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ARTICLE INFO ABSTRACT

Keywords: Reinforcement Learning has achieved huge success with various applications in controlled environments.
Reinforcement Learning However, limited application is seen in real-world applications due to challenges in guaranteeing safe system
Safe exploration operation, required experiment time, and required a-priori system knowledge and models in existing methods.

Control barrier function

; . In this work, we propose a novel exploration method, which addresses simultaneously the challenges associated
Gaussian process regression

with safe and time-efficient exploration while dealing with system uncertainty. This method integrates a
reciprocal Control Barrier Function and an on-line learned Gaussian Process Regression model. For safe system
operation, we leverage the information from the reciprocal Control Barrier Function to limit the step size of
the agent’s actions, when approaching the safety boundary. To make this exploration process time-efficient,
we use the information gain metrics that are calculated using the estimation of the action-values by an on-line
learned Gaussian Process Regression model to determine the direction of the agent’s actions. We demonstrate
the potential of our exploration method in simulation and on a vehicle test-bench for efficiency-optimal
calibration of a thermal management system for battery electric vehicles. To quantify the benefits in terms of
safety, optimality, and time efficiency, we benchmark our exploration method with random and uncertainty-
driven exploration methods in a simulation environment. For the studied test case, the proposed exploration
method satisfies the safety constraint and it converges to within 1.25% of the true optimal action while
requiring 28% and 18% lower experiment time compared to the random and uncertainty-driven exploration
methods, respectively. For the proposed method, its performance is also demonstrated on a vehicle test bench.
Experimental results show that the maximal thermal system efficiency is realized within 2% of the true
optimum, while effectively dealing with the safety constraints.

1. Introduction model-free RL has the potential to minimize the control development
time by saving time required in generating models a-priori in existing

1.1. Challenges in Reinforcement Learning applications model-based control approaches. Model-free RL approach can learn
models in an autonomous manner by interacting with its environment

Reinforcement Learning (RL) (Sutton & Barto, 2018) is a learning without a prior system model. This approach also has the potential to
paradigm where an agent learns to take optimal actions in interaction automate the control development process and significantly minimize

with its environment. The two key elements of all RL algorithms are
exploitation and exploration. To determine the optimal actions, a RL
agent should explore actions other than the current optimal action
in the action space to improve its estimation of the action-values. To
date, RL algorithms have achieved a tremendous success in applications
within a simulated ecosystem, for example, video games (Atari Mnih
et al., 2013, Game of Go Silver et al., 2016) and web recommender
systems (Afsar et al., 2022). On the other hand, RL is also inter- systems (Qi et al., 2019), automotive powertrain control (Norouzi et al.,

esting for learning-based control of the physical systems. Especially, 2023) and autonomous vehicles (Aradi, 2022). However, a limited

the expert involvement in the process. Moreover, it can be robust to
changes in the real-world operating conditions and disturbances as
it learns from the real data. There is a growing body of literature
that has explored RL-based control for engineering systems in the
simulation environment, for example, process control (Nian et al.,
2020), robotics (Kormushev et al., 2013), vehicle energy management
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Table 1

Control Engineering Practice 164 (2025) 106458

A relative comparison of state-of-the-art exploration methods and the proposed method in this work. The benchmark method for the comparison is the random exploration method
marked in bold. (Y) is yes, and (N) is no. (0) is the benchmark, while (+) represents an improvement over the benchmark, and (-) represents a decline in comparison to the
benchmark. UCB is upper confidence bound, GPR is Gaussian Process Regression and rCBF is reciprocal control barrier function.

Method classification Method

Evaluation criteria

Explicitly deal
with safety

Reduction in
experiment time

Reduction in a-priori
system knowledge

required

Random e—greedy (Sutton & Barto, 2018) N 0
Uncertainty-driven UCB (Guo et al., 2020; Wu et al., 2016) N 0

Thompson Sampling (Guo et al., 2020; Urteaga N 0

& Wiggins, 2017)

GPR (Kuss & Rasmussen, 2003) + 0
Safety-driven Model-based on-policy exploration: Y - -

(Alshiekh et al., 2018; Yu et al., 2019)

(Berkenkamp et al., 2017; Zhao et al., 2022)

Model-based off-policy exploration: Y - -

(Gros et al., 2020; Hunt et al., 2021)

(Wagenmaker & Pacchiano, 2023; Zhu &

Kveton, 2022)

Model-free off-policy using rCBF (Marvi & Y + +

Kiumarsi, 2021)
This work Model-free off-policy using rCBF and GPR Y + +

number of RL applications is seen in the real-world operation of these
systems due to multiple challenges in the exploration process, which
are Garcia and Fernandez (2015):

1. Guarantee safe operation, i.e., satisfy safety constraints;

2. Required experiment time, i.e., time required to collect data for
generating models and time required in exploration to learn the
optimal policy;

3. Required a-prior system knowledge, that consists of information
on the system’s physical limits and input constraints. This infor-
mation is typically derived from historical data and models of
the existing, related systems, or both.

1.2. Exploration in Reinforcement Learning

Multiple studies have investigated different exploration methods
for RL in varying applications. An overview of these methods can be
found in Ladosz et al. (2022). The existing exploration methods can be
categorized into three types: (i) Random exploration, (ii) Uncertainty-
driven exploration; and (iii) Safety-driven exploration. In Table 1, we
present a brief review of the main characteristics of state-of-the-art
exploration methods.

1.2.1. Random exploration

Typically, random exploration using a e—greedy policy is applied for
systems without safety constraints (Sutton & Barto, 2018). In the case
of systems with safety constraints, random exploration is applied in the
simulation environment where there is no risk of hardware damage.
The advantage of using the random exploration is that it can converge
to global optimal solutions in the long-term, i.e., if every state-action
pair is visited a large number of times. Its downsides include potential
unsafe system operation without prior system knowledge and large ex-
periment time. For systems with safety constraints, random exploration
can be used only if the safe action space is known a-prior. However, this
is often difficult to determine for new and complex real-world systems
where the safe action space varies with changes in operating conditions,
for example, varying ambient conditions.

1.2.2. Uncertainty-driven exploration

Multiple studies have investigated uncertainty-driven exploration
strategies to reduce the experiment time required for exploration while
learning the optimal policy. The most commonly studied strategies
are upper confidence bound (UCB) (Sutton & Barto, 2018), Thompson

Sampling (Thompson, 1933) and Gaussian Process Regression (GPR)-
driven exploration (Kuss & Rasmussen, 2003). In all these methods,
the action-values are learned sequentially from the data samples, and
the uncertainty in the action-values drives the exploration process.
The agent explores the actions with the highest uncertainty in the
corresponding action-value estimates and reduces the exploration of
actions with low uncertainty. This results in quicker convergence to
optimal actions compared to random exploration. As far as safety is
concerned, these methods also require an understanding of the system’s
physical limits and input constraints to determine the safe action space,
which is non-trivial to determine for new and complex real-world
systems (Guo et al., 2020; Urteaga & Wiggins, 2017; Wu et al., 2016).

1.2.3. Safety-driven exploration

The last decade has seen an increasing interest in exploration strate-
gies that deal with safety constraints (Brunke et al., 2022; Garcia &
Fernandez, 2015). Most studies found on safe exploration use a prior
system model, for example, tabular model (Alshiekh et al., 2018),
state-space model (Yu et al., 2019), data-driven model using Gaus-
sian Process Regression (Berkenkamp et al., 2017) and first-principle
models (Gros et al., 2020; Hunt et al., 2021; Zhao et al., 2022). This
approach needs an accurate system model to determine the safe control
inputs under a wide range of operating conditions, which is challenging
to generate for complex systems. Typical examples of modeling tech-
niques used are first principle and data-driven modeling. For complex
systems, generating system models using first principles is challenging
and time-consuming. Therefore, data-driven models are often used. Due
to the black-box nature of data-driven models, (very) limited system
knowledge is needed to make these models. Nevertheless, data-driven
modeling requires significant data, resulting in large experiment times.

Limited work has been found on model-free safe exploration. In
Marvi and Kiumarsi (2021), a reciprocal control barrier function (rCBF)
is used for safe exploration using model-free RL. rCBF is an adapted
version of Control Barrier Function (CBF), which has been extensively
studied for formal proofs of safety for dynamical systems in the field of
control theory (Anand et al., 2021; Prajna & Jadbabaie, 2004; Wieland
& Allgower, 2007). For safe exploration, the reward is augmented with
a rCBF value to indicate proximity to the safe boundary. However,
safety is treated as a soft constraint in this formulation, which can result
in constraint violation because it is difficult to interpret the individual
contribution of reward and rCBF term in the feedback signal. Therefore,
there is a non-zero probability of violating the safety constraint to
determine the unsafe action.
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Most of the existing work on safe exploration follows an on-policy
approach where one policy is used for both exploration and exploita-
tion (Alshiekh et al., 2018; Berkenkamp et al., 2017; Yu et al., 2019;
Zhao et al., 2022). The disadvantage of using on-policy approach is
that it learns action-values for a near-optimal policy, which is always
exploring. Off-policy approach overcomes this limitation by employing
two policies, one that is exploratory and the other that becomes the
optimal policy. The explorative policy is called the behavior policy,
while the learned policy is called the target policy. In Wagenmaker
and Pacchiano (2023), Zhu and Kveton (2022), off-policy approach is
used for safe exploration, where the behavior policy is learned from
a historical dataset that provides a-prior information on the expected
action-value estimations and unsafe actions. The downside of this
approach is that the system’s safe operation depends on the data’s
coverage, i.e., values of states and actions, in the historical dataset.
Therefore, it is challenging to maintain safe operation in conditions that
are not contained in the historical dataset.

A most common feature of the existing works on safe exploration
is that they require a significant a-priori system knowledge either in
the form of system models or a historical dataset, which is then used
to determine the safe action space. Uncertainty-driven methods reduce
the experiment times by exploring actions that maximize information
on the reward function, however, they can result in unsafe operation.
To the extent of our knowledge, limited work exists that ensures safe
operation of the systems with safety constraints while minimizing the
experiment times, as illustrated in Table 1.

1.3. Research objective and main contribution

The objective of this work is to develop an exploration method for
RL-based control that maintains safe operation of the system during
learning and minimizes the required experiment time to determine the
optimal policy. To minimize overall development time and required
expert knowledge, we assume that a prior system model is not required.

The main contribution of this work is a novel Safe and Information-
seeking exploration (Safe-ISE) method that integrates techniques from
the fields of Control Theory and Machine Learning. The proposed
Safe-ISE method learns action-values from the data generated by agent-
environment interaction during the exploration process using an on-
line learned Gaussian Process Regression (GPR) model (Williams &
Rasmussen, 2006). This model is used to estimate actions that give
most information on the reward value in the studied operating re-
gion, i.e. actions that reduce model uncertainty and increase expected
improvement in the action-values. This so-called Information Gain
approach aims to reduce experiment time. To guarantee safe operation,
a reciprocal Control Barrier Function (rCBF) (Ames et al., 2019; Marvi
& Kiumarsi, 2021) is introduced that limits the step-size of the agent’s
action when approaching the safety boundary. We demonstrate the
potential of the proposed method for the calibration of a battery
electric vehicle thermal system to optimize its steady-state operation
in simulation and on a vehicle test-bench.

1.4. Outline

This paper is organized as follows. The problem formulation is
stated in Section 2. Section 3 briefly reviews the different methods
that are applied in this work. The fully integrated concept for the
novel safe and time-efficient RL exploration method is presented in
Section 4. This method is applied for the calibration of an automotive
thermal management system. Section 5 introduces the studied system
and associated control problem. For the proposed method, simulation
results are presented in Section 6 and compared with the results of the
random and uncertainty-driven exploration methods. Next, in Section 7
the proposed method is implemented on a vehicle test bench and
experimental results are discussed. Finally, Section 8 summarizes the
main conclusions and gives directions for future research.
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Fig. 1. A general control schematic. Here, u is the feedback control action, z is the
system performance, y are the measured outputs, w are the external inputs to the
control system, d are the unknown disturbances to the system, e = r —y is the control
error, C is the feedback controller and R is the setpoint generator.

2. General problem formulation

To develop safe and time-efficient RL for systems with limited prior
knowledge, we consider a nonlinear dynamical control system,

x = f(x,u,t) (@D)]

where x € X c R” is the system internal state vector, u € U" C R”
is the control input, f is a n-dimensional system function vector. We
consider a classical control architecture with a feedback controller C
for reference tracking and rejection of external disturbances d, and
a setpoint generator R for optimizing system performance by smart
choice of r, as shown in Fig. 1. This architecture is most commonly
used in the control of real-world systems.

The process of determining optimal settings for controllers R that
maximizes system performance z and C is defined as control calibration,
which is a challenging and most time-consuming task in the control
development process (Garg et al., 2023). Typically, the first step in
control calibration process is to determine the optimal control settings
for a stationary operating point. The control objective is to learn
the optimal steady-state reference setpoints r, which maximize system
performance, defined by z, while the system internal state x with safety
constraints stays within the set of safe states X, C X at all times.

Few assumptions are made in this work to clearly define the scope
of the problem. We assume that the system dynamics are not known
a-priori. However, we assume that the system internal states x with
safety constraints are measurable. Further, we assume that the safety
constraint on x poses either the lower or the upper constraint on r.
We also assume that the feedback controller C, which is an asymptotic
stabilizing feedback controller, is available such that e = r—y — 0
at a steady-state operating point. We assume that there exists a safe
initial reference setpoint r(zy) and it is known a-priori. r(z,) is generally
known or derivable from historical data of similar existing systems.
For generality, we also assume that the system performance function
defined by z(r) can have one or multiple optimums.

3. Methodology

In this section, we present how we combine concepts from the field
of Control Theory and Machine Learning for the formulation of safe and
time-efficient RL, as illustrated in Fig. 2. First, the definitions of safe set
and safe control are presented. Then, we discuss the approach to for-
mulate safety constraints using the reciprocal control barrier function.
Next, we formulate the control calibration problem as a Contextual
Bandits problem. We then present how we use the Gaussian Process
Regression model to estimate action-values. Lastly, we present the
proposed Safe and Information-seeking (Safe-ISE) exploration method.

3.1. Safe control and safe set

We use the concept of forward invariance to define safe control
i.e., the system internal states always evolve and stay in the safe set
X (Geurts, 1998). This implies that x € X, during the exploration and
exploitation by the RL agent. To define the safe set X. as a function
of system internal state x, we use the approach defined in Ames et al.
(2019).
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Control Theory Machine Learning

Formulate constraints action Steady-state control
III-A Safe control, Safe set III-C Contextual bandits
III-B Reciprocal control

- | Approximate action-values
barrier function

1II-D GPR model

unsafe

M} Exploration
Safety:' g Sa.f.e and _
information Information-seeking

——p  cexploration method

Fig. 2. Overview of concepts used for developing Safe-ISE method. GPR stands for
Gaussian Process Regression. Numbers in the prefix represents the corresponding section
numbers.

Definition 3.1 (Safe Set). X, is defined as a superlevel set of a contin-
uously differentiable function # : X ¢ R” —» R such that:

X, ={x€X CR"|h(x) >0}
0X, = {x € X CR"| h(x) = 0} 2)
Int(X,) = {x € X CR"| h(x) > 0}

where 90X, is the boundary of the safe set and Int(X,) is the interior of
the safe set.

Here, h(x) is used to formulate the safety constraint on the sys-
tem internal state x as described in Marvi and Kiumarsi (2021). The
constraints are formulated as,

h(x) >0 3

where,

X—x, if x i bounded
h(x) = {x x, if x is upper bounde @

x — x, if x is lower bounded

where, X is an upper bound on state x, x is a lower bound on state x and
are assumed to be known a-priori. For real-world physical systems, X, x
are generally known from the operational guidelines of the components
present in the system. h(x) > 0 holds true for all x € X, as given by Eq.
).

3.2. Reciprocal control barrier function (rCBF)

rCBF is a modified form of a control barrier function introduced
in Ames et al. (2014) and its value blows up as x — 0X,. We use rCBF to
provide information on the unsafe system operation to the agent during
the exploration. rCBF, represented by B(x), is defined as a function of
the constrained system state x and satisfies the following conditions,

1. B(x)>0VxeX,
2. B(x) > o0 Vx € 0X,

The most common choices for B(x) found in literature (Ames et al.,
2019; Marvi & Kiumarsi, 2021) are logarithmic functions that satisfy
the above two conditions. However, a common limitation of these
functions is that B is not well defined for h(x) < 0 and provide incorrect
information about the unsafe states. Therefore, we propose a modified
function whose magnitude stays large for unsafe states, i.e., B(x) —
o0 V h(x) < 0, see Fig. 3. It is expressed as,

—Llog (X)) pix) > €
Blx) = ¢ < 1+yh(x) ) 5)

~Hog (£, hw <¢

where ¢ is a small positive constant, which is introduced for the
continuity of B(x) around h(x) = 0. y,{ are tunables and affect the
scaling and rate of change of B(x) for h(x) > &, respectively. We exploit
the exponential increase in the value of B(x) as h(x) — 0 to limit the
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h(z) > &

h(x)
—¢log (115&) Llog (—11%(.@)

0 ¢ h(z)

Fig. 3. Proposed B(x) function.

exploration process approaching dX. It is achieved by chosing the step
size of the agent’s action 4a approaching dX, inversely proportional to
B(x). Aa is expressed as,

da o —— 6)
B(x)

3.3. Contextual Bandits problem

The output r of R in Fig. 1 has no impact on the future operating
conditions w and future reference setpoints in steady-state operating
conditions of the system. Therefore, we propose to use Contextual
Bandits RL algorithm to learn the optimal steady-state reference set-
points r (see control problem in Section 2). In a Contextual Bandits
problem, an action « in a stationary scenario, also called the context s,
is independent of previous actions and does not affect future contexts
and actions. This is consistent with steady-state control of the system
around a stationary operating point. The objective of a Contextual
Bandit RL problem is to determine the policy z(s) by mapping the
context s to optimal actions «* that maximizes the agent’s reward
R (Sutton & Barto, 2018). To determine a*, the average reward or
action value ¢(s, a) of taking an action a in context s is calculated. g(s, a)
is defined as,

k=t
R, -1
k=1 "k a,=a
q(s,0) = ———— @)
k=1 ILak:a
where 1, _, is 1 when action a is taken and 0 otherwise. a* in context

s is defined as the action with the maximum action value and it is
expressed as,

a*(s) = arg max ¢(s, a) ®

3.4. Gaussian Process Regression for approximating action-values

For learning action-values q(s, a), we use a sampled-based learning
technique. In this technique, the agent incrementally learns action-
values using the information from a sequence of data samples one at
a time. We use the Gaussian Process Regression (GPR) model because
it can learn from the data samples incrementally. The GPR model
approximates ¢(s,a) Va € A using the sampled data and we use its
mean and uncertainty predictions to guide the exploration. The true
action-values ¢(s, a) can be written as,

q(s,a) = 4(s,a) +n (C)]

where 7 is the noise, s,a are the inputs to the model and §(s, a) is the
action-value estimate. §(s, a) is distributed as a Gaussian Process, which
is characterized by its mean function u(s,a) and a covariance function
k([s,al,[s’,a’]) (Williams & Rasmussen, 2006) and it is defined as,

4(s, @) ~ GPu(s, a), k([s,al,[s",a']) (10)
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»
>

time t

Fig. 4. Illustration of the approach used to determine the average reward. Dotted black
line shows the agent’s action @ and solid black line shows the corresponding system
output y.

where [s’ @'] is the prediction context-action pair for which the GPR
model is evaluated. To determine ¢(s, a), the reward signal is averaged
over a time duration of /, seconds when the system output y is sta-
tionary as shown in Fig. 4. The stationary condition is detected when
the system output y corresponding to agent’s action a is within the
desired tolerance of +4 from a for the duration of /; seconds. The total
time required before ¢(s,a) value is sampled is denoted by 7,,,, which
is equivalent to the time required for a single experiment. Due to the
averaging of the reward signal, the observations ¢(s, a) are assumed to
be noise-free. The outputs of the GPR model are the predictions of mean
H4(s,a) and variance o,(s, a) in the estimated action-values 4(s, a).

4. Safe and information-seeking exploration

The proposed RL-based control system with the Safe-ISE method is
shown in Fig. 5. The corresponding pseudo-code is shown in Algorithm
1. The system signals are sampled with a sampling time of one second
and time is represented by 7. The iterations of the agent-environment
interactions are represented by i = 1,2, 3, ..., which is incremented only
when an agent takes a new action. An off-policy learning approach is
used for exploration, which consists of two different policies, i.e., be-
havior policy 7, (s) and target policy z_(s). 7, (s) can be used to generate
data at every time instant i by exploration. Therefore, in order to learn
the model for q(s, a), we use an off-policy approach. z,(s) converges to
an optimal policy over iterations and this converged policy is assigned
as the target policy a*(s) = z,(s), which is a fixed policy. This z_(s) can
then be used for deployment on the system.

4.1. Initialization

As a first step in the exploration, the environment context s, is
set to a constant value, which is equivalent to defining a steady-state
operating point for the system. Thereafter, the hyperparameter settings
for the different functions in Fig. 5 including rCBF, signal averaging,
GPR model selection and detect stationary conditions are defined. The
choice of hyperparameter settings are listed in Table 2, which are
described later in Section 5.3. These settings are kept constant during
the exploration process. To store data on actions g; taken by the agent,
corresponding action-values q(s;, ¢;) and rCBF values B(s;, a;), matrices
are defined and initialized equivalent to zero before exploration begins.
The agent then begins exploration by taking a safe initial action q for
iteration i = 1 followed by small steps Aa, around aj i.e., ag+ Aay, ag—
Aay for i = 2,3 respectively. It is assumed that a safe initial action
ay is known from experience with similar systems. By taking small
steps around a,, the agent determines the action a € {ay — 4ay,ay +
4ay} results in x approaching the safe boundary dX.. For every action
a; during the exploration, the agent receives a measurement of the
average context s;, average reward i.e., ¢(s;,q;) and average value of
B(s;,x,) i.e., B(s;.x;) using the signal averaging block. s,, B(s;, x;) are
calculated in a similar approach to ¢(s;, a;), as illustrated in Fig. 4. First,
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the GPR model is learned after every agent-environment interaction as
in Eq. (10). Second, to determine actions that approach dX,, we create
an additional mapping from agent’s action g; to the E(s,-,x,-) value,
ie., ﬁ(s,-,a,-) . a;, - B(s;,x;). This mapping provides information to
the agent about actions lying away or close to the safe boundary 90X,
under the assumption that x increases or decreases monotonically as
a function of a in X_. As a result of this initial exploration, the agent
determines the direction in actions approaching X, and estimates of
the action-values as predicted by the GPR model shown in Fig. 6(a).

4.2. Define action space

After the initial exploration around ay, the action space A, for explo-
ration in the next iteration, i.e., i = 4 is determined. Fig. 6(b) illustrates
the process of defining the action space. For an informed exploration
of the action space, we introduce the concept of information gain (IG)
metrics, which is used to define A,. IG is defined as a combination of
two different metrics of information: (1) Uncertainty in the action-value
estimate i.e., standard deviation o,(s;, a € A;) and (2) Proximity to the
current maxima (PM) of other local or global maxima in the action-
values. The metric PM is adapted from the expected improvement
acquisition function from the theory of Bayesian Optimization (Pelikan
et al.,, 1999). Both these values are derived from the GPR model
predictions of 4(s;, a;). For the action space feasible for exploration at
iteration i i.e., A;, PM(s;,a € A;) is defined as,

PM(s;,a€ A;) =

pi(sina € A) - (yé(s,., a?) = 1.96 X 0,(s;, a,.*)) an
Minimum best prediction

where, a; is the current optimal action (i.e., action with maximum

action-value) at instant i. Ha(sis a;) — 1.96 x o455, a;) corresponds to the
lowest value in 95% prediction interval of action value at a}. A 95%
prediction interval is chosen to make this metric more conservative
such that the agent assumes a lower confidence in the current best
action and favors exploration of other actions in the action space. PM
compares the lower prediction value at the current best action with
the mean predictions for all « € A;. Larger values of PM correspond
to other maximas and gives indication of presence of other maximas to
the agent and potential actions that should be explored to converge to
the global maxima.

A; consists of the currently estimated safe action space A_; and
small action space outside the safe action space A;f and it is expressed
as,

A=A+ AT (12)

where A_; C A is the safe action space at ith iteration. A_; is defined
as,

Agi=la; 4] 13)

where g; is expressed as,

max{ag,ay,...,a;_ } if é(si,ao + 4ap) > lﬁ'(s,-, ag)
a, =4 max({a | PM(s,a € A) > PM}) (14

1
if ﬁ(s,-,ao — Aagy) > ﬁ(si,ao)

Here, PM is the lower bound on PM below which the agent does not

explore the corresponding actions in the action space. g, is defined as,
min({a | PM(s,a € A) > PM})

a, = if B(s;, ap + Aay) > B(s,, ap) (15)
min{ay, ay, ..., a;_;} if E(s,-, ay — Aagy) > B(s,-,ao)

IG is also calculated for A to determine if there exists a maxima
outside A_; using the metrics PM and the corresponding uncertainty
0;(s;,a;) in its action-value estimation. This approach prevents the
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agent from exploring actions approaching X, when no maxima exists 4.3. Action selection
as predicted by PM. A is defined as,
o N R To choose its next action g;, the agent compares the IG metrics for
A¥ = [a;,a; + Aa*] if E:(si,ao + 4ay) > lz(s,-, a9) (16) two action spaces. i.e., A.; and A}. The agent then chooses ¢; from the
la, — 4a*,a,] if B(s;,ay — Aag) > B(s;, ap) actions that has the highest uncertainty i.e., o4(s;, @) in action-value and
for which the condition PM(s;,a € A;) > PM is satisfied. If the action
satisfying these conditions lies in A_;, the agent takes the action with
maximum uncertainty as follows,

where Aa™ is the maximum action step size that that lies outside the
safe action space and it is kept constant during exploration. It is a
calibration parameter where its smaller values reduce the probability
of the agent exploring actions approaching 9X,. 4; = argmax o;(si»a) an

(K]
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Algorithm 1: Safe and Information-seeking exploration (Safe-ISE)

Input: Define context s, safe initial action q,, define hyperparameters in Table 2

Initialize i = 0, Aa* ;

w N =

Initialize g(s, a), f?(s, a)forae A;

4

5 while stopping criteria not met do

6 i=i+1;

7 fori= 1,23 do

8 ‘ Explore around safe action: a = a; + 4a,, A(i) < a ;

9 end

10 for i > 4 do

11 PM(s;,a € A)) < py(s;, Ay) — pg(s;, af) = 1.96 X a4(s;, a7) 5

min({a | PM(s,a € A) > PM}) if B(s,. a, + Aag) > B(s;, ap)

12 a « 2 5

- min{ay, aj, ....,a;_, } if B(s;, ay — Aay) > B(s;, ay)

_ max{ay, a,....,a;_ ifﬁS»,a + Aa, >1§s,a
, M{ (@, @y, iy} 3 Blsi,aq + dag) > Bls;, )

max({a | PM(s.a € A) > PM}) if B(s;,a, — Aag) > B(s; ap)

14 A < la.al;

Initialize A(i), which is a vector to store values of all actions taken by the agent ;
Initialize .4, which is a set of discrete actions at which GPR model is evaluated;

, 4w {[E,.,E,. + Aa*] if l;i'(si,ao + Aay) > l;?(s,., ap)
[a, — 4a*, a1 if B(s;, ay — Aag) > B(s;, ap)
16 A« A+ A
17 if argmax, o,(s;,a € A;) € A_; then
18 ‘ a; < argmax, oq(si,a)
19 else if argmax, o,(s,;,a € A,) € A} and PM(argmax, o,(s,,a € A/)) > PM then

2 o < {Ei +e3/B(s;,a,) if B(s;, ap + Aay) > B(s;, ay)

a, - eg/ﬁ(s,-,t_li) if lf?(s,.,ao — Aaqy) > é(s,,ao)

21 A(i) < a; ;
22 end
23 Observe q(s;, a;), x; ;
1 h(x)
i ~Hlog (22} A > £
24 B(s;, x;) < f ( l‘:fyh(’()
~tlog (). A <¢

I+r¢

25 Update ﬁ(s,.,a,.) ;

26 Update GPR model using data A(i), q(s;, a;) ;

27 Compute GPR predictions Hy(s;,a € A),04(s;,a € A);
28 a; « argmax, {(s;,a € A;) ;

20 end

On the other hand, if such an action lies in Alf', the agent takes a
step size inversely proportional to B towards 0X,, expressed as, a; is
expressed as,

o= {Ei + eg/f}(s,-,ﬁ,-) if ﬁ(s,-,ao + Aag) > f?(si,ao) 18)

a, - eg/ﬁ(s,»,gi) if é(s,-,ao — Aay) > I§(s,-,a0)

where ¢j is a constant of proportionality and a calibration parame-
ter. This ensures a decaying step size in approaching the constraint
boundary to avoid constraint violation.

4.4. Stopping criteria

The agent stops the exploration process if either of the following
termination conditions is met:

1. No action exists satisfying criteria defined in Section 4.3,

2. Change in optimal action 4e¢* < € for p number of iterations.
Here, ¢ is a small scalar. Decreasing ¢ increases the experiment
time and probability to converge closer to the global optima and
vice-versa. On the other hand, by decreasing p, the experiment
time decreases with higher probability of getting stuck in local
maxima, _ _

3. Maximum allowable value of rCBF B reached i.e., ﬁ(s,-, a;) > B,

4. Maximum number of experiments allowed is reached i.e., N, p 2
N

exp®

5. Application to an automotive heat pump system

To determine the potential of Safe-ISE method, we apply the pro-
posed exploration method to an automotive heat pump system in
simulation. The focus of this work is on the cabin cooling mode of the
heat pump system shown in Fig. 7. The pressure-enthalpy diagram, also
called the Mollier diagram, shown in Fig. 8 can be used to explain the
operation of the heat pump in the cabin cooling mode. In this mode, the
heat pump system extracts the heat energy from the cabin and releases
it to the environment to meet the desired cabin temperature. The
system consists of four actuators i.e., expansion valve u,,,, compressor
Uemps fan uy,, and blower uy,,, two heat exchangers i.e., evaporator
(EVA) and outer heat exchanger (OHX) and accumulator (ACC). The
air flowing across the outer heat exchanger present at the vehicle
front extracts the heat from the hot refrigerant flowing across it. The
refrigerant then condenses and changes its phase from vapor to liquid.
If the refrigerant temperature goes below its saturation temperature at
a given pressure ps, it is in a subcooled liquid state. Here, the subcool
temperature T,, at a given working fluid pressure is defined as the
temperature difference corresponding to hz(p;) — hy(p3), where h is
enthalpy, A3 (p;) is the enthalpy of the saturated working fluid in the
liquid state, see Fig. 8.

The refrigerant changes its phase from liquid to two-phase mixture
as it passes the expansion valve due to the pressure drop across the
expansion valve. The two-phase refrigerant then extracts heat energy
from hot air flowing across the evaporator and changes its phase to
vapor. It is beneficial to keep the refrigerant in a saturated vapor state
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Fig. 7. Schematic of heat pump system in the cabin cooling mode. Symbols p, T
represents the measured pressure and temperature signals. Subscript a,eo represents
air at evaporator outlet and amb is ambient air. p, represents a prediction from the
virtual pressure sensor. Actuators are marked in green and the heat exchangers are
marked in gray. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 8. Mollier diagram for the heat pump system in the cabin cooling mode.
Isothermal conditions are indicated by gray lines.

at the outlet of the evaporator, as the presence of liquid droplets in
the refrigerant going into the compressor can cause damage to its
components. To ensure the safety of the compressor, an accumulator
is introduced before the compressor, which extracts any remaining
liquid droplets in the refrigerant. The refrigerant in a vapor state at
low temperature and pressure is then compressed to vapor at high
temperature and pressure by the compressor, closing the cycle. The
refrigerant temperature at the compressor outlet is constrained, as high
temperatures can damage the compressor due to high frictional forces.
Also, the refrigerant pressure after the compressor is constrained by the
operational guidelines of the heat pump system.

5.1. Control problem

The control objective is to determine the T, setpoints to realize the
cooling demand of the passengers J, while maximizing the heat pump
efficiency J, and maintaining safe operation of the system in steady-
state operation. The heat pump efficiency J, is directly correlated to
T,, (Yamanaka et al., 1997), which can controlled by the expansion
valve. J, is defined as the ratio of the rate of useful thermal energy
exchanged and the rate of work consumed. It is often referred to as
Coefficient of Performance (COP) and is expressed as,

Qa,e Peva(Tsc’ ucmp)

J,=——= 19
K Wnet Pcmp(ucmp) + Pfan(ufun)

where Q,, is the rate of thermal energy exchanged by air at the
evaporator, W,,, is the rate of useful work, P, is the cooling power
delivered by the refrigerant at the evaporator, P,,, is the required
compressor power and Py, is required fan power. The blower power
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Py, is omitted in Eq. (19) because the blower speed is held constant.
The cooling demand J, is defined as the absolute deviation in the

setpoint value r; and the actual value of T, ., and it is expressed as,

Jc :er

a.eo

- TaA,eo | (20)

To meet the cooling demand, i.e., minimize J, the air temperature at
the evaporator exit 7, ,, is controlled by the compressor. The common
practice for designing heat pump control system is to introduce two
single-input single-output (SISO) feedback control loops, consisting of
setpoint generator R and feedback controller C. Here, T,, and T,,,
are controlled by the expansion valve and the compressor speed, re-
spectively. However, the interaction between the two SISO control
loops makes the calibration of the controllers R,C challenging and
time-consuming (Keir & Alleyne, 2007).

With regard to safety, the refrigerant pressure at the compressor
exit i.e., p, should remain below a threshold value p, as advised in
the operating guidelines of the compressor. Factoring in the interaction
between the two SISO control loops, the cost function for optimization
is defined as a weightage sum of J, and J .. The resulting optimal
control problem is expressed as,
r%icn—(dl X J, — d, xJC)

s.t. x = f(x,u,t), @D

Pr—py 20,

Here, d, = 1 and d, = 1 [1/K] are the weights used to scale the cost
terms.

5.2. Contextual Bandits problem formulation

The heat pump control problem is formulated as a Contextual
Bandits problem and its specifications are as following,

1. Reward R: The cost terms J, and J, provide relevant information
on the system efficiency and the cooling demand, therefore, the
reward is defined as the negative of the cost function defined
in Eq. (21) and it is expressed,

R=1J,-J, (22)

2. Context s: The stationary operating point of the heat pump
system can be defined by stationary conditions of the known
external disturbances w, such as ambient air temperature 7,,,,
relative humidity of the air RH,;,, cooling demand of the passen-
ger and vehicle speed. For the method development, s is defined
as a subset of w i.e., T,,, and RH,, expressed as,

T
§= [Tamb RHair] (23)
3. Action a: The agent’s action a is the T, setpoint i.e., rr._, which
is directly correlated with J, and also impacts J.. r can take
real values. Therefore, we assume a continuous action space,

ie,a€ ACR".

A-priori information: For exploration, we assume a-priori informa-
tion on: (1) Safe initial action g, = 15 °C, (2) Lower bound on action
space g = 3 °C and (3) Constraint on p,, i.e., p, = 21 bars. a is known
from a physical understanding of the automotive heat pump system,
which ensures that the refrigerant remains in the liquid phase. This
value is consistent across all stationary operating conditions i.e., w = s.
For this application, the upper bound on the action space varies with
the operating conditions and it is non-trivial to determine. Therefore,
we assume that partial information is available on restricting action
space for exploration.
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Table 2

List of hyperparameters for the Safe-ISE method in simulations.
Parameter Description Category Value
Aa, Step-size in action for start-up Initialization 0.5 °C
¢ Scaling of rCBF 10
y Rate of change of rCBF rCBF 0.0005
£ Small constant for continuity of rCBF 0.0001
A Window length to detect stationary condition 120 s
I, Window length for averaging R Averaging of R signal 60 s
A Allowable deviation from setpoint 0.5 °C
k GPR - kernel function Squared-exponential
oo GPR - initial estimate of signal standard deviation 1

’ s . GPR

610 GPR - initial estimate of length scale 3
[ GPR - initial estimate of noise standard deviation 0.003
€g Learning rate rCBF 30
PM Minimum value for PM Exploration —-0.30
Aa* Step size outside A, 2°C
P Number of iterations to check for optimality 5
€ Small constant for change in optimal action . — 0.01 °C
- - Stopping criteria
B Maximum allowable B 170
ﬁcxp Maximum number of experiments 50

5.3. Hyperparameter selection

The hyperparameters of the Safe-ISE method are listed in Table 2.
For initial exploration, a small value for Aaq, is desired to avoid violation
of safety constraint in case a; is close to the safe boundary. 4q;, = 0.5 °C
is chosen to account for inaccuracy in the measured value of T, . For
shaping the rCBF, smaller values of y,¢ are chosen by trial and error
approach such that the rCBF function grows to a large value before
p, — P, as shown in Fig. 9.

For the GPR model, a squared-exponential kernel function is chosen
due to its suitability for smooth functions, which is consistent for the
studied system. The parameters ¢, 0,0, represent the initial esti-
mates for the standard hyperparameters of the GPR model in MATLAB.
These parameters are optimized by the GPR toolbox in MATLAB as new
data points are received during the exploration.

In order to sample true action-value measurements, the reward
signal is averaged over /, = 60 seconds if the system output y = T},
stays stationary i.e., within the tolerance of 4 = 0.5 °C to the agent’s
action for a window length of /; = 120 seconds. The exploration process
after the initial exploration is controlled by the hyperparameters e, PM
and Aa*. For determining the step size in agent’s action approaching the
safe boundary, the choice of the parameter e is very crucial. Smaller
values of e cause small changes in action step size resulting in slow
learning process. However, larger values of ¢j can result in constraint
violation due to larger step sizes. A small value of PM limits agent to
look for peaks closer to current best while a larger value allows agent
to explore peaks much smaller than the current best. A larger value
of PM represents a conservative nature of the agent and places lower
confidence in the action-value of the current best action. With this
approach, the agent explores not just actions with larger uncertainty

but also actions where a maxima could lie. 4a* determines the learning
speed of the agent, where a smaller value promotes faster approach
towards safe boundary and vice versa.

The termination of the exploration process is controlled by the
parameters p, €, B, and Nexp. p, € has a direct impact on optimality and
number of experiments during exploration. A smaller value of p can
result in early stopping of learning and has a higher probability of
converging in a local maxima. Whereas a larger value of p can converge
close to the most optimal action within the safe action space, however,
it can result in larger number of experiments. On the other hand, ¢
can be derived from the desired system performance for example, its
smaller value has a higher probability that the agent converges close
to the most optimal action in the safe action space. However, it can
result in larger number of experiment as the agent is more persistent in
getting close to the optimal point. For safety, a tolerance of h(x = p,) =
1 bar is chosen in p, with respect to p, = 21 bars, which is equivalent to
B =170 as calculated using Eq. (5). For the case where the agent does
not meet the criteria imposed by p, ¢, B, Nex » is introduced to terminate
the learning process. ﬁ”[, has a similar impact as p, therefore, a larger
value equivalent to 50 is chosen to strike a balance between optimality
and the number of experiments.

6. Simulation results
6.1. Test-case

The benefits of the proposed RL-based control method for safety,
optimality and time-efficiency are demonstrated in simulation. Table

3 shows the specifications of the stationary test case. For reference,
we determine the true reward function as shown in Fig. 10. The true
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Table 3
Specifications of the test case for simulation.
Parameter Description Value Unit
Tos Ambient air temperature 31 [°C]
RH,, Relative humidity of air 40 [%]
T,. Desired cabin air temperature 20 [°C]
v, Vehicle speed 0 [km/h]
U Fan speed 50 [%]
Upor Blower speed 30 [%]
24l % atol = 23.7 300
*=24
250
22¢
200
T2 S
“ 2,
= 150 o
18 ¢
100
1.6, 50
1.4 . * : . 0
35 10 15 20 25 30 35 40

Fig. 10. Illustration of the true action-value function for the test case. The solid blue
line shows the true action-value function, black solid line shows true B and the shaded
region in red represents h(x) < 0. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

function is derived from the measurement data collected by making a
sweep of different actions a and gathering corresponding ¢(s, a) values
the steady-state operating point. The underlying true expected reward
function is non-convex and consists of multiple maxima.

The safe action space A, = {a|a < 25°C,a € R*}, where the
critical action @ = 25 °C represents action at A(x = p,) = 0. The action
corresponding to the tolerance h(x = p,) = 1 is 4,,, = 23.7 °C. In the
test case, the global optimal action a* = 24 °C lies beyond g,,, = 23.7 °C
while the most optimal action in A, is a = 23.7 °C.

6.2. Safe-ISE method
The proposed method is applied to the test case specified above.

Fig. 11 shows the exploration result at the end of the learning process.
The agent begins the exploration process with a; = 15 °C and requires

N,,, = 18 experiments for convergence. The agent converges to the safe
and locally optimal action 4, = 23.7 °C € X without violating the

safety constraint. The exploration is terminated when B(a) > B. The

total experiment time T,,, required during exploration is calculated as,

i=N,y,

Texp = texp,i (24)
i=1

where t,,,; is the time required for ith iteration in the agent-

environment interaction. From the experimental data, it is found that
the average value for 7,,, is 300 s for varying actions taken by the agent.
T,,, required by the agent is 1.5 h.

The exploration process is investigated more closely in Fig. 12. For
i = 4, the agent determines the actions for which B(a) < B(a) i.e., safe
action space A.; and calculates the values of PM and o. Initially,
the GPR predictions do not provide sufficient information about the
underlying action-value function. It is seen that PM(Va € A;) > PM,
which implies that the agent considers all a € A; as potential options
to take in the next iteration. Also, the agent has a similar uncertainty
in action-value for all a € A, \ {ay,ay,...,a;_1}. For iteration i = 11,

10
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Fig. 11. Exploration results with the Safe-ISE method at N,,, = 18. (<) in blue are

ex
action-values corresponding to agent’s actions, the solid blue linep shows the true action-
value function and the shaded region in red represents h(x) < 0. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

the PM and ¢ values are different for actions in the action space
compared to that in iteration i = 4. For a € [3,7]°C,PM(A;) < PM
with small uncertainty in action-value, which indicates the absence of
global maxima in that action range. Among actions a € A,, it is seen
that a € A has PM > PM and the highest uncertainty (see red box in
Fig. 12), therefore, the agent takes the next action in .4 approaching

0X_. For i = 18, the exploration process is terminated as f}(a) > B
6.3. Comparison with state-of-the-art exploration methods

We benchmark the proposed exploration method with two
state-of-the-art exploration methods: (1) Random exploration and
(2) Uncertainty-driven exploration. In random exploration, the agent
chooses actions randomly from a pre-defined action space A € [3,40] °C
with no knowledge of safe action-space. Whereas in uncertainty-driven
method, the agent chooses the action corresponding to the highest
uncertainty in action-value estimate at every iteration from the action
space A € [3,40] °C. For both the methods, the exploration begins with
taking the safe initial action g, = 15 °C. For a consistent comparison,
we use the GPR model for action-value approximation and estimate the
optimal action in a similar approach as in Safe-ISE method. Moreover,
we use similar values for the hyperparameters of the GPR model and
the agent’s stopping criteria for the comparison study as shown in Table
4.

The comparison results between the state-of-the-art and proposed
exploration methods are shown in Table 5. Fig. 13(a) shows the ex-
ploration result of applying the random exploration method. It is seen
that without a-priori information on the safe action space, the agent
randomly takes all actions in the maximum allowable action space A
and violates the system safety constraint. Furthermore, it is seen that
certain actions are not explored, which results in large uncertainties
in their action-value estimates. Nonetheless, the random exploration
method converges to a = 24.2 °C, which is close-to the global optimal
action a* = 24 °C with a negligible deviation from the true action-
values at the cost of safety. Moreover, it requires approximately 38%
larger experiment time compared to Safe-ISE.

The result of applying the uncertainty-driven exploration method
is shown in Fig. 13(b). Similar to the random exploration, system
safety constraints are violated as the agent explores actions with the
largest uncertainty in the corresponding action-values in the maximum
allowable action space. As expected, the uncertainty-driven exploration
requires 12% lower experiment time compared to the random explo-
ration with a marginal penalty on optimality. In comparison to the
Safe-ISE method, it requires 22% larger experiment time. In summary,
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Fig. 12. Evolution of action-value estimate and information gain metrics over the exploration process of Safe-ISE method. (-) in blue are action-values corresponding to agent’s
actions, the solid blue line shows the true action-value function; the shaded regions in red, magenta and gray represents h(x) <0, A.; and A/, respectively. The red arrow indicates
the action with the highest uncertainty in A and the blue arrow indicates the action with the highest uncertainty in A_;. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

Table 4

List of hyperparameters for random and uncertainty-driven exploration methods.
Parameter Description Category Value
1) Small constant for numerical stability Initialization 0.0001
I Window length to detect stationary condition 120 s
I Window length for averaging R Averaging of R signal 60 s
2 Allowable deviation from setpoint 0.5 °C
k GPR - kernel function Squared-exponential
oo GPR - initial estimate of signal standard deviation GPR 1
010 GPR - initial estimate of length scale 3
o, GPR - initial estimate of noise standard deviation 0.003
P Number of iterations to check for optimality 5
€ Small constant for change in optimal action Stopping criteria 0.01 °C
chp Maximum number of experiments 50

Table 5

Comparison of simulation results for Safe-ISE method with random and uncertainty-driven exploration methods. Text in bold represents the

best performance among the studied methods.

Evaluation Exploration method
criteria

Safe-ISE Random Uncertainty-driven
Deviation from ¢* (4q = ¢* — q:gm) 0.0021 0.01 —0.0016
Percentage deviation (4q/q* x 100%) 0.1% 0.5% —0.008%
Deviation from a* (4a = a* — "dem) 0.3 °C 0.2°C 0.5 °C
Percentage deviation (4a/a* x 100%) 1.25% 0.83% 2.1%
Safe operation (B < B) Yes No No
Number of experiments N,,, 18 25 22
Total exploration time T,,, 1.5h 2.08 h 1.83 h

both the random and uncertainty-driven exploration methods does not
maintain safe system operation and they require larger number of
experiments compared to Safe-ISE method for converging close-to the
optimal action.

7. Experimental validation on a vehicle test-bench

In this section, the initial results of implementing the proposed
Safe-ISE method on a vehicle test-bench are presented. The vehicle
test-bench is equipped with a chassis dynamometer inside a climatic
chamber and it has the capabilities to realize a wide range of values

11

for the ambient temperature and relative humidity. The vehicle is
equipped with an ETAS rapid prototype system (RPS), for the RL-
based controller implementation and validation. The RL-based control
method is developed in MATLAB 2017b on a laptop.

7.1. Test cases

The proposed method is validated over two test cases: (1) Nominal
operating point (OP1) and (2) Nominal operating point with different
constraint bound (OP2) as listed in Table 6. The test cases are steady-
state operating points characterized by stationary values of context
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(b) Result of applying uncertainty-driven exploration after N,., =
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Fig. 13. Simulation results with existing exploration methods. (-) in blue are action-values corresponding to agent’s actions, the solid blue line shows the true action-value function
and the shaded region in red represents A(x) < 0. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 14. Experiment test-case OP1: Results of incremental learning on the vehicle test-bench. (-) represent data corresponding to agent’s actions. The arrow in black indicates the
agent’s action and corresponding increase in p, with relaxed constraint on system state p, compared to OP2. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

Table 6
Specifications of the validation operating points (OPs). The underlined text emphasizes the change in the operating conditions compared to the nominal operating point
OP1.

oP Description Tos RH,, Constraint True optimal Critical action

[°C] [%] Bound p, action a* [°C] a, 5 [°C]
[bar]
OP1 Nominal 35 10 21 14.4 21.2
0oP2 Nominal with different 35 10 19 14.4 25.3
constraint bound
T . . - . . . .
s = [T, RH,,] and safety constraint defined by p,. In order to state p, is made more strict by changing its value from 21 bars to 19

find the true values of a* and a,,_5-, a steady-state T, sweep is made.
For individual value of T , the corresponding data on ¢(s,a) and p,
is collected, which are fitted using the Gaussian Process Regression

model. a* is determined as follows,

a*(s)= argmax u(s,a) (25)

=T €Acpal
where y;(s,a) is the mean prediction of the GPR model and A,
represents the set of T, values for which the GPR model is evaluated.

7.2. Validation results

The incremental learning by the agent on the vehicle test-bench
for OP1 and OP2 is shown in Figs. 14 and 15, respectively. It can
be seen that in both the test cases, the agent remains within the safe
boundary by not exploring the unsafe actions. In OP1, the agent takes
8 different actions starting from an initial safe action and converges
to action a* = 15.3 °C, which is within the desired 2% of the true

agent
q*(s, a) determined from the T, sweep. In OP2, the safety constraint on

12

bars. As seen from Fig. 15, the agent’s behavior is more conservative
and explores fewer actions approaching the safe boundary as compared
to OP1. In OP1, the agent explores the action a 18.7 °C due to
relaxed state constraint unlike in OP2. Nonetheless, the agent converges
to action a’,, = 14.8 °C, which is close to the true optimal "

14.4 °C. Similar to OP1, the agent converges to within 2% of the true
q*(s, a). These experimental results provide a proof-of-concept of a safe,
time-efficient and automated calibration process using the proposed

exploration method.

8. Conclusions and future work

In this paper, we present a novel method for safe and time-efficient
exploration that requires no prior system model for Reinforcement
Learning-based control of complex real-world physical systems. The
safety constraint is formulated using the reciprocal control barrier
function, which is used to determine the step-size of the agent’s actions
approaching the safe boundary during exploration. To minimize num-
ber of experiments, we combine the reciprocal control barrier function
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Fig. 15. Experiment test case OP2: Results of incremental learning on the vehicle test-bench. (+) represent data corresponding to agent’s actions. (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this article.)

with information gain metrics to determine actions which maximize
information on the action-values. The required a-priori system knowl-
edge is minimized with the proposed method, which highlights its
applicability for control development of new systems. First, we demon-
strated the benefits in safety, optimality and number of experiments of
our proposed method on an automotive heat pump control system in
simulation. For the studied test-case, the proposed method converges
to the safe and locally optimal action with a deviation of 0.3 °C
from the global optima without violating the safety constraint during
the exploration. A significant reduction of 28% and 18% in experi-
ment time is achieved with the proposed method in comparison to
the existing exploration methods i.e., random and uncertainty-driven,
respectively. Second, the proposed method was validated on a vehicle
test-bench for optimizing the steady-state performance of the vehicle
thermal system. The experimental results show that the proposed con-
trol method converges close to the true optimum in action-values with
an accuracy of +2% for the studied test-cases while ensuring system
safety at all times during the exploration. Future work will focus on
applying the approach to a wider range of operating conditions. This is
an important step towards RL-based control for on-line learning in an
on-road vehicle. Special attention will be paid to stability analysis of
the system’s closed-loop performance.
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