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HIGHLIGHTS

e New source apportionment method for both local and regional fine PM.

e PM population exposure is influenced by local sources more than PM levels.

e Local biomass burning dominated both PM levels and exposure during winter.

e Long range transport was dominant during the winter.

e The modeling source apportionment results were consistent with measurements.

ABSTRACT

Chemical transport models often use moderate spatial resolution to simulate atmospheric pollution, thereby limiting the model’s ability to represent variations in
urban areas. Additionally, the contributions of individual sources of pollution transported to the urban areas of interest from elsewhere are rarely quantified. In this
study, we developed an approach to simulate air quality, focusing on PM, 5 (particulate matter with a diameter lower than 2.5 pm), and its local and regional sources
at high spatial resolution of 1 x 1 km?. The approach is applied in the largest city of Greece, Athens. The PMCAMx chemical transport model is employed in
combination with the source apportionment algorithm, PSAT (Particle Source Apportionment Technology), to quantify the concentrations and sources of PMy s,
organic aerosol (OA) and elemental carbon (EC) for a typical summer and winter month. A novel approach is developed, allowing the quantification of the con-
tributions of sources not only inside the simulated urban area but also of the regional sources located outside. Model predictions were combined with population
distribution data to provide estimations for human exposure not only to total PM; 5 concentrations but also to specific sources within the city. Residential biomass
burning and transportation were found to be the dominant local sources of PMj 5 exposure. The higher resolution (1 x 1 km?) offered a more detailed representation
of PM 5 spatial variability than a coarser one (36 x 36 km?). This underscores the importance of capturing local sources in specific areas of the domain. The proposed
approach can be used to provide estimates of human exposure to specific local and regional sources of primary and secondary PMy 5 in an urban area.

1. Introduction

Fine particulate matter (PM) has serious effects on human health, as
it causes heart diseases, respiratory disorders, lung cancer, or even death
(Feng et al., 2016; Huang et al., 2017). Whereas coarse PM is more likely
to deposit on the upper portion of the respiratory system, fine PM can
enter the deeper regions of the lung causing increased damage (Deng
etal., 2019; EPA, 2023). Even at low concentrations, PMj 5 exposure can
affect public health (Fann et al., 2012). In Europe, it is estimated that
PM, 5 is responsible for approximately 250 thousand premature deaths

annually (EEA, 2023).

The chemical composition of PM; 5 varies spatially, and often or-
ganics dominate the fine PM composition in Europe and the US (Zhang
et al., 2007). Anthropogenic sources of PM include industry, trans-
portation, residential heating, cooking, shipping, agriculture, etc.

Detailed field measurements are often used for PM; 5 source appor-
tionment in one or more specific sites in a large urban area. For Athens,
Theodosi et al. (2018), based on 848 PM; 5 samples collected during a
period of more than 2 years (12/2013-3/2016) at an urban background
site, estimated the contribution of six sources, namely biomass burning
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Fig. 1. (a) European modeling domain, (b) nested domains focusing on the 1 x 1 km? modeling domain of Athens (red). Blue: 1st nested domain with 12 x 12 km?
spatial resolution, green: 2nd nested domain with 3 x 3 km? spatial resolution and red the 3rd nested domain with 1 x 1 km? spatial resolution (inner domain) and
(c) inner domain with the locations of PM; 5 sensors. Purple dots represent measurement sites. The orange box represents the urban center of Athens. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

(31 %), vehicular emissions (19 %), heavy oil combustion (7 %),
regional secondary (21 %), marine aerosols (9 %), and dust particles (8
%). Similar results were also presented by Saraga et al. (2021) con-
firming that residential combustion was the predominant PMj 5 source
in an urban background site in Athens, contributed 38 % to PM, 5 during
2017, followed by secondary particles (20 %), soil dust (12 %) and
traffic (17 %). In a traffic site, the traffic contribution increased to 27 %,
but residential combustion was still the major source. Pateraki et al.
(2020) concluded that the predominant source of PMy 5 during early
spring and summer was biomass burning. Diapouli et al. (2017) found
that biomass burning contributed 46 % to PMj 5 in an urban site (at the
south-eastern part of Athens) during 2011-2012, while sulfate was the
most important contributor (55 %) to PMys in a suburban site
(“Demokritos” campus) at the same period. In another urban back-
ground site (Zografou) in Athens, Grivas et al. (2018) found that almost
half of PM; 5 was due to regional pollution during 2011-2012. Traffic
contributed 24 % to PMy 5, biomass burning 9 %, mineral dust 7 %, oil
combustion 4 %, and sea-salt 2 %.

PM, 5 source apportionment modeling studies often employ low
spatial resolution due to their high computational cost and the lack of
suitable high-resolution emission inventories. For example, Thunis et al.
(2018) used the SHERPA (Screening for High Emission Reduction Po-
tentials for Air quality) tool, which is a simplified version of a chemical
transport model, at the spatial resolution of 7 km?. This study estimated
that industry was the major source of PMy5 in Athens during 2009.
However, there have been significant changes in emissions in Athens
during the last decade. In addition, higher spatial resolution allows for a
more accurate representation of the variability in source contributions
across the city, leading to a better understanding of pollutant distribu-
tion and spatial patterns (Garcia Rivera et al., 2022). Coelho et al.
(2022) using the Comprehensive Air Quality Model (CAMx) and PSAT,
estimated that long-range transport was the dominant contributor to PM
concentration levels in both summer and winter in six major European
cities. Pepe et al. (2019) also using CAMx/PSAT showed the importance
of regional sources for PMy s in Milan during the year. While these
studies provided valuable insights about the relative importance of the
various local sources in major urban areas, they provided little infor-
mation about the type of sources contributing to long-range transported
fine PMy 5. At the same time, challenges in estimating the source con-
tributions to secondary PMy 5 (especially OA) remain. This secondary
fraction can dominate the PMj 5 levels during most of the year.

In this study, we combine the PMCAMx model and the PSAT source
apportionment algorithm to produce source-apportioned PMs 5 pre-
dictions at a high spatial resolution of 1 x 1 km? for a European city

(Athens) for 2019 during a summer and a winter month. The model
results, in combination with the population distribution in the city, are
then used to estimate human exposure not only to total PMj 5 concen-
tration but also to local and regional sources. The novelty of this work
lies in the further separation and analysis of the contribution of indi-
vidual sources located outside the urban domain.

2. Model description and application
2.1. The PMCAMx model

The three-dimensional chemical transport model PMCAMx (Partic-
ulate Matter Comprehensive Air quality Model with extensions)
(Fountoukis et al., 2011) is utilized in this study to simulate the pollutant
concentrations in a European city, Athens (Greece). PMCAMX solves the
continuity equation for each pollutant at each time-step. The injection of
emissions from all sources is the first simulated process in each step.
Following this, PMCAMx simulates vertical and horizontal advection,
chemistry, vertical and horizontal dispersion, and dry/wet removal.
Gas-phase chemistry is simulated using the SAPRC mechanism (Carter,
2000), which includes 217 reactions and 114 species (16 radicals, 76
gases). For aerosol chemistry, the bulk equilibrium approach is utilized
for the partitioning of inorganic and secondary organic compounds be-
tween the gas and particle phases (Capaldo et al., 2000). The Variable
Size Resolution Model developed by Fahey and Pandis (2001) is applied
for the simulation of aqueous-phase chemistry.

For organic aerosol, the 1-D Volatility Basis Set (VBS) approach
(Donahue et al., 2006) is used for primary and secondary OA, treating
both as chemically reactive and semi-volatile components. The organic
components were separated into logarithmically spaced volatility bins
based on their effective saturation concentration at 298 K. The param-
eterizations used were those of Tsimpidi et al. (2010).

Wet deposition is modeled applying a scavenging model for aerosol
and gases (Seinfeld and Pandis, 2006), while the methodology of Wesely
(2007) and Slinn and Slinn (1980) is used for dry deposition simulation.
The approach of Tambour and Seinfeld (1980) is employed to model
aerosol particle coagulation.

2.2. Model application

In this first application of the proposed methodology, we focused on
air pollution in Athens, Greece. PMCAMx was applied all over Europe
focusing on the city of interest using three nested grids with increasing
spatial resolution. The outer domain was the European domain (low-



E. Siouti et al.

resolution grid), which extended over an area of 5400 x 5832 km? with
a 36 x 36 km? horizontal spatial resolution (Fig. 1). The inner domain
covered a region of 72 x 72 km? for the city using 1 x 1 km? spatial
resolution. Also, there were two other intermediate grids with 12 x 12
and 3 x 3 km? resolutions that were centered on the city. There were 14
layers in the vertical for each of the modeling domains.

2.2.1. Meteorology

The study periods were a typical winter (January) and a summer
(July) month during 2019. The meteorological data were produced by
the Weather Research and Forecasting (WRF) mesoscale numerical
prediction model (Skamarock et al., 2019) using the same grids as
PMCAMx. The WRF output data were used directly for the 36 x 36 km?
European domain and the inner 1 x 1 km? domain. Interpolated mete-
orological data about the zooming approach were used for the other two
nested domains at 12 x 12 and 3 x 3 km? Additional details can be
found in Siouti et al. (2022, 2024).

2.2.2. Emissions

The anthropogenic emissions were based on the CAMS-REG-v4 in-
ventory developed by the Netherlands Organization of Applied Scien-
tific Research (TNO) at a 0.05° x 0.1° grid resolution (Kuenen et al.,
2022). There are twelve source sectors including industry, public power,
road transport, non-road transport, agriculture, shipping, aviation, do-
mestic processes, fugitives, solvents, waste processes and agricultural
waste burning. The emission inventory includes the main atmospheric
pollutants (SO2, NOy, non-methane volatile organic compounds, NHs,
CO, PM;p and PMj3s). PM components include elemental carbon,
organic carbon, sulfate, sodium and other minerals. Non-methane vol-
atile organic compound emissions have been split into 23 groups. The
emissions for the European domain were prepared initially at 36 x 36
km? spatial resolution following the corresponding PMCAMXx grid. Point
emissions from industry, heat plants, airports and waste treatment
plants were placed in the corresponding grid cell.

For the estimation of high-resolution emissions for the inner domain,
we disaggregated spatially the 36 x 36 km? TNO emission inventory
using the UrbEm method and tool (Ramacher et al., 2021). UrbEm
combined the CAMS emissions dataset with selected high resolution
spatial proxies per source category. The output of the tool is an emission
inventory for any city or region in Europe, at the spatial resolution of
interest. For the current application, the UrbEm results were normalized
and were used for the distribution of the 36 x 36 km? TNO emissions to
1 x 1 km? keeping the totals the same.

Biomass burning OA (bbOA) emissions for the high-resolution
domain were estimated in this study, based on Siouti et al. (2024) at
approximately 18 tn d~!. These emissions are associated with biomass
burning in fireplaces and woodstoves, which has become a major resi-
dential heating method in Greece after the financial crisis in the 2010s.
These emissions are underestimated in the TNO emissions inventory.
Spatial, temporal and volatility distribution of wood combustion emis-
sions for the urban area of Athens are presented in Fig. S1.

2.3. The PSAT source apportionment algorithm

The PSAT algorithm was applied to calculate the source contribu-
tions to PMy 5, OA and EC for both primary and secondary material
(Skyllakou et al., 2014; Skyllakou et al., 2021; Skyllakou et al., 2017;
Wagstrom et al., 2008, 2011a, 2011b). PSAT operates in parallel with
PMCAMXx and is highly computationally efficient. In this application,
PSAT tracks the following source categories of both primary and sec-
ondary PM separately: agriculture, shipping, aviation, waste burning,
heat plants, industry, biomass burning, combustion, solvents and fugi-
tives, exhaust road transport, non-exhaust road transport, non-road
transport, initial and boundary conditions. The "biomass burning"
source corresponds to bbOA, as described in Section 2.2.2, and is spe-
cifically associated with biomass burning in fireplaces and wood stoves

Atmospheric Environment 355 (2025) 121277

for residential heating. In contrast, the "combustion" source refers to
domestic combustion primarily for cooking and residential heating with
fuels (gas, liquid and solids) other wood.

PSAT has been designed to determine source contributions within a
single modeling domain with a fixed spatial resolution. PSAT was
extended in this work to provide source contributions using multiple
grids and moving from the regional to the urban scale with increasing
spatial resolution. As a result, in our approach, we estimate separately
the contributions of these local sources and the corresponding sources
outside the domain.

The extended algorithm uses the following steps: (a) PSAT is used at
the 36 x 36 km? modeling domain over Europe, (b) for each 36 x 36
km? grid cell, the average concentration of each pollutant due to each
source is calculated, (c) PSAT is used atthe 1 x 1 km?> modeling domain
over the city of interest, (d) for each 1 x 1 km? grid cell, the average
concentration of species coming from each local source is calculated, (e)
the transported concentrations in the 1 x 1 km? domain for each source
are calculated by subtracting the local concentrations from step (d) from
the total 36 x 36 km?> average concentrations obtained in step (b), and
(f) the results of step (d) and step (e) are synthesized to provide the
contribution of all sources separated into local and transported contri-
butions for each pollutant of interest.

2.4. Quality assessment

2.4.1. Measurements

For the evaluation of PM; 5 predictions we used measurements from
seven sites equipped with low-cost PM3 5 sensors located in the urban
core of Athens (Thissio, Keratsini, Gyzi, Vathis Square, Chalandri, Ano
Liosia and Papagou). The locations of the low-cost sensors are shown in
Fig. 1. Kosmopoulos et al. (2020) assessed the accuracy of these sensors
for Greece and recommended the following correction for PMs 5: PMs 5
= 0.42 PAiry5 + 0.26 (ug m73), where PM, 5 is the corrected concen-
tration and PAir, 5 is the measured value. This correction was applied to
all the data that will be used in the rest of the study. The urban center of
Athens that we will focus on is a 20 x 20 km? part of the inner modeling
domain (Fig. 1).

Aerosol chemical speciation monitor (ACSM) (Aerodyne Inc., USA)
measurements from the National Observatory of Athens (NOA) at
Thissio, in the center of Athens, were also used. The measurement res-
olution was 30 min. Also, an aethalometer that was operated by NOA
was used to measure black carbon (BC) concentrations. More details
about ACSM and BC measurements at the Thissio site can be found at
Stavroulas et al. (2019).

2.4.2. Metrics

The mean bias (MB), fractional bias (FBIAS), mean error (ME) and
fractional error (FERROR) were used to evaluate the model performance
of PM3 5, OA and EC. The evaluation metrics are given by the following
equations:

1 n
MB:NZ(Pi—Oi)

i=1

1 n
ME =Y "|P—Oj
N i=1

(P — Oy)
(Pi+0)

2 [P -0
FERROR = Zu m
i=1

FBIAS =
$ (P;+0y)

2N

i=1

where N is the total number of measurements, P; is the predicted con-
centration and O; is the corresponding observed concentration of the
evaluated species.

Based on Morris et al. (2005) PMy s model performance for daily
average values is considered excellent for FBIAS < +15 % and FERROR
< £35 %, good for FBIAS < +30 % and FERROR < +50 %, average for
FBIAS< +£60 % and FERROR < +75 %, while there are fundamental
problems in the modeling system for higher FBIAS and FERROR.
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Table 1
Daily average PM, 5, OA and EC predictions and measurements for July and
January 2019 for different sites in Athens.

Site Type July 2019 January 2019
Observed Predicted Observed Predicted
(pgm3) (pgm3) (pgm3) (pgm3)
PM 5
Thissio Urban- 8.2 9.2 12 13.8
background
Keratsini Urban- 7.5 7.7 - -
background
Gyzi Urban- 7.5 8.5 - -
background
Vathis Urban- 8.5 8.7 - -
Square background
Chalandri ~ Suburban- 8.4 8.2 - -
background
Ano Urban- - - 15.4 12.4
Liosia background
Papagou Suburban- 7.2 8.4 7.4 8.5
background
OA
Thissio 4.5 3 11 9.5
EC
Thissio 0.6 0.68 2.3 1.6

2.5. Population exposure

The population distribution for the city of Athens was determined
using population data from the European Union. The analysis utilized
the most recent database, the Eurostat census grid 2021 (https://ec.eur
opa.eu/eurostat/web/gisco/geodata/grids). This dataset, which per-
tains to 2021, is provided at a high spatial resolution of 1 x 1 km?
Athens has a total population of 3.3 million residents within the inner
simulation area. The number of inhabitants in each 1 x 1 km? grid cell is
multiplied by the average predicted PMy 5 concentration for that cell,
producing population exposure maps with a 1 x 1 km? spatial resolu-
tion. This exposure metric reflects the overall damage caused to the
health of the population of each 1 x 1 km? area by total PM, 5 as well as
its individual sources and components.

3. Results
3.1. Model evaluation

In summer, PMCAMx predicted the highest average PMj 5 concen-
tration of 9.2 pg m~> in Thissio (Table 1). The differences between
measured and predicted values were lower than 1 pg m™ in Thissio,
Keratsini, Gyzi, Vathis Square and Chalandri. Mean bias ranged from
—0.24 to 1.2 pg m~> and mean error from 2.4 to 3.5 pg m > in all studied
sites.

Table 2
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Model performance was excellent according to the criteria of Morris
et al. (2005) for the urban sites of Thissio, Keratsini, Gyzi and Vathis
Square with FBIAS<15 % and FERROR<35 %, whereas it was good for
Chalandri and Papagou with FBIAS<30 % and FERROR<50 % (Table 2).
Overall, the model’s performance in reproducing PM; 5 concentrations
was good across all sites, with overall FBIAS equal to zero and FERROR
of 45 %. For OA, model performance was average (FBIAS = —50 % and
FERROR = 68 %) in Thissio, while it was considered excellent for EC
with FBIAS equal to 9 % and FERROR equal to 24 %.

During winter, the model predicted the highest PMy s levels in
Thissio of 13.8 pug m 3, while measurements indicated the highest PMs 5
concentration in Ano Liosia at 15.4 pg m~°>. High mean error values for
Thissio and Ano Liosia were attributed to uncertainties in residential
biomass burning emissions during that period. At the suburban site of
Papagou, measurements showed the lowest PM 5 levels, consistent with
the predictions, with average concentrations differing by less than 1 pg
m~3. At this site, observed PM, 5 concentrations were approximately
half of those measured in the city center.

The performance of PMCAMX for PM; 5 during winter was good for
all sites individually. Looking at all PMy 5 data at all sites together,
performance was good, with FBIAS equal to 38 % and FERROR equal to
15 %. For total OA, in the city center, the model’s performance was
average, with an FBIAS of —20 % and an FERROR of 57 %. The model
performed well in predicting EC in Thissio, with a mean bias of —0.67 pg
m > and a mean error of 0.87 pg m~> and a good model performance.

3.2. Predicted source contributions in summer

During summertime, long-range transport (LRT) was the predomi-
nant source of PMy 5 in the 1 x 1 km? modeling domain, with an average
contribution of 90 % (Fig. 2a) and an average concentration of 6 pg m™~>
(Fig. 3) in agreement with Dimitriou et al. (2023). A significant fraction
(28 %) of transported PM, 5 was due to wildfires, 16 % from industry,
12 % from biogenic and marine sources, 8 % from agriculture, 7 % from
shipping, 4 % from road transport, 3.5 % from combustion 2.5 % from
fugitives and solvents and the rest from outside Europe. The major local
sources of PM; 5 were shipping (3 % of total PMs 5), industry (2.5 %) and
transportation (1.6 %). Higher levels of PMa 5 were predicted in the
northeast of the city (Fig. 4), with a total average PM; 5 concentration
for the 1 x 1 km? domain equal to 6.6 pg m . In the urban core,
long-range transport was also the primary source of PMy 5 but with a
lower average contribution of 81 % than the whole inner domain
(Fig. 2b). In this area, 37 % of transported PMy 5 was attributed to
wildfires. The major local sources in the city center were industry,
road-transport and fugitives and solvents, each contributing 5 % to
PM; 5 on average. PM; 5 concentrations of 2.5 ug m~3 related to shipping
were predicted around the Port of Piraeus, which is the biggest port in
the country (Fig. 3). In the urban center, PMj 5 levels ranged from 8 to
9.6 ug m >, with an average value of 8.5 pg m > (Fig. 4).

Metrics for daily average PM, s, OA and EC predictions and measurements for July and January 2019 for different sites in Athens.

Site July 2019 January 2019
MB (ug m~3) ME (ug m~3) FBIAS (%) FERROR (%) MB (ug m~>) ME (pg m~>) FBIAS (%) FERROR (%)
PMz s
Thissio 1 2.6 10 29 1.6 5.4 7 42
Keratsini 0.24 2.4 0 34 - - - -
Gyzi 1 3 5 35 - - - -
Vathis Sq. 0.26 3 —4 35 - - - -
Chalandri —0.24 3.5 -13 40 - - -
Ano Liosia - - - - -3 6 -18 45
Papagou 1.24 3.4 2 39 1.15 2.9 15 38
Total OA
Thissio -1.6 2.5 -50 68 -1.4 6.5 -20 57
EC
Thissio 0.09 0.16 9 24 —0.67 0.87 -25 41
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Fig. 2. Average predicted source contributions for PM, 5, OA and EC for (a) the 1 x 1 km? modeling domain and (b) the urban center during July and January 2019.

On average, 96 % of total OA in the 1 x 1 km? modeling domain
originated from long-range transport (Fig. 2a). A substantial fraction
(46 %) of this transported OA was due to wildfires, followed by biogenic
and marine sources (15 %). The predominant local OA source was
shipping (1.3 %). In the urban center, the most important local source
was road transport (2.5 %), while the remaining local sources contrib-
uted less than 1 % each (Fig. 2b). Transported OA had higher levels in
the northeast of the city, up to 4.5 pg m~>, while in the rest of the 1 x 1

km? modeling domain, OA exhibited little spatial variation (Fig. S2).
The average OA concentration related to long-range transport was 3.2
pg m~2 in the urban core. Total predicted OA had low spatial variability,
with an average concentration of 2.6 pg m ° in the inner domain
(Fig. 4). Primary OA contributed 11 % to total OA, while secondary OA
accounted for the rest. For the urban center, the average total OA was
3.4 pg m~3, with values ranging from 3.2 to 4.5 ug m~3 (Fig. 4). In this
area, primary OA contributed 22 % to total OA.



E. Siouti et al.

LRT

Atmospheric Environment 355 (2025) 121277

1
IOAB
106

0.4

0.2

Aviation

Chlf\dﬂ

il

") /@2

1
IO.B

106
0.4
0.2

-0

(exhaust)

(non-exhaust)

Shipping

0.1
0.08
. 1006
»
0.04
-
0.02
=)

Fig. 3. Average predicted concentrations of PM, s from various sources in pg m~> during July 2019 in Athens. The square indicates the center of Athens. Different

scales are used.

Long-range transport was the dominant source of EC in the 1 x 1 km?
modeling domain, with an average contribution of 62 % (Fig. 2a). A
significant fraction (55 %) of transported EC was attributed to wildfires,
22 % to combustion, 10 % to road-transport and 7 % to industrial
sources. The most important local sources were shipping (21 %), traffic
(9 %) and combustion (5 %) (Fig. S3). In the urban core, local traffic was
the major local source, accounting for 21 % of EC (Fig. 2b). The highest
EC concentrations were predicted near the port of Piraeus, while the
total predicted EC had an average concentration of 0.4 pg m~> within
the inner modeling domain (Fig. 4).

3.3. Predicted source contributions in winter

During wintertime, long-range transport accounted for 68 % to PM 5
in the 1 x 1 km? modeling domain with an average concentration of 3.7
ng m—3 (Fig. 2a). Combustion (18 %), industry (17 %) and biogenic and
marine sources (16 %) outside the inner domain were major sources of
transported PMj 5. Local residential biomass burning contributed 19 %

of the PMj 5, combustion 5 % and industry 3 %. In the urban center,
residential biomass burning was the primary local source of PMy s,
contributing 37 % on average, followed by combustion (9 %), industry
(5 %), fugitives and solvents (4 %), road transport (4 %) and shipping (1
%) (Fig. 2b). The other 40 % of PM, 5 was transported from outside the
inner domain. PM; 5 from residential biomass burning had an average
concentration of 1 pg m~* in the inner modeling domain and 3.7 pg m~3
in the urban core (Fig. 5). Residential biomass burning PM; 5 reached up
to 8 pg m~° at the north of the urban core, indicating the substantial
impact of biomass burning on pollution levels in certain areas of the city.
For total PM; 5, an average concentration of 10 pg m~3 was predicted for
the urban core, nearly double the whole inner domain. The highest
PM, 5 concentration, 16 pug m~3, was predicted in the center of the city,
highlighting again the significance of local sources during the cold
period.

Local residential biomass burning was the major OA source,
contributing 51 % on average in the inner domain (Fig. 2a). Transported
OA contributed 43 % of the total OA in the 1 x 1 km? modeling domain.
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In the city center, residential biomass burning was the dominant source,
accounting for 73 % of total OA. Significant spatial variability in OA
concentrations was predicted in the urban core due to residential
biomass burning (Fig. S4). The total average OA concentration in the
Athens center was 3.7 pg m~>, compared to an average of 1 yg m >
across the 1 x 1 km? modeling domain (Fig. 4). The highest OA con-
centration in the urban core was around 8 pg m™>. Significant spatial
variations were predicted in the urban core also due to residential
combustion and traffic (Fig. 5). Additionally, significant OA variation
was predicted around the Port of Piraeus, primarily due to shipping
activities. The average total OA concentration for the inner domain was
2 pg m~3, with primary OA contributing according to PMCAMx 70 % of
the total OA during this period. In the urban core, OA concentrations
ranged from 2 to 9 pg m~>, with an average of 5 pg m~>. PMCAMXx
indicated that primary OA dominated in the city center, contributing 88
% to the OA.

Long-range transport accounted for 58 % of EC in the 1 x 1 km?
modeling domain. A significant fraction of transported EC was due to
wood combustion (63 %). In the city core, local combustion from do-
mestic processes (mainly for heating) was predicted to be the dominant
source, with an average contribution of 46 %. Spatial distributions of EC
from combustion and road transport were highly variable in the urban
core. The average total predicted concentration of EC for the inner
modeling domain was 0.6 ug m >, while for the urban center it was 1.2
ug m~3. Around the Port of Piraeus, the average predicted EC concen-
tration was 1 pg m™> mainly due to shipping (Fig. S5).

3.4. Average diurnal variability of PMz 5

Fig. 6 depicts the average measured and predicted diurnal profiles of
PMj; 5 during summer. In all studied sites, both the measured and pre-
dicted diurnal profiles were relatively flat, supporting the conclusion
that long-range transport was the predominant source of PMs 5 during
this period. In the urban site of Thissio, PM; 5 measurements indicated a
small increase of 2 pg m~> during the night, consistent with the pre-
dictions. For the rest of the day, the measured and predicted average
PM; 5 concentrations were similar, around 7 pg m . In the other urban
sites of Keratsini, Gyzi and Vathis Square, the model reproduced the
nighttime peak, which was slightly overestimated in Gyzi (2 pg m~>).
Based on PSAT, the nighttime peak was mostly due to local trans-
portation. In the suburban site of Chalandri, the measured PMj 5 peak

during the afternoon was underestimated by the model, probably due to
underestimation of local transportation emissions. On the other hand, in
Papagou, the model reproduced the afternoon peak at 10 pg m~° but
with a 1-h difference. Predicted PM; 5 concentrations in this location
increased between 10:00 and 16:00 LT due to a combination of vertical
mixing of wildfire smoke and the formation of secondary aerosols
through photochemical reactions. The overestimation of the PMj s
during this period could be due to a combination of errors in the
simulation of the local meteorology, regional source emissions, and the
simulated secondary aerosol production.

During wintertime, PMCAMx reproduced the overall measured
diurnal profiles across all sites (Fig. 7). In Thissio, measured PMs 5
peaked at 22:00 LT, reaching 24 pg m~2, while the predicted PMy s
peaked at the same time at 33 pg m™°. In the morning, at 9:00 LT, the
model predicted a peak of 12 pg m >, which was 3 pg m~ higher than
the measured one. During the hour of maximum PM; 5 levels, the model
predicted that 65 % of the PMy 5 originated from residential biomass
burning. At Ano Liosia, the measured and predicted nighttime peaks
differed by 1 h. The measured peak of 30 pg m ™~ was observed at 22:00
LT, while the predicted peak of 34 pg m™> occurred at 21:00 LT. The
measured morning peak was underestimated by the model, and there
was also a 1-h difference. This underestimation is likely related to
underestimated transportation and biomass burning emissions during
these hours. In Papagou, measurements peaked at 14 ug m~> at 22:00
LT, while the predicted value peaked at 20 pg m~° at the same hour.
During the morning, PMCAMx overpredicted the peak by an average of
2 pg m~3. The model consistently overestimated the nighttime peak
across all sites by 20-40 %, mainly due to uncertainties in the residential
biomass burning contribution, particularly in its spatial and temporal
distribution. It should be noted that the measurements are from low-cost
PM; 5 sensors and have their own uncertainty of at least 20 % even after
their correction.

3.5. Predicted and measured OA source contribution

In Thissio, during summer, the average measured total OA was 4.5
pg m~3, while the corresponding predicted concentration was 3 pg m>,
The PMF analysis of the OA AMS (Aerosol Mass Spectrometer) spectra
indicated four factors: hydrocarbon-like OA (HOA), cooking OA (COA),
low-oxygenated OA (LO-OOA) and more-oxygenated OA (MO-OOA).

For our analysis, we have merged LO-OOA and MO-OOA into one factor,
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the oxygenated OA (OOA) factor.

The average measured HOA concentration was 0.34 ug m~>, while
the predicted concentration was 0.22 pg m . The sources of predicted
HOA included all primary OA sources. For COA, the average measured
concentration was equal to 0.8 ug m~3, but COA emissions were not
included in the current urban emission inventory. The average measured
OOA concentration was 3.5 pg m~>, whereas the average predicted one
was 2.8 pg m~>. The sources of predicted OOA included all secondary
OA (biogenic and anthropogenic).

The model predictions can be used to provide insights about the
sources of the factors resolved by the ACSM. PMCAMX predicted that 71
% of the total primary OA (HOA and BBOA for the AMS) originated from
LRT (68 % wildfires and 3 % shipping), 13 % from local road trans-
portation, 6 % from industry, and 4.5 % from combustion, with minor
contributions from agriculture, shipping, and non-road transportation.
For OOA in the same area, the model estimated that 95 % was due to
sources outside the modeling domain. More specifically 44 % of the total
OA was aged wildfire SOA, 15 % biogenic SOA, 5 % SOA from

agricultural waste burning, 4 % from fugitive emissions and solvents, 4
% from domestic combustion, 4 % from industry, 2 % from road trans-
port, 1 % from non-road transport, 1 % from shipping and the remaining
15 % from sources outside Europe. These results suggest that the OOA is
the result of the atmospheric chemical processing of the organic emis-
sions of several sources, with biomass burning being the dominant one
for Athens. The local SOA was 2 % from road transport with contribu-
tions below 1 % from several other local sources.

During the summer, the measured average diurnal profile of total OA
is consistently higher than the predicted one, with a measured peak from
21:00 to 23:00 LT during the night, which was not predicted by
PMCAMXx (Fig. 8). These discrepancies are mainly related to underesti-
mation of long-range transport of OA and to cooking emissions that were
not included in the current emission inventory (Fig. S6).

During wintertime, ACSM measurements in Thissio suggested that
the average measured concentration of total OA was 11 pg m~>, while
the corresponding predicted concentration was 9.5 g m for the period
with available measurements (17-28/1). The PMF analysis for the
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during July 2019.

ambient OA indicated five factors for this period: hydrocarbon-like OA
(HOA), cooking OA (COA), low-oxygenated OA (LO-OOA), more-
oxygenated OA (MO-OOA) and biomass burning OA. The LO-OOA and
MO-OOA factors were merged into one OOA factor.

The predicted and measured HOA average concentrations were equal
to 1.1 pg m~>. According to the model 39 % of the predicted HOA was
due to local domestic combustion (other than wood), 15 % to local road
transportation, 5 % to shipping, 3 % to industrial sources, 3 % to non-
road transportation, and 2 % to local agriculture. The remaining 33 %
of the predicted primary OA corresponding to HOA was due to sources
outside Athens (75 % from marine and biogenic sources, 10 % from
fugitives and solvents, 5 % from industry, and 4 % from aviation and the
rest from other sources).

For COA, the average measured value was 2 pg m™°. This source was
not included in the urban emission inventory as during summer and is
responsible for most of the underprediction of total OA.

The average measured OOA concentration was 5.4 ug m™~°, whereas
the corresponding predicted value was only 0.8 pg m~>. Transport from
outside the Athens area is predicted to be the main contributor to sec-
ondary OA during winter as the model predicted negligible local sec-
ondary OA production. The transported secondary OA was due to
combustion (17 %), biogenic sources (8 %), fugitive emissions and sol-
vents (3 %), road transport (3 %), industry (3 %), agricultural activities
(3 %), shipping (2 %), wildfires (2 %) and road transport (1 %) with the
remaining coming from sources outside Europe.

The average measured bbOA value was 2.8 ug m >, almost half of the

predicted value of 6 pug m™. Practically all bbOA is predicted to be
primary. Stavroulas et al. (2019) showed that LO-OOA and most of
MO-OOA were due to biomass burning. The sum of measured OOA and
bbOA (8.2 pg m’s) has a close value to the predicted value (6.8 pg m’3),
but the model appears to miss an important pathway converting fresh
bbOA to OOA during the winter nights.

The model reproduced the overall observed diurnal behavior of OA
(Fig. 8). There was a peak during the nighttime, which was related to
OOA based on measurements (Fig. S7). PMCAMXx predicted also that this
peak was due to residential biomass burning but that it was primary.
OOA peaked during the night (Fig. S7), primarily due to the nighttime
oxidation of bbOA based on Kodros et al. (2020), supporting the pre-
vious statement that the oxidized OA was attributed to bbOA by the
model. PMCAMXx lacks nighttime chemistry of bbOA and therefore it did
not reproduce this peak.

3.6. Average diurnal variability of EC

Elemental carbon model predictions were compared against avail-
able measurements in Thissio for the two periods (Fig. 9). During the
summer, PMCAMx predicted that EC peaked during the night from
21:00 to 3:00 LT, mostly due to road transport. This behavior was not
consistent with the measured values, which indicated a flat average EC
diurnal profile. Also, there was a predicted peak in the morning related
to road transport and another one at 3:00 LT due to EC transported from
other areas. The difference is probably related to overestimations of the
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corresponding emissions.

The average diurnal patterns of measured and predicted EC during
the winter in Thissio were pretty similar. During the morning, at 9:00
LT, measurements showed a peak at 4 pg m~>, which was also predicted
by the model at the same time, but it was slightly underestimated. Based
on PSAT, road transport and residential combustion were the major
sources of EC during the morning. During the night, a peak of 4.5 pg m ™3
was measured at 22:00 LT, which was also predicted by the model, but it
was underestimated by 2 pg m~°. PSAT predicted that residential
combustion contributed 50 % of the EC during this period. The under-
estimation of the EC from residential heating was probably the major
reason for the discrepancies in the peak values. During the rest of the
day, both measurements and predictions were in satisfactory agreement.
Discrepancies in the measurement methods for the emissions that are
mostly EC and the ambient measurements that are BC can be a signifi-
cant reason for the discrepancies between measurements and
predictions.

3.7. Source-resolved exposure to PM> 5

The population exposure histograms for the urban core for July and
January 2019 are presented in Fig. 10. During summer, most people (60
%) were exposed on average to 8.2-9.2 ug m 3 of PM, 5. All individuals
were exposed to PMj 5 levels above 5 pg m >, but nobody was exposed to
levels exceeding 10 pg m 3. A different population exposure profile was
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predicted during the winter. In this case, people were exposed to a wider
range of concentrations that varied from 3.2 to 16 pg m °. Approxi-
mately 60 % of the population was exposed to average PM; 5 concen-
trations above 10 pg m 3, while 98 % above 5 pug m 3

Fig. 11 depicts the average predicted source contributions to PMy 5
mass concentrations and to PM; 5 exposure for the inner domain during
summer and winter. The average predicted PM; 5 concentrations from
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each source are multiplied by the population distribution within the
high-resolution domain to calculate the PM; 5 exposure. For the summer
period, long-range transport was the dominant source of PMj 5 exposure
(78 %) as for PMy 5 mass (90 %) (see also Fig. 2a). However, the local
sources were twice as important for exposure as for the PMj; 5 concen-
tration. Transportation was the leading local source of PM; 5 exposure
contributing 6 %, whereas shipping was the main local contributor to
PM_ 5 mass at 3 %. The main local sources of exposure, in descending
order, were transportation (6 %), industry (5.5 %), fugitives and sol-
vents (5 %), and shipping (3 %). Their spatial distributions are shown in
Fig. S8. For PMj 5 mass, the primary local contributors were shipping (3
%), industry (2.5 %), transportation (1.6 %), and biogenic sources (1 %).

In winter, similar to summer, local sources were twice as significant
for exposure as they were for concentration. For this period, local
biomass burning accounted for 37 % of PM;y 5 exposure, followed by
combustion (9 %), transportation (6 %) and industry (6 %). Significant
local contributions to PM 5 mass were also residential biomass burning
(19 %), combustion (5 %), industry (3 %) and transportation (1.6 %).
Biomass burning was the most important local source of exposure in the
urban core (Fig. S9).
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3.8. Effects of computational grid resolution

The low-resolution grid cannot reproduce the spatial concentration
variations in urban sites. The 36 x 36 km? resolution grid failed to
capture the variability of PMy 5 levels during summer (Fig. 12). PMy 5
concentrations at the coarse grid level were relatively uniform, ranging
from 5 to 6.4 pg m~> across the entire modeling domain. The average
peak PM; 5 increased by 35 % moving from the coarse (36 x 36 km?) to
the fine grid resolution (1 x 1 km?). For OA, the peak level increased by
63 % and for the EC by 80 % in the fine scale.

During wintertime, the effects of the grid resolution were even more
pronounced (Fig. 13). The corresponding increases of predicted
maximum levels were 64 % for PM; s, 88 % for OA, and almost a factor
of two for EC. The main reason for the significant spatial variability in
PM; 5 and OA during winter was the local source of residential biomass
burning. The use of nesting ending up in the fine resolution of 1 x 1 km?
appears to be necessary for accurately resolving PMjys high-
concentration areas during the winter, more so than in the summer.

4. Conclusions

The widely used PSAT source-apportionment algorithm was
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enhanced in this study to calculate source contributions across multiple
grids, moving from regional to urban scales with progressively higher
spatial resolution up to 1 x 1 km? We applied our approach to the
concentrations and sources of PMy 5, OA, and EC in Athens during a
typical summer and winter month.

In summer, long-range transport was the main source of PM5 5, OA,
and EC, even at the sites with the highest concentrations, with local
sources making smaller contributions. In winter, while long-range
transport remained a significant source of PM; s, residential biomass
burning was the predominant local source contributing 37 % in the
urban core. Small PMy 5 concentration gradients were predicted in
summer, consistent with the available observations. However, in winter,
sharp concentration gradients were present in the urban core, with
average PMy 5 concentrations doubling within 5 km due to residential
biomass burning. Also, during the winter nights, both measurements and
predictions indicated high hourly PM, 5 levels due to intense local res-
idential biomass burning.

There was a tendency towards underprediction of the low summer-
time OA levels probably due to an underestimation of OA contributions
from long-range transport. At night, the underpredicted OA peak was
primarily attributed to the absence of cooking emissions in the current
emission inventory. In winter, the model effectively captured the overall
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trend of observed OA in the urban center, with good agreement between
predicted and observed values. However, the lack of nighttime oxidation
of bbOA led the model to associate high OA peaks with primary sources
rather than secondary ones.

Long-range transport dominated PMy s mass and exposure, while
local sources like transportation contributed more to exposure than
mass. In winter, local sources, particularly biomass burning, became
more significant, especially for exposure. The findings underscore the
importance of high-resolution grids in accurately capturing spatial
variability in PMy 5, OA, and EC concentrations, particularly in urban
areas where local sources like residential biomass burning play a critical
role. The substantial increases in spatial variability observed at finer
resolutions, especially during winter, highlight the limitations of coarse
grids in resolving localized pollution hotspots.

Differences between measured and predicted values arise for several
reasons. One major factor is the underestimation of emissions from
cooking during the summer, which contributed significantly to the dis-
crepancies between predicted and observed OA levels. Additionally, the
absence of nighttime chemistry in the model resulted in further differ-
ences, particularly due to the nighttime oxidation of bbOA, which
PMCAMXx failed to predict. Regarding emissions, a more detailed in-
ventory and a re-estimation of residential biomass burning emissions are
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necessary to better represent winter pollution. Uncertainty also arises
from the use of low-cost sensors in the measurement network and the
meteorological data.

The results of this analysis provide valuable information about the
sources responsible for the exposure of the residents of Athens to fine
particulate matter. Most of these sources are located outside Athens with
wildfires dominating during the summer. Local biomass burning during
the winter deserves immediate regulatory attention. Other combustion
sources during the winter and shipping emissions are the next most
important local sources. Road transportation that receives most of the
regulatory attention is predicted to be a minor source of PMy s.
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