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ABSTRACT

Sweating is a vital thermoregulatory mechanism in humans for maintaining thermal balance
during exercise and exposure to hot environments. The development of models that predict
sweat rate based on body temperature has been ongoing for over half a century. Here, we
compared predicted water loss rates (WLR) from these models to actual observations collected
during 780 participant-exposures in three independent laboratory-based experiments. In these
experiments, male participants aged 19-50 years cycled or walked at various intensities (metabolic
heat productions between 200 and 970 W), in air temperatures ranging from —40°C to 50°C,
relative humidities (14% to 95%), and air velocities (<0.2 to 10 m/s), while wearing different
clothing ensembles (thermal insulation 0.20 to 3.75 clo). The models’ performances were evalu-
ated by the coefficient of determination (R?) and Root Mean Square Error (RMSE). Performance
varied greatly with a maximum R? value of 0.5 and RMSE values ranging from 10.4 to 4.9 g/min.
Models with a lower sweat onset core temperature setpoint performed better and most models
generally underestimated the water loss at higher WLR. Optimization of the core and skin
temperature setpoints suggests preferred core temperature setpoints within a narrow range
(36.2°C to 36.6°C). Even with optimized inputs, R* values were around 0.5, meaning only 50% of
the variance in observed WLR was explained by the models. Better model consideration of
relations between body temperature and sweat rate, and the incorporation of non-thermal
exercise-induced sweat promotion, may reduce model underpredictions at higher exercise
intensities.
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ntroduction prolonged periods, and many models have been

Sweating is a vital physiological process crucial in
regulating body temperature and maintaining
homeostasis during heat stress [1]. When the
body heats up due to exercise or exposure to
heat, sweat glands secrete fluid onto the skin’s
surface [2]. As this fluid evaporates, it dissipates
heat, which can help to reestablish a state of ther-
mal balance in compensable conditions and pre-
vent overheating [3]. Therefore, predicting sweat
rate is important for assessing and managing heat
stress, especially in environments where indivi-
duals are exposed to high temperatures for

developed for this purpose [4-10]. By accurately
forecasting sweat production, it becomes possible
to design effective hydration strategies, monitor
the risk of dehydration, and prevent heat-related
illnesses such as heat stroke or heat exhaustion
[11]. This is particularly critical in occupational
settings (e.g. construction, military, or emergency
response) and sports, where performance and
safety can be compromised by inadequate thermal
regulation [12].

Key research on the role of sweating in thermo-
regulation in humans emerged in the 1900s and
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continues today. In 1956, Kuno proposed that the
regulation of sweating is mediated centrally [13],
and was supported by work from Benzinger in
1959 that showed a relationship between sweat
rate and body core temperature [14]. Later
research demonstrated the modulating effects of
peripheral (skin) temperature on the regulation
of sweating [15-21]. Stolwijk, a pioneer in the
field of thermophysiological modeling, used this
core and skin temperature control principle in
the development of the first multi-node thermo-
physiological model [5]. A thermophysiological
model is a set of mathematical equations thought
to describe the heat exchange of the human body
with its environment and its physiological thermal
response [10,22]. Thermophysiological models are
used to assess the thermal state of the human body
in different thermal conditions. This body tem-
perature-based thermoregulation gained wide-
spread adoption in many thermoregulation
models, where sweating (and other thermoeffector
responses such as shivering and vascular tone) are
modeled as a function of the core and skin tem-
peratures [4-10]. While the thermophysiological
models that incorporate these sweat models are
often validated - primarily by comparing their
core and/or skin temperature predictions
[9,10,23-26]—the sweat predictions of the sweat
models have yet to be compared to independent
empirical data.

In general, two different types of sweat models are
prevalent in the literature. These are the core and skin
temperature sweat models, which are investigated in
the present paper, and the conceptual evaporative
requirement (E.;) sweat models. Both use
a different methodology, the former is based on phy-
siological principles of the human body (i.e. tempera-
ture signals), and the latter on thermodynamic
principles (i.e. heat balance). E,,, represents the eva-
poration energy required for thermal heat balance and
is estimated via the thermal energy balance between
metabolic heat production and heat exchange with
the environment (excluding evaporation from sweat).
Many versions exist. However, all are based on the
principle that in response to elevations in environ-
mental heat load and heat load generated by exercise,
the human body produces and evaporates sweat to
compensate for the excess heat required for heat

balance (i.e. Eng) [27-33]. Despite these models
being widely employed, relatively simple, and show-
ing promising results for group-averaged sweat pre-
dictions [32,33], changes in heat balance are not
directly sensed by the body (and therefore could not
regulate sweat rate via this pathway).

When the body gains heat, its temperature rises,
activating deep-body core and peripheral temperature
sensors that send signals to the brain (primarily the
hypothalamus) [1,22,34], which in turn causes an
increase in sudomotor activity (i.e. activating sweat
glands) to facilitate heat dissipation through evapora-
tion, helping to counteract further temperature rise.
The core and skin temperature-controlled sweat mod-
els try to mimic this physiological process to predict
the sweat rate. These models often consist of three
components defined by core temperature, skin tem-
perature, and local temperature effects (Q10). The
core and skin temperature components are
a function of the error signal. The error signal is
defined by the difference between body temperature
and the setpoint temperature (i.e. T — Tetpoins). Note
that the setpoint in this context is the onset tempera-
ture for sweat activation, equivalent to the thermo-
effector threshold value defined by Romanovsky [35].
The magnitude of the core temperature function is
often significantly larger than that of the skin tem-
perature; indicating the larger influence of core tem-
perature in the regulation of sweating. Additionally,
local skin temperature affects the activation and pro-
duction of sweat within the affected area, which is
modeled by the Q10 effect. The Q10 effect refers to
the rate of changes in chemical or physiological pro-
cesses to a 10°C temperature change [36]. Various
studies investigated the Q10 effect of the local skin
temperature on local sweating in humans and often
reported a Q10 coefficient between 2 and 3 [20,37,38].

In this study, we first overview advances in tem-
perature-regulated sweat models and then compare
them with independent experimental data. To
achieve our objective, we assessed several commonly
used temperature-regulated sweat models.

Materials and methods
Sweat models

We compare several commonly used temperature-
regulated sweat models that include: the Stolwijk



model [5], the Wissler model [10], the JOS models
[8,9], the Fiala model [4,39], and the sweat models
developed by Havenith [6,7]. For uniformity, all
sweat rates are given in mg-cm_z-min_l. If neces-
sary, the corresponding (original) formula for the
sweat rate is adjusted accordingly.

The sweat models predict the sweat rate, Sw,
based on body core and skin temperatures. While
the exact formula varies from model to model,
they generally conform to the following
expression:

Sw = (f(Tc - Tc.,set) +g<Tsk - Tsk,set)) - Qo

(1)

Equation 1 can be divided into three distinct com-
ponents, 1) f (TC — Tcw); a function of the core
temperature error signal with T, the core tem-
perature setpoint at which sweating begins, 2)
g(TSk — Tskm); a function of the mean skin tem-
perature error signal with Tsk,set the mean skin
temperature setpoint for the onset of sweating,
and 3) Qo; a multiplicative factor that captures
the metabolic influence of the local skin tempera-
ture on sweat gland activity.

The first sweating model that is considered is
the sweating model developed by Stolwijk et al. [5]
in the 1960s and 1970s. The sweat rate formula is
given by Equation 2.

Sw = [(Epasal + (320 - (T, — 36.96)

_ Ty—34.08

429 (Ty — 34.08)) - 257 )]
~ Crcal/n
Adu

()

Here, Sw [mg-cm_z-min_l] is the sweat rate, T.
[°C] is the core temperature, Ty [°C] is the mean
skin temperature, and Ejp, [kCal'h™!] is the
basal evaporative heat loss of the skin, which
represents water diffusion through the skin and
has a value of 9.0 kCal-h™* [5]. Crcayn (=28.70)
is the conversion constant to convert the sweat
rate from kCal-h™ to mg~min_1 and Ay, [cm?] is
the body surface area of the participant based on
Du Bois and Du Bois [40]. The mean skin tem-
perature setpoint in this equation (34.08°C) is the
weighted average setpoint of the skin tempera-
ture following the methodology described by
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Stolwijk [5]. The core temperature setpoint
(36.96°C) represents the temperature at the
hypothalamus as is also described by Stolwijk [5].

The JOS-2 model [8] is a thermophysiological
model based on Stolwijk’s model. It uses a sweat
rate formula that is similar to that of Stolwijk;
however, it employs different temperature setpoint
values and includes a factor to scale for the body
surface area:

Sw = [(371.2 - (T. — 37.06) + 33.64

A, Tg-35 Cy
N I

(Tg — 34.53)) - (3)

du,st Adu

where Ay, [cm?] is the body surface area of the
participant based on Du Bois and Du Bois [40]
and Ay, o [cm?] is the standard body surface
area, for which they assume 1.87 m? [8]. Cy (=
24.69) is the conversion constant to convert the
sweat rate from W to mgmin~'. The given
mean skin temperature setpoint (34.53°C) is
the weighted average setpoint of the skin tem-
perature following the methodology described
by Kobayashi et al. [8] and the core tempera-
ture setpoint (37.06°C) represents the setpoint
of the head core (i.e. hypothalamus) [8].

Next is the JOS-3 thermophysiological model
[9], which defines sweating responses using the
following equation:

Sw = [(371.2 - (T, — 37.46) + 33.64
Adu

du,st

(T — 34.62)) - - AGgyeat

Tg-3462. C
AT . w
Adu

(4)

where AGgyear [-] is the aging factor for sweat.
This factor represents the decreased sweat rates
observed in older adults, and its value is based
on a study by Inoue et al. [41]. The weighted
average value of AGg,q is 0.53 for people older
than 60 years and is one for people younger than
60 [9]. The primary changes with JOS-3 sweat
model compared to JOS-2 include the addition
of a decreased sweat rate for older adults and an
increase in both the core and mean skin tem-

perature setpoints to 37.46°C and 34.62°C

respectively.
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In addition, the thermophysiological model of
Fiala [4,39] is based on the Stolwijk model and is
defined by the following equation:

Sw = [((0.8 - tanh(0.59 - (T — 34.4)

—0.19) + 1.2) - (Ty — 34.4)

+(5.7 - tanh(1.98 - (T, — 37) — 1.03) 4 6.3)

T —34.4 C, Jmin

A(T.—=37)).2"w0 |.=&M™"
(T.~37)) - 2w ] - =4

)

where Cg/pi, (=1000) is the conversion con-
stant converting the sweat rate from g-min™'
to mg-min_l. Like Stolwijk, JOS-2, and JOS-3,
setpoints are used for mean skin temperature
(34.4°C) and core temperature (37°C) [39].
However, in Eq. 5 the effect of a change in
temperature signal (i.e. T — Tsepoins) is non-
linear (when excluding the Q10 effect) as it is
incorporated into a hyperbolic tangent function.

In the above models, fitness, acclimation, and
activity levels are not taken into account. The
sweat rate formula proposed by Havenith [6,7]
incorporates the effects of the individual’s fitness
(quantified by VO,ar the maximum rate of OXy-
gen consumption) and acclimation status on the
sweat rate and is given by [7]:

Sw = [gow - (092 csw+ (T. — (37 + Teoper) )

+0.08 - csw - (T — 33.7))
0, Ty — 33.7
exp (max{ , T }>]
10.7
’ Cg/mz/h (6)

where g, is the gain factor given by Equation 7,
csw (170 g-m_z-h_l) is a sweat rate constant, T s

[°C] is given by Equation 10 and is the shift in the
core temperature setpoint based on the indivi-
dual’s fitness and acclimation status, and

Co/meyn (= 1.67-107%) is the conversion constant
to convert the sweat rate from gm “h™'
to mg-cm >-min~". The effect of fitness and accli-
mation status (i.e. being acclimated or not) is
represented by a change in the sweating onset
temperature (T¢ of.r) and slope (gs,). A higher fit-

ness and/or being acclimated decreases the

sweating onset temperature and increases the
slope of the sweat rate. Havenith [7] also uses
a slight variation of the traditional Q10 effect
with the main difference being that this Q10 will
always be equal to or higher than 1 (i.e. no sweat
rate decrease at lower skin temperatures (as Q10 is
capped at a minimum value of 1) only an increase
at elevated skin temperatures).

The gain factor, g, affects the slope of the
sweat rate based on the individual’s fitness and
acclimation status, and is described as [6,7]:

Sow = (1 +0.35 ]2%) (140.15 fo) (7)

where fit is the individual’s fitness level, which is
based on the individual’s maximum aerobic
capacity, see Equation 8, and f,. is the indivi-
dual’s acclimation status given by
Equation 9 [6,7].

The individual’s fitness is given by [6,7]:

_ﬁt - VOZmax - VOZmax,standard (8)

where VO, [ml-kgfl-minfl] is the indivi-
dual’s maximum aerobic capacity with a range
between 20 (unfit) and 60 (fit) ml-kg_l-min_l,
and VOZmax’smndmd [ml-kg_l-min_l] is the maxi-
mum aerobic capacity of the average person,
which is taken to be 40 [6,7].

The individual’s acclimation status f,, with
values ranging between 0 (not acclimated) and 1
(fully acclimated), depends on the number of
acclimation days n,. It is described as [6,7]:

fae =1~ exp(—0.3 - (”d - 1)) 9)

where the number of acclimation days is ranging
between 0 and 14 [6,7].

The individual’s core temperature setpoint off-
set is given by [6,7]:

it
Teoffet = — (0.1 -J;—O +0.25 f> (10)

The maximum sweat rate depends on acclimation
status and fitness following:

Swmax = Swmax,standard

. (1 +0.25 f

it
o H025 -fac) (11)



where SWyax standara (800 g-mfz-hf1 [7]) is the max-

imum sweat rate for an unacclimated individual

with a VO, Of 40 ml-kgfl-minfl.

Wissler proposes three sweat rate equations
based on the individual’s acclimation status and
whether the individual is resting or exercising [10].
Eq. 12 is for rest and unacclimated, Eq. 13 is for
exercise and unacclimated or rest and acclimated,
and Eq. 14 is for exercise and acclimated [10].

Sw=0.327- (T, +0.15 - Ty — 42.1) (12)
Sw=0.327- (T, +0.15 - Ty — 41.6) (13)
Sw=0.327- (T, +0.15 - Ty — 41.1) (14)

Through these equations, Wissler simulates the
effects of exercise and acclimation as defined by
a decrease in the sweating onset temperature.
Notably, this approach differs from Havenith,
where acclimation status is defined by both
a reduction in the onset for sweating and an
increase in slope (thermosensitivity of the sweat
response). While Wissler’s equations consider skin
temperature, they neglect the Q10 effect [10].
Figure 1 shows the predicted sweat rates of the
models for an increasing core temperature and
assuming skin temperatures between 31.5°C and
35.5°C (double-headed red arrows), which corre-
sponds to a comfortable thermal condition [42].
To help compare all models, Stolwijk (arbitrarily
chosen) is given in all three subfigures with
enlarged boundary lines. The models overviewed
in these figures highlight that the sweat rate of all
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models increases with rising core and skin tem-
peratures. However, it also illustrates significant
variations in the predicted sweat rates among dif-
ferent models. For example, at T. = 39°C, the Fiala
sweat model (dark blue area) predicts a sweat rate
of ~1.24 mg-cm ™ >-min~", which is double that pre-
dicted by the Havenith normal model (green area),

~0.62 mg-cm *min .

Experiments

For the development of most sweat models
(Stolwijk, Fiala, and Wissler), the NASA dataset
[43] was used. In the present study, three different
independent datasets were used to compare the
described sweating formulae. The first dataset is
from the University of Ottawa (uOttawa) [44],
which investigated the effect of the required eva-
poration for heat balance and relative exercise
intensity (%VOymax On sweat rate. The second
dataset contains two EU-funded projects, which
are the Subzero (SZ) and Thermprotect project
(TP) [45,46]. The SZ project assessed the reliability
and accuracy of thermal manikins for cold protec-
tive clothing [45] and the TP project examined the
thermal strain when wearing protective clothing
[46]. The last dataset is also a European Union
(EU)-funded project called HEAT-SHIELD, which
aimed to address the negative impacts of heat
stress experienced by the EU workforce [47-50].
Important to note is that in all three datasets,
whole-body sweat loss (WBSL) or whole-body

2 : . - - - :
Stolwijk (1971) Stolwijk (1971) Stolwijk (1971)
1.8 Wissler (2018), rest & unaccl. 1.8 Fiala (2001) 1.8[{ Havenith (2001), unfit
] Wissler (2018), ex. & unaccl. ) JOS-2 (2013) o) Havenith (2001), normal
'c 1.6 [mwissler (2018), ex. & accl. 'c 1.6 |mJ0s-3 (2023) 'c 16| Havenith (2001), fit
= I} 1S Havenith (2001), fit & accl.
o 1.4 o 1.4 o 1.4
IE skin temperature zone: IE skin temperature zone: IE skin temperature zone:
6 12131.5°C<T__<35.5°C 6 1.2|31.5°c<T__<355°C 6 1-2[31.5°c<T__<35.5°C
> skin o) skin o skin
E 1 E 1 £ 1
Q o) )
% 0.8 %08 % 0.8
14 14 o
% 06 %06 %06
g : : :
c/)O'4 c00.4* / m0.4f
0.2 0.2 ,b—’/—J 0.2
C
I /4 0

36
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40 M

38 39 40 41
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Figure 1. Predicted sweat rates as a function of the core temperature and a range of comfortable skin temperatures (i.e. 31.5°C to
35.5°C [42]), shown in three parts: (a) Stolwijk and Wissler models, (b) Fiala, Stolwijk, JOS-2, and JOS-3 models, and (c) Stolwijk and

Havenith models.
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sweat rate (WBSR) was not measured directly.
Instead, total water (or weight) losses were mea-
sured, which consist mostly of the water losses
from generated sweat but also contain the water
losses from the respiratory tract (added moisture
in exhaled air).

The number of participants in each dataset and
the characteristics (trial-weighted average and
standard deviation) of the participants are shown
in Table 1. Each dataset is described in detail in
the following sections.

Dataset uOttawa
Dataset uOttawa consists of a study where water loss
rate (WLR) data were collected to examine the inde-
pendent contributions of the required evaporation
for heat balance and of %V O, to non-steady-state
and steady-state WLR, irrespective of exercise inten-
sity and ambient temperature [44]. In this study,
25 healthy males clothed in shorts and sandals cycled
for 90 min in the modified Snellen air calorimeter (a
device that provides a precise measurement of the
heat dissipated by the human body [51]).
Participants cycled at a fixed rate of heat production
of 200, 350, and 500 W in a warm environment
(ambient temperature of 30°C and absolute humid-
ity of ~1.3 kPa). Trials were also conducted at a fixed
rate of heat production of 290 W at increasing levels
of ambient heat stress (i.e. ambient temperature of
30°C, 35°C, 40°C, and 45°C and absolute humidity
of ~0.8 kPa). In total 94 experiments were per-
formed; however, due to incomplete sensor data in
some of the experiments, only 83 runs are used in the
present paper.

Rectal temperature was measured with
a thermocouple temperature probe (Mallinckrodt
Medical Inc., St Louis, MO, USA) inserted 12 cm
past the anal sphincter. Skin temperatures were
measured  with  thermocouples  (Concept

Table 1. Trial-weighted participant characteristics (mean + SD).

Engineering, Old Saybrook, CT, USA) at four
sites (upper trapezium, chest, quadriceps, and
back calf). Rectal and skin temperatures were
sampled every 15 s. Mean skin temperature was
estimated using weights proposed by Ramanathan
[52]. Time series data of the WLR were obtained
from air calorimeter measurements. This modi-
fied Snellen air calorimeter is a cylindrical device
(with a height of 1.83 m and a diameter of 1.68 m)
that controls and measures the temperature and
absolute humidity of the air entering and leaving
the chamber [53]. Thereby, this device provides
a precise measure of evaporative and dry heat
exchange. It measures the air temperature with
high precision thermistors (Black Stack model
1560, Hart Electronics, Fluke Corp., American
Fork, UT, USA) and the absolute humidity with
high precision dew point hygrometers (RH
Systems model 373 h, Albuquerque, NM, USA).
Both measurements were collected every 8 s. To
account for all evaporation and heat losses, the
exhaled air was recycled back into the calorimeter.
The airflow through the calorimeter was esti-
mated through differential thermometry of
a known regulated heat source. Metabolic rate
was estimated using electrochemical gas analyzers
(AMETEK model S-3A/1 and CD 3A, Applied
Electrochemistry, Pittsburgh, PA, USA) that mea-
sured the exhaled air oxygen and carbon dioxide
concentrations. Metabolic heat production was
calculated as metabolic rate minus the rate of
external work. The external work on the erg-
ometer was measured with a resistance control
unit located outside the calorimeter.

Dataset SZ+TP

Dataset SZ+TP consists of two EU projects, the
Subzero (SZ) [45] and Thermprotect (TP) project
[46]. In total, 224 trials were performed, none of

Characteristics uOttawa [44] Subzero + Thermprotect [45,46] HEAT-SHIELD [47-50] Combined
Gender 25M 32M 33M 90M
Age [yl 29.8 = 10.5 269 + 5.2 241+ 28 255+ 53
Height [m] 1.81 = 0.07 1.79 = 0.05 1.78 = 0.06 1.79 £ 0.06
Mass [kg] 82.8 £8.2 77.3 £10.3 75.6 £ 10.6 769 £ 105
Surface area [m?]" 2.03 £ 0.12 1.95 £ 0.13 1.93 £ 0.15 1.94 £ 0.14
VOpmax [mLkg™"-min~"] 511 £67° 51.8 + 8.4 -

®Method by Du Bois and Du Bois [40].
bParticipant averaged (trial averaged data not available).



which had missing sensor data, and therefore are
included in the dataset. The Subzero project aimed
to assess the accuracy and reliability of thermal insu-
lation measurements for cold protective clothing
using thermal manikins, and to understand the factors
influencing these measurements [45]. Four test insti-
tutes each performed 64 trials with 8 human partici-
pants. In the present paper, only the trials from two of
the four test institutes (P5 and P6) are used as these
institutes tested conditions that allowed higher heat
storage in the test persons by using higher clothing
insulation values and metabolic rates, leading to
higher water losses. In these 128 trials, participants
were clothed in one of three cold protective clothing
ensembles and walked on a treadmill for 90 minutes.
Each trial was conducted at a constant speed, air
velocity, and air temperature. However, these condi-
tions varied between different trials, with walking
speeds ranging from 3.5 to 5 km/h, air temperatures
from —40 to —10°C, and air velocities from 0.3 to 10
m/s. Additionally, trials were conducted both with
and without a Sympatex membrane (water vapor
barrier) in the outer layer.

Rectal temperature was measured with
a temperature probe (YSI 700 or YSI 401, Yellow
Springs Instrument, USA) inserted 10 cm beyond
the anal sphincter. Skin temperatures were measured
(YSI 400 or YSI 409b, Yellow Springs Instrument,
USA) at 8 sites: forehead, right scapula, left upper
chest, right upper arm, right forearm, right dorsal
hand, right anterior thigh, and right calf. Mean skin
temperature was estimated using the weights
described in ISO 9886:2004 [54]. Air temperature
was measured with thermistors. All temperatures
were sampled once per minute. Water loss was deter-
mined by weighing the participants before and after
exercise using a scale (Mettler ID1 MultiRange,
Albstadt, Germany, 2 g resolution, and +5g accu-
racy). Metabolic rate was determined from oxygen
consumption (Medikro 919 Ergospirometer, Finland
or SensorMedics Corporation, Ca., USA) measured
for the last 5 min of exercise. The average value of the
last 2 min was used as the representative value.

The Thermprotect project (TP) investigated ther-
mal strain experienced in personal protective cloth-
ing focusing on the effects of radiation, wind, and
wetting [46]. The project involved modeling, mate-
rial tests, thermal manikin tests, and human partici-
pant tests. In this study, the experimental data from
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human participant tests for work packages 2 and 3
(WP2 and WP3) are used.

The WP3 experiments were complementary to
the Subzero trials. In this experiment, eight parti-
cipants performed 4 trials each in which they
walked on a treadmill for 90 min at a constant
speed, air velocity, and air temperature. Walking
speed (3 to 4.9 km/h) and air temperature (-25 or
—10°C) were varied between trails. Trials were
performed with and without a Sympatex mem-
brane. Participants wore one of four ensembles of
which two (garments B and C) were the same as
used in the Subzero project and two were modified
versions.

The WP2 experiments [55] from the
Thermoprotect project focused on the effect of
moisture in protective clothing on heat transfer.
Eight participants performed 8 trials each in which
they walked on a treadmill at 4.5 km/h for 60 min
starting with wet or dry underwear (cotton shirt
and trousers) with a permeable or impermeable
coverall at an air temperature of 10°C or 25°C.

In both WP2 and WP3, rectal temperature was
measured with a temperature probe (YSI-401
Yellow Springs Instrument, USA) inserted 10 cm
beyond the anal sphincter. Skin temperatures were
measured using NTC thermistors (ACC-001,
Rhopoint Components Ltd, UK) at eight sites:
forehead, right scapula, left upper chest, right
upper arm, right forearm, right dorsal hand, right
anterior thigh, and right calf. Mean skin tempera-
ture was estimated using the weights described in
ISO 9886:2004 [54]. All temperatures, including
air temperature (PT100, 1/10 Class B sensor),
were sampled every 15 s. Water loss was deter-
mined by weighing the participants before and
after exercise using a scale (KC 240 GWB Mettler
ID2 MultiRange, Germany, 2 g resolution and +5 g
accuracy). Metabolic rate was determined via oxy-
gen consumption measurements taken every
30 min in WP3 and between the 10" and 20"
min in WP2.

Dataset HEAT-SHIELD

HEAT-SHIELD was an EU-funded project that
addressed the negative impacts of heat stress
experienced by EU workers at their workplaces.
This dataset consists of experiments investigating
the effects of temperature, humidity, wind speed,
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solar radiation, and clothing on physical work
capacity [47-50,56].

Before the experimental trials, participants per-
formed a submaximal exercise test on a graded
treadmill to obtain their VOy (Quark CPET,
COSMED, Albano Laziale, Rome) [47,50]. In the
experimental trials, participants (young healthy
males) walked on a treadmill for up to 1 h, with
the treadmill automatically adjusting its speed and
incline to maintain a target heart rate of 130 beats
per minute (bpm). The treadmill initially set the
walking speed to 6 km/h and adjusted the incline
to keep the heart rate at 130bpm (i.e. a fixed
cardiovascular strain protocol). If the heart rate
continued to rise above 130bpm despite the
incline being set to zero, the treadmill reduced
the walking speed. If the heart rate remained
above 130 bpm even after the speed was reduced
to zero, the trial was terminated. The trial was also
terminated if the rectal temperature of the partici-
pants rose above 39°C. Trials were performed at
different ambient air temperatures (ranging from
15°C to 50°C), humidities (20% to 80%), air velo-
cities (<0.2 to 3.5m-s '), solar radiations (0 and
800 W-m™?), and two different sets of clothing
(with intrinsic clothing insulation of 0.04 and
0.133 m*K-W™" (0.26 or 0.86 Clo) and evaporative
resistance of 0.007 and 0.024 m*Pa-W™!) [47-
50,56]. In the present paper, only the trials with
available and complete time series data are used,
comprising data from 473 trials (out of the 816)
from 33 participants.

Rectal temperature was measured with a rectal
thermistor (VIAMED, Yorkshire, UK) 10cm past
the anal sphincter. Skin temperatures were measured
using skin thermistors (Grant Instruments Ltd,
Corby, UK) at four sites (chest, tricep, thigh, and
calf) with mean skin temperature estimated via the
proposed weights by Ramanathan [52], except for
experiments with solar radiation. Here, skin tempera-
tures were measured at six sites (upper back, lower
back, chest, triceps, quadriceps, and calf) and the
Ramanathan equation was adapted to include the
effect of solar radiation [49]. For ambient conditions,
wet-bulb globe temperature (WBGT; Quest temp
model 34), air temperature, relative humidity, and
air velocity (Testo Ltd, model 435-2 Alton,

Hampshire, @ UK) were measured.  These

measurements (including core and skin tempera-
tures) were sampled every minute. Water loss was
determined by weighing the participants before and
after exercise using a scale (Mettler Toledo KCC150,
Leicester, UK, 1g resolution and *+10g accuracy).
Metabolic rate was determined via the method pro-
posed by Ludlow and Weyand [57]. This method uses
the walking velocity and grade to estimate the meta-
bolic rate for walking on the treadmill.

The experimental conditions for all datasets are
summarized in Table 2. It is important to note that
for all datasets, the number of trials exceeds the
number of participants. Each participant com-
pleted multiple trials, ranging from 2 to 59 with
a median of 8; however, no participant ever
repeated the same condition. While this may
reduce the overall variability (and variance),
a total of 90 participants, of which 78% completed
10 or fewer trials, still ensures a wide range of
individual responses.

Evaluation

As stated before, the three datasets did not directly
measure the sweat rate. Instead, we look at the
water loss rate (WLR) which is defined as the
water loss (WL) over the experimental time inter-
val. In datasets SZ+TP and HEAT-SHIELD, the
WL is calculated from the difference in pre- and
post-exercise body mass. In the uOttawa dataset,
the WL is obtained by the summation of the
evaporation measurements from the modified
Snellen air calorimeter. The WL measurement ulti-
mately consists of all weight losses during the
exercise period, which can be represented as:

WL = mg, + Myesp + Mothers (15)

where my, [g] is the mass of excreted sweat (i.e.
the WBSL), my.g, [g] is the mass of the water losses

from the respiratory tract, and m,pers [g] is the
mass of any food or fluid intake and excretion.
Notably, mymers is zero in all three datasets, as
drinking and washroom breaks were not permitted
during the exercise period.

To enable comparison between the predic-
tions from the sweating models and the experi-
mentally measured WL, we calculate the
predicted WL based on model outputs. The
sweat loss component, my,, is obtained from



Table 2. Dataset characteristics.
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Characteristics

uOttawa [44]

Subzero (SZ) + Thermprotect (TP) [45,46] HEAT-SHIELD [47-50]

Trials 83 224 473
Exercise period 60 60 or 90 Max 55
[min]
Activity Ergometer Treadmill Treadmill
Intensity control Fixed metabolic Fixed walking speed Fixed heart rate (130 bpm; variable speed and
method rate grade)
Country Canada Finland, Sweden, and Norway UK
Clothing Cotton underwear,  Cotton underwear (including socks, shirt, and Either low clothing: underwear, standardized shorts,
shorts, socks, and  trousers), and shoes or (heavy) winter clothing  socks and trainers, or high clothing: low clothing +
athletic shoes consisting of underwear an intermediate layer,  standardized cotton t-shirt and full body protective
handwear, and sometimes an outer garment and overall (65% polyester, 35% cotton)
headgear
Clothing =0.2-0.3 SZ:2.93 to 4.13 0.26 and 0.86
insulation TP: 1.55 to 3.81
(static) [clo]
Clothing water - SZ: 0.033 to 0.11 0.007 to 0.024
vapor TP: 0.020 to 0.14
resistance
(static)
[m?kPa-W™]
Mean skin Ramanathan 8-point 1S09886 (forehead, scapula, chest, upper Ramanathan (pectoralis major, triceps, rectus
temperature (upper trapezius, arm, lower arm, hand, anterior thigh, calf) femoris, gastrocnemius)
calculation chest, quadriceps,
method calf
Ambient 30, 35, 40, 45 —-40, -25, =10, 10, 25 15, 25, 30, 35, 40, 45, 50
temperature
[°d
Relative humidity 14 to 31 32to 95 20 to 80 (20, 50, and 80 most common)
[%]
Air velocity <0.3 SZ: <0.2 to 10 <0.2 or 3.5
ms"] TP: 0.3
Metabolic heat 200, 290, 350, 500 210 to 850 220 to 970

production [W] (on average ~350)

(on average ~400)

(on average ~500)

the sweating models. The respiratory water loss
component, My, is estimated following the
method described in ISO 7933 [58], which
involves calculating the evaporative heat loss
from respiration, [W/m?] (see
Equation 16), and subsequently converting it
into mass loss, m (see Equation 17). Since

Eresp

no fluid or food intake or excretion occurred
during the trials (i.e. Mypes is zero), the pre-
dicted WL is the summation of my, and my..

ISO 7933 states that the evaporation losses in
the respiratory tract, E. [W/m?], can be calcu-
lated using [58]:

Epep = 0.00127 - M
- (59.34 + 0.53 - Tapp — 11.63 - Pypp)

(16)
where M [W/m?] is the metabolic rate, T,,; [°C] is
the ambient air temperature, and P,,,;, [kPa] is the

ambient water vapor pressure. Next, Eresp is

converted to grams of evaporated water in the

respiratory tract, M, using:

Eresp <Ay - Atexp
AHevap

Myesp = (17)
where Ay, [m?] is the body surface area of the
participant based on Du Bois and Du Bois [40],
At.y, [min] is the exercise period, and AH,,q, [J/g]
is the heat of vaporization of water (which is 2430
J/g at 30°C [22]).

Since the exercise period varies with each pro-
tocol, we introduce the average water loss rate
(WLR), defined as:

WL
WLR = ——

18

The quality of the WLR predictions is evaluated
via both the coefficient of determination (R? see
Equation 19) and the root mean square error
(RMSE, see Equation 20).

The coefficient of determination is calculated as
[59,60]:
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. Z?:l (?i - Yi)2
Z?:l (?i - Yi)z

where # is the number of data points, ¥ represents
the model’s prediction, Y is the observation
(experimental data), and Y is the mean of the
observations. The numerator is the residual sum

(19)

of squares (RSS), which reflects the model’s error,
while the denominator is the total sum of squares
(TSS), related to the variance of the data. As the
RSS decreases (i.e. predictions more closely match
observations), R” increases toward a maximum
value of 1. Conversely, an increase in RSS causes
R® to decrease, potentially even approaching -co.
Negative R® values are rare in practice because,
when a model is evaluated on the same dataset it
was trained on, R* cannot drop below 0 (for
unbounded regression). However, since the sweat
models in this study are evaluated on a separate
and independent dataset from the one they were
trained on, R® can be negative. For further details
and an illustrative case study, refer to Chicco
et al. [60].

The root mean square error, RMSE, is calcu-
lated as:

RMSE = \/%Z =
i=1

500

400 - ; b 38

300 - .
- HF
200 | [ |
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re OC

o e
ED
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100 + | 365
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A lower RMSE indicates a better fit of the model
to the data, as it means the predicted values are
closer to the actual values.

Dataset characteristics

Since the protocols of the experiments differ in terms
of exercise intensity and environmental conditions,
the resulting temperature distribution in the body
can also vary. Therefore, we first examined whether
metabolic heat production, core and skin tempera-
tures, and WLR were significantly different (Figure 2).

From Figure 2, it is seen that the differences are
all significant (p <0.001) except for the rectal tem-
perature between the SZ+TP and HEAT-SHIELD
dataset (p=0.512) and the skin temperature
between the uOttawa and HEAT-SHIELD dataset
(p =0.316). Therefore, showing that the combined
dataset consists of three distinctly different data-
sets; the uOttawa dataset has the lowest metabolic
heat production and rectal temperature, high skin
temperature, and medium WLR; the SZ+TP data-
set has medium metabolic heat production, high
rectal temperature, lowest skin temperature, and
WLR; the HEAT-SHIELD dataset has the highest
metabolic heat production and WLR, and both
high rectal and skin temperatures. Note that
these are the means of all trials of each dataset,
individual trials can overlap.
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Figure 2. Boxplots of mean a) metabolic heat production, b) rectal temperature, c) skin temperature, and d) WLR of the datasets

with significance levels (*: p < 0.05; **: p < 0.01; ***: p <0.001).



Predicted Water Loss Rate [g/min]

30

20

10

20

10

30

20

10

30

Stolwijk

RMSE = 7.058"
R*=-0.05 /

0 10 20 30

0Wissler rest & unaccl.

RMSE = 8.951
2 /
R =-0.7 »

Fiala

RMSE = 6.945”
R? = 0.02 /

20 30

Havenith - fit

RMSE = 6.041/"

2 _ /
R?=023 1

30

20

10

20

10

20

10

20

10 |

JOS-2
RMSE = 8.079"

RMSE = 6.793"
R? = 002 ~

0 10 20 30

Havenith - unfit
RMSE = 10,361

0 10 20 30

Havenith - fit & accl.

RMSE = 4.884 7
R?=05 7 / /
YA

30

20

10

20

10

20

10

TEMPERATURE (&) 11

JOS-3
RMSE = 10,399

0 10 20 30

aNissIer exercise & accl.

RMSE =5.402 7

2 _ /
R“=0.38 p //
// Z

.
.: l.. o
%
Bowas”
o & o0
LR
L]
L
A
N

o
o ol ek

AT a2

a

o * .o .
S 2
o

LANIREIN
LR I

10 20 30

Havenith - normal
RMSE = 8.33/"

10 20 30

uOttawa
SZ+TP
HEAT-SHIELD

Observed Water Loss Rate [g/min]

Figure 3. Predicted vs. observed water loss rate (WLR).
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Results and discussion

Figure 3 shows the predicted and observed water
loss rates. Each model is depicted in an individual
subplot with their R* and RMSE values and uni-
form axes for clarity and to prevent overlap. The
two dashed black lines visualize the size of the
RMSE of each model. The R® of the models
ranges between -1.3 and 0.5 and the RMSE
between 4.9 and 10.4 g/min. Figure 4 shows
Bland-Altman plots of the models with on the
x-axis the mean of the predicted and observed
WLR and on the y-axis the WLR difference (i.e.
prediction minus observation). The solid line is
the mean bias and the two dashed lines are the
95% limits of agreement (LoA). This figure
demonstrates a clear trend in the prediction
errors, which is that as the WLR increases the
underpredictions of the models also increase. At
low WLRs most models have a slight tendency to
overestimate the WLR; however, this decreases as
the WLR increases. This behavior is also captured
in the mean bias, which is negative for all models
except the Havenith fit and acclimated model and
only slightly negative for the Wissler exercise and
acclimated model.

Taken together, these findings suggest that
while most models provide reasonable estimates
at lower WLRs (approximately <10 g/min), their
accuracy diminishes as WLRs increase. Given the
systematic underprediction at higher values, cau-
tion is warranted when applying these models in
high-heat-stress conditions. The extent to which
these errors impact broader thermophysiological
predictions remains unclear, as this would require
turther investigation into how inaccuracies in the
estimation of WLR affect core and skin tempera-
ture predictions.

It is interesting to note that the majority of the
models’ underpredictions are associated with the

HEAT-SHIELD trials. When excluding the HEAT-
SHIELD data, the acclimatized (and fit) models
generally overpredict the WLR and are outper-
formed by their unacclimatized variants. One
might conclude that the participants in the HEAT-
SHIELD experiments were acclimatized. However,
this is unlikely as precautions were taken to pre-
vent acclimatization before and during the trials
[47-50]. The reason for these underpredictions is
discussed later in this study.

As is shown in Figure 1, the sweat-onset tem-
peratures for the Havenith [6,7] and Wissler [10]
models are lower in the acclimatized condition
than in the non-acclimatized condition, suggesting
that onset temperature might be a crucial para-
meter. To investigate this further, the core and
skin temperature setpoints of all applicable sweat
models were individually optimized using the
dataset, by varying either the core or the skin
temperature setpoint to maximize the R* value.
The Wissler model was not included in this opti-
mization analysis, as it uses a single effective body
temperature setpoint (a combination of core and
skin temperatures) and does not permit indepen-
dent adjustment of core and skin temperature
thresholds. Additionally, the JOS-2 model is not
optimized because of its similarity to the JOS-3
model. Among the Havenith sweat model variants,
the Havenith fit model is selected as this best
reflects the fitness (VO,,,,, of the participants in
the dataset. The results of these optimizations are
shown in Table 3.

Table 3 shows the optimized setpoint tempera-
ture and the model’s performance on the dataset
with that optimized setpoint (i.e. R> and RMSE).
From this table, it is seen that all optimized set-
point temperatures are below the setpoints used in
the original models, this is due to the original
models on average underpredicting the WLRs
(see Figure 4). The optimized core temperature

Table 3. Sweat models: core and skin temperature setpoint optimization results.

Optimized core temperature setpoint

Optimized skin temperature setpoint

Model Tesetopt R? RMSE [g/min] B setopt R? RMSE [g/min]
Fiala 36.59 0.43 5.21 32.38 0.47 5.00
J0s-3 36.32 0.52 478 27.53 0.45 5.10
Stolwijk 36.40 0.5 4.86 30.74 0.49 493
Havenith - Fit 36.15 0.49 493 31.28 0.53 469
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Figure 4. Bland-Atlman plot of the residual water loss rate (WLR), with the mean bias (black solid line) and limits of agreement
(black dashed lines), and their corresponding values shown below each line.
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setpoint fluctuates within a narrow range between
36.2°C and 36.6°C. No clear pattern or preferred
temperature between the models is seen for the
skin temperature setpoint. The R* values of all
models are relatively similar, fluctuating between
0.43 and 0.53, and the RMSE between 4.7 and 5.2
g/min.

The Bland-Altman plot of the optimized mod-
els (Figure Al, Appendix - A) provides further
insight into the linear error trend observed in
Figure 4. Most models follow a linear function
of the core and skin temperature error signals,
except for the Fiala model, which follows an
exponential function. This seems to suggest that
the linear error trend in Figure 4 could be pri-
marily due to an incorrect slope - specifically,
a slope coefficient that is too low, as indicated
by the predominant underpredictions. However,
Figure Al shows that adjusting the core or skin
temperature setpoint could mitigate or even elim-
inate this trend without modifying the slope. This
underscores the complexity of modeling sweat
production and highlights the crucial role of set-
points in these models.

The uOttawa and most HEAT-SHIELD experi-
ments used only four sites and weightings pro-
posed by Ramanathan [52] to determine mean
skin temperature. This method accounts for the
majority of the data (approximately 500 out of
780 data points). The accuracy of determining
mean skin temperature generally rises as the
number of measured skin sites increases. As the
skin temperature is an input for the sweat mod-
els, an error could arise from the low number of
measured skin sites to estimate mean skin tem-
perature. Nevertheless, Mitchell and Wyndham
[61] performed experiments on nude men with
a wide range of environmental conditions and
compared several methods for calculating the
mean skin temperature. The method of
Ramanathan was one of the best scoring methods
with an overall agreement frequency of 64%
within 0.2°C and 98% within 1°C [61]. A more
recent study by Liu et al. [62] reported similar
results, with a 60% agreement frequency for
experiments conducted in light clothing.
Therefore, the estimated errors in measuring
the mean skin temperature are below 1°C,
which is acceptable. However, regardless of our

definition of mean skin temperature, it is impor-
tant to recognize that mean skin temperature
serves only as a proxy for the neurological signals
driving sweat gland activity. While this proxy is
practical, the complex relationship between ther-
mal state and output is not fully
understood.

Another source of error is the estimation of respira-
tory water loss, which was not directly measured but
instead estimated (via Equation 16). Since the total
water loss includes both sweat and respiratory losses,
any error in estimating the latter affects the calculated
water loss and therefore the comparison to the model
predictions. However, this impact is limited, as
respiratory water loss accounts on average for only
~10% of total water loss in this dataset. Thus, while
some uncertainty remains, it is unlikely to influence
the overall conclusions. This error could be eliminated
in future experiments by directly measuring respira-
tory water loss, for example, using a breath-by-breath
gas analysis system with humidity sensors.

A limitation of the present study is that all three
datasets used for model comparison exclusively
included male participants. Consequently, the
findings may not be fully generalizable to females,
as previous research has demonstrated differences
in the thermoregulatory sweating responses
between [63-69]. Future investigations
should also include female populations [70] to
increase the robustness and external validity of
body-temperature-controlled ~ sweat  models.
Another limitation of this study is that VOsmax
data were only available in the HEAT-SHIELD
dataset. This restricts the ability to perform
a robust residual analysis to assess how the inclu-
sion of this variable affects model predictions.

The highest obtained R* values of the sweat
models (even with T or &k,set optimization)

sweat

S€Xes

are approximately 0.5. For higher accuracy, models
may require more than only body temperature.
Classically, it is understood that afferent signals
from deep body core and skin temperature sensors
are transmitted and interpreted by (primarily) the
hypothalamus, after which efferent signals are sent
to the sweat glands to initiate or adjust sweat
production [1,22,34,71]. However, research sug-
gests that non-thermal factors can also augment
or inhibit neural drive for sweating [71,72]. Review



papers from Mekjavic and Eiken [72], and Kenny
[69] about the contribution of thermal and non-
thermal factors in body temperature regulation,
found non-thermal factors such as exercise/post-
exercise [73,74], dehydration [75], sleep [76],
motion sickness [77,78], fever [79], and inert-gas
narcosis [80] affect the neural drive for sweating.
Other studies found that the light intensity [81-
91] and color (e.g. blue versus red) [92,93] also
affect the human thermophysiology (and percep-
tion) [94]. Among these non-thermal factors, exer-
cise is of particular interest as the dataset consists
of experiments performed at various measured
exercise intensities (i.e. metabolic rates).

Research shows that the non-thermal neural
drive for sweating from exercise mainly arises
from three primary mechanisms [71]: 1) central
command [95-97], which is a mechanism ori-
ginating in the brain that provides feedforward
autonomic regulation in response to motor
activity; 2) muscle mechanoreceptors [97-100],
which respond to physical movement and
mechanical deformation; and 3) muscle meta-
boreceptors [101-103], which sense metabolic
byproducts (i.e. metabolites) in active muscles.
These mechanisms are believed to contribute to
the more pronounced underpredictions of
WLR by the models in case of high activity
levels. It should be noted that non-thermal
sweat drive depends on thermal load, and its
response is reduced when internal temperatures
are elevated [69,104]. Figure 2(a) shows that
the HEAT-SHIELD trials, compared to other
datasets, show significantly higher activity
levels resulting indeed in higher core and skin
temperatures (Figures 2(b,c)), a higher water
loss rate (WLR, Figure 2(d)), and higher
underpredictions (Figures 3 and 4). This sug-
gests that non-thermal factors may also play
a significant role in the regulation of sweat
production, warranting further consideration
in future sweat models. It may also explain
the low optimized core temperature setpoint
values (36.2°C to 36.6°C). Typically, sweating
is not expected to begin at these core tempera-
tures during rest; however, this could result
non-thermal sweat

from exercise-induced
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promotion, as the dataset in this study includes
only exercising participants and no resting
individuals.

Analysis of the residual WLR and average meta-
bolic rate (Figure Bl, Appendix - B) reveals
a consistent linear correlation across all models,
with all R* values close to 0.2. The negative slopes
indicate that underpredictions become larger at
higher metabolic rates (and therefore exercise inten-
sities), suggesting that exercise-driven sweat stimu-
lation is not fully accounted for in the models. Since
all models exhibit similar correlations, this appears
to be a systematic limitation rather than random
noise or model-specific errors. However, while an
R” value of 0.2 indicates a relatively weak relation-
ship, stronger correlations (i.e. higher R* values)
might have been expected if non-thermal exercise-
induced sweating played a more dominant role. One
possible explanation for the relatively low R values
is the experimental design: the dataset consists of
prolonged exercise trials (60-90 min) under stable
environmental conditions. In such conditions, ther-
mally induced sweating gradually becomes the
dominant driver, reducing the relative contribution
of non-thermal exercise sweat drive and, conse-
quently, lowering the observed correlation. Higher
R® values might be observed in studies with inter-
mittent or shorter-duration exercise, where non-
thermal exercise-driven sweat stimulation likely
plays a more prominent role.

The limited predictive accuracy of the models, even
after setpoint optimization, likely reflects the inherent
complexity = of  human  thermoregulation.
A fundamental challenge lies in the fact that we still
lack a comprehensive understanding of what the body
actually regulates — whether it is core temperature,
mean body temperature, or another (integrated) sig-
nal such as heat flux [105]. Furthermore, the distribu-
tion of temperature sensors across tissues, how the
body weights signals from different tissues, and how
these inputs are integrated to drive sweating remain
poorly understood. Nonthermal factors, such as the
rate of temperature change, exercise intensity, hydra-
tion status, and even psychological or environmental
cues, likely play a significant role in modulating sweat
output. This complexity underscores why it is so
difficult for models to accurately replicate real-world
sweat responses and highlights the need for further



16 R. DE KORVER ET AL.

research into the physiological mechanisms underly-
ing thermoregulation.

Conclusion

Multiple sweating formulae predicting sweat rates
based on body temperatures were evaluated using an
independent dataset. This dataset comprised experi-
ments where participants engaged in exercise (walk-
ing or cycling) performed at low to intense exercise
intensities, under a range of environmental condi-
tions, and while wearing different types of clothing.
Body temperatures and water loss were measured
during these trials. Model performance varied signifi-
cantly, with R* values ranging from —1.3 to 0.5 and
RMSE values between 4.9 and 10.4 g/min. While most
models performed reasonably well at lower WLRs,
they consistently underpredicted higher WLRs, espe-
cially models with a higher core temperature setpoint,
limiting their accuracy in high-heat-stress scenarios.

Optimization of the models’ core and skin tem-
perature setpoints revealed a preference for a core
temperature setpoint between 36.2°C and 36.6°C in
all optimized models. However, no consistent setpoint
was found for the mean skin temperature, which
varied between 28°C and 32°C. The optimized mod-
els’ R” values were centered around 0.5, with only
modest fluctuations (e.g. 0.43 to 0.54). Accuracy
could be further improved by incorporating non-
thermal factors such as activity level. The additional
neural drive for sweat secretion that arises from var-
ious mechanisms induced by exercise could reduce
the models’ underpredictions prevalent at higher
exercise intensities.

These findings highlight the need for integrating
physiological non-thermal factors into future models
to enhance predictive accuracy, particularly for appli-
cations involving high-intensity physical activity.
Future research could aim to separate the effects of
activity level (metabolic rate) from core and skin
temperature signals, allowing for a more precise
understanding of their individual contributions to
sweating. In addition, it is recommended to evaluate
model differences within a broader physiological and
practical context. Specifically, future research should
examine models’ effect on the core and skin tempera-
tures, as well as (de)hydration levels. Such analyses
could not only highlight the significance of accurate
sweat rate predictions but also unveil limitations in

existing models. Exploring model calibration using
additional individual-specific parameters that influ-
ence thermoregulatory responses, such as VOsmaxs
acclimation status, and sex, may also help to refine
predictive models.

Abbreviations

bpm Beats per minute

Ereq Evaporation required for heat balance
EU European Union

LoA Limits of agreement

Q10 Temperature coefficient

R® Coefticient of determination

RMSE Root mean square error
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Appendix A

Figure Al shows Bland-Altman plots of the models with optimized setpoint temperatures with T, referring to optimized core
temperature setpoint and Ty, optimized skin temperature setpoint. The y-axis contains the model’s residual WLR (i.e. predicted
minus observed WLR), and the x-axis the mean WLR (i.e. predicted plus observed WLR divided by two). Compared to the
original models’ performance (Figure 4), the residuals have decreased, leading to a narrower range in the limits of agreement
(LoA). This reduction is expected, as the optimization was performed using the same dataset on which the models are evaluated.
More importantly, the linear underprediction trend that is seen in Figure 4 has been significantly reduced in almost all of the
optimized models, suggesting that much of the previous error was related to setpoint misalignment rather than an incorrect
slope.
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Figure A1. Bland-Altman plot of the residual water loss rate (WLR) of the models with either optimized core or skin temperature
setpoint.

Appendix B

In Figure B1 the residual WLR is plotted versus the metabolic rate of all models. The dotted red line shows the linear least
square fit line (linear regression line), with its R* value shown in red, indicating the strength of the correlation. From this
figure, it is seen that the residuals of all models are linearly correlated with the metabolic rate and that this correlation is
consistent across all models, i.e. negative slope and R*~0.2.
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Figure B1. Residual water loss rate (WLR) vs. metabolic rate.
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