigate the precise transition fre-
quencies between the hyperfine levels of |5S1/2⟩ and the
|22D5/2⟩ ,Φn=20 states, as well as the transition effi-
ciency.

For optimal system performance, atoms in the array
must be sufficiently spaced during single-qubit opera-
tions to minimize unwanted interactions that could in-
duce decoherence. This requires avoiding the dipolar

FIG. 2. (a) Schematic detailing the Rydberg energy states
paired to the respective computational states of the proposed
Rydberg computer atom array with the energy states of the
communication qubit depicted in the red dotted square. The
atoms in the atom array contain two computational levels
in the hyperfine |5S1/2, F = 1, 2⟩ states, the Rydberg auxil-
iary state in the |70S1/2⟩ state and an extra auxiliary 6P3/2

to facilitate the transfer to the |70S1/2⟩ state. The com-
munication qubit in the red dotted box shows the two en-
ergy levels used in the work done in [13] whereby two en-
ergy states, |22D5/2⟩ and an arbitrary superposition state
|Φn=20⟩ = |n = 20, l ≥ 3, j,m = 5/2⟩, are used to denote the
computational |1⟩ and |0⟩ states for the E2 gate respectively
[13]. (b) Schematic of the system whereby an Rubidium-87
atom is held between two spherical capacitors (with capac-
itance C) connected to an LC resonator with inductance L.
This atomic states are manipulated by an electrostatic field E
in the z-direction using parallel plates with imposed voltage
difference U . The atom forms part of Rydberg quantum com-
puter shown as an atom array (red dots in the purple block).

exchange by ensuring the Förster defect remains off-
resonant, ∆F ̸= 0. The interaction potential follows
Vdd = C3/R

3, making it crucial to maximize the inter-
atomic distance R during single-qubit operations.

Conversely, for multi-qubit gates, atoms must be close
enough to enable exchange interactions. To implement
the universal CZ gate, the Rydberg blockade must be ac-
tivated, requiring a non-resonant Förster defect, ∆F >
|µ2|/R3, where µ is the dipole transition moment for
|5S1/2⟩ → |70S1/2⟩. The corresponding energy shift is

given by ∆E± = ±C6/R
6.

Using ARC [29], the characteristic radius was found
to be RvdW = 3.5µm (see [15]). The dipole-dipole and
van der Waals coefficients were calculated as C3 = 32.45
GHz·µm3 and C6 = 801.98 GHz·µm6, respectively. To
minimize dipole-dipole interactions during single-qubit
gates, an interatomic distance of R ≳ 9µm is required.
For multi-qubit gates, R = 3.5µm results in an energy
shift ∆E± = 801.98 GHz, enabling the Rydberg block-
ade effect.

In order to numerically simulate the E2 gate and per-
form optimal control on the system, one needs to repre-
sent the master equation, or the equation denoting the
dynamics of the system, in Lindbladian form [30]. The
master equation is denoted in (3.1). The first part of the
equation is the Liouville-von Neumann equation [31] de-
scribing the pure state evolution of a system and {Ak}
are the Lindblad operators representing the coupling of
the system to the environment and thus the dissipative
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process [12, 30, 32, 33].

L[ρ] = [H, ρ] + i
∑
k

γk

(
AkρA

†
k − 1

2

{
A†

kAk, ρ
})

, (3.1)

For Rydberg atom systems, the Hamiltonian is given in
(3.2). Here, Ω represents the rotation vector magnitude,
V0 the van der Waals interaction, and |i − j| the inter-
atomic distance. The detuning is denoted as ε(i), while
ϵ(i)(t) represents the energy shift of the Rydberg state i.
The energy states are labeled by subscripts, with e for
the excited state and g for the ground state.

HR =
Ω

2

∑
i

(
σ(i)
eg +σ

(i)
ge

)
+V0

∑
i<j

σ
(i)
ee σ

(j)
ee

|i− j|6
−
∑
i

ε(i)(t)σ(i)
ee .

(3.2)
Assuming a local laser is used when addressing qubits
in the quantum systems the local noise, the correlation
between the phase noise experienced by atoms i and j at
two different times is ⟨ε(i)(t)ε(j)(t′)⟩ = (Γ/2)δijδ(t − t′),
where Γ is the dephasing rate, thus finding the local phase
noise super-operator [15, 34, 35],

L[ρ̂]l = Γ
∑
i

[
σ(i)
ee ρ̂σ

(i)
ee − 1

2
{σ(i)

ee σ
(i)
ee , ρ̂}

]
. (3.3)

The final decoherence effect from the system comes
from energy decay or the rate at which the population
from an excited state |e⟩ is transferred to a lower lying
level |g⟩ via photon emission into the vacuum. Sponta-
neous emission can be derived through Weisskopf-Wigner
theory assuming complete coupling with closely spaced
cavity modes with the emission spectrum centered at the
atomic transition frequency. Weisskopf-Wigner theory
also highlights that phenomenologically, the excited state
is only capable of emitting to the ground state but not
vice versa [36]. The final superoperator that describes
the spontaneous decay from the state |e⟩ reads,

L[ρ̂]e = γe
∑
i

[
σ(i)
ge ρ̂σ

(i)
eg − 1

2
{σ(i)

eg σ
(i)
eg , ρ̂}

]
, (3.4)

where γe is the spontaneous emission rate from the ex-
cited state. Using ARC [29], the spontaneous decay time
for the |e⟩ = |70S1/2⟩ is 375µs. The Lindbladians ob-
served in (3.3) and (3.4) will be used to model the noise.

B. Flux Qubit System

The Josephson persistent-current qubit or the flux
qubit is a type of superconducting qubit which consist
of an inductance loop shorted by a Josephson junction
[37]. The flux qubit’s energy states are dependent on the
magnetic flux measured in the inductance loop, which
is dependent on the amount of Cooper pairs crossing
the Josephson junction. The energetics of a single flux
qubit system can be described by the Hamiltonian in

FIG. 3. (a) Representation of Flux qubits (each qubit rep-
resented by Qi) on a coplanar waveguide (in blue). (b) A
contour plot of the potential energy U/EJ at fε = 0.53 for
α = 0.8. The measured potential well is seen highlighted
with the purple line. (c) A more specified outline of the C-
shunt 3JJ flux qubit (circuit on the left) mutually coupled
to a resonator, or in this case, the co-planar wave-guide (cir-
cuit on the right). (d) The potential function plotted against
ϕ∗ = ϕ1 = −ϕ/2 at α = 0.8 and fε = 0.53 for the potential
well seen in (c). The asymmetric bias gives rise to the |L⟩
and |R⟩ states.

(3.5) where QJ is the electric charge on the capacitor,
CJ is the self capacitance, Iq is the current circulating in
the loop, L is the inductance of the inductor, Φ is the ap-
plied magnetic field, EJ is the energy from the Josephson
junction and Φ0 is the magnetic flux quantum.

H =
Q2

J

2CJ
− EJcos

(2πΦ
Φ0

)
+

1

2
LI2q . (3.5)

Following (3.5), it is possible to see minimas form at
Φ = ±Φ0/2. The two points are called the ’degener-
acy points’, in which the self-inductance of the Joseph-
son junction is approximately equal to the inductance of
the inductive loop LJ ≈ L [38]. These two values are
associated with equal and opposite flux states formed by
a persistent current Iq in the loop. Because the magnetic
field is seen to rotate clockwise or anti-clockwise around
the loop the states are labeled left circle or |L⟩ at +Φ0/2
and right circle or |R⟩ at −Φ0/2 [37, 38].
Maximising the trade-off between barrier height and

the interaction between the states because the barrier
height scales exponentially with L/LJ where LJ is the
self-inductance of the Josephson junction. However, to
form a double well potential form a single Josephson
junction L ≈ LJ . For this reason, it is best to use a
three Josephson junction (3JJ) flux qubit which follows
the ratio seen in (3.6), where Ii is the critical currents
of each junction, which follow the current-phase relation
Ii = I0sinφi, where φi are the gauge-invariant phase of
each junction i [8]. In this architecture, the ratio of junc-
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tion sizes is important as opposed to the inductance [38].

α =
2I3

I1 + I2
, (3.6)

The ratio α and the magnetic frustration fϵ = Φ/Φ0

change the energy barrier and the anharmonicity of the
qubit [15]. This feeds into the two-level Hamiltonian of
the 3JJ flux qubit system. In the two-level approxima-
tion the qubit Hamiltonian is described in terms of the
magnetic energy ELR and the tunnel coupling ∆/2 that
creates an anti-crossing [37]. In the persistent-current
basis (|L⟩ , |R⟩) the qubit Hamiltonian is,

H = −1

2
(εσz +∆σx), (3.7)

where ε = 2ER = 2Ip(fε − 1/2)Φ0, Ip is the persis-
tent current, and both σx and σz are the Pauli matrices
[37]. The corresponding eigenenergies of the diagonal-

ized Hamiltonian are E0, E1 = ∓ 1
2

√
ε2 +∆2 where the

energy level splitting in the computational basis, {0, 1},
is E01 = E1 − E0 =

√
ε2 +∆2.

In order to reduce noise, flux qubits coupled together
via transmission lines or resonators, tend to possess an
additional capacitor. This is called C-shunted flux qubits
[38, 39]. This is due to the reduced noise susceptibility
that is obtained when introducing an extra capacitor.
The modelled circuit can be seen in Fig. 3(c) coupled
via a resonator to the co-planar waveguide (CPW). Fig.
3(a) shows the flux qubits geometrically on a CPW.

The two-level-system Hamiltonian for an individual C-
shunt flux qubit near flux-degeneracy and coupled to a
CPW resonator is,

H =
ℏ
2
[εσz +∆σx] + ℏω(â†â+

1

2
)+ ℏgσy(â† + â), (3.8)

where the first part of the equation follows 3.7 and
â†(â) is the raising (lowering) operator for photons.
This Hamiltonian can be intuitively broken down into
three different terms. The three terms are respectively,
the qubit, resonator and qubit-resonator Hamiltonians
[39, 40]. The coupling strength between the resonator
and qubit are dependent on M , Lr, Cr and Lq [41, 42].
The C-shunt flux qubit has three features that differ-

entiate it from the normal 3JJ flux qubit. It has a lower
critical current, Ic, typically α < 0.5 and the additional
shunting junction has a capacitance Csh = ζC, where
C is the capacitance of the smallest junction and ζ ≫ 1.
The 3JJ capacitively-shunted flux qubit can be described
by a Hamiltonian with a kinetic and potential part,

H = T + U, (3.9)

T =
1

2
(Q+ q)⊺C−1(Q+ q), (3.10)

U = EJ{2 + α− cosφ1 − cosφ2 − αcos(2πfε + φ1 − φ2)}.
(3.11)

The charges Q and q are the charges induced charges on
the islands, where the islands refer to the two nodes A

and B in Fig. 3(c) [39]. The matrices can be rewritten
to,

Q = −2e

[
∂

∂φ1
∂

∂φ2

]
, q =

[
qA
qB

]
, (3.12)

C = C

[
ζ + 1 + α −(ζ + α)
−(ζ + α) ζ + 1 + α

]
. (3.13)

The system is less sensitive to charge fluctuations due to
the shunt capacitor reducing the effective charging en-
ergy. Choosing φ+ = (φ1 +φ2)/2 and φ− = (φ1 −φ2)/2
using the Cooper-pair number operators n̂σ = −i∂/∂φi

where i = {−,+}, the reduced Hamiltonian becomes,

H =
1

2
EC,+n̂

2
+ +

1

2
EC,−n̂

2
−

+ EJ{2 + α− 2cosφ−cosφ+ − αcos(2πfε + 2α−)},
(3.14)

where EC,+ = 2e2/C and EC,− = (ζ + α + 1)e2/C are
the effective charging energy for the +-mode and −-mode
respectively. Ideally, the +-mode can be omitted since
ζ ≫ 1. Thus, the simplified Hamiltonian is [39],

Hm =
1

2
EC,−n̂

2
− + EJ{−2cosφ− − αcos(2πfε + 2α−)}.

(3.15)
The flux qubit noise can be placed in two categories.

Charge fluctuations are the noise generated from effects
on the circuit such as decoherence from qubit coupling
effects [37] and flux fluctuations are the non-circuit re-
lated noise such as fluctuations in the magnetic field or
the Josephson junction itself. Performing a first-order
perturbation on the derived Hamiltonian in (3.15) can
be used to analytically model the flux fluctuations.

δH = δU

≈ −2παEJ(sinϕ(1− 2φ2
z(â+ â†))δf,

(3.16)

Following (3.15), φz = (EC,−/4EJ,−)
1/4, EC,− is the ef-

fective charging energy for the negative minimum, EJ,− is
the effective Josephson energy in the negative minimum
and ϕ = ϕ(fε) = 2πfε + 2φ∗

−(fε).
Fluctuations near the frequency Ω are considered be-

cause they have the possibility of inducing transitions
between the |L⟩ and |R⟩ states. Thus, in the case
δf ∝ cos(Ωt), the system simplifies to two levels,

H =
1

2
(ℏωqσz + ImΦ0δfσx) (3.17)

where ωq = ωq(fε) = Ω and Im, the fε-dependent current
difference between the parametrized circulating-current
states, is defined as Im = Im(fε) = −8πασzcosϕEJ/Φ0.
Investigating the charge fluctuations (δqa,δqb) requires

invoking a perturbation via the kinetic energy T . Per-
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turbing the kinetic energy given by (3.9) yields,

δT = δq⊺C−1Q

= − e

C(2ζ + 2α+ 1)
[−inz(â− â†)](δqA − δqB),

(3.18)

where nz = (EJ,−/4EC,−)
1/4 is the quantum ground-

state uncertainty in Cooper-pair number and ζ is called
the shunt factor which relates the capacitance of the
smaller junction (C3 seen in Fig. 3(c)) to the capaci-
tance of the shunt capacitor through Csh = ζC3 [39].
This factor is considered to satisfy ζ ≫ 1. The charge
noise is orthogonal to the flux noise, thus it couples to the
Hamiltonian in the σy basis. The perturbation depends
only on the differential mode of the induced charges be-
tween the two islands (described by nodes A and B seen
in Fig. 3(c)) [39]. Thus, placing the charge fluctuation
back into (3.17), gives,

H =
1

2
(ℏωqσz + ImΦ0δfσx + nzEC,−δn−σy), (3.19)

where δn− = (δqA−δqB)/(−e) is the differential electron
number fluctuation [39].

The importance of the C-shunted flux design is ob-
served in the noise sensitivity. Because of this design,
the charge noise sensitivity diminishes with larger ζ due

to the relation, nzEC,− ∝ E
3/4
C,− ∝ ζ−3/4. Each one of

these fluctuation terms can be applied as a Lindbladian
to the Hamiltonian seen in (3.8). The Lindbladians mod-
eling the noise due to the fluctuations in flux and charge
noise in the σx, σy, σz Pauli bases, are thus [39],

L[ρ̂]z =
1

2
ωq

[
σz ρ̂σ

†
z −

1

2
{σ†

zσz, ρ̂}
]
, (3.20)

L[ρ̂]x =
1

2ℏ
ImΦ0δf

[
σxρ̂σ

†
x − 1

2
{σ†

xσx, ρ̂}
]
, (3.21)

L[ρ̂]y =
1

2ℏ
nzEC,−δn−

[
σyρ̂σ

†
y −

1

2
{σ†

yσy, ρ̂}
]
. (3.22)

The final non-circuit noise source comes from the CPW
coupled to the flux qubit. The CPW has been simplified
to operate similarly to a resonant cavity. Due to this, the
system encounters noise in the form of the Purcell effect.
The Purcell effect is the enhancement of a quantum sys-
tem’s spontaneous emission rate due to its environment.
In this case, the CPW radiates a wave which has been re-
flected from the environment which consequently excites
the resonance out of phase. This is difficult to analyt-
ically model due to the vast sources of electromagnetic
waves possible, thus, using experimental results [40], the
rate at which the resonator encounters spontaneous emis-
sion is modeled by,

1

τphoton
=

√
Aln2

ℏ

∣∣∣δωLR

δfε

∣∣∣, (3.23)

where ωLR is the transition frequency between the states
|L⟩ and |R⟩, and A is a fit parameter. According to
[40], 1/τphoton was measured to be around 9.19 MHz for
0.5 < fε < 0.55. The Lindbladian can, thus, be described
as,

L[ρ̂]purcell =
1

τphoton

[
σyρ̂σ

†
y −

1

2
{σ†

yσy, ρ̂}
]
. (3.24)

The Lindbladians observed in (3.20), (3.21), (3.22) and
(3.24) will be used to model the noise.
To realize the full potential of a C-shunt flux qubit,

one would need to choose α < 0.5 because it reduces
the circuit sensitivity to charge noise and stray fields
[38, 43]. However, in this regime, the qubit resembles
a phase qubit where the potential well becomes singular
and thus loses anharmonicity between two energy states.
In order to realize the hybrid E2 gate, each flux qubit re-
quires two potential wells with states |L⟩ and |R⟩ in each
[44]. Additionally, the potential wells must have differing
depths as seen on Fig. 3(b) and 3(d). Maintaining the
anharmonicity between the two levels allows there to be
a very strong and a very weak coupling to a resonator
depending on the energy level. It is important that the
flux qubit system only couples to the Rydberg system
when the resonator is in the |1⟩ state, or when the sys-
tem needs to communicate. Hence, there is a trade-off
between noise and the coupling to the hybrid system [44].
Thus, the chosen values for the flux system are α = 0.8
and fε = 0.53 as seen in Fig. 3(b) and 3(d).

C. Indirect Coupling & Non-Local GHZ State

This study focuses on a simplified model where a chain
of flux qubits and a chain of Rydberg atoms are cou-
pled to the same LC resonator, inspired by [45]. While
similar to the Hamiltonians in Sec. III A and III B, a
simpler model is used since the E2 gate operates on a
much shorter timescale than previously modeled effects
[13]. This extensively studied system [13] will be used to
establish the E2 gate.
A diagram of the model is shown in Fig. 4. The me-

diator is a superconducting LC resonator at mK temper-
atures with a characteristic frequency ω0 = 1/

√
LC, set

to 2π × 20 GHz. The capacitor, composed of identical
spherical spheres, has capacitance C and inductance L.
The numerical values for the parameters can be seen in
[15].

HLC =
ϕ2

2L
+
q2

2C
= ℏω0(b

†b+ 1/2), (3.25)

where b† and b are the creation and annihilation op-
erators, the magnetic flux ϕ =

√
ℏ/2Cω0(b

† + b) and

q = i
√
Cℏω0/2(b

†−b) is the charge operator [13, 46]. The
Rydberg atom is placed in the midpoint between the two
spherical capacitors which couples to the local electric
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field in the z-direction resulting in the atom-resonator
interaction operator [13, 45],

Va = −iDε(b† − b). (3.26)

D is the atomic dipole moment and ε is the amplitude
of the oscillating electric field inside the resonator. It is
assumed that the inhomogeneity of ε within the atomic
wave-pocket is | 1ε

∂ε
∂αr| < 10−3 where α are the different

dimensions α = x, y, z and r is the radius of the Ry-
dberg state, consequently affecting the atom-resonator
coupling [13]. Furthermore, the inhomegeneity of the ex-
ternal electric field, E, caused by the screening effect of
the spheres is also negligible.

FIG. 4. Hybrid system composed of a chain of three-JJ flux
qubits, an LC resonator and an atom. The flux qubits have
a tunable coupling mitigated by Josephson coupling while
the Rydberg atom is Rydberg coupled to a chain of Ryd-
berg atoms. The flux qubit, biased by an external flux Φex

is inductively coupled to the resonator with a mutual induc-
tanceM . The atom is placed in the middle point between two
spheres with an oscillating intra-resonator electric field with
amplitude ε in the z-axis. An additional electrostatic field E
runs across the Rydberg qubit in the z-axis generated by the
parallel-plate capacitors. This model is inspired by [45].

The Rydberg atom coupled to the resonator starts
at the excited state |e⟩ on 222D5/2(m = 5/2).
When the electric field E is around 500 V/cm,
the excited state interacts with states in the set
|n = 20, l ≥ 3, j = l ± 1

2 ,m = 5
2 ⟩. In this electric field

regime, there exists an excited state |e⟩, a ground state
|g⟩ and an auxiliary state |u⟩. Through adiabatic tun-
ing, one can vary through the states |µ = e, g, u⟩. The
Hamiltonian of the atom is given by,

Ha =
∑

µ=e,g,u

ℏωµ |µ⟩ ⟨µ|

+
ℏΩ
2

(|e⟩ ⟨g|+ |g⟩ ⟨e|) + ℏΩ′

2
(|e⟩ ⟨u|+ |u⟩ ⟨e|),

(3.27)

where ωµ=e,g,u are the electric-field-dependent energies of
the atomic states [13]. The atom-resonator interaction is
expressed as,

Va =
ℏga
2

(b† |g⟩ ⟨e|+ |e⟩ ⟨g| b) + ℏg′

a

2
(b† |u⟩ ⟨e|+ |e⟩ ⟨u| b),

(3.28)

with coupling strengths ga = | ⟨e|D |g⟩ |ε/ℏ and g
′

a =
| ⟨e|D |u⟩ |ε/ℏ [13, 45].

The three-JJ flux qubit is coupled to the LC resonator
through means of mutual induction with inductance M .
The flux qubit is biased by an external magnetic flux Φ
to tune the frequency spacing ε = 2IpΦ0γq/ℏ with phase
bias parameter γq = Φ/Φ0−1/2 as mentioned in Section
III B [13, 47]. The qubit is tuned between the states
|R⟩ and |L⟩. Thus, the Hamiltonian for the flux-qubit is
similar to (3.7) [13, 46],

Hf = −ℏε
2
σf,z −

ℏ∆
2
σf,x, (3.29)

but with the definitions of the Pauli matrices being,

σf,z = |L⟩ ⟨L| − |R⟩ ⟨R|, σf,x = σ†
f,− + σf,− and σf,− =

|R⟩ ⟨L|. The tunnel splitting is denoted as ∆ with the
flux qubit-resonator interaction potential given by,

Vf = −ℏgf (b† + b)σf,z, (3.30)

where gf is the coupling strength [13]. The final system
Hamiltonian is thus,

H = HLC +Ha +Hf + Va + Vf . (3.31)

The preparation of the non-local GHZ state is detailed
in depth in [13] with a reported 8ns time with a fidelity of
0.977. The steps from [13] were numerically simulated in
the supplementary material [15]. Using QuTiP [48], the
numerical simulation was shown to achieve a 0.93 fidelity
in 17ns which is roughly in accordance with the scales in
[13].
The coupling system possesses four relevant sources

of noise. The flux qubit has been simplified to contain
two noise sources, qubit dephasing, given by a dephasing
rate, as well as a relaxation loss of a qubit decohering
from |R⟩ state to a |L⟩ state, given by a relaxation rate
[13]. The dephasing rate and relaxation rate are denoted
by γrelax and γϕ, respectively. The main noise source
observed in the hybrid system is the spontaneous decay
rate. The decay is observed for the states µ = e, u to
the ground state |g⟩. The spontaneous emission rate is
assumed to be equal for all µ because the Rydberg state
is close to the capacitor surface which induces extra noise
from stray fields and thus drastically reduces the lifetime
of the states [13]. Finally, the noise of the resonator is
characterized by κ = ω0/Q (assuming a Q-factor value
Q = 105) as the loss rate due to the Purcell effect. Thus,
the coupling system possesses the following Lindbladians
[13],

Lf
relax = γrelax

[
σf,−ρσ

†
f,− − 1

2
{σ†

f,−σf,−, ρ}
]

(3.32)

Lf
dephase =

γϕ
2

[
σf,zρσ

†
f,z −

1

2
{σ†

f,zσf,z, ρ}
]

(3.33)

Lr = κ
[
bρb† − 1

2
{b†b, ρ}

]
(3.34)
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La = γe
∑

µ=e,u

[
σµgρσ

†
µg −

1

2
{σ†

µgσµg, ρ}
]
. (3.35)

The final fidelity with noise is very similar to the fidelity
without noise at the same time scale. This is due to
the fact that the decoherence timescale is a factor of 103

larger than the creation of the E2 gate.

IV. GRAPE OPTIMIZED DISTRIBUTED
PHASE ESTIMATION

This section describes uses Quantum Optimal Control
Theory, and specifically the GRAPE algorithm to opti-
mize the qubit gates in the non-local phase estimation
algorithm.

A. The GRAPE Algorithm

Simulating quantum algorithms with many gates on
a noisy open system is infeasible due to rapid decoher-
ence. While one could analytically solve the master equa-
tion and adjust gate parameters accordingly, this requires
solving the Schrödinger equation at each step, which be-
comes impractical for large qubit systems.

In the NISQ era, optimizing qubit gates through op-
timal control has become a key focus [49]. Quantum
Optimal Control Theory (QOCT) tailors external elec-
tromagnetic fields to efficiently steer quantum dynamics.
Among various techniques, Gradient Ascent Pulse En-
gineering (GRAPE) [14] is particularly effective due to
its use of analytical gradient expressions, enabling rapid
convergence in parameter optimization [14, 50]. To apply
GRAPE, it is essential to first characterize the system.
The Hamiltonian consists of a drift term and a control
term, as shown in (4.1). The control term can be further
expressed as a sum of time-dependent control coefficients
cj(t) acting on a time-independent Hamiltonian.

H(t) = Hd(t) +Hc(t) = Hd(t) +
∑
j

cj(t)Hj (4.1)

To model the system into an open system, one must
first utilize the density operator ρ(t) and characterize the
equation of motion as a Liouville-von Neumann equation,

ρ̇(t) = − i

ℏ

[(
H0 +

m∑
k=1

uk(t)Hk

)
, ρ(t)

]
, (4.2)

where H0 is the drift Hamiltonian, Hk are the radio-
frequency Hamiltonians that correspond to the available
control fields and u(t) = (u1(t), u2(t), · · · , um(t)) is the
control vector or a set of vector amplitudes that can be
changed [14]. The goal is to find the optimal amplitudes
uk(t) of the RF fields capable of steering a given density
operator in initial state ρ(0) = ρ0 in a total time T to

a density operator ρ(T ) with maximum overlap to some
desired target C measured by the standard inner product,

⟨C|ρ(T )⟩ = Tr{C†ρ(T )}. (4.3)

In the case of open quantum systems, the dynamics is de-
scribed by the Markovian master equation seen in (3.1).
The formal solution to such equation is [51],

ρ(t) = exp
{∫ t

0

L(t
′
)dt

′
}
ρ(0). (4.4)

To iterate through time, the transfer time T is discretiszd
in N equal steps of duration ∆t = T/N . It is assumed
that at each time step, the control amplitudes uk(t) are
constant. This means that at an arbitrary time step l, the
amplitude uk(t) of the kth control Hamiltonian is given
by uk(l). Using the Lindbladian formulation described
Eq. (3.1), the master equation is,

ρ̇ = −i[H, ρ] + L[ρ], (4.5)

where L acts as an operator on a density matrix, ρ. Using
this definition means that one can define a discretized
unitary propagator during a time step l,

Ul· = exp

{
− i∆t([Hl, ·] + L[·]

}
. (4.6)

A performance index is required for the algorithm to op-
timize a gate, which can be expressed as the overlap be-
tween a final state ρ(T ) and the target state, C. The
performance index is of the form,

Φ0 = Tr
{
CUN · · ·U1ρ(0)

}
. (4.7)

The derivative of the performance index takes the form
[51],

∂Φ0

∂uk(l)
= Tr

{
λl(C)

∂Ul

∂uk(l)
ρl−1

}
, (4.8)

where,

ρl = Ul · · ·U1ρ(0), (4.9)

is the forward in time evolved density matrix and,

λj(C) = U†
l+1 · · ·U

†
NC, (4.10)

is the backwards in time evolution from the final target
state.The first order derivative of the lth time-evolution
operator in terms of ∆t is [51, 52],

∂Ul·
∂ul(l)

≈ −i∆t[Hk, (Ul·)]. (4.11)

The derivative of the performance index is thus,

∂Φ0

∂uk(l)
= −i∆tTr{λl(C)[Hk, ρl]}. (4.12)
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The result seen in Eq. (4.12) is the core of the GRAPE
algorithm [51, 52].

The efficiency of the algorithm is dependent on max-
imizing the performance gradient ∂Φ0/∂uk(l). The per-
formance change of the control amplitude is acquired by
allowing [50],

uk(l) → uk(l) + ϵ
δΦ0

δuk(l)
, (4.13)

so that the performance function Φ0 increases when ϵ is
a small enough step size. Optimizing the GRAPE al-
gorithm for qubit control requires redefining the perfor-
mance function Φ0. In qubit optimal control, this func-
tion, given by (4.3), is also known as the fitness function,
f [53], where ε = 1 − f . As fidelity improves, modifica-
tions decrease. For a full evolution, there are N×M vari-
ables, withM representing the number of control Hamil-
tonians. The general GRAPE algorithm is outlined in
Alg. 1.

Algorithm1 The general GRAPE algorithm.

Require: Get minimum fidelity error xmin

Require: Guess initial controls uk(l)
ρ← ρ0
done← False
while not done do

l← 0
while l ≤ N do

Iteratorf ← 0
while Iteratorf ≤ l do

ρ← UIteratorf ρ
Iteratorf ← Iteratorf + 1

end while
λ← C
Iteratorb ← N
while Iteratorb > l + 1 do

λ← U†
Iteratorb

Iteratorb ← Iteratorb + 1
end while
l← l + 1

end while
Evaluate ∂Φ0/∂uk(l) (Eq. (4.12)), ε = 1−f and update

m×N control amplitudes uk(l) according to Eq. (4.13)
if ε ≤ xmin then

done← True
end if

end while

A key challenge for GRAPE and other optimization
algorithms is their tendency to get stuck in local min-
ima. For systems with many control fields Hk, this is
manageable by defining fidelity with sufficient precision.
However, for systems lacking necessary control fields,
the maximum achievable fidelity is unknown, creating
a trade-off between iteration count and the risk of over-
stepping a minimum.

To mitigate this, the local problem landscape can be
mapped to a parabola, enabling optimal step sizes with-
out guesswork. GRAPE employs the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm, a quasi-Newtonian

gradient descent method that approximates Hessians ef-
ficiently [54–58].
The controls used for the GRAPE algorithm are the

Pauli matrices σx, σy and σz. For the flux system, the
drift Hamiltonian will be (3.8) with the superoperators
(3.20) - (3.24). For the Rydberg atom system, the drift
Hamiltonian will use (3.2) with the superoperators (3.3)
and (3.4). These master equations will be fed into the
GRAPE algorithm that already form part of the QuTiP
optimal control package [15, 48]. The GRAPE algorithm
is capable of achieving correction steps in the order of 10-
100ns which means that time steps are too large for the
preparation of the E2 gate. However, as was aforemen-
tioned, the decoherence timescale is much larger than
the timescale of the gate creation, thus GRAPE is not
needed.
Since the control Hamiltonians of the GRAPE algo-

rithms were given as Pauli matrices, the algorithm is
capable of correcting two-qubit and single-qubit gates.
This can be done practically by modifying the amount
of iterations and number of time steps the algorithm
utilizes to reach a desired state. Fig. 5, shows the
quantum state tomography for the Rydberg atom sys-
tem and the flux qubit system when running the al-
gorithm for a different number of time and iteration
steps. It is good to note that the CNOT gate is sim-
ply 1

2 (I ⊗ I + I ⊗ σx + σz ⊗ I − Z ⊗ X), furthermore,
an in depth study of the use of the GRAPE algorithm in
quantum state tomography can be found in [15].
As can be seen in Fig. 5, the flux qubit system per-

forms poorly. For this reason, different shunt values for
the shunt factor ζ will be used to observe how the sys-
tem, combined with GRAPE, performs at executing the
distributed phase estimation algorithm.

B. Methodology & Results

The Hamiltonians and Lindbladians were simulated us-
ing the master equation with GRAPE-optimized gates
for a system comprising two flux qubits, one storing the
state and the other serving as a communication qubit,
as well as four Rydberg atom qubits, where one func-
tions as a communication qubit and the remaining three
as counting qubits for the distributed phase estimation
algorithm. Both the time evolution and GRAPE opti-
mization were numerically executed on QuTiP [48]. In
this framework, it is assumed that there are no delays in
between operations because the gates are optimized for
the quantum state outputted by the last operation. A
flowchart of the program and snippets of the code can be
found in [15].
In order to measure the accuracy of the phase estima-

tion algorithm, the initial state was set to an arbitrary
φ = 3/16 in which the goal is to measure U back where
U |ψ⟩ = eφ |ψ⟩. In order to observe the significance of
GRAPE on optimal control, it is assumed that the E2

gate possesses perfect fidelity. The algorithm is ran with
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FIG. 5. Quantum process tomography evaluating the con-
struction of the CNOT gate for both the flux (with C-shunt
factor ζ = 10) and Rydberg systems (each depicted on a row)
against GRAPE iterations and time step. Each constructed
gate contains the calculated fidelity and the axes represent i
as the identity I and x, y, z as the Pauli σx, σy, σz, respec-
tively. The notation ii refers to a tensor product I ⊗ I.

time step iteration ranges of 50-200 and 100-800 GRAPE
iterations. Furthermore, each iteration was run 10 times
to simulate 10 shots on a quantum computer. The prob-
ability of measuring the φ = 3/16 state was calculated
by dividing the correct estimations over the total number
of shots. The range was chosen to optimize for computa-
tional resources while pin-pointing an interesting results
range as each experiment took more than 22 hours to
execute.

Denoted in Fig. 6 and 7 are the results of the sim-
ulations conducted utilizing a flux qubit C-shunt factor
of ζ = 100 and ζ = 1000 respectively. It is observed
that the accuracy for ζ = 100 and below does not im-
prove significantly for large GRAPE iteration numbers
and time step numbers [15]. At this effective shunt fac-
tor, it is still not able to accurately estimate the phase for
the given GRAPE iteration and time step number range.
For ζ = 1000, it can be observed that for approximately
190 time steps and approximately 700 GRAPE iterations,
the algorithm results in an accuracy of around 95%. The
accuracy makes a steep jump from 40% to 95% after an
increase of only 5 time steps (180 to 185 time steps). Ob-
serving the very low probability range (< 10%) between
700-800 GRAPE iterations and 100-160 time steps, it is
noticeable that there is a trade-off between the time-step
number and GRAPE iteration number occurring.

To describe this trade off, the evolution of flux qubit
system aiming to create a Hadamard gate can be ob-
served using two different GRAPE configurations. One
configuration is set to use 100 GRAPE iterations while
the other configuration is set to use 500 GRAPE itera-
tions. This can be seen in figure 8. In the 100 GRAPE

FIG. 6. Probability of measuring the φ = 3/16 or |0011⟩ com-
putational state after 10 executions of the phase estimation
algorithm on the noisy hybrid circuit for ranging GRAPE it-
erations and time steps for a shunt factor of ζ = 100.

iteration case, the fidelity reached at the end of the evolu-
tion is 0.97 while for the 500 GRAPE iteration case, the
fidelity reached is 0.92. The graph shows that, although
the final fidelity for the 500 GRAPE iteration case was
lower than the 100 GRAPE iteration case at the end of
the run, the 500 grape iteration evolution manages to
achieve fidelities higher than the 100 GRAPE iteration
evolution in the total run. Observing the 500 GRAPE
iteration evolution after 30 µs, one can see that the evolu-
tion holds the fidelity around 0.98 but then dips to 0.92.
This dip is most likely due to the fact that the system
encounters a control landscape whereby the time step
required to modify the control amplitudes is not small
enough to converge. Thus, at these time steps, a mini-
mum local fidelity is reached until the landscape changes
over time as seen at the 40 µs mark. This concept is
further explained in [59]. Observing figure 7, one can
see that at 750 GRAPE iterations, the optimization goes

FIG. 7. Identical concept as Fig.6 but for a shunt factor of
ζ = 1000.
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FIG. 8. Graph depicting the fidelity of a Hadamard gate for
the flux qubit over time for two different GRAPE optimisation
configurations. The orange line shows the evolution of the
gate with 500 GRAPE iterations while the blue line shows
the evolution of the gate with 100 GRAPE iterations. The
100 GRAPE iteration evolution finished with a fidelity of 0.97
while the blue line finished with a fidelity of 0.92.

from poor convergence in the control landscape at 170
time steps to proper convergence at 185 time steps.

V. CONCLUSION

This research shows numerically that it is possible to
perform the non-local phase estimation algorithm with
an hybrid Rydberg-flux qubit system coupled via a co-
planar waveguide. Although the fidelity of the gates in
the flux system was not very high, it was shown that by
engineering the qubit to possess higher C-shunt factors as
well as engineering the pulse dynamics with GRAPE, one
can execute the phase estimation algorithm successfully.

The non-local GHZ state from the E2 gate was the-
orized, but numerical simulations showed 4% lower fi-
delity than prior work, likely due to simulation meth-
ods [13]. The non-local gates were constructed with lo-
cal assumptions, neglecting asynchronicity, a key issue
in distributed quantum computing when operations are
not strictly sequential. The E2 gate was assumed to in-

volve instant classical communication, which is unrealis-
tic under current classical protocols. TCP/IP networks
require additional quantum operations, potentially ex-
ceeding nanosecond-scale gate creation times [60]. Future
work should explore better system couplings for higher
fidelity GHZ states and address classical communication
constraints.

For the flux qubit and Rydberg atom system to cou-
ple effectively, the anharmonic energy levels in Fig. 3(d)
are necessary to avoid unintended interactions with the
flux qubit system. However, C-shunt flux qubits with
ζ = 1000 are challenging to engineer, and they perform
best with α < 0.5, maintaining a decoherence of ap-
proximately 100 MHz [15]. In this system, reducing α
below 0.5 significantly decreases anharmonicity, causing
the |R⟩ and |L⟩ states to vanish, forcing constant cou-
pling to the resonator. This collapses the system into |0⟩
and |1⟩ states, preventing GHZ state construction. Fu-
ture exploration of coupling methods that are less depen-
dent on large anharmonicities could enable high-fidelity
C-shunted flux qubits at α < 0.5. Additionally, exploring
quantum architectures with more efficient coupling tech-
niques remains a novel area and could yield promising
advancements in future research.

Although the GRAPE algorithm was primarily used
in this study, other optimal control methods exist, no-
tably Krotov [23] and CRAB [24]. Krotov was tested
but proved too computationally expensive for multi-qubit
gate optimization, though it excels at minimizing fidelity
errors in large-qubit systems [23]. CRAB, being gradient-
free, failed to converge at the required fidelity. [23] states
that GRAPE is ideal when control parameters are dis-
crete and have known Hermitian derivatives, whereas
Krotov suits near-continuous controls without Hermitian
constraints. Given these factors, GRAPE was the opti-
mal choice for this research. Further works may consider
the use of variational quantum algorithms (VQA) for er-
ror correction instead of optimal control.
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