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 A B S T R A C T

Reinforcement Learning has achieved huge success with various applications in controlled environments. 
However, limited application is seen in real-world applications due to challenges in guaranteeing safe system 
operation, required experiment time, and required a-priori system knowledge and models in existing methods. 
In this work, we propose a novel exploration method, which addresses simultaneously the challenges associated 
with safe and time-efficient exploration while dealing with system uncertainty. This method integrates a 
reciprocal Control Barrier Function and an on-line learned Gaussian Process Regression model. For safe system 
operation, we leverage the information from the reciprocal Control Barrier Function to limit the step size of 
the agent’s actions, when approaching the safety boundary. To make this exploration process time-efficient, 
we use the information gain metrics that are calculated using the estimation of the action-values by an on-line 
learned Gaussian Process Regression model to determine the direction of the agent’s actions. We demonstrate 
the potential of our exploration method in simulation and on a vehicle test-bench for efficiency-optimal 
calibration of a thermal management system for battery electric vehicles. To quantify the benefits in terms of 
safety, optimality, and time efficiency, we benchmark our exploration method with random and uncertainty-
driven exploration methods in a simulation environment. For the studied test case, the proposed exploration 
method satisfies the safety constraint and it converges to within 1.25% of the true optimal action while 
requiring 28% and 18% lower experiment time compared to the random and uncertainty-driven exploration 
methods, respectively. For the proposed method, its performance is also demonstrated on a vehicle test bench. 
Experimental results show that the maximal thermal system efficiency is realized within 2% of the true 
optimum, while effectively dealing with the safety constraints.
1. Introduction

1.1. Challenges in Reinforcement Learning applications

Reinforcement Learning (RL) (Sutton & Barto, 2018) is a learning 
paradigm where an agent learns to take optimal actions in interaction 
with its environment. The two key elements of all RL algorithms are 
exploitation and exploration. To determine the optimal actions, a RL 
agent should explore actions other than the current optimal action 
in the action space to improve its estimation of the action-values. To 
date, RL algorithms have achieved a tremendous success in applications 
within a simulated ecosystem, for example, video games (Atari Mnih 
et al., 2013, Game of Go Silver et al., 2016) and web recommender 
systems (Afsar et al., 2022). On the other hand, RL is also inter-
esting for learning-based control of the physical systems. Especially,
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model-free RL has the potential to minimize the control development 
time by saving time required in generating models a-priori in existing 
model-based control approaches. Model-free RL approach can learn 
models in an autonomous manner by interacting with its environment 
without a prior system model.  This approach also has the potential to 
automate the control development process and significantly minimize 
the expert involvement in the process. Moreover, it can be robust to 
changes in the real-world operating conditions and disturbances as 
it learns from the real data. There is a growing body of literature 
that has explored RL-based control for engineering systems in the 
simulation environment, for example, process control (Nian et al., 
2020), robotics (Kormushev et al., 2013), vehicle energy management 
systems (Qi et al., 2019), automotive powertrain control (Norouzi et al., 
2023) and autonomous vehicles (Aradi, 2022). However, a limited 
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Table 1
A relative comparison of state-of-the-art exploration methods and the proposed method in this work. The benchmark method for the comparison is the random exploration method 
marked in bold. (Y) is yes, and (N) is no. (0) is the benchmark, while (+) represents an improvement over the benchmark, and (−) represents a decline in comparison to the 
benchmark. UCB is upper confidence bound, GPR is Gaussian Process Regression and rCBF is reciprocal control barrier function.
 Method classification Method Evaluation criteria
 Explicitly deal

with safety
Reduction in
experiment time

Reduction in a-priori
system knowledge 
required

 

 Random 𝜺−greedy (Sutton & Barto, 2018) N 0 0  
 Uncertainty-driven UCB (Guo et al., 2020; Wu et al., 2016) N + 0  
 Thompson Sampling (Guo et al., 2020; Urteaga 

& Wiggins, 2017)
N + 0  

 GPR (Kuss & Rasmussen, 2003) N + 0  
 Safety-driven Model-based on-policy exploration:

(Alshiekh et al., 2018; Yu et al., 2019)
(Berkenkamp et al., 2017; Zhao et al., 2022)

Y – –  

 Model-based off-policy exploration:
(Gros et al., 2020; Hunt et al., 2021)
(Wagenmaker & Pacchiano, 2023; Zhu & 
Kveton, 2022)

Y – –  

 Model-free off-policy using rCBF (Marvi & 
Kiumarsi, 2021)

Y + +  

 This work Model-free off-policy using rCBF and GPR Y + +  
number of RL applications is seen in the real-world operation of these 
systems due to multiple challenges in the exploration process, which 
are  Garcıa and Fernández (2015):

1. Guarantee safe operation, i.e., satisfy safety constraints;
2. Required experiment time, i.e., time required to collect data for 
generating models and time required in exploration to learn the 
optimal policy;

3. Required a-prior system knowledge, that consists of information 
on the system’s physical limits and input constraints. This infor-
mation is typically derived from historical data and models of 
the existing, related systems, or both.

1.2. Exploration in Reinforcement Learning

Multiple studies have investigated different exploration methods 
for RL in varying applications. An overview of these methods can be 
found in Ladosz et al. (2022). The existing exploration methods can be 
categorized into three types:  (i) Random exploration, (ii) Uncertainty-
driven exploration; and (iii) Safety-driven exploration. In Table  1, we 
present a brief review of the main characteristics of state-of-the-art 
exploration methods.

1.2.1. Random exploration
Typically, random exploration using a 𝜀−greedy policy is applied for 

systems without safety constraints (Sutton & Barto, 2018). In the case 
of systems with safety constraints, random exploration is applied in the 
simulation environment where there is no risk of hardware damage. 
The advantage of using the random exploration is that it can converge 
to global optimal solutions in the long-term, i.e., if every state–action 
pair is visited a large number of times. Its downsides include potential 
unsafe system operation without prior system knowledge and large ex-
periment time. For systems with safety constraints, random exploration 
can be used only if the safe action space is known a-prior. However, this 
is often difficult to determine for new and complex real-world systems 
where the safe action space varies with changes in operating conditions, 
for example, varying ambient conditions.

1.2.2. Uncertainty-driven exploration
Multiple studies have investigated uncertainty-driven exploration 

strategies to reduce the experiment time required for exploration while 
learning the optimal policy. The most commonly studied strategies 
are upper confidence bound (UCB) (Sutton & Barto, 2018), Thompson 
2 
Sampling (Thompson, 1933) and Gaussian Process Regression (GPR)-
driven exploration (Kuss & Rasmussen, 2003). In all these methods, 
the action-values are learned sequentially from the data samples, and 
the uncertainty in the action-values drives the exploration process. 
The agent explores the actions with the highest uncertainty in the 
corresponding action-value estimates and reduces the exploration of 
actions with low uncertainty. This results in quicker convergence to 
optimal actions compared to random exploration. As far as safety is 
concerned, these methods also require an understanding of the system’s 
physical limits and input constraints to determine the safe action space, 
which is non-trivial to determine for new and complex real-world 
systems (Guo et al., 2020; Urteaga & Wiggins, 2017; Wu et al., 2016).

1.2.3. Safety-driven exploration
The last decade has seen an increasing interest in exploration strate-

gies that deal with safety constraints (Brunke et al., 2022; Garcıa & 
Fernández, 2015). Most studies found on safe exploration use a prior 
system model, for example, tabular model (Alshiekh et al., 2018), 
state-space model (Yu et al., 2019), data-driven model using Gaus-
sian Process Regression (Berkenkamp et al., 2017) and first-principle 
models (Gros et al., 2020; Hunt et al., 2021; Zhao et al., 2022). This 
approach needs an accurate system model to determine the safe control 
inputs under a wide range of operating conditions, which is challenging 
to generate for complex systems. Typical examples of modeling tech-
niques used are first principle and data-driven modeling. For complex 
systems, generating system models using first principles is challenging 
and time-consuming. Therefore, data-driven models are often used. Due 
to the black-box nature of data-driven models, (very) limited system 
knowledge is needed to make these models. Nevertheless, data-driven 
modeling requires significant data, resulting in large experiment times.

Limited work has been found on model-free safe exploration. In 
Marvi and Kiumarsi (2021), a reciprocal control barrier function (rCBF) 
is used for safe exploration using model-free RL. rCBF is an adapted 
version of Control Barrier Function (CBF), which has been extensively 
studied for formal proofs of safety for dynamical systems in the field of 
control theory (Anand et al., 2021; Prajna & Jadbabaie, 2004; Wieland 
& Allgöwer, 2007). For safe exploration, the reward is augmented with 
a rCBF value to indicate proximity to the safe boundary. However, 
safety is treated as a soft constraint in this formulation, which can result 
in constraint violation because it is difficult to interpret the individual 
contribution of reward and rCBF term in the feedback signal. Therefore, 
there is a non-zero probability of violating the safety constraint to 
determine the unsafe action.
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Most of the existing work on safe exploration follows an on-policy 
approach where one policy is used for both exploration and exploita-
tion (Alshiekh et al., 2018; Berkenkamp et al., 2017; Yu et al., 2019; 
Zhao et al., 2022). The disadvantage of using on-policy approach is 
that it learns action-values for a near-optimal policy, which is always 
exploring. Off-policy approach overcomes this limitation by employing 
two policies, one that is exploratory and the other that becomes the 
optimal policy. The explorative policy is called the behavior policy, 
while the learned policy is called the target policy. In Wagenmaker 
and Pacchiano (2023), Zhu and Kveton (2022), off-policy approach is 
used for safe exploration, where the behavior policy is learned from 
a historical dataset that provides a-prior information on the expected 
action-value estimations and unsafe actions. The downside of this 
approach is that the system’s safe operation depends on the data’s 
coverage, i.e., values of states and actions, in the historical dataset. 
Therefore, it is challenging to maintain safe operation in conditions that 
are not contained in the historical dataset. 

A most common feature of the existing works on safe exploration 
is that they require a significant a-priori system knowledge either in 
the form of system models or a historical dataset, which is then used 
to determine the safe action space. Uncertainty-driven methods reduce 
the experiment times by exploring actions that maximize information 
on the reward function, however, they can result in unsafe operation. 
To the extent of our knowledge, limited work exists that ensures safe 
operation of the systems with safety constraints while minimizing the 
experiment times, as illustrated in Table  1.

1.3. Research objective and main contribution

The objective of this work is to develop an exploration method for 
RL-based control that maintains safe operation of the system during 
learning and minimizes the required experiment time to determine the 
optimal policy. To minimize overall development time and required 
expert knowledge, we assume that a prior system model is not required.

The main contribution of this work is a novel Safe and Information-
seeking exploration (Safe-ISE) method that integrates techniques from 
the fields of Control Theory and Machine Learning. The proposed 
Safe-ISE method learns action-values from the data generated by agent-
environment interaction during the exploration process using an on-
line learned Gaussian Process Regression (GPR) model (Williams & 
Rasmussen, 2006). This model is used to estimate actions that give 
most information on the reward value in the studied operating re-
gion, i.e. actions that reduce model uncertainty and increase expected 
improvement in the action-values. This so-called Information Gain 
approach aims to reduce experiment time. To guarantee safe operation, 
a reciprocal Control Barrier Function (rCBF) (Ames et al., 2019; Marvi 
& Kiumarsi, 2021) is introduced that limits the step-size of the agent’s 
action when approaching the safety boundary. We demonstrate the 
potential of the proposed method for the calibration of a battery 
electric vehicle thermal system to optimize its steady-state operation 
in simulation and on a vehicle test-bench.

1.4. Outline

This paper is organized as follows. The problem formulation is 
stated in Section 2. Section 3 briefly reviews the different methods 
that are applied in this work. The fully integrated concept for the 
novel safe and time-efficient RL exploration method is presented in 
Section 4. This method is applied for the calibration of an automotive 
thermal management system. Section 5 introduces the studied system 
and associated control problem. For the proposed method, simulation 
results are presented in Section 6 and compared with the results of the 
random and uncertainty-driven exploration methods. Next, in Section 7 
the proposed method is implemented on a vehicle test bench and 
experimental results are discussed. Finally, Section 8 summarizes the 
main conclusions and gives directions for future research.
3 
Fig. 1. A general control schematic. Here, 𝑢 is the feedback control action, 𝑧 is the 
system performance, 𝑦 are the measured outputs, 𝑤 are the external inputs to the 
control system, 𝑑 are the unknown disturbances to the system, 𝑒 = 𝑟 − 𝑦 is the control 
error,  is the feedback controller and  is the setpoint generator.

2. General problem formulation

To develop safe and time-efficient RL for systems with limited prior 
knowledge, we consider a nonlinear dynamical control system, 
𝑥̇ = 𝑓 (𝑥, 𝑢, 𝑡) (1)

where 𝑥 ∈  ⊂ R𝑛 is the system internal state vector, 𝑢 ∈  ⊂ R𝑚

is the control input, 𝑓 is a 𝑛-dimensional system function vector. We 
consider a classical control architecture with a feedback controller 
for reference tracking and rejection of external disturbances 𝑑, and 
a setpoint generator  for optimizing system performance by smart 
choice of 𝑟, as shown in Fig.  1. This architecture is most commonly 
used in the control of real-world systems.

The process of determining optimal settings for controllers  that 
maximizes system performance 𝑧 and  is defined as control calibration, 
which is a challenging and most time-consuming task in the control 
development process (Garg et al., 2023). Typically, the first step in 
control calibration process is to determine the optimal control settings 
for a stationary operating point. The control objective is to learn 
the optimal steady-state reference setpoints 𝑟, which maximize system 
performance, defined by 𝑧, while the system internal state 𝑥 with safety 
constraints stays within the set of safe states 𝜍 ⊂  at all times.

Few assumptions are made in this work to clearly define the scope 
of the problem. We assume that the system dynamics are not known 
a-priori. However, we assume that the system internal states 𝑥 with 
safety constraints are measurable. Further, we assume that the safety 
constraint on 𝑥 poses either the lower or the upper constraint on 𝑟. 
We also assume that the feedback controller , which is an asymptotic 
stabilizing feedback controller, is available such that 𝑒 = 𝑟 − 𝑦 → 0
at a steady-state operating point. We assume that there exists a safe 
initial reference setpoint 𝑟(𝑡0) and it is known a-priori. 𝑟(𝑡0) is generally 
known or derivable from historical data of similar existing systems. 
For generality, we also assume that the system performance function 
defined by 𝑧(𝑟) can have one or multiple optimums.

3. Methodology

In this section, we present how we combine concepts from the field 
of Control Theory and Machine Learning for the formulation of safe and 
time-efficient RL, as illustrated in Fig.  2. First, the definitions of safe set 
and safe control are presented. Then, we discuss the approach to for-
mulate safety constraints using the reciprocal control barrier function. 
Next, we formulate the control calibration problem as a Contextual 
Bandits problem. We then present how we use the Gaussian Process 
Regression model to estimate action-values. Lastly, we present the 
proposed Safe and Information-seeking (Safe-ISE) exploration method.

3.1. Safe control and safe set

We use the concept of forward invariance to define safe control 
i.e., the system internal states always evolve and stay in the safe set 
𝜍 (Geurts, 1998). This implies that 𝑥 ∈ 𝜍 during the exploration and 
exploitation by the RL agent. To define the safe set 𝜍 as a function 
of system internal state 𝑥, we use the approach defined in Ames et al. 
(2019).
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Fig. 2. Overview of concepts used for developing Safe-ISE method. GPR stands for 
Gaussian Process Regression. Numbers in the prefix represents the corresponding section 
numbers.

Definition 3.1 (Safe Set). 𝜍 is defined as a superlevel set of a contin-
uously differentiable function ℎ ∶  ⊂ R𝑛 → R such that: 
𝜍 = {𝑥 ∈  ⊂ R𝑛

|ℎ(𝑥) ≥ 0}

𝜕𝜍 = {𝑥 ∈  ⊂ R𝑛
|ℎ(𝑥) = 0}

Int(𝜍 ) = {𝑥 ∈  ⊂ R𝑛
|ℎ(𝑥) > 0}

(2)

where 𝜕𝜍 is the boundary of the safe set and Int(𝜍 ) is the interior of 
the safe set.

Here, ℎ(𝑥) is used to formulate the safety constraint on the sys-
tem internal state 𝑥 as described in Marvi and Kiumarsi (2021). The 
constraints are formulated as, 
ℎ(𝑥) ≥ 0 (3)

where, 

ℎ(𝑥) =

{

𝑥 − 𝑥, if 𝑥 is upper bounded
𝑥 − 𝑥, if 𝑥 is lower bounded (4)

where, 𝑥 is an upper bound on state 𝑥, 𝑥 is a lower bound on state 𝑥 and 
are assumed to be known a-priori. For real-world physical systems, 𝑥, 𝑥
are generally known from the operational guidelines of the components 
present in the system. ℎ(𝑥) ≥ 0 holds true for all 𝑥 ∈ 𝜍 as given by Eq. 
(2). 

3.2. Reciprocal control barrier function (rCBF)

rCBF is a modified form of a control barrier function introduced 
in Ames et al. (2014) and its value blows up as 𝑥 → 𝜕𝜍 . We use rCBF to 
provide information on the unsafe system operation to the agent during 
the exploration. rCBF, represented by 𝐵̃(𝑥), is defined as a function of 
the constrained system state 𝑥 and satisfies the following conditions,

1. 𝐵̃(𝑥) > 0 ∀𝑥 ∈ 𝜍

2. 𝐵̃(𝑥) → ∞ ∀𝑥 ∈ 𝜕𝜍

The most common choices for 𝐵̃(𝑥) found in literature (Ames et al., 
2019; Marvi & Kiumarsi, 2021) are logarithmic functions that satisfy 
the above two conditions. However, a common limitation of these 
functions is that 𝐵̃ is not well defined for ℎ(𝑥) < 0 and provide incorrect 
information about the unsafe states. Therefore, we propose a modified 
function whose magnitude stays large for unsafe states, i.e., 𝐵̃(𝑥) →
∞ ∀ ℎ(𝑥) < 0, see Fig.  3. It is expressed as, 

𝐵̃(𝑥) =

⎧

⎪

⎨

⎪

⎩

− 1
𝜁 log

(

𝛾ℎ(𝑥)
1+𝛾ℎ(𝑥)

)

, ℎ(𝑥) > 𝜉

− 1
𝜁 log

(

𝛾𝜉
1+𝛾𝜉

)

, ℎ(𝑥) ≤ 𝜉
(5)

where 𝜉 is a small positive constant, which is introduced for the 
continuity of 𝐵̃(𝑥) around ℎ(𝑥) = 0. 𝛾, 𝜁 are tunables and affect the 
scaling and rate of change of 𝐵̃(𝑥) for ℎ(𝑥) > 𝜉, respectively. We exploit 
the exponential increase in the value of 𝐵̃(𝑥) as ℎ(𝑥) → 0 to limit the 
4 
Fig. 3. Proposed 𝐵̃(𝑥) function.

exploration process approaching 𝜕𝜍 . It is achieved by chosing the step 
size of the agent’s action 𝛥𝑎 approaching 𝜕𝜍 inversely proportional to 
𝐵̃(𝑥). 𝛥𝑎 is expressed as, 

𝛥𝑎 ∝ 1
𝐵̃(𝑥)

(6)

3.3. Contextual Bandits problem

The output 𝑟 of  in Fig.  1 has no impact on the future operating 
conditions 𝑤 and future reference setpoints in steady-state operating 
conditions of the system. Therefore, we propose to use Contextual 
Bandits RL algorithm to learn the optimal steady-state reference set-
points 𝑟 (see control problem in Section 2). In a Contextual Bandits 
problem, an action 𝑎 in a stationary scenario, also called the context 𝑠, 
is independent of previous actions and does not affect future contexts 
and actions. This is consistent with steady-state control of the system 
around a stationary operating point. The objective of a Contextual 
Bandit RL problem is to determine the policy 𝜋(𝑠) by mapping the 
context 𝑠 to optimal actions 𝑎∗ that maximizes the agent’s reward 
𝑅 (Sutton & Barto, 2018). To determine 𝑎∗, the average reward or 
action value 𝑞(𝑠, 𝑎) of taking an action 𝑎 in context 𝑠 is calculated. 𝑞(𝑠, 𝑎)
is defined as, 

𝑞(𝑠, 𝑎) =
∑𝑘=𝑡

𝑘=1 𝑅𝑘 ⋅ 1𝑎𝑘=𝑎
∑𝑘=𝑡

𝑘=1 1𝑎𝑘=𝑎
(7)

where 1𝑎𝑘=𝑎 is 1 when action 𝑎 is taken and 0 otherwise. 𝑎∗ in context 
𝑠 is defined as the action with the maximum action value and it is 
expressed as, 
𝑎∗(𝑠) = argmax

𝑎
𝑞(𝑠, 𝑎) (8)

3.4. Gaussian Process Regression for approximating action-values

For learning action-values 𝑞(𝑠, 𝑎), we use a sampled-based learning 
technique. In this technique, the agent incrementally learns action-
values using the information from a sequence of data samples one at 
a time. We use the Gaussian Process Regression (GPR) model because 
it can learn from the data samples incrementally. The GPR model 
approximates 𝑞(𝑠, 𝑎) ∀ 𝑎 ∈  using the sampled data and we use its 
mean and uncertainty predictions to guide the exploration. The true 
action-values 𝑞(𝑠, 𝑎) can be written as, 
𝑞(𝑠, 𝑎) = 𝑞(𝑠, 𝑎) + 𝜂 (9)

where 𝜂 is the noise, 𝑠, 𝑎 are the inputs to the model and 𝑞(𝑠, 𝑎) is the 
action-value estimate. 𝑞(𝑠, 𝑎) is distributed as a Gaussian Process, which 
is characterized by its mean function 𝜇(𝑠, 𝑎) and a covariance function 
𝑘([𝑠, 𝑎], [𝑠′, 𝑎′]) (Williams & Rasmussen, 2006) and it is defined as, 
𝑞(𝑠, 𝑎) ∼ 𝜇(𝑠, 𝑎), 𝑘([𝑠, 𝑎], [𝑠′, 𝑎′]) (10)
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Fig. 4. Illustration of the approach used to determine the average reward. Dotted black 
line shows the agent’s action 𝑎 and solid black line shows the corresponding system 
output 𝑦.

where [𝑠′ 𝑎′] is the prediction context-action pair for which the GPR 
model is evaluated. To determine 𝑞(𝑠, 𝑎), the reward signal is averaged 
over a time duration of 𝑙2 seconds when the system output 𝑦 is sta-
tionary as shown in Fig.  4. The stationary condition is detected when 
the system output 𝑦 corresponding to agent’s action 𝑎 is within the 
desired tolerance of ±𝜆 from 𝑎 for the duration of 𝑙1 seconds. The total 
time required before 𝑞(𝑠, 𝑎) value is sampled is denoted by 𝑡𝑒𝑥𝑝, which 
is equivalent to the time required for a single experiment. Due to the 
averaging of the reward signal, the observations 𝑞(𝑠, 𝑎) are assumed to 
be noise-free. The outputs of the GPR model are the predictions of mean 
𝜇𝑞(𝑠, 𝑎) and variance 𝜎𝑞(𝑠, 𝑎) in the estimated action-values 𝑞(𝑠, 𝑎).

4. Safe and information-seeking exploration

The proposed RL-based control system with the Safe-ISE method is 
shown in Fig.  5. The corresponding pseudo-code is shown in Algorithm 
1. The system signals are sampled with a sampling time of one second 
and time is represented by 𝑡. The iterations of the agent-environment 
interactions are represented by 𝑖 = 1, 2, 3,…, which is incremented only 
when an agent takes a new action. An off-policy learning approach is 
used for exploration, which consists of two different policies, i.e., be-
havior policy 𝜋𝑏(𝑠) and target policy 𝜋𝜏 (𝑠). 𝜋𝑏(𝑠) can be used to generate 
data at every time instant 𝑖 by exploration. Therefore, in order to learn 
the model for 𝑞(𝑠, 𝑎), we use an off-policy approach. 𝜋𝑏(𝑠) converges to 
an optimal policy over iterations and this converged policy is assigned 
as the target policy 𝑎∗(𝑠) ≡ 𝜋𝜏 (𝑠), which is a fixed policy. This 𝜋𝜏 (𝑠) can 
then be used for deployment on the system.

4.1. Initialization

As a first step in the exploration, the environment context 𝑠𝑡 is 
set to a constant value, which is equivalent to defining a steady-state 
operating point for the system. Thereafter, the hyperparameter settings 
for the different functions in Fig.  5 including rCBF, signal averaging, 
GPR model selection and detect stationary conditions are defined. The 
choice of hyperparameter settings are listed in Table  2, which are 
described later in Section 5.3. These settings are kept constant during 
the exploration process. To store data on actions 𝑎𝑖 taken by the agent, 
corresponding action-values 𝑞(𝑠𝑖, 𝑎𝑖) and rCBF values 𝐵̃(𝑠𝑖, 𝑎𝑖), matrices 
are defined and initialized equivalent to zero before exploration begins. 
The agent then begins exploration by taking a safe initial action 𝑎0 for 
iteration 𝑖 = 1 followed by small steps 𝛥𝑎0 around 𝑎0 i.e., 𝑎0 +𝛥𝑎0, 𝑎0 −
𝛥𝑎0 for 𝑖 = 2, 3 respectively. It is assumed that a safe initial action 
𝑎0 is known from experience with similar systems. By taking small 
steps around 𝑎0, the agent determines the action 𝑎 ∈ {𝑎0 − 𝛥𝑎0, 𝑎0 +
𝛥𝑎0} results in 𝑥 approaching the safe boundary 𝜕𝜍 . For every action 
𝑎𝑖 during the exploration, the agent receives a measurement of the 
average context 𝑠𝑖, average reward i.e., 𝑞(𝑠𝑖, 𝑎𝑖) and average value of 
𝐵̃(𝑠𝑖, 𝑥𝑡) i.e., ̄̃𝐵(𝑠𝑖, 𝑥𝑖) using the signal averaging block. 𝑠𝑖, ̄̃𝐵(𝑠𝑖, 𝑥𝑖) are 
calculated in a similar approach to 𝑞(𝑠 , 𝑎 ), as illustrated in Fig.  4. First, 
𝑖 𝑖

5 
the GPR model is learned after every agent-environment interaction as 
in Eq.  (10). Second, to determine actions that approach 𝜕𝜍 , we create 
an additional mapping from agent’s action 𝑎𝑖 to the ̄̃𝐵(𝑠𝑖, 𝑥𝑖) value, 
i.e., ̂̃𝐵(𝑠𝑖, 𝑎𝑖) ∶ 𝑎𝑖 → ̄̃𝐵(𝑠𝑖, 𝑥𝑖). This mapping provides information to 
the agent about actions lying away or close to the safe boundary 𝜕𝜍
under the assumption that 𝑥 increases or decreases monotonically as 
a function of 𝑎 in 𝜍 . As a result of this initial exploration, the agent 
determines the direction in actions approaching 𝜕𝜍 and estimates of 
the action-values as predicted by the GPR model shown in Fig.  6(a).

4.2. Define action space

After the initial exploration around 𝑎0, the action space 𝑖 for explo-
ration in the next iteration, i.e., 𝑖 = 4 is determined. Fig.  6(b) illustrates 
the process of defining the action space. For an informed exploration 
of the action space, we introduce the concept of information gain (IG) 
metrics, which is used to define 𝑖. IG is defined as a combination of 
two different metrics of information: (1) Uncertainty in the action-value 
estimate i.e., standard deviation 𝜎𝑞(𝑠𝑖, 𝑎 ∈ 𝑖) and (2) Proximity to the 
current maxima (PM) of other local or global maxima in the action-
values. The metric PM is adapted from the expected improvement 
acquisition function from the theory of Bayesian Optimization (Pelikan 
et al., 1999). Both these values are derived from the GPR model 
predictions of 𝑞(𝑠𝑖, 𝑎𝑖). For the action space feasible for exploration at 
iteration 𝑖 i.e., 𝑖, PM(𝑠𝑖, 𝑎 ∈ 𝑖) is defined as, 
PM(𝑠𝑖, 𝑎 ∈ 𝑖) =

𝜇𝑞(𝑠𝑖, 𝑎 ∈ 𝑖) −
(

𝜇𝑞(𝑠𝑖, 𝑎∗𝑖 ) − 1.96 × 𝜎𝑞(𝑠𝑖, 𝑎∗𝑖 )
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Minimum best prediction

(11)

where, 𝑎∗𝑖  is the current optimal action (i.e., action with maximum 
action-value) at instant 𝑖. 𝜇𝑞(𝑠𝑖, 𝑎∗𝑖 ) − 1.96 × 𝜎𝑞(𝑠𝑖, 𝑎∗𝑖 ) corresponds to the 
lowest value in 95% prediction interval of action value at 𝑎∗𝑖 . A 95% 
prediction interval is chosen to make this metric more conservative 
such that the agent assumes a lower confidence in the current best 
action and favors exploration of other actions in the action space. PM 
compares the lower prediction value at the current best action with 
the mean predictions for all 𝑎 ∈ 𝑖. Larger values of PM correspond 
to other maximas and gives indication of presence of other maximas to 
the agent and potential actions that should be explored to converge to 
the global maxima.

𝑖 consists of the currently estimated safe action space 𝜍,𝑖 and 
small action space outside the safe action space +

𝑖  and it is expressed 
as, 
𝑖 = 𝜍,𝑖 ++

𝑖 (12)

where 𝜍,𝑖 ⊂  is the safe action space at 𝑖th iteration. 𝜍,𝑖 is defined 
as, 
𝜍,𝑖 = [𝑎𝑖, 𝑎𝑖] (13)

where 𝑎𝑖 is expressed as, 

𝑎𝑖 =

⎧

⎪

⎨

⎪

⎩

max{𝑎0, 𝑎1,… , 𝑎𝑖−1} if ̂̃𝐵(𝑠𝑖, 𝑎0 + 𝛥𝑎0) > ̂̃𝐵(𝑠𝑖, 𝑎0)
max({𝑎 ∣ PM(𝑠, 𝑎 ∈ ) > PM})

if ̂̃𝐵(𝑠𝑖, 𝑎0 − 𝛥𝑎0) > ̂̃𝐵(𝑠𝑖, 𝑎0)

(14)

Here, PM is the lower bound on PM below which the agent does not 
explore the corresponding actions in the action space. 𝑎𝑖 is defined as, 

𝑎𝑖 =

⎧

⎪

⎨

⎪

⎩

min({𝑎 ∣ PM(𝑠, 𝑎 ∈ ) > PM})

if ̂̃𝐵(𝑠𝑖, 𝑎0 + 𝛥𝑎0) > ̂̃𝐵(𝑠𝑖, 𝑎0)
min{𝑎0, 𝑎1,… , 𝑎𝑖−1} if ̂̃𝐵(𝑠𝑖, 𝑎0 − 𝛥𝑎0) > ̂̃𝐵(𝑠𝑖, 𝑎0)

(15)

IG is also calculated for +
𝑖  to determine if there exists a maxima 

outside 𝜍,𝑖 using the metrics PM and the corresponding uncertainty 
𝜎 (𝑠 , 𝑎 ) in its action-value estimation. This approach prevents the 
𝑞 𝑖 𝑖
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Fig. 5. Control schematic showing off-policy learning for exploration and exploitation. Blocks highlighted in green are the focus of this work. 𝑖 = 1, 2, 3,… represents the iterations 
of the agent-environment interaction. 𝑡 = 1, 2, 3,… represents the discrete time instances. (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)
Fig. 6. Illustration of Safe-ISE method after initial exploration around the safe action 𝑎0 at iteration i = 4. In Fig. (a), solid blue line shows the true action-value function, the 
dotted blue line is the mean prediction from GPR model, shaded region in gray shows the 95% prediction interval estimated by GPR model, (∗) represents the ̄̃𝐵 values, (∙) in 
blue are action-values corresponding to agent’s actions. In Fig. (b), the black line shows the standard deviation estimated by GPR and the red line shows the PM values. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
agent from exploring actions approaching 𝜕𝜍 when no maxima exists 
as predicted by PM. +

𝑖  is defined as, 

+
𝑖 =

{

[𝑎𝑖, 𝑎𝑖 + 𝛥𝑎+] if ̂̃𝐵(𝑠𝑖, 𝑎0 + 𝛥𝑎0) > ̂̃𝐵(𝑠𝑖, 𝑎0)
[𝑎𝑖 − 𝛥𝑎+, 𝑎𝑖] if

̂̃𝐵(𝑠𝑖, 𝑎0 − 𝛥𝑎0) > ̂̃𝐵(𝑠𝑖, 𝑎0)
(16)

where 𝛥𝑎+ is the maximum action step size that that lies outside the 
safe action space and it is kept constant during exploration. It is a 
calibration parameter where its smaller values reduce the probability 
of the agent exploring actions approaching 𝜕 .
𝜍

6 
4.3. Action selection

To choose its next action 𝑎𝑖, the agent compares the IG metrics for 
two action spaces. i.e., 𝜍,𝑖 and +

𝑖 . The agent then chooses 𝑎𝑖 from the 
actions that has the highest uncertainty i.e., 𝜎𝑞(𝑠𝑖, 𝑎) in action-value and 
for which the condition PM(𝑠𝑖, 𝑎 ∈ 𝑖) > PM is satisfied. If the action 
satisfying these conditions lies in 𝜍,𝑖, the agent takes the action with 
maximum uncertainty as follows, 

𝑎𝑖 = argmax 𝜎𝑞(𝑠𝑖, 𝑎) (17)

𝑎
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Algorithm 1: Safe and Information-seeking exploration (Safe-ISE)
Input: Define context 𝑠, safe initial action 𝑎0, define hyperparameters in Table 2

1 Initialize 𝑖 = 0, 𝛥𝑎+ ;
2 Initialize 𝐴(𝑖), which is a vector to store values of all actions taken by the agent ;
3 Initialize , which is a set of discrete actions at which GPR model is evaluated;
4 Initialize 𝑞(𝑠, 𝑎), ̂̃𝐵(𝑠, 𝑎) for 𝑎 ∈  ;
5 while stopping criteria not met do
6 𝑖 = 𝑖 + 1;
7 for i = 1,2,3 do
8 Explore around safe action: 𝑎 = 𝑎0 ± 𝛥𝑎0, 𝐴(𝑖) ← 𝑎 ;
9 end 
10 for 𝑖 ≥ 4 do
11 PM(𝑠𝑖, 𝑎 ∈ 𝑖) ← 𝜇𝑞(𝑠𝑖,𝑖) − 𝜇𝑞(𝑠𝑖, 𝑎∗𝑖 ) − 1.96 × 𝜎𝑞(𝑠𝑖, 𝑎∗𝑖 ) ;

12 𝑎𝑖 ←

{

min({𝑎 | PM(𝑠, 𝑎 ∈ ) > PM}) if ̂̃𝐵(𝑠𝑖, 𝑎0 + 𝛥𝑎0) > ̂̃𝐵(𝑠𝑖, 𝑎0)
min{𝑎0, 𝑎1, ...., 𝑎𝑖−1} if ̂̃𝐵(𝑠𝑖, 𝑎0 − 𝛥𝑎0) > ̂̃𝐵(𝑠𝑖, 𝑎0)

 ;

13 𝑎𝑖 ←

{

max{𝑎0, 𝑎1, ...., 𝑎𝑖−1} if ̂̃𝐵(𝑠𝑖, 𝑎0 + 𝛥𝑎0) > ̂̃𝐵(𝑠𝑖, 𝑎0)
max({𝑎 | PM(𝑠, 𝑎 ∈ ) > PM}) if ̂̃𝐵(𝑠𝑖, 𝑎0 − 𝛥𝑎0) > ̂̃𝐵(𝑠𝑖, 𝑎0)

 ;

14 𝜍,𝑖 ← [𝑎𝑖, 𝑎𝑖] ;

15 +
𝑖 ←

{

[𝑎𝑖, 𝑎𝑖 + 𝛥𝑎+] if ̂̃𝐵(𝑠𝑖, 𝑎0 + 𝛥𝑎0) > ̂̃𝐵(𝑠𝑖, 𝑎0)
[𝑎𝑖 − 𝛥𝑎+, 𝑎𝑖] if

̂̃𝐵(𝑠𝑖, 𝑎0 − 𝛥𝑎0) > ̂̃𝐵(𝑠𝑖, 𝑎0)
 ;

16 𝑖 ← 𝜍,𝑖 ++
𝑖 ;

17 if argmax𝑎 𝜎𝑞(𝑠𝑡, 𝑎 ∈ 𝑖) ∈ 𝜍,𝑖 then
18 𝑎𝑖 ← argmax𝑎 𝜎𝑞(𝑠𝑖, 𝑎)
19 else if argmax𝑎 𝜎𝑞(𝑠𝑡, 𝑎 ∈ 𝑖) ∈ +

𝑖 and PM(argmax𝑎 𝜎𝑞(𝑠𝑡, 𝑎 ∈ +
𝑖 )) > PM then

20 𝑎𝑖 ←

{

𝑎𝑖 + 𝜖𝐵̃∕ ̂̃𝐵(𝑠𝑖, 𝑎𝑖) if ̂̃𝐵(𝑠𝑖, 𝑎0 + 𝛥𝑎0) > ̂̃𝐵(𝑠𝑖, 𝑎0)
𝑎𝑖 − 𝜖𝐵̃∕ ̂̃𝐵(𝑠𝑖, 𝑎𝑖) if

̂̃𝐵(𝑠𝑖, 𝑎0 − 𝛥𝑎0) > ̂̃𝐵(𝑠𝑖, 𝑎0)
21 𝐴(𝑖) ← 𝑎𝑖 ;
22 end 
23 Observe 𝑞(𝑠𝑖, 𝑎𝑖), 𝑥𝑖 ;

24 𝐵̃(𝑠𝑖, 𝑥𝑖) ←

⎧

⎪

⎨

⎪

⎩

− 1
𝜁
log

(

𝛾ℎ(𝑥)
1+𝛾ℎ(𝑥)

)

, ℎ(𝑥) > 𝜉

− 1
𝜁
log

(

𝛾𝜉
1+𝛾𝜉

)

, ℎ(𝑥) ≤ 𝜉
 ;

25 Update ̂̃𝐵(𝑠𝑖, 𝑎𝑖) ;
26 Update GPR model using data 𝐴(𝑖), 𝑞(𝑠𝑖, 𝑎𝑖) ;
27 Compute GPR predictions 𝜇𝑞(𝑠𝑖, 𝑎 ∈ ), 𝜎𝑞(𝑠𝑖, 𝑎 ∈ );
28 𝑎∗𝑖 ← argmax𝑎 𝑞(𝑠𝑖, 𝑎 ∈ 𝑖) ;
29 end 
On the other hand, if such an action lies in +
𝑖 , the agent takes a 

step size inversely proportional to 𝐵̃ towards 𝜕𝜍 , expressed as, 𝑎𝑖 is 
expressed as, 

𝑎𝑖 =

{

𝑎𝑖 + 𝜖𝐵̃∕ ̂̃𝐵(𝑠𝑖, 𝑎𝑖) if ̂̃𝐵(𝑠𝑖, 𝑎0 + 𝛥𝑎0) > ̂̃𝐵(𝑠𝑖, 𝑎0)
𝑎𝑖 − 𝜖𝐵̃∕ ̂̃𝐵(𝑠𝑖, 𝑎𝑖) if

̂̃𝐵(𝑠𝑖, 𝑎0 − 𝛥𝑎0) > ̂̃𝐵(𝑠𝑖, 𝑎0)
(18)

where 𝜖𝐵̃ is a constant of proportionality and a calibration parame-
ter. This ensures a decaying step size in approaching the constraint 
boundary to avoid constraint violation.

4.4. Stopping criteria

The agent stops the exploration process if either of the following 
termination conditions is met:

1. No action exists satisfying criteria defined in Section 4.3,
2. Change in optimal action 𝛥𝑎∗ < 𝜀 for 𝑝 number of iterations. 
Here, 𝜀 is a small scalar. Decreasing 𝜀 increases the experiment 
time and probability to converge closer to the global optima and 
vice-versa. On the other hand, by decreasing 𝑝, the experiment 
time decreases with higher probability of getting stuck in local 
maxima,

3. Maximum allowable value of rCBF 𝐵̃ reached i.e., ̂̃𝐵(𝑠𝑖, 𝑎𝑖) ≥ 𝐵̃,
4. Maximum number of experiments allowed is reached i.e., 𝑁𝑒𝑥𝑝 ≥

𝑁 .
𝑒𝑥𝑝

7 
5. Application to an automotive heat pump system

To determine the potential of Safe-ISE method, we apply the pro-
posed exploration method to an automotive heat pump system in 
simulation. The focus of this work is on the cabin cooling mode of the 
heat pump system shown in Fig.  7. The pressure-enthalpy diagram, also 
called the Mollier diagram, shown in Fig.  8 can be used to explain the 
operation of the heat pump in the cabin cooling mode. In this mode, the 
heat pump system extracts the heat energy from the cabin and releases 
it to the environment to meet the desired cabin temperature. The 
system consists of four actuators i.e., expansion valve 𝑢𝑒𝑥𝑣, compressor 
𝑢𝑐𝑚𝑝, fan 𝑢𝑓𝑎𝑛 and blower 𝑢𝑏𝑙𝑤𝑟, two heat exchangers i.e., evaporator 
(EVA) and outer heat exchanger (OHX) and accumulator (ACC). The 
air flowing across the outer heat exchanger present at the vehicle 
front extracts the heat from the hot refrigerant flowing across it. The 
refrigerant then condenses and changes its phase from vapor to liquid. 
If the refrigerant temperature goes below its saturation temperature at 
a given pressure 𝑝3, it is in a subcooled liquid state. Here, the subcool 
temperature 𝑇𝑠𝑐 at a given working fluid pressure is defined as the 
temperature difference corresponding to ℎ3(𝑝3) − ℎ3′ (𝑝3), where ℎ is 
enthalpy, ℎ3′ (𝑝3) is the enthalpy of the saturated working fluid in the 
liquid state, see Fig.  8.

The refrigerant changes its phase from liquid to two-phase mixture 
as it passes the expansion valve due to the pressure drop across the 
expansion valve. The two-phase refrigerant then extracts heat energy 
from hot air flowing across the evaporator and changes its phase to 
vapor. It is beneficial to keep the refrigerant in a saturated vapor state 
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Fig. 7. Schematic of heat pump system in the cabin cooling mode. Symbols 𝑝, 𝑇
represents the measured pressure and temperature signals. Subscript 𝑎, 𝑒𝑜 represents 
air at evaporator outlet and 𝑎𝑚𝑏 is ambient air. 𝑝̂1 represents a prediction from the 
virtual pressure sensor. Actuators are marked in green and the heat exchangers are 
marked in gray. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

Fig. 8. Mollier diagram for the heat pump system in the cabin cooling mode. 
Isothermal conditions are indicated by gray lines.

at the outlet of the evaporator, as the presence of liquid droplets in 
the refrigerant going into the compressor can cause damage to its 
components. To ensure the safety of the compressor, an accumulator 
is introduced before the compressor, which extracts any remaining 
liquid droplets in the refrigerant. The refrigerant in a vapor state at 
low temperature and pressure is then compressed to vapor at high 
temperature and pressure by the compressor, closing the cycle. The 
refrigerant temperature at the compressor outlet is constrained, as high 
temperatures can damage the compressor due to high frictional forces. 
Also, the refrigerant pressure after the compressor is constrained by the 
operational guidelines of the heat pump system.

5.1. Control problem

The control objective is to determine the 𝑇𝑠𝑐 setpoints to realize the 
cooling demand of the passengers 𝐽𝑐 while maximizing the heat pump 
efficiency 𝐽𝜂 and maintaining safe operation of the system in steady-
state operation. The heat pump efficiency 𝐽𝜂 is directly correlated to 
𝑇𝑠𝑐 (Yamanaka et al., 1997), which can controlled by the expansion 
valve. 𝐽𝜂 is defined as the ratio of the rate of useful thermal energy 
exchanged and the rate of work consumed. It is often referred to as 
Coefficient of Performance (COP) and is expressed as, 

𝐽𝜂 =
𝑄̇𝑎,𝑒

𝑊̇𝑛𝑒𝑡
=

𝑃𝑒𝑣𝑎(𝑇𝑠𝑐 , 𝑢𝑐𝑚𝑝)
𝑃𝑐𝑚𝑝(𝑢𝑐𝑚𝑝) + 𝑃𝑓𝑎𝑛(𝑢𝑓𝑎𝑛)

(19)

 where 𝑄̇𝑎,𝑒 is the rate of thermal energy exchanged by air at the 
evaporator, 𝑊̇𝑛𝑒𝑡 is the rate of useful work, 𝑃𝑒𝑣𝑎 is the cooling power 
delivered by the refrigerant at the evaporator, 𝑃𝑐𝑚𝑝 is the required 
compressor power and 𝑃  is required fan power. The blower power 
𝑓𝑎𝑛
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𝑃𝑏𝑙𝑤𝑟 is omitted in Eq.  (19) because the blower speed is held constant. 
The cooling demand 𝐽𝑐 is defined as the absolute deviation in the 
setpoint value 𝑟𝑇𝑎,𝑒𝑜  and the actual value of 𝑇𝑎,𝑒𝑜 and it is expressed as, 

𝐽𝑐 = |𝑟𝑇𝑎,𝑒𝑜 − 𝑇𝑎,𝑒𝑜| (20)

To meet the cooling demand, i.e., minimize 𝐽𝑐 , the air temperature at 
the evaporator exit 𝑇𝑎,𝑒𝑜 is controlled by the compressor. The common 
practice for designing heat pump control system is to introduce two 
single-input single-output (SISO) feedback control loops, consisting of 
setpoint generator  and feedback controller . Here, 𝑇𝑠𝑐 and 𝑇𝑎,𝑒𝑜
are controlled by the expansion valve and the compressor speed, re-
spectively. However, the interaction between the two SISO control 
loops makes the calibration of the controllers , challenging and 
time-consuming (Keir & Alleyne, 2007).

With regard to safety, the refrigerant pressure at the compressor 
exit i.e., 𝑝2 should remain below a threshold value 𝑝2 as advised in 
the operating guidelines of the compressor. Factoring in the interaction 
between the two SISO control loops, the cost function for optimization 
is defined as a weightage sum of 𝐽𝜂 and 𝐽𝑐 . The resulting optimal 
control problem is expressed as, 

min
𝑇𝑠𝑐

−
(

𝑑1 × 𝐽𝜂 − 𝑑2 × 𝐽𝑐
)

s.t. 𝑥̇ = 𝑓 (𝑥, 𝑢, 𝑡),

𝑝2 − 𝑝2 ≥ 0,

(21)

Here, 𝑑1 = 1 and 𝑑2 = 1 [1/K] are the weights used to scale the cost 
terms. 

5.2. Contextual Bandits problem formulation

The heat pump control problem is formulated as a Contextual 
Bandits problem and its specifications are as following,

1. Reward 𝑅: The cost terms 𝐽𝜂 and 𝐽𝑐 provide relevant information 
on the system efficiency and the cooling demand, therefore, the 
reward is defined as the negative of the cost function defined 
in Eq.  (21) and it is expressed, 

𝑅 = 𝐽𝜂 − 𝐽𝑐 (22)

2. Context 𝑠: The stationary operating point of the heat pump 
system can be defined by stationary conditions of the known 
external disturbances 𝑤, such as ambient air temperature 𝑇𝑎𝑚𝑏, 
relative humidity of the air 𝑅𝐻𝑎𝑖𝑟, cooling demand of the passen-
ger and vehicle speed. For the method development, 𝑠 is defined 
as a subset of 𝑤 i.e., 𝑇𝑎𝑚𝑏 and 𝑅𝐻𝑎𝑖𝑟 expressed as, 

𝑠 =
[

𝑇𝑎𝑚𝑏 𝑅𝐻𝑎𝑖𝑟
]⊤ (23)

3. Action 𝑎: The agent’s action 𝑎 is the 𝑇𝑠𝑐 setpoint i.e., 𝑟𝑇𝑠𝑐 , which 
is directly correlated with 𝐽𝜂 and also impacts 𝐽𝑐 . 𝑟 can take 
real values. Therefore, we assume a continuous action space, 
i.e., 𝑎 ∈  ⊆ R+.

A-priori information: For exploration, we assume a-priori informa-
tion on: (1) Safe initial action 𝑎0 = 15 ◦C, (2) Lower bound on action 
space 𝑎 = 3 ◦C and (3) Constraint on 𝑝2, i.e., 𝑝2 = 21 bars. 𝑎 is known 
from a physical understanding of the automotive heat pump system, 
which ensures that the refrigerant remains in the liquid phase. This 
value is consistent across all stationary operating conditions i.e., 𝑤 ≐ 𝑠. 
For this application, the upper bound on the action space varies with 
the operating conditions and it is non-trivial to determine. Therefore, 
we assume that partial information is available on restricting action 
space for exploration. 
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Fig. 9. Sensitivity of 𝐵̃(𝑥) to change in 𝛾, 𝜁 .
Table 2
List of hyperparameters for the Safe-ISE method in simulations.
 Parameter Description Category Value  
 𝛥𝑎0 Step-size in action for start-up Initialization 0.5 ◦C  
 𝜁 Scaling of rCBF

rCBF
10  

 𝛾 Rate of change of rCBF 0.0005  
 𝜉 Small constant for continuity of rCBF 0.0001  
 𝑙1 Window length to detect stationary condition

Averaging of R signal
120 s  

 𝑙2 Window length for averaging R 60 s  
 𝜆 Allowable deviation from setpoint 0.5 ◦C  
 𝑘 GPR - kernel function

GPR

Squared-exponential 
 𝜎𝑓,0 GPR - initial estimate of signal standard deviation 1  
 𝜎𝑙,0 GPR - initial estimate of length scale 3  
 𝜎𝑛,0 GPR - initial estimate of noise standard deviation 0.003  
 𝜖𝐵̃ Learning rate rCBF

Exploration
30  

 PM Minimum value for PM −0.30  
 𝛥𝑎+ Step size outside 𝜍 2 ◦C  
 𝑝 Number of iterations to check for optimality

Stopping criteria
5  

 𝜀 Small constant for change in optimal action 0.01 ◦C  
 𝐵̃ Maximum allowable 𝐵̃ 170  
 𝑁exp Maximum number of experiments 50  
5.3. Hyperparameter selection

The hyperparameters of the Safe-ISE method are listed in Table  2. 
For initial exploration, a small value for 𝛥𝑎0 is desired to avoid violation 
of safety constraint in case 𝑎0 is close to the safe boundary. 𝛥𝑎0 = 0.5 ◦C
is chosen to account for inaccuracy in the measured value of 𝑇𝑠𝑐 . For 
shaping the rCBF, smaller values of 𝛾, 𝜁 are chosen by trial and error 
approach such that the rCBF function grows to a large value before 
𝑝2 → 𝑝2 as shown in Fig.  9.

For the GPR model, a squared-exponential kernel function is chosen 
due to its suitability for smooth functions, which is consistent for the 
studied system. The parameters 𝜎𝑓,0, 𝜎𝑙,0, 𝜎𝑛,0 represent the initial esti-
mates for the standard hyperparameters of the GPR model in MATLAB. 
These parameters are optimized by the GPR toolbox in MATLAB as new 
data points are received during the exploration.

In order to sample true action-value measurements, the reward 
signal is averaged over 𝑙2 = 60 seconds if the system output 𝑦 = 𝑇𝑠𝑐
stays stationary i.e., within the tolerance of 𝜆 = 0.5 ◦C to the agent’s 
action for a window length of 𝑙1 = 120 seconds. The exploration process 
after the initial exploration is controlled by the hyperparameters 𝜖𝐵̃ ,PM
and 𝛥𝑎+. For determining the step size in agent’s action approaching the 
safe boundary, the choice of the parameter 𝜖𝐵̃ is very crucial. Smaller 
values of 𝜖𝐵̃ cause small changes in action step size resulting in slow 
learning process. However, larger values of 𝜖𝐵̃ can result in constraint 
violation due to larger step sizes. A small value of PM limits agent to 
look for peaks closer to current best while a larger value allows agent 
to explore peaks much smaller than the current best. A larger value 
of PM represents a conservative nature of the agent and places lower 
confidence in the action-value of the current best action. With this 
approach, the agent explores not just actions with larger uncertainty 
9 
but also actions where a maxima could lie. 𝛥𝑎+ determines the learning 
speed of the agent, where a smaller value promotes faster approach 
towards safe boundary and vice versa.

The termination of the exploration process is controlled by the 
parameters 𝑝, 𝜀, 𝐵̃, and 𝑁𝑒𝑥𝑝. 𝑝, 𝜀 has a direct impact on optimality and 
number of experiments during exploration. A smaller value of 𝑝 can 
result in early stopping of learning and has a higher probability of 
converging in a local maxima. Whereas a larger value of 𝑝 can converge 
close to the most optimal action within the safe action space, however, 
it can result in larger number of experiments. On the other hand, 𝜀
can be derived from the desired system performance for example, its 
smaller value has a higher probability that the agent converges close 
to the most optimal action in the safe action space. However, it can 
result in larger number of experiment as the agent is more persistent in 
getting close to the optimal point. For safety, a tolerance of ℎ(𝑥 = 𝑝2) =
1 bar is chosen in 𝑝2 with respect to 𝑝2 = 21 bars, which is equivalent to 
𝐵̃ = 170 as calculated using Eq.  (5). For the case where the agent does 
not meet the criteria imposed by 𝑝, 𝜀, 𝐵̃, 𝑁𝑒𝑥𝑝 is introduced to terminate 
the learning process. 𝑁𝑒𝑥𝑝 has a similar impact as 𝑝, therefore, a larger 
value equivalent to 50 is chosen to strike a balance between optimality 
and the number of experiments. 

6. Simulation results

6.1. Test-case

The benefits of the proposed RL-based control method for safety, 
optimality and time-efficiency are demonstrated in simulation. Table 
3 shows the specifications of the stationary test case. For reference, 
we determine the true reward function as shown in Fig.  10. The true 
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Table 3
Specifications of the test case for simulation.
 Parameter Description Value Unit  
 𝑇𝑎𝑚𝑏 Ambient air temperature 31 [◦C]  
 𝑅𝐻𝑎𝑖𝑟 Relative humidity of air 40 [%]  
 𝑇𝑎,𝑐 Desired cabin air temperature 20 [◦C]  
 𝑉𝑣 Vehicle speed 0 [km/h] 
 𝑢𝑓𝑎𝑛 Fan speed 50 [%]  
 𝑢𝑏𝑙𝑤𝑟 Blower speed 30 [%]  

Fig. 10. Illustration of the true action-value function for the test case. The solid blue 
line shows the true action-value function, black solid line shows true ̂̃𝐵 and the shaded 
region in red represents ℎ(𝑥) ≤ 0. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

function is derived from the measurement data collected by making a 
sweep of different actions 𝑎 and gathering corresponding 𝑞(𝑠, 𝑎) values 
the steady-state operating point. The underlying true expected reward 
function is non-convex and consists of multiple maxima.

The safe action space 𝜍 = {𝑎 | 𝑎 < 25◦C, 𝑎 ∈ R+}, where the 
critical action 𝑎̃ = 25 ◦C represents action at ℎ(𝑥 = 𝑝2) = 0. The action 
corresponding to the tolerance ℎ(𝑥 = 𝑝2) = 1 is 𝑎̃𝑡𝑜𝑙 = 23.7 ◦C. In the 
test case, the global optimal action 𝑎∗ = 24 ◦C lies beyond 𝑎̃𝑡𝑜𝑙 = 23.7 ◦C
while the most optimal action in 𝜍 is 𝑎 = 23.7 ◦C.

6.2. Safe-ISE method

The proposed method is applied to the test case specified above. 
Fig.  11 shows the exploration result at the end of the learning process. 
The agent begins the exploration process with 𝑎0 = 15 ◦C and requires 
𝑁𝑒𝑥𝑝 = 18 experiments for convergence. The agent converges to the safe 
and locally optimal action 𝑎∗𝑎𝑔𝑒𝑛𝑡 = 23.7 ◦C ∈ 𝜍 without violating the 
safety constraint. The exploration is terminated when ̂̃𝐵(𝑎) ≥ 𝐵̃. The 
total experiment time 𝑇𝑒𝑥𝑝 required during exploration is calculated as, 

𝑇𝑒𝑥𝑝 =
𝑖=𝑁𝑒𝑥𝑝
∑

𝑖=1
𝑡𝑒𝑥𝑝,𝑖 (24)

where 𝑡𝑒𝑥𝑝,𝑖 is the time required for 𝑖th iteration in the agent-
environment interaction. From the experimental data, it is found that 
the average value for 𝑡𝑒𝑥𝑝 is 300 s for varying actions taken by the agent. 
𝑇𝑒𝑥𝑝 required by the agent is 1.5 h.

The exploration process is investigated more closely in Fig.  12. For 
𝑖 = 4, the agent determines the actions for which ̂̃𝐵(𝑎) < ̂̃𝐵(𝑎0) i.e., safe 
action space 𝜍,𝑖 and calculates the values of PM and 𝜎. Initially, 
the GPR predictions do not provide sufficient information about the 
underlying action-value function. It is seen that PM(∀𝑎 ∈ 𝑖) > PM, 
which implies that the agent considers all 𝑎 ∈ 𝑖 as potential options 
to take in the next iteration. Also, the agent has a similar uncertainty 
in action-value for all 𝑎 ∈  ⧵ {𝑎 , 𝑎 ,… , 𝑎 }. For iteration 𝑖 = 11, 
𝑖 0 1 𝑖−1

10 
Fig. 11. Exploration results with the Safe-ISE method at 𝑁𝑒𝑥𝑝 = 18. (∙) in blue are 
action-values corresponding to agent’s actions, the solid blue line shows the true action-
value function and the shaded region in red represents ℎ(𝑥) ≤ 0. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version 
of this article.)

the PM and 𝜎 values are different for actions in the action space 
compared to that in iteration 𝑖 = 4. For 𝑎 ∈ [3, 7]◦C,PM(𝑖) < PM
with small uncertainty in action-value, which indicates the absence of 
global maxima in that action range. Among actions 𝑎 ∈ 𝑖, it is seen 
that 𝑎 ∈ +

𝑖  has PM > PM and the highest uncertainty (see red box in 
Fig.  12), therefore, the agent takes the next action in +

𝑖  approaching 
𝜕𝜍 . For 𝑖 = 18, the exploration process is terminated as ̂̃𝐵(𝑎) ≥ 𝐵̃. 

6.3. Comparison with state-of-the-art exploration methods

We benchmark the proposed exploration method with two
state-of-the-art exploration methods: (1) Random exploration and
(2) Uncertainty-driven exploration. In random exploration, the agent 
chooses actions randomly from a pre-defined action space  ∈ [3, 40] ◦C
with no knowledge of safe action-space. Whereas in uncertainty-driven 
method, the agent chooses the action corresponding to the highest 
uncertainty in action-value estimate at every iteration from the action 
space  ∈ [3, 40] ◦C. For both the methods, the exploration begins with 
taking the safe initial action 𝑎0 = 15 ◦C. For a consistent comparison, 
we use the GPR model for action-value approximation and estimate the 
optimal action in a similar approach as in Safe-ISE method. Moreover, 
we use similar values for the hyperparameters of the GPR model and 
the agent’s stopping criteria for the comparison study as shown in Table 
4.

The comparison results between the state-of-the-art and proposed 
exploration methods are shown in Table  5. Fig.  13(a) shows the ex-
ploration result of applying the random exploration method. It is seen 
that without a-priori information on the safe action space, the agent 
randomly takes all actions in the maximum allowable action space 
and violates the system safety constraint. Furthermore, it is seen that 
certain actions are not explored, which results in large uncertainties 
in their action-value estimates. Nonetheless, the random exploration 
method converges to 𝑎 = 24.2 ◦C, which is close-to the global optimal 
action 𝑎∗ = 24 ◦C with a negligible deviation from the true action-
values at the cost of safety. Moreover, it requires approximately 38% 
larger experiment time compared to Safe-ISE.

The result of applying the uncertainty-driven exploration method 
is shown in Fig.  13(b). Similar to the random exploration, system 
safety constraints are violated as the agent explores actions with the 
largest uncertainty in the corresponding action-values in the maximum 
allowable action space. As expected, the uncertainty-driven exploration 
requires 12% lower experiment time compared to the random explo-
ration with a marginal penalty on optimality. In comparison to the 
Safe-ISE method, it requires 22% larger experiment time. In summary, 
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Fig. 12. Evolution of action-value estimate and information gain metrics over the exploration process of Safe-ISE method. (∙) in blue are action-values corresponding to agent’s 
actions, the solid blue line shows the true action-value function; the shaded regions in red, magenta and gray represents ℎ(𝑥) ≤ 0, 𝜍,𝑖 and +

𝑖 , respectively. The red arrow indicates 
the action with the highest uncertainty in +

𝑖  and the blue arrow indicates the action with the highest uncertainty in 𝜍,𝑖. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)
Table 4
List of hyperparameters for random and uncertainty-driven exploration methods.
 Parameter Description Category Value  
 𝛿 Small constant for numerical stability Initialization 0.0001  
 𝑙1 Window length to detect stationary condition

Averaging of R signal
120 s  

 𝑙2 Window length for averaging R 60 s  
 𝜆 Allowable deviation from setpoint 0.5 ◦C  
 𝑘 GPR - kernel function

GPR

Squared-exponential 
 𝜎𝑓,0 GPR - initial estimate of signal standard deviation 1  
 𝜎𝑙,0 GPR - initial estimate of length scale 3  
 𝜎𝑛 GPR - initial estimate of noise standard deviation 0.003  
 𝑝 Number of iterations to check for optimality

Stopping criteria
5  

 𝜀 Small constant for change in optimal action 0.01 ◦C  
 𝑁exp Maximum number of experiments 50  
Table 5
Comparison of simulation results for Safe-ISE method with random and uncertainty-driven exploration methods. Text in bold represents the 
best performance among the studied methods. 
 Evaluation
criteria

Exploration method

 Safe-ISE Random Uncertainty-driven 
 Deviation from 𝑞∗ (𝛥𝑞 = 𝑞∗ − 𝑞∗𝑎𝑔𝑒𝑛𝑡) 0.0021 0.01 −0.0016  
 Percentage deviation (𝛥𝑞∕𝑞∗ × 100%) 0.1% 0.5% −0.008%  
 Deviation from 𝑎∗ (𝛥𝑎 = 𝑎∗ − 𝑎∗𝑎𝑔𝑒𝑛𝑡) 0.3 ◦C 𝟎.𝟐◦C 0.5 ◦C  
 Percentage deviation (𝛥𝑎∕𝑎∗ × 100%) 1.25% 0.83% 2.1%  
 Safe operation (𝐵̃ ≤ 𝐵̃) Yes No No  
 Number of experiments 𝑁𝑒𝑥𝑝 18 25 22  
 Total exploration time 𝑇𝑒𝑥𝑝 1.5 h 2.08 h 1.83 h  
both the random and uncertainty-driven exploration methods does not 
maintain safe system operation and they require larger number of 
experiments compared to Safe-ISE method for converging close-to the 
optimal action.

7. Experimental validation on a vehicle test-bench

In this section, the initial results of implementing the proposed 
Safe-ISE method on a vehicle test-bench are presented. The vehicle 
test-bench is equipped with a chassis dynamometer inside a climatic 
chamber and it has the capabilities to realize a wide range of values 
11 
for the ambient temperature and relative humidity. The vehicle is 
equipped with an ETAS rapid prototype system (RPS), for the RL-
based controller implementation and validation. The RL-based control 
method is developed in MATLAB 2017b on a laptop. 

7.1. Test cases

The proposed method is validated over two test cases: (1) Nominal 
operating point (OP1) and (2) Nominal operating point with different 
constraint bound (OP2) as listed in Table  6. The test cases are steady-
state operating points characterized by stationary values of context 
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Fig. 13. Simulation results with existing exploration methods. (∙) in blue are action-values corresponding to agent’s actions, the solid blue line shows the true action-value function 
and the shaded region in red represents ℎ(𝑥) ≤ 0. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 14. Experiment test-case OP1: Results of incremental learning on the vehicle test-bench. (∙) represent data corresponding to agent’s actions. The arrow in black indicates the 
agent’s action and corresponding increase in 𝑝2 with relaxed constraint on system state 𝑝2 compared to OP2. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)
Table 6
Specifications of the validation operating points (OPs). The underlined text emphasizes the change in the operating conditions compared to the nominal operating point 
OP1.

 OP Description 𝑇𝑎𝑚𝑏
[◦C]

𝑅𝐻𝑎𝑖𝑟
[%]

Constraint
Bound 𝑝2
[bar]

True optimal
action 𝑎∗ [◦C]

Critical action
𝑎𝑝2=𝑝2  [◦C]

 

 OP1 Nominal 35 10 21 14.4 21.2  
 OP2 Nominal with different

constraint bound
35 10 19 14.4 25.3  
𝑠 =
[

𝑇𝑎𝑚𝑏 𝑅𝐻𝑎𝑖𝑟
]⊤ and safety constraint defined by 𝑝2. In order to 

find the true values of 𝑎∗ and 𝑎𝑝2=𝑝2 , a steady-state 𝑇𝑠𝑐 sweep is made. 
For individual value of 𝑇𝑠𝑐 , the corresponding data on 𝑞(𝑠, 𝑎) and 𝑝2
is collected, which are fitted using the Gaussian Process Regression 
model. 𝑎∗ is determined as follows, 
𝑎∗(𝑠) = argmax

𝑎≐𝑇𝑠𝑐∈𝑒𝑣𝑎𝑙

𝜇𝑞(𝑠, 𝑎) (25)

where 𝜇𝑞(𝑠, 𝑎) is the mean prediction of the GPR model and 𝑒𝑣𝑎𝑙
represents the set of 𝑇𝑠𝑐 values for which the GPR model is evaluated.

7.2. Validation results

The incremental learning by the agent on the vehicle test-bench 
for OP1 and OP2 is shown in Figs.  14 and 15, respectively. It can 
be seen that in both the test cases, the agent remains within the safe 
boundary by not exploring the unsafe actions. In OP1, the agent takes 
8 different actions starting from an initial safe action and converges 
to action 𝑎∗𝑎𝑔𝑒𝑛𝑡 = 15.3 ◦C, which is within the desired 2% of the true 
𝑞∗(𝑠, 𝑎) determined from the 𝑇  sweep. In OP2, the safety constraint on 
𝑠𝑐
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state 𝑝2 is made more strict by changing its value from 21 bars to 19 
bars. As seen from Fig.  15, the agent’s behavior is more conservative 
and explores fewer actions approaching the safe boundary as compared 
to OP1. In OP1, the agent explores the action 𝑎 = 18.7 ◦C due to 
relaxed state constraint unlike in OP2. Nonetheless, the agent converges 
to action 𝑎∗𝑎𝑔𝑒𝑛𝑡 = 14.8 ◦C, which is close to the true optimal 𝑎∗ =
14.4 ◦C. Similar to OP1, the agent converges to within 2% of the true 
𝑞∗(𝑠, 𝑎). These experimental results provide a proof-of-concept of a safe, 
time-efficient and automated calibration process using the proposed 
exploration method.

8. Conclusions and future work

In this paper, we present a novel method for safe and time-efficient 
exploration that requires no prior system model for Reinforcement 
Learning-based control of complex real-world physical systems. The 
safety constraint is formulated using the reciprocal control barrier 
function, which is used to determine the step-size of the agent’s actions 
approaching the safe boundary during exploration. To minimize num-
ber of experiments, we combine the reciprocal control barrier function 
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Fig. 15. Experiment test case OP2: Results of incremental learning on the vehicle test-bench. (∙) represent data corresponding to agent’s actions. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)
with information gain metrics to determine actions which maximize 
information on the action-values. The required a-priori system knowl-
edge is minimized with the proposed method, which highlights its 
applicability for control development of new systems. First, we demon-
strated the benefits in safety, optimality and number of experiments of 
our proposed method on an automotive heat pump control system in 
simulation. For the studied test-case, the proposed method converges 
to the safe and locally optimal action with a deviation of 0.3 ◦C 
from the global optima without violating the safety constraint during 
the exploration. A significant reduction of 28% and 18% in experi-
ment time is achieved with the proposed method in comparison to 
the existing exploration methods i.e., random and uncertainty-driven, 
respectively. Second, the proposed method was validated on a vehicle 
test-bench for optimizing the steady-state performance of the vehicle 
thermal system. The experimental results show that the proposed con-
trol method converges close to the true optimum in action-values with 
an accuracy of ±2% for the studied test-cases while ensuring system 
safety at all times during the exploration. Future work will focus on 
applying the approach to a wider range of operating conditions. This is 
an important step towards RL-based control for on-line learning in an 
on-road vehicle. Special attention will be paid to stability analysis of 
the system’s closed-loop performance. 
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