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H I G H L I G H T S

• New source apportionment method for both local and regional fine PM.
• PM population exposure is influenced by local sources more than PM levels.
• Local biomass burning dominated both PM levels and exposure during winter.
• Long range transport was dominant during the winter.
• The modeling source apportionment results were consistent with measurements.

A B S T R A C T

Chemical transport models often use moderate spatial resolution to simulate atmospheric pollution, thereby limiting the model’s ability to represent variations in 
urban areas. Additionally, the contributions of individual sources of pollution transported to the urban areas of interest from elsewhere are rarely quantified. In this 
study, we developed an approach to simulate air quality, focusing on PM2.5 (particulate matter with a diameter lower than 2.5 μm), and its local and regional sources 
at high spatial resolution of 1 × 1 km2. The approach is applied in the largest city of Greece, Athens. The PMCAMx chemical transport model is employed in 
combination with the source apportionment algorithm, PSAT (Particle Source Apportionment Technology), to quantify the concentrations and sources of PM2.5, 
organic aerosol (OA) and elemental carbon (EC) for a typical summer and winter month. A novel approach is developed, allowing the quantification of the con
tributions of sources not only inside the simulated urban area but also of the regional sources located outside. Model predictions were combined with population 
distribution data to provide estimations for human exposure not only to total PM2.5 concentrations but also to specific sources within the city. Residential biomass 
burning and transportation were found to be the dominant local sources of PM2.5 exposure. The higher resolution (1 × 1 km2) offered a more detailed representation 
of PM2.5 spatial variability than a coarser one (36 × 36 km2). This underscores the importance of capturing local sources in specific areas of the domain. The proposed 
approach can be used to provide estimates of human exposure to specific local and regional sources of primary and secondary PM2.5 in an urban area.

1. Introduction

Fine particulate matter (PM) has serious effects on human health, as 
it causes heart diseases, respiratory disorders, lung cancer, or even death 
(Feng et al., 2016; Huang et al., 2017). Whereas coarse PM is more likely 
to deposit on the upper portion of the respiratory system, fine PM can 
enter the deeper regions of the lung causing increased damage (Deng 
et al., 2019; EPA, 2023). Even at low concentrations, PM2.5 exposure can 
affect public health (Fann et al., 2012). In Europe, it is estimated that 
PM2.5 is responsible for approximately 250 thousand premature deaths 

annually (EEA, 2023).
The chemical composition of PM2.5 varies spatially, and often or

ganics dominate the fine PM composition in Europe and the US (Zhang 
et al., 2007). Anthropogenic sources of PM include industry, trans
portation, residential heating, cooking, shipping, agriculture, etc.

Detailed field measurements are often used for PM2.5 source appor
tionment in one or more specific sites in a large urban area. For Athens, 
Theodosi et al. (2018), based on 848 PM2.5 samples collected during a 
period of more than 2 years (12/2013-3/2016) at an urban background 
site, estimated the contribution of six sources, namely biomass burning 
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(31 %), vehicular emissions (19 %), heavy oil combustion (7 %), 
regional secondary (21 %), marine aerosols (9 %), and dust particles (8 
%). Similar results were also presented by Saraga et al. (2021) con
firming that residential combustion was the predominant PM2.5 source 
in an urban background site in Athens, contributed 38 % to PM2.5 during 
2017, followed by secondary particles (20 %), soil dust (12 %) and 
traffic (17 %). In a traffic site, the traffic contribution increased to 27 %, 
but residential combustion was still the major source. Pateraki et al. 
(2020) concluded that the predominant source of PM2.5 during early 
spring and summer was biomass burning. Diapouli et al. (2017) found 
that biomass burning contributed 46 % to PM2.5 in an urban site (at the 
south-eastern part of Athens) during 2011–2012, while sulfate was the 
most important contributor (55 %) to PM2.5 in a suburban site 
(“Demokritos” campus) at the same period. In another urban back
ground site (Zografou) in Athens, Grivas et al. (2018) found that almost 
half of PM2.5 was due to regional pollution during 2011–2012. Traffic 
contributed 24 % to PM2.5, biomass burning 9 %, mineral dust 7 %, oil 
combustion 4 %, and sea-salt 2 %.

PM2.5 source apportionment modeling studies often employ low 
spatial resolution due to their high computational cost and the lack of 
suitable high-resolution emission inventories. For example, Thunis et al. 
(2018) used the SHERPA (Screening for High Emission Reduction Po
tentials for Air quality) tool, which is a simplified version of a chemical 
transport model, at the spatial resolution of 7 km2. This study estimated 
that industry was the major source of PM2.5 in Athens during 2009. 
However, there have been significant changes in emissions in Athens 
during the last decade. In addition, higher spatial resolution allows for a 
more accurate representation of the variability in source contributions 
across the city, leading to a better understanding of pollutant distribu
tion and spatial patterns (Garcia Rivera et al., 2022). Coelho et al. 
(2022) using the Comprehensive Air Quality Model (CAMx) and PSAT, 
estimated that long-range transport was the dominant contributor to PM 
concentration levels in both summer and winter in six major European 
cities. Pepe et al. (2019) also using CAMx/PSAT showed the importance 
of regional sources for PM2.5 in Milan during the year. While these 
studies provided valuable insights about the relative importance of the 
various local sources in major urban areas, they provided little infor
mation about the type of sources contributing to long-range transported 
fine PM2.5. At the same time, challenges in estimating the source con
tributions to secondary PM2.5 (especially OA) remain. This secondary 
fraction can dominate the PM2.5 levels during most of the year.

In this study, we combine the PMCAMx model and the PSAT source 
apportionment algorithm to produce source-apportioned PM2.5 pre
dictions at a high spatial resolution of 1 × 1 km2 for a European city 

(Athens) for 2019 during a summer and a winter month. The model 
results, in combination with the population distribution in the city, are 
then used to estimate human exposure not only to total PM2.5 concen
tration but also to local and regional sources. The novelty of this work 
lies in the further separation and analysis of the contribution of indi
vidual sources located outside the urban domain.

2. Model description and application

2.1. The PMCAMx model

The three-dimensional chemical transport model PMCAMx (Partic
ulate Matter Comprehensive Air quality Model with extensions) 
(Fountoukis et al., 2011) is utilized in this study to simulate the pollutant 
concentrations in a European city, Athens (Greece). PMCAMx solves the 
continuity equation for each pollutant at each time-step. The injection of 
emissions from all sources is the first simulated process in each step. 
Following this, PMCAMx simulates vertical and horizontal advection, 
chemistry, vertical and horizontal dispersion, and dry/wet removal. 
Gas-phase chemistry is simulated using the SAPRC mechanism (Carter, 
2000), which includes 217 reactions and 114 species (16 radicals, 76 
gases). For aerosol chemistry, the bulk equilibrium approach is utilized 
for the partitioning of inorganic and secondary organic compounds be
tween the gas and particle phases (Capaldo et al., 2000). The Variable 
Size Resolution Model developed by Fahey and Pandis (2001) is applied 
for the simulation of aqueous-phase chemistry.

For organic aerosol, the 1-D Volatility Basis Set (VBS) approach 
(Donahue et al., 2006) is used for primary and secondary OA, treating 
both as chemically reactive and semi-volatile components. The organic 
components were separated into logarithmically spaced volatility bins 
based on their effective saturation concentration at 298 K. The param
eterizations used were those of Tsimpidi et al. (2010).

Wet deposition is modeled applying a scavenging model for aerosol 
and gases (Seinfeld and Pandis, 2006), while the methodology of Wesely 
(2007) and Slinn and Slinn (1980) is used for dry deposition simulation. 
The approach of Tambour and Seinfeld (1980) is employed to model 
aerosol particle coagulation.

2.2. Model application

In this first application of the proposed methodology, we focused on 
air pollution in Athens, Greece. PMCAMx was applied all over Europe 
focusing on the city of interest using three nested grids with increasing 
spatial resolution. The outer domain was the European domain (low- 

Fig. 1. (a) European modeling domain, (b) nested domains focusing on the 1 × 1 km2 modeling domain of Athens (red). Blue: 1st nested domain with 12 × 12 km2 

spatial resolution, green: 2nd nested domain with 3 × 3 km2 spatial resolution and red the 3rd nested domain with 1 × 1 km2 spatial resolution (inner domain) and 
(c) inner domain with the locations of PM2.5 sensors. Purple dots represent measurement sites. The orange box represents the urban center of Athens. (For inter
pretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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resolution grid), which extended over an area of 5400 × 5832 km2 with 
a 36 × 36 km2 horizontal spatial resolution (Fig. 1). The inner domain 
covered a region of 72 × 72 km2 for the city using 1 × 1 km2 spatial 
resolution. Also, there were two other intermediate grids with 12 × 12 
and 3 × 3 km2 resolutions that were centered on the city. There were 14 
layers in the vertical for each of the modeling domains.

2.2.1. Meteorology
The study periods were a typical winter (January) and a summer 

(July) month during 2019. The meteorological data were produced by 
the Weather Research and Forecasting (WRF) mesoscale numerical 
prediction model (Skamarock et al., 2019) using the same grids as 
PMCAMx. The WRF output data were used directly for the 36 × 36 km2 

European domain and the inner 1 × 1 km2 domain. Interpolated mete
orological data about the zooming approach were used for the other two 
nested domains at 12 × 12 and 3 × 3 km2. Additional details can be 
found in Siouti et al. (2022, 2024).

2.2.2. Emissions
The anthropogenic emissions were based on the CAMS-REG-v4 in

ventory developed by the Netherlands Organization of Applied Scien
tific Research (TNO) at a 0.05◦ × 0.1◦ grid resolution (Kuenen et al., 
2022). There are twelve source sectors including industry, public power, 
road transport, non-road transport, agriculture, shipping, aviation, do
mestic processes, fugitives, solvents, waste processes and agricultural 
waste burning. The emission inventory includes the main atmospheric 
pollutants (SO2, NOx, non-methane volatile organic compounds, NH3, 
CO, PM10 and PM2.5). PM components include elemental carbon, 
organic carbon, sulfate, sodium and other minerals. Non-methane vol
atile organic compound emissions have been split into 23 groups. The 
emissions for the European domain were prepared initially at 36 × 36 
km2 spatial resolution following the corresponding PMCAMx grid. Point 
emissions from industry, heat plants, airports and waste treatment 
plants were placed in the corresponding grid cell.

For the estimation of high-resolution emissions for the inner domain, 
we disaggregated spatially the 36 × 36 km2 TNO emission inventory 
using the UrbEm method and tool (Ramacher et al., 2021). UrbEm 
combined the CAMS emissions dataset with selected high resolution 
spatial proxies per source category. The output of the tool is an emission 
inventory for any city or region in Europe, at the spatial resolution of 
interest. For the current application, the UrbEm results were normalized 
and were used for the distribution of the 36 × 36 km2 TNO emissions to 
1 × 1 km2 keeping the totals the same.

Biomass burning OA (bbOA) emissions for the high-resolution 
domain were estimated in this study, based on Siouti et al. (2024) at 
approximately 18 tn d− 1. These emissions are associated with biomass 
burning in fireplaces and woodstoves, which has become a major resi
dential heating method in Greece after the financial crisis in the 2010s. 
These emissions are underestimated in the TNO emissions inventory. 
Spatial, temporal and volatility distribution of wood combustion emis
sions for the urban area of Athens are presented in Fig. S1.

2.3. The PSAT source apportionment algorithm

The PSAT algorithm was applied to calculate the source contribu
tions to PM2.5, OA and EC for both primary and secondary material 
(Skyllakou et al., 2014; Skyllakou et al., 2021; Skyllakou et al., 2017; 
Wagstrom et al., 2008, 2011a, 2011b). PSAT operates in parallel with 
PMCAMx and is highly computationally efficient. In this application, 
PSAT tracks the following source categories of both primary and sec
ondary PM separately: agriculture, shipping, aviation, waste burning, 
heat plants, industry, biomass burning, combustion, solvents and fugi
tives, exhaust road transport, non-exhaust road transport, non-road 
transport, initial and boundary conditions. The "biomass burning" 
source corresponds to bbOA, as described in Section 2.2.2, and is spe
cifically associated with biomass burning in fireplaces and wood stoves 

for residential heating. In contrast, the "combustion" source refers to 
domestic combustion primarily for cooking and residential heating with 
fuels (gas, liquid and solids) other wood.

PSAT has been designed to determine source contributions within a 
single modeling domain with a fixed spatial resolution. PSAT was 
extended in this work to provide source contributions using multiple 
grids and moving from the regional to the urban scale with increasing 
spatial resolution. As a result, in our approach, we estimate separately 
the contributions of these local sources and the corresponding sources 
outside the domain.

The extended algorithm uses the following steps: (a) PSAT is used at 
the 36 × 36 km2 modeling domain over Europe, (b) for each 36 × 36 
km2 grid cell, the average concentration of each pollutant due to each 
source is calculated, (c) PSAT is used at the 1 × 1 km2 modeling domain 
over the city of interest, (d) for each 1 × 1 km2 grid cell, the average 
concentration of species coming from each local source is calculated, (e) 
the transported concentrations in the 1 × 1 km2 domain for each source 
are calculated by subtracting the local concentrations from step (d) from 
the total 36 × 36 km2 average concentrations obtained in step (b), and 
(f) the results of step (d) and step (e) are synthesized to provide the 
contribution of all sources separated into local and transported contri
butions for each pollutant of interest.

2.4. Quality assessment

2.4.1. Measurements
For the evaluation of PM2.5 predictions we used measurements from 

seven sites equipped with low-cost PM2.5 sensors located in the urban 
core of Athens (Thissio, Keratsini, Gyzi, Vathis Square, Chalandri, Ano 
Liosia and Papagou). The locations of the low-cost sensors are shown in 
Fig. 1. Kosmopoulos et al. (2020) assessed the accuracy of these sensors 
for Greece and recommended the following correction for PM2.5: PM2.5 
= 0.42 PAir2.5 + 0.26 (μg m− 3), where PM2.5 is the corrected concen
tration and PAir2.5 is the measured value. This correction was applied to 
all the data that will be used in the rest of the study. The urban center of 
Athens that we will focus on is a 20 × 20 km2 part of the inner modeling 
domain (Fig. 1).

Aerosol chemical speciation monitor (ACSM) (Aerodyne Inc., USA) 
measurements from the National Observatory of Athens (NOA) at 
Thissio, in the center of Athens, were also used. The measurement res
olution was 30 min. Also, an aethalometer that was operated by NOA 
was used to measure black carbon (BC) concentrations. More details 
about ACSM and BC measurements at the Thissio site can be found at 
Stavroulas et al. (2019).

2.4.2. Metrics
The mean bias (MB), fractional bias (FBIAS), mean error (ME) and 

fractional error (FERROR) were used to evaluate the model performance 
of PM2.5, OA and EC. The evaluation metrics are given by the following 
equations: 

MB =
1
N

∑n

i=1
(Pi − Oi) ME =

1
N

∑n

i=1
|Pi − Oi|

FBIAS =
2
N

∑n

i=1

(Pi − Oi)

(Pi + Oi)
FERROR =

2
N

∑n

i=1

|Pi − Oi|

(Pi + Oi)
(1) 

where N is the total number of measurements, Pi is the predicted con
centration and Oi is the corresponding observed concentration of the 
evaluated species.

Based on Morris et al. (2005) PM2.5 model performance for daily 
average values is considered excellent for FBIAS ≤ ±15 % and FERROR 
≤ ±35 %, good for FBIAS ≤ ±30 % and FERROR ≤ ±50 %, average for 
FBIAS≤ ±60 % and FERROR ≤ ±75 %, while there are fundamental 
problems in the modeling system for higher FBIAS and FERROR.
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2.5. Population exposure

The population distribution for the city of Athens was determined 
using population data from the European Union. The analysis utilized 
the most recent database, the Eurostat census grid 2021 (https://ec.eur 
opa.eu/eurostat/web/gisco/geodata/grids). This dataset, which per
tains to 2021, is provided at a high spatial resolution of 1 × 1 km2. 
Athens has a total population of 3.3 million residents within the inner 
simulation area. The number of inhabitants in each 1 × 1 km2 grid cell is 
multiplied by the average predicted PM2.5 concentration for that cell, 
producing population exposure maps with a 1 × 1 km2 spatial resolu
tion. This exposure metric reflects the overall damage caused to the 
health of the population of each 1 × 1 km2 area by total PM2.5 as well as 
its individual sources and components.

3. Results

3.1. Model evaluation

In summer, PMCAMx predicted the highest average PM2.5 concen
tration of 9.2 μg m− 3 in Thissio (Table 1). The differences between 
measured and predicted values were lower than 1 μg m− 3 in Thissio, 
Keratsini, Gyzi, Vathis Square and Chalandri. Mean bias ranged from 
− 0.24 to 1.2 μg m− 3 and mean error from 2.4 to 3.5 μg m− 3 in all studied 
sites.

Model performance was excellent according to the criteria of Morris 
et al. (2005) for the urban sites of Thissio, Keratsini, Gyzi and Vathis 
Square with FBIAS≤15 % and FERROR<35 %, whereas it was good for 
Chalandri and Papagou with FBIAS≤30 % and FERROR<50 % (Table 2). 
Overall, the model’s performance in reproducing PM2.5 concentrations 
was good across all sites, with overall FBIAS equal to zero and FERROR 
of 45 %. For OA, model performance was average (FBIAS = − 50 % and 
FERROR = 68 %) in Thissio, while it was considered excellent for EC 
with FBIAS equal to 9 % and FERROR equal to 24 %.

During winter, the model predicted the highest PM2.5 levels in 
Thissio of 13.8 μg m− 3, while measurements indicated the highest PM2.5 
concentration in Ano Liosia at 15.4 μg m− 3. High mean error values for 
Thissio and Ano Liosia were attributed to uncertainties in residential 
biomass burning emissions during that period. At the suburban site of 
Papagou, measurements showed the lowest PM2.5 levels, consistent with 
the predictions, with average concentrations differing by less than 1 μg 
m− 3. At this site, observed PM2.5 concentrations were approximately 
half of those measured in the city center.

The performance of PMCAMx for PM2.5 during winter was good for 
all sites individually. Looking at all PM2.5 data at all sites together, 
performance was good, with FBIAS equal to 38 % and FERROR equal to 
15 %. For total OA, in the city center, the model’s performance was 
average, with an FBIAS of − 20 % and an FERROR of 57 %. The model 
performed well in predicting EC in Thissio, with a mean bias of − 0.67 μg 
m− 3 and a mean error of 0.87 μg m− 3 and a good model performance.

3.2. Predicted source contributions in summer

During summertime, long-range transport (LRT) was the predomi
nant source of PM2.5 in the 1 × 1 km2 modeling domain, with an average 
contribution of 90 % (Fig. 2a) and an average concentration of 6 μg m− 3 

(Fig. 3) in agreement with Dimitriou et al. (2023). A significant fraction 
(28 %) of transported PM2.5 was due to wildfires, 16 % from industry, 
12 % from biogenic and marine sources, 8 % from agriculture, 7 % from 
shipping, 4 % from road transport, 3.5 % from combustion 2.5 % from 
fugitives and solvents and the rest from outside Europe. The major local 
sources of PM2.5 were shipping (3 % of total PM2.5), industry (2.5 %) and 
transportation (1.6 %). Higher levels of PM2.5 were predicted in the 
northeast of the city (Fig. 4), with a total average PM2.5 concentration 
for the 1 × 1 km2 domain equal to 6.6 μg m− 3. In the urban core, 
long-range transport was also the primary source of PM2.5 but with a 
lower average contribution of 81 % than the whole inner domain 
(Fig. 2b). In this area, 37 % of transported PM2.5 was attributed to 
wildfires. The major local sources in the city center were industry, 
road-transport and fugitives and solvents, each contributing 5 % to 
PM2.5 on average. PM2.5 concentrations of 2.5 μg m− 3 related to shipping 
were predicted around the Port of Piraeus, which is the biggest port in 
the country (Fig. 3). In the urban center, PM2.5 levels ranged from 8 to 
9.6 μg m− 3, with an average value of 8.5 μg m− 3 (Fig. 4).

Table 1 
Daily average PM2.5, OA and EC predictions and measurements for July and 
January 2019 for different sites in Athens.

Site Type July 2019 January 2019

Observed 
(μg m− 3)

Predicted 
(μg m− 3)

Observed 
(μg m− 3)

Predicted 
(μg m− 3)

​ ​ PM2.5 ​ ​ ​
Thissio Urban- 

background
8.2 9.2 12 13.8

Keratsini Urban- 
background

7.5 7.7 – –

Gyzi Urban- 
background

7.5 8.5 – –

Vathis 
Square

Urban- 
background

8.5 8.7 – –

Chalandri Suburban- 
background

8.4 8.2 – –

Ano 
Liosia

Urban- 
background

– – 15.4 12.4

Papagou Suburban- 
background

7.2 8.4 7.4 8.5

​ ​ OA
Thissio ​ 4.5 3 11 9.5
​ ​ EC
Thissio ​ 0.6 0.68 2.3 1.6

Table 2 
Metrics for daily average PM2.5, OA and EC predictions and measurements for July and January 2019 for different sites in Athens.

Site July 2019 January 2019

MB (μg m− 3) ME (μg m− 3) FBIAS (%) FERROR (%) MB (μg m− 3) ME (μg m− 3) FBIAS (%) FERROR (%)

​ PM2.5 ​ ​ ​ ​ ​ ​ ​
Thissio 1 2.6 10 29 1.6 5.4 7 42
Keratsini 0.24 2.4 0 34 – – – –
Gyzi 1 3 5 35 – – – –
Vathis Sq. 0.26 3 − 4 35 – – – –
Chalandri − 0.24 3.5 − 13 40 – – – –
Ano Liosia – – – – − 3 6 − 18 45
Papagou 1.24 3.4 2 39 1.15 2.9 15 38
​ Total OA
Thissio − 1.6 2.5 − 50 68 − 1.4 6.5 − 20 57
​ EC
Thissio 0.09 0.16 9 24 − 0.67 0.87 − 25 41
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On average, 96 % of total OA in the 1 × 1 km2 modeling domain 
originated from long-range transport (Fig. 2a). A substantial fraction 
(46 %) of this transported OA was due to wildfires, followed by biogenic 
and marine sources (15 %). The predominant local OA source was 
shipping (1.3 %). In the urban center, the most important local source 
was road transport (2.5 %), while the remaining local sources contrib
uted less than 1 % each (Fig. 2b). Transported OA had higher levels in 
the northeast of the city, up to 4.5 μg m− 3, while in the rest of the 1 × 1 

km2 modeling domain, OA exhibited little spatial variation (Fig. S2). 
The average OA concentration related to long-range transport was 3.2 
μg m− 3 in the urban core. Total predicted OA had low spatial variability, 
with an average concentration of 2.6 μg m− 3 in the inner domain 
(Fig. 4). Primary OA contributed 11 % to total OA, while secondary OA 
accounted for the rest. For the urban center, the average total OA was 
3.4 μg m− 3, with values ranging from 3.2 to 4.5 μg m− 3 (Fig. 4). In this 
area, primary OA contributed 22 % to total OA.

Fig. 2. Average predicted source contributions for PM2.5, OA and EC for (a) the 1 × 1 km2 modeling domain and (b) the urban center during July and January 2019.
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Long-range transport was the dominant source of EC in the 1 × 1 km2 

modeling domain, with an average contribution of 62 % (Fig. 2a). A 
significant fraction (55 %) of transported EC was attributed to wildfires, 
22 % to combustion, 10 % to road-transport and 7 % to industrial 
sources. The most important local sources were shipping (21 %), traffic 
(9 %) and combustion (5 %) (Fig. S3). In the urban core, local traffic was 
the major local source, accounting for 21 % of EC (Fig. 2b). The highest 
EC concentrations were predicted near the port of Piraeus, while the 
total predicted EC had an average concentration of 0.4 μg m− 3 within 
the inner modeling domain (Fig. 4).

3.3. Predicted source contributions in winter

During wintertime, long-range transport accounted for 68 % to PM2.5 
in the 1 × 1 km2 modeling domain with an average concentration of 3.7 
μg m− 3 (Fig. 2a). Combustion (18 %), industry (17 %) and biogenic and 
marine sources (16 %) outside the inner domain were major sources of 
transported PM2.5. Local residential biomass burning contributed 19 % 

of the PM2.5, combustion 5 % and industry 3 %. In the urban center, 
residential biomass burning was the primary local source of PM2.5, 
contributing 37 % on average, followed by combustion (9 %), industry 
(5 %), fugitives and solvents (4 %), road transport (4 %) and shipping (1 
%) (Fig. 2b). The other 40 % of PM2.5 was transported from outside the 
inner domain. PM2.5 from residential biomass burning had an average 
concentration of 1 μg m− 3 in the inner modeling domain and 3.7 μg m− 3 

in the urban core (Fig. 5). Residential biomass burning PM2.5 reached up 
to 8 μg m− 3 at the north of the urban core, indicating the substantial 
impact of biomass burning on pollution levels in certain areas of the city. 
For total PM2.5, an average concentration of 10 μg m− 3 was predicted for 
the urban core, nearly double the whole inner domain. The highest 
PM2.5 concentration, 16 μg m− 3, was predicted in the center of the city, 
highlighting again the significance of local sources during the cold 
period.

Local residential biomass burning was the major OA source, 
contributing 51 % on average in the inner domain (Fig. 2a). Transported 
OA contributed 43 % of the total OA in the 1 × 1 km2 modeling domain. 

Fig. 3. Average predicted concentrations of PM2.5 from various sources in μg m− 3 during July 2019 in Athens. The square indicates the center of Athens. Different 
scales are used.
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In the city center, residential biomass burning was the dominant source, 
accounting for 73 % of total OA. Significant spatial variability in OA 
concentrations was predicted in the urban core due to residential 
biomass burning (Fig. S4). The total average OA concentration in the 
Athens center was 3.7 μg m− 3, compared to an average of 1 μg m− 3 

across the 1 × 1 km2 modeling domain (Fig. 4). The highest OA con
centration in the urban core was around 8 μg m− 3. Significant spatial 
variations were predicted in the urban core also due to residential 
combustion and traffic (Fig. 5). Additionally, significant OA variation 
was predicted around the Port of Piraeus, primarily due to shipping 
activities. The average total OA concentration for the inner domain was 
2 μg m− 3, with primary OA contributing according to PMCAMx 70 % of 
the total OA during this period. In the urban core, OA concentrations 
ranged from 2 to 9 μg m− 3, with an average of 5 μg m− 3. PMCAMx 
indicated that primary OA dominated in the city center, contributing 88 
% to the OA.

Long-range transport accounted for 58 % of EC in the 1 × 1 km2 

modeling domain. A significant fraction of transported EC was due to 
wood combustion (63 %). In the city core, local combustion from do
mestic processes (mainly for heating) was predicted to be the dominant 
source, with an average contribution of 46 %. Spatial distributions of EC 
from combustion and road transport were highly variable in the urban 
core. The average total predicted concentration of EC for the inner 
modeling domain was 0.6 μg m− 3, while for the urban center it was 1.2 
μg m− 3. Around the Port of Piraeus, the average predicted EC concen
tration was 1 μg m− 3 mainly due to shipping (Fig. S5).

3.4. Average diurnal variability of PM2.5

Fig. 6 depicts the average measured and predicted diurnal profiles of 
PM2.5 during summer. In all studied sites, both the measured and pre
dicted diurnal profiles were relatively flat, supporting the conclusion 
that long-range transport was the predominant source of PM2.5 during 
this period. In the urban site of Thissio, PM2.5 measurements indicated a 
small increase of 2 μg m− 3 during the night, consistent with the pre
dictions. For the rest of the day, the measured and predicted average 
PM2.5 concentrations were similar, around 7 μg m− 3. In the other urban 
sites of Keratsini, Gyzi and Vathis Square, the model reproduced the 
nighttime peak, which was slightly overestimated in Gyzi (2 μg m− 3). 
Based on PSAT, the nighttime peak was mostly due to local trans
portation. In the suburban site of Chalandri, the measured PM2.5 peak 

during the afternoon was underestimated by the model, probably due to 
underestimation of local transportation emissions. On the other hand, in 
Papagou, the model reproduced the afternoon peak at 10 μg m− 3 but 
with a 1-h difference. Predicted PM2.5 concentrations in this location 
increased between 10:00 and 16:00 LT due to a combination of vertical 
mixing of wildfire smoke and the formation of secondary aerosols 
through photochemical reactions. The overestimation of the PM2.5 
during this period could be due to a combination of errors in the 
simulation of the local meteorology, regional source emissions, and the 
simulated secondary aerosol production.

During wintertime, PMCAMx reproduced the overall measured 
diurnal profiles across all sites (Fig. 7). In Thissio, measured PM2.5 
peaked at 22:00 LT, reaching 24 μg m− 3, while the predicted PM2.5 
peaked at the same time at 33 μg m− 3. In the morning, at 9:00 LT, the 
model predicted a peak of 12 μg m− 3, which was 3 μg m− 3 higher than 
the measured one. During the hour of maximum PM2.5 levels, the model 
predicted that 65 % of the PM2.5 originated from residential biomass 
burning. At Ano Liosia, the measured and predicted nighttime peaks 
differed by 1 h. The measured peak of 30 μg m− 3 was observed at 22:00 
LT, while the predicted peak of 34 μg m− 3 occurred at 21:00 LT. The 
measured morning peak was underestimated by the model, and there 
was also a 1-h difference. This underestimation is likely related to 
underestimated transportation and biomass burning emissions during 
these hours. In Papagou, measurements peaked at 14 μg m− 3 at 22:00 
LT, while the predicted value peaked at 20 μg m− 3 at the same hour. 
During the morning, PMCAMx overpredicted the peak by an average of 
2 μg m− 3. The model consistently overestimated the nighttime peak 
across all sites by 20–40 %, mainly due to uncertainties in the residential 
biomass burning contribution, particularly in its spatial and temporal 
distribution. It should be noted that the measurements are from low-cost 
PM2.5 sensors and have their own uncertainty of at least 20 % even after 
their correction.

3.5. Predicted and measured OA source contribution

In Thissio, during summer, the average measured total OA was 4.5 
μg m− 3, while the corresponding predicted concentration was 3 μg m− 3. 
The PMF analysis of the OA AMS (Aerosol Mass Spectrometer) spectra 
indicated four factors: hydrocarbon-like OA (HOA), cooking OA (COA), 
low-oxygenated OA (LO-OOA) and more-oxygenated OA (MO-OOA). 
For our analysis, we have merged LO-OOA and MO-OOA into one factor, 

Fig. 4. Average predicted ground concentrations (μg m− 3) of PM2.5, total OA and EC during July and January 2019 for the inner domain. The square indicates the 
center of Athens. Different scales are used.
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the oxygenated OA (OOA) factor.
The average measured HOA concentration was 0.34 μg m− 3, while 

the predicted concentration was 0.22 μg m− 3. The sources of predicted 
HOA included all primary OA sources. For COA, the average measured 
concentration was equal to 0.8 μg m− 3, but COA emissions were not 
included in the current urban emission inventory. The average measured 
OOA concentration was 3.5 μg m− 3, whereas the average predicted one 
was 2.8 μg m− 3. The sources of predicted OOA included all secondary 
OA (biogenic and anthropogenic).

The model predictions can be used to provide insights about the 
sources of the factors resolved by the ACSM. PMCAMx predicted that 71 
% of the total primary OA (НΟА and BBOA for the AMS) originated from 
LRT (68 % wildfires and 3 % shipping), 13 % from local road trans
portation, 6 % from industry, and 4.5 % from combustion, with minor 
contributions from agriculture, shipping, and non-road transportation. 
For OOA in the same area, the model estimated that 95 % was due to 
sources outside the modeling domain. More specifically 44 % of the total 
OA was aged wildfire SOA, 15 % biogenic SOA, 5 % SOA from 

agricultural waste burning, 4 % from fugitive emissions and solvents, 4 
% from domestic combustion, 4 % from industry, 2 % from road trans
port, 1 % from non-road transport, 1 % from shipping and the remaining 
15 % from sources outside Europe. These results suggest that the OOA is 
the result of the atmospheric chemical processing of the organic emis
sions of several sources, with biomass burning being the dominant one 
for Athens. The local SOA was 2 % from road transport with contribu
tions below 1 % from several other local sources.

During the summer, the measured average diurnal profile of total OA 
is consistently higher than the predicted one, with a measured peak from 
21:00 to 23:00 LT during the night, which was not predicted by 
PMCAMx (Fig. 8). These discrepancies are mainly related to underesti
mation of long-range transport of OA and to cooking emissions that were 
not included in the current emission inventory (Fig. S6).

During wintertime, ACSM measurements in Thissio suggested that 
the average measured concentration of total OA was 11 μg m− 3, while 
the corresponding predicted concentration was 9.5 μg m− 3 for the period 
with available measurements (17–28/1). The PMF analysis for the 

Fig. 5. Average predicted concentrations of PM2.5 from various sources in μg m− 3 during January 2019 in Athens. Black boxes are used to represent Athens’ urban 
center. Different scales are used.
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ambient OA indicated five factors for this period: hydrocarbon-like OA 
(HOA), cooking OA (COA), low-oxygenated OA (LO-OOA), more- 
oxygenated OA (MO-OOA) and biomass burning OA. The LO-OOA and 
MO-OOA factors were merged into one OOA factor.

The predicted and measured HOA average concentrations were equal 
to 1.1 μg m− 3. According to the model 39 % of the predicted HOA was 
due to local domestic combustion (other than wood), 15 % to local road 
transportation, 5 % to shipping, 3 % to industrial sources, 3 % to non- 
road transportation, and 2 % to local agriculture. The remaining 33 % 
of the predicted primary OA corresponding to HOA was due to sources 
outside Athens (75 % from marine and biogenic sources, 10 % from 
fugitives and solvents, 5 % from industry, and 4 % from aviation and the 
rest from other sources).

For COA, the average measured value was 2 μg m− 3. This source was 
not included in the urban emission inventory as during summer and is 
responsible for most of the underprediction of total OA.

The average measured OOA concentration was 5.4 μg m− 3, whereas 
the corresponding predicted value was only 0.8 μg m− 3. Transport from 
outside the Athens area is predicted to be the main contributor to sec
ondary OA during winter as the model predicted negligible local sec
ondary OA production. The transported secondary OA was due to 
combustion (17 %), biogenic sources (8 %), fugitive emissions and sol
vents (3 %), road transport (3 %), industry (3 %), agricultural activities 
(3 %), shipping (2 %), wildfires (2 %) and road transport (1 %) with the 
remaining coming from sources outside Europe.

The average measured bbOA value was 2.8 μg m− 3, almost half of the 

predicted value of 6 μg m− 3. Practically all bbOA is predicted to be 
primary. Stavroulas et al. (2019) showed that LO-OOA and most of 
MO-OOA were due to biomass burning. The sum of measured OOA and 
bbOA (8.2 μg m− 3) has a close value to the predicted value (6.8 μg m− 3), 
but the model appears to miss an important pathway converting fresh 
bbOA to OOA during the winter nights.

The model reproduced the overall observed diurnal behavior of OA 
(Fig. 8). There was a peak during the nighttime, which was related to 
OOA based on measurements (Fig. S7). PMCAMx predicted also that this 
peak was due to residential biomass burning but that it was primary. 
OOA peaked during the night (Fig. S7), primarily due to the nighttime 
oxidation of bbOA based on Kodros et al. (2020), supporting the pre
vious statement that the oxidized OA was attributed to bbOA by the 
model. PMCAMx lacks nighttime chemistry of bbOA and therefore it did 
not reproduce this peak.

3.6. Average diurnal variability of EC

Elemental carbon model predictions were compared against avail
able measurements in Thissio for the two periods (Fig. 9). During the 
summer, PMCAMx predicted that EC peaked during the night from 
21:00 to 3:00 LT, mostly due to road transport. This behavior was not 
consistent with the measured values, which indicated a flat average EC 
diurnal profile. Also, there was a predicted peak in the morning related 
to road transport and another one at 3:00 LT due to EC transported from 
other areas. The difference is probably related to overestimations of the 

Fig. 6. Predicted average diurnal profiles for PM2.5 sources and measured PM2.5 for (a) Thissio, (b) Keratsini, (c) Gyzi, (d) Vathis Sq., (e) Chalandri and (f) Papagou 
during July 2019.
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corresponding emissions.
The average diurnal patterns of measured and predicted EC during 

the winter in Thissio were pretty similar. During the morning, at 9:00 
LT, measurements showed a peak at 4 μg m− 3, which was also predicted 
by the model at the same time, but it was slightly underestimated. Based 
on PSAT, road transport and residential combustion were the major 
sources of EC during the morning. During the night, a peak of 4.5 μg m− 3 

was measured at 22:00 LT, which was also predicted by the model, but it 
was underestimated by 2 μg m− 3. PSAT predicted that residential 
combustion contributed 50 % of the EC during this period. The under
estimation of the EC from residential heating was probably the major 
reason for the discrepancies in the peak values. During the rest of the 
day, both measurements and predictions were in satisfactory agreement. 
Discrepancies in the measurement methods for the emissions that are 
mostly EC and the ambient measurements that are BC can be a signifi
cant reason for the discrepancies between measurements and 
predictions.

3.7. Source-resolved exposure to PM2.5

The population exposure histograms for the urban core for July and 
January 2019 are presented in Fig. 10. During summer, most people (60 
%) were exposed on average to 8.2–9.2 μg m− 3 of PM2.5. All individuals 
were exposed to PM2.5 levels above 5 μg m− 3, but nobody was exposed to 
levels exceeding 10 μg m− 3. A different population exposure profile was 

predicted during the winter. In this case, people were exposed to a wider 
range of concentrations that varied from 3.2 to 16 μg m− 3. Approxi
mately 60 % of the population was exposed to average PM2.5 concen
trations above 10 μg m− 3, while 98 % above 5 μg m− 3.

Fig. 11 depicts the average predicted source contributions to PM2.5 
mass concentrations and to PM2.5 exposure for the inner domain during 
summer and winter. The average predicted PM2.5 concentrations from 

Fig. 7. Predicted average diurnal profiles for PM2.5 sources and measured 
PM2.5 for (a) Thissio, (b) Ano Liosia and (c) Papagou during January 2019.

Fig. 8. Predicted and measured average diurnal profiles for OA and its pre
dicted sources for Thissio during July and January 2019. Different scales 
are used.

Fig. 9. Predicted average diurnal profiles for EC sources and measured BC for 
Thissio during (a) July and (b) January 2019. Different scales are used.
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each source are multiplied by the population distribution within the 
high-resolution domain to calculate the PM2.5 exposure. For the summer 
period, long-range transport was the dominant source of PM2.5 exposure 
(78 %) as for PM2.5 mass (90 %) (see also Fig. 2a). However, the local 
sources were twice as important for exposure as for the PM2.5 concen
tration. Transportation was the leading local source of PM2.5 exposure 
contributing 6 %, whereas shipping was the main local contributor to 
PM2.5 mass at 3 %. The main local sources of exposure, in descending 
order, were transportation (6 %), industry (5.5 %), fugitives and sol
vents (5 %), and shipping (3 %). Their spatial distributions are shown in 
Fig. S8. For PM2.5 mass, the primary local contributors were shipping (3 
%), industry (2.5 %), transportation (1.6 %), and biogenic sources (1 %).

In winter, similar to summer, local sources were twice as significant 
for exposure as they were for concentration. For this period, local 
biomass burning accounted for 37 % of PM2.5 exposure, followed by 
combustion (9 %), transportation (6 %) and industry (6 %). Significant 
local contributions to PM2.5 mass were also residential biomass burning 
(19 %), combustion (5 %), industry (3 %) and transportation (1.6 %). 
Biomass burning was the most important local source of exposure in the 
urban core (Fig. S9).

3.8. Effects of computational grid resolution

The low-resolution grid cannot reproduce the spatial concentration 
variations in urban sites. The 36 × 36 km2 resolution grid failed to 
capture the variability of PM2.5 levels during summer (Fig. 12). PM2.5 
concentrations at the coarse grid level were relatively uniform, ranging 
from 5 to 6.4 μg m− 3 across the entire modeling domain. The average 
peak PM2.5 increased by 35 % moving from the coarse (36 × 36 km2) to 
the fine grid resolution (1 × 1 km2). For OA, the peak level increased by 
63 % and for the EC by 80 % in the fine scale.

During wintertime, the effects of the grid resolution were even more 
pronounced (Fig. 13). The corresponding increases of predicted 
maximum levels were 64 % for PM2.5, 88 % for OA, and almost a factor 
of two for EC. The main reason for the significant spatial variability in 
PM2.5 and OA during winter was the local source of residential biomass 
burning. The use of nesting ending up in the fine resolution of 1 × 1 km2 

appears to be necessary for accurately resolving PM2.5 high- 
concentration areas during the winter, more so than in the summer.

4. Conclusions

The widely used PSAT source-apportionment algorithm was 

Fig. 10. Population PM2.5 exposure distributions for the urban center during (a) July and (b) January 2019.

Fig. 11. Average relative source contributions to PM2.5 mass and PM2.5 exposure for the 1 × 1 km2 modeling domain during July and January 2019.
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enhanced in this study to calculate source contributions across multiple 
grids, moving from regional to urban scales with progressively higher 
spatial resolution up to 1 × 1 km2. We applied our approach to the 
concentrations and sources of PM2.5, OA, and EC in Athens during a 
typical summer and winter month.

In summer, long-range transport was the main source of PM2.5, OA, 
and EC, even at the sites with the highest concentrations, with local 
sources making smaller contributions. In winter, while long-range 
transport remained a significant source of PM2.5, residential biomass 
burning was the predominant local source contributing 37 % in the 
urban core. Small PM2.5 concentration gradients were predicted in 
summer, consistent with the available observations. However, in winter, 
sharp concentration gradients were present in the urban core, with 
average PM2.5 concentrations doubling within 5 km due to residential 
biomass burning. Also, during the winter nights, both measurements and 
predictions indicated high hourly PM2.5 levels due to intense local res
idential biomass burning.

There was a tendency towards underprediction of the low summer
time OA levels probably due to an underestimation of OA contributions 
from long-range transport. At night, the underpredicted OA peak was 
primarily attributed to the absence of cooking emissions in the current 
emission inventory. In winter, the model effectively captured the overall 

trend of observed OA in the urban center, with good agreement between 
predicted and observed values. However, the lack of nighttime oxidation 
of bbOA led the model to associate high OA peaks with primary sources 
rather than secondary ones.

Long-range transport dominated PM2.5 mass and exposure, while 
local sources like transportation contributed more to exposure than 
mass. In winter, local sources, particularly biomass burning, became 
more significant, especially for exposure. The findings underscore the 
importance of high-resolution grids in accurately capturing spatial 
variability in PM2.5, OA, and EC concentrations, particularly in urban 
areas where local sources like residential biomass burning play a critical 
role. The substantial increases in spatial variability observed at finer 
resolutions, especially during winter, highlight the limitations of coarse 
grids in resolving localized pollution hotspots.

Differences between measured and predicted values arise for several 
reasons. One major factor is the underestimation of emissions from 
cooking during the summer, which contributed significantly to the dis
crepancies between predicted and observed OA levels. Additionally, the 
absence of nighttime chemistry in the model resulted in further differ
ences, particularly due to the nighttime oxidation of bbOA, which 
PMCAMx failed to predict. Regarding emissions, a more detailed in
ventory and a re-estimation of residential biomass burning emissions are 

Fig. 12. Average predicted concentrations of PM2.5, total OA and EC all in μg m− 3 at 36 × 36 and 1 × 1 km2 resolutions during July 2019.
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necessary to better represent winter pollution. Uncertainty also arises 
from the use of low-cost sensors in the measurement network and the 
meteorological data.

The results of this analysis provide valuable information about the 
sources responsible for the exposure of the residents of Athens to fine 
particulate matter. Most of these sources are located outside Athens with 
wildfires dominating during the summer. Local biomass burning during 
the winter deserves immediate regulatory attention. Other combustion 
sources during the winter and shipping emissions are the next most 
important local sources. Road transportation that receives most of the 
regulatory attention is predicted to be a minor source of PM2.5.
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