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ABSTRACT
Sweating is a vital thermoregulatory mechanism in humans for maintaining thermal balance 
during exercise and exposure to hot environments. The development of models that predict 
sweat rate based on body temperature has been ongoing for over half a century. Here, we 
compared predicted water loss rates (WLR) from these models to actual observations collected 
during 780 participant-exposures in three independent laboratory-based experiments. In these 
experiments, male participants aged 19–50 years cycled or walked at various intensities (metabolic 
heat productions between 200 and 970 W), in air temperatures ranging from −40°C to 50°C, 
relative humidities (14% to 95%), and air velocities (<0.2 to 10 m/s), while wearing different 
clothing ensembles (thermal insulation 0.20 to 3.75 clo). The models’ performances were evalu
ated by the coefficient of determination (R2) and Root Mean Square Error (RMSE). Performance 
varied greatly with a maximum R2 value of 0.5 and RMSE values ranging from 10.4 to 4.9 g/min. 
Models with a lower sweat onset core temperature setpoint performed better and most models 
generally underestimated the water loss at higher WLR. Optimization of the core and skin 
temperature setpoints suggests preferred core temperature setpoints within a narrow range 
(36.2°C to 36.6°C). Even with optimized inputs, R2 values were around 0.5, meaning only 50% of 
the variance in observed WLR was explained by the models. Better model consideration of 
relations between body temperature and sweat rate, and the incorporation of non-thermal 
exercise-induced sweat promotion, may reduce model underpredictions at higher exercise 
intensities.
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Introduction

Sweating is a vital physiological process crucial in 
regulating body temperature and maintaining 
homeostasis during heat stress [1]. When the 
body heats up due to exercise or exposure to 
heat, sweat glands secrete fluid onto the skin’s 
surface [2]. As this fluid evaporates, it dissipates 
heat, which can help to reestablish a state of ther
mal balance in compensable conditions and pre
vent overheating [3]. Therefore, predicting sweat 
rate is important for assessing and managing heat 
stress, especially in environments where indivi
duals are exposed to high temperatures for 

prolonged periods, and many models have been 
developed for this purpose [4–10]. By accurately 
forecasting sweat production, it becomes possible 
to design effective hydration strategies, monitor 
the risk of dehydration, and prevent heat-related 
illnesses such as heat stroke or heat exhaustion 
[11]. This is particularly critical in occupational 
settings (e.g. construction, military, or emergency 
response) and sports, where performance and 
safety can be compromised by inadequate thermal 
regulation [12].

Key research on the role of sweating in thermo
regulation in humans emerged in the 1900s and 
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continues today. In 1956, Kuno proposed that the 
regulation of sweating is mediated centrally [13], 
and was supported by work from Benzinger in 
1959 that showed a relationship between sweat 
rate and body core temperature [14]. Later 
research demonstrated the modulating effects of 
peripheral (skin) temperature on the regulation 
of sweating [15–21]. Stolwijk, a pioneer in the 
field of thermophysiological modeling, used this 
core and skin temperature control principle in 
the development of the first multi-node thermo
physiological model [5]. A thermophysiological 
model is a set of mathematical equations thought 
to describe the heat exchange of the human body 
with its environment and its physiological thermal 
response [10,22]. Thermophysiological models are 
used to assess the thermal state of the human body 
in different thermal conditions. This body tem
perature-based thermoregulation gained wide
spread adoption in many thermoregulation 
models, where sweating (and other thermoeffector 
responses such as shivering and vascular tone) are 
modeled as a function of the core and skin tem
peratures [4–10]. While the thermophysiological 
models that incorporate these sweat models are 
often validated – primarily by comparing their 
core and/or skin temperature predictions 
[9,10,23–26]—the sweat predictions of the sweat 
models have yet to be compared to independent 
empirical data.

In general, two different types of sweat models are 
prevalent in the literature. These are the core and skin 
temperature sweat models, which are investigated in 
the present paper, and the conceptual evaporative 
requirement (Ereq) sweat models. Both use 
a different methodology, the former is based on phy
siological principles of the human body (i.e. tempera
ture signals), and the latter on thermodynamic 
principles (i.e. heat balance). Ereq represents the eva
poration energy required for thermal heat balance and 
is estimated via the thermal energy balance between 
metabolic heat production and heat exchange with 
the environment (excluding evaporation from sweat). 
Many versions exist. However, all are based on the 
principle that in response to elevations in environ
mental heat load and heat load generated by exercise, 
the human body produces and evaporates sweat to 
compensate for the excess heat required for heat 

balance (i.e. EreqÞ [27–33]. Despite these models 
being widely employed, relatively simple, and show
ing promising results for group-averaged sweat pre
dictions [32,33], changes in heat balance are not 
directly sensed by the body (and therefore could not 
regulate sweat rate via this pathway).

When the body gains heat, its temperature rises, 
activating deep-body core and peripheral temperature 
sensors that send signals to the brain (primarily the 
hypothalamus) [1,22,34], which in turn causes an 
increase in sudomotor activity (i.e. activating sweat 
glands) to facilitate heat dissipation through evapora
tion, helping to counteract further temperature rise. 
The core and skin temperature-controlled sweat mod
els try to mimic this physiological process to predict 
the sweat rate. These models often consist of three 
components defined by core temperature, skin tem
perature, and local temperature effects (Q10). The 
core and skin temperature components are 
a function of the error signal. The error signal is 
defined by the difference between body temperature 
and the setpoint temperature (i.e. T � Tsetpoint). Note 
that the setpoint in this context is the onset tempera
ture for sweat activation, equivalent to the thermo
effector threshold value defined by Romanovsky [35]. 
The magnitude of the core temperature function is 
often significantly larger than that of the skin tem
perature; indicating the larger influence of core tem
perature in the regulation of sweating. Additionally, 
local skin temperature affects the activation and pro
duction of sweat within the affected area, which is 
modeled by the Q10 effect. The Q10 effect refers to 
the rate of changes in chemical or physiological pro
cesses to a 10°C temperature change [36]. Various 
studies investigated the Q10 effect of the local skin 
temperature on local sweating in humans and often 
reported a Q10 coefficient between 2 and 3 [20,37,38].

In this study, we first overview advances in tem
perature-regulated sweat models and then compare 
them with independent experimental data. To 
achieve our objective, we assessed several commonly 
used temperature-regulated sweat models.

Materials and methods

Sweat models

We compare several commonly used temperature- 
regulated sweat models that include: the Stolwijk 
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model [5], the Wissler model [10], the JOS models 
[8,9], the Fiala model [4,39], and the sweat models 
developed by Havenith [6,7]. For uniformity, all 
sweat rates are given in mg·cm−2·min−1. If neces
sary, the corresponding (original) formula for the 
sweat rate is adjusted accordingly.

The sweat models predict the sweat rate, Sw, 
based on body core and skin temperatures. While 
the exact formula varies from model to model, 
they generally conform to the following 
expression:

Sw ¼ f Tc � Tc;set
� �

þ g �Tsk � �Tsk;set
� �

Þ � Q10
�

(1) 

Equation 1 can be divided into three distinct com
ponents, 1) f Tc � Tc;set

� �
; a function of the core 

temperature error signal with Tc;set the core tem
perature setpoint at which sweating begins, 2) 
g �Tsk � �Tsk;set
� �

; a function of the mean skin tem
perature error signal with �Tsk;set the mean skin 
temperature setpoint for the onset of sweating, 
and 3) Q10; a multiplicative factor that captures 
the metabolic influence of the local skin tempera
ture on sweat gland activity.

The first sweating model that is considered is 
the sweating model developed by Stolwijk et al. [5] 
in the 1960s and 1970s. The sweat rate formula is 
given by Equation 2.

Sw ¼ Ebasal þ 320 � Tc � 36:96ð Þðð½

þ29 � �Tsk � 34:08ð ÞÞ � 2
�Tsk � 34:08

10 Þ�

�
CkCal=h

Adu
(2) 

Here, Sw [mg·cm−2·min−1] is the sweat rate, Tc 

[°C] is the core temperature, �Tsk [°C] is the mean 
skin temperature, and Ebasal [kCal·h−1] is the 
basal evaporative heat loss of the skin, which 
represents water diffusion through the skin and 
has a value of 9.0 kCal·h−1 [5]. CkCal=h ( = 28.70) 
is the conversion constant to convert the sweat 
rate from kCal·h−1 to mg·min−1 and Adu [cm2] is 
the body surface area of the participant based on 
Du Bois and Du Bois [40]. The mean skin tem
perature setpoint in this equation (34.08°C) is the 
weighted average setpoint of the skin tempera
ture following the methodology described by 

Stolwijk [5]. The core temperature setpoint 
(36.96°C) represents the temperature at the 
hypothalamus as is also described by Stolwijk [5].

The JOS-2 model [8] is a thermophysiological 
model based on Stolwijk’s model. It uses a sweat 
rate formula that is similar to that of Stolwijk; 
however, it employs different temperature setpoint 
values and includes a factor to scale for the body 
surface area:

Sw ¼ 371:2 � Tc � 37:06ð Þ þ 33:64ð½

� �Tsk � 34:53ð ÞÞ �
Adu

Adu;st
� 2

�Tsk � 34:53
10 � �

CW

Adu
(3) 

where Adu [cm2] is the body surface area of the 
participant based on Du Bois and Du Bois [40] 
and Adu;st [cm2] is the standard body surface 
area, for which they assume 1.87 m2 [8]. CW ( =  
24.69) is the conversion constant to convert the 
sweat rate from W to mg·min−1. The given 
mean skin temperature setpoint (34.53°C) is 
the weighted average setpoint of the skin tem
perature following the methodology described 
by Kobayashi et al. [8] and the core tempera
ture setpoint (37.06°C) represents the setpoint 
of the head core (i.e. hypothalamus) [8].

Next is the JOS-3 thermophysiological model 
[9], which defines sweating responses using the 
following equation:

Sw ¼ 371:2 � Tc � 37:46ð Þ þ 33:64ð½

� �Tsk � 34:62ð ÞÞ �
Adu

Adu;st
� AGsweat

� 2
�Tsk � 34:62

10 � �
CW

Adu
(4) 

where AGsweat [-] is the aging factor for sweat. 
This factor represents the decreased sweat rates 
observed in older adults, and its value is based 
on a study by Inoue et al. [41]. The weighted 
average value of AGsweat is 0.53 for people older 
than 60 years and is one for people younger than 
60 [9]. The primary changes with JOS-3 sweat 
model compared to JOS-2 include the addition 
of a decreased sweat rate for older adults and an 
increase in both the core and mean skin tem
perature setpoints to 37.46°C and 34.62°C 
respectively.
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In addition, the thermophysiological model of 
Fiala [4,39] is based on the Stolwijk model and is 
defined by the following equation:

Sw ¼ 0:8 � tanh 0:59 � �Tsk � 34:4ð Þððð½

� 0:19Þ þ 1:2Þ � �Tsk � 34:4ð Þ

þ 5:7 � tanh 1:98 � Tc � 37ð Þ � 1:03ð Þ þ 6:3ð Þ

� Tc � 37ð ÞÞ � 2
�Tsk � 34:4

10 � �
Cg=min

Adu

(5) 

where Cg=min ( = 1000) is the conversion con
stant converting the sweat rate from g·min−1 

to mg·min−1. Like Stolwijk, JOS-2, and JOS-3, 
setpoints are used for mean skin temperature 
(34.4°C) and core temperature (37°C) [39]. 
However, in Eq. 5 the effect of a change in 
temperature signal (i.e. T � Tsetpoint) is non- 
linear (when excluding the Q10 effect) as it is 
incorporated into a hyperbolic tangent function.

In the above models, fitness, acclimation, and 
activity levels are not taken into account. The 
sweat rate formula proposed by Havenith [6,7] 
incorporates the effects of the individual’s fitness 
(quantified by _VO2max the maximum rate of oxy
gen consumption) and acclimation status on the 
sweat rate and is given by [7]: 

Sw ¼ gsw � 0:92 � csw � Tc � 37þ Tc;offset
� �� ���

þ0:08 � csw � �Tsk � 33:7ð ÞÞ

� exp
max 0; �Tsk � 33:7f g

10:7

� �

�

� Cg=m2=h (6) 

where gsw is the gain factor given by Equation 7, 
csw (170 g·m−2·h−1) is a sweat rate constant, Tc;offset 

[°C] is given by Equation 10 and is the shift in the 
core temperature setpoint based on the indivi
dual’s fitness and acclimation status, and

Cg=m2=h ( = 1.67·10−3) is the conversion constant 
to convert the sweat rate from g·m−2·h−1 

to mg·cm−2·min−1. The effect of fitness and accli
mation status (i.e. being acclimated or not) is 
represented by a change in the sweating onset 
temperature (Tc;offset) and slope (gsw). A higher fit
ness and/or being acclimated decreases the 

sweating onset temperature and increases the 
slope of the sweat rate. Havenith [7] also uses 
a slight variation of the traditional Q10 effect 
with the main difference being that this Q10 will 
always be equal to or higher than 1 (i.e. no sweat 
rate decrease at lower skin temperatures (as Q10 is 
capped at a minimum value of 1) only an increase 
at elevated skin temperatures).

The gain factor, gsw, affects the slope of the 
sweat rate based on the individual’s fitness and 
acclimation status, and is described as [6,7]: 

gsw ¼ 1þ 0:35 �
fit
20

� �

� 1þ 0:15 � facð Þ (7) 

where fit is the individual’s fitness level, which is 
based on the individual’s maximum aerobic 
capacity, see Equation 8, and fac is the indivi
dual’s acclimation status given by 
Equation 9 [6,7].

The individual’s fitness is given by [6,7]: 

fit ¼ _VO2max � _VO2max;standard (8) 

where _VO2max [ml·kg−1·min−1] is the indivi
dual’s maximum aerobic capacity with a range 
between 20 (unfit) and 60 (fit) ml·kg−1·min−1, 
and _VO2max;standard [ml·kg−1·min−1] is the maxi
mum aerobic capacity of the average person, 
which is taken to be 40 [6,7].

The individual’s acclimation status fac, with 
values ranging between 0 (not acclimated) and 1 
(fully acclimated), depends on the number of 
acclimation days nd. It is described as [6,7]: 

fac ¼ 1 � exp � 0:3 � nd � 1ð Þð Þ (9) 

where the number of acclimation days is ranging 
between 0 and 14 [6,7].

The individual’s core temperature setpoint off
set is given by [6,7]: 

Tc;offset ¼ � 0:1 �
fit
10
þ 0:25 � fac

� �

(10) 

The maximum sweat rate depends on acclimation 
status and fitness following:

Swmax ¼ Swmax;standard

� 1þ 0:25 �
fit
20
þ 0:25 � fac

� �

(11) 
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where Swmax;standard (800 g·m−2·h−1 [7]) is the max
imum sweat rate for an unacclimated individual 
with a _VO2max of 40 ml·kg−1·min−1.

Wissler proposes three sweat rate equations 
based on the individual’s acclimation status and 
whether the individual is resting or exercising [10]. 
Eq. 12 is for rest and unacclimated, Eq. 13 is for 
exercise and unacclimated or rest and acclimated, 
and Eq. 14 is for exercise and acclimated [10]. 

Sw ¼ 0:327 � Tc þ 0:15 � �Tsk � 42:1ð Þ (12)  

Sw ¼ 0:327 � Tc þ 0:15 � �Tsk � 41:6ð Þ (13) 

Sw ¼ 0:327 � Tc þ 0:15 � �Tsk � 41:1ð Þ (14) 

Through these equations, Wissler simulates the 
effects of exercise and acclimation as defined by 
a decrease in the sweating onset temperature. 
Notably, this approach differs from Havenith, 
where acclimation status is defined by both 
a reduction in the onset for sweating and an 
increase in slope (thermosensitivity of the sweat 
response). While Wissler’s equations consider skin 
temperature, they neglect the Q10 effect [10].

Figure 1 shows the predicted sweat rates of the 
models for an increasing core temperature and 
assuming skin temperatures between 31.5°C and 
35.5°C (double-headed red arrows), which corre
sponds to a comfortable thermal condition [42]. 
To help compare all models, Stolwijk (arbitrarily 
chosen) is given in all three subfigures with 
enlarged boundary lines. The models overviewed 
in these figures highlight that the sweat rate of all 

models increases with rising core and skin tem
peratures. However, it also illustrates significant 
variations in the predicted sweat rates among dif
ferent models. For example, at Tc = 39°C, the Fiala 
sweat model (dark blue area) predicts a sweat rate 
of ~1.24 mg·cm−2·min−1, which is double that pre
dicted by the Havenith normal model (green area), 
~0.62 mg·cm−2·min−1.

Experiments

For the development of most sweat models 
(Stolwijk, Fiala, and Wissler), the NASA dataset 
[43] was used. In the present study, three different 
independent datasets were used to compare the 
described sweating formulae. The first dataset is 
from the University of Ottawa (uOttawa) [44], 
which investigated the effect of the required eva
poration for heat balance and relative exercise 
intensity (% _VO2max on sweat rate. The second 
dataset contains two EU-funded projects, which 
are the Subzero (SZ) and Thermprotect project 
(TP) [45,46]. The SZ project assessed the reliability 
and accuracy of thermal manikins for cold protec
tive clothing [45] and the TP project examined the 
thermal strain when wearing protective clothing 
[46]. The last dataset is also a European Union 
(EU)-funded project called HEAT-SHIELD, which 
aimed to address the negative impacts of heat 
stress experienced by the EU workforce [47–50].

Important to note is that in all three datasets, 
whole-body sweat loss (WBSL) or whole-body 

cb

Figure 1. Predicted sweat rates as a function of the core temperature and a range of comfortable skin temperatures (i.e. 31.5°C to 
35.5°C [42]), shown in three parts: (a) Stolwijk and Wissler models, (b) Fiala, Stolwijk, JOS-2, and JOS-3 models, and (c) Stolwijk and 
Havenith models.
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sweat rate (WBSR) was not measured directly. 
Instead, total water (or weight) losses were mea
sured, which consist mostly of the water losses 
from generated sweat but also contain the water 
losses from the respiratory tract (added moisture 
in exhaled air).

The number of participants in each dataset and 
the characteristics (trial-weighted average and 
standard deviation) of the participants are shown 
in Table 1. Each dataset is described in detail in 
the following sections.

Dataset uOttawa
Dataset uOttawa consists of a study where water loss 
rate (WLR) data were collected to examine the inde
pendent contributions of the required evaporation 
for heat balance and of % _VO2max to non-steady-state 
and steady-state WLR, irrespective of exercise inten
sity and ambient temperature [44]. In this study, 
25 healthy males clothed in shorts and sandals cycled 
for 90 min in the modified Snellen air calorimeter (a 
device that provides a precise measurement of the 
heat dissipated by the human body [51]). 
Participants cycled at a fixed rate of heat production 
of 200, 350, and 500 W in a warm environment 
(ambient temperature of 30°C and absolute humid
ity of ~1.3 kPa). Trials were also conducted at a fixed 
rate of heat production of 290 W at increasing levels 
of ambient heat stress (i.e. ambient temperature of 
30°C, 35°C, 40°C, and 45°C and absolute humidity 
of ~0.8 kPa). In total 94 experiments were per
formed; however, due to incomplete sensor data in 
some of the experiments, only 83 runs are used in the 
present paper.

Rectal temperature was measured with 
a thermocouple temperature probe (Mallinckrodt 
Medical Inc., St Louis, MO, USA) inserted 12 cm 
past the anal sphincter. Skin temperatures were 
measured with thermocouples (Concept 

Engineering, Old Saybrook, CT, USA) at four 
sites (upper trapezium, chest, quadriceps, and 
back calf). Rectal and skin temperatures were 
sampled every 15 s. Mean skin temperature was 
estimated using weights proposed by Ramanathan 
[52]. Time series data of the WLR were obtained 
from air calorimeter measurements. This modi
fied Snellen air calorimeter is a cylindrical device 
(with a height of 1.83 m and a diameter of 1.68 m) 
that controls and measures the temperature and 
absolute humidity of the air entering and leaving 
the chamber [53]. Thereby, this device provides 
a precise measure of evaporative and dry heat 
exchange. It measures the air temperature with 
high precision thermistors (Black Stack model 
1560, Hart Electronics, Fluke Corp., American 
Fork, UT, USA) and the absolute humidity with 
high precision dew point hygrometers (RH 
Systems model 373 h, Albuquerque, NM, USA). 
Both measurements were collected every 8 s. To 
account for all evaporation and heat losses, the 
exhaled air was recycled back into the calorimeter. 
The airflow through the calorimeter was esti
mated through differential thermometry of 
a known regulated heat source. Metabolic rate 
was estimated using electrochemical gas analyzers 
(AMETEK model S-3A/1 and CD 3A, Applied 
Electrochemistry, Pittsburgh, PA, USA) that mea
sured the exhaled air oxygen and carbon dioxide 
concentrations. Metabolic heat production was 
calculated as metabolic rate minus the rate of 
external work. The external work on the erg
ometer was measured with a resistance control 
unit located outside the calorimeter.

Dataset SZ+TP
Dataset SZ+TP consists of two EU projects, the 
Subzero (SZ) [45] and Thermprotect (TP) project 
[46]. In total, 224 trials were performed, none of 

Table 1. Trial-weighted participant characteristics (mean ± SD).
Characteristics uOttawa [44] Subzero + Thermprotect [45,46] HEAT-SHIELD [47–50] Combined

Gender 25M 32M 33M 90M
Age [y] 29.8 ± 10.5 26.9 ± 5.2 24.1 ± 2.8 25.5 ± 5.3
Height [m] 1.81 ± 0.07 1.79 ± 0.05 1.78 ± 0.06 1.79 ± 0.06
Mass [kg] 82.8 ± 8.2 77.3 ±10.3 75.6 ± 10.6 76.9 ± 10.5
Surface area [m2]1a 2.03 ± 0.12 1.95 ± 0.13 1.93 ± 0.15 1.94 ± 0.14
_VO2max [mL·kg−1·min−1] 51.1 ± 6.7b – 51.8 ± 8.4 –

aMethod by Du Bois and Du Bois [40]. 
bParticipant averaged (trial averaged data not available). 
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which had missing sensor data, and therefore are 
included in the dataset. The Subzero project aimed 
to assess the accuracy and reliability of thermal insu
lation measurements for cold protective clothing 
using thermal manikins, and to understand the factors 
influencing these measurements [45]. Four test insti
tutes each performed 64 trials with 8 human partici
pants. In the present paper, only the trials from two of 
the four test institutes (P5 and P6) are used as these 
institutes tested conditions that allowed higher heat 
storage in the test persons by using higher clothing 
insulation values and metabolic rates, leading to 
higher water losses. In these 128 trials, participants 
were clothed in one of three cold protective clothing 
ensembles and walked on a treadmill for 90 minutes. 
Each trial was conducted at a constant speed, air 
velocity, and air temperature. However, these condi
tions varied between different trials, with walking 
speeds ranging from 3.5 to 5 km/h, air temperatures 
from −40 to −10°C, and air velocities from 0.3 to 10  
m/s. Additionally, trials were conducted both with 
and without a Sympatex membrane (water vapor 
barrier) in the outer layer.

Rectal temperature was measured with 
a temperature probe (YSI 700 or YSI 401, Yellow 
Springs Instrument, USA) inserted 10 cm beyond 
the anal sphincter. Skin temperatures were measured 
(YSI 400 or YSI 409b, Yellow Springs Instrument, 
USA) at 8 sites: forehead, right scapula, left upper 
chest, right upper arm, right forearm, right dorsal 
hand, right anterior thigh, and right calf. Mean skin 
temperature was estimated using the weights 
described in ISO 9886:2004 [54]. Air temperature 
was measured with thermistors. All temperatures 
were sampled once per minute. Water loss was deter
mined by weighing the participants before and after 
exercise using a scale (Mettler ID1 MultiRange, 
Albstadt, Germany, 2 g resolution, and ±5 g accu
racy). Metabolic rate was determined from oxygen 
consumption (Medikro 919 Ergospirometer, Finland 
or SensorMedics Corporation, Ca., USA) measured 
for the last 5 min of exercise. The average value of the 
last 2 min was used as the representative value.

The Thermprotect project (TP) investigated ther
mal strain experienced in personal protective cloth
ing focusing on the effects of radiation, wind, and 
wetting [46]. The project involved modeling, mate
rial tests, thermal manikin tests, and human partici
pant tests. In this study, the experimental data from 

human participant tests for work packages 2 and 3 
(WP2 and WP3) are used.

The WP3 experiments were complementary to 
the Subzero trials. In this experiment, eight parti
cipants performed 4 trials each in which they 
walked on a treadmill for 90 min at a constant 
speed, air velocity, and air temperature. Walking 
speed (3 to 4.9 km/h) and air temperature (−25 or 
−10°C) were varied between trails. Trials were 
performed with and without a Sympatex mem
brane. Participants wore one of four ensembles of 
which two (garments B and C) were the same as 
used in the Subzero project and two were modified 
versions.

The WP2 experiments [55] from the 
Thermoprotect project focused on the effect of 
moisture in protective clothing on heat transfer. 
Eight participants performed 8 trials each in which 
they walked on a treadmill at 4.5 km/h for 60 min 
starting with wet or dry underwear (cotton shirt 
and trousers) with a permeable or impermeable 
coverall at an air temperature of 10°C or 25°C.

In both WP2 and WP3, rectal temperature was 
measured with a temperature probe (YSI-401 
Yellow Springs Instrument, USA) inserted 10 cm 
beyond the anal sphincter. Skin temperatures were 
measured using NTC thermistors (ACC-001, 
Rhopoint Components Ltd, UK) at eight sites: 
forehead, right scapula, left upper chest, right 
upper arm, right forearm, right dorsal hand, right 
anterior thigh, and right calf. Mean skin tempera
ture was estimated using the weights described in 
ISO 9886:2004 [54]. All temperatures, including 
air temperature (PT100, 1/10 Class B sensor), 
were sampled every 15 s. Water loss was deter
mined by weighing the participants before and 
after exercise using a scale (KC 240 GWB Mettler 
ID2 MultiRange, Germany, 2 g resolution and ±5 g 
accuracy). Metabolic rate was determined via oxy
gen consumption measurements taken every 
30 min in WP3 and between the 10th and 20th 

min in WP2.

Dataset HEAT-SHIELD
HEAT-SHIELD was an EU-funded project that 
addressed the negative impacts of heat stress 
experienced by EU workers at their workplaces. 
This dataset consists of experiments investigating 
the effects of temperature, humidity, wind speed, 
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solar radiation, and clothing on physical work 
capacity [47–50,56].

Before the experimental trials, participants per
formed a submaximal exercise test on a graded 
treadmill to obtain their _VO2max (Quark CPET, 
COSMED, Albano Laziale, Rome) [47,50]. In the 
experimental trials, participants (young healthy 
males) walked on a treadmill for up to 1 h, with 
the treadmill automatically adjusting its speed and 
incline to maintain a target heart rate of 130 beats 
per minute (bpm). The treadmill initially set the 
walking speed to 6 km/h and adjusted the incline 
to keep the heart rate at 130 bpm (i.e. a fixed 
cardiovascular strain protocol). If the heart rate 
continued to rise above 130 bpm despite the 
incline being set to zero, the treadmill reduced 
the walking speed. If the heart rate remained 
above 130 bpm even after the speed was reduced 
to zero, the trial was terminated. The trial was also 
terminated if the rectal temperature of the partici
pants rose above 39°C. Trials were performed at 
different ambient air temperatures (ranging from 
15°C to 50°C), humidities (20% to 80%), air velo
cities (<0.2 to 3.5 m·s−1), solar radiations (0 and 
800 W·m−2), and two different sets of clothing 
(with intrinsic clothing insulation of 0.04 and 
0.133 m2·K·W−1 (0.26 or 0.86 Clo) and evaporative 
resistance of 0.007 and 0.024 m2·Pa·W−1) [47– 
50,56]. In the present paper, only the trials with 
available and complete time series data are used, 
comprising data from 473 trials (out of the 816) 
from 33 participants.

Rectal temperature was measured with a rectal 
thermistor (VIAMED, Yorkshire, UK) 10 cm past 
the anal sphincter. Skin temperatures were measured 
using skin thermistors (Grant Instruments Ltd, 
Corby, UK) at four sites (chest, tricep, thigh, and 
calf) with mean skin temperature estimated via the 
proposed weights by Ramanathan [52], except for 
experiments with solar radiation. Here, skin tempera
tures were measured at six sites (upper back, lower 
back, chest, triceps, quadriceps, and calf) and the 
Ramanathan equation was adapted to include the 
effect of solar radiation [49]. For ambient conditions, 
wet-bulb globe temperature (WBGT; Quest temp 
model 34), air temperature, relative humidity, and 
air velocity (Testo Ltd, model 435–2 Alton, 
Hampshire, UK) were measured. These 

measurements (including core and skin tempera
tures) were sampled every minute. Water loss was 
determined by weighing the participants before and 
after exercise using a scale (Mettler Toledo KCC150, 
Leicester, UK, 1 g resolution and ±10 g accuracy). 
Metabolic rate was determined via the method pro
posed by Ludlow and Weyand [57]. This method uses 
the walking velocity and grade to estimate the meta
bolic rate for walking on the treadmill.

The experimental conditions for all datasets are 
summarized in Table 2. It is important to note that 
for all datasets, the number of trials exceeds the 
number of participants. Each participant com
pleted multiple trials, ranging from 2 to 59 with 
a median of 8; however, no participant ever 
repeated the same condition. While this may 
reduce the overall variability (and variance), 
a total of 90 participants, of which 78% completed 
10 or fewer trials, still ensures a wide range of 
individual responses.

Evaluation

As stated before, the three datasets did not directly 
measure the sweat rate. Instead, we look at the 
water loss rate (WLR) which is defined as the 
water loss (WL) over the experimental time inter
val. In datasets SZ+TP and HEAT-SHIELD, the 
WL is calculated from the difference in pre- and 
post-exercise body mass. In the uOttawa dataset, 
the WL is obtained by the summation of the 
evaporation measurements from the modified 
Snellen air calorimeter. The WL measurement ulti
mately consists of all weight losses during the 
exercise period, which can be represented as:

WL ¼ msw þmresp þmothers (15) 

where msw [g] is the mass of excreted sweat (i.e. 
the WBSL), mresp [g] is the mass of the water losses 
from the respiratory tract, and mothers [g] is the 
mass of any food or fluid intake and excretion. 
Notably, mothers is zero in all three datasets, as 
drinking and washroom breaks were not permitted 
during the exercise period.

To enable comparison between the predic
tions from the sweating models and the experi
mentally measured WL, we calculate the 
predicted WL based on model outputs. The 
sweat loss component, msw, is obtained from 
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the sweating models. The respiratory water loss 
component, mresp, is estimated following the 
method described in ISO 7933 [58], which 
involves calculating the evaporative heat loss 
from respiration, Eresp [W/m2] (see 
Equation 16), and subsequently converting it 
into mass loss, mresp (see Equation 17). Since 
no fluid or food intake or excretion occurred 
during the trials (i.e. mothers is zero), the pre
dicted WL is the summation of msw and mresp.

ISO 7933 states that the evaporation losses in 
the respiratory tract, Eresp [W/m2], can be calcu
lated using [58]: 

Eresp ¼ 0:00127 �M
� 59:34þ 0:53 � Tamb � 11:63 � Pambð Þ

(16) 

where M [W/m2] is the metabolic rate, Tamb [°C] is 
the ambient air temperature, and Pamb [kPa] is the 
ambient water vapor pressure. Next, Eresp is 

converted to grams of evaporated water in the 
respiratory tract, mresp, using:

mresp ¼
Eresp � Adu � Δtexp

ΔHevap
(17) 

where Adu [m2] is the body surface area of the 
participant based on Du Bois and Du Bois [40], 
Δtexp [min] is the exercise period, and ΔHevap [J/g] 
is the heat of vaporization of water (which is 2430 
J/g at 30°C [22]).

Since the exercise period varies with each pro
tocol, we introduce the average water loss rate 
(WLR), defined as:

WLR ¼
WL

Δtexp
(18) 

The quality of the WLR predictions is evaluated 
via both the coefficient of determination (R2, see 
Equation 19) and the root mean square error 
(RMSE, see Equation 20).

The coefficient of determination is calculated as 
[59,60]: 

Table 2. Dataset characteristics.
Characteristics uOttawa [44] Subzero (SZ) + Thermprotect (TP) [45,46] HEAT-SHIELD [47–50]

Trials 83 224 473
Exercise period 

[min]
60 60 or 90 Max 55

Activity Ergometer Treadmill Treadmill
Intensity control 

method
Fixed metabolic 

rate
Fixed walking speed Fixed heart rate (130 bpm; variable speed and 

grade)
Country Canada Finland, Sweden, and Norway UK
Clothing Cotton underwear, 

shorts, socks, and 
athletic shoes

Cotton underwear (including socks, shirt, and 
trousers), and shoes or (heavy) winter clothing 
consisting of underwear an intermediate layer, 

handwear, and sometimes an outer garment and 
headgear

Either low clothing: underwear, standardized shorts, 
socks and trainers, or high clothing: low clothing + 
standardized cotton t-shirt and full body protective 

overall (65% polyester, 35% cotton)

Clothing 
insulation 
(static) [clo]

≈0.2–0.3 SZ: 2.93 to 4.13 
TP: 1.55 to 3.81

0.26 and 0.86

Clothing water 
vapor 
resistance 
(static) 
[m2·kPa·W−1]

- SZ: 0.033 to 0.11 
TP: 0.020 to 0.14

0.007 to 0.024

Mean skin 
temperature 
calculation 
method

Ramanathan 
(upper trapezius, 

chest, quadriceps, 
calf

8-point ISO9886 (forehead, scapula, chest, upper 
arm, lower arm, hand, anterior thigh, calf)

Ramanathan (pectoralis major, triceps, rectus 
femoris, gastrocnemius)

Ambient 
temperature 
[°C]

30, 35, 40, 45 −40, −25, −10, 10, 25 15, 25, 30, 35, 40, 45, 50

Relative humidity 
[%]

14 to 31 32 to 95 20 to 80 (20, 50, and 80 most common)

Air velocity 
[m·s−1]

≲0.3 SZ: <0.2 to 10 
TP: 0.3

<0.2 or 3.5

Metabolic heat 
production [W]

200, 290, 350, 500 
(on average ~350)

210 to 850 
(on average ~400)

220 to 970 
(on average ~500)

TEMPERATURE 9



R2 ¼ 1 �
Pn

i¼1 Ŷi � Yi
� �2

Pn
i¼1

�Yi � Yið Þ
2 (19) 

where n is the number of data points, Ŷ represents 
the model’s prediction, Y is the observation 
(experimental data), and �Y is the mean of the 
observations. The numerator is the residual sum 
of squares (RSS), which reflects the model’s error, 
while the denominator is the total sum of squares 
(TSS), related to the variance of the data. As the 
RSS decreases (i.e. predictions more closely match 
observations), R2 increases toward a maximum 
value of 1. Conversely, an increase in RSS causes 
R2 to decrease, potentially even approaching -∞. 
Negative R2 values are rare in practice because, 
when a model is evaluated on the same dataset it 
was trained on, R2 cannot drop below 0 (for 
unbounded regression). However, since the sweat 
models in this study are evaluated on a separate 
and independent dataset from the one they were 
trained on, R2 can be negative. For further details 
and an illustrative case study, refer to Chicco 
et al. [60].

The root mean square error, RMSE, is calcu
lated as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
Ŷi � Yi
� �2

s

(20) 

A lower RMSE indicates a better fit of the model 
to the data, as it means the predicted values are 
closer to the actual values.

Dataset characteristics

Since the protocols of the experiments differ in terms 
of exercise intensity and environmental conditions, 
the resulting temperature distribution in the body 
can also vary. Therefore, we first examined whether 
metabolic heat production, core and skin tempera
tures, and WLR were significantly different (Figure 2).

From Figure 2, it is seen that the differences are 
all significant (p < 0.001) except for the rectal tem
perature between the SZ+TP and HEAT-SHIELD 
dataset (p = 0.512) and the skin temperature 
between the uOttawa and HEAT-SHIELD dataset 
(p = 0.316). Therefore, showing that the combined 
dataset consists of three distinctly different data
sets; the uOttawa dataset has the lowest metabolic 
heat production and rectal temperature, high skin 
temperature, and medium WLR; the SZ+TP data
set has medium metabolic heat production, high 
rectal temperature, lowest skin temperature, and 
WLR; the HEAT-SHIELD dataset has the highest 
metabolic heat production and WLR, and both 
high rectal and skin temperatures. Note that 
these are the means of all trials of each dataset, 
individual trials can overlap.

a cb d

Figure 2. Boxplots of mean a) metabolic heat production, b) rectal temperature, c) skin temperature, and d) WLR of the datasets 
with significance levels (*: p < 0.05; **: p < 0.01; ***: p < 0.001).
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Figure 3. Predicted vs. observed water loss rate (WLR).
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Results and discussion

Figure 3 shows the predicted and observed water 
loss rates. Each model is depicted in an individual 
subplot with their R2 and RMSE values and uni
form axes for clarity and to prevent overlap. The 
two dashed black lines visualize the size of the 
RMSE of each model. The R2 of the models 
ranges between −1.3 and 0.5 and the RMSE 
between 4.9 and 10.4 g/min. Figure 4 shows 
Bland-Altman plots of the models with on the 
x-axis the mean of the predicted and observed 
WLR and on the y-axis the WLR difference (i.e. 
prediction minus observation). The solid line is 
the mean bias and the two dashed lines are the 
95% limits of agreement (LoA). This figure 
demonstrates a clear trend in the prediction 
errors, which is that as the WLR increases the 
underpredictions of the models also increase. At 
low WLRs most models have a slight tendency to 
overestimate the WLR; however, this decreases as 
the WLR increases. This behavior is also captured 
in the mean bias, which is negative for all models 
except the Havenith fit and acclimated model and 
only slightly negative for the Wissler exercise and 
acclimated model.

Taken together, these findings suggest that 
while most models provide reasonable estimates 
at lower WLRs (approximately ≤10 g/min), their 
accuracy diminishes as WLRs increase. Given the 
systematic underprediction at higher values, cau
tion is warranted when applying these models in 
high-heat-stress conditions. The extent to which 
these errors impact broader thermophysiological 
predictions remains unclear, as this would require 
further investigation into how inaccuracies in the 
estimation of WLR affect core and skin tempera
ture predictions.

It is interesting to note that the majority of the 
models’ underpredictions are associated with the 

HEAT-SHIELD trials. When excluding the HEAT- 
SHIELD data, the acclimatized (and fit) models 
generally overpredict the WLR and are outper
formed by their unacclimatized variants. One 
might conclude that the participants in the HEAT- 
SHIELD experiments were acclimatized. However, 
this is unlikely as precautions were taken to pre
vent acclimatization before and during the trials 
[47–50]. The reason for these underpredictions is 
discussed later in this study.

As is shown in Figure 1, the sweat-onset tem
peratures for the Havenith [6,7] and Wissler [10] 
models are lower in the acclimatized condition 
than in the non-acclimatized condition, suggesting 
that onset temperature might be a crucial para
meter. To investigate this further, the core and 
skin temperature setpoints of all applicable sweat 
models were individually optimized using the 
dataset, by varying either the core or the skin 
temperature setpoint to maximize the R2 value. 
The Wissler model was not included in this opti
mization analysis, as it uses a single effective body 
temperature setpoint (a combination of core and 
skin temperatures) and does not permit indepen
dent adjustment of core and skin temperature 
thresholds. Additionally, the JOS-2 model is not 
optimized because of its similarity to the JOS-3 
model. Among the Havenith sweat model variants, 
the Havenith fit model is selected as this best 
reflects the fitness ( _VO2max of the participants in 
the dataset. The results of these optimizations are 
shown in Table 3.

Table 3 shows the optimized setpoint tempera
ture and the model’s performance on the dataset 
with that optimized setpoint (i.e. R2 and RMSE). 
From this table, it is seen that all optimized set
point temperatures are below the setpoints used in 
the original models, this is due to the original 
models on average underpredicting the WLRs 
(see Figure 4). The optimized core temperature 

Table 3. Sweat models: core and skin temperature setpoint optimization results.
Optimized core temperature setpoint Optimized skin temperature setpoint

Model Tc,set,opt R2 RMSE [g/min] �Tsk,set,opt R2 RMSE [g/min]

Fiala 36.59 0.43 5.21 32.38 0.47 5.00
JOS-3 36.32 0.52 4.78 27.53 0.45 5.10
Stolwijk 36.40 0.5 4.86 30.74 0.49 4.93
Havenith - Fit 36.15 0.49 4.93 31.28 0.53 4.69
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Figure 4. Bland-Atlman plot of the residual water loss rate (WLR), with the mean bias (black solid line) and limits of agreement 
(black dashed lines), and their corresponding values shown below each line.
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setpoint fluctuates within a narrow range between 
36.2°C and 36.6°C. No clear pattern or preferred 
temperature between the models is seen for the 
skin temperature setpoint. The R2 values of all 
models are relatively similar, fluctuating between 
0.43 and 0.53, and the RMSE between 4.7 and 5.2  
g/min.

The Bland-Altman plot of the optimized mod
els (Figure A1, Appendix – A) provides further 
insight into the linear error trend observed in 
Figure 4. Most models follow a linear function 
of the core and skin temperature error signals, 
except for the Fiala model, which follows an 
exponential function. This seems to suggest that 
the linear error trend in Figure 4 could be pri
marily due to an incorrect slope – specifically, 
a slope coefficient that is too low, as indicated 
by the predominant underpredictions. However, 
Figure A1 shows that adjusting the core or skin 
temperature setpoint could mitigate or even elim
inate this trend without modifying the slope. This 
underscores the complexity of modeling sweat 
production and highlights the crucial role of set
points in these models.

The uOttawa and most HEAT-SHIELD experi
ments used only four sites and weightings pro
posed by Ramanathan [52] to determine mean 
skin temperature. This method accounts for the 
majority of the data (approximately 500 out of 
780 data points). The accuracy of determining 
mean skin temperature generally rises as the 
number of measured skin sites increases. As the 
skin temperature is an input for the sweat mod
els, an error could arise from the low number of 
measured skin sites to estimate mean skin tem
perature. Nevertheless, Mitchell and Wyndham 
[61] performed experiments on nude men with 
a wide range of environmental conditions and 
compared several methods for calculating the 
mean skin temperature. The method of 
Ramanathan was one of the best scoring methods 
with an overall agreement frequency of 64% 
within 0.2°C and 98% within 1°C [61]. A more 
recent study by Liu et al. [62] reported similar 
results, with a 60% agreement frequency for 
experiments conducted in light clothing. 
Therefore, the estimated errors in measuring 
the mean skin temperature are below 1°C, 
which is acceptable. However, regardless of our 

definition of mean skin temperature, it is impor
tant to recognize that mean skin temperature 
serves only as a proxy for the neurological signals 
driving sweat gland activity. While this proxy is 
practical, the complex relationship between ther
mal state and sweat output is not fully 
understood.

Another source of error is the estimation of respira
tory water loss, which was not directly measured but 
instead estimated (via Equation 16). Since the total 
water loss includes both sweat and respiratory losses, 
any error in estimating the latter affects the calculated 
water loss and therefore the comparison to the model 
predictions. However, this impact is limited, as 
respiratory water loss accounts on average for only  
~10% of total water loss in this dataset. Thus, while 
some uncertainty remains, it is unlikely to influence 
the overall conclusions. This error could be eliminated 
in future experiments by directly measuring respira
tory water loss, for example, using a breath-by-breath 
gas analysis system with humidity sensors.

A limitation of the present study is that all three 
datasets used for model comparison exclusively 
included male participants. Consequently, the 
findings may not be fully generalizable to females, 
as previous research has demonstrated differences 
in the thermoregulatory sweating responses 
between sexes [63–69]. Future investigations 
should also include female populations [70] to 
increase the robustness and external validity of 
body-temperature-controlled sweat models. 
Another limitation of this study is that _VO2max 
data were only available in the HEAT-SHIELD 
dataset. This restricts the ability to perform 
a robust residual analysis to assess how the inclu
sion of this variable affects model predictions.

The highest obtained R2 values of the sweat 
models (even with Tc,set or �Tsk,set optimization) 
are approximately 0.5. For higher accuracy, models 
may require more than only body temperature. 
Classically, it is understood that afferent signals 
from deep body core and skin temperature sensors 
are transmitted and interpreted by (primarily) the 
hypothalamus, after which efferent signals are sent 
to the sweat glands to initiate or adjust sweat 
production [1,22,34,71]. However, research sug
gests that non-thermal factors can also augment 
or inhibit neural drive for sweating [71,72]. Review 
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papers from Mekjavic and Eiken [72], and Kenny 
[69] about the contribution of thermal and non- 
thermal factors in body temperature regulation, 
found non-thermal factors such as exercise/post
exercise [73,74], dehydration [75], sleep [76], 
motion sickness [77,78], fever [79], and inert-gas 
narcosis [80] affect the neural drive for sweating. 
Other studies found that the light intensity [81– 
91] and color (e.g. blue versus red) [92,93] also 
affect the human thermophysiology (and percep
tion) [94]. Among these non-thermal factors, exer
cise is of particular interest as the dataset consists 
of experiments performed at various measured 
exercise intensities (i.e. metabolic rates).

Research shows that the non-thermal neural 
drive for sweating from exercise mainly arises 
from three primary mechanisms [71]: 1) central 
command [95–97], which is a mechanism ori
ginating in the brain that provides feedforward 
autonomic regulation in response to motor 
activity; 2) muscle mechanoreceptors [97–100], 
which respond to physical movement and 
mechanical deformation; and 3) muscle meta
boreceptors [101–103], which sense metabolic 
byproducts (i.e. metabolites) in active muscles. 
These mechanisms are believed to contribute to 
the more pronounced underpredictions of 
WLR by the models in case of high activity 
levels. It should be noted that non-thermal 
sweat drive depends on thermal load, and its 
response is reduced when internal temperatures 
are elevated [69,104]. Figure 2(a) shows that 
the HEAT-SHIELD trials, compared to other 
datasets, show significantly higher activity 
levels resulting indeed in higher core and skin 
temperatures (Figures 2(b,c)), a higher water 
loss rate (WLR, Figure 2(d)), and higher 
underpredictions (Figures 3 and 4). This sug
gests that non-thermal factors may also play 
a significant role in the regulation of sweat 
production, warranting further consideration 
in future sweat models. It may also explain 
the low optimized core temperature setpoint 
values (36.2°C to 36.6°C). Typically, sweating 
is not expected to begin at these core tempera
tures during rest; however, this could result 
from non-thermal exercise-induced sweat 

promotion, as the dataset in this study includes 
only exercising participants and no resting 
individuals.

Analysis of the residual WLR and average meta
bolic rate (Figure B1, Appendix – B) reveals 
a consistent linear correlation across all models, 
with all R2 values close to 0.2. The negative slopes 
indicate that underpredictions become larger at 
higher metabolic rates (and therefore exercise inten
sities), suggesting that exercise-driven sweat stimu
lation is not fully accounted for in the models. Since 
all models exhibit similar correlations, this appears 
to be a systematic limitation rather than random 
noise or model-specific errors. However, while an 
R2 value of 0.2 indicates a relatively weak relation
ship, stronger correlations (i.e. higher R2 values) 
might have been expected if non-thermal exercise- 
induced sweating played a more dominant role. One 
possible explanation for the relatively low R2 values 
is the experimental design: the dataset consists of 
prolonged exercise trials (60–90 min) under stable 
environmental conditions. In such conditions, ther
mally induced sweating gradually becomes the 
dominant driver, reducing the relative contribution 
of non-thermal exercise sweat drive and, conse
quently, lowering the observed correlation. Higher 
R2 values might be observed in studies with inter
mittent or shorter-duration exercise, where non- 
thermal exercise-driven sweat stimulation likely 
plays a more prominent role.

The limited predictive accuracy of the models, even 
after setpoint optimization, likely reflects the inherent 
complexity of human thermoregulation. 
A fundamental challenge lies in the fact that we still 
lack a comprehensive understanding of what the body 
actually regulates – whether it is core temperature, 
mean body temperature, or another (integrated) sig
nal such as heat flux [105]. Furthermore, the distribu
tion of temperature sensors across tissues, how the 
body weights signals from different tissues, and how 
these inputs are integrated to drive sweating remain 
poorly understood. Nonthermal factors, such as the 
rate of temperature change, exercise intensity, hydra
tion status, and even psychological or environmental 
cues, likely play a significant role in modulating sweat 
output. This complexity underscores why it is so 
difficult for models to accurately replicate real-world 
sweat responses and highlights the need for further 
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research into the physiological mechanisms underly
ing thermoregulation.

Conclusion

Multiple sweating formulae predicting sweat rates 
based on body temperatures were evaluated using an 
independent dataset. This dataset comprised experi
ments where participants engaged in exercise (walk
ing or cycling) performed at low to intense exercise 
intensities, under a range of environmental condi
tions, and while wearing different types of clothing. 
Body temperatures and water loss were measured 
during these trials. Model performance varied signifi
cantly, with R2 values ranging from −1.3 to 0.5 and 
RMSE values between 4.9 and 10.4 g/min. While most 
models performed reasonably well at lower WLRs, 
they consistently underpredicted higher WLRs, espe
cially models with a higher core temperature setpoint, 
limiting their accuracy in high-heat-stress scenarios.

Optimization of the models’ core and skin tem
perature setpoints revealed a preference for a core 
temperature setpoint between 36.2°C and 36.6°C in 
all optimized models. However, no consistent setpoint 
was found for the mean skin temperature, which 
varied between 28°C and 32°C. The optimized mod
els’ R2 values were centered around 0.5, with only 
modest fluctuations (e.g. 0.43 to 0.54). Accuracy 
could be further improved by incorporating non- 
thermal factors such as activity level. The additional 
neural drive for sweat secretion that arises from var
ious mechanisms induced by exercise could reduce 
the models’ underpredictions prevalent at higher 
exercise intensities.

These findings highlight the need for integrating 
physiological non-thermal factors into future models 
to enhance predictive accuracy, particularly for appli
cations involving high-intensity physical activity. 
Future research could aim to separate the effects of 
activity level (metabolic rate) from core and skin 
temperature signals, allowing for a more precise 
understanding of their individual contributions to 
sweating. In addition, it is recommended to evaluate 
model differences within a broader physiological and 
practical context. Specifically, future research should 
examine models’ effect on the core and skin tempera
tures, as well as (de)hydration levels. Such analyses 
could not only highlight the significance of accurate 
sweat rate predictions but also unveil limitations in 

existing models. Exploring model calibration using 
additional individual-specific parameters that influ
ence thermoregulatory responses, such as _VO2max, 
acclimation status, and sex, may also help to refine 
predictive models.
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Appendix A

Figure A1 shows Bland-Altman plots of the models with optimized setpoint temperatures with Tc referring to optimized core 
temperature setpoint and Tsk optimized skin temperature setpoint. The y-axis contains the model’s residual WLR (i.e. predicted 
minus observed WLR), and the x-axis the mean WLR (i.e. predicted plus observed WLR divided by two). Compared to the 
original models’ performance (Figure 4), the residuals have decreased, leading to a narrower range in the limits of agreement 
(LoA). This reduction is expected, as the optimization was performed using the same dataset on which the models are evaluated. 
More importantly, the linear underprediction trend that is seen in Figure 4 has been significantly reduced in almost all of the 
optimized models, suggesting that much of the previous error was related to setpoint misalignment rather than an incorrect 
slope.

Appendix B

In Figure B1 the residual WLR is plotted versus the metabolic rate of all models. The dotted red line shows the linear least 
square fit line (linear regression line), with its R2 value shown in red, indicating the strength of the correlation. From this 
figure, it is seen that the residuals of all models are linearly correlated with the metabolic rate and that this correlation is 
consistent across all models, i.e. negative slope and R2≈0.2.

Figure A1. Bland-Altman plot of the residual water loss rate (WLR) of the models with either optimized core or skin temperature 
setpoint.
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Figure B1. Residual water loss rate (WLR) vs. metabolic rate.

22 R. DE KORVER ET AL.


	Abstract
	Introduction
	Materials and methods
	Sweat models
	Experiments
	Dataset uOttawa
	Dataset SZ+TP
	Dataset HEAT-SHIELD

	Evaluation
	Dataset characteristics

	Results and discussion
	Conclusion
	Abbreviations
	Disclosure statement
	Funding
	References
	Appendix A
	Appendix B



