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Abstract

This paper addresses the challenge of incorporating offshore wind power into reservoir management. Traditionally,
oil and gas production is powered by gas turbines. While stable, gas turbines are a major source of CO2 emissions. In
contrast, wind power produces power with minimal emissions. However, due to its high variability and uncertainty,
including it in the optimization of operational strategies over extended periods can be challenging. In this paper,
the optimization of production strategies over an ensemble of realistic wind power series is investigated. The
ensemble is generated by a mathematical model consisting of an autoregressive model with a seasonal trend. The
model is conditioned on relevant wind speed data from the North Sea with Bayesian inference. The wind speed
data is selected from the open-access NORA10EI dataset. The methodology developed in this paper is applied
to a multi-objective optimization problem, focusing on studying the tradeoff between profit and emissions. A
benchmark test reservoir model and a detailed CO2 emissions calculator are employed. In this scenario, wind
power is combined with traditional gas power, and all results are compared with a reference where only gas power
is used. The experiment indicates that it is not possible to reduce emissions by 40% without the use of wind power.

Keywords Reservoir management - Wind power - Multi-objective optimization - Ensemble optimization

1 Introduction

In 2022, the Norwegian oil and gas industry emitted around 11.2 million tonnes of CO; equivalents [1]. According
to the Norwegian Offshore Directorate, this accounted for around a quarter of Norway’s total greenhouse gas
emissions that year. Of those eleven million tonnes, approximately 84% (see Fig. 1) was estimated to come from
gas turbines, generating electricity for various platform facilities and powering the oil and gas production. Over
the recent years, much effort has been put into reducing the use of gas turbines by introducing offshore wind. An
example is the Hywind Tampen wind farm, with its eleven 8MW wind turbines supplying power to the Gullfaks
and Snorre fields [2]. Hywind Tampen covers about 35% of the power demand of the two fields, and it is projected
to reduce CO; emissions by 200 kilotonnes per year [3].

Besides reducing emissions, the petroleum sector is incentivized economically to include renewables through
carbon emission taxes. Including the cost of emissions trading, the total cost associated with CO;, emissions for
the Norwegian oil and gas industry is projected to reach 2000 NOK per tonne of CO; in 2030 [1]. Angga et al. [4]
studied the effect of CO; tax on water flooding optimization and found that increasing tax affects the emissions
more than the profits from production by encouraging more energy-efficient reservoir drainage strategies.
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Fig. 1 The relative size of CO, emitters from the Boilers

Norwegian continental shelf in 2022 [1] Y. Engiies
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In recent decades, numerous studies have focused on optimizing the economic performance of reservoirs, as seen
in the works of [5—7]. More recently, research has started to explore the trade-off between profits and emissions
resulting from production. As mentioned in the previous paragraph, [4] investigated the impact of introducing a CO,
tax. Additionally, [8] and [9] applied the weighted sum method from multi-objective optimization, demonstrating
that it is possible to achieve a significant reduction in emissions without notably compromising profits. However,
how the operational strategy changes the trade-off when wind power is included in the optimization is not clear,
which is the focus of this study.

From a reservoir management and optimization perspective, the biggest challenge with wind power is its high
uncertainty and variability, making it hard to optimize production strategies over longer periods of time. This paper
addresses this problem by generating an ensemble of realistic wind speed (wind power) profiles that can be included
when optimizing various control strategies. The wind speed ensemble is generated by a mathematical model, where
the model parameters are conditioned on data from the North Sea with Bayesian inference. An empirical power
curve model of an 8MW offshore wind turbine is used to derive power profiles from the wind speed profiles. In
the optimization, traditional gas turbines cover the residual power demand not covered by wind power.

The methodology developed in this paper is applied to a bi-objective optimization case, where a realistic
benchmark test reservoir is used. The weighted sum method for multi-objective optimization is utilized to find a
set of Pareto solutions. In this scenario, the two objective functions are Net Present Value (NPV), which is the
economic putout of the production, and CO, emissions. A stochastic ensemble-based gradient method well suited
for robust optimization problems is employed. The resulting Pareto front is compared to a second Pareto front
optimized without wind power (with only power from gas turbines available) for reference.

The outline of the paper is as follows. In Section 2, the wind speed data and the mathematical model used for
generating the wind power ensemble are discussed. Section 3 describes the ensemble-based gradient and how it is
used for robust optimization. A brief introduction to multi-objective optimization and the weighted sum method
is also covered here. The Drogon reservoir is introduced in Section 4, and the simulation workflow is explained.
In Section 5, the methodology is applied to the scenario of minimizing emissions while maximizing NPV. Finally,
the paper is summarized in Section 6, where some final remarks are made.

2 Wind power simulation

The top panel of Fig. 2 shows daily wind speeds from August 1, 2010 to January 1, 2015 at a height of 80 meters.
The location is at a latitude of 61.3°N and longitude of 2.3°E, approximately where the Hywind Tampen wind
farm is located. The data is from the open-access dataset NORA10EI [10], which is an atmospheric hindcast for the
Norwegian, North, and Barents Sea. NORA10EI contains data from 1979 to 2017 with a model resolution of 0.1°.

Among many sources, Brown et al. [11] discuss that the stationary distribution of a wind speed time series is
described well by a Weibull distribution. This is also supported by the Weibull fit of the data shown in the top right
corner of Fig. 2. Motivated by [11], the approach taken in this paper is to transform the stationary distribution of
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Fig.2 Wind speed from
the NORA1OEI dataset
(upper panel) with a
histogram of the data
together with a Weibull fit.
The data is transformed to
be Gaussian distributed
(lower panel)
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the data to a standard Gaussian, A/(0, 1). This is done by transforming each wind speed value with the cumulative
distribution function (CDF) of the Weibull distribution. Then, the standard Gaussian inverse CDF transform is
applied, resulting in data with a standard Gaussian stationary distribution. The lower panel of Fig. 2 shows the
transformed Gaussian data with the stationary distribution to the right.

An autoregressive model is then fitted to the Gaussian data and then used to simulate Gaussian wind speed
profiles. The simulated time series is finally transformed back to the original Weibull distribution from Fig. 2. This
ensures that all simulated wind speed series have the same stationary distribution as the data and that all generated
wind speed values are positive. This approach differs from the one taken in [11], where they did not directly
transform the data to a Gaussian distribution. Instead, they manipulate the parameters of the Weibull distribution
to mimic a Gaussian shape.

The data in Fig. 2 exhibits clear seasonal variations, with generally stronger wind speeds during the winter
months. Because of this, the autoregressive model proposed in this paper includes a cosine term to model seasonal
variability. The model is given by

21
= —t , 1
Xr41 ,Oo+p1xt+8t+a008(365k +¢> ey

where &; ~ N (0, a,fl). Bayesian inference is then applied to the model parameters,

0 =1[po, p1. a, k, ¢, oml, 2)

to get a posterior distribution conditioned on the data. The posterior distribution, p(6|d), is given by Bayes’

theorem d16)p(®)
14 14
p@ld) = ————, (3)
p(d)
where d € R¥ is a vector containing the k£ Gaussian data values, p(d|0) is the likelihood function and p(0) is the
prior distribution of 6. The likelihood is assumed to be Gaussian, such that

p(d|6) = exp| (@ —x@) =~ x0))], )

1
V 2m)k det(%)

where x(0) € R is a vector containing the simulated time series, and the covariance matrix is given by ¥ = on% 1.
The chosen priors for the parameters 6 in Eq. 2 are listed in Table 1. The priors were selected based on informed
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Table 1 The marginal prior distribution for each parameter in the model in Eq. 1

£0 Pl a A ¢ Om

prior N(0,0.1%) N(0.9,0.1%) N(1,0.12) N(1,0.12) N, 2% Half-Norm(o = 2)

estimates, with sufficiently large variances to ensure that the posterior distributions would be primarily shaped by
the observed data.

The Bayesian inference is performed with the python package PyMC [12], following the example in [13]. The
marginal prior and posterior distributions of the model parameters are shown in Fig. 3. Because the posterior is
sampled with a Markov Chain Monte Carlo (MCMC) method in PyMC, the marginal posteriors in Fig. 3 are
represented by KDEs (Kernel Density Estimates).

A random sample of the model parameters is now drawn from the posterior distribution. Each sample point
is then used to simulate a time series of Gaussian-distributed wind speeds before being transformed back to a
Weibull distribution, as described earlier. Figure 4 shows six examples of generated wind speed profiles. Each
wind profile is transformed to a power series with the power curve from an 8MW offshore wind turbine, found in
[14] (data for the power curve are available at GitHub). The power curve is depicted in Fig. 5. In total, two wind
power ensembles of size 50 are generated. One is to be used in the optimization, and the other is used to evaluate
the optimized results.

2.1 Remark

In this paper, directional changes in wind are not considered. Wind turbines are installed with yaw systems,
responsible for turning the turbines when the wind direction changes. A typical angular yaw speed is 0.3° per
second [15]. Defining the angle between the wind velocity and the turbine area as y, the power output can be
approximated by [16]

P(y) = Pycos’ y, )

where Pp = 8 MW is the power output when y = (. Assuming that the turbine needs to turn from y; = 45°
to y» = 0°, with the angular speed of wy; = 0.3° per second, the total time it takes to turn is #; = 150 seconds.

Fig.3 Marginal prior (red) N0,0.12)
and posterior (blue)

distribution of the model
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Fig.4 Six generated
windspeed profiles from
the model in Eq. 1
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During this time, the energy loss, AE, is given by

t=ty =14
AE = / Pycos® y(t) - dr = / Py cos® (lwd t) -dr ~ 0.25 MWh. 6)
=0 —0 180

Assuming this occurrence happens once every hour, we find that the total energy loss per day (over 24 hours) is
6 MWh. In an ideal scenario, the total energy output would be 8 MW multiplied by 24 hours, which equals 192
MWh. Therefore, the energy lost due to changing wind direction accounts for only 3.125%. It is possible that
wind direction changes more frequently during the winter months than in the summer. This could lead to higher
energy losses in winter, which might affect the shape of the power profiles. However, since this does not alter the
workflow presented in this paper, it is not included in the analysis.

3 Robust ensemble optimization

Ensemble-based optimization (EnOpt) is one of the popular gradient methods for optimizing well controls in
reservoir management [6, 7]. Denoting the objective function as f (#), where u is the control vector to be determined
by optimization, the ensemble-based gradient is given by

N

1
XV~ Yo (Fw = fa)(u" —w, @)

n=1

Fig.5 Power curve for a MW wind turbine in [14]
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where the vectors {u”}fl\’:1 are samples from a Gaussian distribution with mean # and a covariance matrix X.

The pre-multiplication of X in Eq. 7 is viewed as pre-conditioning of the gradient. This term can be removed by
multiplying the equation with ¥ ~! if not desirable. Once the gradient is estimated, the control vector is updated
iteratively by the gradient descent method,

Uiel = u4j — g, (8)

where g; is the gradient estimate in Eq. 7 at the current iterateration j, and «; is the step size.

There are several reasons to use EnOpt in optimization for reservoir management. Firstly, it is nonintrusive,
meaning the inner workings of the objective function are irrelevant when estimating the gradient. This quality
is attractive when a dynamic simulation, such as a reservoir flow simulation, is needed to evaluate the function.
Secondly, EnOpt can deal with robust optimization problems. Robust optimization is when the objective function
depends on two inputs: the control to be determined, u, and an uncertain variable, x. In reservoir management,
this is often some geological property like permeability or porosity. Let x", where n goes from 1 to N, be different
realizations of the variable x. In the gradient estimate of EnOpt, each x” is then paired with a control perturbation
u" such that the estimate in Eq. 7 becomes

N

VS~ 2 3 (£ x = Fl ) () ©

n=1
In this manner, EnOpt can efficiently estimate a gradient with the uncertainty in x included. At each itera-

tion of the optimization, the proposed control u ;. is evaluated on the average objective function f(u;y1) =
NI Zf,v:l f(ujq1, x™), and a convergence check is performed.

3.1 Multi-objective optimization

The following is a brief summary of the weighted sum method for solving multi-objective optimization presented
by Goodarzi et al. in [17]. In multi-objective optimization, the goal is to minimize several objective functions
simultaneously. However, if the objectives compete with each other, it is generally not possible to find a single
optimum value. Therefore, one tries to find a set of solutions called a Pareto front or a Pareto optimal set. The
solutions in the Pareto front are optimal in the sense that decreasing the value of one objective function leads to a
simultaneous increase in at least one of the other objectives.

Given several objective functions, fj(u), where [ = 1, ---, L, the weighted sum method of multi-objective
optimization combines the objectives to form a single objective function

L
Fuw) =Y o fiw), (10)

=1

where w; € [0, 1] are weights assigned to the different objectives, such that ZZL:1 w; = 1. In this paper, we
only consider two objective functions, making the optimization bi-objective, and the combined function in Eq. 10
becomes

Fu) =ofi(u) + (1 — o) f2(u). (11)

The Pareto front is then found by optimizing F(u) for a range of w values.
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4 The Drogon field and simulation workflow

Drogon is a benchmark test reservoir developed by Equinor [18] for testing optimization methods. The field
measures approximately 3.6km x 4.5km x 0.1km [19] and is divided into a 46 x 73 x 31 grid with 71 575
active cells. The simulation of Drogon is divided into two periods: one period for history matching followed by
a prediction/optimization period starting July 1, 2020, and lasting until January 1, 2025. The topology of the
Drogon reservoir is depicted in Fig. 6a, while Fig. 6b shows the porosity, and Fig. 6¢ shows the permeability in
the x-direction. Drogon has two injection wells labeled A5 and A6, and four production wells labeled A1l to A4.
In addition, an extra production well, denoted OP5, is added at the beginning of the optimization period. This well
is part of the schedule defined by Equinor, and its purpose is to see what effect an additional well can have on
the predictions of a history-matched ensemble. However, this is not studied here, but the well is still included. An
ensemble of history-matched porosity and permeability realizations is provided by Equinor for the Drogon field,
and in this paper, fifty of them are used. Figure 6b and 6¢ depict one of these realizations.

The controls to be determined by optimization in the next section are the well water injection rate (WWIR) in
the two injectors A5 and A6, and the target field oil production rate (FOPR), both adjusted monthly during the
prediction period. This results in 3 x 54 = 162 (three control types times 54 months) controls to be determined.
When it comes to the upper bounds of the controls, the maximum injection rate for each well is 8000 Sm>/day.
Furthermore, the producers A2, A3, and A4 have a maximum oil production rate of 4000 Sm3/day, and Al and
OPS5 have a limit of 3000 Sm?/day. This means that the upper bound for the target oil production rate for the field
is 18000 Sm3/day.

(\2 ‘AS ‘\6 (\1 f‘\S PPS ‘44

(a) Topography of Drogon

Cell Results:
PORO Cell Results:
0.3669 PERMX
0.3200 10000
0.2750 1000
0.2300 100
0.1850
0.1400
0.0950
0.0500

0.0057 0.001
(b) A single realization of the porosity (c) A single realization of the permeability in x-
direction

Fig.6 The Drogon reservoir
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Fig.7 Flow diagram PERMX
explaining the simulation WWIR A5 PERMY
Workﬂow u= WWIR A5 PERMZ
target FOPR PORO Ptk
Voil-prod M
V. ; Emission calculator
; gas-prod
Simulator Woskpasd Pras dem =18%(0, Piotdem — Prind) Me.
Voacii Vigas-prod ¢~ max(0, Viacprod — Vyas-dem)

To estimate the emissions from Drogon’s operation, a simple model of the top-side facility of Drogon is chosen,
where three components of power consumption are present. The three components are a constant baseload power
demand of 4MW, a water injection pump for the two injectors, and a gas compressor for the produced gas. The
power demand of the pump and the compressor varies with the rate and the difference in inlet and outlet pressure.
The emissions calculator eCalc [20] is used to model the power demand and CO, emissions. To cover the power
demand of the production, it is assumed that one MW wind turbine is available and that gas turbines are available
to cover the remaining load when needed.

The simulation workflow is illustrated in Fig. 7, where the first input u, is a vector containing the monthly
WWIR for AS and A6, and target FOPR. The second input is the permeability in the x,y, and z directions (denoted
PERMX, PERMY, and PERMZ), and the porosity, denoted PORO. The third input is Pyind, Which is a vector
containing daily available wind power. The OPM simulator [21] is used to simulate the reservoir flow, and it
outputs the volume of produced oil, gas, and water (denoted Voilprods Vgas-prods and Viat-prod) €ach month. eCalc
computes the total power demand, Piordem Of the pump, compressor, and baseload. The power load required by
the gas turbines, denoted Pgas-dem. 18 calculated by subtracting the available wind power from Potdem. Pgas-dem
is then used to determine the gas fuel consumed by the gas turbines, denoted Vgus.dem, Which is subtracted from
the volume of produced gas from the reservoir. Lastly, the monthly emissions, M., are determined (with eCalc)
from Vgas-dem-

5 Numerical application: emissions vs. NPV

The workflow developed in the preceding sections is now applied to a bi-objective optimization case where the
two objective functions are CO; emissions and Net Present Value (NPV). Uncertainty in both geology and wind
power is considered in such a manner that each wind power realization, Py, ,, is paired with one realization of
porosity, denoted ®", and permeability K". This means that x" in Eq. 9 is defined as x" = [Py, 4, ©", K"]. The
number of geological and wind power realizations is 50, which is also the sample size for the ensemble gradient
described in Section 3. Higher ensemble sizes generally improve gradient quality [22]. However, a preliminary
test on the Drogon model shows that a size of fifty gives satisfactory results.

NPV is defined by the revenue from oil and gas sales minus the cost of water disposal and injection. By defining
Co and cg as the price of oil and gas per standard cubic meter (Sm?), and letting cwp and cy; be the cost of water
production and injection per Sm3, and Cco, the tax per kg of emitted CO,, the NPV function, denoted fnpy, can

be written as

N, i i i i _ i
S Co Voi]-prod +cg Vgas-prod — Cwp Vwat-prod — Cwi Vwat-inj Ceoy Mc02
fev =) (12)

(1 + r)ti/365 ’

i=1
where N, is the number of intervals the controls are changed (number of months in this scenario), and r is the
discount rate chosen to 8% per year. #; is the number of days passed since i = 0. The economic parameters of the
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Table 2 Specific values of the economic parameters in the
NPV

Co Cg Cwp Cwi Ccoy

600 $/Sm> 17 $/Sm? 38 $/Sm? 18 $/Sm> 0.15 $/kg

NPV are given in Table 2. Additionally, the total mass of emitted CO; during the simulation period can be written
as

feo, = Z on- (13)

i=1

5.1 Reference simulation

As a reference, the workflow in Fig. 7 is simulated over the entire ensemble (x”) with a constant injection rate
of 6000 Sm?/day in both injectors and maximum target FOPR of 18000 Sm>/day, meaning that the producers are
allowed to produce as much as possible. The resulting oil, gas, and water production rate and CO, emission rate
are depicted in Fig. 8. The shaded region shows the variability over the ensemble (porosity, permeability, wind
power), while the white line shows the ensemble mean. Notice how the CO, emission rate oscillates with the
seasons, resulting from the seasonal variability of the wind speed profiles. The scenario depicted in Fig. 8 results

in an average NPV of $25.7 billion and a total (average) of 246.3 kilotonnes of CO, emissions (denoted fI{fPfV and

)
1co,)-
5.2 Optimization
For the optimization, the initial control, uq, is chosen to be a constant injection rate of 6000 Sm3/day in both

injectors and the target FOPR set to the resulting oil production rate from the reference simulation (Fig. 8). The
weighted-sum objective (Eq. 11) is written as

Fu, x" :wfcoz(ritf,x )+(1 _w)_fNP\ie(fu’X )’ (14)
fcoz UNY

such that the two terms are dimensionless and comparable in size. The minus sign in front of fnpy is there because
the optimization algorithm is formulated in terms of minimization.

Fig.8 Upper left: The field FOPR [103 Sm3/day] FGPR [103 Sm¥/day]
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The gradient descent method (Eq. 8) is employed with an ensemble-based gradient as described in Section 3.
At each iteration of the optimization, the Line Search method (described in Chapter 3 of [23]) is used to set the
step size, and the initial step size is set to a}“ax = 0.25/ H gj HOO, where g; is the ensemble gradient estimate at
iteration j. The variance of the sampling for the ensemble gradient is chosen such that the standard deviation is 5%
of the feasible interval for each control. The maximum number of iterations is 30, and the maximum number of
inner iterations (number of step size cuts) for the Line Search method is set to 5. One resampling of the ensemble
gradient is allowed on any given iteration if the Line Search method does not find an improvement in the objective
function. Lastly, the controls are sampled with a time correlation such that the correlation of two controls u; and
uy; are given by

lk—1]

Corr(uy, uy) = p (15)

where p = 0.75 is the correlation of two consecutive time intervals.

The main panel of Fig. 9 depicts two sets of solutions of the weighted sum objective function, each with five
different values of the weight, w. The set of solutions to the left of the main panel is determined with the wind
power ensemble as described in Fig. 7, and the set to the right is determined with only gas power available. A
panel that zooms in on the region of interest for each set is also shown (upper panel for the solutions with wind
and gas power combined, and to the left for the solutions with only gas power.). For each solution of a particular
value of w, the small dots represent different ensemble members, x”, while the big dots represent the ensemble
mean. The same data is given in Table 3, which gives the ensemble mean =+ one standard deviation. The table also
gives the emission intensity, /.,,, of each solution. Emission intensity is defined as the ratio between the amount
of CO, emitted and the total volume of oil and gas produced. /.., is given in units of kilogram per tonne of oil
equivalents (kg/toe) in this paper. The resulting controls for each solution are depicted in Fig. 10, where each row
shows the controls for a particular value of w. The first and middle columns depict the injection rate in AS and A6,
respectively, and the last column depicts the target group production rate. The colored line in each panel shows
the rate for the solutions with wind power, while the grey line is for the case with no wind power (only gas).

Fig.9 Two sets of Pareto Wind and Gas power
solutions of the weighted 29
sum objective in Eq. 14,
with v = 0.0, 0.25, 0.5,
0.75 and 1.0. The solution
set to the left is solved over
the wind power combined
with gas power, while the

set to the right is solved
with only gas power

240

Only Gas power

29
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Table 3 The numerical
values depicted in Fig. 9

NPV
[Billion USD]

Cco,
[kilo tonnes]

Ico,

[kg/toe]

26.04 + 0.56 25.59 + 0.0.53 1.82 +0.02

27.27 £ 0.73

26.66 + 0.72

223,71 + 4.87

339.94 + 2.53

28.84 + 0.7

43.25 + 0.72

26.79 +£ 0.73

26.5 +0.67

212.03 + 4.65

329.39 +2.81

28.69 + 0.85

43.95 + 0.73

26.35 + 0.65

200.61 +5.45  194.55 + 5.90

326.22 +2.82  308.83 £ 2.97

27l 2 @777/

43.84 + 0.70

24.46 + 0.52

27.15 + 0.84

44.12 + 0.81

0.07 + 0.0 “
113.83 +4.33
197.91 + 0.06 -
151.06 + 5.77
1943.49 + 1.07 “

The table also shows the emission intensity of each solution
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Fig. 10 The determined controls of the optimization. Each row represents a distinct value of the weight . Each column is a
different type of control; the left and middle columns are the injection rates in A5 and A6, and the column to the right is the
group control rate. The colored line on each panel is the control for the case where wind and gas power are combined, while
the gray line is the control for when only gas power is available. Time is on the x-axis, and the rate given in Sm>/day is on

the y-axis
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5.3 Discussion

The first thing to notice in Fig. 9 is the difference in emissions values (on the x-axis) of the two solution sets. By
justintroducing wind power, the total emissions are drastically reduced. In this case, the reduction is on the order of
100 kilotonnes. However, other qualitative differences can also be observed in the two sets. The trade-off between
NPV and emissions looks more linear in the set with wind power than in the one with only gas power when w
is reduced from 0.0 to 0.75, which is positive as it means that NPV will not drop off as quickly as emissions are
reduced. Additionally, the resulting controls with available wind power seem to have clearer seasonal variability
(see Fig. 10) than those without.

When the objective function only contains the emissions (w = 1.0), the solution with wind power has an average
NPV of 1.82 billion USD and 113.8 kilotonnes of emissions. The same solution with only gas power available has
an average NPV of 0.07 billion USD and 197.9 kilotonnes of emissions. As seen in the lower row of Fig. 10, when
only gas power is available, all controls approach zero, meaning no injection and production. The emissions do not
approach zero here because of the constant baseload of 4MW that needs to be accounted for. The reason that not
all of the controls are exactly zero could be related to inaccurate gradients due to the truncation of control samples
that fall outside the bound of the domain. When wind power is available, the production controls approach the
same solution. However, we still observe significantly more water injection compared to the solution with only
gas. This could be a combination of two things: the gradient estimate is poor because many of the production
controls are zero, and in the limit when w = 1.0 there is no mechanism in the optimization algorithm to prevent
injection of water based on wind energy. However, the solutions we are the most interested in are on the other side
of the spectrum for v < 0.75.

On the other side of the spectrum, when v = 0.0, the objective function only contains the NPV term. Here, the
average NPV of the solution with wind power is 27.3 billion USD, and when only gas is available it is 26.7 billion
USD. This is a difference of 600 million USD, most of which comes from extra gas that can be sold/exported
rather than used as fuel in the gas turbines because more of the power demand is covered by wind power. The
average amount of CO; emitted from the solution with wind is 223.7 kilotonnes, which is 116.2 kilotonnes less
than the solution with only gas power. Using a cost of 0.15 USD/kg for emissions, this results in an average of
only 17.4 million USD in saved CO, tax.

The Norwegian government, together with the oil and gas sector, has set a goal of a 40% reduction in emissions
by the year 2030 compared to the emissions from 2005, and a net-zero goal for 2050 [24]. Considering the solution
with no wind when w = 0.0 as a reference, where the average emissions are about 340 kilotonnes, a 40% reduction
of this is about 204 kilotonnes. Looking at the result from Table 3 (or Fig. 9), the only solution without wind that
can reach this goal is when @ = 1.0, which is not a viable solution, as it corresponds to no production. However,
with wind power, the solution when w = 0.5 has an average emission of around 200 kilotonnes, just below the
reduction goal of 40%. Additionally, this solution has an average NPV of 26.04 billion USD, which is only a
2.3% reduction from the average reference NPV of 26.66. A reduction of 140 kilotonnes of emissions corresponds
to only 21 million in saved CO; tax. This shows that a CO, tax alone is not enough to incentivize the goals of
emission reduction. For comparison, the production rate of oil, gas, and water, as well as the emission rate of these
two solutions, are shown in Fig. 11.

6 Summary

This paper presents a methodology for incorporating wind power into the optimization of control rates in reservoir
management. Optimization is performed over an ensemble of realistic wind power series and geological realiza-
tions, to address the high uncertainty in wind power availability and the uncertainty of geological knowledge.
The paper proposes a mathematical model for simulating daily wind speeds and uses Bayesian inference to fit
the model to wind speed data from the North Sea. The resulting wind speed model is used to create a wind speed
ensemble, which is then transformed into a power ensemble for optimization.
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Fig. 11 A comparison of FOPR [10% Sm3/day] FGPR [10% Sm3/day]
the oil, gas, water, and 125 AA 2000
emissions rate of the two
solutions w = 0.0 with
only gas power (gray) and
w = 0.5 with wind and gas
power combined 25
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The methodology is applied to a bi-objective optimization problem, where the two objective functions are
emissions and net present value. The weighted sum method of multi-objective optimization is employed to find
two sets of Pareto solutions. For the first set, the wind power is combined with gas power, while the second set is
optimized with only gas power available for comparison. The key takeaways from the numerical experiments are
as follows:

e When only the NPV term is present (w = 0.0), the average NPV using both gas and wind power reaches 27.3
billion USD. This is 0.6 billion USD higher than the case when only gas power is available. Simultaneously,
the case with wind reduces the emissions by 116 kilotonnes from 340 kilotonnes to 224 kilotonnes. This results
in 17.4 million USD being saved CO» tax.

e When only the emission term is present (w = 1.0), both solutions approach the strategy of zero production.
However, because of the constant baseload, the emissions never reach zero.

e Using the emission from the solution with only gas power when only NPV is prioritized (v = 0.0) as a
reference, it is not possible to reduce the emissions by 40% (which is the goal of the Norwegian oil and gas
industry by the year 2030). The solution with wind power when w = 0.5, reaches this goal with only a 2.3%
reduction in NPV.

e CO; tax alone is not enough to incentivize the oil and gas industry to reduce its carbon footprint.

In conclusion, optimizing over an ensemble of realistic time series for wind power and geological uncertainty can
provide valuable information for field operators and decision-makers about future emissions and profit uncertainty.
This is especially valuable when applied to bi-objective optimization, as in this paper, because it quantitatively
measures the trade-off between the two. It is worth mentioning that the results shown in this paper are specific to
the test-case setup presented here. Therefore, it is interesting to perform such an analysis on a more extensive and
detailed setup for the reservoir in the future.
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