W) Check for updates

IET Cyber-Physical Systems: Theory & Applications

WILEY

The Institution of
Engineering and Technology

| OrRIGINAL RESEARCH EEIETED

CompDSE: A Methodology for Design Space Exploration of
Computing Subsystems Within Complex Cyber-Physical
Systems

Faezeh Sadat Saadatmand' @ | Todor Stefanov' | Ignacio Gonzdlez Alonso® | Andy D. Pimentel® | Benny Akesson®*

1eiden Institute of Advanced Computer Science (LIACS), Leiden University, Leiden, the Netherlands | 2ASML B.V., Veldhoven, the
Netherlands | *Informatics Institute (IvI), University of Amsterdam, Amsterdam, the Netherlands | “TNO Embedded Systems Innovation (TNO-ESI),
Eindhoven, the Netherlands

Correspondence: Faezeh Sadat Saadatmand (f.saadatmand@liacs.leidenuniv.nl)

Received: 30 October 2024 | Revised: 18 March 2025 | Accepted: 26 April 2025

Handling Editor: Junlong Zhou

Funding: This research was supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) under project number 17930.

Keywords: cyber-physical systems | design space exploration | embedded systems | simulation | system modelling

ABSTRACT

Designing the next-generation complex distributed cyber-physical systems (dCPS) poses significant challenges for
manufacturing companies, necessitating efficient design space exploration (DSE) techniques to evaluate potential design de-
cisions and their impact on nonfunctional aspects of the systems, such as performance, reliability and energy consumption. This
paper introduces CompDSE, a methodology designed to facilitate the DSE of complex dCPS, specifically focusing on the cyber
components, that is, the computing subsystems within dCPS. CompDSE defines and utilises abstract models of the application
workload, computing hardware platform and workload-to-platform mapping of dCPS, automatically derived from runtime trace
data, and integrates them into a discrete event simulation environment to explore various design points. We demonstrate the
effectiveness of our methodology through a case study on the ASML TWINSCAN lithography machine, a complex industrial
dCPS. The results showcase potential performance enhancements achieved by optimising computing subsystems while
considering physical constraints. Evaluating each design point takes under a minute, highlighting the CompDSE efficiency and
scalability in tackling complex dCPS with large design spaces.

1 | Introduction software processes running on multicore or manycore pro-

cessors connected through intricate networks, have a direct

Distributed cyber-physical systems (dCPS) are increasingly vital
in today's high-tech landscape, with applications such as semi-
conductor lithography, industrial printing and medical x-ray
imaging. These systems integrate various computing sub-
systems, called cyber components, with physical processes to
achieve greater efficiency, reliability and functionality. As the
complexity of dCPS grows, managing their design, particularly
the optimisation of the cyber components, becomes more
challenging [1]. The cyber components, consisting of distributed

impact on the overall performance and functionality of dCPS.
The design challenges concerning the cyber components are
further exacerbated by the trend toward software-intensive
dCPS, where more functionality is implemented in software
due to its flexibility and adaptability [2].

Given the impact and growing complexity of the cyber compo-
nents, the design of these components calls for efficient design
space exploration (DSE) methods [3]. Early design decisions

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly

cited.

© 2025 The Author(s). IET Cyber-Physical Systems: Theory & Applications published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

IET Cyber-Physical Systems: Theory & Applications, 2025; 10:e70019
https://doi.org/10.1049/cps2.70019

1 of 14

https://doi.org/10.1049/cps2.70019
https://orcid.org/0000-0002-2813-0929
mailto:f.saadatmand@liacs.leidenuniv.nl
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1049/cps2.70019
http://crossmark.crossref.org/dialog/?doi=10.1049%2Fcps2.70019&domain=pdf&date_stamp=2025-05-15

significantly affect nonfunctional aspects, such as performance,
cost and energy consumption. This is particularly important for
existing high-tech machines that are complex and require
system-level DSE to optimise their next-generation designs,
ensuring enhanced performance and adaptability in the face of
evolving technological requirements [4]. Therefore, DSE
methods that can capture the behaviour of complex cyber
components with sufficient accuracy, while maintaining
abstraction for efficient exploration, are essential [5].

To enable system-level DSE of cyber components, one effective
approach is to follow the well-established Y-chart approach [6].
The Y-chart approach is known for enhancing flexibility and
model reuse through its separation-of-concerns principle, where
the abstract system model consists of a model of the computing
hardware platform architecture, an application workload model
(including the software processes running on the platform) and
a mapping model connecting the (processes in the) application
model to the (computing resources in the) platform model.
However, manually constructing these models for complex,
large-scale industrial dCPS is highly impractical. Therefore, DSE
methods must include tools that automate model derivation and
facilitate fast system performance analysis, enabling the explo-
ration of diverse design decisions.

Although some initial research on automated workload
modelling for industrial dCPS exists [7], a comprehensive
methodology and tool support that address the challenges of
DSE, in terms of abstract, yet sufficiently accurate modelling,
and automated model derivation for complex cyber components
within large-scale dCPS is still lacking.

Therefore, in this paper, we propose CompDSE, a methodology
designed to address these challenges by focusing on the
computing components (cyber part) within complex dCPS. Our
methodology defines, automatically derives and integrates
highly abstract models that are sufficiently accurate to enable
efficient DSE of complex cyber components. Additionally, by
generating abstract executable instances of the models for
discrete event simulation, CompDSE enables fast system per-
formance analysis, thereby facilitating efficient exploration of
various design possibilities of the computing components.

Although the primary focus of our work is on creating abstract
models that balance accuracy with exploration efficiency and
can be derived automatically, the CompDSE methodology is
designed to be flexible and well suited for integration with
automated search algorithms, allowing for a highly automated
DSE process when needed.

The key novel contributions of this paper can be summarised as
follows:

1. We introduce the CompDSE methodology, which involves
the definition of highly abstract models for the application
workload, the computing hardware platform architecture,
workload-to-architecture mapping and the environmental
influence. These models are automatically derived from
data collected during the runtime of an existing complex
dCPS, whose next-generation version is under exploration
and design.

2. We present a toolbox that includes three distinct types of
algorithms that we have devised and implemented to
automate our CompDSE methodology: (1) algorithms for
automated derivation and integration of the models used
in CompDSE, (2) an algorithm that transforms the derived
models into abstract executable instances with execution
semantics for any discrete event simulation environment
and (3) an algorithm that generates specific code from the
model instances for the OMNET++ discrete event simu-
lator, enabling fast system performance analysis and effi-
cient exploration of various system configurations.

3. We evaluate our CompDSE methodology and toolbox on a
real-world industrial dCPS that is a major part of many
lithography scanner machines manufactured by ASML.
More specifically, we explore alternative design solutions
in some of the computing resources to enhance machine
performance while considering the limitations imposed by
the physical components of the dCPS. For this purpose, we
introduce the so-called A-parameters approach to capture
the impact of delays in the physical environment.

The remainder of the paper is organised as follows: In Section 2,
we discuss related work concerning the DSE of dCPS. Section 3
provides details on the data that needs to be collected at runtime
for deriving the models used in CompDSE. In Section 4, we
present our CompDSE methodology. Sections 5 and 6 explain
the models and the toolbox utilised in CompDSE, respectively.
In Section 7, we demonstrate the merits of CompDSE by
exploring alternative design points for lithography machines.
Finally, we conclude the paper in Section 8.

2 | Related Work

Design space exploration (DSE) for cyber-physical systems
(CPS) has been extensively studied, leading to various meth-
odologies and tools. Although the entire process can be broken
down into multiple steps [5], it can be abstractly distinguished
into two primary components: (1) system modelling and anal-
ysis methods, which evaluate different design objectives of a
single design point (system configuration), and (2) search al-
gorithms, which traverse the design space consisting of many
design points to find optimal designs.

The first component involves preparing the infrastructure for
system modelling and analysis using various tools to create
models representing the system. These models are used to
evaluate specific DSE objectives, such as cost, energy con-
sumption, reliability or performance. Importantly, the models
can vary in their level of abstraction depending on the objective.
The accuracy of these models and the efficiency of the methods
used to evaluate a single design point are crucial, as they are
typically conflicting; that is, more accurate models result in
slower evaluations.

The second component concerns the search mechanisms used
to explore the design space. This includes various DSE algo-
rithms for multiobjective optimisation [8, 9], automating the
DSE process [10, 11] and limiting the search space for more
efficient exploration [12-14].

2 of 14

IET Cyber-Physical Systems: Theory & Applications, 2025

85U017 SUOWIOD 8AITeR1D) 8|qeo! dde au Aq peusenob ae Sapie YO 8sh J0'Sa|nl 10} Ariqi 8uluQ AB]1M UO (SUONIPUOD-PUE-SWRIL0D" A3 [IMAJe.q)1|Bu JUO//SdNL) SUORIPUOD Pue SWis | 8y} 8eS *[520z/20/82] Uo AriqiTauliu (1M ‘'St ouL Aq 6T00Z zsdo/6r0T 0T/10p/w00" A8 M Ae.q|Bul UO"Yoleesael//:sdny wo.j pepeojumod ‘T ‘5202 ‘96EE86£C

This paper focuses on the first component, specifically system
modelling and analysis for DSE, and remains agnostic to the
search mechanisms used, meaning that any search mechanism
can be integrated into the CompDSE methodology.

Several related studies concentrate on system modelling and
analysis methods for DSE. Some of these are based on static
methods such as analytical models. For instance, the CNMA
method [15] uses constraint programming for estimating power
consumption and ensuring the timing correctness of a CPS.
Similarly, the ArchEx 2.0 framework utilises a high-level
pattern-based specification language for CPS architecture
exploration [16]. However, these static methods often lack the
flexibility to handle dynamic interactions between processes
effectively, especially when these interactions are complex and
evolve over time.

Other studies have adopted simulation-based approaches that
model and co-simulate the cyber and physical parts of CPS using
tools based on differential equations or well-known models of
computation (MoCs). For example, in the study by Amir and
Givargis [17], Matlab Simulink is used to model both the
physical and controller parts of the CPS, along with a SoC as the
cyber part. This approach explores design objectives such as
energy consumption and control stability in an inverted
pendulum application. Another study [18] co-simulates a high-
level physical environment model in Matlab Simulink and a
control application model in SystemC. Similarly, in the study by
Genius et al. [19], a high-level partitioning approach extends the
TTool (partitioning tool) with new SysML models that abstractly
represent SystemC AMS components, applied to a medical de-
vice to reduce cost and increase portability. Despite their
detailed modelling capabilities, these simulation-based methods
are often time-intensive and do not scale well for large and
complex industrial CPS.

Functional models have also been used to represent CPS
behaviour in co-simulation. For instance, A. Canedo and J. H.
Richter [20] introduce a functional modelling compiler (FMC)
that synthesises technology-dependent solutions for architec-
tural design space exploration using multidisciplinary simula-
tions such as AMESim and Modelica. Although FMC facilitates
multidisciplinary simulations, it still requires structured manual
definition of system interactions, making it challenging to scale
for highly complex CPS.

Most of the aforementioned tools and methods are limited to
modelling small CPS or only parts of large dCPS, typically
involving a limited number of modules such as sensors, actua-
tors, signal transformations, CPUs and memory. Tools such as
xCPS [21] and iCyPhy [22] incorporate techniques to improve
CPS modelling, but xCPS still requires significant manual effort
despite some automation and iCyPhy, while supporting
modular system decomposition, struggles with large-scale sys-
tems due to state explosion. Additionally, both tools rely on
detailed behavioural modelling of cyber and physical compo-
nents, which poses significant challenges for large-scale indus-
trial CPS such as the ASML TWINSCAN machine, where the
physical part comprises numerous sensors and actuators and the
cyber part consists of multiple distributed subsystems running
hundreds of software processes.

Furthermore, the detailed behavioural modelling required by
the aforementioned methods often makes the evaluation of a
single design point time-consuming. Given the large design
space of complex dCPS, this makes DSE using these methods
excessively time-intensive. Consequently, there is a need for
necessary abstraction and coarse-grained representation to
model the behaviour of complex dCPS for DSE without relying
on manual efforts. Moreover, most applications modelled by the
aforementioned tools exhibit static behaviour, with a fixed order
of tasks for both the physical part (sensors, actuators) and the
cyber part (data processing). In contrast, complex industrial
dCPS often feature dynamic behaviour, such as adaptive pro-
cessing loads or various software/hardware configurations.
These dynamic behaviours necessitate a tool that supports
flexible modelling and exploration with sufficient accuracy and
speed.

A recent approach introduces an efficient method for CPS ar-
chitecture exploration using contract-based design and sub-
graph isomorphism [23]. This method improves on ArchEx 2.0
by providing better compositionality and scalability in system
design space exploration. However, it focuses on structural
validation, meaning it verifies the correctness of system archi-
tecture but does not analyse how different configurations
impact execution time and system performance, making it un-
suitable for performance-driven exploration in complex indus-
trial CPS.

The work presented by Saadatmand et al. [7] addresses only the
lack of application workload models for dCPS in DSE by pro-
posing an approach for automated workload model derivation.
Their approach leverages trace analysis to derive a dynamic
workload model that accurately represents computation and
communication actions within an application in a timing-
agnostic manner. However, it does not provide a comprehensive
and complete modelling methodology for the DSE of computing
subsystems within complex industrial-scale dCPS as well as the
necessary algorithms and tools to support such methodology. In
contrast, our paper proposes such comprehensive DSE method-
ology that uses the aforementioned workload model derivation
but also introduces additional models, algorithms and tools
necessary for the modelling of the cyber part of dCPS and the DSE
analysis of the cyber part. More specifically, our methodology
involves automated derivation of abstract models of the dCPS
cyber part (computing components) for each system configura-
tion and automated model-to-model transformation and code
generation to facilitate effective simulation-based performance
analysis for DSE. Although we do not explicitly model the phys-
ical part of the dCPS, we consider its effects on the cyber part by
using the A-parameters approach we have devised. This approach
enables us to effectively handle the complexity and dynamic na-
ture of complex dCPS.

To highlight the differences between our approach and existing
DSE tools/methodologies, we provide a comparative analysis in
Table 1, which distinguishes them based on model abstraction
level, scalability for large industrial CPS, degree of automation,
performance analysis type and handling of dynamic behaviour.
Unlike many existing tools, CompDSE offers higher abstraction,
full automation and explicit support for dynamic behaviour,
making it well suited for large-scale industrial dCPS.

3 of 14

85U017 SUOWIOD 8AITeR1D) 8|qeo! dde au Aq peusenob ae Sapie YO 8sh J0'Sa|nl 10} Ariqi 8uluQ AB]1M UO (SUONIPUOD-PUE-SWRIL0D" A3 [IMAJe.q)1|Bu JUO//SdNL) SUORIPUOD Pue SWis | 8y} 8eS *[520z/20/82] Uo AriqiTauliu (1M ‘'St ouL Aq 6T00Z zsdo/6r0T 0T/10p/w00" A8 M Ae.q|Bul UO"Yoleesael//:sdny wo.j pepeojumod ‘T ‘5202 ‘96EE86£C

TABLE 1 | Comparison of DSE tools for industrial CPS modelling.

Abstraction Scalability for large Degree of Performance Handling of

Approach/tool level industrial CPS automation analysis type dynamic behaviour
CNMA [15] Low No Semiautomated Analytical No
ArchEx 2.0 [16] Medium Limited Semiautomated Analytical No
Extended ArchEx 2.0 [23] Medium Yes Semiautomated Unknown® No
Matlab Simulink [17, 18] Low No Manual Co-simulation No
Extended TTool [19] Medium Limited Semiautomated Simulation based No
FMC [20] Medium Limited Semiautomated Co-simulation No
xCPS [21] Low Limited Semiautomated Constraint based Limited
iCyPhy [22] Low No Semiautomated Formal verification No
CompDSE High Yes Fully automated Simulation based Yes

*Performance analysis in the study by Xiao et al. [23] is unclear as the focus is on structural validation, not execution time evaluation.

3 | Background: Traces

To derive the CompDSE models, we need to collect specific sys-
tem data from the operating system (OS) during runtime. This
data must be gathered only once in the form of event traces from
all subsystems (hosts) of a dCPS and for each operation mode,
where an operation mode corresponds to a distinct system soft-
ware/hardware configuration that defines a specific execution
pattern of the system. It is essential to ensure that the system is
functioning correctly during the trace collection process.

For every host h;, there are two sets of traces that are collected,
namely, set US), containing execution traces collected from trace
points placed in the user space of the OS and set KSy, containing
system status traces accessible in the kernel space of the OS. These
sets of traces from all n hosts in a dCPS are gathered into larger
collections US = {USy,, .., USy,} and KS = {KSh,, ... KSp,} that
are given as inputs of the CompDSE model derivation algorithms.

3.1 | Execution Traces

Everyset USy, = {Ej, ..., En}is a set of execution traces for a dCPS
with m operation modes. Each execution trace E; € USy, is a
sequence of records r, collected over time at specific locations in
the software code where trace points have been strategically
inserted. These trace points can capture timestamps ts, process
names pn, function calls fn, the location of the trace point within
the function code ! and the attributes A of a function based on the
function type. Therefore, each record ry is represented as a tuple
re = (ts, pn, fn, 1, A). In our data collection approach, we collect
traces from the start and end of four types of functions: send,
receive, trigger and handler. Functions send and receive track
message exchanges between processes, capturing message iden-
tifiers and message sizes (in bytes). Functions trigger and handler
provide insights into internal timer usage in a process, capturing
timer identifiers and durations (in seconds).

Any message or timer identifier id includes the Lamport time-
stamp Imp. Lamport time is a logical clock algorithm used in
distributed systems to order events and ensure a consistent
sequence of operations across different nodes without relying on

synchronised physical clocks [24]. Besides Imp, for message
exchanges, to derive the interhost communications, we also
need to collect the IP address ip and port number prt for both
source and destination processes in the send and receive func-
tions. Therefore, the message identifier id is represented as a

tuple id = (Imp, iPsre, iPdst» PPtsres PFlast)-

3.2 | System Status Traces

Every set KSj provides valuable information including the
resource utilisation (e.g., CPU, memory), process states (idle,
interrupted etc.) and system frequency over time. To derive our
workload model, these traces are vital for pinpointing periods
when processes are actively executed on a CPU (OnCPU status).
Identifying these periods relies on collecting specific kernel
events, with context switches being key among them. These
context switch events indicate when a process is scheduled onto
the CPU core and when it switches to another process, high-
lighting the active CPU running periods.

Figure 1 visualises the OnCPU status derived from context
switch events on a CPU core. The transitions between processes
on the core are indicated by changes in the process labels (A, B,
C), and the green bars represent the periods when each process
is actively running on the CPU. The timing of OnCPU status for
a process begins when it is scheduled onto the core and ends
when the core switches to another process.

In Linux OS, tools such as Trace Compass [25] simplify the
analysis of kernel traces by using predefined analysis models to
extract OnCPU timings. However, on platforms using VxWorks
OS, analysts usually have to manually develop these models by
examining the collected traces. Given the heterogeneous nature
of a dCPS, we need different standard tools to collect execution
and system status traces. For example, we utilise LTTng [26] for
Linux server-based systems and Wind River System Viewer [27]
for VxWorks embedded real-time systems in the ASML TWIN-
SCAN machine. These tools record events such as system calls,
interrupts, context switches and message exchanges, thereby
allowing monitoring and analysis of system resources and
application behaviours.

40f 14

IET Cyber-Physical Systems: Theory & Applications, 2025

85U017 SUOWIOD 8AITeR1D) 8|qeo! dde au Aq peusenob ae Sapie YO 8sh J0'Sa|nl 10} Ariqi 8uluQ AB]1M UO (SUONIPUOD-PUE-SWRIL0D" A3 [IMAJe.q)1|Bu JUO//SdNL) SUORIPUOD Pue SWis | 8y} 8eS *[520z/20/82] Uo AriqiTauliu (1M ‘'St ouL Aq 6T00Z zsdo/6r0T 0T/10p/w00" A8 M Ae.q|Bul UO"Yoleesael//:sdny wo.j pepeojumod ‘T ‘5202 ‘96EE86£C

Core TA/C:i B 1 C.+ A Ci
[] [] [] [] [] [] []
Process A BB | ! !
Process B — — { X —
Process C Bl L B, Time
T To T Tu Ts TeTr

FIGURE 1 | Deriving onCPU timing by using context switch events.

4 | Overview of the CompDSE Methodology

Our CompDSE methodology, illustrated in Figure 2, leverages
the Y-chart approach [6] to systematically define and automat-
ically derive abstract models for the application workload,
computing hardware platform architecture and workload-to-
platform mapping. Additionally, it incorporates a model to ac-
count for the effects of the physical environment on computing
processes. These models are derived from collected traces,
described in Section 3, and are transformed into abstract
executable instances for discrete event simulation. This trans-
formation enables simulation-based performance analysis,
allowing us to explore the design space by independently
modifying each model.

The CompDSE methodology consists of three main components
highlighted in different colours in Figure 2:

e Models: Representations of the application workload,
computing hardware platform, mapping and the environ-
mental influence, which collectively define the behaviour
of a dCPS. The application workload model captures
computation patterns, interprocess communications and
timing dependencies, representing software behaviour.
The computing hardware platform model abstracts system
resources, including CPU specifications, scheduling pol-
icies and network interconnects, enabling performance
evaluation under different configurations. The mapping
model defines the allocation of software processes to
computing hosts, determining the execution impact of
deployment choices on overall system performance. The
environmental influence model accounts for delays intro-
duced by the physical environment's interaction with
computing processes, ensuring that external influences on
execution behaviour are properly represented in the
simulation.

e Toolbox: A set of algorithms for automated model deriva-
tion and integration, model-to-model transformation and
code generation. The automated model derivation and
integration algorithms extract the application workload
model, hardware platform model and mapping model from
execution traces. The model-to-model transformation al-
gorithms transform these formal models into abstract
executable instances, whereas the code generation algo-
rithms further translate the executable model into
simulator-specific code, establishing the simulation envi-
ronment for DSE.

e Evaluation: Performance evaluation of a single design point
(system configuration) through simulation-based analysis
within the prepared simulation environment.

ot ras>

Application Workload A R Hardware Platform
/

Platform Model

Models
Models Integration Mapping Toolbox
,
Workload Model Fvaluanon,
A Mapping Model
1
T
i <

I 1 Model-to-Model
Transformation
Exccutable Model

\ 1 -

-
S, 1

4
N /
L Simulation-based ’
Performance Analysis

FIGURE 2 | The CompDSE methodology.

1
1
1
1
]
1
]
1 I
1 1
1 1
1 []
: !
\ ! 1
\ !)
\ !]
\ 1 I
\ []
1 1 I
\ 1]
]
7

The red feedback arrows in Figure 2 represent the DSE process,
which involves searching the design space by assessing different
design points, that is, different application realisations,
computing hardware platforms and mappings.

In the remainder of this paper, we explain the aforementioned
components in detail. First, we provide detailed descriptions of
the models (Section 5). Then, we examine the methods and
algorithms used in the toolbox (Section 6). Finally, we evaluate
alternative design points for an ASML lithography machine
(Section 7).

5 | Models Used in CompDSE

In this section, we define and present the abstract models
essential for the CompDSE methodology based on the Y-chart
approach in a semiformal manner.

5.1 | Application Workload Model

As shown in Figure 2, our workload model integrates several
workload models Wj,, where each W}, is derived from traces
corresponding to host h; in a dCPS. For a detailed definition of
Wi, please refer to the study by Saadatmand et al. [7]. Because
this work provides a complete explanation of the automated
workload model derivation, we do not repeat those details here
but instead describe how our integrated workload model WK
extends it. The supergraph WK combines the workload graphs
of all hosts into a single overarching structure. The supergraph
WK is represented by the tuple (P, C), where, similar to the
study by Saadatmand et al. [7], P is a set of processes modelling
the corresponding software processes in the dCPS software
infrastructure distributed across multiple hosts, whereas C
represents a set of communication channels that model the
exchange of control or data messages between specific source
(src) and destination (dst) processes.

5 of 14

85U017 SUOWIOD 8AITeR1D) 8|qeo! dde au Aq peusenob ae Sapie YO 8sh J0'Sa|nl 10} Ariqi 8uluQ AB]1M UO (SUONIPUOD-PUE-SWRIL0D" A3 [IMAJe.q)1|Bu JUO//SdNL) SUORIPUOD Pue SWis | 8y} 8eS *[520z/20/82] Uo AriqiTauliu (1M ‘'St ouL Aq 6T00Z zsdo/6r0T 0T/10p/w00" A8 M Ae.q|Bul UO"Yoleesael//:sdny wo.j pepeojumod ‘T ‘5202 ‘96EE86£C

Each process p; € P is defined as a set of modes, where every
mode M, is a finite sequence of coarse-grained abstract events
that model the types of actions performed during a single
operation of the process, arranged in chronological order. These
events are categorised into the following event types:

e Computation event: Models computation actions with an
abstract workload described by a signature (sig). In our
model, the signature is the number of cycles a process has
been actively running on a CPU within a given time frame.
It is computed as follows:

sig = Tactive - feru 1)

where T,qive is the time the process was actively running on
the CPU and fcpy is the CPU clock frequency.

e Communication event: Models message exchanges, cat-
egorised as Write (sending) or Read (receiving) events. Each
event includes the corresponding channel ch €C, the
message size denoted as size in bytes and a signature sig.
The signature represents the abstract computation work-
load in the source/destination process needed for writing/
reading. This signature is similar to the signature used for
computation events.

e Timer event: Internal triggers that originate within a
process and initiate a computation or communication
event after a specific amount of time has elapsed. A timer
event is classified as either a timer setter or a timer
handler. A timer setter event sets a timer with an absolute
time value, and once that time has elapsed, a corre-
sponding timer handler is triggered to initiate other
events. Each timer event has a timer identifier id and also
a duration time ¢ in seconds.

5.2 | Computing Hardware Platform Model

We model the computing hardware platform of a dCPS as the
tuple PL = (H,N,L). Set H = {hy, ..., yyy } is the set of hosts that
represent the computing subsystems in the dCPS hardware
platform, and set N = {swchy, ..., swchyy|} is the set of switches
that facilitate network communication among the hosts. Set L
consists of tuples (h,-, swchj), where each tuple specifies that host
h; € H is connected to a network via switch swch; € N. Each
host h; is defined as a tuple (ip, sch, crs), where ip denotes a set
of TP addresses used to identify h; in the network, sch specifies
the policy used to schedule the processes running on h; and crs
is the set of cores available in h;, each with its frequency f. Each
network swch; is defined as a tuple (sbn, bw), where sbn in-
dicates the subnet mask of the switch and bw is the switch
bandwidth.

5.3 | Mapping Model

We model the mapping associated with a dCPS configuration as
the set MP = {MP,, .., MP,}, where MP; € MP specifies the

mapping of the application workload in operation mode j to the
computing hardware platform of the dCPS. Every
MP; = {mpy, .., mpjp} is a set of tuples mp = (p, h) specifying
that process p € P is mapped onto host h € H, where P is the set
of processes in the integrated workload model WK and H is the
set of hosts in the platform model PL.

5.4 | Environmental Influence Model

In dCPS, some embedded hosts interact directly with the
physical environment through actuators and sensors. These
hosts process real-world inputs and influence system behaviour
but may not always be fully traced because of system con-
straints. However, their interactions with traced computing
processes introduce timing variations that impact overall sys-
tem performance. To account for these effects, we introduce
the A parameters approach, which abstractly represents the
timing impact of the physical environment on computing
processes.

The A parameters are derived from execution traces by ana-
lysing timestamps of message exchanges between traced
computing processes and untraced embedded hosts interacting
with the physical environment. As illustrated in Figure 3, the up
arrows represent Write events where a traced process sends
messages to an untraced embedded host, whereas the down
arrows represent Read events where the traced process receives
responses. Because the exact process on the untraced host is
unknown, we identify the corresponding interaction using the
combination of IP address and port number, ensuring that each
A parameter is correctly attributed to the same communica-
tion flow.

For each Read event, a corresponding A parameter is computed
as the difference between the real timestamp of the Read event
and the preceding Write event, specifically for the same
communication flow:

— TP P
A= Trci,ad,i - T\x;rite,i (2)
where T{';jme,i is the timestamp of the Write event sent from a

specific traced process p; on a traced host and Tféadi is the
timestamp of the corresponding Read event received by the

same traced process p;.

This approach enables us to model the influence of untraced
embedded hosts and their interactions with the physical envi-
ronment in system simulations, ensuring a more accurate rep-
resentation of real-world delays.

[Untraced Hosts with Environment Interaction |

- ~
[Traced Host |

A] AQ Ag A4

» Time

FIGURE 3 | Modelling the impact of the physical environment.

6 of 14

IET Cyber-Physical Systems: Theory & Applications, 2025

85U017 SUOWIOD 8AITeR1D) 8|qeo! dde au Aq peusenob ae Sapie YO 8sh J0'Sa|nl 10} Ariqi 8uluQ AB]1M UO (SUONIPUOD-PUE-SWRIL0D" A3 [IMAJe.q)1|Bu JUO//SdNL) SUORIPUOD Pue SWis | 8y} 8eS *[520z/20/82] Uo AriqiTauliu (1M ‘'St ouL Aq 6T00Z zsdo/6r0T 0T/10p/w00" A8 M Ae.q|Bul UO"Yoleesael//:sdny wo.j pepeojumod ‘T ‘5202 ‘96EE86£C

6 | The CompDSE Toolbox

In this section, we present the CompDSE toolbox that contains
several algorithms devised and implemented to support the
modelling and exploration process.

6.1 | Automated Derivation and Integration

As shown in Figure 2, the automated derivation algorithms are
used to automatically derive the required workload models W},
platform model PL and mapping model MP from traces. Addi-
tionally, the model integration algorithm combines the workload
models W}, from each host k; into a comprehensive application
workload model WK. Here, we outline the operational details of
these algorithms, thereby describing their main functionality.

6.1.1 | Application Workload

The formal procedure for the derivation of workload models W,
from traces and their integration into the application workload
model WK is outlined in Algorithm 1. This algorithm takes sets of
execution traces US and system status traces KS as inputs and
generates a comprehensive workload model WK represented as a
set of processes P communicating via a set of channels C. The
algorithm begins with deriving the workload model W}, for each
host (Lines 2-3) using the workload model derivation (WLMD)
approach described in detail in the study by Saadatmand et al. [7].
This is followed by the integration of the individual models W,
into a unified application workload model encompassing all
traced hosts (Lines 4-12). Below, we provide a brief overview of
the WLMD approach and an explanation of the integration steps
in Algorithm 1.

6.1.1.1 | Workload Model Derivation (WLMD). The
WLMD approach and its implementation, presented in the
study by Saadatmand et al. [7], are used to automatically derive
the workload model W, for each host h; from the set of
execution traces USy, across all operation modes. Figure 4

ALGORITHM 1 | Derive and integrate workload models.

Input : US = {US}L“..,US}L"},KS = {KS}L“..,KS}L"}
Output: WK = (P,C)

1 P,C <+ 0; Wimp < 0;

> foreach US),, € US do

3 L W}L,L = WLA{D(US’L,L,KS’L,L); Wme — Wme + W}Li;

4 foreach W}Lz‘ S thp do
5 foreach ch; € Wj,.C' do

6 hsre = chj.src.h; hges = chj.des.h;

7 if hsre # h; then

8 | chj.src.p = findPeerProc(Wh,,., ch;, S);
9 if hdes 3& hL then

10 | chj.des.p = findPeerProc(Wh,,,, ch;, D);

it foreach W, € Wy, do
12 L P+ PJrWhi.P; C + CJrWhI.C;

13 return (P, C)

illustrates the key concepts of this approach, showing an
excerpt from execution trace E; corresponding to operation
mode M. Some important records in trace E, are highlighted
and numbered (see Circles 2-9 in the figure).

Initially, WLMD analyses the execution traces in set USy, to
create the set of processes Wj,,.P and identify message exchanges,
facilitating the creation of the set of communication channels
W;,..C. Considering the example in Figure 4, because Record 2 is
a send function from process A and Record 3 is a receive function
to process B with the same message identifier iy, WLMD creates
processes A and B as well as communication channel Chup
between them. Subsequently, the send and receive functions are
translated into Write and Read communication events within
workload model W, as shown for processes A (Records 2, 4)
and B (Records 3, 6). These events are then incorporated into
the chronological order of events for processes A and B in mode
M, as visualised by the yellow and orange boxes in Figure 4.
Timer events, as exemplified for process B (Records 8-9), are
also integrated into the workload model. In addition, after
creating the communication and timer events (yellow, orange
and grey boxes in Figure 4), WLMD places the computation
events (green boxes) in the intervals between them. Finally, to
calculate the signature (sig) of both computation and commu-
nication events, WLMD uses the set of system status traces KSy,.
It considers periods when the process is actively executed on a
CPU (OnCPU status), multiplying these periods by the relevant
CPU frequency and accumulating them to obtain the total
number of CPU clock cycles for each event.

6.1.1.2 | Workload Model Integration. As explained
above, after deriving the workload model for each host W},, the
intrahost communication among the processes running on host
h; is well defined within Wj, by its set of communication
channels W,.C. However, interhost communication remains
incomplete because the source or destination processes on other
hosts have not been identified, as illustrated in Figure 5a. This
figure shows a simplified computing system consisting of
processes A to H distributed across three hosts H;, H, and H;.

User space trace for operating mode M,

ts . fn [c d X0
0 A f() start
@ |05 A fo stat send ig 40 -
© 1.4 B go start receive iy 40
@ |20 A for end send ip 40
2.15 A foo start
® 285 B g end receive io 40 1
3.0 B g1 start
3.} B g start tr@ggcr Jo 4 \
@ 4.3 B g1 end wigger o 4|
4.9 B g1 end
16.25 B g3 end handler j; 4

Chronological order of events

Workload Model

Write | Compute |...

M, o]]

Chronological order of events

Processes & Channels

chyp
G mTm

FIGURE 4 | Workload model derivation for each host.

| Read | Compute | Timer ||

7 of 14

85U017 SUOWIOD 8AITeR1D) 8|qeo! dde au Aq peusenob ae Sapie YO 8sh J0'Sa|nl 10} Ariqi 8uluQ AB]1M UO (SUONIPUOD-PUE-SWRIL0D" A3 [IMAJe.q)1|Bu JUO//SdNL) SUORIPUOD Pue SWis | 8y} 8eS *[520z/20/82] Uo AriqiTauliu (1M ‘'St ouL Aq 6T00Z zsdo/6r0T 0T/10p/w00" A8 M Ae.q|Bul UO"Yoleesael//:sdny wo.j pepeojumod ‘T ‘5202 ‘96EE86£C

The dashed green arrows represent interhost communication,
where the source or destination process needs to be identified.
The red dots on the processes indicate the ports involved in
interhost communications, which must be considered when
identifying the communication channels.

To address this, Algorithm 1 first identifies interhost commu-
nications based on workload model Wj, of each host h;. It ex-
amines each communication channel ch; € W;,.C to determine if
the source or destination host differs from h; (Lines 5-10),
indicating connections between processes running on different
hosts. The procedure findPeerProc (Lines 8 and 10) is then
employed to resolve the identities of these unknown source or
destination processes. After completing the information for
interhost communications, the sets of processes Wj.P and
channels W,,.C for all traced hosts h; are integrated into the sets
P and C, respectively (Lines 11-12), thereby creating the
comprehensive application workload model WK = (P, C), as
shown in Figure 5b, where the previously unknown sources or
destinations of interhost communication in Figure 5a are
identified (indicated by red arrows).

The aforementioned findPeerProc procedure is detailed in Al-
gorithm 2. It takes as inputs the workload model W}, of host h,
channel ch and target flag flagT € {S, D} that indicates whether
the source (S) or destination (D) process of channel ch is un-
known. The procedure then searches for the unknown process
in workload model W}, by matching the source and destination
hosts and ports of the given channel ch (Lines 1-2). Once a
match is found, it returns either the source or destination pro-
cess as peerProc based on the target flag (flagT) (Lines 3-6).

(a) (b)

FIGURE 5 | Workload model integration. (a) Distributed Workload
Models. (b) Integrated Workload Model.

ALGORITHM 2 | findPeerProc.

Input : Wy, ch, flagT
Output: peer Proc
1 foreach ch; € W;.C do

2 if (chi.src.h = ch.src.h A ch;.dst.h = ch.dst.h) A
(chs.sre.prt = ch.sre.prt A chi.dst.prt = ch.dst.prt)
then

; if flagT = S then

4 | return peer Proc < ch;.src.p

5 else

6 L return peer Proc < ch;.des.p

6.1.2 | Hardware Platform

The formal procedure for deriving hardware platform model
PL = {H, N, L} from traces is outlined in Algorithm 3. This al-
gorithm takes sets of execution traces US and system status
traces KS as inputs and generates a platform model PL, repre-
sented by the set of hosts H, the set of switches N and the set of
links L.

The algorithm begins by creating the set of traced hosts H (Lines
2-8). For each set of execution traces USy, of host h;, the algo-
rithm starts by deriving the set of IP addresses ip;, associated
with host h;, using the getIP procedure (Line 3). Next, the al-
gorithm proceeds by utilising the set of system status traces KSp,
of host h; to determine the number of cores nCr and their fre-
quencies f; (Lines 4-7). These frequencies serve as initial values
in the model and can be adjusted during the exploration phase.
Similarly, the policy sch; for scheduling the tasks running on
host k; is initially set to unknown (Line 8), and it is tuned based
on the designer's preferences during the exploration phase.

Once the set of hosts H is finalised (Line 8), Algorithm 3 pro-
ceeds by iterating over each host h; € H. For every IP address ip;
associated with h;, the algorithm calculates the subnet mask sbn;
(Line 11). Then, it checks if there exists a switch swch; in the set
of switches N that shares the same subnet mask sbn; (Line 12). If
such a switch does not exist, the algorithm creates a new switch
swch; with sbn;, sets its initial bandwidth bwj to zero and adds
swch; to N (Lines 13-14). Finally, a link ; is created and added to
L specifying that host h; is connected to switch swch; (Line 15).
Note, host h; may be connected to multiple switches if it has
multiple IP addresses ip; € h;.ip (Line 10).

The aforementioned getIP procedure is detailed in Algorithm 4.
It takes execution trace US), of host & as an input and returns set
ipSet of unique IP addresses associated with host h. First, the
algorithm initialises an empty set ipSet (Line 1). Then, for each
record in the execution trace USj, it checks whether the

ALGORITHM 3 | Platform model derivation from traces.

Input : US ={USh,,..,USh, }, KS ={KSh,,.., KSh,}
Output: PL = (H,N, L)

" H,N,L <« 0

> foreach US), € US do

3 ip; = getlPs(US,);

4 nC'r = number of cores from KSy,; crs; < 0;

s for j =1 to nCr do

6 L f; = related frequency from KSp,;

7

cry = (f;); ers; < crs; + crj;
s | schi + 0; hi = (ips, schi,crsi); H < H + hy;
o foreach h; € H do

10 foreach ip; € h;.ip do
i sbn; = subnetMask(ip;);

12 if Aswch; € N such that swchj.sbn = sbn; then
13 bw; = 0; swch; = (sbnj, bw;);

14 N < N + swchy;

15 lj = (hi, swechj); L < L+ 1;;

16 return (H, N, L)

8 of 14

IET Cyber-Physical Systems: Theory & Applications, 2025

85U017 SUOWIOD 8AITeR1D) 8|qeo! dde au Aq peusenob ae Sapie YO 8sh J0'Sa|nl 10} Ariqi 8uluQ AB]1M UO (SUONIPUOD-PUE-SWRIL0D" A3 [IMAJe.q)1|Bu JUO//SdNL) SUORIPUOD Pue SWis | 8y} 8eS *[520z/20/82] Uo AriqiTauliu (1M ‘'St ouL Aq 6T00Z zsdo/6r0T 0T/10p/w00" A8 M Ae.q|Bul UO"Yoleesael//:sdny wo.j pepeojumod ‘T ‘5202 ‘96EE86£C

function name in the attributes is send (Lines 2-3). If so, it ex-
tracts the source IP address and adds it to ipSet (Lines 4-6). The
algorithm considers records from operation mode E; because
the hardware configuration remains static across all modes;
therefore, selecting E; simplifies our analysis without sacrificing
accuracy. Finally, it returns the complete set of unique IP ad-
dresses of the host (Line 7).

6.1.3 | Mapping

The formal procedure for deriving the mapping model from
traces is outlined in Algorithm 5. This algorithm takes set US
of execution traces as an input and generates a mapping
model MP which specifies the mapping of the application
workload, in every operation mode, onto the computing
hardware platform of a dCPS. During DSE, this initial map-
ping model can be modified in order to evaluate alternative
design choices, such as moving application processes from one
host to another in order to better balance the application
workload over the hosts.

Algorithm 5 begins by initialising an empty mapping set MP;
for each operation mode M (Lines 2-3). It then examines the
records r; in every execution trace E; € US, associated with
M, and host h; (Lines 4-6) to identify every process pr pn
running on h;. This examination results in creating tuples
(prk,pn, hi) specifying that process py, p, is mapped onto host h;
in operation mode M. The created tuples are subsequently
added to the mapping set MP; associated with operation mode

M (Line 7).

ALGORITHM 4 | getIPs.

Input : US),
Output: ipSet
ipSet «+ ();
foreach r, € USy.F1 do
if ri.A. f, = send then
Zpk = rk}AZdeST67
if ipy ¢ ipSet then
| ipSet < ipSet + ipy;

= N S SR SR

7 return ipSet

ALGORITHM 5 | Mapping model derivation from traces.

Input : US = {USh,,...,USh, }
Output: MP ={MP:,..MP,}

1 MP + 0

2 for j =1to m do

5 | MPj«0; MP < MP + MPj;

foreach US;,, € US do
foreach E; € US),; do
foreach r, € E; do
L L mpr = (pr;‘ppnyhi);]‘/{Pj — MP7 + mpg;

R TS

s return M P

6.2 | Model-to-Model Transformation and Code
Generation

This section describes how the automatically derived formal
workload, platform and mapping models are transformed into
abstract executable instances, called model entities, designed for
use with any discrete event simulator. This transformation is
facilitated by specialised algorithms that generate a separate
model entity for every process p; € P in the workload model
WK, for every host h; € H and switch swch; € N in the platform
model PL and for the mapping MP. Within this framework, all
these workload, mapping and platform entities interact and
synchronise through event-driven messaging, thereby operating
concurrently. Each model entity maintains a queue, denoted as
Q, to buffer incoming event messages from other model entities.
All interacting entities form the abstract executable model of a
dCPS.

After obtaining the executable model, which is independent of
any discrete event simulation environment, a code generation
step is necessary to transform the executable model into spe-
cific executable code for a selected simulator, thereby estab-
lishing our final simulation environment for DSE. For our case,
we have chosen the OMNET++ simulation environment [28]
due to its robustness, scalability and suitability for simulating
complex distributed systems and large-scale networks. Figure 6
shows the environment of our simulation, visualised as three
layers of entities: the application workload, the mapping and

LCCILCL)
OO0

00U

Hardware Platform Mapping Application Workload

FIGURE 6 | Application workload, computing hardware platform
and mapping layers in OMNET++.

9 of 14

85U8017 SUOWILIOD 3AIERID 3ol idde au Aq pausenob a1e Soie VO ‘SN 0 SaINJ 104 A%eiq 1T 8UIIUO AB|IM UO (SUORIPUCD-PUR-SLLBYI0D" A8 1M AR 1[ul [UO//SaY) SUORIPUOD pue SLLB | 3Y} 885 *[5202/.0/82] U0 A%eiqiT 8ulluo AB|IM ‘SiY ouL Aq 6T00Z ZSdo/6r0T OT/I0p/L00™A8 | M AReJq1[eul U0 Yo JessaJie 1/ SA1y Wouy papeojumoq ‘T ‘5202 ‘96€€86€2

the computing hardware platform. Below, we further elaborate
on the behaviour of each abstract executable model entity.

6.2.1 | Application Workload

In the executable application workload model (the top part of
Figure 6), each process is represented as an entity with indi-
vidual event files for each operation mode, containing abstract
events arranged chronologically along with their attributes. All
process entities are connected to the mapper entity (the blue box
in Figure 6). Listing 1 sketches the behaviour of a process entity
as pseudocode. The process entity retrieves events from its event
file (Line 16). If the retrieved event is a Write, Compute or Read
event, then it requires hardware platform resources for execu-
tion. Thus, the process entity sends a request message to the
mapper entity (Lines 23-26) and waits until receiving a ‘done’
message, allowing it to proceed to the next event (Lines 5-6).
Timer events, however, do not require a request to be sent to the
mapper entity. Instead, for timer events, the process entity
schedules a ‘timeoff’ message to be sent to itself after a specified
timer duration (Lines 17-18). Once the scheduled ‘timeoff
message is received, the timer is considered off (Lines 7-11). If
the event is a timer handler and the process entity has already
received the ‘timeoff’ message, it proceeds to retrieve the next
event (Lines 20-21). If the ‘timeoff’ message has not yet been
received, the process waits until it arrives.

6.2.2 | Mapping

The abstract executable model contains one mapper entity (the
middle part of Figure 6) which is connected to all process en-
tities (the top part of Figure 6) and host entities (the bottom part
of Figure 6). As explained above, process entities send Write,
Compute and Read request messages to the mapper entity,

LISTING 1 | Execution behaviour of a process entity.

which subsequently forwards these requests to the corre-
sponding host entities based on resource allocations defined in a
mapper file derived from the tuples (py, pn i) in the mapping
model MP. In addition to this forwarding of request messages,
the mapper also manages the transmission of ‘done’ messages
from host entities back to the requesting process entities indi-
cating that the requests have been completed by the hosts.
Listing 2 illustrates the behaviour of the mapper entity as
pseudocode.

6.2.3 | Hardware Platform

In the executable hardware platform model (the bottom part of
Figure 6), each host and switch is represented as an entity
operating concurrently with other entities. All host and switch
entities are interconnected according to the set of links L
specified in the platform model PL. The behaviour of a host
entity and a switch entity are sketched as pseudocode in List-
ings 3 and 4, respectively. The host entity receives Write,
Compute and Read request messages (events) from the mapper
(Lines 4-5 in Listing 3). If the request message is of type
Compute or Write event, the host entity proceeds with sched-
uling the event for execution (Lines 13-14). For a request
message of type Read event, the host entity first checks (Lines
6-10 in Listing 3) whether a data message, sent from the cor-
responding source process via the network of switch entities,
has been received. If the data message has not been received yet,
the host entity waits until it arrives before scheduling the Read
event for execution (Line 24). Once the execution of any
requested event is completed, the host entity notifies the
requesting process entity by sending a ‘done’ message through
the mapper entity (Lines 17, 22).

During the execution of an event, just a time delay is performed
based on the event's signature (sig described in Section 5.1), in
order to abstractly simulate the compute workload of the event.
For Write events, after simulating its compute workload by the

[runNext = True; waitForTimer - False corresponding delay, the event is forwarded to a switch entity in
2| while (True) { the network (Lines 15-16 in Listing 3). The switch entity applies
3 if (Q is not empty) { Check for received events

. ovent = take the First clement of Of a time delay and transmits the event to the destination host
5 if (sender of the event is mapper)//done message entity (Lines 9-10 in Listing 4). This time delay abstractly sim-

Next = True; . ..

: S15e { //cimeots cven ulates the network congestion delay and transmission delay of a
8 add the ID of event to the timeout list; data message communicated between hosts via the network
9 if (waitForTimer) {

o runNext = True; (Line 8 in Listing 4). In our abstract model, the network
1 waitForTimer = False;} congestion delay is the trimmed mean interval between sent and
12 +}

13 send equest O the mapper

14 if (runNext and not waitForTimer) {

15 runNext = False; . . i

16 nextEvent = get the next event of sequence; LISTING 2 | Execution behaviour of the mapper entity.

17 if (type of nextEvent is setTimer)

18 Schedule a timeoff message that will trigger -

after nextEvent time; 1 Whll? (Trug) {])

19 else if (type of nextEvent is timerHandler) { 2 if (Q is not empty) { } -heck rece >d ¢ 1

20 if (timeout contains the ID of nextEvent) 3 event = take the first element of Q;

21 runNext = True; 4 if (sender of event is a process) {

2 } 5 s_Host = determine the host mapped to the

23 else { Read, Write and Compute sender process of event;

24 send nextEvent to the mapper; 5 send event to SfHOSfjr')

25 waitForTimer = True; 7 else The event is from host

26 runNext = False;} 8 send a "done" message to the source process

27 } of event;

28] } 9 b}
10 of 14 IET Cyber-Physical Systems: Theory & Applications, 2025

85U017 SUOWIOD 8AITeR1D) 8|qeo! dde au Aq peusenob ae Sapie YO 8sh J0'Sa|nl 10} Ariqi 8uluQ AB]1M UO (SUONIPUOD-PUE-SWRIL0D" A3 [IMAJe.q)1|Bu JUO//SdNL) SUORIPUOD Pue SWis | 8y} 8eS *[520z/20/82] Uo AriqiTauliu (1M ‘'St ouL Aq 6T00Z zsdo/6r0T 0T/10p/w00" A8 M Ae.q|Bul UO"Yoleesael//:sdny wo.j pepeojumod ‘T ‘5202 ‘96EE86£C

LISTING 3 | Execution behaviour of a host entity.

1| while (True) {

2 if (Q is not empty) { Check for received events

3 event = take the first element of Q;

4 if (sender of event is the mapper

5 add event to readyQ;

6 else if (sender of event is network) {

7 add event to the receivelist;

8 if (exists an e in waitList and source of e
is the same as event source)

9 take e from waitList and add it to

readyQj }

10 }

11 while (readyQ is not empty) {

12 exeEv = take next event from readyQ;

13 if (type of exeEv is not Read) {

14 allocate resource to execute exeEv;

15 if (type of exeEv is Write)

16 send exeEv to network;

17 send "done" message to mapper for exeEv;

18 }

19 else { Read event

20 if (exists an e in receivelist and source of
e 1s the same as exeEv source) {

21 take e from the receivelist and allocate

resource to execute it;

2 send "done" message to mapper for exeEv;}
23 else Message not yet arris

24 add exeEv to waitList;

LISTING 4 | Execution behaviour of a switch entity.

1| while (True) {

2 if (Q is not empty) { “heck for received events

3 event= take the first element of Q;

4 add event to the readyQ;

5 while (readyQ is not empty) {

6 event = take the next event from readyQ;

7 transitDelay = divide the message size of
event by switch bandwidth;

8 delay = transitDelay + congestDelay;

9 destHost = determine the host mapped to

destination process of event;

10 send event to destHost at (simTime + delay);

received messages taken from execution traces US, excluding the
transmission delay. The trimmed mean is computed as follows:

1 (1-a)N
L(X)=— : 3
«(X) T - 20N i:§+lx<z> 3

where X = {x,X,...,xy} is the ordered dataset sorted in
ascending order, « is the proportion of data to be trimmed from
both ends, N is the total number of values in the dataset and x;
represents the i-th smallest value in the sorted dataset.

In our model, we set a = 0.1, meaning that the top 10% and
bottom 10% of values are removed to mitigate the influence of
outliers [29]. The transmission delay is calculated by dividing
the message size (size in Section 5.1) by the switch bandwidth
(bw; in Section 6.1.2) (Line 7 in Listing 4).

7 | Evaluation of the CompDSE Methodology

In this section, we evaluate the accuracy and efficiency of our
CompDSE methodology and demonstrate its applicability to a

real industrial case by conducting a small DSE experiment uti-
lising the OMNET++ simulator for performance analysis.

7.1 | Case Study: ASML TWINSCAN Lithography
Machine

ASML lithography machines stand at the forefront of semi-
conductor manufacturing, playing a pivotal role in the cutting-
edge fabrication of silicon wafers. These machines utilise
advanced optics and precise positioning of reticles (also known
as masks) to transfer circuit patterns onto silicon wafers with
remarkable accuracy. As its name suggests, the ASML TWIN-
SCAN machine utilises a dual-stage scanning mechanism. In
the first stage, various sensors measure the precise location of
the wafer. In the second stage, using the information from the
first stage and utilising actuators, the exposure process is
executed. Running these two stages simultaneously on a set of
wafers enhances production efficiency.

To initiate the wafer processing operation, precise recipes must
be defined. These recipes specify the number of batches, the
number and source of wafers for each batch and, most impor-
tantly, various exposure and measurement parameters. The di-
versity in recipes results in different application workloads,
which correspond to predefined operation modes.

The cyber part of ASML TWINSCAN machines consists of a
complex software infrastructure distributed across heteroge-
neous multicore subsystems connected via networks. These
subsystems, running on various platform operating systems
(0S), are classified based on their functionality as either
embedded real-time or server-based systems. Within this infra-
structure, hundreds of processes operate concurrently,
exchanging thousands of messages per second to ensure precise
coordination between the subsystems. This high volume of
communication and processing adds to the complexity of
managing and optimising system performance, particularly
when accounting for the real-time constraints of the embedded
systems and the scalability of the server-based components.

7.2 | Experimental Setup

For our experiment, we traced a subset of the hosts in the ASML
TWINSCAN machine testbench, including one Linux-based
server and several real-time embedded systems running Wind
River VxWorks OS. Because of technical limitations such as some
hosts being ‘bare metal’, that is, not running an OS, it is not
possible to trace all hosts. However, we consider the effects of
such untraced hosts on the overall dCPS performance during our
system simulations by using A parameters as explained in
Section 5.4.

During simulation, the simulated timestamp of every Write
event, corresponding to a message sent to an untraced host, is
recorded. When the simulator encounters a Read event cor-
responding to a message received from an untraced host, it
first computes the difference between the current simulation
time and the recorded timestamp of the preceding Write event.
This calculated difference represents the elapsed time in the

11 of 14

85U017 SUOWIOD 8AITeR1D) 8|qeo! dde au Aq peusenob ae Sapie YO 8sh J0'Sa|nl 10} Ariqi 8uluQ AB]1M UO (SUONIPUOD-PUE-SWRIL0D" A3 [IMAJe.q)1|Bu JUO//SdNL) SUORIPUOD Pue SWis | 8y} 8eS *[520z/20/82] Uo AriqiTauliu (1M ‘'St ouL Aq 6T00Z zsdo/6r0T 0T/10p/w00" A8 M Ae.q|Bul UO"Yoleesael//:sdny wo.j pepeojumod ‘T ‘5202 ‘96EE86£C

simulation since the preceding Write event occurred. The
simulator then subtracts this elapsed time from the A param-
eter value corresponding to the Read event in order to deter-
mine the remaining time that should be waited before
scheduling the Read event for execution. This approach en-
sures that the impact of the physical environment (untraced
hosts) on the dCPS timing performance is accurately repre-
sented in the simulation.

7.3 | Evaluation Results
7.3.1 | Efficiency

The efficiency of CompDSE is one of its core strengths, facili-
tating system designers to effectively explore the vast design
space of computing subsystems within a complex distributed
cyber-physical system (dCPS). Table 2 provides an overview of
the complexity of the automatically derived model, which cap-
tures the workload imposed on the traced hosts within the
ASML TWINSCAN machine. It also demonstrates how
CompDSE efficiently handles this model complexity.

Table 2 is divided into two sections. The first section outlines the
complexity metrics, including the number of traced hosts, pro-
cesses and communication channels. Specifically, the CompDSE
methodology is applied to model the ASML TWINSCAN ma-
chine for a wafer batch operation involving five wafers, where 8
hosts are traced, 445 application processes are modelled and 2057
communication channels between these processes are identified.

The huge number of possibilities (in the range of 8*%) to map
the 445 processes onto the 8 hosts creates a design space of
extraordinary size. Furthermore, when considering additional
factors—such as the number of cores per host, different oper-
ating frequencies and various scheduling policies—the number
of possible configurations expands into an astronomical number
of combinations. These numbers highlight the high complexity
of the derived model and the corresponding design space, which
is typical for industrial-scale dCPS.

The second section in Table 2 provides the execution time of the
various steps within CompDSE, visualised in Figure 2. The time

TABLE 2 | Complexity of dCPS and efficiency of CompDSE.

Complexity metric Value
Number of traced hosts 8
Number of processes 445
Number of channels 2057
Time
Steps required

Adding trace points manually About 5 min

Collecting traces automatically 4.33 min
Automated models derivation and 29.5h
integration

Code generation for OMNET++ 1.82 min
Single point evaluation 54.5s

required to manually add trace points in the software infra-
structure depends on the number of trace points needed. For our
case, we added trace points at the start and end of four functions
within a shared library used by all processes. Adding these 8 trace
points takes approximately 5 min and needs to be done only once.
To ensure that tracing did not affect the system's real-time per-
formance, we monitored the wafer processing time before and
after enabling tracing and observed no measurable difference.

Afterward, the time required for trace collection depends on the
duration of the application’s execution. In our case, processing
five wafers takes 4.33 min. This trace collection process must be
repeated for each operation mode. Automated model derivation
and integration take 29.5 h but need to be performed only once.
The model-to-model transformation and code generation for the
OMNET++ simulator are completed in about 2 min. The
simulation to evaluate the performance of one system configu-
ration requires 54.5 s.

Given the high complexity of the aforementioned model, this
less-than-a-minute simulation-based performance analysis
demonstrates the remarkable efficiency of CompDSE in evalu-
ating a single design configuration. Such rapid evaluation is
especially beneficial for industrial dCPS, where quick insights
into the performance of complex machines are critical. Moreover,
such rapid performance evaluation of a single design configura-
tion is crucial to enable fast exploration of large design spaces. For
example, by integrating an automated search algorithm within
CompDSE, such as a genetic algorithm, and utilising the rapid
simulation-based performance analysis as a fitness function, we
could accelerate significantly the exploration of large design
spaces, making the CompDSE methodology even more scalable
for future designs of complex dCPS. Integrating an automated
search algorithm in CompDSE is out of the scope of this paper.

7.3.2 | Accuracy

In our experiment, the average processing duration per wafer
(PDW) measured on the real ASML TWINSCAN machine is
50.548 s, whereas the simulation of our dCPS model of the same
machine indicates an average PDW of 50.141 s, resulting in a
negligible error of approximately 0.8%. This fact, together with
the aforementioned less-than-a-minute performance analysis,
demonstrates the potential of CompDSE for sufficiently accu-
rate/trustworthy and fast exploration of complex dCPS.

7.3.3 | Exploration

In our small DSE experiment, we first explore the effect of
varying the number of cores in the main host (the Linux-based
server) on the dCPS performance in terms of average PDW. The
default configuration of the main host has 16 cores. However, as
shown in Figure 7, increasing the number of cores beyond six
does not lead to any significant changes in the average PDW.
When we decrease the number of cores from six to three, the
average PDW does not increase significantly; that is, the in-
crease is in the range of milliseconds. Further decreasing the
number of cores leads to a more substantial increase in the

12 of 14

IET Cyber-Physical Systems: Theory & Applications, 2025

85U017 SUOWIOD 8AITeR1D) 8|qeo! dde au Aq peusenob ae Sapie YO 8sh J0'Sa|nl 10} Ariqi 8uluQ AB]1M UO (SUONIPUOD-PUE-SWRIL0D" A3 [IMAJe.q)1|Bu JUO//SdNL) SUORIPUOD Pue SWis | 8y} 8eS *[520z/20/82] Uo AriqiTauliu (1M ‘'St ouL Aq 6T00Z zsdo/6r0T 0T/10p/w00" A8 M Ae.q|Bul UO"Yoleesael//:sdny wo.j pepeojumod ‘T ‘5202 ‘96EE86£C

average PDW. The above findings suggest that the original
design of the main host with 16 cores in the ASML TWINSCAN
machine might be an overestimation to avoid computing
hardware resource bottlenecks. Thus, having a host with eight
cores (half of the original design) could lower overall costs
without compromising the machine performance, which could
be considered in future system designs.

Next, we explore the effect of increasing the number of cores in
the traced embedded hosts (the VxWorks-based real-time
embedded systems) while keeping the main host with its default
configuration. The results show that increasing the number of
cores from one to four in these embedded hosts decreases the
average PDW by 2.148 s. This improvement indicates that
although additional cores enable the system to handle more
software processes in parallel, the overall impact on the average
PDW is limited. This limitation is most likely due to the original
design of the software infrastructure running in the ASML
TWINSCAN machine, where potential parallel processing in the
software is not heavily exploited.

Finally, we examine the impact of varying the clock frequencies
of the cores in the traced main and embedded hosts on the
average PDW by conducting a series of simulations with
different clock frequency settings, supported by the cores, across
all hosts. The results, plotted in Figure 8, show the relationship
between the average PDW and clock frequency changes relative
to the base clock frequency setting of each host's multicore CPU.
The base frequency setting is denoted as 0 on the horizontal
axis, whereas the average PDW is depicted on the vertical axis.
The horizontal axis depicts the clock frequency changes as a
percentage of the base clock frequency.

It can be seen in Figure 8 that increasing the clock frequency of
all traced hosts' multicore CPUs by 25% results in a noticeable

|
62.745
62 |
60 s
58 |- s

54 |- .
52| SLA24 50404 50207 50148 50.141 |

OLE - 0 Fa mm E3
1 2 3 4 s >6

Number of Cores in the main host

Average PDW in sec
o
)
T

FIGURE 7 | The impact of the number of cores on PDW.

Average PDW in sec

N H D O O

SN
Frequency change as a percentage

FIGURE 8 | The impact of the clock frequency of cores on PDW.

decrease in the average PDW from 50.141 to 48 s. However,
further increasing the clock frequency yields only a marginal
decrease in the average PDW, often within the millisecond
range, as visualised by the curve's plateau in Figure 8. This
plateau suggests that the performance gain in terms of PDW
does not scale with the clock frequency increase when it is
above 25%. The plateau indicates that the PDW is limited to
around 48 s. This limitation arises from the performance of
some untraced hosts, as reflected by the A parameter values
discussed in Section 7.2.

8 | Conclusions

In this paper, we introduce CompDSE, a novel methodology for
efficient design space exploration (DSE) of computing sub-
systems within complex distributed cyber-physical systems.
CompDSE leverages automated derivation of abstract models for
an application workload, a computing hardware platform and a
workload-to-platform mapping from runtime trace data, inte-
grating them into a discrete event simulation environment for
performance evaluation. We demonstrate the benefits of
CompDSE by applying it on the ASML TWINSCAN lithography
machine. Our exploration of various design configurations to
optimise computing resources reveals potential performance
improvements. A significant advantage of CompDSE is its
ability to evaluate each design scenario in under a minute,
demonstrating its suitability/scalability for/to industrial-scale
applications. Although our small DSE experiment has been
done manually, CompDSE is well suited for integration with
search algorithms, such as genetic algorithms, to further
enhance its automation.

Author Contributions

Faezeh Sadat Saadatmand: conceptualization, formal analysis,
investigation, methodology, software, validation, visualization, writing —
original draft. Todor Stefanov: conceptualization, funding acquisition,
investigation, methodology, resources, supervision, writing - review and
editing. Ignacio Gonzalez Alonso: data curation, funding acquisition,
project administration, resources, supervision, writing - review and
editing. Andy D. Pimentel: funding acquisition, project administra-
tion, resources, writing — review and editing. Benny Akesson: data
curation, resources, writing — review and editing.

Conflicts of Interest

The authors declare no conflicts of interest.

Data Availability Statement

The data supporting the findings of this study is proprietary and
confidential, as it belongs to ASML. Because of restrictions on data
sharing, the experimental data cannot be made publicly available.
However, the methodology and analysis used in this paper are fully
described within the manuscript.

References

1. R. Alur, Principles of Cyber-Physical Systems (MIT Press, 2015).

2. S. Acur and T. Hendriks, “Vision and Outlook for Systems Archi-
tecting and Systems Engineering in the High-Tech Equipment In-
dustry,” TNO, Technical Report R10542 (2024).

13 of 14

85U017 SUOWIOD 8AITeR1D) 8|qeo! dde au Aq peusenob ae Sapie YO 8sh J0'Sa|nl 10} Ariqi 8uluQ AB]1M UO (SUONIPUOD-PUE-SWRIL0D" A3 [IMAJe.q)1|Bu JUO//SdNL) SUORIPUOD Pue SWis | 8y} 8eS *[520z/20/82] Uo AriqiTauliu (1M ‘'St ouL Aq 6T00Z zsdo/6r0T 0T/10p/w00" A8 M Ae.q|Bul UO"Yoleesael//:sdny wo.j pepeojumod ‘T ‘5202 ‘96EE86£C

3. B. Meier, M. Skelin, F. Beenker, and W. Leibbrandt, “HTSM Systems
Engineering Roadmap,” Technical Report (2020).

4. B. van der Sanden, Y. Li, J. van den Aker, et al., “Model-Driven
System-Performance Engineering for Cyber-Physical Systems: Industry
Session Paper,” in EMSOFT (2021), 11-22.

5. M. Herget, F. S. Saadatmand, M. Bor, et al., “Design Space Explo-
ration for Distributed Cyber-Physical Systems: State-of-the-Art, Chal-
lenges, and Directions,” in DSD (2022), 632-640.

6. B. Kienhuis, E. F. Deprettere, P. Van der Wolf, and K. Vissers, A
Methodology to Design Programmable Embedded Systems: The Y-Chart
Approach (SAMOS, 2002), 18-37.

7. F. S. Saadatmand, T. Stefanov, I. G. Alonso, et al., Automated Deri-
vation of Application Workload Models for Design Space Exploration of
Industrial Distributed Cyber-Physical Systems (ICPS, 2024).

8. P. Terway, K. Hamidouche, and N. K. Jha, “Dispatch: Design Space
Exploration of Cyber-Physical Systems,” arXiv preprint, arXiv:2009.10214
(2020).

9. R. Weber, S. Henkler, and A. Rettberg, “Multi-Objective Design
Space Exploration for Cyber-Physical Systems Satisfying Hard Real-
Time and Reliability Constraints,” in Proceedings of the IDEAL Work-
shop at CPSWeek, CEUR Workshop Proceedings (2014), 1337, 57-66.

10. J. Bakakeu, J. Fuchs, T. Javied, et al., “Multi-Objective Design Space
Exploration for the Integration of Advanced Analytics in Cyber-Physical
Production Systems,” in IEEM (2018), 1866-1873.

11. Y. Vanommeslaeghe, J. Denil, B. Van Acker, and P. De Meulenaere,
“Automatic Generation of Workflows for Efficient Design Space
Exploration for Cyber-Physical Systems,” in iThings, GreenCom,
CPSCom, SmartData, and Cybermatics (2021), 346-351.

12. M. Thompson and A. D. Pimentel, “Exploiting Domain Knowledge
in System-Level MPSoC Design Space Exploration,” Journal of Systems
Architecture 59, no. 7 (2013): 351-360, https://doi.org/10.1016/].sysarc.
2013.05.023.

13. Y. Vanommeslaeghe, J. Denil, J. De Viaene, D. Ceulemans, S.
Derammelaere, and P. De Meulenaere, “Leveraging Domain Knowledge
for the Efficient Design-Space Exploration of Advanced Cyber-Physical
Systems,” in DSD (2019), 351-358.

14. Y. Vanommeslaeghe, J. Denil, J. De Viaene, D. Ceulemans, S.
Derammelaere, and P. De Meulenaere, “Ontological Reasoning in the
Design Space Exploration of Advanced Cyber-Physical Systems,” Mi-
croprocessors and Microsystems 85 (2021): 104151, https://doi.org/10.
1016/j.micpro.2021.104151.

15. S. Narain, E. Mak, T. Huster, et al., “Design Space Exploration for
Cyber Physical Systems,” Perspecta Labs,” Technical Report (2019).

16. D. Kirov, P. Nuzzo, R. Passerone, and A. Sangiovanni-Vincentelli,
“ArchEx: An Extensible Framework for the Exploration of Cyber-
Physical System Architectures,” in DAC (2017), 1-6.

17. M. Amir and T. Givargis, “Pareto Optimal Design Space Exploration
of Cyber-Physical Systems,” Internet of Things 12 (2020): 100308, https://
doi.org/10.1016/j.i0t.2020.100308.

18. N. Miihleis, M. Glaf}, L. Zhang, and J. Teich, “A Co-Simulation
Approach for Control Performance Analysis During Design Space
Exploration of Cyber-Physical Systems,” ACM SIGBED Review 8, no. 2
(2011): 23-26, https://doi.org/10.1145/2000367.2000372.

19. D. Genius, I. Bournias, L. Apvrille, and R. Chotin, “High-Level Par-
titioning and Design Space Exploration for Cyber Physical Systems,” in
MODELSWARD (2020), 84-91, https://doi.org/10.5220/00091716008
40091.

20. A. Canedo and J. H. Richter, “Architectural Design Space Explo-
ration of Cyber-Physical Systems Using the Functional Modeling
Compiler,” Procedia CIRP 21 (2014): 46-51, https://doi.org/10.1016/j.
procir.2014.03.183.

21. S. Adyanthaya, H. A. Ara, J. Bastos, et al., “xCPS: A Tool to Explore
Cyber Physical Systems,” ACM SIGBED Review 14, no. 1 (2017): 81-95,
https://doi.org/10.1145/3036686.3036696.

22. P. Nuzzo, A. L. Sangiovanni-Vincentelli and R. M. Murray,
“Methodology and Tools for Next Generation Cyber-Physical Systems:
The iCyPhy Approach,” in INCOSE, Vol. 25, no. 1 (2015), 235-249.

23. Y. Xiao, C. Oh, M. Lora, and P. Nuzzo, “Efficient Exploration of
Cyber-Physical System Architectures Using Contracts and Subgraph
Isomorphism,” in 2024 Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE) (IEEE, 2024), 1-6.

24. L. Lamport, “Time, Clocks, and the Ordering of Events in a
Distributed System,” in Concurrency: The Works of Leslie Lamport
(2019), 179-196.

25. Trace Compass Developers. “Trace Compass [Software],” (2024),
https://tracecompass.org/.

26. M. Desnoyers and M. R. Dagenais, “The LTTng Tracer: A Low
Impact Performance and Behavior Monitor for GNU/Linux,” in OLS,
Vol. 2006 (2006), 209-224.

27. D. Wilner, “WindView: A Tool for Understanding Real-Time
Embedded Software Through System Vizualization,” ACM Sigplan No-
tices 30, no. 11 (1995): 117-123, https://doi.org/10.1145/216633.216674.

28. A. Varga and R. Hornig, “An Overview of the OMNeT-++ Simula-
tion Environment,” in SIMUTools (2008), 1-10.

29. M. L. Jones, “Trimmed Means and the Robustness of Estimation,”
Journal of Statistical Research 8, no. 2 (2014): 200-210.

14 of 14

IET Cyber-Physical Systems: Theory & Applications, 2025

85U017 SUOWIOD 8AITeR1D) 8|qeo! dde au Aq peusenob ae Sapie YO 8sh J0'Sa|nl 10} Ariqi 8uluQ AB]1M UO (SUONIPUOD-PUE-SWRIL0D" A3 [IMAJe.q)1|Bu JUO//SdNL) SUORIPUOD Pue SWis | 8y} 8eS *[520z/20/82] Uo AriqiTauliu (1M ‘'St ouL Aq 6T00Z zsdo/6r0T 0T/10p/w00" A8 M Ae.q|Bul UO"Yoleesael//:sdny wo.j pepeojumod ‘T ‘5202 ‘96EE86£C

https://doi.org/10.1016/j.sysarc.2013.05.023
https://doi.org/10.1016/j.sysarc.2013.05.023
https://doi.org/10.1016/j.micpro.2021.104151
https://doi.org/10.1016/j.micpro.2021.104151
https://doi.org/10.1016/j.iot.2020.100308
https://doi.org/10.1016/j.iot.2020.100308
https://doi.org/10.1145/2000367.2000372
https://doi.org/10.5220/0009171600840091
https://doi.org/10.5220/0009171600840091
https://doi.org/10.1016/j.procir.2014.03.183
https://doi.org/10.1016/j.procir.2014.03.183
https://doi.org/10.1145/3036686.3036696
https://tracecompass.org/
https://doi.org/10.1145/216633.216674

	CompDSE: A Methodology for Design Space Exploration of Computing Subsystems Within Complex Cyber‐Physical Systems
	1 | Introduction
	2 | Related Work
	3 | Background: Traces
	3.1 | Execution Traces
	3.2 | System Status Traces

	4 | Overview of the CompDSE Methodology
	5 | Models Used in CompDSE
	5.1 | Application Workload Model
	5.2 | Computing Hardware Platform Model
	5.3 | Mapping Model
	5.4 | Environmental Influence Model

	6 | The CompDSE Toolbox
	6.1 | Automated Derivation and Integration
	6.1.1 | Application Workload

	Workload Model Derivation (WLMD)
	Workload Model Integration
	Outline placeholder
	6.1.2 | Hardware Platform
	6.1.3 | Mapping

	6.2 | Model‐to‐Model Transformation and Code Generation
	6.2.1 | Application Workload
	6.2.2 | Mapping
	6.2.3 | Hardware Platform

	7 | Evaluation of the CompDSE Methodology
	7.1 | Case Study: ASML TWINSCAN Lithography Machine
	7.2 | Experimental Setup
	7.3 | Evaluation Results
	7.3.1 | Efficiency
	7.3.2 | Accuracy
	7.3.3 | Exploration

	8 | Conclusions
	Author Contributions
	Conflicts of Interest
	Data Availability Statement

