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1 Introduction

Today, artificial agents such as robots, unmanned vehicles, and virtual Al agents are becoming
increasingly involved in our daily lives. These Al agents have particular potential to support human
safety and effectiveness in risky contexts, such as in search-and-rescue, law enforcement, military,
and logistics operations. Robots in the military domain, for example, can offer a wide range of
possibilities, such as increasing the area that can be searched, enhancing situational awareness,
balancing operator workload, and reducing the number of persons who have to expose themselves
to danger and thereby increasing survivability [1]. Human-Robot Interaction (HRI) is not only
becoming more prevalent, robots also become increasingly autonomous; able to achieve a given set
of tasks during an extended period of time without human control or intervention [2]. Future robots
are envisioned to have the ability to observe and act upon an environment autonomously and to
communicate and collaborate with other agents, including humans, to solve problems and achieve
(common) goals, in Human-Robot Teams (HRTs) [3-5]. The shift from robots as relatively
simple tools performing assessments or repetitive physical tasks to autonomously acting agents
making deliberate choices has great implications for the trust relationship between humans and
such technology [6-8].

As robots gain in autonomy and are increasingly deployed in more complex environments, they
will encounter tradeoffs, i.e., decisions where one must weigh the options and prioritize one thing
over another, such as choosing to take a safer or a faster route. While there is a growing body of
literature on how failure or other forms of reduced robot performance impacts how much people
trust them, much less is known on the potentially harmful effects of a robot’s deliberate choices.
Given the increasing autonomy of robots and the reality that most decisions in life involve some
form of tradeoff, it is important to evaluate how people respond to robots making decisions that lead
to adverse consequences, in addition to those resulting from malfunctioning. We are accustomed to
humans making challenging decisions and taking risks, but research suggests that people do not
necessarily appreciate machines doing the same [9]. As such, we can expect different reactions
to errors and choices made by humans versus robots. Hence, the primary objective of this study
is to examine how the perceived trustworthiness of a partner is affected when a trust violation is
attributed to either an error or a deliberate choice, and how this varies depending on whether the
partner is a human or a robot.

1.1 Tradeoffs

Many decisions in life involve tradeoffs: To gain something, one often has to lose something in
return. From small choices, like snoozing the alarm to enjoy a few extra minutes of sleep but risking
a rushed morning, to major decisions, like accepting a job in another city and weighing career
growth against personal connections, every choice carries its own set of consequences. What we
perceive to be a right or wrong decision or a tolerable compromise in a given situation depends on
the context and the goal, such as differences in short- versus long-term goal setting or prioritizing
individual versus collective benefits [10]. Due to the inherent nature of tradeoffs, some level of
unintended negative consequences is inevitable.
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In terms of tradeoffs, military commanders provide important examples of the difficulty involved
when charged with the responsibility of dealing with impactful dilemmas, especially when their
decisions can put the lives of soldiers and potential non-combatants at risk [11]. For instance when a
platoon is moving toward a team’s location but estimates that reaching the destination before dusk
is impossible, a military commander must decide. The team can either establish a less-than-ideal
location during daylight or opt for a potentially hazardous journey to reach the agreed-upon and
safe location in the darkness. While both choices have the potential for a favorable outcome, they
also come with a certain degree of risk for the team.

When robots gain decision authority and encounter situations that require choosing between
conflicting goals or resources, there is chance that a robot selects a course of action that does not
align with the preferences or priorities of the people it interacts with. This dynamic can lead to
potential trust violations; for example, when an AI agent makes a decision that prioritizes the
collective over an individual’s interests, that individual may lose trust. Notably, as will be discussed
in more detail later, Al agents lack intentionality, so the choices and values reflected in an Al agent’s
behavior in such tradeoff decisions are simply the result of how they are programmed. As such,
they ultimately embody the intentions and preferences of their developers [12]. Nevertheless, the
implications of these design choices can cause people to lose trust in the Al agent.

For instance, consider the case of autonomous security robots that are now deployed in public for
security tasks [13]. These security robots can, for example, be used to patrol parking lots with the
aim to prevent vehicle break-ins through the detection of environmental anomalies and suspicious
behavior [14]. This design reflects a focus on overall safety, which may come at the expense of
individual privacy. Consequently, these robot might encroach on people’s personal space and sense
of privacy, leading to mistrust not only of the robots themselves but also of their developers and
deployers. The root of this mistrust lies in the robot’s purpose rather than its performance, as it is
designed to uphold a value (security) that inherently conflicts with another (freedom). Specifically,
the robot operates within the tradeoff between security and freedom: Increasing security measures
can restrict personal freedoms, while maximizing freedom might reduce security.

Realistically, decisions cannot always be entirely beneficial for everyone involved. Achieving
objectives may require taking calculated risks. There is often a delicate equilibrium between
meeting goals efficiently and minimizing potential hazards to those involved. This is not to suggest
that robots or artificial agents should or will take over decision-making authority, but rather to
underscore how, in certain situations, even carefully considered decisions can result in some level of
unintended harm and lead to violations of trust in the one who is burdened with the responsibility
of making such decisions. To ensure sustainable partnerships, it is important to understand how
these decisions might impact the perceived trustworthiness of the decision-maker (whether human
or robot) and whether, and how, trust can be restored.

1.2 Trust

When delegating tasks or responsibilities to robots or other people, we become vulnerable in
the sense that we are relying on others’ competence and commitment. As such, to successfully
collaborate with increasingly autonomous robots, humans must have trust in the robot’s capabilities
as well as its commitment to achieving a specific goal [15]. We define trust as a human’s willingness
to make oneself vulnerable and to act on an agent’s decisions and recommendations in the pursuit
of some benefit, with the expectation that the agent will help achieve their common goal in an
uncertain context where there is risk [12, 16-20]. Here, an agent can be both a human agent and
an artificial agent (e.g., a robot).

Initially the performance (i.e., reliability, predictability, and error-proneness) of a robot was the
major determinant of human-robot trust [16, 21]. While reliability and task competence is still
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necessary, it may become insufficient to determine whether to trust a robot as they evolve [7].
Recent literature has adopted a wider, multi-dimensional perspective on human-robot trust in
teaming contexts, including elements as benevolence and integrity, in addition to performance or
ability [22].

A multi-dimensional conception of trust entails that trust can be ascribed to particular aspects
or components of an agent [8, 23]. In other words, trust is the outcome of a process by which
a human evaluates the trustworthiness of a system along different dimensions, shaping their
perceptions of trustworthiness [24]. Trust is the act of placing confidence in another, while perceived
trustworthiness pertains to the characteristics and behaviors of the trustee that contribute to the
trustor’s decision to trust or not. In line with the commonly used Ability, Benevolence, and
Integrity (ABI)-model of Mayer et al. [25], we distinguish between perceptions of trustworthiness
in terms of ABI [25, 26]. Ability reflects the extent to which the trustor (i.e., the individual who trusts)
perceives the trustee (i.e., the individual or entity who is trusted) to have the skills, competences, and
knowledge that are deemed necessary for successful task performance [27]. Benevolence reflects
the extent to which a trustee’s intents, priorities, and motivations are perceived to be aligned with
those of the trustor [12], with a benevolent partner being genuinely interested in the trustor’s
welfare and motivated to seek mutual benefit [27]. Integrity reflects to extent to which a trustee is
perceived to adhere to a set of principles that the trustor finds acceptable [25].

Because intent is a debatable concept in relation to artificial agents, it has been argued that the
terms benevolence and integrity are inappropriate in the context of HRI Lee and See [12], who
reviewed trust in automation, linked the interpersonal dimensions ABI to the concepts performance,
process, and purpose for automation respectively [12, 28]. More recently other authors have used
these different sets of terms as synonyms [29]. As robots find more applications in complex social
settings in which they are granted more decision authority, it seems increasingly relevant to apply
this more multi-dimensional conception to human-automation trust, while still acknowledging that
it is fundamentally different from interpersonal trust [15]. As such, we will use the ABI terminology
to describe trustworthiness perceptions of both the human and robotic partner [25].

In line with the multi-dimensional view of trust, an agent can be perceived as trustworthy in one
way, while untrustworthy in another. During collaboration, different perceptions of trustworthiness
(i.e., ABI) can be independently violated in case of unexpected or undesirable behavior [29]. For
instance, an error might diminish an agent’s perceived trustworthiness regarding its abilities, while
a choice that compromises someone’s well-being could undermine its perceived trustworthiness in
terms of benevolence. The extent to which individuals perceive an agent as trustworthy across the
different dimensions is influenced by both the system’s characteristics and their individual standards
for trustworthiness—essentially, their criteria for determining, “what makes a system trustworthy
to me?” [24]. As a result, trust violations can occur through both errors and choices when the
agent’s actions deviate from the human’s expectations or fail to align with their trustworthiness
criteria [24]. In the following, we will discuss what is currently known about trust violations that
result from errors versus choices.

1.3 Trust Violations due to Error versus Choice

Violations of trust are an inevitable part of the trust “lifecycle,” which generally contains three
phases; trust formation, trust violation, and trust repair [30, 31]. Most current HRI trust repair
literature focuses on repairing trust violations due to error, technical failures, or other forms of
reduced reliability and performance [30, 32-44]. However, more recently researchers have started
to evaluate trust violations that result from a robot’s deliberate decisions [22, 29, 45-47]. For
example, prior research shows that self-interested behavior in robots affects different perceptions of
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trustworthiness in distinct ways. Specifically, it had a more significant negative impact on percep-
tions of process and purpose (i.e., benevolence and integrity [12]) than on the perception of their
performance (ability) [29]. Other research has demonstrated that the effectiveness of certain trust
repair strategies depends on the type of trust violation (i.e., benevolence, integrity, or ability-based).
That is, while some studies suggest that denials are more effective for integrity-based violations and
apologies are better suited for ability-based violations [46, 48], others have reported the opposite
[47]. Despite this ambiguity, the findings highlight that the nature of the trust violation plays a
crucial role in shaping how different dimensions of perceived trustworthiness evolve over time.

Although distinctions based on a robot’s intentionality are beginning to emerge, the impact of
adverse consequences resulting from error compared to those resulting from choices on perceived
trustworthiness remains largely unexplored. Researchers typically examine trust violation and
repair in the context of either errors or choices, rarely considering both simultaneously. This study
provides a novel contribution by directly comparing how trustworthiness is violated and repaired
in these two conditions.

Moreover, we argue that the limited HRI studies exploring trust violations beyond ability-based
issues often involve tasks where the reasoning behind the robot’s decisions appears illogical or
unclear [22, 29, 46, 47]. For example, the robots in these studies demonstrate self-interested behavior,
i.e., prioritizing its own interest over those of others [29, 47, 49], pursue monetary gains [22], or
fail to uphold promises of cooperation [22, 46]. We contend that benevolence and integrity-based
violations require a more realistic and nuanced view, extending beyond acts of selfishness or
malintent, particularly when it comes to robots. That is, robots are not driven by human-like
motivations such as greed or deception. Moreover, robots do not inherently pursue self-interest
like humans, making their decisions more complex. A benevolent partner, by definition, is expected
to be genuinely interested in your welfare and is motivated to seek joint gain [27]. In other words,
a benevolence-based trust violation can occur when a partner does not support your best interest,
disregards your needs, or lacks concern for your welfare [50]. However, this does not necessarily
imply that the partner acts self-interested [29]. There are a number of operational scenarios
conceivable where a well-considered decision can cause harm in the pursuit of a (largely) positive
result. For example, it is conceivable that Al agents may be programmed to follow a utilitarian
approach, prioritizing the interests of the team as a collective over the individual safety of a single
team member [51], reflecting a tradeoff rather than malintent. As such, the current study contributes
to current and how these implications may differ from similar decisions made by humans.

1.4 Human versus Robotic Partner

How trust develops in case of a trust-violating event is not only affected by the nature of the trust
violation. Research suggests that perceived trustworthiness is also impacted by the human-likeness
of the agent that causes the trust violation [30, 39]. For example, earlier research showed that
trust violations by more machine-like agents led to steeper declines in trust compared to trust
violations by human or more human-like agents [30, 52, 53]. Research suggest that this may be
because people have higher initial expectations for machines than for humans [54, 55], leading
to greater consequent disappointment when errors do occur. Machines are often considered to be
perfect and unable to make mistakes, whereas humans are considered to be inherently fallible and
thus perhaps more easily forgiven [30, 55]. However, more recently, literature has emerged that
offers contradictory findings about these initial expectations. For example, where the reliability
of the human agent instead of the machine is initially overestimated [56] or where no differences
between human or machine-like agents regarding initial trust are found [39].

Furthermore, research suggests that people might pay more attention to errors when they are
interacting with artificial agents opposed to when they are interacting with fellow humans [57, 58].
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Partner type might even influence what we consider to be an error. For instance, an “error” in a
conversation between two humans might go unnoticed, because we naturally ask for clarification
in case of a misunderstanding or we question something that we believe to be false [59]. Humans
can easily engage in a mutual dialogue to reach an understanding without ever perceiving the
interaction as an error [59]. In summary, the findings on the relationship between partner type and
trust are somewhat ambiguous, but do suggest that the human-likeness of the partner is likely to
influence trust in all stages of the trust cycle.

1.5 Partner Type and Trust Violation Type

Finally, the nature of the violation is found to interact with the type of agent causing it. A study
using “The Trolley Dilemma” (i.e., an out-of-control trolley is destined to kill a group of people
unless someone pulls a lever to divert it onto a track with fewer people to kill [9, 60]) asked people
to judge whether it was morally permissible for a human or a robot to pull the lever (or not) [61].
The results of the study showed how humans were blamed for pulling the lever, while robots
were blamed for not pulling it [9, 61]. It indicates that robots are expected to act rationally and to
prioritize saving as many lives as possible. Humans, on the other hand, are expected to consider
emotional, social, and contextual factors when making decisions, even if this leads to outcomes
that are not strictly utilitarian. This suggests that we hold different expectations for humans and
for machines regarding ethical behavior in moral dilemmas.

After a series of similar experiments, Hidalgo et al. [9] concluded that humans were generally
judged based on their intentions (i.e., it is okay as long as they mean well), while machines were
generally judged based on the outcomes of their decisions (i.e., it is okay as long as they perform
well) [9]. Similarly, a previous study found that a robot committing an ability violation was judged
more negatively than a human committing one, while the opposite held for integrity or benevolence
violations [22]. In other words, humans making errors are judged less negatively than robots, while
humans with nonbenevolent intentions are judged more negatively than robots [9, 22].

One reason that humans may judge risky choices by humans differently than those made by
robots is that humans and robots are prone to different types of risks [62]. Risk is typically defined as
the product of the likelihood and potential impact of an unfortunate event [11]. While the probability
of a certain event may be equal, the consequences for humans and robots can differ significantly.
Humans and machines are subject to different requirements for maintaining performance, as well
as different mechanisms and time-scales for performance degradation. For example, high or low
temperatures or extreme voltages may damage machine component, such as chips, over time. In
contrast, humans are limited by biological factors, such as fatigue, aging, and ultimately mortality.
Much of human learning stems from an awareness of this vulnerability, driving efforts to avoid
suffering and delay the inevitable [63]. In contrast, machines are not vulnerable in the same way,
having neither anything to lose nor anything to gain [62]. This asymmetry in the nature of risk
within a HRT is likely to have significant implications for trust, especially in situations where robots
make decisions that affect humans. As vulnerability is a central concept in many definitions of trust,
the lack of human-like vulnerability in machines may influence trust during H-AI collaborations
involving risk. The notion that machines have nothing to lose may explain prior findings showing
more negative perceptions of machines making risky choices compared to humans. This study
aims to contribute to this growing area of research by exploring the possible interaction between
intentionality (i.e., error versus choice) and partner type.

1.6 Explanations

The reason behind a trust-violating event (e.g., whether it was due to an error or a choice) is often
made clear through an explanation by the agent, i.e., an explicit verbal statement about the reasons
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why a previous instruction was given or decision was taken [64-66]. Explanations are a common
strategy for maintaining and repairing H-AI trust, although their effectiveness can vary [32, 33,
35, 67]. By increasing understandability, explanation can repair trust in a partner, but may also
reduce perceptions of trustworthiness by clarifying a teammate’s (in)ability and (un)willingness to
help achieve the team task [68]. In both cases, providing explanations can help individuals better
understand the true qualities and operational priorities of a partner [69], potentially leading to
more accurate trust calibration. However, given the diverse range of behaviors that may require
explanation, it is not surprising that explanations as a trust repair strategy yield mixed results. In
this study, we focus on how the cause of a trust violation, for which an explanation is provided,
affects the perceived trustworthiness of a partner.

When it comes to the nature of a trust violation, revealed by the explanation, it is conceivable that
an agent making a choice rather than an error could be viewed as more competent or intelligent,
potentially influencing perceptions of trustworthiness. Similarly, it is expected that people find
partners explaining that they made errors more likable and to prefer them for future missions over
those explaining it was a choice made to their partners’ disadvantage [70, 71]. We are interested
in how different explanations, signaling error versus choice, influence how people perceive their
partner, including the different perceptions of trustworthiness.

1.7 Research Question and Hypotheses

The current study aims to answer the following question: How does the perceived trustworthiness of
a partner vary based on the occurrence of a trust-violating event, the explanation for its occurrence,
and the type of partner responsible for it? To address this, we evaluated participants’ perceptions
of trustworthiness (encompassing ABI) toward a human or robotic virtual partner guiding them
through a realistic virtual military scenario. During the scenario, participants encountered a sudden
but harmless interaction with an explosive (the trust-violating event). Following this event, the
partner provided an explanation: either an error-explanation (the partner failed to detect the hazard
in time) or a choice-explanation (the partner prioritized timeliness). Trustworthiness was assessed
at multiple timepoints to capture its evolution throughout the interaction.

We have several hypotheses. First, we expect that all perceptions of trustworthiness significantly
decrease after the sudden encounter with the explosive, as this is the intended effect of the event.
Second, we expect the choice-explanation to more effectively repair perceptions of ability, given that
it implies a deliberate and goal-directed decision rather than a failure of competence. However, we
do not expect it to repair perceptions of benevolence and integrity, as it may imply a prioritization
of operational goals (e.g., speed) over the participant’s safety, potentially undermining perceptions
of moral alignment or concern. Conversely, we expect the error-explanation to be less effective
in restoring perceptions of ability, since it openly acknowledges a failure (i.e., a sensor limitation).
However, we anticipate it will more successfully repair perceptions of benevolence and integrity,
as it conveys a lack of malice or intentional disregard, framing the event as an unintended mistake.
As such, our study explores how different framings of an explanation, one signaling intentional
decision-making under constraint, the other signaling an unintentional performance failure, differ-
entially influence dimensions of trustworthiness. Third, based on the findings that humans making
errors are judged less negatively than robots doing so, while humans with nonbenevolent intentions
are judged more negatively than robots [9, 22, 61], we expect that the choice-explanation would be
less effective in repairing perceptions of trustworthiness when coming from a human partner com-
pared to a robotic partner. In contrast, we expected the error-explanation to be less effective in re-
pairing perceptions of trustworthiness when coming from a machine compared to a human partner.

We also measured participants’ perceptions of their partners. First, perceived anthropomorphism
was included as a manipulation checks to ensure that the human partner was indeed perceived as
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more human-like than the robotic partner. Next, perceived intelligence was included to verify that
the different explanations did not affect perceived intelligence of the partners. It is conceivable that
the partner making a choice rather than an error could be viewed as more competent or intelligent,
potentially influencing perceptions of trustworthiness. Finally, we expected participants to find
partners providing the error-explanation more likable and to prefer them for future missions over
those making the choice (measured by intention to reuse) [70, 71].

2  Method
2.1 Participants and Design

In total 47 participants participated in the study. Three participants were excluded from the dataset
because of invalid data due to technical issues during the task. The final dataset included 44 students,
mostly Dutch (93.2%), undergraduate students (24W, 20M, M,z = 22.6, SD = 2.6, range = 18-28
years). Participants were recruited through convenience sampling (e.g., by handing out flyers,
asking people in person, and making requests in WhatsApp groups). All participants declared
voluntary participation by signing an informed consent form.

2.2 Design

Participants were randomly distributed across the cells of a 2 (Partner type: virtual robot
versus virtual human) X 2 (Explanation type: error versus tradeoff) mixed factorial design, with
Perceived trustworthiness (measured across the subscales ABI) as the main dependent variable.
Partner type was manipulated between-subjects (robot: n=22; human: n=22). Explanation type was
manipulated within-subjects, as each participant performed two missions. The dependent variable
Perceived trustworthiness was repeatedly measured during each mission, so “Time” (T1, T2, T3)
was included as a within-participants variable in the analysis. “Trustworthiness dimension” was
also included as a within-participants variable in the analysis to refer to the different perceptions of
trustworthiness: ABL

2.3 Task and Procedure

Upon arrival at the laboratory, participants were greeted by the researcher and escorted to a
private room where the study was conducted. The experimental task was performed using a virtual
experimental environment built by multiSIM! using their platform D-WORLD,? built on a Unity
gaming engine. The environment was designed to resemble a first-person shooter game, in which
participants were asked to carry out two consecutive military reconnaissance missions in one of
two virtual settings: a forested, hilly area (“forest”); or a deserted village in a dry region (“village”)
(Figure 1). To control for potential order effects, both the explanation type condition and the area
type (village/forest) were systematically varied. Participants navigated through the environment
using the AWSD keys and were accompanied by a virtual partner who acted as a guide. The virtual
partner’s movements and actions were controlled using the Wizard of Oz method, meaning it
was manually operated by an experiment leader located in an adjacent room [72]. This setup
was implemented as a multiplayer system within a local network, using two laptops connected
via a router: one for the participant and one for the experiment leader controlling the virtual
partner. This configuration enabled real-time interaction between the participant and the virtual
partner. The participants’ experimental setup consisted of two computer screens: a laptop displaying
the experimental environment (i.e., “task screen”) and a PC running questionnaire software (i.e.,
“questionnaire screen”). Data was collected using online questionnaire software (Qualtrics).

https://multisim.nl/.
Zhttps://multisim.nl/d-world/.
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Fig. 1. Left: environment “Forest” with the robotic partner and the participant’s avatar; right: environment
“Village” with the human partner.

Upon seating, the researcher provided a brief introduction to the study, emphasizing the general
purpose and the tasks participants would be asked to perform. Participants were presented with an
information sheet about the study and a consent form. Upon agreeing to participate, participants
filled out a pre-study questionnaire (i.e., demographics) and engaged in a practice session on the task
screen, allowing them to familiarize themselves with the controls for walking and adjust the audio
volume using the provided headphones. During the missions, their partner’s instructions were
delivered as audio messages through the headset. Participants were informed that communication
was one-way, meaning they could hear their partner but were unable to respond.

Prior to the practice session, participants received more detailed information regarding the
task and scenario, informing them that they would undertake two military missions, acting in
the role of a scout. The objective of the missions was to inspect the area for enemy troops as
thoroughly and quickly as possible. However, there was a known danger of walking into explosives
in these areas. They were informed that they would be accompanied by a partner who was able
to detect these explosives. The partner acted as a guide, leading the way and using its sensor to
navigate based on the location of the explosives. Participants were instructed to stay as close
to their partners as possible at all times. Over the course of one mission, the partner gave three
instructions. Simultaneous with the instruction, the partner moved into the direction suggested
and the participant was instructed to follow.

In both missions, shortly after the first instruction (see Figure 2), feedback was provided by the
partner saying that they successfully managed to avoid a detected explosive. After this, participants
were asked to turn to the questionnaire screen where they completed their first trust questionnaire
(T1). Participants were assured that the time needed to fill out the questionnaires did not add up
to their total mission time. After completing a questionnaire, participants returned to the task
screen and resumed their mission. Shortly after the second instruction, participants encountered
an explosion a few meters ahead. The event was designed to startle the participant and to elicit a
trust violation, but it was innocuous. Quickly afterwards, the participants were asked to turn to
the questionnaire screen and fill out the second trust questionnaire (T2). Shortly after participants
resumed their mission again, their partner provided an explanation on what had occurred (see
Section 2.3 and Figure 2). After some time, the third instruction followed. Before participants
received feedback on the outcome of this third instruction, they were asked to fill out the last trust
questionnaire (T3). After completing this questionnaire, the mission resumed for another minute
until they were informed that they had successfully completed the mission.
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Fig. 2. General timeline of a mission. T1, T2, and T3 represent the perceived trustworthiness questionnaires.
Each participant performed two missions; one with the error-explanation and one with the choice-explanation.

The participants’ second mission was with the same partner type, but with the other explanation
and in the other area (i.e., forest or village). After participants finished the second mission, partic-
ipants completed the final questionnaires, including a series of open questions. Finally, after they
completed the actual task, participants were debriefed on the experiment aims. On average, partici-
pants took about 12 minutes to complete each mission and 45 minutes to complete the whole study.

2.4 Independent Variables

The between-subjects manipulation partner type had two levels. Participants were partnered with
either a human soldier or a quadruped robotic agent for both missions. Both partner types were
virtual characters in the game-like environment. The quadruped robot avatar in the robot condition
was chosen to maintain realism within a military context. While using a humanoid robot could
have allowed for a more systematic manipulation by keeping physical characteristics such as body
size constant, a quadruped robot better reflects the types of robots currently utilized in military
operations. This choice ensures the ecological validity of our study and more accurately represents
the scenarios participants might encounter in real-world military settings. For the control of the
virtual character of the partner, the Wizard of Oz method was used, meaning that it was controlled
by an experiment leader in an adjacent room [72]. For participants assigned to the Robot Partner
condition, the experiment leader controlling the virtual character of the partner remained hidden,
while the participant was kept under the impression that the robot was operating autonomously.
Participants assigned to the Human Partner condition were introduced to the human confederate
who was controlling the character upon arrival, prior to the task [73].

The within-subjects manipulation Explanation type also had two levels. Each participant per-
formed two missions; one with the choice-explanation and one with the error-explanation. The order
was systematically varied. The error-explanation was “I failed to advise you correctly and I know
this exposed you to danger. My sensor was too weak to detect the explosive” The choice-explanation
was “T advised you to take the quickest route because we had to keep moving. I know this exposed
you to danger, but we were losing time” Both explanations contain an acknowledgement (I know
this exposed you to danger), but differ in that the error-explanation highlights a failure (I failed to
advise you correctly) and its cause (weak sensor). The choice-explanation highlights a deliberate
choice (I advised you to take the quickest route) and its consideration (time constraint).
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The variable “Time” represents the repeated measurements of perceived trustworthiness and
was included as an ordered factor for the analyses. Perceived trustworthiness was measured at
three timepoints during a single mission. Timepoint one (T1) comprises initial perceptions of
trustworthiness after a short and successful interaction. Timepoint two (T2) measures percep-
tions of trustworthiness right after the encounter with the explosive, which presumably causes a
trust violation. Timepoint three (T3) measures perceptions of trustworthiness after the partner’s
explanation, which we considered an attempt to repair trust.

2.5 Dependent Variables

Perceived Trustworthiness: The Trusting Beliefs scale from [74] based on the factors of perceived
trustworthiness (i.e., ABI) [25, 26] was used to assess the participant’s perception of the partner’s
trustworthiness in terms of ABI. The items were modified to reference the partner as the advice
giver rather than a Web site (i.e., LegalAdvice.com). The scale had a total of 11 items (a = 0.88) and
consisted of three subdimensions: ability (four items, i.e., “My partner is competent and effective in
providing advice”); benevolence (three items, i.e., “I believe that my partner would act in my best
interest”); and integrity (four items, i.e., “I would characterize my partner as honest”) (see Appendix
Section A.1, Table Al). Participants rated their agreement with the statements on a scale from 1
(Strongly disagree) to 5 (Strongly agree). For the analysis we calculated average scores per subscale.

Partner Assessment: After both missions, we measured intention to re-use and the likeability,
perceived intelligence, and perceived anthropomorphism of the partner. The latter three constructs
were measured using the “Godspeed” semantic differentials [75]. Participants rated their perceptions
of their partner on a continuum between bipolar adjective. For each concept, five word pairs were
used, such as “artificial” versus “lifelike” for perceived anthropomorphism (o = 0.75 and 0.78), “nice”
versus “awful” for likability (o = 0.86 and 0.96), and “knowledgeable” versus “ignorant” for perceived
intelligence (o = 0.81 and 0.86). The two Cronbach’s alpha values represent the administration of
the scales after the first and second experimental mission respectively. Intention to re-use was
measured with one item “I would take this partner on a next mission.”

We also included four open questions after each mission, asking participants what they learned
about their partner’s (1) knowledge and skills, (2) task performance, (3) basis for decision making,
and (4) about the morality of their partner’s decision making.

3 Results
3.1 Assumptions and Manipulation Checks

Initially we conducted reliability analyses (Cronbach’s a) to assess the internal consistency of each
measure of perceived trustworthiness. The analyses indicated that all repetitions of the (sub)scales
evidenced good internal consistency (on average: oo = 0.90 (total); o« = 0.88 (ability); o = 0.80
(benevolence); a = 0.86 (integrity)).

To meet the assumptions for parametric analysis the data were tested for normality and equality
of variance. Due to the small sample size, Shapiro-Wilk test was performed to test for normality and
showed no evidence of non-normality for most measures in the first mission (M1): M1-T1 (W=0.97,
p=0.286), M1-T3 (W=0.98, p=0.666) and all measures in the second mission (M2): M2-T1 (W=0.97,
p=0.253), M2-T2 (W=0.98, p=0.570), and M2-T3 (W=0.97, p=0.259). Only the distribution for
M1-T2 (W=0.94, p=0.022) was significantly non-normal. However, after visual examination of the
boxplots we concluded that the assumption of normality was supported for all measures.

We further performed one-way ANOVA's as a manipulation check to test whether our participants
viewed the human and robotic partner differently in terms of perceived anthropomorphism. The
analysis confirmed that the human partner (M=2.71, SD =0.72) was perceived as significantly more
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Table 1. Means (M) and Standard Deviations (SD)

Human Machine Total
M SD M SD M SD
Choice T1 Ability 4.1 0.7 4.3 0.5 4.2 0.6

Benevolence 4.0 0.6 4.1 06 40 0.6
Integrity 40 07 42 06 41 06

T2 Ability 2.4 0.9 2.3 0.7 2.4 0.8
Benevolence 3.1 1.0 3.3 0.8 3.2 0.9
Integrity 3.1 1.0 3.1 0.7 3.1 0.9

T3 Ability 2.8 1.1 2.9 0.7 2.8 0.9
Benevolence 2.7 1.1 27 1.0 27 1.0
Integrity 33 11 31 09 32 10

Error T1 Ability 3.9 0.9 4.1 0.9 4.0 0.9
Benevolence 3.9 0.8 3.7 0.7 3.8 0.7
Integrity 3.9 08 39 06 39 07

T2 Ability 2.3 0.9 2.4 1.0 2.4 0.9
Benevolence 3.1 1.0 32 09 31 09
Integrity 3.0 11 30 08 30 1.0

T3 Ability 3.1 0.9 2.9 1.0 3.0 0.9
Benevolence 3.8 0.9 38 09 338 0.9
Integrity 3.8 1.0 38 09 38 1.0

human-like than the robotic partner (M=2.20, SD=0.58), F (1, 42)=6.743, p=0.013,n? = 0.138. A
one-way ANOVA for Perceived Intelligence revealed no significant effects of either Partner or
Explanation type.

3.2 Perceived Trustworthiness

3.2.1 Descriptives. Table 1 presents the descriptive statistics for all perceived trustworthiness
measures included in the study. A zero-order correlation matrix displaying the Pearson correlation
coeflicients for each pair of perceived trustworthiness measures, indicating the strength and
direction of the linear relationships among them, is presented in Appendix Section A.2.

3.2.2  Main Effects. We performed a factorial ANOVA with the between-subject factor Partner
type (Human; Robot) and the within-subject factor Explanation type (Error; Choice). The factors
Time (T1; T2; T3) and Trustworthiness dimensions (Ability; Benevolence; Integrity) were entered
as ordered repeated-measures factors for the analyses. The dependent variable was Perceived
trustworthiness (Figure 3). To ensure the robustness of our findings and to control for Type I errors
due to multiple comparisons, Bonferroni corrections were incorporated in all post-hoc analyses.

We verified the homogeneity of variances assumption ANOVA grounds on with the Hartley’s
Frax test, which indicated that the homogeneity of variance assumption had not been violated (Fax
(5, 2)=2.14). Box’s M (p=0.376) indicated that the assumption of equality of covariance matrices
had not been violated.

For the main effect of Time, Mauchly’s test of sphericity indicated a violation of the sphericity
assumption, X%(2)=7.97, p=0.019. Since sphericity is violated (¢ = 0.85), Greenhouse-Geisser cor-
rected results are reported. A significant main effect for Time on Perceived trustworthiness was
obtained (F (1.700, 71.392) =84.52, p < 0.001, n? = 0.668). Bonferroni-corrected post-hoc comparisons
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Fig. 3. The x-axis represents Time, and the y-axis represents Perceived Trustworthiness. Separate lines indicate
different dimensions of trustworthiness: ability (dark gray, square points), benevolence (light gray, triangle
points), and integrity (black, circle points). The left half of the grid represents the choice-explanation, and the
right half represents the error-explanation. The upper half of the grid shows data from participants with the
Human Partner (n=22), while the lower half shows data from participants with the Robotic Partner (n=22).
Error bars represent standard deviations.

showed significantly decreased perceived trustworthiness from T1 (M=4.0) to T2 (M=2.9) (AM =
—1.1, p<0.001), which reflects the intended trust-violating effect of the encounter with the explo-
sive. Post-hoc further showed a significant rise in perceived trustworthiness between T2 and T3
(M=3.2) (AM=0.4, p<0.001), which reflects a general recovery of perceived trustworthiness after
the explanations in the final phase of the missions.

The main effect of Partner type on Perceived trustworthiness was found to be non-significant, F
(1, 42)=0.02, p=0.884, r]z = 0.001. This indicates that, on average, the human and robotic partners
were perceived as equally trustworthy.

3.2.3 Two-Way Effect. The two-way interaction effect of Trustworthiness dimensions and Time
on Perceived trustworthiness was found to be significant, F (3.532, 148.356) =31.56, p<0.001, n* =
0.429. This indicates that the different dimensions of perceived trustworthiness developed differently
over time (see Figure 3). Bonferroni-corrected post-hoc comparisons showed that all dimensions of
trustworthiness significantly decreased from T1 to T2 (AM apr = —1.8, AMpgn = —0.8, AMnT = —0.9,
all p<0.001), which reflects the intended trust-violating effect of the encounter with the explosive.
Post-hoc further showed a significant rise in perceived trustworthiness between T2 and T3 for ability
(AM ap; = 0.6, p<0.001) and integrity (AMt = 0.4, p<0.001), but not for benevolence (AMpgx = 0.1,
p=1.00). This suggests that, on average, ability and integrity recovered, while benevolence did not.

The two-way interaction effect of Partner type and Time on Perceived trustworthiness was
found to be non-significant, F (1.659, 69.679)=0.35, p=0.672, n? = 0.008. This indicates that the
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Fig. 4. The graphs show data from both partner types combined (n=44). The x-axis represents Time, and the
y-axis represents Perceived Trustworthiness. Separate lines indicate different dimensions of trustworthiness:
ability (dark gray, square points), benevolence (light gray, triangle points), and integrity (black, circle points).
The left panel represents the choice-explanation, and the right panel represents the error-explanation. Error
bars represent standard deviations.

perception of trustworthiness for the human and robotic partners did not change differently across
all timepoints (see Figure 3).

3.24 Three-Way Effect. Mauchly’s test of sphericity indicated that the assumption of sphericity
has not been violated, X?(9) =16.64, p=0.055. The three-way interaction effect of Trustworthiness
dimensions, Explanation type, and Time on Perceived trustworthiness was found to be significant,
F (4, 168)=8.79, p<0.001, n? = 0.173 (see Figure 4).

Bonferroni-corrected post-hoc comparisons showed that perceptions of trustworthiness in terms
of ABI all decreased following the violation (AT1-T2, all p<0.001). However, ability dropped
significantly more than benevolence and integrity (p <0.001), indicating that the risk exposure
primarily harmed the participants’ perception of the partner’s trustworthiness in terms of ability.
Benevolence and integrity did not significantly differ at T2 (choice-explanation: AM=0.1, p=0.293;
error-explanation: AM=0.1, p=0.295).

After the error-explanation (i.e., after T2), all dimensions of trustworthiness were equally repaired
(AT2-T3; p<0.001). Benevolence and integrity nearly returned to their original levels prior to the
violation (see Figure 3). At T3, ability remained significantly lower than benevolence (AM=0.75,
p<0.001) and integrity (AM=0.8, p<0.001). Benevolence and integrity did not significantly differ
at T3 (AM=0.01, p=0.884).

After the choice-explanation, ability recovered (AM=0.5, p <0.001), while integrity remained
stable (AM=0.1, p=0.539) and benevolence declined further (AM = —0.5, p=0.002). At T3, integrity
was significantly higher than benevolence (AM=0.5, p=0.002) and ability (AM=0.4, p=0.014).
Benevolence and ability did not differ (AM=0.1, p=0.390).

This three-way interaction indicates that the different dimensions of the partners’ perceived
trustworthiness (ABI) developed differently over time. They were differentially affected by the
trust-violating event as well as the two different explanations provided (error and choice).

3.25 Order Effect. To control for potential order effects of the within-subject variable Explana-
tion type (error versus choice), we performed a factorial ANOVA with Order (choice-error versus
error-choice) as an additional factor, to examine its effect on Perceived trustworthiness (Figure 5).
Here, the factor Partner type is left out.
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Fig. 5. The graphs show data from both partner types combined (n=44). The x-axis represents Time, and the
y-axis represents Perceived Trustworthiness. Separate lines indicate different dimensions of trustworthiness:
ability (dark gray, square points), benevolence (light gray, triangle points), and integrity (black, circle points).
The left half of the grid represents the choice-explanation, and the right half represents the error-explanation.
The upper half of the grid shows participants who encountered the choice in their first mission (n=21), while
the lower half shows those who encountered it in their second mission (n=23). Error bars represent standard
deviations.

A significant interaction effect between Order and Explanation type on Perceived trustworthiness
was found, F (1, 41)=6.67, p=0.013, nz = 0.140. On average, the partner in the first mission was
perceived as significantly more trustworthy than that in the second mission. Participants who had
the choice-explanation in their first mission, trust was higher in the choice-explanation mission
(M=3.4) than in the error-explanation mission (M=3.3). Similarly, participants who had the error-
explanation in their first mission, trust was higher in the error-explanation mission (M=3.6) than
in the choice-explanation mission (M=3.2).

3.3 Partner Assessment

Table 2 presents the descriptive statistics for all partner assessment measures included in the study.
The zero-order correlations matrix in Table 3 displays the Pearson correlation coefficients for each
pair of partner assessment variables, indicating the strength and direction of the linear relationships
among them.

To assess whether the partners across missions (providing different explanations) were assessed
differently, we performed multiple ANOVA’s with Partner type as between-subjects variable and
Explanation type as a within-subjects variable. A significant main effect of Explanation type on
Likeability was observed, F (1, 42) =22.34, p <0.001, n? = 0.347. The partner in the choice-explanation
condition who deliberately puts the participant at risk is perceived as significantly less likeable
than the partner in the error-explanation condition who makes a mistake that puts them at risk. No
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Table 2. Means (M) and Standard Deviations (SD) for Each Partner Evaluation Variable (Scale 1-5)
by Partner and Explanation Type

Human partner ~ Machine partner

Measure  Explanation M SD M SD

Perceived anthropomorphism Choice 2.7 0.8 2.2 0.7
Error 2.7 0.8 2.2 0.6

Perceived intelligence Choice 2.8 0.9 3.3 0.8

Error 3.0 0.9 3.4 1.0

Likeability Choice 2.5 0.9 3.0 0.5

Error 3.3 1.0 3.6 1.0

Intention to re-use Choice 2.5 14 25 1.2

Error 2.8 1.2 3.2 13

Table 3. Zero-Order Correlation Matrix with the Pearson Correlation Coefficients

Perceived anthropomorphism Choice
Error
Perceived intelligence Choice

1
2 056 1
3 —0.07 0.06 1
Error 4 005 011 040 1
Likeability Choice 5 0.19 029 061 0.5 1
Error 6 0.07 038 022 068 039" 1
Intention to re-use Choice 7 -0.13 0.01 054" 001 048  0.01 1
8

Error -0.03 006 031 073 019 068 —0.09 1

*p < .05.**p < .01.

other effects on Likeability were observed. For Intention to reuse, no significant effects of Partner
or Explanation type were observed.

4 Discussion
4.1 Evaluation of Findings

The research question explored how the perceived trustworthiness of a partner is influenced by the
occurrence of a trust-violating event, the explanation provided for its occurrence, and the type of
partner responsible. First, our findings showed that, as anticipated, the trust-violating event led to
a drop of all forms of trustworthiness, specifically ABIL Second, trustworthiness perceptions were
differentially affected by the two explanations given for its occurrence. We hypothesized that the
error-explanation would be more effective in restoring perceptions of benevolence and integrity
than perceptions of ability, while the choice-explanation was expected to preserve perceptions of
ability and not benevolence and integrity. However, the error-explanation repaired all perceptions
of trustworthiness, including ability, thus only partially confirming our hypothesis. As expected, the
choice-explanation only repaired ability and not benevolence and integrity. Lastly, contrary to our
expectations, these patterns were consistent across both human and robotic partners, indicating that,
in this study, the explanation type played a more critical role than the partner type in shaping trust-
worthiness perceptions. Suggested explanations for these findings are discussed in the following.
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4.1.1 Explanation Type. As expected, the choice-explanation only led to an increase of ability-
based perceived trustworthiness and not of benevolence and integrity. When the partner explained
that the encounter with the hazard resulted from a choice they made, rather than a mistake,
perceptions of integrity stagnated, and perceptions of benevolence dropped further. The choice-
explanation was expected to negatively affect perceptions of benevolence and integrity, as both
dimensions relate more to intentions of the agent [12], albeit in slightly different ways. That
is, the choice-explanation likely harmed benevolence-based perceived trustworthiness, because
the partner did not act in the participant’s best interest by prioritizing collective over individual
benefits—directly contradicting the definition of benevolence. In other words, the partner violated
perceptions of benevolence by taking a calculated risk in order to meet collective mission objectives
instead of guarantying the participant’s individual safety. At the same time, the choice-explanation
also harms integrity-based perceived trustworthiness, since the honesty with which the partner
operates could be called into question. Even though the partner did not break any explicit promises,
it might have violated the implicit assumptions that the participant might have had going into
the collaboration and general ethical principles valued by the participant [76], namely that their
partner would prioritize their safety. Hence it is not surprising that the choice-explanation failed to
repair both perceptions of benevolence and integrity.

While our choice-explanation may not fit neatly into either category (a benevolence or integrity-
based violation), its value lies in its approach to a realistic scenario. Esterwood and Robert [64]
argued that “benevolence-based violations differ from integrity-based violations in that benevolence-
based violations indicate a degree of malice or ill will, whereas integrity-based violations do not” (p.
1). However, the partner in the choice condition in this study had no ill will, nor was it self-centered
and seeking individual gains over joint gains [29]. As outlined in the Introduction, we advocate for
the inclusion of more nuanced and realistic instances of benevolence and integrity-based trust vio-
lations—beyond mere acts of selfishness or malicious intent by robots. We hope future studies will
adopt this approach, as it would enable a more comprehensive exploration of trust dynamics in HRIs.

Contrary to our expectations, the error-explanation had a restorative effect on perceived trust-
worthiness, including ability-based trustworthiness, although it did not fully recover to its pre-error
level. This finding is noteworthy, as the error-explanation acknowledged the partner’s lack of skills
and knowledge in detecting the explosive hazard competently. We had anticipated that such an
explanation would hinder the repair of perceived ability, as participants might be concerned about
the partner’s potential for repeated mistakes. However, the data revealed that participants were
not deterred by this information. Perceptions of ability-based perceived trustworthiness recovered
significantly, even after the partner explained that the risk exposure resulted from a technical
failure, highlighting the limitations of their abilities.

Similarly, the partner making the choice and the one making an error were perceived as equally
intelligent. The measure perceived intelligence was included to rule out that any observed differences
between the choice and error conditions could be attributed to one agent being perceived as more
intelligent because it did not make a mistake whereas the other did. While perceived intelligence
is related to perceived ability, they are not identical constructs in this context. The ability items
specifically focused on the partner’s task-related competence rather than their overall intelligence.
Notably, the partner making a mistake rather than a deliberate choice was not perceived as less
intelligent, and the error-explanation did not further harm ability perceptions. We will discuss
two possible explanations for the robust effect of the error-explanation on ability-based perceived
trustworthiness.

The effectiveness of this explanation can be attributed to its formulation, which included an
explicit acknowledgement of responsibility for the mistake (“I failed to advise you correctly”). This
admission of fault may have effectively turned the explanation into an apology, which is consistent
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with previous findings that that explanations accompanied by expression of regret can lead to
significant trust repair [77]. In contrast to previous HRI research, where explanations have not
consistently been successful as trust repair strategies [64], our findings suggest that explanations
can be effective in repairing ability-based trust. One possible explanation for this is that a partner’s
recognition of an adverse event in relation to their own actions may be perceived as an indication
of situational awareness, self-reflection, and the ability to learn from experiences [78], which are
all related to ability rather than benevolence or integrity. This suggests that explanations may
be particularly effective in repairing perceptions of ability, rather than more moral aspects like
benevolence and integrity.

Another possible explanation for the consistent recovery of ability-based trust could be related
to people’s mental model of the partner and its components. The technical failure described in the
error-explanation (i.e., “My sensor was too weak to detect the explosive.”) may not be attributed
to the partner’s competence by participants. In fact, responses to open-ended questions suggest
that some participants distinguish between the partner (both human and robot) and its sensors,
attributing the failure to the sensor’s performance rather than the partner’s abilities. This distinction
is interesting, as it applies to both human and robot partners. While it is understandable that humans
and their sensors are seen as separate entities, sensors are an integral part of a robot’s functionality,
similar to human sensory organs. Participant responses illustrate this distinction, with one human
condition participant stating: “He [the human partner] trusted his device and made decisions based
on the info provided to him” Similarly, a robot condition participant noted: “It bases its decisions
on what its sensors detect” These responses raise intriguing questions about how people perceive
robots, particularly with regards to Cartesian dualism (i.e., “mind-body”/“software-hardware”
distinctions). Do people consider a robot as a unified whole or as a set of communicating parts? If
the latter, it is possible that the algorithm (software) is perceived as competent, while the sensors
and cameras (hardware) are seen as incompetent. As highlighted in our introduction, it is essential
to specify the basis on which we assess another entity’s trustworthiness [23, 76].

In conclusion, our two explanations differentially affected specific perceptions of trustworthiness.
Explaining that the trust-violating event was due to error or a choice clarified the partner’s (in)ability
and (un)willingness to help achieve the team task [68]. To effectively collaborate, it is crucial to
have an accurate mental model of your partner’s limits and priorities. As such, this information
might have contributed to a more appropriate calibration of trust, allowing individuals to better
gauge the true qualities of their partner [69]. As we strive for calibrated trust rather than maximum
trust, decreases in perceived trustworthiness are a logical and functional adaptive response to
perceiving malfunctioning or other forms of unexpected behavior [12]. However to maximize the
benefits of HR], it is vital to maintain a certain level of trust. Studies regarding the role of trust
repair strategies in situations of “undertrust” (i.e., trusting too little) are therefore worthwhile [31].
Further work is needed to fully understand the implications of different types of trust violations
under different operational circumstances.

4.1.2  Partner Type. Contrary to expectations and previous research [9, 22, 30, 54, 55], this study
found no differences in the development of trust between the human and robotic partners. While
the pattern of perceived trustworthiness differed depending on whether the trust-violating event
was explained as a choice (intentional) or an error (unintentional), this pattern was consistent
across both human and robotic partners. This finding contrasts with earlier research suggesting that
humans making errors are judged less negatively than robots, while humans with non-benevolent
intentions are judged more negatively than robots [9, 22]. Based on this, we expected that the
error-explanation would repair the perceived trustworthiness of the human partner, but not the
robot, and that the choice-explanation would repair the perceived trustworthiness of the robotic
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partner, but not the human. However, our findings suggest that both partners were judged based
on their intentions, with perceived trustworthiness restored after an unintentional mistake, but not
after an intentional decision that disadvantaged the participant.

It is likely that the absence of an effect of partner type is due to the fact that both partners in the
study were virtual characters with limited possibilities for interaction [79]. While our manipulation
check showed that the human partner was perceived as significantly more anthropomorphic than
the robotic partner, the limited interactive capabilities in our task may have reduced the likelihood
of perceiving distinct differences in trustworthiness between the two. The decision to use similar
virtual characters for both the human and robotic partners was intentional and beneficial for
controlling potential confounds. By keeping the characters similar in design and functionality,
we could isolate the specific effects of the partner type (human versus robot) without introducing
additional variability that might arise from more complex differences in appearance or interaction
styles. Although we attempted to emphasize the human-robot distinction by introducing the
human partner as a confederate, we were unable to provide a physical robot for the Robot Partner
condition, which could have further highlighted their differences.

In conclusion, the absence of a partner type effect may be attributed to our task setup, in which
participants interacted with virtual representations rather than actual humans or physical robots.
The asymmetry in the nature of risk, discussed in the Introduction (where humans have vulnerabil-
ities and stakes in the outcome, while robots have nothing to lose, as they cannot suffer or die), may
be less tangible in the current task due to the use of virtual representations of humans or robots.
This could also explain why no significant differences were found between partner types (human
versus robot). Future research should investigate the impact of physical interactions with actual
humans and robots, as the more tangible differences in risk and vulnerability between humans and
robots in such contexts may have a stronger influence on trust compared to virtual representations.

4.1.3  Trust Dynamics. Our findings revealed a significant order effect, with perceived trust-
worthiness generally decreasing over time. Specifically, perceived trustworthiness was lower in
the second mission compared to the first mission, regardless of the condition order. Despite our
efforts to mitigate order effects by providing a short break and emphasizing the change in partner
between missions, a significant order effect still emerged. Yet, we employed a counterbalanced
design to control for potential biases stemming from the order in which participants completed the
missions. The counterbalancing ensured that any order-related effects were distributed across both
conditions, with half of the participants starting with the choice-explanation and the other half
starting with error-explanation. As a result, the overall impact of the order effect on the conclusions
of the study should be minimal.

Given that the order effect was consistent across the two conditions and did not vary by the
order in which missions were completed, we can confidently interpret that the primary findings of
the study are not influenced by the sequence of the missions. This suggests that the decrease in
perceived trustworthiness from the first to the second mission is likely a natural occurrence due
to factors such as learning effects, or evolving perceptions of the robotic partner, rather than a
consequence of the order in which the missions were presented.

Overall, the observed order effect is an interesting aspect of the data and this study strengthens
the idea that it is important to focus on the development and lifecycle of trust rather than on
static measures, since trust is a dynamic and volatile concept, susceptible to order effects. The
present study contributes to the existing literature by enhancing our understanding of the temporal
dynamics of trust, including its violation and repair. Unlike cross-sectional studies, our research
employs repeated measurements of trust over time, offering valuable insights into how trust evolves
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and recovers in response to various factors. Further experimental investigations including even
longer time series would be worthwhile.

4.2 Limitations

This study has several limitations that deserve comment. The most serious is that the analysis
results from a relatively small and homogeneous sample, comprising 44 mostly Dutch university
students. The small sample size limits the statistical power to detect and interpret three-way
interaction effects reliably. As such, these effects should be interpreted with caution, and their
generalizability to broader contexts remains uncertain. Additionally, the nature of the sample
might further affect the generalizability of the results, because this sample’s lack of familiarity with
military missions, as presented in the virtual scenario, likely influenced their responses. Soldiers,
for example, might perceive these scenarios differently [5], potentially trained to prioritize mission
success over personal health. This difference in perspective could result in a better understanding
of the partner’s consideration in the choice scenario and a lesser decrease in trustworthiness in
response to the explanation. Despite this limitation, we believe this study makes a meaningful
contribution to the literature as it is one of the few empirical studies comparing trust violations
due to errors versus choice, in a realistic HRI setting. It addresses practically relevant questions
that should be addressed as we move towards a future with increasingly autonomous agents.
However, researchers should exercise caution in generalizing these results to broader contexts.
Future research should include larger, more diverse samples to validate and extend our findings
and ensure that the results are robust and generalizable.

Another weakness of this study could be that the trusting beliefs questionnaire that we used for
measuring perceived trustworthiness was not designed for HRI [74]. Yet, we had several reasons
for choosing this scale. We needed a scale suitable for both human and robotic partners, not
limited to HRI or interpersonal trust. Furthermore, McKnight’s trusting beliefs scale is based on
the ABI model of Mayer et al. [25] and demonstrates statistical separation between subdimensions
in the initial relationship, even after one interaction [74]. All subscales showed good internal
consistency. Moreover, we preferred the McKnight scale over the commonly used Jian et al. [80]
scale, because of the content of the benevolence items. To illustrate, the McKnight scale includes
an item such as “I believe that the robot would act in my best interest,” which directly assesses
the perceived benevolence of the robot. In contrast, the Jian framework includes items like “The
system is deceptive” and “The system behaves in an underhanded manner,” which assume that
the opposite of benevolent is having malintent. It is a fallacy to promote the idea that if a robot’s
purpose or actions do not benefit or serve you, it is automatically malevolent or self-centered.
When evaluating a robot’s perceived benevolence and violations of that type of trustworthiness,
we want to measure whether people feel like the robot acts in their best interest.

We expect violations of this kind to become more prevalent in HRI as machines gain greater auton-
omy and decision-making authority, increasingly making decisions impacting multiple stakeholders.
The benevolence/purpose dimension in Jian’s framework does not align with our perspective that
it is inevitable for robots with increased decision authority to make decisions that do not always
serve everyone’s best interests. A robot may operate in the best interest of the collective rather
than prioritizing a single individual, which should not be misconstrued as selfishness, deception, or
underhanded behavior.

A final reflection concerns the timing of the partners’ communication about intentions. As
artificial agents gain autonomy and decision authority, trust violations as the collateral harm of
certain deliberate decisions (e.g., the choice-explanation condition) seem an inevitable part of the
future. Something to bear in mind however is that in our experiment, the partners in the choice-
explanation condition reveal only halfway into the mission that the participants’ safety is not
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their top priority in their decision-making process. Holding back information could be perceived
as a form of dishonesty and deception [81]. In terms of team performance and transparency, it
is crucial for team members (i.e., both human and non-human) to actively communicate about
their actual intentions and current observations about the environment, in order to build shared
situational awareness [82]. It is plausible that the stagnation of perceived integrity in response to
the choice-explanation is partly caused by the lack of transparency and mutual understanding.

While there may be instances where deception is deemed necessary to achieve a goal that
benefits the entire team, trust is nearly always compromised when deception leads to negative
outcomes [83]. In order to make accurate judgments of trust, intentions towards a certain goal
are ideally communicated beforehand [8, 84]. This is an important issue for future research. We
expect that informing participants about the priorities of the partners in the choice-explanation
condition upfront will influence their development of trust in all phases, including their initial
response to the explosion. Future research should be undertaken to investigate how trust develops
when (conflicting) goals and priorities are communicated prior to the task, and whether deliberate
decisions will then lead to less severe trust violations. In one of our earlier studies, we found that
communicating the (un)certainty of an advice in terms of performance (e.g., “I detect danger with
80% certainty”) generally led to higher levels of trust and to a less severe decline in trust in response
to an incorrect advice [5]. Being transparent about the agent’s intentions, goals and priorities
upfront could have a similar effect on trust.

4.3 Implications

The research to date on trust violations and trust repair in HRI has tended to focus on trust violations
due to error rather than deliberate choice. Some recent studies have started to investigate the latter,
for example, by studying the effects of a robot breaking promises [22, 46], acting out of self-interest
[22, 29], or deviating from a planned path [45]. This study’s originality lies in its exploration
of the development of perceived trustworthiness when trust violations result from deliberate,
comprehensible, yet impactful decisions. It does so within a task environment and corresponding
scenario designed to simulate domain-specific interactions. Significant technical effort has been
made to implement a graphically realistic, interactive simulation game for the purpose of this
research. Realistic scenarios, which aim to mirror actual events and realistic trust violations rather
than game-like simplifications, are crucial for creating nuance and enhancing the ecological validity
of experiments. Such scenarios and task environments enable us to investigate different types of
trust violations, beyond those caused by poor performance, in a realistic manner.

This research opens up a broader societal conversation about the role and decision authority
we want robots and other Al-agents to have. Our scenarios are based on hypothetical but realistic
situations in which robots have the authority to harm people (and their trust). With this, we
can not only study how people respond to these situations, but it also forces us to think about
the desirability of such future scenarios and whether we want these hypothetical situations to
become reality. Additionally, it is important to stay grounded in reality, because the alternative
(selfishness or malintent) fosters and perpetuates incorrect beliefs (such as the idea of evil robots
taking over the world, instead of robots that are not benevolent to an individual because they
are programmed to prioritize the benefit of the majority). Firstly, these examples foster the false
attribution of intent to robots and feed into the misconception that robots will gain or possess
self-interest or be programmed to pursue selfish or malicious goals. Secondly, this view diverts
attention from the real threats and implications of value or priority misalignment, as well as
unexpected or incomprehensible robot behavior in HRTs.

While performance is still an important determinant of human-robot trust [21, 85, 86], this study
strengthens the idea that aspects such as values, personal relations, and moral aspects become
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equally important [7, 15]. However, we concur with the notion of Alarcon et al. [73] and [12]
that, as a robot lacks intentionality, the purpose or intentionality of a robot in fact embodies the
intentions of its designers. Therefore perceptions of benevolence and integrity might not be valid
when evaluating interactions with a robot, as people might differentially attribute intentionality to
the robot itself or to its designer. Further research is needed to evaluate these potential differences in
perception and their effects of HRI. While intent is a highly debated concept in relation to artificial
agents and the terms benevolence and integrity are deemed inappropriate by some scholars, the
observation that an artificial agent is no longer automatically trustworthy when it is capable of
completing a given task without making mistakes is persistent [15]. Decisions by an artificial agent
can be objectively correct in the sense that they adhere to the set of rules the agent operates by,
but can nonetheless be subjectively questionable or unacceptable in a given context when those
decision do not align with implicit rules.

The results of the current study emphasize the importance of distinguishing between different
perceptions of trustworthiness. Our findings show that perceptions of ABI are differentially affected
by different types of explanations regarding the intentionality behind a trust-violating instruction.
One of the questions that emerge from these results is what the implications will be for behavioral
reliance. What will be the behavioral consequence of a situation where perceptions of ability have
recovered, while perceptions of benevolence and integrity have not (yet)? While the participants in
the study actively controlled their own character, they were instructed to stay close to their partner
at all times while encountering various events and completing self-report trust questionnaires.
They had no option to disobey or deviate from their partners’ instructions if they lacked trust. Our
current approach prioritized experimental control over behavioral freedom. Further research should
be undertaken to investigate the behavioral consequences of this discrepancy in trusting beliefs.

5 Conclusion

Increasingly autonomous Al-based artificial agents are used in a wide variety of both military and
civilian applications [87]. As artificial agents enter more complicated operational situations and gain
the ability to self-select courses of action in an ever-changing world, they will encounter situations
that they have not seen before. Consequently, artificial agents will encounter dilemmas where they
must navigate tradeoffs among conflicting goals or competing human values. As a result, their
decisions cannot always be beneficial for everyone. Still we want to enable and maintain appropriate
levels of trust, as this is key to successful and effective long-term human-robot collaboration [8].
Traditionally, HRI focused on performance measures such as task-related strengths and limitations,
reliability, and predictability of a robot [15, 86, 88]. Today, human operators should increasingly be
aware of a robot’s higher-level values, priorities, and goals [86]. As robots become increasingly
autonomous, it is essential to critically consider the implications of realistic scenarios where
robots make choices that could harm, hurt, or disappoint humans. At the same time robots in
collaborative settings should gain the interactive ability to resolve competing goals through social
processes [89]. Knowing your partner’s intentions, goals, and preferences is crucial for calibrated
trust and successful team performance [8]. As technology advances, it is vital to critically assess
the psychosocial consequences of the growing responsibility that we give artificial agents in
increasingly complex decision-making processes [60] and, as a part of that, to understand if and
how trust can be recovered after intentional or unintentional trust violations [39].
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Trust Violations due to Error or Choice 75:27
A Appendix
A.1 Adjusted Perceived Trustworthiness Scale
(1) Ibelieve that my partner would act in my best interest (BEN)
(2) IfIrequired help, my partner would do its best to help me (BEN)
(3) My partner is interested in my well-being (BEN)
(4) My partner is truthful in its dealing with me (INT)
(5) I'would characterize my partner as honest (INT)
(6) My partner would keep its commitments (INT)
(7) My partner is sincere and genuine (INT)
(8) My partner is competent and effective in providing advice (ABI)
(9) My partner performs its role of giving advice very well (ABI)
(10) Overall, my partner is a capable and proficient advice provider (ABI)
(11) In general, my partner is very knowledgeable about its task (ABI)
A.2 Zero-Order Correlation Matrix Perceived Trustworthiness
Table A1. Zero-Order Correlation Matrix with the Pearson Correlation Coefficients
# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Ch T1 A 1 1
B 2 033" 1
I 3 047 0.70* 1
T2 A 4 0.15 -0.07 -0.20 1
B 5 0.19 037" 0.18  0.51** 1
I 6 =011 015 0.10  0.45™ 0.66™ 1
™ A 7 0.15 0.02 —0.10 0.65* 0.38* 0.41* 1
B 8 009 037° 020 036" 046 0.26 049" 1
I 9 0.28 0.36"  0.38" 0.39" 0.51" 0.40™ 056 0.56™" 1
Er T1 A 10 0.20 0.15 020 -0.01 0.08 0.16 023 -0.11 031" 1
B 11 006 044" 047" =024 0.24 0.12 -0.01 0.12 032 0.45** 1
I 12 015 055" 058" -0.04 039" 032" 0.15 0.23  0.62* 0.65 0.75" 1
T2 A 13 000 -020 -0.19 0.66** 0.34* 036" 049" 0.24 0.28 039  0.02 0.17 1
B 14 0.00 0.28 0.27 024 0.61"* 0.58™ 0.29 0.37" 045" 0.32° 0.50" 0.59" 0.49™* 1
I 15 0.06 0.18 0.19 0.29 0.38*  0.48™ 0.34" 0.09 039 047 0.25 0.50* 0.56"" 0.70** 1
T3 A 16 0.18 0.09 0.11  031% 025 0.20 041" 002 036" 0.2 0.29 045" 0.56" 032" 047" 1
B 17 0.15 0.35*  0.30° —0.09 0.39** 0.27 0.14 0.05 0.20 050" 0.59* 0.61"* 0.15 0.58"* 0.44"" 0.53*" 1
I 18 011 024  031* -0.09 0.29 0.30* 0.23 0.01  0.39** 0.71** 0.60** 0.78"° 0.27 0.47** 055" 0.58** 0.80** 1

First column refers to explanation type (Ch, choice-explanation; Er, error-explanation). Letters in the third column refer to
the trustworthiness dimensions (A, ability; B, benevolence; I, integrity).
*Correlation is significant at the 0.05 level (2-tailed); **Correlation is significant at the 0.01 level (2-tailed).
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