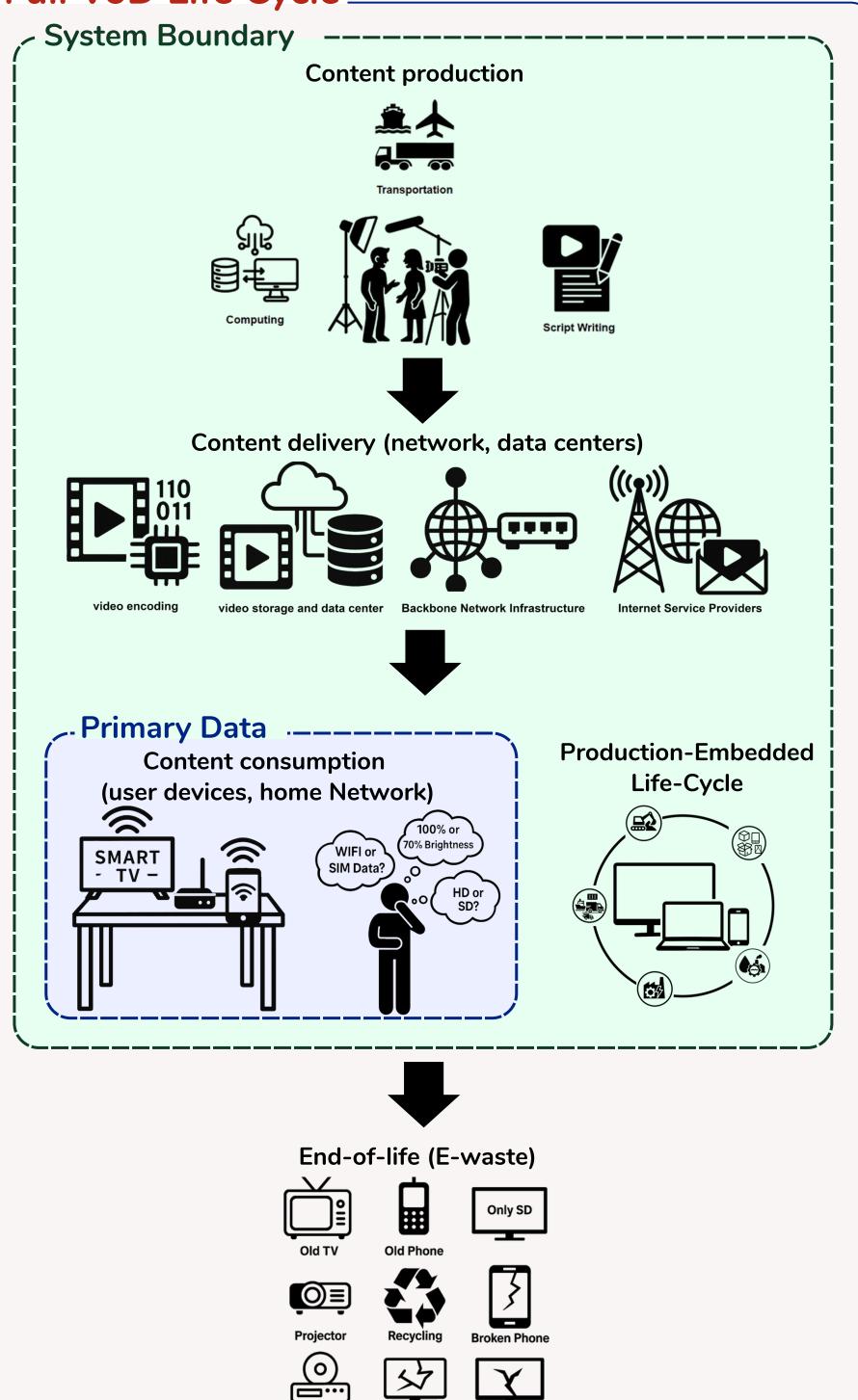
Quantifying the Life Cycle Environmental Impacts of Video-on-Demand Streaming: The Influence of Consumer Behavior

A. Soltani Nezhad ^{1,2}, T. Hennequin ², H. Boonman ³, B. Van Gastel ⁴, M. Huijbregts ¹

Introduction -

Video-on-demand (VoD) is a rapidly growing media distribution service that enables digital access to films and television series on user request. These services significantly contribute to environmental impacts, being energy-intensive (particularly in data centers and consumers' devices) and material-intensive (due to hardware manufacturing and disposal).


Motivation_

- Data networks and transformations consume 1.5 % of global electricity, mostly for video streaming, which carries 65 to 80 % of Internet traffic 1,5.
- Globally, users consume approximately 833 hours of video streaming annually per capita, causing 40–52% of digital content's environmental impacts².
- Everyday digital use already consumes 40 % of a 1.5 °C carbon budget and 55 % of the mineral resource limit per person ².
- Despite the significant environmental impacts of digital content consumption, the influence of user behavior on VoD's footprint remains poorly understood.

Objectives_

- 1. To quantify the influence of user behaviors within the content **consumption** stage of VoD streaming on energy consumption.
- 2. The study aims to **identify practical strategies** to reduce these impacts through scenario-based analysis.

Full VoD Life Cycle _

Study Approach - Key Points -

- Scenario-based Life Cycle Assessment (LCA): evaluates how user-controlled settings during the content-consumption stage shift energy use and emissions.
- Functional unit: 1 hour of streaming for one user.
- Baseline check: an online user survey captured current streaming habits to anchor the reference scenario.
- Impact calculation: measured energies feed into Life Cycle Impact Assessment (LCIA) to quantify changes in global warming, resource use, and other midpoint indicators.

Table 1. VoD Life-Cycle Stages and GHG Intensity Sources

VoD stage	Inventory source	Typical GHG / energy intensity (placeholder)
Content production	Secondary LCA datasets ³	Large-budget feature film ≈ 400–1100 t CO₂-eq per film
Content delivery – Data centres	Secondary LCA datasets ⁴	Storing 100 GB y ⁻¹ ≈ 0.2 t CO₂-eq Storing a 5 GB HD movie y ⁻¹ ≈ 10 kg CO₂-eq
Content delivery – Data transfer	Secondary LCA datasets ⁵	Downloading 1 GB ≈ 0.004 kWh ≈ 2 g CO₂-eq Downloading a 5 GB movie ≈ 0.020 kWh ≈ 10 g CO₂-eq
Content consumption – Android phone	Primary power monitoring	2.76 Wh for 100 % brightness, 1440 p, volume 100 % 2.22 Wh for 75 % brightness, 1080 p, volume 50 %
Content consumption – Home router	Primary power monitoring	5.99 Wh for router streaming 1440 p 5.88 Wh for router streaming 1080 p 5.84 Wh for router streaming 720 p

Table 2. Behavioral Parameters and Experimental Setup

Variable type	Parameter	Levels / Units
Independent	Screen brightness	50 % · 70 % · 100 %
	Resolution	720 p · 1080 p · 1440 p
	Platform	YouTube · Netflix . Amazon Prime
	Audio volume	50 % · 70 % · 100 %
	Battery-saver mode	On · Off
	Streaming-run length	15 min per scenario
	Stabilisation pause	5 min before each run
Dependent	Device (Phone / TV) energy use	Wh per run (scaled to Wh h-1)
	Router energy	Wh per run

Challenges

- Limited data transparency Accurate data on energy use, hardware materials, and emerging tech is scarce or non-public.
- Rapid system change ICT evolves quickly, with tech driven by innovation rather than stable demand, complicating predictions.
- Shared infrastructure Data centres, networks, and user devices serve multiple services simultaneously, making it hard to isolate streaming-related impacts.

Key Takeaways

- In one hour of YouTube playback, phone power draw is driven mainly by screen brightness, while router power draw is driven mainly by video resolution; other settings have minor effects.
- With all other settings at maximum, dimming the phone screen from 100 % to 50 % cuts about 0.58 Wh (~21 %) per hour on the phone, whereas lowering resolution from 1440 p to 720 p cuts only 0.23 Wh (~8 %) on the phone.
- Switching the phone from a "max" profile (100 % brightness, 1440 p, volume 100 %) to a "typical" profile (75 % brightness, 1080 p, volume 50 %) reduces hourly use from 2.76 Wh to 2.22 Wh (~20 %) on the phone.

Affiliations:

1. Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen

- 2. Circularity & Sustainability Impact, Energy and Material Transition, TNO, Utrecht
- 3. Economics & Innovation Policy, Vector, ICT, Strategy and Policy, TNO, Den Haag
- 4. Software Science, Radboud University, Nijmegen

1. Sandvine 2023; Cisco 2020

2. Istrate et al., 2023

3. Sustainable Production Alliance 2021

4. Stanford SAGE 2017 (CMU data) 5.European Commission 2023 – (MJ-09-23-181-EN-N)

Radboud University

innovation for life

